Sample records for identify causal factors

  1. Identifying Causal Risk Factors for Violence among Discharged Patients

    PubMed Central

    Coid, Jeremy W.; Kallis, Constantinos; Doyle, Mike; Shaw, Jenny; Ullrich, Simone

    2015-01-01

    Background Structured Professional Judgement (SPJ) is routinely administered in mental health and criminal justice settings but cannot identify violence risk above moderate accuracy. There is no current evidence that violence can be prevented using SPJ. This may be explained by routine application of predictive instead of causal statistical models when standardising SPJ instruments. Methods We carried out a prospective cohort study of 409 male and female patients discharged from medium secure services in England and Wales to the community. Measures were taken at baseline (pre-discharge), 6 and 12 months post-discharge using the Historical, Clinical and Risk-20 items version 3 (HCR-20v3) and Structural Assessment of Protective Factors (SAPROF). Information on violence was obtained via the McArthur community violence instrument and the Police National Computer. Results In a lagged model, HCR-20v3 and SAPROF items were poor predictors of violence. Eight items of the HCR-20v3 and 4 SAPROF items did not predict violent behaviour better than chance. In re-analyses considering temporal proximity of risk/ protective factors (exposure) on violence (outcome), risk was elevated due to violent ideation (OR 6.98, 95% CI 13.85–12.65, P<0.001), instability (OR 5.41, 95% CI 3.44–8.50, P<0.001), and poor coping/ stress (OR 8.35, 95% CI 4.21–16.57, P<0.001). All 3 risk factors were explanatory variables which drove the association with violent outcome. Self-control (OR 0.13, 95% CI 0.08–0.24, P<0.001) conveyed protective effects and explained the association of other protective factors with violence. Conclusions Using two standardised SPJ instruments, predictive (lagged) methods could not identify risk and protective factors which must be targeted in interventions for discharged patients with severe mental illness. Predictive methods should be abandoned if the aim is to progress from risk assessment to effective risk management and replaced by methods which identify factors

  2. Identifying causal linkages between environmental variables and African conflicts

    NASA Astrophysics Data System (ADS)

    Nguy-Robertson, A. L.; Dartevelle, S.

    2017-12-01

    Environmental variables that contribute to droughts, flooding, and other natural hazards are often identified as factors contributing to conflict; however, few studies attempt to quantify these causal linkages. Recent research has demonstrated that the environment operates within a dynamical system framework and the influence of variables can be identified from convergent cross mapping (CCM) between shadow manifolds. We propose to use CCM to identify causal linkages between environmental variables and incidences of conflict. This study utilizes time series data from Climate Forecast System ver. 2 and MODIS satellite sensors processed using Google Earth Engine to aggregate country and regional trends. These variables are then compared to Armed Conflict Location & Event Data Project observations at similar scales. Results provide relative rankings of variables and their linkage to conflict. Being able to identify which factors contributed more strongly to a conflict can allow policy makers to prepare solutions to mitigate future crises. Knowledge of the primary environmental factors can lead to the identification of other variables to examine in the causal network influencing conflict.

  3. Nightmares in the general population: identifying potential causal factors.

    PubMed

    Rek, Stephanie; Sheaves, Bryony; Freeman, Daniel

    2017-09-01

    Nightmares are inherently distressing, prevent restorative sleep, and are associated with a number of psychiatric problems, but have rarely been the subject of empirical study. Negative affect, linked to stressful events, is generally considered the key trigger of nightmares; hence nightmares have most often been considered in the context of post-traumatic stress disorder (PTSD). However, many individuals with heightened negative affect do not have nightmares. The objective of this study was to identify mechanistically plausible factors, beyond negative affect, that may explain why individuals experience nightmares. 846 participants from the UK general population completed an online survey about nightmare occurrence and severity (pre-occupation, distress, and impairment), negative affect, worry, depersonalisation, hallucinatory experiences, paranoia, alcohol use, sleep duration, physical activity levels, PTSD symptoms, and stressful life events. Associations of nightmares with the putative predictive factors were tested controlling for levels of negative affect. Analyses were also repeated controlling for levels of PTSD and the recent occurrence of stressful life events. Nightmare occurrence, adjusting for negative affect, was associated with higher levels of worry, depersonalisation, hallucinatory experiences, paranoia, and sleep duration (odds ratios 1.25-1.45). Nightmare severity, controlling for negative affect, was associated with higher levels of worry, depersonalisation, hallucinatory experiences, and paranoia (R 2 s: 0.33-0.39). Alcohol use and physical activity levels were not associated with nightmares. The study identifies a number of potential predictors of the occurrence and severity of nightmares. Causal roles require testing in future longitudinal, experimental, and treatment studies.

  4. Identifying Causal Variants at Loci with Multiple Signals of Association

    PubMed Central

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-01-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515

  5. Identifying causal variants at loci with multiple signals of association.

    PubMed

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-10-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.

  6. Causal Indicators Can Help to Interpret Factors

    ERIC Educational Resources Information Center

    Bentler, Peter M.

    2016-01-01

    The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…

  7. An assessment of predominant causal factors of pilot deviations that contribute to runway incursions

    NASA Astrophysics Data System (ADS)

    Campbell, Denado M.

    The aim of this study was to identify predominant causal factors of pilot deviations in runway incursions over a two-year period. Runway incursion reports were obtained from NASA's Aviation Safety Reporting System (ASRS), and a qualitative method was used by classifying and coding each report to a specific causal factor(s). The causal factors that were used were substantiated by research from the Aircraft Owner's and Pilot's Association that found that these causal factors were the most common in runway incursion incidents and accidents. An additional causal factor was also utilized to determine the significance of pilot training in relation to runway incursions. From the reports examined, it was found that miscommunication and situational awareness have the greatest impact on pilots and are most often the major causes of runway incursions. This data can be used to assist airports, airlines, and the FAA to understand trends in pilot deviations, and to find solutions for specific problem areas in runway incursion incidents.

  8. Confounding factors in determining causal soil moisture-precipitation feedback

    NASA Astrophysics Data System (ADS)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  9. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    PubMed

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All

  10. Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam

    2016-10-01

    In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.

  11. Aircraft Loss of Control Causal Factors and Mitigation Challenges

    NASA Technical Reports Server (NTRS)

    Jacobson, Steven R.

    2010-01-01

    Loss of control is the leading cause of jet fatalities worldwide. Aside from their frequency of occurrence, accidents resulting from loss of aircraft control seize the public s attention by yielding a large number of fatalities in a single event. In response to the rising threat to aviation safety, the NASA Aviation Safety Program has conducted a study of the loss of control problem. This study gathered four types of information pertaining to loss of control accidents: (1) statistical data; (2) individual accident reports that cite loss of control as a contributing factor; (3) previous meta-analyses of loss of control accidents; and (4) inputs solicited from aircraft manufacturers, air carriers, researchers, and other industry stakeholders. Using these information resources, the study team identified the causal factors that were cited in the greatest number of loss of control accidents, and which were emphasized most by industry stakeholders. This report describes the study approach, the key causal factors for aircraft loss of control, and recommended mitigation strategies to make near-term impacts, mid-term impacts, and Next Generation Air Transportation System impacts on the loss of control accident statistics

  12. Causal Factors of Corruption in Construction Project Management: An Overview.

    PubMed

    Owusu, Emmanuel Kingsford; Chan, Albert P C; Shan, Ming

    2017-11-11

    The development of efficient and strategic anti-corruption measures can be better achieved if a deeper understanding and identification of the causes of corruption are established. Over the past years, many studies have been devoted to the research of corruption in construction management (CM). This has resulted in a significant increase in the body of knowledge on the subject matter, including the causative factors triggering these corrupt practices. However, an apropos systematic assessment of both past and current studies on the subject matter which is needful for the future endeavor is lacking. Moreover, there is an absence of unified view of the causative factors of corruption identified in construction project management (CPM). This paper, therefore, presents a comprehensive review of the causes of corruption from selected articles in recognized construction management journals to address the mentioned gaps. A total number of 44 causes of corruption were identified from 37 publications and analyzed in terms of existing causal factors of corruption, annual trend of publications and the thematic categorization of the identified variables. The most identifiable causes were over close relationships, poor professional ethical standards, negative industrial and working conditions, negative role models and inadequate sanctions. A conceptual framework of causes of corruption was established, after categorizing the 44 variables into five unique categories. In descending order, the five constructs are Psychosocial-Specific Causes, Organizational-Specific Causes, Regulatory-Specific Causes, Project-Specific Causes and Statutory-Specific Causes. This study extends the current literature of corruption research in construction management and contributes to a deepened understanding of the causal instigators of corruption identified in CPM. The findings from this study provide valuable information and extended knowledge to industry practitioners and policymakers as well as

  13. Knowing Who Dunnit: Infants Identify the Causal Agent in an Unseen Causal Interaction

    ERIC Educational Resources Information Center

    Saxe, Rebecca; Tzelnic, Tania; Carey, Susan

    2007-01-01

    Preverbal infants can represent the causal structure of events, including distinguishing the agentive and receptive roles and categorizing entities according to stable causal dispositions. This study investigated how infants combine these 2 kinds of causal inference. In Experiments 1 and 2, 9.5-month-olds used the position of a human hand or a…

  14. Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data.

    PubMed

    Zhang, Junpeng; Le, Thuc Duy; Liu, Lin; Liu, Bing; He, Jianfeng; Goodall, Gregory J; Li, Jiuyong

    2014-12-01

    Discovering the regulatory relationships between microRNAs (miRNAs) and mRNAs is an important problem that interests many biologists and medical researchers. A number of computational methods have been proposed to infer miRNA-mRNA regulatory relationships, and are mostly based on the statistical associations between miRNAs and mRNAs discovered in observational data. The miRNA-mRNA regulatory relationships identified by these methods can be both direct and indirect regulations. However, differentiating direct regulatory relationships from indirect ones is important for biologists in experimental designs. In this paper, we present a causal discovery based framework (called DirectTarget) to infer direct miRNA-mRNA causal regulatory relationships in heterogeneous data, including expression profiles of miRNAs and mRNAs, and miRNA target information. DirectTarget is applied to the Epithelial to Mesenchymal Transition (EMT) datasets. The validation by experimentally confirmed target databases suggests that the proposed method can effectively identify direct miRNA-mRNA regulatory relationships. To explore the upstream regulators of miRNA regulation, we further identify the causal feedforward patterns (CFFPs) of TF-miRNA-mRNA to provide insights into the miRNA regulation in EMT. DirectTarget has the potential to be applied to other datasets to elucidate the direct miRNA-mRNA causal regulatory relationships and to explore the regulatory patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Causal Inference and Developmental Psychology

    ERIC Educational Resources Information Center

    Foster, E. Michael

    2010-01-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…

  16. Is thermogenesis a significant causal factor in preventing the "globesity" epidemic?

    PubMed

    Hansen, Jens Carl; Gilman, Andrew P; Odland, Jon Øyvind

    2010-08-01

    During the last four decades the world has experienced an epidemic of overweight individuals in affluent as well as developing countries. The WHO has predicted a "globesity epidemic" with more than 1 billion adults being overweight and at least 300 million of these being clinically obese. Obesity among children and adolescents is of great significance. From a global population perspective, this epidemic in weight gain and its sequelae are the largest public health problems identified to date and have very significant adverse implications for population health, and have by now almost reached the proportion of a pandemic. While genetic changes have been discussed as a cause of the epidemic, there has been too little time since its start to enable enough genetic adaptation to take place for this to provide a valid explanation. Traditionally positive energy balance and sedentary life style have been regarded as the primary causal factors; however, these factors have so far failed to provide explanations for the entire problem. For these reasons it seems warranted to investigate other possible co-factors contributing to the "globesity epidemic" and to find efficient strategies to counteract further increases in the size and nature of the epidemic. The purpose of this paper is to discuss a potential preventive co-factor, thermogenesis. Special attention has been paid to the influence of ambient temperature as a grossly neglected factor in the debate. As most people today live and work at ambient temperatures close to their body temperature (the thermal neutral point), we hypothesise that this is an important causal co-factor in the "globesity" epidemic. The hypothesis: The null hypothesis that adaptive thermogenesis in brown adipose tissue in adult humans is not significant for weight loss is rejected. We propose the hypothesis that homoeothermic living conditions close to the thermogenic neutral level is an important causal co-factor in the "Globesity" Epidemic

  17. ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework.

    PubMed

    Zhang, Kunlin; Chang, Suhua; Cui, Sijia; Guo, Liyuan; Zhang, Liuyan; Wang, Jing

    2011-07-01

    Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there is lack of support on biological mechanisms as represented by pathways. Although pathway-based analysis (PBA) has been designed to identify disease-related pathways by analyzing the full list of SNPs from GWAS, it does not emphasize on interpreting causal SNPs. To our knowledge, so far there is no web server available to solve the challenge for GWAS data interpretation within one analytical framework. ICSNPathway is developed to identify candidate causal SNPs and their corresponding candidate causal pathways from GWAS by integrating linkage disequilibrium (LD) analysis, functional SNP annotation and PBA. ICSNPathway provides a feasible solution to bridge the gap between GWAS and disease mechanism study by generating hypothesis of SNP → gene → pathway(s). The ICSNPathway server is freely available at http://icsnpathway.psych.ac.cn/.

  18. Correlation of causal factors that influence construction safety performance: A model.

    PubMed

    Rodrigues, F; Coutinho, A; Cardoso, C

    2015-01-01

    The construction sector has presented positive development regarding the decrease in occupational accident rates in recent years. Regardless, the construction sector stands out systematically from other industries due to its high number of fatalities. The aim of this paper is to deeply understand the causality of construction accidents from the early design phase through a model. This study reviewed several research papers presenting various analytical models that correlate the contributing factors to occupational accidents in this sector. This study also analysed different construction projects and conducted a survey of design and site supervision teams. This paper proposes a model developed from the analysis of existing ones, which correlates the causal factors through all the construction phases. It was concluded that effective risk prevention can only be achieved by a global correlation of causal factors including not only production ones but also client requirements, financial climate, design team competence, project and risk management, financial capacity, health and safety policy and early planning. Accordingly, a model is proposed.

  19. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Stable Causal Relationships Are Better Causal Relationships.

    PubMed

    Vasilyeva, Nadya; Blanchard, Thomas; Lombrozo, Tania

    2018-05-01

    We report three experiments investigating whether people's judgments about causal relationships are sensitive to the robustness or stability of such relationships across a range of background circumstances. In Experiment 1, we demonstrate that people are more willing to endorse causal and explanatory claims based on stable (as opposed to unstable) relationships, even when the overall causal strength of the relationship is held constant. In Experiment 2, we show that this effect is not driven by a causal generalization's actual scope of application. In Experiment 3, we offer evidence that stable causal relationships may be seen as better guides to action. Collectively, these experiments document a previously underappreciated factor that shapes people's causal reasoning: the stability of the causal relationship. Copyright © 2018 Cognitive Science Society, Inc.

  1. Age- and Sex-Specific Causal Effects of Adiposity on Cardiovascular Risk Factors

    PubMed Central

    Fall, Tove; Hägg, Sara; Ploner, Alexander; Mägi, Reedik; Fischer, Krista; Draisma, Harmen H.M.; Sarin, Antti-Pekka; Benyamin, Beben; Ladenvall, Claes; Åkerlund, Mikael; Kals, Mart; Esko, Tõnu; Nelson, Christopher P.; Kaakinen, Marika; Huikari, Ville; Mangino, Massimo; Meirhaeghe, Aline; Kristiansson, Kati; Nuotio, Marja-Liisa; Kobl, Michael; Grallert, Harald; Dehghan, Abbas; Kuningas, Maris; de Vries, Paul S.; de Bruijn, Renée F.A.G.; Willems, Sara M.; Heikkilä, Kauko; Silventoinen, Karri; Pietiläinen, Kirsi H.; Legry, Vanessa; Giedraitis, Vilmantas; Goumidi, Louisa; Syvänen, Ann-Christine; Strauch, Konstantin; Koenig, Wolfgang; Lichtner, Peter; Herder, Christian; Palotie, Aarno; Menni, Cristina; Uitterlinden, André G.; Kuulasmaa, Kari; Havulinna, Aki S.; Moreno, Luis A.; Gonzalez-Gross, Marcela; Evans, Alun; Tregouet, David-Alexandre; Yarnell, John W.G.; Virtamo, Jarmo; Ferrières, Jean; Veronesi, Giovanni; Perola, Markus; Arveiler, Dominique; Brambilla, Paolo; Lind, Lars; Kaprio, Jaakko; Hofman, Albert; Stricker, Bruno H.; van Duijn, Cornelia M.; Ikram, M. Arfan; Franco, Oscar H.; Cottel, Dominique; Dallongeville, Jean; Hall, Alistair S.; Jula, Antti; Tobin, Martin D.; Penninx, Brenda W.; Peters, Annette; Gieger, Christian; Samani, Nilesh J.; Montgomery, Grant W.; Whitfield, John B.; Martin, Nicholas G.; Groop, Leif; Spector, Tim D.; Magnusson, Patrik K.; Amouyel, Philippe; Boomsma, Dorret I.; Nilsson, Peter M.; Järvelin, Marjo-Riitta; Lyssenko, Valeriya; Metspalu, Andres; Strachan, David P.; Salomaa, Veikko; Ripatti, Samuli; Pedersen, Nancy L.; Prokopenko, Inga; McCarthy, Mark I.

    2015-01-01

    Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10−107) and stratified analyses (all P < 3.3 × 10−30). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors. PMID:25712996

  2. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    PubMed

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  3. What Women Think: Cancer Causal Attributions in a Diverse Sample of Women

    PubMed Central

    Rodríguez, Vivian M.; Gyure, Maria E.; Corona, Rosalie; Bodurtha, Joann N.; Bowen, Deborah J.; Quillin, John M.

    2014-01-01

    Women hold diverse beliefs about cancer etiology, potentially affecting their use of cancer preventive behaviors. To date, research has greatly focused on the causal attributions cancer patients and survivors hold about cancer, and studies have been conducted primarily with White participants. Less is known about causal attributions held by women with and without a family history of cancer from a diverse community sample. This study sought to identify cancer causal attributions of women with and without a family history of cancer, and explore its relation to socio-cultural factors. Diverse women (60% African-American) recruited at an urban, safety-net women's health clinic (N=471) reported factors they believed cause cancer. Responses were coded into nine attributions and analyzed using chi-squares and logistic regressions. Lifestyle-choices (63%), genetics/heredity (34%), and environmental-exposures (19%) were the top causal attributions identified. Women without a family history of cancer were more likely to identify genetics/heredity as an attribution for cancer than women with a history of cancer in their families. Women who identified as White, who had a higher educational attainment, and had commercial insurance were more likely to report genetics/heredity as a causal attribution for cancer. These findings suggest that socio-cultural factors may play a role in the causal attributions individuals make about cancer, which can, in turn, inform cancer awareness and prevention messages. PMID:25398057

  4. Under What Assumptions Do Site-by-Treatment Instruments Identify Average Causal Effects?

    ERIC Educational Resources Information Center

    Reardon, Sean F.; Raudenbush, Stephen W.

    2011-01-01

    The purpose of this paper is to clarify the assumptions that must be met if this--multiple site, multiple mediator--strategy, hereafter referred to as "MSMM," is to identify the average causal effects (ATE) in the populations of interest. The authors' investigation of the assumptions of the multiple-mediator, multiple-site IV model demonstrates…

  5. Evaluation of near-miss and adverse events in radiation oncology using a comprehensive causal factor taxonomy.

    PubMed

    Spraker, Matthew B; Fain, Robert; Gopan, Olga; Zeng, Jing; Nyflot, Matthew; Jordan, Loucille; Kane, Gabrielle; Ford, Eric

    Incident learning systems (ILSs) are a popular strategy for improving safety in radiation oncology (RO) clinics, but few reports focus on the causes of errors in RO. The goal of this study was to test a causal factor taxonomy developed in 2012 by the American Association of Physicists in Medicine and adopted for use in the RO: Incident Learning System (RO-ILS). Three hundred event reports were randomly selected from an institutional ILS database and Safety in Radiation Oncology (SAFRON), an international ILS. The reports were split into 3 groups of 100 events each: low-risk institutional, high-risk institutional, and SAFRON. Three raters retrospectively analyzed each event for contributing factors using the American Association of Physicists in Medicine taxonomy. No events were described by a single causal factor (median, 7). The causal factor taxonomy was found to be applicable for all events, but 4 causal factors were not described in the taxonomy: linear accelerator failure (n = 3), hardware/equipment failure (n = 2), failure to follow through with a quality improvement intervention (n = 1), and workflow documentation was misleading (n = 1). The most common causal factor categories contributing to events were similar in all event types. The most common specific causal factor to contribute to events was a "slip causing physical error." Poor human factors engineering was the only causal factor found to contribute more frequently to high-risk institutional versus low-risk institutional events. The taxonomy in the study was found to be applicable for all events and may be useful in root cause analyses and future studies. Communication and human behaviors were the most common errors affecting all types of events. Poor human factors engineering was found to specifically contribute to high-risk more than low-risk institutional events, and may represent a strategy for reducing errors in all types of events. Copyright © 2017 American Society for Radiation Oncology

  6. Tumor Secreted Autocrine Motility Factor (AMF): Causal Role in an Animal Model of Cachexia

    DTIC Science & Technology

    2005-08-01

    AD Award Number: DAMD17-02-1-0586 TITLE: Tumor Secreted Autocrine Motility Factor ( AMF ): Causal Role in an Animal Model of Cachexia PRINCIPAL...5a. CONTRACT NUMBER Tumor Secreted Autocrine Motility Factor ( AMF ): Causal Role in an Animal Model of Cachexia 5b. GRANT NUMBER DAM D1 7-02-1-0586 5c...quality of life and postpone mortality. We proposed that autocrine motility factor ( AMF ) is released into the bloodstream from cancer sites and

  7. Age- and sex-specific causal effects of adiposity on cardiovascular risk factors.

    PubMed

    Fall, Tove; Hägg, Sara; Ploner, Alexander; Mägi, Reedik; Fischer, Krista; Draisma, Harmen H M; Sarin, Antti-Pekka; Benyamin, Beben; Ladenvall, Claes; Åkerlund, Mikael; Kals, Mart; Esko, Tõnu; Nelson, Christopher P; Kaakinen, Marika; Huikari, Ville; Mangino, Massimo; Meirhaeghe, Aline; Kristiansson, Kati; Nuotio, Marja-Liisa; Kobl, Michael; Grallert, Harald; Dehghan, Abbas; Kuningas, Maris; de Vries, Paul S; de Bruijn, Renée F A G; Willems, Sara M; Heikkilä, Kauko; Silventoinen, Karri; Pietiläinen, Kirsi H; Legry, Vanessa; Giedraitis, Vilmantas; Goumidi, Louisa; Syvänen, Ann-Christine; Strauch, Konstantin; Koenig, Wolfgang; Lichtner, Peter; Herder, Christian; Palotie, Aarno; Menni, Cristina; Uitterlinden, André G; Kuulasmaa, Kari; Havulinna, Aki S; Moreno, Luis A; Gonzalez-Gross, Marcela; Evans, Alun; Tregouet, David-Alexandre; Yarnell, John W G; Virtamo, Jarmo; Ferrières, Jean; Veronesi, Giovanni; Perola, Markus; Arveiler, Dominique; Brambilla, Paolo; Lind, Lars; Kaprio, Jaakko; Hofman, Albert; Stricker, Bruno H; van Duijn, Cornelia M; Ikram, M Arfan; Franco, Oscar H; Cottel, Dominique; Dallongeville, Jean; Hall, Alistair S; Jula, Antti; Tobin, Martin D; Penninx, Brenda W; Peters, Annette; Gieger, Christian; Samani, Nilesh J; Montgomery, Grant W; Whitfield, John B; Martin, Nicholas G; Groop, Leif; Spector, Tim D; Magnusson, Patrik K; Amouyel, Philippe; Boomsma, Dorret I; Nilsson, Peter M; Järvelin, Marjo-Riitta; Lyssenko, Valeriya; Metspalu, Andres; Strachan, David P; Salomaa, Veikko; Ripatti, Samuli; Pedersen, Nancy L; Prokopenko, Inga; McCarthy, Mark I; Ingelsson, Erik

    2015-05-01

    Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. What causes breast cancer? A systematic review of causal attributions among breast cancer survivors and how these compare to expert-endorsed risk factors.

    PubMed

    Dumalaon-Canaria, Jo Anne; Hutchinson, Amanda D; Prichard, Ivanka; Wilson, Carlene

    2014-07-01

    The aim of this paper was to review published research that analyzed causal attributions for breast cancer among women previously diagnosed with breast cancer. These attributions were compared with risk factors identified by published scientific evidence in order to determine the level of agreement between cancer survivors' attributions and expert opinion. A comprehensive search for articles, published between 1982 and 2012, reporting studies on causal attributions for breast cancer among patients and survivors was undertaken. Of 5,135 potentially relevant articles, 22 studies met the inclusion criteria. Two additional articles were sourced from reference lists of included studies. Results indicated a consistent belief among survivors that their own breast cancer could be attributed to family history, environmental factors, stress, fate, or chance. Lifestyle factors were less frequently identified, despite expert health information highlighting the importance of these factors in controlling and modifying cancer risk. This review demonstrated that misperceptions about the contribution of modifiable lifestyle factors to the risk of breast cancer have remained largely unchanged over the past 30 years. The findings of this review indicate that beliefs about the causes of breast cancer among affected women are not always consistent with the judgement of experts. Breast cancer survivors did not regularly identify causal factors supported by expert consensus such as age, physical inactivity, breast density, alcohol consumption, and reproductive history. Further research examining psychological predictors of attributions and the impact of cancer prevention messages on adjustment and well-being of cancer survivors is warranted.

  9. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.

    2018-04-01

    Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

  10. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

    PubMed

    Anderson, Allison P; Newman, Dava J; Welsch, Roy E

    2015-07-01

    Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

  11. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors.

    PubMed

    Burgess, Stephen; Scott, Robert A; Timpson, Nicholas J; Davey Smith, George; Thompson, Simon G

    2015-07-01

    Finding individual-level data for adequately-powered Mendelian randomization analyses may be problematic. As publicly-available summarized data on genetic associations with disease outcomes from large consortia are becoming more abundant, use of published data is an attractive analysis strategy for obtaining precise estimates of the causal effects of risk factors on outcomes. We detail the necessary steps for conducting Mendelian randomization investigations using published data, and present novel statistical methods for combining data on the associations of multiple (correlated or uncorrelated) genetic variants with the risk factor and outcome into a single causal effect estimate. A two-sample analysis strategy may be employed, in which evidence on the gene-risk factor and gene-outcome associations are taken from different data sources. These approaches allow the efficient identification of risk factors that are suitable targets for clinical intervention from published data, although the ability to assess the assumptions necessary for causal inference is diminished. Methods and guidance are illustrated using the example of the causal effect of serum calcium levels on fasting glucose concentrations. The estimated causal effect of a 1 standard deviation (0.13 mmol/L) increase in calcium levels on fasting glucose (mM) using a single lead variant from the CASR gene region is 0.044 (95 % credible interval -0.002, 0.100). In contrast, using our method to account for the correlation between variants, the corresponding estimate using 17 genetic variants is 0.022 (95 % credible interval 0.009, 0.035), a more clearly positive causal effect.

  12. Pharmacological Validation of Candidate Causal Sleep Genes Identified in an N2 Cross

    PubMed Central

    Brunner, Joseph I.; Gotter, Anthony L.; Millstein, Joshua; Garson, Susan; Binns, Jacquelyn; Fox, Steven V.; Savitz, Alan T.; Yang, He S.; Fitzpatrick, Karrie; Zhou, Lili; Owens, Joseph R.; Webber, Andrea L.; Vitaterna, Martha H.; Kasarskis, Andrew; Uebele, Victor N.; Turek, Fred; Renger, John J.; Winrow, Christopher J.

    2013-01-01

    Despite the substantial impact of sleep disturbances on human health and the many years of study dedicated to understanding sleep pathologies, the underlying genetic mechanisms that govern sleep and wake largely remain unknown. Recently, we completed large scale genetic and gene expression analyses in a segregating inbred mouse cross and identified candidate causal genes that regulate the mammalian sleep-wake cycle, across multiple traits including total sleep time, amounts of REM, non-REM, sleep bout duration and sleep fragmentation. Here we describe a novel approach toward validating candidate causal genes, while also identifying potential targets for sleep-related indications. Select small molecule antagonists and agonists were used to interrogate candidate causal gene function in rodent sleep polysomnography assays to determine impact on overall sleep architecture and to evaluate alignment with associated sleep-wake traits. Significant effects on sleep architecture were observed in validation studies using compounds targeting the muscarinic acetylcholine receptor M3 subunit (Chrm3)(wake promotion), nicotinic acetylcholine receptor alpha4 subunit (Chrna4)(wake promotion), dopamine receptor D5 subunit (Drd5)(sleep induction), serotonin 1D receptor (Htr1d)(altered REM fragmentation), glucagon-like peptide-1 receptor (Glp1r)(light sleep promotion and reduction of deep sleep), and Calcium channel, voltage-dependent, T type, alpha 1I subunit (Cacna1i)(increased bout duration slow wave sleep). Taken together, these results show the complexity of genetic components that regulate sleep-wake traits and highlight the importance of evaluating this complex behavior at a systems level. Pharmacological validation of genetically identified putative targets provides a rapid alternative to generating knock out or transgenic animal models, and may ultimately lead towards new therapeutic opportunities. PMID:22091728

  13. Identifying the Average Causal Mediation Effects with Multiple Mediators in the Presence of Treatment Non-Compliance

    ERIC Educational Resources Information Center

    Park, Soojin

    2015-01-01

    Identifying the causal mechanisms is becoming more essential in social and medical sciences. In the presence of treatment non-compliance, the Intent-To-Treated effect (hereafter, ITT effect) is identified as long as the treatment is randomized (Angrist et al., 1996). However, the mediated portion of effect is not identified without additional…

  14. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework

    PubMed Central

    Richmond, Rebecca C.; Ward, Mary E.; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L.; Ring, Susan M.; Gaunt, Tom R.; Lawlor, Debbie A.; Davey Smith, George; Relton, Caroline L.

    2016-01-01

    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. PMID:26861784

  15. Multivariate Granger causality: an estimation framework based on factorization of the spectral density matrix

    PubMed Central

    Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou

    2013-01-01

    Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix. PMID:23858479

  16. Expert explanations of honeybee losses in areas of extensive agriculture in France: Gaucho® compared with other supposed causal factors

    NASA Astrophysics Data System (ADS)

    Maxim, L.; van der Sluijs, J. P.

    2010-01-01

    Debates on causality are at the core of controversies as regards environmental changes. The present paper presents a new method for analyzing controversies on causality in a context of social debate and the results of its empirical testing. The case study used is the controversy as regards the role played by the insecticide Gaucho®, compared with other supposed causal factors, in the substantial honeybee (Apis mellifera L.) losses reported to have occurred in France between 1994 and 2004. The method makes use of expert elicitation of the perceived strength of evidence regarding each of Bradford Hill's causality criteria, as regards the link between each of eight possible causal factors identified in attempts to explain each of five signs observed in honeybee colonies. These judgments are elicited from stakeholders and experts involved in the debate, i.e., representatives of Bayer Cropscience, of the Ministry of Agriculture, of the French Food Safety Authority, of beekeepers and of public scientists. We show that the intense controversy observed in confused and passionate public discourses is much less salient when the various arguments are structured using causation criteria. The contradictions between the different expert views have a triple origin: (1) the lack of shared definition and quantification of the signs observed in colonies; (2) the lack of specialist knowledge on honeybees; and (3) the strategic discursive practices associated with the lack of trust between experts representing stakeholders having diverging stakes in the case.

  17. Causal factors of corporate crime in Taiwan: qualitative and quantitative findings.

    PubMed

    Mon, Wei-Teh

    2002-04-01

    Street crimes are a primary concern of most criminologists in Taiwan. In recent years, however, crimes committed by corporations have increased greatly in this country. Employing the empirical approach to collect data about causal factors of corporate crime, the research presented in this article is the first systematic empirical study concerning corporate crime in Taiwan. The research sample was selected from a corporation with a criminal record of pollution caused by the release of toxic chemicals into the environment and a corporation with no criminal record. Questionnaire survey and interviews of corporate employees and managers were conducted, and secondary data were collected from official agencies. This research indicated the causal factors of corporate crime as follows: the failure of government regulation, lack of corporate self-regulation, lack of public concern about corporate crime, corporate mechanistic structure, and the low self-control tendency of corporate managers.

  18. Applying causal mediation analysis to personality disorder research.

    PubMed

    Walters, Glenn D

    2018-01-01

    This article is designed to address fundamental issues in the application of causal mediation analysis to research on personality disorders. Causal mediation analysis is used to identify mechanisms of effect by testing variables as putative links between the independent and dependent variables. As such, it would appear to have relevance to personality disorder research. It is argued that proper implementation of causal mediation analysis requires that investigators take several factors into account. These factors are discussed under 5 headings: variable selection, model specification, significance evaluation, effect size estimation, and sensitivity testing. First, care must be taken when selecting the independent, dependent, mediator, and control variables for a mediation analysis. Some variables make better mediators than others and all variables should be based on reasonably reliable indicators. Second, the mediation model needs to be properly specified. This requires that the data for the analysis be prospectively or historically ordered and possess proper causal direction. Third, it is imperative that the significance of the identified pathways be established, preferably with a nonparametric bootstrap resampling approach. Fourth, effect size estimates should be computed or competing pathways compared. Finally, investigators employing the mediation method are advised to perform a sensitivity analysis. Additional topics covered in this article include parallel and serial multiple mediation designs, moderation, and the relationship between mediation and moderation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework.

    PubMed

    Richmond, Rebecca C; Sharp, Gemma C; Ward, Mary E; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L; Ring, Susan M; Gaunt, Tom R; Lawlor, Debbie A; Davey Smith, George; Relton, Caroline L

    2016-05-01

    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Leveraging network analytics to infer patient syndrome and identify causal genes in rare disease cases.

    PubMed

    Krämer, Andreas; Shah, Sohela; Rebres, Robert Anthony; Tang, Susan; Richards, Daniel Rene

    2017-08-11

    Next-generation sequencing is widely used to identify disease-causing variants in patients with rare genetic disorders. Identifying those variants from whole-genome or exome data can be both scientifically challenging and time consuming. A significant amount of time is spent on variant annotation, and interpretation. Fully or partly automated solutions are therefore needed to streamline and scale this process. We describe Phenotype Driven Ranking (PDR), an algorithm integrated into Ingenuity Variant Analysis, that uses observed patient phenotypes to prioritize diseases and genes in order to expedite causal-variant discovery. Our method is based on a network of phenotype-disease-gene relationships derived from the QIAGEN Knowledge Base, which allows for efficient computational association of phenotypes to implicated diseases, and also enables scoring and ranking. We have demonstrated the utility and performance of PDR by applying it to a number of clinical rare-disease cases, where the true causal gene was known beforehand. It is also shown that PDR compares favorably to a representative alternative tool.

  1. The influence of linguistic and cognitive factors on the time course of verb-based implicit causality.

    PubMed

    Koornneef, Arnout; Dotlačil, Jakub; van den Broek, Paul; Sanders, Ted

    2016-01-01

    In three eye-tracking experiments the influence of the Dutch causal connective "want" (because) and the working memory capacity of readers on the usage of verb-based implicit causality was examined. Experiments 1 and 2 showed that although a causal connective is not required to activate implicit causality information during reading, effects of implicit causality surfaced more rapidly and were more pronounced when a connective was present in the discourse than when it was absent. In addition, Experiment 3 revealed that-in contrast to previous claims-the activation of implicit causality is not a resource-consuming mental operation. Moreover, readers with higher and lower working memory capacities behaved differently in a dual-task situation. Higher span readers were more likely to use implicit causality when they had all their working memory resources at their disposal. Lower span readers showed the opposite pattern as they were more likely to use the implicit causality cue in the case of an additional working memory load. The results emphasize that both linguistic and cognitive factors mediate the impact of implicit causality on text comprehension. The implications of these results are discussed in terms of the ongoing controversies in the literature-that is, the focusing-integration debate and the debates on the source of implicit causality.

  2. Identification of causal genes for complex traits

    PubMed Central

    Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar

    2015-01-01

    Motivation: Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider ‘causal variants’ as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. Results: In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Availability and implementation: Software is freely available for download at genetics.cs.ucla.edu/caviar. Contact: eeskin@cs.ucla.edu PMID:26072484

  3. Identification of causal genes for complex traits.

    PubMed

    Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar

    2015-06-15

    Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider 'causal variants' as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Software is freely available for download at genetics.cs.ucla.edu/caviar. © The Author 2015. Published by Oxford University Press.

  4. Identifying X-consumers using causal recipes: "whales" and "jumbo shrimps" casino gamblers.

    PubMed

    Woodside, Arch G; Zhang, Mann

    2012-03-01

    X-consumers are the extremely frequent (top 2-3%) users who typically consume 25% of a product category. This article shows how to use fuzzy-set qualitative comparative analysis (QCA) to provide "causal recipes" sufficient for profiling X-consumers accurately. The study extends Dik Twedt's "heavy-half" product users for building theory and strategies to nurture or control X-behavior. The study here applies QCA to offer configurations that are sufficient in identifying "whales" and "jumbo shrimps" among X-casino gamblers. The findings support the principle that not all X-consumers are alike. The theory and method are applicable for identifying the degree of consistency and coverage of alternative X-consumers among users of all product-service category and brands.

  5. Obesity and infection: reciprocal causality.

    PubMed

    Hainer, V; Zamrazilová, H; Kunešová, M; Bendlová, B; Aldhoon-Hainerová, I

    2015-01-01

    Associations between different infectious agents and obesity have been reported in humans for over thirty years. In many cases, as in nosocomial infections, this relationship reflects the greater susceptibility of obese individuals to infection due to impaired immunity. In such cases, the infection is not related to obesity as a causal factor but represents a complication of obesity. In contrast, several infections have been suggested as potential causal factors in human obesity. However, evidence of a causal linkage to human obesity has only been provided for adenovirus 36 (Adv36). This virus activates lipogenic and proinflammatory pathways in adipose tissue, improves insulin sensitivity, lipid profile and hepatic steatosis. The E4orf1 gene of Adv36 exerts insulin senzitizing effects, but is devoid of its pro-inflammatory modalities. The development of a vaccine to prevent Adv36-induced obesity or the use of E4orf1 as a ligand for novel antidiabetic drugs could open new horizons in the prophylaxis and treatment of obesity and diabetes. More experimental and clinical studies are needed to elucidate the mutual relations between infection and obesity, identify additional infectious agents causing human obesity, as well as define the conditions that predispose obese individuals to specific infections.

  6. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  7. Determining the direction of causality between psychological factors and aircraft noise annoyance.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2010-01-01

    In this paper, an attempt is made to establish the direction of causality between a range of psychological factors and aircraft noise annoyance. For this purpose, a panel model was estimated within a structural equation modeling approach. Data were gathered from two surveys conducted in April 2006 and April 2008, respectively, among the same residents living within the 45 Level day-evening-night contour of Amsterdam Airport Schiphol, the largest airport in the Netherlands (n=250). A surprising result is that none of the paths from the psychological factors to aircraft noise annoyance were found to be significant. Yet 2 effects were significant the other way around: (1) from 'aircraft noise annoyance' to 'concern about the negative health effects of noise' and (2) from 'aircraft noise annoyance' to 'belief that noise can be prevented.' Hence aircraft noise annoyance measured at time 1 contained information that can effectively explain changes in these 2 variables at time 2, while controlling for their previous values. Secondary results show that (1) aircraft noise annoyance is very stable through time and (2) that changes in aircraft noise annoyance and the identified psychological factors are correlated.

  8. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction.

    PubMed

    Lamontagne, Maxime; Timens, Wim; Hao, Ke; Bossé, Yohan; Laviolette, Michel; Steiling, Katrina; Campbell, Joshua D; Couture, Christian; Conti, Massimo; Sherwood, Karen; Hogg, James C; Brandsma, Corry-Anke; van den Berge, Maarten; Sandford, Andrew; Lam, Stephen; Lenburg, Marc E; Spira, Avrum; Paré, Peter D; Nickle, David; Sin, Don D; Postma, Dirkje S

    2014-11-01

    COPD is a complex chronic disease with poorly understood pathogenesis. Integrative genomic approaches have the potential to elucidate the biological networks underlying COPD and lung function. We recently combined genome-wide genotyping and gene expression in 1111 human lung specimens to map expression quantitative trait loci (eQTL). To determine causal associations between COPD and lung function-associated single nucleotide polymorphisms (SNPs) and lung tissue gene expression changes in our lung eQTL dataset. We evaluated causality between SNPs and gene expression for three COPD phenotypes: FEV(1)% predicted, FEV(1)/FVC and COPD as a categorical variable. Different models were assessed in the three cohorts independently and in a meta-analysis. SNPs associated with a COPD phenotype and gene expression were subjected to causal pathway modelling and manual curation. In silico analyses evaluated functional enrichment of biological pathways among newly identified causal genes. Biologically relevant causal genes were validated in two separate gene expression datasets of lung tissues and bronchial airway brushings. High reliability causal relations were found in SNP-mRNA-phenotype triplets for FEV(1)% predicted (n=169) and FEV(1)/FVC (n=80). Several genes of potential biological relevance for COPD were revealed. eQTL-SNPs upregulating cystatin C (CST3) and CD22 were associated with worse lung function. Signalling pathways enriched with causal genes included xenobiotic metabolism, apoptosis, protease-antiprotease and oxidant-antioxidant balance. By using integrative genomics and analysing the relationships of COPD phenotypes with SNPs and gene expression in lung tissue, we identified CST3 and CD22 as potential causal genes for airflow obstruction. This study also augmented the understanding of previously described COPD pathways. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    NASA Astrophysics Data System (ADS)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  10. A review of causal inference for biomedical informatics

    PubMed Central

    Kleinberg, Samantha; Hripcsak, George

    2011-01-01

    Causality is an important concept throughout the health sciences and is particularly vital for informatics work such as finding adverse drug events or risk factors for disease using electronic health records. While philosophers and scientists working for centuries on formalizing what makes something a cause have not reached a consensus, new methods for inference show that we can make progress in this area in many practical cases. This article reviews core concepts in understanding and identifying causality and then reviews current computational methods for inference and explanation, focusing on inference from large-scale observational data. While the problem is not fully solved, we show that graphical models and Granger causality provide useful frameworks for inference and that a more recent approach based on temporal logic addresses some of the limitations of these methods. PMID:21782035

  11. Causal diagrams for empirical legal research: a methodology for identifying causation, avoiding bias and interpreting results

    PubMed Central

    VanderWeele, Tyler J.; Staudt, Nancy

    2014-01-01

    In this paper we introduce methodology—causal directed acyclic graphs—that empirical researchers can use to identify causation, avoid bias, and interpret empirical results. This methodology has become popular in a number of disciplines, including statistics, biostatistics, epidemiology and computer science, but has yet to appear in the empirical legal literature. Accordingly we outline the rules and principles underlying this new methodology and then show how it can assist empirical researchers through both hypothetical and real-world examples found in the extant literature. While causal directed acyclic graphs are certainly not a panacea for all empirical problems, we show they have potential to make the most basic and fundamental tasks, such as selecting covariate controls, relatively easy and straightforward. PMID:25685055

  12. New insights into old methods for identifying causal rare variants.

    PubMed

    Wang, Haitian; Huang, Chien-Hsun; Lo, Shaw-Hwa; Zheng, Tian; Hu, Inchi

    2011-11-29

    The advance of high-throughput next-generation sequencing technology makes possible the analysis of rare variants. However, the investigation of rare variants in unrelated-individuals data sets faces the challenge of low power, and most methods circumvent the difficulty by using various collapsing procedures based on genes, pathways, or gene clusters. We suggest a new way to identify causal rare variants using the F-statistic and sliced inverse regression. The procedure is tested on the data set provided by the Genetic Analysis Workshop 17 (GAW17). After preliminary data reduction, we ranked markers according to their F-statistic values. Top-ranked markers were then subjected to sliced inverse regression, and those with higher absolute coefficients in the most significant sliced inverse regression direction were selected. The procedure yields good false discovery rates for the GAW17 data and thus is a promising method for future study on rare variants.

  13. Causal and causally separable processes

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and

  14. A Hierarchical Causal Taxonomy of Psychopathology across the Life Span

    PubMed Central

    Lahey, Benjamin B.; Krueger, Robert F.; Rathouz, Paul J.; Waldman, Irwin D.; Zald, David H.

    2016-01-01

    We propose a taxonomy of psychopathology based on patterns of shared causal influences identified in a review of multivariate behavior genetic studies that distinguish genetic and environmental influences that are either common to multiple dimensions of psychopathology or unique to each dimension. At the phenotypic level, first-order dimensions are defined by correlations among symptoms; correlations among first-order dimensions similarly define higher-order domains (e.g., internalizing or externalizing psychopathology). We hypothesize that the robust phenotypic correlations among first-order dimensions reflect a hierarchy of increasingly specific etiologic influences. Some nonspecific etiologic factors increase risk for all first-order dimensions of psychopathology to varying degrees through a general factor of psychopathology. Other nonspecific etiologic factors increase risk only for all first-order dimensions within a more specific higher-order domain. Furthermore, each first-order dimension has its own unique causal influences. Genetic and environmental influences common to family members tend to be nonspecific, whereas environmental influences unique to each individual are more dimension-specific. We posit that these causal influences on psychopathology are moderated by sex and developmental processes. This causal taxonomy also provides a novel framework for understanding the heterogeneity of each first-order dimension: Different persons exhibiting similar symptoms may be influenced by different combinations of etiologic influences from each of the three levels of the etiologic hierarchy. Furthermore, we relate the proposed causal taxonomy to transdimensional psychobiological processes, which also impact the heterogeneity of each psychopathology dimension. This causal taxonomy implies the need for changes in strategies for studying the etiology, psychobiology, prevention, and treatment of psychopathology. PMID:28004947

  15. A review of protective factors and causal mechanisms that enhance the mental health of Indigenous Circumpolar youth.

    PubMed

    MacDonald, Joanna Petrasek; Ford, James D; Willox, Ashlee Cunsolo; Ross, Nancy A

    2013-12-09

    To review the protective factors and causal mechanisms which promote and enhance Indigenous youth mental health in the Circumpolar North. A systematic literature review of peer-reviewed English-language research was conducted to systematically examine the protective factors and causal mechanisms which promote and enhance Indigenous youth mental health in the Circumpolar North. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, with elements of a realist review. From 160 records identified in the initial search of 3 databases, 15 met the inclusion criteria and were retained for full review. Data were extracted using a codebook to organize and synthesize relevant information from the articles. More than 40 protective factors at the individual, family, and community levels were identified as enhancing Indigenous youth mental health. These included practicing and holding traditional knowledge and skills, the desire to be useful and to contribute meaningfully to one's community, having positive role models, and believing in one's self. Broadly, protective factors at the family and community levels were identified as positively creating and impacting one's social environment, which interacts with factors at the individual level to enhance resilience. An emphasis on the roles of cultural and land-based activities, history, and language, as well as on the importance of social and family supports, also emerged throughout the literature. More than 40 protective factors at the individual, family, and community levels were identified as enhancing Indigenous youth mental health. These included practicing and holding traditional knowledge and skills, the desire to be useful and to contribute meaningfully to one's community, having positive role models, and believing in one's self. Broadly, protective factors at the family and community levels were identified as positively creating and impacting one's social

  16. A review of protective factors and causal mechanisms that enhance the mental health of Indigenous Circumpolar youth

    PubMed Central

    MacDonald, Joanna Petrasek; Ford, James D.; Willox, Ashlee Cunsolo; Ross, Nancy A.

    2013-01-01

    Objectives To review the protective factors and causal mechanisms which promote and enhance Indigenous youth mental health in the Circumpolar North. Study design A systematic literature review of peer-reviewed English-language research was conducted to systematically examine the protective factors and causal mechanisms which promote and enhance Indigenous youth mental health in the Circumpolar North. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, with elements of a realist review. From 160 records identified in the initial search of 3 databases, 15 met the inclusion criteria and were retained for full review. Data were extracted using a codebook to organize and synthesize relevant information from the articles. Results More than 40 protective factors at the individual, family, and community levels were identified as enhancing Indigenous youth mental health. These included practicing and holding traditional knowledge and skills, the desire to be useful and to contribute meaningfully to one's community, having positive role models, and believing in one's self. Broadly, protective factors at the family and community levels were identified as positively creating and impacting one's social environment, which interacts with factors at the individual level to enhance resilience. An emphasis on the roles of cultural and land-based activities, history, and language, as well as on the importance of social and family supports, also emerged throughout the literature. More than 40 protective factors at the individual, family, and community levels were identified as enhancing Indigenous youth mental health. These included practicing and holding traditional knowledge and skills, the desire to be useful and to contribute meaningfully to one's community, having positive role models, and believing in one's self. Broadly, protective factors at the family and community levels were identified as positively

  17. Urinary saturation: casual or causal risk factor in urolithiasis?

    PubMed

    Rodgers, Allen L

    2014-07-01

    To assess (i) the extent to which urinary supersaturation (SS) has successfully discriminated between stone formers and healthy individuals (N), (ii) whether absolute SS has diagnostic worth and (iii) whether high SS is the fundamental cause of stone formation per se. Google Scholar was used to identify studies in which urinary compositional data had been determined. In those cases where SS values were not given, or where other risk indices had been reported, they were (re-)calculated. Collected data were termed 'global' but were then 'filtered' according to stone type and protocols used for SS calculations. SS distribution plots for calcium oxalate, brushite and uric acid were constructed. Data were statistically analysed using the unpaired t-test and Mann-Whitney test. In all, 47 studies yielded 123 SS values for healthy individuals and 122 values for stone formers. The mean and median SS values were significantly greater in stone formers compared with healthy individuals in all but one of the comparisons. Wide variations in SS occurred for healthy individuals and stone formers. The two groups could not be separated. Absolute SS has no diagnostic worth. It is impossible to quantify the meaning of a 'high' SS value. Urines cannot be identified as originating from healthy individuals or stone formers based on their SS. SS should be determined in clinical and research settings for relative comparisons during the assessment of treatment efficacies. This study provides a compelling argument for SS being a casual factor rather than a causal one. © 2013 The Author. BJU International © 2013 BJU International.

  18. Epidemiological causality.

    PubMed

    Morabia, Alfredo

    2005-01-01

    Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.

  19. Computed tomographic assessment of the causal factors of unsuccessful medialization thyroplasty.

    PubMed

    Iwahashi, Toshihiko; Ogawa, Makoto; Hosokawa, Kiyohito; Mochizuki, Ryuichi; Inohara, Hidenori

    2015-03-01

    The present results demonstrate that a small implant size, undercorrection of the vocal fold, antero-posterior implant malposition, and the use of expanded polytetrafluoroethylene (ePTFE) are the primary factors that cause a poor outcome of medialization thyroplasty (MT). To assess the postoperative laryngeal condition using computed tomography (CT) in patients with unilateral vocal fold paralysis who underwent MT alone, and to identify the primary causal factors in terms of the surgical procedures that affect the outcomes of MT. Twenty-two patients who underwent MT alone were divided into two groups based on either the maximal phonation time or the perceived vocal breathiness. Two laryngologists assessed the postoperative laryngeal CT images during sustained vowel phonation and judged whether there were abnormalities of the arytenoid cartilage position, window position, implant size, and implant position, as well as the degree of correction of the vocal fold. As implant material, a silicone block, ePTFE, and hydroxyapatite had been inserted in 2, 9, and 11 patients, respectively. Comparisons of the prevalence of abnormalities in the abovementioned factors between the different outcomes and between the types of material used for the implant were performed. Twelve patients with a poor outcome and 10 with a good outcome showed 36 and 18 abnormal findings identified by either of the two laryngologists, respectively. In the poor outcome group, a smaller implant size and undercorrection of the vocal fold showed both high kappa values and a significantly higher prevalence than those in the good outcome group (p < 0.001 and p < 0.05), respectively. The comparison between material types demonstrated that the sheet-like material (ePTFE) group exhibited a significantly higher prevalence of undercorrection than the block-like material group (p < 0.05).

  20. RM-DEMATEL: a new methodology to identify the key factors in PM2.5.

    PubMed

    Chen, Yafeng; Liu, Jie; Li, Yunpeng; Sadiq, Rehan; Deng, Yong

    2015-04-01

    Weather system is a relative complex dynamic system, the factors of the system are mutually influenced PM2.5 concentration. In this paper, a new method is proposed to quantify the influence on PM2.5 by other factors in the weather system and identify the most important factors for PM2.5 with limited resources. The relation map (RM) is used to figure out the direct relation matrix of 14 factors in PM2.5. The decision making trial and evaluation laboratory(DEMATEL) is applied to calculate the causal relationship and extent to a mutual influence of 14 factors in PM2.5. According to the ranking results of our proposed method, the most important key factors is sulfur dioxide (SO2) and nitrogen oxides (NO(X)). In addition, the other factors, the ambient maximum temperature (T(max)), concentration of PM10, and wind direction (W(dir)), are important factors for PM2.5. The proposed method can also be applied to other environment management systems to identify key factors.

  1. Molecular epidemiology of acute leukemia in children: causal model, interaction of three factors-susceptibility, environmental exposure and vulnerability period.

    PubMed

    Mejía-Aranguré, Juan Manuel

    Acute leukemias have a huge morphological, cytogenetic and molecular heterogeneity and genetic polymorphisms associated with susceptibility. Every leukemia presents causal factors associated with the development of the disease. Particularly, when three factors are present, they result in the development of acute leukemia. These phenomena are susceptibility, environmental exposure and a period that, for this model, has been called the period of vulnerability. This framework shows how the concepts of molecular epidemiology have established a reference from which it is more feasible to identify the environmental factors associated with the development of leukemia in children. Subsequently, the arguments show that only susceptible children are likely to develop leukemia once exposed to an environmental factor. For additional exposure, if the child is not susceptible to leukemia, the disease does not develop. In addition, this exposure should occur during a time window when hematopoietic cells and their environment are more vulnerable to such interaction, causing the development of leukemia. This model seeks to predict the time when the leukemia develops and attempts to give a context in which the causality of childhood leukemia should be studied. This information can influence and reduce the risk of a child developing leukemia. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  2. Illness causal beliefs in Turkish immigrants

    PubMed Central

    Minas, Harry; Klimidis, Steven; Tuncer, Can

    2007-01-01

    Background People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Methods Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Results Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Conclusion Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and

  3. Illness causal beliefs in Turkish immigrants.

    PubMed

    Minas, Harry; Klimidis, Steven; Tuncer, Can

    2007-07-24

    People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and acculturative influences. Different

  4. A hierarchical causal taxonomy of psychopathology across the life span.

    PubMed

    Lahey, Benjamin B; Krueger, Robert F; Rathouz, Paul J; Waldman, Irwin D; Zald, David H

    2017-02-01

    We propose a taxonomy of psychopathology based on patterns of shared causal influences identified in a review of multivariate behavior genetic studies that distinguish genetic and environmental influences that are either common to multiple dimensions of psychopathology or unique to each dimension. At the phenotypic level, first-order dimensions are defined by correlations among symptoms; correlations among first-order dimensions similarly define higher-order domains (e.g., internalizing or externalizing psychopathology). We hypothesize that the robust phenotypic correlations among first-order dimensions reflect a hierarchy of increasingly specific etiologic influences . Some nonspecific etiologic factors increase risk for all first-order dimensions of psychopathology to varying degrees through a general factor of psychopathology. Other nonspecific etiologic factors increase risk only for all first-order dimensions within a more specific higher-order domain. Furthermore, each first-order dimension has its own unique causal influences. Genetic and environmental influences common to family members tend to be nonspecific, whereas environmental influences unique to each individual are more dimension-specific. We posit that these causal influences on psychopathology are moderated by sex and developmental processes. This causal taxonomy also provides a novel framework for understanding the heterogeneity of each first-order dimension: Different persons exhibiting similar symptoms may be influenced by different combinations of etiologic influences from each of the 3 levels of the etiologic hierarchy. Furthermore, we relate the proposed causal taxonomy to transdimensional psychobiological processes, which also impact the heterogeneity of each psychopathology dimension. This causal taxonomy implies the need for changes in strategies for studying the etiology, psychobiology, prevention, and treatment of psychopathology. (PsycINFO Database Record (c) 2017 APA, all rights

  5. Causality and Causal Inference in Social Work: Quantitative and Qualitative Perspectives

    PubMed Central

    Palinkas, Lawrence A.

    2015-01-01

    Achieving the goals of social work requires matching a specific solution to a specific problem. Understanding why the problem exists and why the solution should work requires a consideration of cause and effect. However, it is unclear whether it is desirable for social workers to identify cause and effect, whether it is possible for social workers to identify cause and effect, and, if so, what is the best means for doing so. These questions are central to determining the possibility of developing a science of social work and how we go about doing it. This article has four aims: (1) provide an overview of the nature of causality; (2) examine how causality is treated in social work research and practice; (3) highlight the role of quantitative and qualitative methods in the search for causality; and (4) demonstrate how both methods can be employed to support a “science” of social work. PMID:25821393

  6. Identifying Conditions That Support Causal Inference in Observational Studies in Education: Empirical Evidence from within Study Comparisons

    ERIC Educational Resources Information Center

    Hallberg, Kelly

    2013-01-01

    This dissertation is a collection of three papers that employ empirical within study comparisons (WSCs) to identify conditions that support causal inference in observational studies. WSC studies empirically estimate the extent to which a given observational study reproduces the result of a randomized clinical trial (RCT) when both share the same…

  7. The multidimensional causal factors of 'wet litter' in chicken-meat production.

    PubMed

    Dunlop, Mark W; Moss, Amy F; Groves, Peter J; Wilkinson, Stuart J; Stuetz, Richard M; Selle, Peter H

    2016-08-15

    The problem of 'wet litter', which occurs primarily in grow-out sheds for meat chickens (broilers), has been recognised for nearly a century. Nevertheless, it is an increasingly important problem in contemporary chicken-meat production as wet litter and associated conditions, especially footpad dermatitis, have developed into tangible welfare issues. This is only compounded by the market demand for chicken paws and compromised bird performance. This review considers the multidimensional causal factors of wet litter. While many causal factors can be listed it is evident that the critical ones could be described as micro-environmental factors and chief amongst them is proper management of drinking systems and adequate shed ventilation. Thus, this review focuses on these environmental factors and pays less attention to issues stemming from health and nutrition. Clearly, there are times when related avian health issues of coccidiosis and necrotic enteritis cannot be overlooked and the development of efficacious vaccines for the latter disease would be advantageous. Presently, the inclusion of phytate-degrading enzymes in meat chicken diets is routine and, therefore, the implication that exogenous phytases may contribute to wet litter is given consideration. Opinion is somewhat divided as how best to counter the problem of wet litter as some see education and extension as being more beneficial than furthering research efforts. However, it may prove instructive to assess the practice of whole grain feeding in relation to litter quality and the incidence of footpad dermatitis. Additional research could investigate the relationships between dietary concentrations of key minerals and the application of exogenous enzymes with litter quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Causal Factors Influencing Adversity Quotient of Twelfth Grade and Third-Year Vocational Students

    ERIC Educational Resources Information Center

    Pangma, Rachapoom; Tayraukham, Sombat; Nuangchalerm, Prasart

    2009-01-01

    Problem statement: The aim of this research was to study the causal factors influencing students' adversity between twelfth grade and third-year vocational students in Sisaket province, Thailand. Six hundred and seventy two of twelfth grade and 376 third-year vocational students were selected by multi-stage random sampling techniques. Approach:…

  9. Infant acetylcholine, dopamine, and melatonin dysregulation: Neonatal biomarkers and causal factors for ASD and ADHD phenotypes.

    PubMed

    Hellmer, Kahl; Nyström, Pär

    2017-03-01

    Autism spectrum disorders (ASD) and ADHD are common neurodevelopmental disorders that benefit from early intervention but currently suffer from late detection and diagnosis: neurochemical dysregulations are extant already at birth but clinical phenotypes are not distinguishable until preschool age or later. The vast heterogeneity between subjects' phenotypes relates to interaction between multiple unknown factors, making research on factor causality insurmountable. To unlock this situation we pose the hypothesis that atypical pupillary light responses from rods, cones, and the recently discovered ipRGC system reflect early acetylcholine, melatonin, and dopamine dysregulation that are sufficient but not necessary factors for developing ASD and/or ADHD disorders. Current technology allows non-invasive cost-efficient assessment already from the first postnatal month. The benefits of the current proposal are: identification of clinical subgroups based on cause rather than phenotypes; facilitation of research on other causal factors; neonatal prediction of later diagnoses; and guidance for targeted therapeutical intervention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mapping historical information for better understanding the causality factors of past disasters

    NASA Astrophysics Data System (ADS)

    Boudou, Martin; Lang, Michel; Vinet, Freddy; Coeur, Denis

    2015-04-01

    The Flood Directive of 2007 promotes the use of historical information in order to mitigate the impact of future extreme events. According to this text, the study of past events offers new insights for better understanding the causality factors of a disaster, from hydrometeorological keys to socio-political repercussions of the flood. In this presentation we decided to focus on the study of factors leading to the exceptionality of a hydrological flood event. This aspect is regularly pointed out by the feedbacks carried out after a catastrophic event and remains a subject of debate for risk managers. The role of antecedent meteorological conditions is especially underestimated by local authorities. These factors can however be considered as a key issue to appreciate the exceptional character of a hydrological disaster. For example the 2013 June floods in France that affected the region of Pyrenees revealed the significant contribution of snow melting to the discharges recorded. In an article of 2014, Schröter et al. showed that the soil moisture can be considered as a key driver of the generalised flood hazard intensity that affected Germany over the same month of June 2013. With regard to these assessments, some considerations emerge. Does a diachronic appraisal of past disasters point out the main issues responsible for an exceptional flood hazard level? Is there common causality issues involved into these extreme hydrological events? In order to answer these questions this presentation proposes a comparative analysis of nine major floods that impacted the French territory during the XXth century (from 1910 to 2010). The set is composed by different flood typologies (from torrential events to floods resulting from groundwater level rising) so as to get a complete view of flood risk in France. The methodology proposed relies on a cartographic approach to highlight the causality factors of these past hydrological disasters. For instance, mapping the rainfall data

  11. Fine-mapping the human leukocyte antigen locus in rheumatoid arthritis and other rheumatic diseases: identifying causal amino acid variants?

    PubMed

    van Heemst, Jurgen; Huizinga, Tom J W; van der Woude, Diane; Toes, René E M

    2015-05-01

    To provide an update on and the context of the recent findings obtained with novel statistical methods on the association of the human leukocyte antigen (HLA) locus with rheumatic diseases. Novel single nucleotide polymorphism fine-mapping data obtained for the HLA locus have indicated the strongest association with amino acid positions 11 and 13 of HLA-DRB1 molecule for several rheumatic diseases. On the basis of these data, a dominant role for position 11/13 in driving the association with these diseases is proposed and the identification of causal variants in the HLA region in relation to disease susceptibility implicated. The HLA class II locus is the most important risk factor for several rheumatic diseases. Recently, new statistical approaches have identified previously unrecognized amino acid positions in the HLA-DR molecule that associate with anticitrullinated protein antibody-negative and anticitrullinated protein antibody-positive rheumatoid arthritis. Likewise, similar findings have been made for other rheumatic conditions such as giant-cell arteritis and systemic lupus erythematosus. Interestingly, all these studies point toward an association with the same amino acid positions: amino acid positions 11 and 13 of the HLA-DR β chain. As both these positions influence peptide binding by HLA-DR and have been implicated in antigen presentation, the novel fine-mapping approach is proposed to map causal variants in the HLA region relevant to rheumatoid arthritis and several rheumatic diseases. If these interpretations are correct, they would direct the biological research aiming to address the explanation for the HLA-disease association. Here, we provide an overview of the recent findings and evidence from literature that, although relevant new insights have been obtained on HLA-disease associations, the interpretation of the biological role of these amino acids as causal variants explaining that such associations should be taken with caution.

  12. Evaluating the impact of implementation factors on family-based prevention programming: methods for strengthening causal inference.

    PubMed

    Crowley, D Max; Coffman, Donna L; Feinberg, Mark E; Greenberg, Mark T; Spoth, Richard L

    2014-04-01

    Despite growing recognition of the important role implementation plays in successful prevention efforts, relatively little work has sought to demonstrate a causal relationship between implementation factors and participant outcomes. In turn, failure to explore the implementation-to-outcome link limits our understanding of the mechanisms essential to successful programming. This gap is partially due to the inability of current methodological procedures within prevention science to account for the multitude of confounders responsible for variation in implementation factors (i.e., selection bias). The current paper illustrates how propensity and marginal structural models can be used to improve causal inferences involving implementation factors not easily randomized (e.g., participant attendance). We first present analytic steps for simultaneously evaluating the impact of multiple implementation factors on prevention program outcome. Then, we demonstrate this approach for evaluating the impact of enrollment and attendance in a family program, over and above the impact of a school-based program, within PROSPER, a large-scale real-world prevention trial. Findings illustrate the capacity of this approach to successfully account for confounders that influence enrollment and attendance, thereby more accurately representing true causal relations. For instance, after accounting for selection bias, we observed a 5% reduction in the prevalence of 11th grade underage drinking for those who chose to receive a family program and school program compared to those who received only the school program. Further, we detected a 7% reduction in underage drinking for those with high attendance in the family program.

  13. Causal inference in public health.

    PubMed

    Glass, Thomas A; Goodman, Steven N; Hernán, Miguel A; Samet, Jonathan M

    2013-01-01

    Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action's consequences rather than the less precise notion of a risk factor's causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world.

  14. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder-Metallurgy-Produced Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.

    2013-05-01

    An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  15. [FROM STATISTICAL ASSOCIATIONS TO SCIENTIFIC CAUSALITY].

    PubMed

    Golan, Daniel; Linn, Shay

    2015-06-01

    The pathogenesis of most chronic diseases is complex and probably involves the interaction of multiple genetic and environmental risk factors. One way to learn about disease triggers is from statistically significant associations in epidemiological studies. However, associations do not necessarily prove causation. Associations can commonly result from bias, confounding and reverse causation. Several paradigms for causality inference have been developed. Henle-Koch postulates are mainly applied for infectious diseases. Austin Bradford Hill's criteria may serve as a practical tool to weigh the evidence regarding the probability that a single new risk factor for a given disease is indeed causal. These criteria are irrelevant for estimating the causal relationship between exposure to a risk factor and disease whenever biological causality has been previously established. Thus, it is highly probable that past exposure of an individual to definite carcinogens is related to his cancer, even without proving an association between this exposure and cancer in his group. For multifactorial diseases, Rothman's model of interacting sets of component causes can be applied.

  16. Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype

    PubMed Central

    Gupta, Saumya; Radhakrishnan, Aparna; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M.; Gagneur, Julien; Sinha, Himanshu

    2015-01-01

    Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants’ effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing

  17. Developing Causal Understanding with Causal Maps: The Impact of Total Links, Temporal Flow, and Lateral Position of Outcome Nodes

    ERIC Educational Resources Information Center

    Jeong, Allan; Lee, Woon Jee

    2012-01-01

    This study examined some of the methodological approaches used by students to construct causal maps in order to determine which approaches help students understand the underlying causes and causal mechanisms in a complex system. This study tested the relationship between causal understanding (ratio of root causes correctly/incorrectly identified,…

  18. Evaluating the Impact of Implementation Factors on Family-Based Prevention Programming: Methods for Strengthening Causal Inference

    PubMed Central

    Crowley, D. Max; Coffman, Donna L.; Feinberg, Mark; Greenberg, Mark; Spoth, Richard

    2013-01-01

    Despite growing recognition of the important role implementation plays in successful prevention efforts, relatively little work has sought to demonstrate a causal relationship between implementation factors and participant outcomes. In turn, failure to explore the implementation-to-outcome link limits our understanding of the mechanisms essential to successful programming. This gap is partially due to the inability of current methodological procedures within prevention science to account for the multitude of confounders responsible for variation in implementation factors (i.e., selection bias). The current paper illustrates how propensity and marginal structural models can be used to improve causal inferences involving implementation factors not easily randomized (e.g., participant attendance). We first present analytic steps for simultaneously evaluating the impact of multiple implementation factors on prevention program outcome. Then we demonstrate this approach for evaluating the impact of enrollment and attendance in a family program, over and above the impact of a school-based program, within PROSPER, a large scale real-world prevention trial. Findings illustrate the capacity of this approach to successfully account for confounders that influence enrollment and attendance, thereby more accurately representing true causal relations. For instance, after accounting for selection bias, we observed a 5% reduction in the prevalence of 11th grade underage drinking for those who chose to receive a family program and school program compared to those who received only the school program. Further, we detected a 7% reduction in underage drinking for those with high attendance in the family program. PMID:23430578

  19. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Vigorito, Elena; Kuchenbaecker, Karoline B.; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A.; Andrulis, Irene L.; Arun, Banu K.; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Chan, Salina B.; Claes, Kathleen B. M.; Cohn, David E.; Cook, Jackie; Daly, Mary B.; Damiola, Francesca; Davidson, Rosemarie; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Domchek, Susan M.; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F.; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D. Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D.; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A.; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K.; Goldgar, David E.; Hake, Christopher R.; Hansen, Thomas V. O.; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B. L.; Houdayer, Claude; Hulick, Peter J.; Imyanitov, Evgeny N.; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M.; Vijai, Joseph; Karlan, Beth Y.; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L.; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R.; Montagna, Marco; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I.; Ong, Kai-ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M.; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C.; Rookus, Matti A.; Ross, Eric A.; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F.; Slavin, Thomas P.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I.; Tea, Muy-Kheng; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J.; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N.; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J.; Greene, Mark H.; Couch, Fergus J.; Offit, Kenneth; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10−16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10−6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population. PMID:27463617

  20. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    PubMed

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A; Andrulis, Irene L; Arun, Banu K; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A; Campbell, Ian; Chan, Salina B; Claes, Kathleen B M; Cohn, David E; Cook, Jackie; Daly, Mary B; Damiola, Francesca; Davidson, Rosemarie; Pauw, Antoine de; Delnatte, Capucine; Diez, Orland; Domchek, Susan M; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K; Goldgar, David E; Hake, Christopher R; Hansen, Thomas V O; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B L; Houdayer, Claude; Hulick, Peter J; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R; Montagna, Marco; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I; Ong, Kai-Ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C; Rookus, Matti A; Ross, Eric A; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F; Slavin, Thomas P; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tea, Muy-Kheng; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J; Greene, Mark H; Couch, Fergus J; Offit, Kenneth; Pharoah, Paul D P; Chenevix-Trench, Georgia; Antoniou, Antonis C

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

  1. Causal discovery and inference: concepts and recent methodological advances.

    PubMed

    Spirtes, Peter; Zhang, Kun

    This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.

  2. Maternal age at first birth and offspring criminality: Using the children-of-twins design to test causal hypotheses

    PubMed Central

    Coyne, Claire A; Långström, Niklas; Rickert, Martin E; Lichtenstein, Paul; D’Onofrio, Brian M

    2013-01-01

    Teenage childbirth is a risk factor for poor offspring outcomes, particularly offspring antisocial behaviour. It is not clear if maternal age at first birth (MAFB) is causally associated with offspring antisocial behavior or if this association is due to selection factors that influence both the likelihood that a young woman gives birth early and that her offspring engage in antisocial behavior. The current study addresses the limitations of previous research by using longitudinal data from Swedish national registries and children-of-siblings and children-of-twins comparisons to identify the extent to which the association between MAFB and offspring criminal convictions is consistent with a causal influence and confounded by genetic or environmental factors that make cousins similar. We found offspring born to mothers who began childbearing earlier were more likely to be convicted of a crime than offspring born to mothers who delayed childbearing. The results from comparisons of differentially exposed cousins, especially born to discordant MZ twin sisters, provide support for a causal association between MAFB and offspring criminal convictions. The analyses also found little evidence for genetic confounding due to passive gene-environment correlation. Future studies are needed to replicate these findings and to identify environmental risk factors that mediate this causal association. PMID:23398750

  3. Maternal age at first birth and offspring criminality: using the children of twins design to test causal hypotheses.

    PubMed

    Coyne, Claire A; Långström, Niklas; Rickert, Martin E; Lichtenstein, Paul; D'Onofrio, Brian M

    2013-02-01

    Teenage childbirth is a risk factor for poor offspring outcomes, particularly offspring antisocial behavior. It is not clear, however, if maternal age at first birth (MAFB) is causally associated with offspring antisocial behavior or if this association is due to selection factors that influence both the likelihood that a young woman gives birth early and that her offspring engage in antisocial behavior. The current study addresses the limitations of previous research by using longitudinal data from Swedish national registries and children of siblings and children of twins comparisons to identify the extent to which the association between MAFB and offspring criminal convictions is consistent with a causal influence and confounded by genetic or environmental factors that make cousins similar. We found offspring born to mothers who began childbearing earlier were more likely to be convicted of a crime than offspring born to mothers who delayed childbearing. The results from comparisons of differentially exposed cousins, especially born to discordant monozygotic twin sisters, provide support for a causal association between MAFB and offspring criminal convictions. The analyses also found little evidence for genetic confounding due to passive gene-environment correlation. Future studies are needed to replicate these findings and to identify environmental risk factors that mediate this causal association.

  4. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  5. A Longitudinal Analysis of the Causal Factors in Major Maritime Accidents in the USA and Canada (1996-2006)

    NASA Technical Reports Server (NTRS)

    Johnson, C. W.; Holloway, C, M.

    2007-01-01

    Accident reports provide important insights into the causes and contributory factors leading to particular adverse events. In contrast, this paper provides an analysis that extends across the findings presented over ten years investigations into maritime accidents by both the US National Transportation Safety Board (NTSB) and Canadian Transportation Safety Board (TSB). The purpose of the study was to assess the comparative frequency of a range of causal factors in the reporting of adverse events. In order to communicate our findings, we introduce J-H graphs as a means of representing the proportion of causes and contributory factors associated with human error, equipment failure and other high level classifications in longitudinal studies of accident reports. Our results suggest the proportion of causal and contributory factors attributable to direct human error may be very much smaller than has been suggested elsewhere in the human factors literature. In contrast, more attention should be paid to wider systemic issues, including the managerial and regulatory context of maritime operations.

  6. Academic Success Factors: An IT Student Perspective

    ERIC Educational Resources Information Center

    Zhang, Aimao; Aasheim, Cheryl L.

    2011-01-01

    Numerous studies have identified causal factors for academic success. Factors vary from personal factors, such as cognitive style (McKenzie & Schweitzer, 2001), to social factors, such as culture differences (Aysan, Tanriogen, & Tanriogen, 1996). However, in these studies it is re-searchers who theorized the causal dimensions and…

  7. Causal Networks or Causal Islands? The Representation of Mechanisms and the Transitivity of Causal Judgment

    ERIC Educational Resources Information Center

    Johnson, Samuel G. B.; Ahn, Woo-kyoung

    2015-01-01

    Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge--an interconnected causal "network," where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms--causal "islands"--such that events in different…

  8. Causal Networks or Causal Islands? The Representation of Mechanisms and the Transitivity of Causal Judgment.

    PubMed

    Johnson, Samuel G B; Ahn, Woo-kyoung

    2015-09-01

    Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge—an interconnected causal network, where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms—causal islands—such that events in different mechanisms are not thought to be related even when they belong to the same causal chain. To distinguish these possibilities, we tested whether people make transitive judgments about causal chains by inferring, given A causes B and B causes C, that A causes C. Specifically, causal chains schematized as one chunk or mechanism in semantic memory (e.g., exercising, becoming thirsty, drinking water) led to transitive causal judgments. On the other hand, chains schematized as multiple chunks (e.g., having sex, becoming pregnant, becoming nauseous) led to intransitive judgments despite strong intermediate links ((Experiments 1-3). Normative accounts of causal intransitivity could not explain these intransitive judgments (Experiments 4 and 5). Copyright © 2015 Cognitive Science Society, Inc.

  9. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability

    PubMed Central

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-01-01

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074

  10. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability.

    PubMed

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-07-08

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity.

  11. Causality in medicine: the case of tumours and viruses.

    PubMed Central

    Vonka, V

    2000-01-01

    Clarification of the aetiology of chronic human diseases such as atherosclerosis or cancer is one of the dominant topics in contemporary medical research. It is believed that identification of the causal factors will enable more efficient prevention and diagnosis of these diseases and, in some instances, also permit more effective therapy. The task is difficult because of the multistep and multifactorial origin of these diseases. A special case in contemporary aetiological studies is definition of the role of viruses in the pathogenesis of human cancer. Virus-associated cancer develops only in a small minority of infected subjects, which implies that, if the virus does play a role in the pathogenesis of the malignancy, other factors must also be involved. In this paper the author attempts to review the present methodological approaches to aetiological studies of chronic diseases, discusses the role of criteria for identifying causal relationships and proposes guidelines that might help to determine the role of viruses in human cancer. PMID:11205344

  12. Detectability of Granger causality for subsampled continuous-time neurophysiological processes.

    PubMed

    Barnett, Lionel; Seth, Anil K

    2017-01-01

    Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity

  13. Causal imprinting in causal structure learning.

    PubMed

    Taylor, Eric G; Ahn, Woo-Kyoung

    2012-11-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures "causal imprinting." Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Causal Imprinting in Causal Structure Learning

    PubMed Central

    Taylor, Eric G.; Ahn, Woo-kyoung

    2012-01-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures “causal imprinting.” Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. PMID:22859019

  15. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data

  16. Tools for Detecting Causality in Space Systems

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Wing, S.

    2017-12-01

    Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.

  17. Optimal causal inference: estimating stored information and approximating causal architecture.

    PubMed

    Still, Susanne; Crutchfield, James P; Ellison, Christopher J

    2010-09-01

    We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.

  18. Amodal causal capture in the tunnel effect.

    PubMed

    Bae, Gi Yeul; Flombaum, Jonathan I

    2011-01-01

    In addition to identifying individual objects in the world, the visual system must also characterize the relationships between objects, for instance when objects occlude one another or cause one another to move. Here we explored the relationship between perceived causality and occlusion. Can one perceive causality in an occluded location? In several experiments, observers judged whether a centrally presented event involved a single object passing behind an occluder, or one object causally launching another (out of view and behind the occluder). With no additional context, the centrally presented event was typically judged as a non-causal pass, even when the occluding and disoccluding objects were different colors--an illusion known as the 'tunnel effect' that results from spatiotemporal continuity. However, when a synchronized context event involved an unambiguous causal launch, participants perceived a causal launch behind the occluder. This percept of an occluded causal interaction could also be driven by grouping and synchrony cues in the absence of any explicitly causal interaction. These results reinforce the hypothesis that causality is an aspect of perception. It is among the interpretations of the world that are independently available to vision when resolving ambiguity, and that the visual system can 'fill in' amodally.

  19. Causality

    NASA Astrophysics Data System (ADS)

    Pearl, Judea

    2000-03-01

    Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

  20. Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization.

    PubMed

    Yang, Jihong; Li, Zheng; Fan, Xiaohui; Cheng, Yiyu

    2014-09-22

    The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug-disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug-target-pathway-gene-disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug-disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug-disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and

  1. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

    PubMed Central

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894

  2. From Correlates to Causes: Can Quasi-Experimental Studies and Statistical Innovations Bring Us Closer to Identifying the Causes of Antisocial Behavior?

    PubMed Central

    Jaffee, Sara R.; Strait, Luciana B.; Odgers, Candice L.

    2011-01-01

    Longitudinal, epidemiological studies have identified robust risk factors for youth antisocial behavior, including harsh and coercive discipline, maltreatment, smoking during pregnancy, divorce, teen parenthood, peer deviance, parental psychopathology, and social disadvantage. Nevertheless, because this literature is largely based on observational studies, it remains unclear whether these risk factors have truly causal effects. Identifying causal risk factors for antisocial behavior would be informative for intervention efforts and for studies that test whether individuals are differentially susceptible to risk exposures. In this paper, we identify the challenges to causal inference posed by observational studies and describe quasi-experimental methods and statistical innovations that may move us beyond discussions of risk factors to allow for stronger causal inference. We then review studies that use these methods and we evaluate whether robust risk factors identified from observational studies are likely to play a causal role in the emergence and development of youth antisocial behavior. For most of the risk factors we review, there is evidence that they have causal effects. However, these effects are typically smaller than those reported in observational studies, suggesting that familial confounding, social selection, and misidentification might also explain some of the association between risk exposures and antisocial behavior. For some risk factors (e.g., smoking during pregnancy, parent alcohol problems) the evidence is weak that they have environmentally mediated effects on youth antisocial behavior. We discuss the implications of these findings for intervention efforts to reduce antisocial behavior and for basic research on the etiology and course of antisocial behavior. PMID:22023141

  3. From correlates to causes: can quasi-experimental studies and statistical innovations bring us closer to identifying the causes of antisocial behavior?

    PubMed

    Jaffee, Sara R; Strait, Luciana B; Odgers, Candice L

    2012-03-01

    Longitudinal, epidemiological studies have identified robust risk factors for youth antisocial behavior, including harsh and coercive discipline, maltreatment, smoking during pregnancy, divorce, teen parenthood, peer deviance, parental psychopathology, and social disadvantage. Nevertheless, because this literature is largely based on observational studies, it remains unclear whether these risk factors have truly causal effects. Identifying causal risk factors for antisocial behavior would be informative for intervention efforts and for studies that test whether individuals are differentially susceptible to risk exposures. In this article, we identify the challenges to causal inference posed by observational studies and describe quasi-experimental methods and statistical innovations that may move researchers beyond discussions of risk factors to allow for stronger causal inference. We then review studies that used these methods, and we evaluate whether robust risk factors identified from observational studies are likely to play a causal role in the emergence and development of youth antisocial behavior. There is evidence of causal effects for most of the risk factors we review. However, these effects are typically smaller than those reported in observational studies, suggesting that familial confounding, social selection, and misidentification might also explain some of the association between risk exposures and antisocial behavior. For some risk factors (e.g., smoking during pregnancy, parent alcohol problems), the evidence is weak that they have environmentally mediated effects on youth antisocial behavior. We discuss the implications of these findings for intervention efforts to reduce antisocial behavior and for basic research on the etiology and course of antisocial behavior.

  4. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    PubMed

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  5. Quantum Common Causes and Quantum Causal Models

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.; Barrett, Jonathan; Horsman, Dominic C.; Lee, Ciarán M.; Spekkens, Robert W.

    2017-07-01

    Reichenbach's principle asserts that if two observed variables are found to be correlated, then there should be a causal explanation of these correlations. Furthermore, if the explanation is in terms of a common cause, then the conditional probability distribution over the variables given the complete common cause should factorize. The principle is generalized by the formalism of causal models, in which the causal relationships among variables constrain the form of their joint probability distribution. In the quantum case, however, the observed correlations in Bell experiments cannot be explained in the manner Reichenbach's principle would seem to demand. Motivated by this, we introduce a quantum counterpart to the principle. We demonstrate that under the assumption that quantum dynamics is fundamentally unitary, if a quantum channel with input A and outputs B and C is compatible with A being a complete common cause of B and C , then it must factorize in a particular way. Finally, we show how to generalize our quantum version of Reichenbach's principle to a formalism for quantum causal models and provide examples of how the formalism works.

  6. Links between causal effects and causal association for surrogacy evaluation in a gaussian setting.

    PubMed

    Conlon, Anna; Taylor, Jeremy; Li, Yun; Diaz-Ordaz, Karla; Elliott, Michael

    2017-11-30

    Two paradigms for the evaluation of surrogate markers in randomized clinical trials have been proposed: the causal effects paradigm and the causal association paradigm. Each of these paradigms rely on assumptions that must be made to proceed with estimation and to validate a candidate surrogate marker (S) for the true outcome of interest (T). We consider the setting in which S and T are Gaussian and are generated from structural models that include an unobserved confounder. Under the assumed structural models, we relate the quantities used to evaluate surrogacy within both the causal effects and causal association frameworks. We review some of the common assumptions made to aid in estimating these quantities and show that assumptions made within one framework can imply strong assumptions within the alternative framework. We demonstrate that there is a similarity, but not exact correspondence between the quantities used to evaluate surrogacy within each framework, and show that the conditions for identifiability of the surrogacy parameters are different from the conditions, which lead to a correspondence of these quantities. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification

    PubMed Central

    Faye, Laura L.; Machiela, Mitchell J.; Kraft, Peter; Bull, Shelley B.; Sun, Lei

    2013-01-01

    Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website. PMID:23950724

  8. CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS

    PubMed Central

    Shpitser, Ilya; Tchetgen, Eric Tchetgen

    2017-01-01

    Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl’s front-door criterion. PMID:28919652

  9. CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS.

    PubMed

    Shpitser, Ilya; Tchetgen, Eric Tchetgen

    2016-12-01

    Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl's front-door criterion.

  10. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    PubMed Central

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  11. Effective connectivity: Influence, causality and biophysical modeling

    PubMed Central

    Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl

    2011-01-01

    This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655

  12. Poor sleep as a potential causal factor in aggression and violence.

    PubMed

    Kamphuis, Jeanine; Meerlo, Peter; Koolhaas, Jaap M; Lancel, Marike

    2012-04-01

    Clinical observations suggest that sleep problems may be a causal factor in the development of reactive aggression and violence. In this review we give an overview of existing literature on the relation between poor sleep and aggression, irritability, and hostility. Correlational studies are supporting such a relationship. Although limited in number, some studies suggest that treatment of sleep disturbances reduces aggressiveness and problematic behavior. In line with this is the finding that sleep deprivation actually increases aggressive behavior in animals and angriness, short-temperedness, and the outward expression of aggressive impulses in humans. In most people poor sleep will not evoke actual physical aggression, but certain individuals, such as forensic psychiatric patients, may be particularly vulnerable to the emotional dysregulating effects of sleep disturbances. The relation between sleep problems and aggression may be mediated by the negative effect of sleep loss on prefrontal cortical functioning. This most likely contributes to loss of control over emotions, including loss of the regulation of aggressive impulses to context-appropriate behavior. Other potential contributing mechanisms connecting sleep problems to aggression and violence are most likely found within the central serotonergic and the hypothalamic-pituitary-adrenal-axis. Individual variation within these neurobiological systems may be responsible for amplified aggressive responses induced by sleep loss in certain individuals. It is of great importance to identify the individuals at risk, since recognition and adequate treatment of their sleep problems may reduce aggressive and violent incidents. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study.

    PubMed

    Amitay, Efrat L; Werner, Simone; Vital, Marius; Pieper, Dietmar H; Höfler, Daniela; Gierse, Indra-Jasmin; Butt, Julia; Balavarca, Yesilda; Cuk, Katarina; Brenner, Hermann

    2017-08-01

    Colorectal cancer is a leading cause of morbidity and mortality worldwide in both men and women. The gut microbiome is increasingly recognized as having an important role in human health and disease. Fusobacterium has been identified in former studies as a leading gut bacterium associated with colorectal cancer, but it is still not clear if it plays an oncogenic role. In the current study, fecal samples were collected prior to bowel preparation from participants of screening colonoscopy in the German BliTz study. Using 16S rRNA gene analysis, we examined the presence and relative abundance of Fusobacterium in fecal samples from 500 participants, including 46, 113, 110 and 231 individuals with colorectal cancer, advanced adenomas, non-advanced adenomas and without any neoplasms, respectively. We found that the abundance of Fusobacterium in feces was strongly associated with the presence of colorectal cancer (P-value < 0.0001). This was confirmed by PCR at the species level for Fusobacterium nucleatum. However, no association was seen with the presence of advanced adenomas (P-value = 0.80) or non-advanced adenomas (P-value = 0.80), nor were there any associations observed with dietary or lifestyle habits. Although a causal role cannot be ruled out, our observations, based on fecal microbiome, support the hypothesis that Fusobacterium is a passenger that multiplies in the more favorable conditions caused by the malignant tumor rather than a causal factor in colorectal cancer development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Identifying the Factors Leading to Success: How an Innovative Science Curriculum Cultivates Student Motivation

    NASA Astrophysics Data System (ADS)

    Scogin, Stephen C.

    2016-06-01

    PlantingScience is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific factors contributing to the program's effectiveness in engaging students. Using multiple data sources, grounded theory (Strauss and Corbin in Basics of qualitative research. Sage, Newbury Park, 1990) was used to develop a conceptual model identifying the central phenomenon, causal conditions, intervening conditions, strategies, contexts, and student outcomes of the project. Student motivation was determined to be the central phenomenon explaining the success of the program, with student empowerment, online mentor interaction, and authenticity of the scientific experiences serving as causal conditions. Teachers contributed to student motivation by giving students more freedom, challenging students to take projects deeper, encouraging, and scaffolding. Scientists contributed to student motivation by providing explanations, asking questions, encouraging, and offering themselves as partners in the inquiry process. Several positive student outcomes of the program were uncovered and included increased positivity, greater willingness to take projects deeper, better understanding of scientific concepts, and greater commitments to collaboration. The findings of this study provide relevant information on how to develop curriculum, use technology, and train practitioners and mentors to utilize strategies and actions that improve learners' motivation to engage in authentic science in the classroom.

  15. Evaluating WAIS-IV structure through a different psychometric lens: structural causal model discovery as an alternative to confirmatory factor analysis.

    PubMed

    van Dijk, Marjolein J A M; Claassen, Tom; Suwartono, Christiany; van der Veld, William M; van der Heijden, Paul T; Hendriks, Marc P H

    Since the publication of the WAIS-IV in the U.S. in 2008, efforts have been made to explore the structural validity by applying factor analysis to various samples. This study aims to achieve a more fine-grained understanding of the structure of the Dutch language version of the WAIS-IV (WAIS-IV-NL) by applying an alternative analysis based on causal modeling in addition to confirmatory factor analysis (CFA). The Bayesian Constraint-based Causal Discovery (BCCD) algorithm learns underlying network structures directly from data and assesses more complex structures than is possible with factor analysis. WAIS-IV-NL profiles of two clinical samples of 202 patients (i.e. patients with temporal lobe epilepsy and a mixed psychiatric outpatient group) were analyzed and contrasted with a matched control group (N = 202) selected from the Dutch standardization sample of the WAIS-IV-NL to investigate internal structure by means of CFA and BCCD. With CFA, the four-factor structure as proposed by Wechsler demonstrates acceptable fit in all three subsamples. However, BCCD revealed three consistent clusters (verbal comprehension, visual processing, and processing speed) in all three subsamples. The combination of Arithmetic and Digit Span as a coherent working memory factor could not be verified, and Matrix Reasoning appeared to be isolated. With BCCD, some discrepancies from the proposed four-factor structure are exemplified. Furthermore, these results fit CHC theory of intelligence more clearly. Consistent clustering patterns indicate these results are robust. The structural causal discovery approach may be helpful in better interpreting existing tests, the development of new tests, and aid in diagnostic instruments.

  16. Inferring causal relationships between phenotypes using summary statistics from genome-wide association studies.

    PubMed

    Meng, Xiang-He; Shen, Hui; Chen, Xiang-Ding; Xiao, Hong-Mei; Deng, Hong-Wen

    2018-03-01

    Genome-wide association studies (GWAS) have successfully identified numerous genetic variants associated with diverse complex phenotypes and diseases, and provided tremendous opportunities for further analyses using summary association statistics. Recently, Pickrell et al. developed a robust method for causal inference using independent putative causal SNPs. However, this method may fail to infer the causal relationship between two phenotypes when only a limited number of independent putative causal SNPs identified. Here, we extended Pickrell's method to make it more applicable for the general situations. We extended the causal inference method by replacing the putative causal SNPs with the lead SNPs (the set of the most significant SNPs in each independent locus) and tested the performance of our extended method using both simulation and empirical data. Simulations suggested that when the same number of genetic variants is used, our extended method had similar distribution of test statistic under the null model as well as comparable power under the causal model compared with the original method by Pickrell et al. But in practice, our extended method would generally be more powerful because the number of independent lead SNPs was often larger than the number of independent putative causal SNPs. And including more SNPs, on the other hand, would not cause more false positives. By applying our extended method to summary statistics from GWAS for blood metabolites and femoral neck bone mineral density (FN-BMD), we successfully identified ten blood metabolites that may causally influence FN-BMD. We extended a causal inference method for inferring putative causal relationship between two phenotypes using summary statistics from GWAS, and identified a number of potential causal metabolites for FN-BMD, which may provide novel insights into the pathophysiological mechanisms underlying osteoporosis.

  17. Inferring Causalities in Landscape Genetics: An Extension of Wright's Causal Modeling to Distance Matrices.

    PubMed

    Fourtune, Lisa; Prunier, Jérôme G; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Blanchet, Simon

    2018-04-01

    Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.

  18. Exploring Work-Related Causal Attributions of Common Mental Disorders.

    PubMed

    Olsen, Ingrid Blø; Øverland, Simon; Reme, Silje Endresen; Løvvik, Camilla

    2015-09-01

    Common mental disorders (CMDs) are major causes of sickness absence and disability. Prevention requires knowledge of how individuals perceive causal mechanisms, and in this study we sought to examine work-related factors as causal attribution of CMDs. A trial sample of n = 1,193, recruited because they struggled with work participation due to CMDs, answered an open-ended questionnaire item about what they believed were the most important causes of their CMDs. The population included participants at risk of sickness absence, and participants with reduced work participation due to sickness absence, disability or unemployment. We used thematic content analysis and categorized responses from 487 participants who reported work-related factors as causal attributions of their CMDs. Gender differences in work-related causal attributions were also examined. The participants attributed their CMDs to the following work-related factors; work stress, leadership, reduced work participation, job dissatisfaction, work conflict, social work environment, job insecurity and change, workplace bullying, and physical strain. Women tended to attribute CMDs to social factors at work. Findings from this study suggest several work-related risk factors for CMDs. Both factors at the workplace, and reduced work participation, were perceived by study participants as contributing causes of CMDs. Thus, there is a need to promote work participation whilst at the same time targeting aversive workplace factors. Further, our findings indicate that work-related factors may affect women and men differently. This illustrates that the association between work participation and CMDs is complex, and needs to be explored further.

  19. Causal uncertainty, claimed and behavioural self-handicapping.

    PubMed

    Thompson, Ted; Hepburn, Jonathan

    2003-06-01

    Causal uncertainty beliefs involve doubts about the causes of events, and arise as a consequence of non-contingent evaluative feedback: feedback that leaves the individual uncertain about the causes of his or her achievement outcomes. Individuals high in causal uncertainty are frequently unable to confidently attribute their achievement outcomes, experience anxiety in achievement situations and as a consequence are likely to engage in self-handicapping behaviour. Accordingly, we sought to establish links between trait causal uncertainty, claimed and behavioural self-handicapping. Participants were N=72 undergraduate students divided equally between high and low causally uncertain groups. We used a 2 (causal uncertainty status: high, low) x 3 (performance feedback condition: success, non-contingent success, non-contingent failure) between-subjects factorial design to examine the effects of causal uncertainty on achievement behaviour. Following performance feedback, participants completed 20 single-solution anagrams and 12 remote associate tasks serving as performance measures, and 16 unicursal tasks to assess practice effort. Participants also completed measures of claimed handicaps, state anxiety and attributions. Relative to low causally uncertain participants, high causally uncertain participants claimed more handicaps prior to performance on the anagrams and remote associates, reported higher anxiety, attributed their failure to internal, stable factors, and reduced practice effort on the unicursal tasks, evident in fewer unicursal tasks solved. These findings confirm links between trait causal uncertainty and claimed and behavioural self-handicapping, highlighting the need for educators to facilitate means by which students can achieve surety in the manner in which they attribute the causes of their achievement outcomes.

  20. Causal Beliefs and Effects upon Mental Illness Identification Among Chinese Immigrant Relatives of Individuals with Psychosis.

    PubMed

    Yang, Lawrence H; Wonpat-Borja, Ahtoy J

    2012-08-01

    Identifying factors that facilitate treatment for psychotic disorders among Chinese-immigrants is crucial due to delayed treatment use. Identifying causal beliefs held by relatives that might predict identification of 'mental illness' as opposed to other 'indigenous labels' may promote more effective mental health service use. We examine what effects beliefs of 'physical causes' and other non-biomedical causal beliefs ('general social causes', and 'indigenous Chinese beliefs' or culture-specific epistemologies of illness) might have on mental illness identification. Forty-nine relatives of Chinese-immigrant consumers with psychosis were sampled. Higher endorsement of 'physical causes' was associated with mental illness labeling. However among the non-biomedical causal beliefs, 'general social causes' demonstrated no relationship with mental illness identification, while endorsement of 'indigenous Chinese beliefs' showed a negative relationship. Effective treatment- and community-based psychoeducation, in addition to emphasizing biomedical models, might integrate indigenous Chinese epistemologies of illness to facilitate rapid identification of psychotic disorders and promote treatment use.

  1. Causal Beliefs and Effects upon Mental Illness Identification Among Chinese Immigrant Relatives of Individuals with Psychosis

    PubMed Central

    Wonpat-Borja, Ahtoy J.

    2013-01-01

    Identifying factors that facilitate treatment for psychotic disorders among Chinese-immigrants is crucial due to delayed treatment use. Identifying causal beliefs held by relatives that might predict identification of ‘mental illness’ as opposed to other ‘indigenous labels’ may promote more effective mental health service use. We examine what effects beliefs of ‘physical causes’ and other non-biomedical causal beliefs (‘general social causes’, and ‘indigenous Chinese beliefs’ or culture-specific epistemologies of illness) might have on mental illness identification. Forty-nine relatives of Chinese-immigrant consumers with psychosis were sampled. Higher endorsement of ‘physical causes’ was associated with mental illness labeling. However among the non-biomedical causal beliefs, ‘general social causes’ demonstrated no relationship with mental illness identification, while endorsement of ‘indigenous Chinese beliefs’ showed a negative relationship. Effective treatment- and community-based psychoeducation, in addition to emphasizing biomedical models, might integrate indigenous Chinese epistemologies of illness to facilitate rapid identification of psychotic disorders and promote treatment use. PMID:22075770

  2. [Causal analysis approaches in epidemiology].

    PubMed

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the

  3. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  4. Drug Induced Liver Injury: Can Biomarkers Assist RUCAM in Causality Assessment?

    PubMed Central

    Teschke, Rolf; Schulze, Johannes; Eickhoff, Axel; Danan, Gaby

    2017-01-01

    Drug induced liver injury (DILI) is a potentially serious adverse reaction in a few susceptible individuals under therapy by various drugs. Health care professionals facing DILI are confronted with a wealth of drug-unrelated liver diseases with high incidence and prevalence rates, which can confound the DILI diagnosis. Searching for alternative causes is a key element of RUCAM (Roussel Uclaf Causality Assessment Method) to assess rigorously causality in suspected DILI cases. Diagnostic biomarkers as blood tests would be a great help to clinicians, regulators, and pharmaceutical industry would be more comfortable if, in addition to RUCAM, causality of DILI can be confirmed. High specificity and sensitivity are required for any diagnostic biomarker. Although some risk factors are available to evaluate liver safety of drugs in patients, no valid diagnostic or prognostic biomarker exists currently for idiosyncratic DILI when a liver injury occurred. Identifying a biomarker in idiosyncratic DILI requires detailed knowledge of cellular and biochemical disturbances leading to apoptosis or cell necrosis and causing leakage of specific products in blood. As idiosyncratic DILI is typically a human disease and hardly reproducible in animals, pathogenetic events and resulting possible biomarkers remain largely undisclosed. Potential new diagnostic biomarkers should be evaluated in patients with DILI and RUCAM-based established causality. In conclusion, causality assessment in cases of suspected idiosyncratic DILI is still best achieved using RUCAM since specific biomarkers as diagnostic blood tests that could enhance RUCAM results are not yet available. PMID:28398242

  5. How Can Historical Understanding Best be Assessed? Use of Prediction Tasks To Assess How Students Understand the Role of Causal Factors that Produce Historical Events.

    ERIC Educational Resources Information Center

    Alonso-Tapia, Jesus; Villa, Jose Luis

    1999-01-01

    Examines the viability of using hypothetical problems that need the application of causal models for their solution as a method to assessing understanding in the social sciences. Explains that this method was used to describe how seventh-grade students understand causal factors affecting the "discovery and colonization of America." (CMK)

  6. Investigating Driver Fatigue versus Alertness Using the Granger Causality Network.

    PubMed

    Kong, Wanzeng; Lin, Weicheng; Babiloni, Fabio; Hu, Sanqing; Borghini, Gianluca

    2015-08-05

    Driving fatigue has been identified as one of the main factors affecting drivers' safety. The aim of this study was to analyze drivers' different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers' fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain's ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers' fatigue levels, and as reference work for future studies.

  7. Investigating Driver Fatigue versus Alertness Using the Granger Causality Network

    PubMed Central

    Kong, Wanzeng; Lin, Weicheng; Babiloni, Fabio; Hu, Sanqing; Borghini, Gianluca

    2015-01-01

    Driving fatigue has been identified as one of the main factors affecting drivers’ safety. The aim of this study was to analyze drivers’ different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers’ fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain’s ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers’ fatigue levels, and as reference work for future studies. PMID:26251909

  8. Research misconduct and data fraud in clinical trials: prevalence and causal factors.

    PubMed

    George, Stephen L

    2016-02-01

    The disclosure of cases of research misconduct in clinical trials, conventionally defined as fabrication, falsification or plagiarism, has been a disturbingly common phenomenon in recent years. Such cases can potentially harm patients enrolled on the trials in question or patients treated based on the results of those trials and can seriously undermine the scientific and public trust in the validity of clinical trial results. Here, I review what is known about the prevalence of research misconduct in general and the contributing or causal factors leading to the misconduct. The evidence on prevalence is unreliable and fraught with definitional problems and with study design issues. Nevertheless, the evidence taken as a whole seems to suggest that cases of the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare but that other types of questionable research practices are quite common. There have been many individual, institutional and scientific factors proposed for misconduct but, as is the case with estimates of prevalence, reliable empirical evidence on the strength and relative importance of these factors is lacking. However, it seems clear that the view of misconduct as being simply the result of aberrant or self-delusional personalities likely underestimates the effect of other important factors and inhibits the development of effective prevention strategies.

  9. The relationship of family characteristics and bipolar disorder using causal-pie models.

    PubMed

    Chen, Y-C; Kao, C-F; Lu, M-K; Yang, Y-K; Liao, S-C; Jang, F-L; Chen, W J; Lu, R-B; Kuo, P-H

    2014-01-01

    Many family characteristics were reported to increase the risk of bipolar disorder (BPD). The development of BPD may be mediated through different pathways, involving diverse risk factor profiles. We evaluated the associations of family characteristics to build influential causal-pie models to estimate their contributions on the risk of developing BPD at the population level. We recruited 329 clinically diagnosed BPD patients and 202 healthy controls to collect information in parental psychopathology, parent-child relationship, and conflict within family. Other than logistic regression models, we applied causal-pie models to identify pathways involved with different family factors for BPD. The risk of BPD was significantly increased with parental depression, neurosis, anxiety, paternal substance use problems, and poor relationship with parents. Having a depressed mother further predicted early onset of BPD. Additionally, a greater risk for BPD was observed with higher numbers of paternal/maternal psychopathologies. Three significant risk profiles were identified for BPD, including paternal substance use problems (73.0%), maternal depression (17.6%), and through poor relationship with parents and conflict within the family (6.3%). Our findings demonstrate that different aspects of family characteristics elicit negative impacts on bipolar illness, which can be utilized to target specific factors to design and employ efficient intervention programs. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system.

    PubMed

    Gao, Xiangyun; Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng

    2018-03-01

    Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion.

  11. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system

    PubMed Central

    Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng

    2018-01-01

    Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion. PMID:29657804

  12. The cradle of causal reasoning: newborns' preference for physical causality.

    PubMed

    Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio; Simion, Francesca

    2013-05-01

    Perception of mechanical (i.e. physical) causality, in terms of a cause-effect relationship between two motion events, appears to be a powerful mechanism in our daily experience. In spite of a growing interest in the earliest causal representations, the role of experience in the origin of this sensitivity is still a matter of dispute. Here, we asked the question about the innate origin of causal perception, never tested before at birth. Three experiments were carried out to investigate sensitivity at birth to some visual spatiotemporal cues present in a launching event. Newborn babies, only a few hours old, showed that they significantly preferred a physical causality event (i.e. Michotte's Launching effect) when matched to a delay event (i.e. a delayed launching; Experiment 1) or to a non-causal event completely identical to the causal one except for the order of the displacements of the two objects involved which was swapped temporally (Experiment 3). This preference for the launching event, moreover, also depended on the continuity of the trajectory between the objects involved in the event (Experiment 2). These results support the hypothesis that the human system possesses an early available, possibly innate basic mechanism to compute causality, such a mechanism being sensitive to the additive effect of certain well-defined spatiotemporal cues present in the causal event independently of any prior visual experience. © 2013 Blackwell Publishing Ltd.

  13. Granger Causality Testing with Intensive Longitudinal Data.

    PubMed

    Molenaar, Peter C M

    2018-06-01

    The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.

  14. Evaluation of crash rates and causal factors for high-risk locations on rural and urban two-lane highways in Virginia.

    DOT National Transportation Integrated Search

    2008-01-01

    Considerable efforts have been made in recent years to make highway travel safer. Traffic engineers continue to emphasize the identification of causal factors for crashes on individual sections and on different functional classes of highways as an ar...

  15. Inferring action structure and causal relationships in continuous sequences of human action.

    PubMed

    Buchsbaum, Daphna; Griffiths, Thomas L; Plunkett, Dillon; Gopnik, Alison; Baldwin, Dare

    2015-02-01

    In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a sequence of observed behavior into meaningful actions, and determining which of those actions lead to effects in the world. Here we present a Bayesian analysis of how statistical and causal cues to segmentation should optimally be combined, as well as four experiments investigating human action segmentation and causal inference. We find that both people and our model are sensitive to statistical regularities and causal structure in continuous action, and are able to combine these sources of information in order to correctly infer both causal relationships and segmentation boundaries. Copyright © 2014. Published by Elsevier Inc.

  16. Partial Granger causality--eliminating exogenous inputs and latent variables.

    PubMed

    Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng

    2008-07-15

    Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

  17. Spot the difference: Causal contrasts in scientific diagrams.

    PubMed

    Scholl, Raphael

    2016-12-01

    An important function of scientific diagrams is to identify causal relationships. This commonly relies on contrasts that highlight the effects of specific difference-makers. However, causal contrast diagrams are not an obvious and easy to recognize category because they appear in many guises. In this paper, four case studies are presented to examine how causal contrast diagrams appear in a wide range of scientific reports, from experimental to observational and even purely theoretical studies. It is shown that causal contrasts can be expressed in starkly different formats, including photographs of complexly visualized macromolecules as well as line graphs, bar graphs, or plots of state spaces. Despite surface differences, however, there is a measure of conceptual unity among such diagrams. In empirical studies they often serve not only to infer and communicate specific causal claims, but also as evidence for them. The key data of some studies is given nowhere except in the diagrams. Many diagrams show multiple causal contrasts in order to demonstrate both that an effect exists and that the effect is specific - that is, to narrowly circumscribe the phenomenon to be explained. In a large range of scientific reports, causal contrast diagrams reflect the core epistemic claims of the researchers. Copyright © 2016. Published by Elsevier Ltd.

  18. Cause and Event: Supporting Causal Claims through Logistic Models

    ERIC Educational Resources Information Center

    O'Connell, Ann A.; Gray, DeLeon L.

    2011-01-01

    Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…

  19. Detecting causal drivers and empirical prediction of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Di Capua, G.; Vellore, R.; Raghavan, K.; Coumou, D.

    2017-12-01

    The Indian summer monsoon (ISM) is crucial for the economy, society and natural ecosystems on the Indian peninsula. Predict the total seasonal rainfall at several months lead time would help to plan effective water management strategies, improve flood or drought protection programs and prevent humanitarian crisis. However, the complexity and strong internal variability of the ISM circulation system make skillful seasonal forecasting challenging. Moreover, to adequately identify the low-frequency, and far-away processes which influence ISM behavior novel tools are needed. We applied a Response-Guided Causal Precursor Detection (RGCPD) scheme, which is a novel empirical prediction method which unites a response-guided community detection scheme with a causal discovery algorithm (CEN). These tool allow us to assess causal pathways between different components of the ISM circulation system and with far-away regions in the tropics, mid-latitudes or Arctic. The scheme has successfully been used to identify causal precursors of the Stratospheric polar vortex enabling skillful predictions at (sub) seasonal timescales (Kretschmer et al. 2016, J.Clim., Kretschmer et al. 2017, GRL). We analyze observed ISM monthly rainfall over the monsoon trough region. Applying causal discovery techniques, we identify several causal precursor communities in the fields of 2m-temperature, sea level pressure and snow depth over Eurasia. Specifically, our results suggest that surface temperature conditions in both tropical and Arctic regions contribute to ISM variability. A linear regression prediction model based on the identified set of communities has good hindcasting skills with 4-5 months lead times. Further we separate El Nino, La Nina and ENSO-neutral years from each other and find that the causal precursors are different dependent on ENSO state. The ENSO-state dependent causal precursors give even higher skill, especially for La Nina years when the ISM is relatively strong. These

  20. Normalizing the causality between time series.

    PubMed

    Liang, X San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  1. Normalizing the causality between time series

    NASA Astrophysics Data System (ADS)

    Liang, X. San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  2. Repeated causal decision making.

    PubMed

    Hagmayer, York; Meder, Björn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in such situations and how they use their knowledge to adapt to changes in the decision context. Our studies show that decision makers' behavior is strongly contingent on their causal beliefs and that people exploit their causal knowledge to assess the consequences of changes in the decision problem. A high consistency between hypotheses about causal structure, causally expected values, and actual choices was observed. The experiments show that (a) existing causal hypotheses guide the interpretation of decision feedback, (b) consequences of decisions are used to revise existing causal beliefs, and (c) decision makers use the experienced feedback to induce a causal model of the choice situation even when they have no initial causal hypotheses, which (d) enables them to adapt their choices to changes of the decision problem. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  3. Evaluating a Computational Model of Social Causality and Responsibility

    DTIC Science & Technology

    2006-01-01

    Evaluating a Computational Model of Social Causality and Responsibility Wenji Mao University of Southern California Institute for Creative...empirically evaluate a computa- tional model of social causality and responsibility against human social judgments. Results from our experimental...developed a general computational model of social cau- sality and responsibility [10, 11] that formalizes the factors people use in reasoning about

  4. Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23.

    PubMed

    McGovern, Amanda; Schoenfelder, Stefan; Martin, Paul; Massey, Jonathan; Duffus, Kate; Plant, Darren; Yarwood, Annie; Pratt, Arthur G; Anderson, Amy E; Isaacs, John D; Diboll, Julie; Thalayasingam, Nishanthi; Ospelt, Caroline; Barton, Anne; Worthington, Jane; Fraser, Peter; Eyre, Stephen; Orozco, Gisela

    2016-11-01

    The identification of causal genes from genome-wide association studies (GWAS) is the next important step for the translation of genetic findings into biologically meaningful mechanisms of disease and potential therapeutic targets. Using novel chromatin interaction detection techniques and allele specific assays in T and B cell lines, we provide compelling evidence that redefines causal genes at the 6q23 locus, one of the most important loci that confers autoimmunity risk. Although the function of disease-associated non-coding single nucleotide polymorphisms (SNPs) at 6q23 is unknown, the association is generally assigned to TNFAIP3, the closest gene. However, the DNA fragment containing the associated SNPs interacts through chromatin looping not only with TNFAIP3, but also with IL20RA, located 680 kb upstream. The risk allele of the most likely causal SNP, rs6927172, is correlated with both a higher frequency of interactions and increased expression of IL20RA, along with a stronger binding of both the NFκB transcription factor and chromatin marks characteristic of active enhancers in T-cells. Our results highlight the importance of gene assignment for translating GWAS findings into biologically meaningful mechanisms of disease and potential therapeutic targets; indeed, monoclonal antibody therapy targeting IL-20 is effective in the treatment of rheumatoid arthritis and psoriasis, both with strong GWAS associations to this region.

  5. "Head take you": causal attributions of mental illness in Jamaica.

    PubMed

    Arthur, Carlotta M; Whitley, Rob

    2015-02-01

    Causal attributions are a key factor in explanatory models of illness; however, little research on causal attributions of mental illness has been conducted in developing nations in the Caribbean, including Jamaica. Explanatory models of mental illness may be important in understanding illness experience and be a crucial factor in mental health service seeking and utilization. We explored causal attributions of mental illness in Jamaica by conducting 20 focus groups, including 16 community samples, 2 patient samples, and 2 samples of caregivers of patients, with a total of 159 participants. The 5 most commonly endorsed causal attributions of mental illness are discussed: (a) drug-related causes, including ganja (marijuana); (b) biological causes, such as chemical imbalance, familial transmission, and "blood"; (c) psychological causes, including stress and thinking too much; (d) social causes, such as relationship problems and job loss; and (e) spiritual or religious causes, including Obeah. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease

    PubMed Central

    Toth, Peter P

    2016-01-01

    Approximately 25% of US adults are estimated to have hypertriglyceridemia (triglyceride [TG] level ≥150 mg/dL [≥1.7 mmol/L]). Elevated TG levels are associated with increased cardiovascular disease (CVD) risk, and severe hypertriglyceridemia (TG levels ≥500 mg/dL [≥5.6 mmol/L]) is a well-established risk factor for acute pancreatitis. Plasma TG levels correspond to the sum of the TG content in TG-rich lipoproteins (TRLs; ie, very low-density lipoproteins plus chylomicrons) and their remnants. There remains some uncertainty regarding the direct causal role of TRLs in the progression of atherosclerosis and CVD, with cardiovascular outcome studies of TG-lowering agents, to date, having produced inconsistent results. Although low-density lipoprotein cholesterol (LDL-C) remains the primary treatment target to reduce CVD risk, a number of large-scale epidemiological studies have shown that elevated TG levels are independently associated with increased incidence of cardiovascular events, even in patients treated effectively with statins. Genetic studies have further clarified the causal association between TRLs and CVD. Variants in several key genes involved in TRL metabolism are strongly associated with CVD risk, with the strength of a variant’s effect on TG levels correlating with the magnitude of the variant’s effect on CVD. TRLs are thought to contribute to the progression of atherosclerosis and CVD via a number of direct and indirect mechanisms. They directly contribute to intimal cholesterol deposition and are also involved in the activation and enhancement of several proinflammatory, proapoptotic, and procoagulant pathways. Evidence suggests that non-high-density lipoprotein cholesterol, the sum of the total cholesterol carried by atherogenic lipoproteins (including LDL, TRL, and TRL remnants), provides a better indication of CVD risk than LDL-C, particularly in patients with hypertriglyceridemia. This article aims to provide an overview of the

  7. Using HFACS-Healthcare to Identify Systemic Vulnerabilities During Surgery.

    PubMed

    Cohen, Tara N; Francis, Sarah E; Wiegmann, Douglas A; Shappell, Scott A; Gewertz, Bruce L

    2018-03-01

    The Human Factors Analysis and Classification System for Healthcare (HFACS-Healthcare) was used to classify surgical near miss events reported via a hospital's event reporting system over the course of 1 year. Two trained analysts identified causal factors within each event narrative and subsequently categorized the events using HFACS-Healthcare. Of 910 original events, 592 could be analyzed further using HFACS-Healthcare, resulting in the identification of 726 causal factors. Most issues (n = 436, 60.00%) involved preconditions for unsafe acts, followed by unsafe acts (n = 257, 35.39%), organizational influences (n = 27, 3.72%), and supervisory factors (n = 6, 0.82%). These findings go beyond the traditional methods of trending incident data that typically focus on documenting the frequency of their occurrence. Analyzing near misses based on their underlying contributing human factors affords a greater opportunity to develop process improvements to reduce reoccurrence and better provide patient safety approaches.

  8. Sensory Impairments and Autism: A Re-Examination of Causal Modelling

    ERIC Educational Resources Information Center

    Gerrard, Sue; Rugg, Gordon

    2009-01-01

    Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…

  9. Causality as a Rigorous Notion and Quantitative Causality Analysis with Time Series

    NASA Astrophysics Data System (ADS)

    Liang, X. S.

    2017-12-01

    Given two time series, can one faithfully tell, in a rigorous and quantitative way, the cause and effect between them? Here we show that this important and challenging question (one of the major challenges in the science of big data), which is of interest in a wide variety of disciplines, has a positive answer. Particularly, for linear systems, the maximal likelihood estimator of the causality from a series X2 to another series X1, written T2→1, turns out to be concise in form: T2→1 = [C11 C12 C2,d1 — C112 C1,d1] / [C112 C22 — C11C122] where Cij (i,j=1,2) is the sample covariance between Xi and Xj, and Ci,dj the covariance between Xi and ΔXj/Δt, the difference approximation of dXj/dt using the Euler forward scheme. An immediate corollary is that causation implies correlation, but not vice versa, resolving the long-standing debate over causation versus correlation. The above formula has been validated with touchstone series purportedly generated with one-way causality that evades the classical approaches such as Granger causality test and transfer entropy analysis. It has also been applied successfully to the investigation of many real problems. Through a simple analysis with the stock series of IBM and GE, an unusually strong one-way causality is identified from the former to the latter in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a "Giant" for the computer market. Another example presented here regards the cause-effect relation between the two climate modes, El Niño and Indian Ocean Dipole (IOD). In general, these modes are mutually causal, but the causality is asymmetric. To El Niño, the information flowing from IOD manifests itself as a propagation of uncertainty from the Indian Ocean. In the third example, an unambiguous one-way causality is found between CO2 and the global mean temperature anomaly. While it is confirmed that CO2 indeed drives the recent global warming

  10. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  11. DEVELOPMENT PLAN FOR THE CAUSAL ANALYSIS ...

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System (CADDIS) is a web-based system that provides technical support for states, tribes and other users of the Office of Water's Stressor Identification Guidance. The Stressor Identification Guidance provides a rigorous and scientifically defensible method for determining the causes of biological impairments of aquatic ecosystems. It is being used by states as part of the TMDL process and is being applied to other impaired ecosystems such as Superfund sites. However, because of the complexity of causal relationships in ecosystems, and because the guidance includes a strength-of-evidence analysis which uses multiple causal considerations, the process is complex and information intensive. CADDIS helps users deal with that inherent complexity. Increasingly, the regulatory, remedial, and restoration actions taken to manage impaired environments are based on measurement and analysis of the biotic community. When an aquatic assemblage has been identified as impaired, an accurate and defensible assessment of the cause can help ensure that appropriate actions are taken. The U.S. EPA's Stressor Identification Guidance describes a methodology for identifying the most likely causes of observed impairments in aquatic systems. Stressor identification requires extensive knowledge of the mechanisms, symptoms, and stressor-response relationships for various specific stressors as well as the ability to use that knowledge in a

  12. Establishing causality in the decline and deformity of amphibians: The amphibian research and monitoring initiative model

    USGS Publications Warehouse

    Little, E.E.; Bridges, C.M.; Linder, G.; Boone, M.; ,

    2003-01-01

    Research to date has indicated that a range of environmental variables such as disease, parasitism, predation, competition, environmental contamination, solar ultraviolet radiation, climate change, or habitat alteration may be responsible for declining amphibian populations and the appearance of deformed organisms, yet in many cases no definitive environmental variable stands out as a causal factor. Multiple Stressors are often present in the habitat, and interactions among these can magnify injury to biota. This raises the possibility that the additive or synergistic impact of these Stressors may be the underlying cause of amphibian declines. Effective management for the restoration of amphibian populations requires the identification of causal factors contributing to their declines. A systematic approach to determine causality is especially important because initial impressions may be misleading or ambiguous. In addition, the evaluation of amphibian populations requires consideration of a broader spatial scale than commonly used in regulatory monitoring. We describe a systematic three-tiered approach to determine causality in amphibian declines and deformities. Tier 1 includes an evaluation of historic databases and extant data and would involve a desktop synopsis of the status of various stressors as well as site visits. Tier 2 studies are iterative, hypothesis driven studies beginning with general tests and continuing with analyses of increasing complexity as certain stressors are identified for further investigation. Tier 3 applies information developed in Tier 2 as predictive indicators of habitats and species at risk over broad landscape scales and provides decision support for the adaptive management of amphibian recovery. This comprehensive, tiered program could provide a mechanistic approach to identifying and addressing specific stressors responsible for amphibian declines across various landscapes.

  13. Causality re-established.

    PubMed

    D'Ariano, Giacomo Mauro

    2018-07-13

    Causality has never gained the status of a 'law' or 'principle' in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of 'determinism', and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the 'block Universe' and the connected 'past hypothesis' are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of 'super-determinism'.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  14. Learning to learn causal models.

    PubMed

    Kemp, Charles; Goodman, Noah D; Tenenbaum, Joshua B

    2010-09-01

    Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. Copyright © 2010 Cognitive Science Society, Inc.

  15. Encoding dependence in Bayesian causal networks

    USDA-ARS?s Scientific Manuscript database

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  16. A Causal Model of Sentence Recall: Effects of Familiarity, Concreteness, Comprehensibility, and Interestingness.

    ERIC Educational Resources Information Center

    Sadoski, Mark; And Others

    1993-01-01

    Presents and tests a theoretically derived causal model of the recall of sentences. Notes that the causal model identifies familiarity and concreteness as causes of comprehensibility; familiarity, concreteness, and comprehensibility as causes of interestingness; and all the identified variables as causes of both immediate and delayed recall.…

  17. STAMP-Based HRA Considering Causality Within a Sociotechnical System: A Case of Minuteman III Missile Accident.

    PubMed

    Rong, Hao; Tian, Jin

    2015-05-01

    The study contributes to human reliability analysis (HRA) by proposing a method that focuses more on human error causality within a sociotechnical system, illustrating its rationality and feasibility by using a case of the Minuteman (MM) III missile accident. Due to the complexity and dynamics within a sociotechnical system, previous analyses of accidents involving human and organizational factors clearly demonstrated that the methods using a sequential accident model are inadequate to analyze human error within a sociotechnical system. System-theoretic accident model and processes (STAMP) was used to develop a universal framework of human error causal analysis. To elaborate the causal relationships and demonstrate the dynamics of human error, system dynamics (SD) modeling was conducted based on the framework. A total of 41 contributing factors, categorized into four types of human error, were identified through the STAMP-based analysis. All factors are related to a broad view of sociotechnical systems, and more comprehensive than the causation presented in the accident investigation report issued officially. Recommendations regarding both technical and managerial improvement for a lower risk of the accident are proposed. The interests of an interdisciplinary approach provide complementary support between system safety and human factors. The integrated method based on STAMP and SD model contributes to HRA effectively. The proposed method will be beneficial to HRA, risk assessment, and control of the MM III operating process, as well as other sociotechnical systems. © 2014, Human Factors and Ergonomics Society.

  18. When Work is Related to Disease, What Establishes Evidence for a Causal Relation?

    PubMed

    Verbeek, Jos

    2012-06-01

    Establishing a causal relationship between factors at work and disease is difficult for occupational physicians and researchers. This paper seeks to provide arguments for the judgement of evidence of causality in observational studies that relate work factors to disease. I derived criteria for the judgement of evidence of causality from the following sources: the criteria list of Hill, the approach by Rothman, the methods used by International Agency for Research on Cancer (IARC), and methods used by epidemiologists. The criteria are applied to two cases of putative occupational diseases; breast cancer caused by shift work and aerotoxic syndrome. Only three of the Hill criteria can be applied to an actual study. Rothman stresses the importance of confounding and alternative explanations than the putative cause. IARC closely follows Hill, but they also incorporate other than epidemiological evidence. Applied to shift work and breast cancer, these results have found moderate evidence for a causal relationship, but applied to the aerotoxic syndrome, there is an absence of evidence of causality. There are no ready to use algorithms for judgement of evidence of causality. Criteria from different sources lead to similar results and can make a conclusion of causality more or less likely.

  19. A causal loop analysis of the sustainability of integrated community case management in Rwanda.

    PubMed

    Sarriot, Eric; Morrow, Melanie; Langston, Anne; Weiss, Jennifer; Landegger, Justine; Tsuma, Laban

    2015-04-01

    Expansion of community health services in Rwanda has come with the national scale up of integrated Community Case Management (iCCM) of malaria, pneumonia and diarrhea. We used a sustainability assessment framework as part of a large-scale project evaluation to identify factors affecting iCCM sustainability (2011). We then (2012) used causal-loop analysis to identify systems determinants of iCCM sustainability from a national systems perspective. This allows us to develop three high-probability future scenarios putting the achievements of community health at risk, and to recommend mitigating strategies. Our causal loop diagram highlights both balancing and reinforcing loops of cause and effect in the national iCCM system. Financial, political and technical scenarios carry high probability for threatening the sustainability through: (1) reduction in performance-based financing resources, (2) political shocks and erosion of political commitment for community health, and (3) insufficient progress in resolving district health systems--"building blocks"--performance gaps. In a complex health system, the consequences of choices may be delayed and hard to predict precisely. Causal loop analysis and scenario mapping make explicit complex cause-and-effects relationships and high probability risks, which need to be anticipated and mitigated. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. A quantum causal discovery algorithm

    NASA Astrophysics Data System (ADS)

    Giarmatzi, Christina; Costa, Fabio

    2018-03-01

    Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.

  1. Investigating genetic correlations and causal effects between caffeine consumption and sleep behaviours.

    PubMed

    Treur, Jorien L; Gibson, Mark; Taylor, Amy E; Rogers, Peter J; Munafò, Marcus R

    2018-04-22

    Observationally, higher caffeine consumption is associated with poorer sleep and insomnia. We investigated whether these associations are a result of shared genetic risk factors and/or (possibly bidirectional) causal effects. Summary-level data were available from genome-wide association studies on caffeine intake (n = 91 462), plasma caffeine and caffeine metabolic rate (n = 9876), sleep duration and chronotype (being a "morning" versus an "evening" person) (n = 128 266), and insomnia complaints (n = 113 006). First, genetic correlations were calculated, reflecting the extent to which genetic variants influencing caffeine consumption and those influencing sleep overlap. Next, causal effects were estimated with bidirectional, two-sample Mendelian randomization. This approach utilizes the genetic variants most robustly associated with an exposure variable as an "instrument" to test causal effects. Estimates from individual variants were combined using inverse-variance weighted meta-analysis, weighted median regression and MR-Egger regression. We found no clear evidence for a genetic correlation between caffeine intake and sleep duration (rg = 0.000, p = .998), chronotype (rg = 0.086, p = .192) or insomnia complaints (rg = -0.034, p = .700). For plasma caffeine and caffeine metabolic rate, genetic correlations could not be calculated because of the small sample size. Mendelian randomization did not support causal effects of caffeine intake on sleep, or vice versa. There was weak evidence that higher plasma caffeine levels causally decrease the odds of being a morning person. Although caffeine may acutely affect sleep when taken shortly before bedtime, our findings suggest that a sustained pattern of high caffeine consumption is more likely to be associated with poorer sleep through shared environmental factors. Future research should identify such environments, which could aid the development of interventions to improve sleep. © 2018 The

  2. "It Was My Fault": Bullied Students' Causal and Controllable Attributions in Bullying Blogs.

    PubMed

    Danielson, Carly M; Emmers-Sommer, Tara M

    2016-01-01

    Student bullying is a growing and damaging social problem. The devastating outcomes bullied individuals often experience due to such treatment make understanding this phenomenon imperative. Utilizing Heider's (1958) attribution theory, this study explores how bullied students (n = 100) attribute locus of causality and controllability for their victimization in 5 bullying blogs. Findings from this investigation reveal that (a) male and female bloggers' causal and controllable attributions do not differ; (b) bloggers most often attribute blame to bullies, although a noteworthy portion also attribute internal causation; and (c) bloggers often attribute bullying as uncontrollable for several reasons. This study also identifies factors that influence shifts in negative attributions about bullying. These findings inform bullying programs with the hope of reducing destructive attribution formations that potentially lead to prolonged victimization and detrimental consequences.

  3. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    PubMed

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  4. Disease causality extraction based on lexical semantics and document-clause frequency from biomedical literature.

    PubMed

    Lee, Dong-Gi; Shin, Hyunjung

    2017-05-18

    Recently, research on human disease network has succeeded and has become an aid in figuring out the relationship between various diseases. In most disease networks, however, the relationship between diseases has been simply represented as an association. This representation results in the difficulty of identifying prior diseases and their influence on posterior diseases. In this paper, we propose a causal disease network that implements disease causality through text mining on biomedical literature. To identify the causality between diseases, the proposed method includes two schemes: the first is the lexicon-based causality term strength, which provides the causal strength on a variety of causality terms based on lexicon analysis. The second is the frequency-based causality strength, which determines the direction and strength of causality based on document and clause frequencies in the literature. We applied the proposed method to 6,617,833 PubMed literature, and chose 195 diseases to construct a causal disease network. From all possible pairs of disease nodes in the network, 1011 causal pairs of 149 diseases were extracted. The resulting network was compared with that of a previous study. In terms of both coverage and quality, the proposed method showed outperforming results; it determined 2.7 times more causalities and showed higher correlation with associated diseases than the existing method. This research has novelty in which the proposed method circumvents the limitations of time and cost in applying all possible causalities in biological experiments and it is a more advanced text mining technique by defining the concepts of causality term strength.

  5. Causal Analysis After Haavelmo

    PubMed Central

    Heckman, James; Pinto, Rodrigo

    2014-01-01

    Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123

  6. Imputation of adverse drug reactions: Causality assessment in hospitals

    PubMed Central

    Mastroianni, Patricia de Carvalho

    2017-01-01

    Background & objectives Different algorithms have been developed to standardize the causality assessment of adverse drug reactions (ADR). Although most share common characteristics, the results of the causality assessment are variable depending on the algorithm used. Therefore, using 10 different algorithms, the study aimed to compare inter-rater and multi-rater agreement for ADR causality assessment and identify the most consistent to hospitals. Methods Using ten causality algorithms, four judges independently assessed the first 44 cases of ADRs reported during the first year of implementation of a risk management service in a medium complexity hospital in the state of Sao Paulo (Brazil). Owing to variations in the terminology used for causality, the equivalent imputation terms were grouped into four categories: definite, probable, possible and unlikely. Inter-rater and multi-rater agreement analysis was performed by calculating the Cohen´s and Light´s kappa coefficients, respectively. Results None of the algorithms showed 100% reproducibility in the causal imputation. Fair inter-rater and multi-rater agreement was found. Emanuele (1984) and WHO-UMC (2010) algorithms showed a fair rate of agreement between the judges (k = 0.36). Interpretation & conclusions Although the ADR causality assessment algorithms were poorly reproducible, our data suggest that WHO-UMC algorithm is the most consistent for imputation in hospitals, since it allows evaluating the quality of the report. However, to improve the ability of assessing the causality using algorithms, it is necessary to include criteria for the evaluation of drug-related problems, which may be related to confounding variables that underestimate the causal association. PMID:28166274

  7. Entanglement, holography and causal diamonds

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  8. The role of causal criteria in causal inferences: Bradford Hill's "aspects of association".

    PubMed

    Ward, Andrew C

    2009-06-17

    As noted by Wesley Salmon and many others, causal concepts are ubiquitous in every branch of theoretical science, in the practical disciplines and in everyday life. In the theoretical and practical sciences especially, people often base claims about causal relations on applications of statistical methods to data. However, the source and type of data place important constraints on the choice of statistical methods as well as on the warrant attributed to the causal claims based on the use of such methods. For example, much of the data used by people interested in making causal claims come from non-experimental, observational studies in which random allocations to treatment and control groups are not present. Thus, one of the most important problems in the social and health sciences concerns making justified causal inferences using non-experimental, observational data. In this paper, I examine one method of justifying such inferences that is especially widespread in epidemiology and the health sciences generally - the use of causal criteria. I argue that while the use of causal criteria is not appropriate for either deductive or inductive inferences, they do have an important role to play in inferences to the best explanation. As such, causal criteria, exemplified by what Bradford Hill referred to as "aspects of [statistical] associations", have an indispensible part to play in the goal of making justified causal claims.

  9. The role of causal criteria in causal inferences: Bradford Hill's "aspects of association"

    PubMed Central

    Ward, Andrew C

    2009-01-01

    As noted by Wesley Salmon and many others, causal concepts are ubiquitous in every branch of theoretical science, in the practical disciplines and in everyday life. In the theoretical and practical sciences especially, people often base claims about causal relations on applications of statistical methods to data. However, the source and type of data place important constraints on the choice of statistical methods as well as on the warrant attributed to the causal claims based on the use of such methods. For example, much of the data used by people interested in making causal claims come from non-experimental, observational studies in which random allocations to treatment and control groups are not present. Thus, one of the most important problems in the social and health sciences concerns making justified causal inferences using non-experimental, observational data. In this paper, I examine one method of justifying such inferences that is especially widespread in epidemiology and the health sciences generally – the use of causal criteria. I argue that while the use of causal criteria is not appropriate for either deductive or inductive inferences, they do have an important role to play in inferences to the best explanation. As such, causal criteria, exemplified by what Bradford Hill referred to as "aspects of [statistical] associations", have an indispensible part to play in the goal of making justified causal claims. PMID:19534788

  10. Systemic risk and causality dynamics of the world international shipping market

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Podobnik, Boris; Kenett, Dror Y.; Eugene Stanley, H.

    2014-12-01

    Various studies have reported that many economic systems have been exhibiting an increase in the correlation between different market sectors, a factor that exacerbates the level of systemic risk. We measure this systemic risk of three major world shipping markets, (i) the new ship market, (ii) the second-hand ship market, and (iii) the freight market, as well as the shipping stock market. Based on correlation networks during three time periods, that prior to the financial crisis, during the crisis, and after the crisis, minimal spanning trees (MSTs) and hierarchical trees (HTs) both exhibit complex dynamics, i.e., different market sectors tend to be more closely linked during financial crisis. Brownian distance correlation and Granger causality test both can be used to explore the directional interconnectedness of market sectors, while Brownian distance correlation captures more dependent relationships, which are not observed in the Granger causality test. These two measures can also identify and quantify market regression periods, implying that they contain predictive power for the current crisis.

  11. When Work is Related to Disease, What Establishes Evidence for a Causal Relation?

    PubMed Central

    2012-01-01

    Establishing a causal relationship between factors at work and disease is difficult for occupational physicians and researchers. This paper seeks to provide arguments for the judgement of evidence of causality in observational studies that relate work factors to disease. I derived criteria for the judgement of evidence of causality from the following sources: the criteria list of Hill, the approach by Rothman, the methods used by International Agency for Research on Cancer (IARC), and methods used by epidemiologists. The criteria are applied to two cases of putative occupational diseases; breast cancer caused by shift work and aerotoxic syndrome. Only three of the Hill criteria can be applied to an actual study. Rothman stresses the importance of confounding and alternative explanations than the putative cause. IARC closely follows Hill, but they also incorporate other than epidemiological evidence. Applied to shift work and breast cancer, these results have found moderate evidence for a causal relationship, but applied to the aerotoxic syndrome, there is an absence of evidence of causality. There are no ready to use algorithms for judgement of evidence of causality. Criteria from different sources lead to similar results and can make a conclusion of causality more or less likely. PMID:22993715

  12. A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.

    PubMed

    Hu, Shoubo; Chen, Zhitang; Chan, Laiwan

    2018-05-01

    Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.

  13. A Theory of Causal Learning in Children: Causal Maps and Bayes Nets

    ERIC Educational Resources Information Center

    Gopnik, Alison; Glymour, Clark; Sobel, David M.; Schulz, Laura E.; Kushnir, Tamar; Danks, David

    2004-01-01

    The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously…

  14. The discourse of causal explanations in school science

    NASA Astrophysics Data System (ADS)

    Slater, Tammy Jayne Anne

    Researchers and educators working from a systemic functional linguistic perspective have provided a body of work on science discourse which offers an excellent starting point for examining the linguistic aspects of the development of causal discourse in school science, discourse which Derewianka (1995) claimed is critical to success in secondary school. No work has yet described the development of causal language by identifying the linguistic features present in oral discourse or by comparing the causal discourse of native and non-native (ESL) speakers of English. The current research responds to this gap by examining the oral discourse collected from ESL and non-ESL students at the primary and high school grades. Specifically, it asks the following questions: (1) How do the teachers and students in these four contexts develop causal explanations and their relevant taxonomies through classroom interactions? (2) What are the causal discourse features being used by the students in these four contexts to construct oral causal explanations? The findings of the social practice analysis showed that the teachers in the four contexts differed in their approaches to teaching, with the primary school mainstream teacher focusing largely on the hands-on practice , the primary school ESL teacher moving from practice to theory, the high school mainstream teacher moving from theory to practice, and the high school ESL teacher relying primarily on theory. The findings from the quantitative, small corpus approach suggest that the developmental path of cause which has been identified in the writing of experts shows up not only in written texts but also in the oral texts which learners construct. Moreover, this move appears when the discourse of high school ESL and non-ESL students is compared, suggesting a developmental progression in the acquisition of these features by these students. The findings also reveal that the knowledge constructed, as shown by the concept maps created

  15. Conjectures on the relations of linking and causality in causally simple spacetimes

    NASA Astrophysics Data System (ADS)

    Chernov, Vladimir

    2018-05-01

    We formulate the generalization of the Legendrian Low conjecture of Natario and Tod (proved by Nemirovski and myself before) to the case of causally simple spacetimes. We prove a weakened version of the corresponding statement. In all known examples, a causally simple spacetime can be conformally embedded as an open subset into some globally hyperbolic and the space of light rays in is an open submanifold of the space of light rays in . If this is always the case, this provides an approach to solving the conjectures relating causality and linking in causally simple spacetimes.

  16. A Complex Systems Approach to Causal Discovery in Psychiatry.

    PubMed

    Saxe, Glenn N; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C; Aliferis, Constantin

    2016-01-01

    Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry.

  17. Causal Systems Categories: Differences in Novice and Expert Categorization of Causal Phenomena

    ERIC Educational Resources Information Center

    Rottman, Benjamin M.; Gentner, Dedre; Goldwater, Micah B.

    2012-01-01

    We investigated the understanding of causal systems categories--categories defined by common causal structure rather than by common domain content--among college students. We asked students who were either novices or experts in the physical sciences to sort descriptions of real-world phenomena that varied in their causal structure (e.g., negative…

  18. Analogy in causal inference: rethinking Austin Bradford Hill's neglected consideration.

    PubMed

    Weed, Douglas L

    2018-05-01

    The purpose of this article was to rethink and resurrect Austin Bradford Hill's "criterion" of analogy as an important consideration in causal inference. In epidemiology today, analogy is either completely ignored (e.g., in many textbooks), or equated with biologic plausibility or coherence, or aligned with the scientist's imagination. None of these examples, however, captures Hill's description of analogy. His words suggest that there may be something gained by contrasting two bodies of evidence, one from an established causal relationship, the other not. Coupled with developments in the methods of systematic assessments of evidence-including but not limited to meta-analysis-analogy can be restructured as a key component in causal inference. This new approach will require that a collection-a library-of known cases of causal inference (i.e., bodies of evidence involving established causal relationships) be developed. This library would likely include causal assessments by organizations such as the International Agency for Research on Cancer, the National Toxicology Program, and the United States Environmental Protection Agency. In addition, a process for describing key features of a causal relationship would need to be developed along with what will be considered paradigm cases of causation. Finally, it will be important to develop ways to objectively compare a "new" body of evidence with the relevant paradigm case of causation. Analogy, along with all other existing methods and causal considerations, may improve our ability to identify causal relationships. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Does Causal Action Facilitate Causal Perception in Infants Younger than 6 Months of Age?

    ERIC Educational Resources Information Center

    Rakison, David H.; Krogh, Lauren

    2012-01-01

    Previous research has established that infants are unable to perceive causality until 6 1/4 months of age. The current experiments examined whether infants' ability to engage in causal action could facilitate causal perception prior to this age. In Experiment 1, 4 1/2-month-olds were randomly assigned to engage in causal action experience via…

  20. Causal Attribution and Coping Maxims Differences between Immigrants and Non-Immigrants Suffering from Back Pain in Switzerland.

    PubMed

    Mantwill, Sarah; Schulz, Peter J

    2016-01-01

    This study aimed at investigating the relationship between causal attributions and coping maxims in people suffering from back pain. Further, it aimed at identifying in how far causal attributions and related coping maxims would defer between immigrants and non-immigrants in Switzerland. Data for this study came from a larger survey study that was conducted among immigrant populations in the German- and Italian-speaking part of Switzerland. Included in the analyses were native Swiss participants, as well as Albanian- and Serbian-speaking immigrants, who had indicated to have suffered from back pain within the last 12 months prior to the study. Data was analyzed for overall 495 participants. Items for causal attributions and coping maxims were subject to factor analyses. Cultural differences were assessed with ANOVA and regression analyses. Interaction terms were included to investigate whether the relationship between causal attributions and coping maxims would differ with cultural affiliation. For both immigrant groups the physician's influence on the course of their back pain was more important than for Swiss participants (p <.05). With regard to coping, both immigrant groups were more likely to agree with maxims that were related to the improvement of the back pain, as well as the acceptance of the current situation (p <.05). The only consistent interaction effect that was found indicated that being Albanian-speaking negatively moderated the relationship between physical activity as an attributed cause of back pain and all three identified coping maxims. The study shows that differences in causal attribution and coping maxims between immigrants and non-immigrants exist. Further, the results support the assumption of an association between causal attribution and coping maxims. However cultural affiliation did not considerably moderate this relationship.

  1. Causal Attribution and Coping Maxims Differences between Immigrants and Non-Immigrants Suffering from Back Pain in Switzerland

    PubMed Central

    2016-01-01

    Objectives This study aimed at investigating the relationship between causal attributions and coping maxims in people suffering from back pain. Further, it aimed at identifying in how far causal attributions and related coping maxims would defer between immigrants and non-immigrants in Switzerland. Methods Data for this study came from a larger survey study that was conducted among immigrant populations in the German- and Italian-speaking part of Switzerland. Included in the analyses were native Swiss participants, as well as Albanian- and Serbian-speaking immigrants, who had indicated to have suffered from back pain within the last 12 months prior to the study. Data was analyzed for overall 495 participants. Items for causal attributions and coping maxims were subject to factor analyses. Cultural differences were assessed with ANOVA and regression analyses. Interaction terms were included to investigate whether the relationship between causal attributions and coping maxims would differ with cultural affiliation. Results For both immigrant groups the physician’s influence on the course of their back pain was more important than for Swiss participants (p <.05). With regard to coping, both immigrant groups were more likely to agree with maxims that were related to the improvement of the back pain, as well as the acceptance of the current situation (p <.05). The only consistent interaction effect that was found indicated that being Albanian-speaking negatively moderated the relationship between physical activity as an attributed cause of back pain and all three identified coping maxims. Conclusion The study shows that differences in causal attribution and coping maxims between immigrants and non-immigrants exist. Further, the results support the assumption of an association between causal attribution and coping maxims. However cultural affiliation did not considerably moderate this relationship. PMID:27583445

  2. Agency, time, and causality

    PubMed Central

    Widlok, Thomas

    2014-01-01

    Cognitive Scientists interested in causal cognition increasingly search for evidence from non-Western Educational Industrial Rich Democratic people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition. PMID:25414683

  3. Causal attribution for success and failure in mathematics among MDAB pre-diploma students

    NASA Astrophysics Data System (ADS)

    Maidinsah, Hamidah; Embong, Rokiah; Wahab, Zubaidah Abd

    2014-07-01

    The Program Mengubah Destini Anak Bangsa (MDAB) is a pre-diploma programme catering to SPM school leavers who do not meet the minimum requirement to enter any of UiTM diploma programmes. The study aims to evaluate the perceptions of MDAB students toward the main causal attribution factors underlying students' success and failure in mathematics. Research sample comprised of 482 students from five UiTM branch campuses. Research instrument used was a set of GALUS questionnaire consisting of 36 items based on the Weiner Attribution Theory. Four causal attributions factors for success and failures evaluated are ability, effort, question difficulty and environment. GALUS reliability index was 0.93. The research found that effort appears to be the main causal attribution factor in students' success and failure in mathematics, followed by environment, question difficulty and ability. High achiever students strongly agree that the ability factor influenced their success while low achiever students strongly agree that all attributing factors influenced their failures in mathematics.

  4. A methodology to model causal relationships on offshore safety assessment focusing on human and organizational factors.

    PubMed

    Ren, J; Jenkinson, I; Wang, J; Xu, D L; Yang, J B

    2008-01-01

    Focusing on people and organizations, this paper aims to contribute to offshore safety assessment by proposing a methodology to model causal relationships. The methodology is proposed in a general sense that it will be capable of accommodating modeling of multiple risk factors considered in offshore operations and will have the ability to deal with different types of data that may come from different resources. Reason's "Swiss cheese" model is used to form a generic offshore safety assessment framework, and Bayesian Network (BN) is tailored to fit into the framework to construct a causal relationship model. The proposed framework uses a five-level-structure model to address latent failures within the causal sequence of events. The five levels include Root causes level, Trigger events level, Incidents level, Accidents level, and Consequences level. To analyze and model a specified offshore installation safety, a BN model was established following the guideline of the proposed five-level framework. A range of events was specified, and the related prior and conditional probabilities regarding the BN model were assigned based on the inherent characteristics of each event. This paper shows that Reason's "Swiss cheese" model and BN can be jointly used in offshore safety assessment. On the one hand, the five-level conceptual model is enhanced by BNs that are capable of providing graphical demonstration of inter-relationships as well as calculating numerical values of occurrence likelihood for each failure event. Bayesian inference mechanism also makes it possible to monitor how a safety situation changes when information flow travel forwards and backwards within the networks. On the other hand, BN modeling relies heavily on experts' personal experiences and is therefore highly domain specific. "Swiss cheese" model is such a theoretic framework that it is based on solid behavioral theory and therefore can be used to provide industry with a roadmap for BN modeling and

  5. Time-varying causality between energy consumption, CO2 emissions, and economic growth: evidence from US states.

    PubMed

    Tzeremes, Panayiotis

    2018-02-01

    This study is the first attempt to investigate the relationship between CO 2 emissions, energy consumption, and economic growth at a state level, for the 50 US states, through a time-varying causality approach using annual data over the periods 1960-2010. The time-varying causality test facilitates the better understanding of the causal relationship between the covariates owing to the fact that it might identify causalities when the time-constant hypothesis is rejected. Our findings indicate the existence of a time-varying causality at the state level. Specifically, the results probe eight bidirectional time-varying causalities between energy consumption and CO 2 emission, six cases of two-way time-varying causalities between economic growth and energy consumption, and five bidirectional time-varying causalities between economic growth and CO 2 emission. Moreover, we examine the traditional environmental Kuznets curve hypothesis for the states. Notably, our results do not endorse the validity of the EKC, albeit the majority of states support an inverted N-shaped relationship. Lastly, we can identify multiple policy implications based on the empirical results.

  6. Complex Causal Process Diagrams for Analyzing the Health Impacts of Policy Interventions

    PubMed Central

    Joffe, Michael; Mindell, Jennifer

    2006-01-01

    Causal diagrams are rigorous tools for controlling confounding. They also can be used to describe complex causal systems, which is done routinely in communicable disease epidemiology. The use of change diagrams has advantages over static diagrams, because change diagrams are more tractable, relate better to interventions, and have clearer interpretations. Causal diagrams are a useful basis for modeling. They make assumptions explicit, provide a framework for analysis, generate testable predictions, explore the effects of interventions, and identify data gaps. Causal diagrams can be used to integrate different types of information and to facilitate communication both among public health experts and between public health experts and experts in other fields. Causal diagrams allow the use of instrumental variables, which can help control confounding and reverse causation. PMID:16449586

  7. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  8. The development of causal reasoning.

    PubMed

    Kuhn, Deanna

    2012-05-01

    How do inference rules for causal learning themselves change developmentally? A model of the development of causal reasoning must address this question, as well as specify the inference rules. Here, the evidence for developmental changes in processes of causal reasoning is reviewed, with the distinction made between diagnostic causal inference and causal prediction. Also addressed is the paradox of a causal reasoning literature that highlights the competencies of young children and the proneness to error among adults. WIREs Cogn Sci 2012, 3:327-335. doi: 10.1002/wcs.1160 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Causal reports: Context-dependent contributions of intuitive physics and visual impressions of launching.

    PubMed

    Vicovaro, Michele

    2018-05-01

    Everyday causal reports appear to be based on a blend of perceptual and cognitive processes. Causality can sometimes be perceived automatically through low-level visual processing of stimuli, but it can also be inferred on the basis of an intuitive understanding of the physical mechanism that underlies an observable event. We investigated how visual impressions of launching and the intuitive physics of collisions contribute to the formation of explicit causal responses. In Experiment 1, participants observed collisions between realistic objects differing in apparent material and hence implied mass, whereas in Experiment 2, participants observed collisions between abstract, non-material objects. The results of Experiment 1 showed that ratings of causality were mainly driven by the intuitive physics of collisions, whereas the results of Experiment 2 provide some support to the hypothesis that ratings of causality were mainly driven by visual impressions of launching. These results suggest that stimulus factors and experimental design factors - such as the realism of the stimuli and the variation in the implied mass of the colliding objects - may determine the relative contributions of perceptual and post-perceptual cognitive processes to explicit causal responses. A revised version of the impetus transmission heuristic provides a satisfactory explanation for these results, whereas the hypothesis that causal responses and intuitive physics are based on the internalization of physical laws does not. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Learning a theory of causality.

    PubMed

    Goodman, Noah D; Ullman, Tomer D; Tenenbaum, Joshua B

    2011-01-01

    The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be learned from co-occurrence of events. We begin by phrasing the causal Bayes nets theory of causality and a range of alternatives in a logical language for relational theories. This allows us to explore simultaneous inductive learning of an abstract theory of causality and a causal model for each of several causal systems. We find that the correct theory of causality can be learned relatively quickly, often becoming available before specific causal theories have been learned--an effect we term the blessing of abstraction. We then explore the effect of providing a variety of auxiliary evidence and find that a collection of simple perceptual input analyzers can help to bootstrap abstract knowledge. Together, these results suggest that the most efficient route to causal knowledge may be to build in not an abstract notion of causality but a powerful inductive learning mechanism and a variety of perceptual supports. While these results are purely computational, they have implications for cognitive development, which we explore in the conclusion.

  11. THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...

    EPA Pesticide Factsheets

    CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc

  12. Property transmission: an explanatory account of the role of similarity information in causal inference.

    PubMed

    White, Peter A

    2009-09-01

    Many kinds of common and easily observed causal relations exhibit property transmission, which is a tendency for the causal object to impose its own properties on the effect object. It is proposed that property transmission becomes a general and readily available hypothesis used to make interpretations and judgments about causal questions under conditions of uncertainty, in which property transmission functions as a heuristic. The property transmission hypothesis explains why and when similarity information is used in causal inference. It can account for magical contagion beliefs, some cases of illusory correlation, the correspondence bias, overestimation of cross-situational consistency in behavior, nonregressive tendencies in prediction, the belief that acts of will are causes of behavior, and a range of other phenomena. People learn that property transmission is often moderated by other factors, but under conditions of uncertainty in which the operation of relevant other factors is unknown, it tends to exhibit a pervasive influence on thinking about causality. (c) 2009 APA, all rights reserved.

  13. Causality discovery technology

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.

    2012-11-01

    Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.

  14. Reasoning with Causal Cycles

    ERIC Educational Resources Information Center

    Rehder, Bob

    2017-01-01

    This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…

  15. Drug- and Herb-Induced Liver Injury in Clinical and Translational Hepatology: Causality Assessment Methods, Quo Vadis?

    PubMed Central

    Eickhoff, Axel; Schulze, Johannes

    2013-01-01

    Drug-induced liver injury (DILI) and herb-induced liver injury (HILI) are typical diseases of clinical and translational hepatology. Their diagnosis is complex and requires an experienced clinician to translate basic science into clinical judgment and identify a valid causality algorithm. To prospectively assess causality starting on the day DILI or HILI is suspected, the best approach for physicians is to use the Council for International Organizations of Medical Sciences (CIOMS) scale in its original or preferably its updated version. The CIOMS scale is validated, liver-specific, structured, and quantitative, providing final causality grades based on scores of specific items for individual patients. These items include latency period, decline in liver values after treatment cessation, risk factors, co-medication, alternative diagnoses, hepatotoxicity track record of the suspected product, and unintentional re-exposure. Provided causality is established as probable or highly probable, data of the CIOMS scale with all individual items, a short clinical report, and complete raw data should be transmitted to the regulatory agencies, manufacturers, expert panels, and possibly to the scientific community for further refinement of the causality evaluation in a setting of retrospective expert opinion. Good-quality case data combined with thorough CIOMS-based assessment as a standardized approach should avert subsequent necessity for other complex causality assessment methods that may have inter-rater problems because of poor-quality data. In the future, the CIOMS scale will continue to be the preferred tool to assess causality of DILI and HILI cases and should be used consistently, both prospectively by physicians, and retrospectively for subsequent expert opinion if needed. For comparability and international harmonization, all parties assessing causality in DILI and HILI cases should attempt this standardized approach using the updated CIOMS scale. PMID:26357608

  16. Identifying new diseases and their causes: the dilemma of illnesses in Gulf War veterans.

    PubMed

    Gardner, John W; Gibbons, Robert V; Hooper, Tomoko I; Cunnion, Stephen O; Kroenke, Kurt; Gackstetter, Gary D

    2003-03-01

    Since the Gulf War, investigation continues of symptoms and illnesses among its veterans. Yet, identifying a specific "Gulf War Syndrome" remains elusive. With new disease entities, causal associations are relatively easily established when the condition is serious, verifiable, and has excess disease rates in specific groups. In common conditions, many excess cases are required to establish association with a specific exposure. Establishing causality in syndromes with variable symptoms is difficult because specific diagnostic algorithms must be established before causal factors can be properly investigated. Searching for an environmental cause is futile in the absence of an operational disease case definition. Common subjective symptoms (without objective physical or laboratory findings) account for over one-half of all medical outpatient visits, yet these symptoms lack an identified physical cause at least one-third of the time. Our medical care system has difficulty dealing with disorders where there is no identified anatomic abnormality or documented metabolic/physiological dysfunction.

  17. Analyzing brain networks with PCA and conditional Granger causality.

    PubMed

    Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun

    2009-07-01

    Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series. Copyright 2009 Wiley-Liss, Inc

  18. Spatiotemporal causal modeling for the management of Dengue Fever

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Huang, Tailin; Lee, Chieh-Han

    2015-04-01

    Increasing climatic extremes have caused growing concerns about the health effects and disease outbreaks. The association between climate variation and the occurrence of epidemic diseases play an important role on a country's public health systems. Part of the impacts are direct casualties associated with the increasing frequency and intensity of typhoons, the proliferation of disease vectors and the short-term increase of clinic visits on gastro-intestinal discomforts, diarrhea, dermatosis, or psychological trauma. Other impacts come indirectly from the influence of disasters on the ecological and socio-economic systems, including the changes of air/water quality, living environment and employment condition. Previous risk assessment studies on dengue fever focus mostly on climatic and non-climatic factors and their association with vectors' reproducing pattern. The public-health implication may appear simple. Considering the seasonal changes and regional differences, however, the causality of the impacts is full of uncertainties. Without further investigation, the underlying dengue fever risk dynamics may not be assessed accurately. The objective of this study is to develop an epistemic framework for assessing dynamic dengue fever risk across space and time. The proposed framework integrates cross-departmental data, including public-health databases, precipitation data over time and various socio-economic data. We explore public-health issues induced by typhoon through literature review and spatiotemporal analytic techniques on public health databases. From those data, we identify relevant variables and possible causal relationships, and their spatiotemporal patterns derived from our proposed spatiotemporal techniques. Eventually, we create a spatiotemporal causal network and a framework for modeling dynamic dengue fever risk.

  19. Finding the Cause: Verbal Framing Helps Children Extract Causal Evidence Embedded in a Complex Scene

    ERIC Educational Resources Information Center

    Butler, Lucas P.; Markman, Ellen M.

    2012-01-01

    In making causal inferences, children must both identify a causal problem and selectively attend to meaningful evidence. Four experiments demonstrate that verbally framing an event ("Which animals make Lion laugh?") helps 4-year-olds extract evidence from a complex scene to make accurate causal inferences. Whereas framing was unnecessary when…

  20. Distinguishing time-delayed causal interactions using convergent cross mapping

    PubMed Central

    Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George

    2015-01-01

    An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402

  1. Estimating the causal effects of smoking.

    PubMed

    Rubin, D B

    An important application of statistics in recent years has been to address the causal effects of smoking. There is little doubt that there are health risks associated with smoking. However, more general issues concern the causal effects due to the alleged misconduct of the tobacco industry or due to programmes designed to curtail tobacco use. To address any such causal question, assumptions must be made. Although some of the issues are well known in the statistical and epidemiological literature, there does not appear to be a unified treatment that provides prescriptive guidance on the estimation of these causal effects with explication of the needed assumptions. A 'conduct attributable fraction' is derived, which allows for arbitrary changes in smoking and non-smoking health care expenditure related factors in a counterfactual world without the alleged misconduct, and therefore generalizes the traditional 'smoking attributable fraction'. The formulation presented here, although described for the problem of estimating excess health care expenditures due to the alleged misconduct of the tobacco industry, is more general. It can be applied to any outcome, such as mortality, morbidity, or income from excise taxes, as well as to any situation in which consequences due to alleged misconduct (for example, of two entities, such as the tobacco and the asbestos industries) or due to hypothetical programmes (for example, extra smoking reduction initiatives) are to be estimated. Copyright 2001 John Wiley & Sons, Ltd.

  2. AOP: An R Package For Sufficient Causal Analysis in Pathway ...

    EPA Pesticide Factsheets

    Summary: How can I quickly find the key events in a pathway that I need to monitor to predict that a/an beneficial/adverse event/outcome will occur? This is a key question when using signaling pathways for drug/chemical screening in pharma-cology, toxicology and risk assessment. By identifying these sufficient causal key events, we have fewer events to monitor for a pathway, thereby decreasing assay costs and time, while maximizing the value of the information. I have developed the “aop” package which uses backdoor analysis of causal net-works to identify these minimal sets of key events that are suf-ficient for making causal predictions. Availability and Implementation: The source and binary are available online through the Bioconductor project (http://www.bioconductor.org/) as an R package titled “aop”. The R/Bioconductor package runs within the R statistical envi-ronment. The package has functions that can take pathways (as directed graphs) formatted as a Cytoscape JSON file as input, or pathways can be represented as directed graphs us-ing the R/Bioconductor “graph” package. The “aop” package has functions that can perform backdoor analysis to identify the minimal set of key events for making causal predictions.Contact: burgoon.lyle@epa.gov This paper describes an R/Bioconductor package that was developed to facilitate the identification of key events within an AOP that are the minimal set of sufficient key events that need to be tested/monit

  3. Causal-explanatory pluralism: How intentions, functions, and mechanisms influence causal ascriptions.

    PubMed

    Lombrozo, Tania

    2010-12-01

    Both philosophers and psychologists have argued for the existence of distinct kinds of explanations, including teleological explanations that cite functions or goals, and mechanistic explanations that cite causal mechanisms. Theories of causation, in contrast, have generally been unitary, with dominant theories focusing either on counterfactual dependence or on physical connections. This paper argues that both approaches to causation are psychologically real, with different modes of explanation promoting judgments more or less consistent with each approach. Two sets of experiments isolate the contributions of counterfactual dependence and physical connections in causal ascriptions involving events with people, artifacts, or biological traits, and manipulate whether the events are construed teleologically or mechanistically. The findings suggest that when events are construed teleologically, causal ascriptions are sensitive to counterfactual dependence and relatively insensitive to the presence of physical connections, but when events are construed mechanistically, causal ascriptions are sensitive to both counterfactual dependence and physical connections. The conclusion introduces an account of causation, an "exportable dependence theory," that provides a way to understand the contributions of physical connections and teleology in terms of the functions of causal ascriptions. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Structure and Strength in Causal Induction

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2005-01-01

    We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…

  5. Identifying environmental factors harmful to reproduction.

    PubMed Central

    Palmer, A K

    1993-01-01

    Reproduction is essential for the continuation of the species and for life itself. In biological terms, living and reproducing are essentially one and the same. There is, therefore, no sharp division between identifying factors harmful to reproduction and identifying factors harmful to life or vice versa. Detection of harmful factors requires balanced use of a variety of methodologies from databases on structure-activity relationships through in vitro and in vivo test systems of varying complexity to surveys of wildlife and human populations. Human surveys provide the only assured means of discriminating between real and imagined harmful factors, but they are time consuming and provide information after the harm has been done. Test systems with whole animals provide the best prospects for identifying harmful factors quickly, but currently available methods used for testing agrochemicals and drugs need a thorough overhaul before they can provide a role model. Whether there is a need for new methodology is doubtful. More certain is the need to use existing methodology more wisely. We need a better understanding of the environment--whatever it is--and a more thoughtful approach to investigation of multifactorial situations. PMID:8243390

  6. Genetic causal beliefs about obesity, self-efficacy for weight control, and obesity-related behaviours in a middle-aged female cohort.

    PubMed

    Knerr, Sarah; Bowen, Deborah J; Beresford, Shirley A A; Wang, Catharine

    2016-01-01

    Obesity is a heritable condition with well-established risk-reducing behaviours. Studies have shown that beliefs about the causes of obesity are associated with diet and exercise behaviour. Identifying mechanisms linking causal beliefs and behaviours is important for obesity prevention and control. Cross-sectional multi-level regression analyses of self-efficacy for weight control as a possible mediator of obesity attributions (diet, physical activity, genetic) and preventive behaviours in 487 non-Hispanic White women from South King County, Washington. Self-reported daily fruit and vegetable intake and weekly leisure-time physical activity. Diet causal beliefs were positively associated with fruit and vegetable intake, with self-efficacy for weight control partially accounting for this association. Self-efficacy for weight control also indirectly linked physical activity attributions and physical activity behaviour. Relationships between genetic causal beliefs, self-efficacy for weight control, and obesity-related behaviours differed by obesity status. Self-efficacy for weight control contributed to negative associations between genetic causal attributions and obesity-related behaviours in non-obese, but not obese, women. Self-efficacy is an important construct to include in studies of genetic causal beliefs and behavioural self-regulation. Theoretical and longitudinal work is needed to clarify the causal nature of these relationships and other mediating and moderating factors.

  7. Diagnostic nomenclature for foetal alcohol spectrum disorders: the continuing challenge of causality.

    PubMed

    Miller, A R

    2013-11-01

    Prenatal alcohol exposure is a risk factor for neurologically based cognitive and adaptive disability. Diagnostic nomenclature for prenatally exposed children with cognitive and adaptive disability who lack features for foetal alcohol syndrome (FAS) or partial FAS includes the terms alcohol-related neurodevelopmental disorder (ARND) and foetal alcohol spectrum disorder(s) (FASD). Although these terms are now widely used, this paper argues that both are problematic. ARND is flawed by unjustifiably turning a risk factor into a causal factor and shrouding the result in terminological ambiguity, while FASD is not appropriate as a clinical label, and its use as a proxy for ARND deflects critical attention from the causal inferencing that is integral to diagnosing children with an alcohol-related teratogenic condition. Existing nomenclature is at odds with logical and evidence-based diagnosing and also has implications for interpretation of epidemiological data. Diagnostic nomenclature that is not tightly linked to causal inference is preferable at the present stage of this field's development. © 2013 John Wiley & Sons Ltd.

  8. Implementation and reporting of causal mediation analysis in 2015: a systematic review in epidemiological studies.

    PubMed

    Liu, Shao-Hsien; Ulbricht, Christine M; Chrysanthopoulou, Stavroula A; Lapane, Kate L

    2016-07-20

    Causal mediation analysis is often used to understand the impact of variables along the causal pathway of an occurrence relation. How well studies apply and report the elements of causal mediation analysis remains unknown. We systematically reviewed epidemiological studies published in 2015 that employed causal mediation analysis to estimate direct and indirect effects of observed associations between an exposure on an outcome. We identified potential epidemiological studies through conducting a citation search within Web of Science and a keyword search within PubMed. Two reviewers independently screened studies for eligibility. For eligible studies, one reviewer performed data extraction, and a senior epidemiologist confirmed the extracted information. Empirical application and methodological details of the technique were extracted and summarized. Thirteen studies were eligible for data extraction. While the majority of studies reported and identified the effects of measures, most studies lacked sufficient details on the extent to which identifiability assumptions were satisfied. Although most studies addressed issues of unmeasured confounders either from empirical approaches or sensitivity analyses, the majority did not examine the potential bias arising from the measurement error of the mediator. Some studies allowed for exposure-mediator interaction and only a few presented results from models both with and without interactions. Power calculations were scarce. Reporting of causal mediation analysis is varied and suboptimal. Given that the application of causal mediation analysis will likely continue to increase, developing standards of reporting of causal mediation analysis in epidemiological research would be prudent.

  9. Reasoning about Causal Relationships: Inferences on Causal Networks

    PubMed Central

    Rottman, Benjamin Margolin; Hastie, Reid

    2013-01-01

    Over the last decade, a normative framework for making causal inferences, Bayesian Probabilistic Causal Networks, has come to dominate psychological studies of inference based on causal relationships. The following causal networks—[X→Y→Z, X←Y→Z, X→Y←Z]—supply answers for questions like, “Suppose both X and Y occur, what is the probability Z occurs?” or “Suppose you intervene and make Y occur, what is the probability Z occurs?” In this review, we provide a tutorial for how normatively to calculate these inferences. Then, we systematically detail the results of behavioral studies comparing human qualitative and quantitative judgments to the normative calculations for many network structures and for several types of inferences on those networks. Overall, when the normative calculations imply that an inference should increase, judgments usually go up; when calculations imply a decrease, judgments usually go down. However, two systematic deviations appear. First, people’s inferences violate the Markov assumption. For example, when inferring Z from the structure X→Y→Z, people think that X is relevant even when Y completely mediates the relationship between X and Z. Second, even when people’s inferences are directionally consistent with the normative calculations, they are often not as sensitive to the parameters and the structure of the network as they should be. We conclude with a discussion of productive directions for future research. PMID:23544658

  10. Dynamics of Quantum Causal Structures

    NASA Astrophysics Data System (ADS)

    Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2018-01-01

    It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.

  11. Redundant variables and Granger causality

    NASA Astrophysics Data System (ADS)

    Angelini, L.; de Tommaso, M.; Marinazzo, D.; Nitti, L.; Pellicoro, M.; Stramaglia, S.

    2010-03-01

    We discuss the use of multivariate Granger causality in presence of redundant variables: the application of the standard analysis, in this case, leads to under estimation of causalities. Using the un-normalized version of the causality index, we quantitatively develop the notions of redundancy and synergy in the frame of causality and propose two approaches to group redundant variables: (i) for a given target, the remaining variables are grouped so as to maximize the total causality and (ii) the whole set of variables is partitioned to maximize the sum of the causalities between subsets. We show the application to a real neurological experiment, aiming to a deeper understanding of the physiological basis of abnormal neuronal oscillations in the migraine brain. The outcome by our approach reveals the change in the informational pattern due to repetitive transcranial magnetic stimulations.

  12. Causality and causal inference in epidemiology: the need for a pluralistic approach

    PubMed Central

    Vandenbroucke, Jan P; Broadbent, Alex; Pearce, Neil

    2016-01-01

    Abstract Causal inference based on a restricted version of the potential outcomes approach reasoning is assuming an increasingly prominent place in the teaching and practice of epidemiology. The proposed concepts and methods are useful for particular problems, but it would be of concern if the theory and practice of the complete field of epidemiology were to become restricted to this single approach to causal inference. Our concerns are that this theory restricts the questions that epidemiologists may ask and the study designs that they may consider. It also restricts the evidence that may be considered acceptable to assess causality, and thereby the evidence that may be considered acceptable for scientific and public health decision making. These restrictions are based on a particular conceptual framework for thinking about causality. In Section 1, we describe the characteristics of the restricted potential outcomes approach (RPOA) and show that there is a methodological movement which advocates these principles, not just for solving particular problems, but as ideals for which epidemiology as a whole should strive. In Section 2, we seek to show that the limitation of epidemiology to one particular view of the nature of causality is problematic. In Section 3, we argue that the RPOA is also problematic with regard to the assessment of causality. We argue that it threatens to restrict study design choice, to wrongly discredit the results of types of observational studies that have been very useful in the past and to damage the teaching of epidemiological reasoning. Finally, in Section 4 we set out what we regard as a more reasonable ‘working hypothesis’ as to the nature of causality and its assessment: pragmatic pluralism. PMID:26800751

  13. Experimental test of nonlocal causality.

    PubMed

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro

    2016-08-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.

  14. Occupational safety management: the role of causal attribution.

    PubMed

    Gyekye, Seth Ayim

    2010-12-01

    The paper addresses the causal attribution theory, an old and well-established theme in social psychology which denotes the everyday, commonsense explanations that people use to explain events and the world around them. The attribution paradigm is considered one of the most appropriate analytical tools for exploratory and descriptive studies in social psychology and organizational literature. It affords the possibility of describing accident processes as objectively as possible and with as much detail as possible. Causal explanations are vital to the formal analysis of workplace hazards and accidents, as they determine how organizations act to prevent accident recurrence. Accordingly, they are regarded as fundamental and prerequisite elements for safety management policies. The paper focuses primarily on the role of causal attributions in occupational and industrial accident analyses and implementation of safety interventions. It thus serves as a review of the contribution of attribution theory to occupational and industrial accidents. It comprises six sections. The first section presents an introduction to the classic attribution theories, and the second an account of the various ways in which the attribution paradigm has been applied in organizational settings. The third and fourth sections review the literature on causal attributions and demographic and organizational variables respectively. The sources of attributional biases in social psychology and how they manifest and are identified in the causal explanations for industrial and occupational accidents are treated in the fifth section. Finally, conclusion and recommendations are presented. The recommendations are particularly important for the reduction of workplace accidents and associated costs. The paper touches on the need for unbiased causal analyses, belief in the preventability of accidents, and the imperative role of management in occupational safety management.

  15. Causality analysis in business performance measurement system using system dynamics methodology

    NASA Astrophysics Data System (ADS)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  16. Causality in cancer epidemiology.

    PubMed

    Lagiou, Pagona; Adami, Hans-Olov; Trichopoulos, Dimitrios

    2005-01-01

    In this review, issues of causality in epidemiologic research with emphasis on the aetiology of human cancer are considered. Principles of assessing causation in epidemiological studies of cancer are distinguished into those concerning an individual study, several studies and a particular person. Strengths and weaknesses of various approaches of documenting carcinogenicity in humans are examined and lists of major established causes of human cancer are presented. The review concludes with estimates of mortality from cancer around the world that can be attributed to specific factors under the light of the current scientific knowledge.

  17. UNRECOGNIZED OR POTENTIAL RISK FACTORS FOR CHILDHOOD CANCER

    EPA Science Inventory

    Traditional epidemiological studies suggest that the contribution of environmental agents to childhood cancer may be minor. However, epidemiological methods can only seldom identify causal factors associated with a relative risk of less than a factor of one and a half to two. App...

  18. Causality and causal inference in epidemiology: the need for a pluralistic approach.

    PubMed

    Vandenbroucke, Jan P; Broadbent, Alex; Pearce, Neil

    2016-12-01

    Causal inference based on a restricted version of the potential outcomes approach reasoning is assuming an increasingly prominent place in the teaching and practice of epidemiology. The proposed concepts and methods are useful for particular problems, but it would be of concern if the theory and practice of the complete field of epidemiology were to become restricted to this single approach to causal inference. Our concerns are that this theory restricts the questions that epidemiologists may ask and the study designs that they may consider. It also restricts the evidence that may be considered acceptable to assess causality, and thereby the evidence that may be considered acceptable for scientific and public health decision making. These restrictions are based on a particular conceptual framework for thinking about causality. In Section 1, we describe the characteristics of the restricted potential outcomes approach (RPOA) and show that there is a methodological movement which advocates these principles, not just for solving particular problems, but as ideals for which epidemiology as a whole should strive. In Section 2, we seek to show that the limitation of epidemiology to one particular view of the nature of causality is problematic. In Section 3, we argue that the RPOA is also problematic with regard to the assessment of causality. We argue that it threatens to restrict study design choice, to wrongly discredit the results of types of observational studies that have been very useful in the past and to damage the teaching of epidemiological reasoning. Finally, in Section 4 we set out what we regard as a more reasonable 'working hypothesis' as to the nature of causality and its assessment: pragmatic pluralism. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  19. The Global Drivers of Photosynthesis and Light Use Efficiency Seasonality: A Granger Frequency Causality Analysis

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna R.

    2016-01-01

    Photosynthesis and light use efficiency (LUE) are major factors in the evolution of the continental carbon cycle due to their contribution to gross primary production (GPP). However, while the drivers of photosynthesis and LUE on a plant or canopy scale can often be identified, significant uncertainties exist when modeling these on a global scale. This is due to sparse observations in regions such as the tropics and the lack of a direct global observation dataset. Although others have attempted to address this issue using correlations (Beer, 2010) or calculating GPP from vegetation indices (Running, 2004), in this study we take a new approach. We combine the statistical method of Granger frequency causality and partial Granger frequency causality with remote sensing data products (including sun-induced fluorescence used as a proxy for GPP) to determine the main environmental drivers of GPP across the globe.

  20. Research on injury compensation and health outcomes: ignoring the problem of reverse causality led to a biased conclusion.

    PubMed

    Spearing, Natalie M; Connelly, Luke B; Nghiem, Hong S; Pobereskin, Louis

    2012-11-01

    This study highlights the serious consequences of ignoring reverse causality bias in studies on compensation-related factors and health outcomes and demonstrates a technique for resolving this problem of observational data. Data from an English longitudinal study on factors, including claims for compensation, associated with recovery from neck pain (whiplash) after rear-end collisions are used to demonstrate the potential for reverse causality bias. Although it is commonly believed that claiming compensation leads to worse recovery, it is also possible that poor recovery may lead to compensation claims--a point that is seldom considered and never addressed empirically. This pedagogical study compares the association between compensation claiming and recovery when reverse causality bias is ignored and when it is addressed, controlling for the same observable factors. When reverse causality is ignored, claimants appear to have a worse recovery than nonclaimants; however, when reverse causality bias is addressed, claiming compensation appears to have a beneficial effect on recovery, ceteris paribus. To avert biased policy and judicial decisions that might inadvertently disadvantage people with compensable injuries, there is an urgent need for researchers to address reverse causality bias in studies on compensation-related factors and health. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Identifying HIV associated neurocognitive disorder using large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    DSouza, Adora M.; Abidin, Anas Z.; Leistritz, Lutz; Wismüller, Axel

    2017-02-01

    We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system. The current paradigm for assessing such impairment is through neuropsychological testing. With fMRI data analysis, we aim at non-invasively capturing differences in brain connectivity patterns between healthy subjects and subjects presenting with symptoms of HAND. To classify the extracted interaction patterns among brain regions, we use a prototype-based learning algorithm called Generalized Matrix Learning Vector Quantization (GMLVQ). Our approach to characterize connectivity using lsGC followed by GMLVQ for subsequent classification yields good prediction results with an accuracy of 87% and an area under the ROC curve (AUC) of up to 0.90. We obtain a statistically significant improvement (p<0.01) over a conventional Granger causality approach (accuracy = 0.76, AUC = 0.74). High accuracy and AUC values using our multivariate method to connectivity analysis suggests that our approach is able to better capture changes in interaction patterns between different brain regions when compared to conventional Granger causality analysis known from the literature.

  2. A causal examination of the effects of confounding factors on multimetric indices

    USGS Publications Warehouse

    Schoolmaster, Donald R.; Grace, James B.; Schweiger, E. William; Mitchell, Brian R.; Guntenspergen, Glenn R.

    2013-01-01

    The development of multimetric indices (MMIs) as a means of providing integrative measures of ecosystem condition is becoming widespread. An increasingly recognized problem for the interpretability of MMIs is controlling for the potentially confounding influences of environmental covariates. Most common approaches to handling covariates are based on simple notions of statistical control, leaving the causal implications of covariates and their adjustment unstated. In this paper, we use graphical models to examine some of the potential impacts of environmental covariates on the observed signals between human disturbance and potential response metrics. Using simulations based on various causal networks, we show how environmental covariates can both obscure and exaggerate the effects of human disturbance on individual metrics. We then examine from a causal interpretation standpoint the common practice of adjusting ecological metrics for environmental influences using only the set of sites deemed to be in reference condition. We present and examine the performance of an alternative approach to metric adjustment that uses the whole set of sites and models both environmental and human disturbance effects simultaneously. The findings from our analyses indicate that failing to model and adjust metrics can result in a systematic bias towards those metrics in which environmental covariates function to artificially strengthen the metric–disturbance relationship resulting in MMIs that do not accurately measure impacts of human disturbance. We also find that a “whole-set modeling approach” requires fewer assumptions and is more efficient with the given information than the more commonly applied “reference-set” approach.

  3. Experimental test of nonlocal causality

    PubMed Central

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro

    2016-01-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045

  4. Bayes and blickets: Effects of knowledge on causal induction in children and adults

    PubMed Central

    Griffiths, Thomas L.; Sobel, David M.; Tenenbaum, Joshua B.; Gopnik, Alison

    2011-01-01

    People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayesian inference. Five studies explored the predictions of this account with adults and 4-year-olds, using tasks in which participants learned about the causal properties of a set of objects. The studies varied the two factors that our Bayesian approach predicted should be relevant to causal induction: the prior probability with which causal relations exist, and the assumption of a deterministic or a probabilistic relation between cause and effect. Adults’ judgments (Experiments 1, 2, and 4) were in close correspondence with the quantitative predictions of the model, and children’s judgments (Experiments 3 and 5) agreed qualitatively with this account. PMID:21972897

  5. Causal conditionals and counterfactuals

    PubMed Central

    Frosch, Caren A.; Byrne, Ruth M.J.

    2012-01-01

    Causal counterfactuals e.g., ‘if the ignition key had been turned then the car would have started’ and causal conditionals e.g., ‘if the ignition key was turned then the car started’ are understood by thinking about multiple possibilities of different sorts, as shown in six experiments using converging evidence from three different types of measures. Experiments 1a and 1b showed that conditionals that comprise enabling causes, e.g., ‘if the ignition key was turned then the car started’ primed people to read quickly conjunctions referring to the possibility of the enabler occurring without the outcome, e.g., ‘the ignition key was turned and the car did not start’. Experiments 2a and 2b showed that people paraphrased causal conditionals by using causal or temporal connectives (because, when), whereas they paraphrased causal counterfactuals by using subjunctive constructions (had…would have). Experiments 3a and 3b showed that people made different inferences from counterfactuals presented with enabling conditions compared to none. The implications of the results for alternative theories of conditionals are discussed. PMID:22858874

  6. Causal Discovery of Dynamic Systems

    ERIC Educational Resources Information Center

    Voortman, Mark

    2010-01-01

    Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…

  7. The Causal Effects of Father Absence

    PubMed Central

    McLanahan, Sara; Tach, Laura; Schneider, Daniel

    2014-01-01

    The literature on father absence is frequently criticized for its use of cross-sectional data and methods that fail to take account of possible omitted variable bias and reverse causality. We review studies that have responded to this critique by employing a variety of innovative research designs to identify the causal effect of father absence, including studies using lagged dependent variable models, growth curve models, individual fixed effects models, sibling fixed effects models, natural experiments, and propensity score matching models. Our assessment is that studies using more rigorous designs continue to find negative effects of father absence on offspring well-being, although the magnitude of these effects is smaller than what is found using traditional cross-sectional designs. The evidence is strongest and most consistent for outcomes such as high school graduation, children’s social-emotional adjustment, and adult mental health. PMID:24489431

  8. Causal chain mapping: a novel method to analyse treatment compliance decisions relating to lymphatic filariasis elimination in Alor, Indonesia.

    PubMed

    Krentel, Alison; Aunger, Robert

    2012-08-01

    Many public health programmes require individuals to comply with particular behaviours that are novel to them, for example, acquiring new eating habits, accepting immunizations or taking a new medication. In particular, mass drug administration programmes only work to reduce the prevalence of a disease if significant proportions of the target population take the drug in question. In such cases, knowledge of the factors most likely to lead to high levels of compliance is crucial to the programme's success. Existing models of compliance tend to either address interpersonal, organizational or psychological causes independently. Here, the authors present a formal method for analysing relevant factors in the situational context of the compliant behaviour, identifying how these factors may interact within the individual. This method was developed from semantic network analysis, augmented to include environmental and demographic variables to show causal linkages-hence the name 'causal chain mapping'. The ability of this method to provide significant insight into the actual behaviour of individuals is demonstrated with examples from a mass drug administration for lymphatic filariasis in Alor District, Indonesia. The use of this method is likely to help identify key components influencing compliance, and thus make any public health programme reliant on the adoption of novel behaviours more effective.

  9. Genetic causal beliefs about obesity, self-efficacy for weight control, and obesity-related behaviours in a middle-aged female cohort

    PubMed Central

    Knerr, Sarah; Bowen, Deborah J.; Beresford, Shirley A.A.; Wang, Catharine

    2015-01-01

    Objective Obesity is a heritable condition with well-established risk-reducing behaviours. Studies have shown that beliefs about the causes of obesity are associated with diet and exercise behaviour. Identifying mechanisms linking causal beliefs and behaviours is important for obesity prevention and control. Design Cross-sectional multi-level regression analyses of self-efficacy for weight control as a possible mediator of obesity attributions (diet, physical activity, genetic) and preventive behaviours in 487 non-Hispanic White women from South King County, Washington. Main Outcome Measures Self-reported daily fruit and vegetable intake and weekly leisure-time physical activity. Results Diet causal beliefs were positively associated with fruit and vegetable intake, with self-efficacy for weight control partially accounting for this association. Self-efficacy for weight control also indirectly linked physical activity attributions and physical activity behaviour. Relationships between genetic causal beliefs, self-efficacy for weight control, and obesity-related behaviours differed by obesity status. Self-efficacy for weight control contributed to negative associations between genetic causal attributions and obesity-related behaviours in non-obese, but not obese, women. Conclusion Self-efficacy is an important construct to include in studies of genetic causal beliefs and behavioural self-regulation. Theoretical and longitudinal work is needed to clarify the causal nature of these relationships and other mediating and moderating factors. PMID:26542069

  10. Causal pathways linking Farm to School to childhood obesity prevention.

    PubMed

    Joshi, Anupama; Ratcliffe, Michelle M

    2012-08-01

    Farm to School programs are rapidly gaining attention as a potential strategy for preventing childhood obesity; however, the causal linkages between Farm to School activities and health outcomes are not well documented. To capitalize on the increased interest in and momentum for Farm to School, researchers and practitioners need to move from developing and implementing evidence informed programs and policies to ones that are evidence-based. The purpose of this article is to outline a framework for facilitating an evidence base for Farm to School programs and policies through a systematic and coordinated approach. Employing the concepts of causal pathways, the authors introduce a proposed framework for organizing and systematically testing out multiple hypotheses (or potential causal links) for how, why, and under what conditions Farm to School Inputs and Activities may result in what Outputs, Effects, and Impacts. Using the causal pathways framework may help develop and test competing hypotheses, identify multicausality, strength, and interactions of causes, and discern the difference between catalysts and causes. In this article, we introduce causal pathways, present menus of potential independent and dependent variables from which to create and test causal pathways linking Farm to School interventions and their role in preventing childhood obesity, discuss their applicability to Farm to School research and practice, and outline proposed next steps for developing a coordinated research framework for Farm to School programs.

  11. Experimental verification of an indefinite causal order

    PubMed Central

    Rubino, Giulia; Rozema, Lee A.; Feix, Adrien; Araújo, Mateus; Zeuner, Jonas M.; Procopio, Lorenzo M.; Brukner, Časlav; Walther, Philip

    2017-01-01

    Investigating the role of causal order in quantum mechanics has recently revealed that the causal relations of events may not be a priori well defined in quantum theory. Although this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. We report the first decisive demonstration of a process with an indefinite causal order. To do this, we quantify how incompatible our setup is with a definite causal order by measuring a “causal witness.” This mathematical object incorporates a series of measurements that are designed to yield a certain outcome only if the process under examination is not consistent with any well-defined causal order. In our experiment, we perform a measurement in a superposition of causal orders—without destroying the coherence—to acquire information both inside and outside of a “causally nonordered process.” Using this information, we experimentally determine a causal witness, demonstrating by almost 7 SDs that the experimentally implemented process does not have a definite causal order. PMID:28378018

  12. Causal illusions in children when the outcome is frequent

    PubMed Central

    2017-01-01

    Causal illusions occur when people perceive a causal relation between two events that are actually unrelated. One factor that has been shown to promote these mistaken beliefs is the outcome probability. Thus, people tend to overestimate the strength of a causal relation when the potential consequence (i.e. the outcome) occurs with a high probability (outcome-density bias). Given that children and adults differ in several important features involved in causal judgment, including prior knowledge and basic cognitive skills, developmental studies can be considered an outstanding approach to detect and further explore the psychological processes and mechanisms underlying this bias. However, the outcome density bias has been mainly explored in adulthood, and no previous evidence for this bias has been reported in children. Thus, the purpose of this study was to extend outcome-density bias research to childhood. In two experiments, children between 6 and 8 years old were exposed to two similar setups, both showing a non-contingent relation between the potential cause and the outcome. These two scenarios differed only in the probability of the outcome, which could either be high or low. Children judged the relation between the two events to be stronger in the high probability of the outcome setting, revealing that, like adults, they develop causal illusions when the outcome is frequent. PMID:28898294

  13. Instrumental variable approaches to identifying the causal effect of educational attainment on dementia risk

    PubMed Central

    Nguyen, Thu T.; Tchetgen Tchetgen, Eric J.; Kawachi, Ichiro; Gilman, Stephen E.; Walter, Stefan; Liu, Sze Y.; Manly, Jennifer; Glymour, M. Maria

    2015-01-01

    Purpose Education is an established correlate of cognitive status in older adulthood, but whether expanding educational opportunities would improve cognitive functioning remains unclear given limitations of prior studies for causal inference. Therefore, we conducted instrumental variable (IV) analyses of the association between education and dementia risk, using for the first time in this area, genetic variants as instruments as well as state-level school policies. Methods IV analyses in the Health and Retirement Study cohort (1998–2010) used two sets of instruments: 1) a genetic risk score constructed from three single nucleotide polymorphisms (SNPs) (n=8,054); and 2) compulsory schooling laws (CSLs) and state school characteristics (term length, student teacher ratios, and expenditures) (n=13,167). Results Employing the genetic risk score as an IV, there was a 1.1% reduction in dementia risk per year of schooling (95% CI: −2.4, 0.02). Leveraging compulsory schooling laws and state school characteristics as IVs, there was a substantially larger protective effect (−9.5%; 95% CI: −14.8, −4.2). Analyses evaluating the plausibility of the IV assumptions indicated estimates derived from analyses relying on CSLs provide the best estimates of the causal effect of education. Conclusion IV analyses suggest education is protective against risk of dementia in older adulthood. PMID:26633592

  14. Neural pathways in processing of sexual arousal: a dynamic causal modeling study.

    PubMed

    Seok, J-W; Park, M-S; Sohn, J-H

    2016-09-01

    Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.

  15. Formalizing Neurath's ship: Approximate algorithms for online causal learning.

    PubMed

    Bramley, Neil R; Dayan, Peter; Griffiths, Thomas L; Lagnado, David A

    2017-04-01

    Higher-level cognition depends on the ability to learn models of the world. We can characterize this at the computational level as a structure-learning problem with the goal of best identifying the prevailing causal relationships among a set of relata. However, the computational cost of performing exact Bayesian inference over causal models grows rapidly as the number of relata increases. This implies that the cognitive processes underlying causal learning must be substantially approximate. A powerful class of approximations that focuses on the sequential absorption of successive inputs is captured by the Neurath's ship metaphor in philosophy of science, where theory change is cast as a stochastic and gradual process shaped as much by people's limited willingness to abandon their current theory when considering alternatives as by the ground truth they hope to approach. Inspired by this metaphor and by algorithms for approximating Bayesian inference in machine learning, we propose an algorithmic-level model of causal structure learning under which learners represent only a single global hypothesis that they update locally as they gather evidence. We propose a related scheme for understanding how, under these limitations, learners choose informative interventions that manipulate the causal system to help elucidate its workings. We find support for our approach in the analysis of 3 experiments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Quantum correlations with no causal order

    PubMed Central

    Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav

    2012-01-01

    The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068

  17. Paradoxical Behavior of Granger Causality

    NASA Astrophysics Data System (ADS)

    Witt, Annette; Battaglia, Demian; Gail, Alexander

    2013-03-01

    Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen

  18. Transitive closure of subsumption and causal relations in a large ontology of radiological diagnosis.

    PubMed

    Kahn, Charles E

    2016-06-01

    The Radiology Gamuts Ontology (RGO)-an ontology of diseases, interventions, and imaging findings-was developed to aid in decision support, education, and translational research in diagnostic radiology. The ontology defines a subsumption (is_a) relation between more general and more specific terms, and a causal relation (may_cause) to express the relationship between disorders and their possible imaging manifestations. RGO incorporated 19,745 terms with their synonyms and abbreviations, 1768 subsumption relations, and 55,558 causal relations. Transitive closure was computed iteratively; it yielded 2154 relations over subsumption and 1,594,896 relations over causality. Five causal cycles were discovered, all with path length of no more than 5. The graph-theoretic metrics of in-degree and out-degree were explored; the most useful metric to prioritize modification of the ontology was found to be the product of the in-degree of transitive closure over subsumption and the out-degree of transitive closure over causality. Two general types of error were identified: (1) causal assertions that used overly general terms because they implicitly assumed an organ-specific context and (2) subsumption relations where a site-specific disorder was asserted to be a subclass of the general disorder. Transitive closure helped identify incorrect assertions, prioritized and guided ontology revision, and aided resources that applied the ontology's knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Does sufficient evidence exist to support a causal association between vitamin D status and cardiovascular disease risk? An assessment using Hill's criteria for causality.

    PubMed

    Weyland, Patricia G; Grant, William B; Howie-Esquivel, Jill

    2014-09-02

    Serum 25-hydroxyvitamin D (25(OH)D) levels have been found to be inversely associated with both prevalent and incident cardiovascular disease (CVD) risk factors; dyslipidemia, hypertension and diabetes mellitus. This review looks for evidence of a causal association between low 25(OH)D levels and increased CVD risk. We evaluated journal articles in light of Hill's criteria for causality in a biological system. The results of our assessment are as follows. Strength of association: many randomized controlled trials (RCTs), prospective and cross-sectional studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Consistency of observed association: most studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors in various populations, locations and circumstances. Temporality of association: many RCTs and prospective studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Biological gradient (dose-response curve): most studies assessing 25(OH)D levels and CVD risk found an inverse association exhibiting a linear biological gradient. Plausibility of biology: several plausible cellular-level causative mechanisms and biological pathways may lead from a low 25(OH)D level to increased risk for CVD with mediators, such as dyslipidemia, hypertension and diabetes mellitus. Experimental evidence: some well-designed RCTs found increased CVD risk factors with decreasing 25(OH)D levels. Analogy: the association between serum 25(OH)D levels and CVD risk is analogous to that between 25(OH)D levels and the risk of overall cancer, periodontal disease, multiple sclerosis and breast cancer. all relevant Hill criteria for a causal association in a biological system are satisfied to indicate a low 25(OH)D level as a CVD risk factor.

  20. Is There a Causal Effect of High School Math on Labor Market Outcomes?

    ERIC Educational Resources Information Center

    Joensen, Juanna Schroter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…

  1. How contrast situations affect the assignment of causality in symmetric physical settings.

    PubMed

    Beller, Sieghard; Bender, Andrea

    2014-01-01

    In determining the prime cause of a physical event, people often weight one of two entities in a symmetric physical relation as more important for bringing about the causal effect than the other. In a broad survey (Bender and Beller, 2011), we documented such weighting effects for different kinds of physical events and found that their direction and strength depended on a variety of factors. Here, we focus on one of those: adding a contrast situation that-while being formally irrelevant-foregrounds one of the factors and thus frames the task in a specific way. In two experiments, we generalize and validate our previous findings by using different stimulus material (in Experiment 1), by applying a different response format to elicit causal assignments, an analog rating scale instead of a forced-choice decision (in Experiment 2), and by eliciting explanations for the physical events in question (in both Experiments). The results generally confirm the contrast effects for both response formats; however, the effects were more pronounced with the force-choice format than with the rating format. People tended to refer to the given contrast in their explanations, which validates our manipulation. Finally, people's causal assignments are reflected in the type of explanation given in that contrast and property explanations were associated with biased causal assignments, whereas relational explanations were associated with unbiased assignments. In the discussion, we pick up the normative questions of whether or not these contrast effects constitute a bias in causal reasoning.

  2. Causal capture effects in chimpanzees (Pan troglodytes).

    PubMed

    Matsuno, Toyomi; Tomonaga, Masaki

    2017-01-01

    Extracting a cause-and-effect structure from the physical world is an important demand for animals living in dynamically changing environments. Human perceptual and cognitive mechanisms are known to be sensitive and tuned to detect and interpret such causal structures. In contrast to rigorous investigations of human causal perception, the phylogenetic roots of this perception are not well understood. In the present study, we aimed to investigate the susceptibility of nonhuman animals to mechanical causality by testing whether chimpanzees perceived an illusion called causal capture (Scholl & Nakayama, 2002). Causal capture is a phenomenon in which a type of bistable visual motion of objects is perceived as causal collision due to a bias from a co-occurring causal event. In our experiments, we assessed the susceptibility of perception of a bistable stream/bounce motion event to a co-occurring causal event in chimpanzees. The results show that, similar to in humans, causal "bounce" percepts were significantly increased in chimpanzees with the addition of a task-irrelevant causal bounce event that was synchronously presented. These outcomes suggest that the perceptual mechanisms behind the visual interpretation of causal structures in the environment are evolutionarily shared between human and nonhuman animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Temporal Causality Analysis of Sentiment Change in a Cancer Survivor Network.

    PubMed

    Bui, Ngot; Yen, John; Honavar, Vasant

    2016-06-01

    Online health communities constitute a useful source of information and social support for patients. American Cancer Society's Cancer Survivor Network (CSN), a 173,000-member community, is the largest online network for cancer patients, survivors, and caregivers. A discussion thread in CSN is often initiated by a cancer survivor seeking support from other members of CSN. Discussion threads are multi-party conversations that often provide a source of social support e.g., by bringing about a change of sentiment from negative to positive on the part of the thread originator. While previous studies regarding cancer survivors have shown that members of an online health community derive benefits from their participation in such communities, causal accounts of the factors that contribute to the observed benefits have been lacking. We introduce a novel framework to examine the temporal causality of sentiment dynamics in the CSN. We construct a Probabilistic Computation Tree Logic representation and a corresponding probabilistic Kripke structure to represent and reason about the changes in sentiments of posts in a thread over time. We use a sentiment classifier trained using machine learning on a set of posts manually tagged with sentiment labels to classify posts as expressing either positive or negative sentiment. We analyze the probabilistic Kripke structure to identify the prima facie causes of sentiment change on the part of the thread originators in the CSN forum and their significance. We find that the sentiment of replies appears to causally influence the sentiment of the thread originator. Our experiments also show that the conclusions are robust with respect to the choice of the (i) classification threshold of the sentiment classifier; (ii) and the choice of the specific sentiment classifier used. We also extend the basic framework for temporal causality analysis to incorporate the uncertainty in the states of the probabilistic Kripke structure resulting from the

  4. Temporal Causality Analysis of Sentiment Change in a Cancer Survivor Network

    PubMed Central

    Bui, Ngot; Yen, John; Honavar, Vasant

    2017-01-01

    Online health communities constitute a useful source of information and social support for patients. American Cancer Society’s Cancer Survivor Network (CSN), a 173,000-member community, is the largest online network for cancer patients, survivors, and caregivers. A discussion thread in CSN is often initiated by a cancer survivor seeking support from other members of CSN. Discussion threads are multi-party conversations that often provide a source of social support e.g., by bringing about a change of sentiment from negative to positive on the part of the thread originator. While previous studies regarding cancer survivors have shown that members of an online health community derive benefits from their participation in such communities, causal accounts of the factors that contribute to the observed benefits have been lacking. We introduce a novel framework to examine the temporal causality of sentiment dynamics in the CSN. We construct a Probabilistic Computation Tree Logic representation and a corresponding probabilistic Kripke structure to represent and reason about the changes in sentiments of posts in a thread over time. We use a sentiment classifier trained using machine learning on a set of posts manually tagged with sentiment labels to classify posts as expressing either positive or negative sentiment. We analyze the probabilistic Kripke structure to identify the prima facie causes of sentiment change on the part of the thread originators in the CSN forum and their significance. We find that the sentiment of replies appears to causally influence the sentiment of the thread originator. Our experiments also show that the conclusions are robust with respect to the choice of the (i) classification threshold of the sentiment classifier; (ii) and the choice of the specific sentiment classifier used. We also extend the basic framework for temporal causality analysis to incorporate the uncertainty in the states of the probabilistic Kripke structure resulting from

  5. The fuzzy cube and causal efficacy: representation of concomitant mechanisms in stroke.

    PubMed

    Jobe, Thomas H.; Helgason, Cathy M.

    1998-04-01

    Twentieth century medical science has embraced nineteenth century Boolean probability theory based upon two-valued Aristotelian logic. With the later addition of bit-based, von Neumann structured computational architectures, an epistemology based on randomness has led to a bivalent epidemiological methodology that dominates medical decision making. In contrast, fuzzy logic, based on twentieth century multi-valued logic, and computational structures that are content addressed and adaptively modified, has advanced a new scientific paradigm for the twenty-first century. Diseases such as stroke involve multiple concomitant causal factors that are difficult to represent using conventional statistical methods. We tested which paradigm best represented this complex multi-causal clinical phenomenon-stroke. We show that the fuzzy logic paradigm better represented clinical complexity in cerebrovascular disease than current probability theory based methodology. We believe this finding is generalizable to all of clinical science since multiple concomitant causal factors are involved in nearly all known pathological processes.

  6. Fostering Deeper Critical Inquiry with Causal Layered Analysis

    ERIC Educational Resources Information Center

    Haigh, Martin

    2016-01-01

    Causal layered analysis (CLA) is a technique that enables deeper critical inquiry through a structured exploration of four layers of causation. CLA's layers reach down from the surface litany of media understanding, through the layer of systemic causes identified by conventional research, to underpinning worldviews, ideologies and philosophies,…

  7. Towards graphical causal structures

    NASA Astrophysics Data System (ADS)

    Paulsson, K. Johan

    2012-12-01

    Folowing recent work by R. Spekkens, M. Leifer and B. Coecke we investigate causal settings in a limited categorical version of the conditional density operator formalism. We particularly show how the compact structure for causal and acausal settings apply on the measurements of stabiliser theory.

  8. Measuring causal perception: connections to representational momentum?

    PubMed

    Choi, Hoon; Scholl, Brian J

    2006-01-01

    In a collision between two objects, we can perceive not only low-level properties, such as color and motion, but also the seemingly high-level property of causality. It has proven difficult, however, to measure causal perception in a quantitatively rigorous way which goes beyond perceptual reports. Here we focus on the possibility of measuring perceived causality using the phenomenon of representational momentum (RM). Recent studies suggest a relationship between causal perception and RM, based on the fact that RM appears to be attenuated for causally 'launched' objects. This is explained by appeal to the visual expectation that a 'launched' object is inert and thus should eventually cease its movement after a collision, without a source of self-propulsion. We first replicated these demonstrations, and then evaluated this alleged connection by exploring RM for different types of displays, including the contrast between causal launching and non-causal 'passing'. These experiments suggest that the RM-attenuation effect is not a pure measure of causal perception, but rather may reflect lower-level spatiotemporal correlates of only some causal displays. We conclude by discussing the strengths and pitfalls of various methods of measuring causal perception.

  9. Investigating the multi-causal and complex nature of the accident causal influence of construction project features.

    PubMed

    Manu, Patrick A; Ankrah, Nii A; Proverbs, David G; Suresh, Subashini

    2012-09-01

    Construction project features (CPFs) are organisational, physical and operational attributes that characterise construction projects. Although previous studies have examined the accident causal influence of CPFs, the multi-causal attribute of this causal phenomenon still remain elusive and thus requires further investigation. Aiming to shed light on this facet of the accident causal phenomenon of CPFs, this study examines relevant literature and crystallises the attained insight of the multi-causal attribute by a graphical model which is subsequently operationalised by a derived mathematical risk expression that offers a systematic approach for evaluating the potential of CPFs to cause harm and consequently their health and safety (H&S) risk implications. The graphical model and the risk expression put forth by the study thus advance current understanding of the accident causal phenomenon of CPFs and they present an opportunity for project participants to manage the H&S risk associated with CPFs from the early stages of project procurement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. On the Inference of Functional Circadian Networks Using Granger Causality

    PubMed Central

    Pourzanjani, Arya; Herzog, Erik D.; Petzold, Linda R.

    2015-01-01

    Being able to infer one way direct connections in an oscillatory network such as the suprachiastmatic nucleus (SCN) of the mammalian brain using time series data is difficult but crucial to understanding network dynamics. Although techniques have been developed for inferring networks from time series data, there have been no attempts to adapt these techniques to infer directional connections in oscillatory time series, while accurately distinguishing between direct and indirect connections. In this paper an adaptation of Granger Causality is proposed that allows for inference of circadian networks and oscillatory networks in general called Adaptive Frequency Granger Causality (AFGC). Additionally, an extension of this method is proposed to infer networks with large numbers of cells called LASSO AFGC. The method was validated using simulated data from several different networks. For the smaller networks the method was able to identify all one way direct connections without identifying connections that were not present. For larger networks of up to twenty cells the method shows excellent performance in identifying true and false connections; this is quantified by an area-under-the-curve (AUC) 96.88%. We note that this method like other Granger Causality-based methods, is based on the detection of high frequency signals propagating between cell traces. Thus it requires a relatively high sampling rate and a network that can propagate high frequency signals. PMID:26413748

  11. Principal stratification in causal inference.

    PubMed

    Frangakis, Constantine E; Rubin, Donald B

    2002-03-01

    Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.

  12. Do cultural factors affect causal beliefs? Rational and magical thinking in Britain and Mexico.

    PubMed

    Subbotsky, Eugene; Quinteros, Graciela

    2002-11-01

    In two experiments, unusual phenomena (spontaneous destruction of objects in an empty wooden box) were demonstrated to adult participants living in rural communities in Mexico. These were accompanied by actions which had no physical link to the destroyed object but could suggest either scientifically based (the effect of an unknown physical device) or non-scientifically based (the effect of a 'magic spell') causal explanations of the event. The results were compared to the results of the matching two experiments from the earlier study made in Britain. The expectation that scientifically based explanations would prevail in British participants' judgments and behaviours, whereas Mexican participants would be more tolerant toward magical explanations, received only partial support. The prevalence of scientific explanations over magical explanations was evident in British participants' verbal judgments but not in Mexican participants' judgments. In their behavioural responses under the low-risk condition, British participants rejected magical explanations more frequently than did Mexican participants. However, when the risk of disregarding the possible causal effect of magic was increased, participants in both samples showed an equal degree of credulity in the possible effect of magic. The data are interpreted in terms of the relationships between scientific and 'folk' representations of causality and object permanence.

  13. Children's Counterfactual Reasoning About Causally Overdetermined Events.

    PubMed

    Nyhout, Angela; Henke, Lena; Ganea, Patricia A

    2017-08-07

    In two experiments, one hundred and sixty-two 6- to 8-year-olds were asked to reason counterfactually about events with different causal structures. All events involved overdetermined outcomes in which two different causal events led to the same outcome. In Experiment 1, children heard stories with either an ambiguous causal relation between events or causally unrelated events. Children in the causally unrelated version performed better than chance and better than those in the ambiguous condition. In Experiment 2, children heard stories in which antecedent events were causally connected or causally disconnected. Eight-year-olds performed above chance in both conditions, whereas 6-year-olds performed above chance only in the connected condition. This work provides the first evidence that children can reason counterfactually in causally overdetermined contexts by age 8. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  14. The causality between smoking and lung cancer among groups and individuals: addressing issues in tobacco litigation in South Korea

    PubMed Central

    Khang, Young-Ho

    2015-01-01

    This article discusses issues on the causality between smoking and lung cancer, which have been raised during the tobacco litigation in South Korea. It should be recognized that the explanatory ability of risk factor(s) for inter-individual variations in disease occurrence is different from the causal contribution of the risk factor(s) to disease occurrence. The affected subjects of the tobacco litigation in South Korea are lung cancer patients with a history of cigarette smoking. Thus, the attributable fraction of the exposed rather than the population attributable fraction should be used in the tobacco litigation regarding the causal contribution of smoking to lung cancer. Scientific evidence for the causal relationship between smoking and lung cancer is based on studies of individuals and groups, studies in animals and humans, studies that are observational or experimental, studies in laboratories and communities, and studies in both underdeveloped and developed countries. The scientific evidence collected is applicable to both groups and individuals. The probability of causation, which is calculated based on the attributable fraction for the association between smoking and lung cancer, could be utilized as evidence to prove causality in individuals. PMID:26137845

  15. The causality between smoking and lung cancer among groups and individuals: addressing issues in tobacco litigation in South Korea.

    PubMed

    Khang, Young-Ho

    2015-01-01

    This article discusses issues on the causality between smoking and lung cancer, which have been raised during the tobacco litigation in South Korea. It should be recognized that the explanatory ability of risk factor(s) for inter-individual variations in disease occurrence is different from the causal contribution of the risk factor(s) to disease occurrence. The affected subjects of the tobacco litigation in South Korea are lung cancer patients with a history of cigarette smoking. Thus, the attributable fraction of the exposed rather than the population attributable fraction should be used in the tobacco litigation regarding the causal contribution of smoking to lung cancer. Scientific evidence for the causal relationship between smoking and lung cancer is based on studies of individuals and groups, studies in animals and humans, studies that are observational or experimental, studies in laboratories and communities, and studies in both underdeveloped and developed countries. The scientific evidence collected is applicable to both groups and individuals. The probability of causation, which is calculated based on the attributable fraction for the association between smoking and lung cancer, could be utilized as evidence to prove causality in individuals.

  16. Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology

    PubMed Central

    Marshall, Brandon D. L.; Galea, Sandro

    2015-01-01

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821

  17. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  18. Does Sufficient Evidence Exist to Support a Causal Association between Vitamin D Status and Cardiovascular Disease Risk? An Assessment Using Hill’s Criteria for Causality

    PubMed Central

    Weyland, Patricia G.; Grant, William B.; Howie-Esquivel, Jill

    2014-01-01

    Serum 25-hydroxyvitamin D (25(OH)D) levels have been found to be inversely associated with both prevalent and incident cardiovascular disease (CVD) risk factors; dyslipidemia, hypertension and diabetes mellitus. This review looks for evidence of a causal association between low 25(OH)D levels and increased CVD risk. We evaluated journal articles in light of Hill’s criteria for causality in a biological system. The results of our assessment are as follows. Strength of association: many randomized controlled trials (RCTs), prospective and cross-sectional studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Consistency of observed association: most studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors in various populations, locations and circumstances. Temporality of association: many RCTs and prospective studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Biological gradient (dose-response curve): most studies assessing 25(OH)D levels and CVD risk found an inverse association exhibiting a linear biological gradient. Plausibility of biology: several plausible cellular-level causative mechanisms and biological pathways may lead from a low 25(OH)D level to increased risk for CVD with mediators, such as dyslipidemia, hypertension and diabetes mellitus. Experimental evidence: some well-designed RCTs found increased CVD risk factors with decreasing 25(OH)D levels. Analogy: the association between serum 25(OH)D levels and CVD risk is analogous to that between 25(OH)D levels and the risk of overall cancer, periodontal disease, multiple sclerosis and breast cancer. Conclusion: all relevant Hill criteria for a causal association in a biological system are satisfied to indicate a low 25(OH)D level as a CVD risk factor. PMID:25184368

  19. Causal Factors and Adverse Events of Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon M.; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.

    2011-01-01

    Causal factors in aviation accidents and incidents related to system/component failure/malfunction (SCFM) were examined for Federal Aviation Regulation Parts 121 and 135 operations to establish future requirements for the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project. Data analyzed includes National Transportation Safety Board (NSTB) accident data (1988 to 2003), Federal Aviation Administration (FAA) incident data (1988 to 2003), and Aviation Safety Reporting System (ASRS) incident data (1993 to 2008). Failure modes and effects analyses were examined to identify possible modes of SCFM. A table of potential adverse conditions was developed to help evaluate IVHM research technologies. Tables present details of specific SCFM for the incidents and accidents. Of the 370 NTSB accidents affected by SCFM, 48 percent involved the engine or fuel system, and 31 percent involved landing gear or hydraulic failure and malfunctions. A total of 35 percent of all SCFM accidents were caused by improper maintenance. Of the 7732 FAA database incidents affected by SCFM, 33 percent involved landing gear or hydraulics, and 33 percent involved the engine and fuel system. The most frequent SCFM found in ASRS were turbine engine, pressurization system, hydraulic main system, flight management system/flight management computer, and engine. Because the IVHM Project does not address maintenance issues, and landing gear and hydraulic systems accidents are usually not fatal, the focus of research should be those SCFMs that occur in the engine/fuel and flight control/structures systems as well as power systems.

  20. Exploring individual differences in preschoolers' causal stance.

    PubMed

    Alvarez, Aubry; Booth, Amy E

    2016-03-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In this study, we explored the coherence and short-term stability of individual differences in children's causal stance. We also began to investigate the origins of this variability, focusing particularly on the potential role of mothers' explanatory talk in shaping the causal stance of their children. Two measures of causal stance correlated with each other, as well as themselves across time. Both also revealed internal consistency of response. The strength of children's causal stance also correlated with mother's responses on the same tasks and the frequency with which mothers emphasized causality during naturalistic joint activities with their children. Implications for theory and practice are discussed. (c) 2016 APA, all rights reserved).

  1. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  2. Causal Attributions for Success and Failure at University Examinations

    ERIC Educational Resources Information Center

    Simon, J. G.; Feather, N. T.

    1973-01-01

    Male and female undergraduates rated their ability, amount of preparation, task difficulty, and their initial confidence (expectation) before they began an important examination. Subsequently they attributed causality for the examination outcome by rating the importance of factors involving ability, preparation, task difficulty, and luck as…

  3. Theory-Based Causal Induction

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2009-01-01

    Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…

  4. Causal attributions in Brazilian children's reasoning about health and illness.

    PubMed

    Boruchovitch, E; Mednick, B R

    2000-10-01

    At a time when a great number of diseases can be prevented by changing one's habits and life style, investigations have focused on understanding what adults and children believe to be desirable health practices and uncovering the factors associated with successful adherence to such practices. For these, causal attributions for health and illness were investigated among 96 Brazilian elementary school students. Ninety six subjects, aged 6 to 14, were interviewed individually and their causal attributions were assessed through 14 true-false items (e.g. people stay well [healthy] because they are lucky). The relationship between the children's causal attributions and demographic characteristics were also examined. Overall, the results were consistent with previous researches. "Taking care of oneself" was considered the most important cause of good health. "Viruses and germs" and "lack of self-care" were the most selected causes of illness. Analyses revealed significant relationship between subjects' causal attribution and their age, school grade level, socioeconomic status and gender. The study findings suggest that there may be more cross-cultural similarities than differences in children's causal attributions for health and illness. Finding ways to help individuals engage in appropriate preventive-maintenance health practices without developing an exaggerated notion that the individuals can control their own health and illness is a challenge which remains to be addressed by further research.

  5. Causal knowledge and the development of inductive reasoning.

    PubMed

    Bright, Aimée K; Feeney, Aidan

    2014-06-01

    We explored the development of sensitivity to causal relations in children's inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey→predator) or diagnostic (predator→prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children's inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Understanding environmental contributions to autism: Causal concepts and the state of science.

    PubMed

    Hertz-Picciotto, Irva; Schmidt, Rebecca J; Krakowiak, Paula

    2018-04-01

    The complexity of neurodevelopment, the rapidity of early neurogenesis, and over 100 years of research identifying environmental influences on neurodevelopment serve as backdrop to understanding factors that influence risk and severity of autism spectrum disorder (ASD). This Keynote Lecture, delivered at the May 2016 annual meeting of the International Society for Autism Research, describes concepts of causation, outlines the trajectory of research on nongenetic factors beginning in the 1960s, and briefly reviews the current state of this science. Causal concepts are introduced, including root causes; pitfalls in interpreting time trends as clues to etiologic factors; susceptible time windows for exposure; and implications of a multi-factorial model of ASD. An historical background presents early research into the origins of ASD. The epidemiologic literature from the last fifteen years is briefly but critically reviewed for potential roles of, for example, air pollution, pesticides, plastics, prenatal vitamins, lifestyle and family factors, and maternal obstetric and metabolic conditions during her pregnancy. Three examples from the case-control CHildhood Autism Risks from Genes and the Environment Study are probed to illustrate methodological approaches to central challenges in observational studies: capturing environmental exposure; causal inference when a randomized controlled clinical trial is either unethical or infeasible; and the integration of genetic, epigenetic, and environmental influences on development. We conclude with reflections on future directions, including exposomics, new technologies, the microbiome, gene-by-environment interaction in the era of -omics, and epigenetics as the interface of those two. As the environment is malleable, this research advances the goal of a productive and fulfilling life for all children, teen-agers and adults. Autism Res 2018, 11: 554-586. © 2018 International Society for Autism Research, Wiley Periodicals, Inc

  7. Designing Effective Supports for Causal Reasoning

    ERIC Educational Resources Information Center

    Jonassen, David H.; Ionas, Ioan Gelu

    2008-01-01

    Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and…

  8. The selective power of causality on memory errors.

    PubMed

    Marsh, Jessecae K; Kulkofsky, Sarah

    2015-01-01

    We tested the influence of causal links on the production of memory errors in a misinformation paradigm. Participants studied a set of statements about a person, which were presented as either individual statements or pairs of causally linked statements. Participants were then provided with causally plausible and causally implausible misinformation. We hypothesised that studying information connected with causal links would promote representing information in a more abstract manner. As such, we predicted that causal information would not provide an overall protection against memory errors, but rather would preferentially help in the rejection of misinformation that was causally implausible, given the learned causal links. In two experiments, we measured whether the causal linkage of information would be generally protective against all memory errors or only selectively protective against certain types of memory errors. Causal links helped participants reject implausible memory lures, but did not protect against plausible lures. Our results suggest that causal information may promote an abstract storage of information that helps prevent only specific types of memory errors.

  9. Enhanced circulating transforming growth factor beta 1 is causally associated with an increased risk of hepatocellular carcinoma: a mendelian randomization meta-analysis.

    PubMed

    Lu, Wei-Qun; Qiu, Ji-Liang; Huang, Zhi-Liang; Liu, Hai-Ying

    2016-12-20

    The aim of this study was to test the causal association between circulating transforming growth factor beta 1 (protein: TGF-β1 and coding gene: TGFB1) and hepatocellular carcinoma by choosing TGFB1 gene C-509T polymorphism as an instrument in a Mendelian randomization (MR) meta-analysis. Ten English articles were identified for analysis. Two authors independently assessed each article and abstracted relevant data. Odds ratio (OR) and weighted mean difference (WMD) with 95% confidence interval (CI) were synthesized under a random-effects model. Overall, the association of C-509T polymorphism with hepatocellular carcinoma was negative, but its association with circulating TGF-β1 was statistically significant, with a higher concentration observed in carriers of the -509TT genotype (WMD, 95% CI, P: 1.72, 0.67-2.78, 0.001) and -509TT/-509TC genotypes (WMD, 95% CI, P: 0.98, 0.43-1.53, < 0.001). In subgroup analysis, C-509T polymorphism was significantly associated with hepatocellular carcinoma in population-based studies under homozygous-genotype (OR, 95% CI, P: 1.74, 1.08-2.80, 0.023) and dominant (OR, 95% CI, P: 1.48, 1.01-2.17, 0.047) models. Further MR analysis indicated that per unit increase in circulating TGF-β1 was significantly associated with a 38% (95% CI: 1.03-4.65) and 49% (95% CI: 1.01-6.06) increased risk of hepatocellular carcinoma under homozygous-genotype and dominant models, respectively. Conclusively, based on a MR meta-analysis, our findings suggest that enhanced circulating TGF-β1 is causally associated with an increased risk of hepatocellular carcinoma.

  10. Different Kinds of Causality in Event Cognition

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Tamplin, Andrea K.; Armendarez, Joseph; Thompson, Alexis N.

    2014-01-01

    Narrative memory is better for information that is more causally connected and occurs at event boundaries, such as a causal break. However, it is unclear whether there are common or distinct influences of causality. For the event boundaries that arise as a result of causal breaks, the events that follow may subsequently become more causally…

  11. Causal essentialism in kinds.

    PubMed

    Ahn, Woo-kyoung; Taylor, Eric G; Kato, Daniel; Marsh, Jessecae K; Bloom, Paul

    2013-06-01

    The current study examines causal essentialism, derived from psychological essentialism of concepts. We examine whether people believe that members of a category share some underlying essence that is both necessary and sufficient for category membership and that also causes surface features. The main claim is that causal essentialism is restricted to categories that correspond to our intuitive notions of existing kinds and hence is more attenuated for categories that are based on arbitrary criteria. Experiments 1 and 3 found that people overtly endorse causal essences in nonarbitrary kinds but are less likely to do so for arbitrary categories. Experiments 2 and 4 found that people were more willing to generalize a member's known causal relations (or lack thereof) when dealing with a kind than when dealing with an arbitrary category. These differences between kinds and arbitrary categories were found across various domains-not only for categories of living things, but also for artefacts. These findings have certain real-world implications, including how people make sense of mental disorders that are treated as real kinds.

  12. Bilirubin as a potential causal factor in type 2 diabetes risk: a Mendelian randomization study

    PubMed Central

    Abbasi, Ali; Deetman, Petronella E.; Corpeleijn, Eva; Gansevoort, Ron T.; Gans, Rijk O.B.; Hillege, Hans L.; van der Harst, Pim; Stolk, Ronald P.; Navis, Gerjan; Alizadeh, Behrooz Z.; Bakker, Stephan J.L.

    2014-01-01

    Circulating bilirubin, a natural antioxidant, is associated with decreased risk of type 2 diabetes (T2D), but the nature of the relationship remains unknown. We performed Mendelian randomization in a prospective cohort of 3,381 participants free of diabetes at baseline (aged 28-75 years; women, 52.6%). We used rs6742078 located in UDP-glucuronosyltransferase (UGT1A1) locus as instrumental variable (IV) to study a potential causal effect of serum total bilirubin on T2D risk. T2D developed in a total of 210 (6.2%) participants during a median follow-up of 7.8 years. In adjusted analyses, rs6742078, which explained 19.5% of bilirubin variation, was strongly associated with total bilirubin (a 0.68-SD increase in bilirubin levels per T allele; P<1×10−122) and was also associated with T2D risk (OR 0.69 [95%CI, 0.54-0.90]; P=0.006). Per 1-SD increase in log-transformed bilirubin levels, we observed a 25% (OR 0.75 [95%CI, 0.62-0.92]; P=0.004) lower risk of T2D. In Mendelian randomization analysis, the causal risk reduction for T2D was estimated to be 42% (causal ORIVestimation per 1-SD increase in log-transformed bilirubin 0.58 [95%CI, 0.39-0.84]; P=0.005), which was comparable to the observational estimate (Durbin-Wu-Hausman chi-square test Pfor difference =0.19). These novel results provide evidence that elevated bilirubin is causally associated with risk of T2D and support its role as a protective determinant. PMID:25368098

  13. Is the Association Between Education and Fertility Postponement Causal? The Role of Family Background Factors.

    PubMed

    Tropf, Felix C; Mandemakers, Jornt J

    2017-02-01

    A large body of literature has demonstrated a positive relationship between education and age at first birth. However, this relationship may be partly spurious because of family background factors that cannot be controlled for in most research designs. We investigate the extent to which education is causally related to later age at first birth in a large sample of female twins from the United Kingdom (N = 2,752). We present novel estimates using within-identical twin and biometric models. Our findings show that one year of additional schooling is associated with about one-half year later age at first birth in ordinary least squares (OLS) models. This estimate reduced to only a 1.5-month later age at first birth for the within-identical twin model controlling for all shared family background factors (genetic and family environmental). Biometric analyses reveal that it is mainly influences of the family environment-not genetic factors-that cause spurious associations between education and age at first birth. Last, using data from the Office for National Statistics, we demonstrate that only 1.9 months of the 2.74 years of fertility postponement for birth cohorts 1944-1967 could be attributed to educational expansion based on these estimates. We conclude that the rise in educational attainment alone cannot explain differences in fertility timing between cohorts.

  14. Expectations and Interpretations during Causal Learning

    ERIC Educational Resources Information Center

    Luhmann, Christian C.; Ahn, Woo-kyoung

    2011-01-01

    In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…

  15. Representing Personal Determinants in Causal Structures.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1984-01-01

    Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…

  16. Repeated Causal Decision Making

    ERIC Educational Resources Information Center

    Hagmayer, York; Meder, Bjorn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in…

  17. Causality in Classical Electrodynamics

    ERIC Educational Resources Information Center

    Savage, Craig

    2012-01-01

    Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…

  18. Neural theory for the perception of causal actions.

    PubMed

    Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A

    2012-07-01

    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.

  19. How causal analysis can reveal autonomy in models of biological systems

    NASA Astrophysics Data System (ADS)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  20. Causal Relationships between the Psychological Acceptance Process of Athletic Injury and Athletic Rehabilitation Behavior

    PubMed Central

    Tatsumi, Tomonori; Takenouchi, Takashi

    2014-01-01

    [Purpose] The purpose of this study was to examine the causal relationships between the psychological acceptance process of athletic injury and athletic-rehabilitation behavior. [Subjects] One hundred forty-four athletes who had injury experiences participated in this study, and 133 (mean age = 20.21 years, SD = 1.07; mean weeks without playing sports = 7.97 weeks, SD = 11.26) of them provided valid questionnaire responses which were subjected to analysis. [Methods] The subjects were asked to answer our originally designed questionnaire, the Psychosocial Recovery Factor Scale (PSRF-S), and two other pre-existing scales, the Athletic Injury Psychological Acceptance Scale and the Athletic-Rehabilitation Dedication Scale. [Results] The results of factor analysis indicate “emotional stability”, “social competence in the team”, “temporal perspective”, and “communication with the teammates” are factors of the PSRF-S. Lastly, the causal model in which psychosocial recovery factors are mediated by psychological acceptance of athletic injury, and influence on rehabilitation behaviors, was examined using structural equation modeling (SEM). The results of SEM indicate that the factors of emotional stability and temporal perspective are mediated by the psychological acceptance of the injury, which positively influences athletic-rehabilitation dedication. [Conclusion] The causal model was confirmed to be valid. PMID:25202190

  1. A Causal Relationship of Occupational Stress among University Employees.

    PubMed

    Kaewanuchit, Chonticha; Muntaner, Carles; Isha, Nizam

    2015-07-01

    Occupational stress is a psychosocial dimension of occupational health concept on social determinants of health, especially, job & environmental condition. Recently, staff network of different government universities of Thailand have called higher education commission, and Ministry of Education, Thailand to resolve the issue of government education policy (e.g. wage inequity, poor welfare, law, and job & environment condition) that leads to their job insecurity, physical and mental health problems from occupational stress. The aim of this study was to investigate a causal relationship of occupational stress among the academic university employees. This cross sectional research was conducted in 2014 among 2,000 academic university employees at Thai government universities using stratified random sampling. Independent variables were wage, family support, periods of duty, and job & environmental condition. Dependent variable was stress. Job & environmental condition, as social and environmental factor, and periods of duty as individual factor had direct effect to stress (P< 0.05). Family support, as family factor, and wage, as individual factor had direct effect to stress (P < 0.05). Both family support and wage were the causal endogenous variables. Job & environmental condition and periods of duty were increased so that it associated with occupational stress among academic university employees at moderate level.

  2. A Causal Relationship of Occupational Stress among University Employees

    PubMed Central

    KAEWANUCHIT, Chonticha; MUNTANER, Carles; ISHA, Nizam

    2015-01-01

    Background: Occupational stress is a psychosocial dimension of occupational health concept on social determinants of health, especially, job & environmental condition. Recently, staff network of different government universities of Thailand have called higher education commission, and Ministry of Education, Thailand to resolve the issue of government education policy (e.g. wage inequity, poor welfare, law, and job & environment condition) that leads to their job insecurity, physical and mental health problems from occupational stress. The aim of this study was to investigate a causal relationship of occupational stress among the academic university employees. Methods: This cross sectional research was conducted in 2014 among 2,000 academic university employees at Thai government universities using stratified random sampling. Independent variables were wage, family support, periods of duty, and job & environmental condition. Dependent variable was stress. Results: Job & environmental condition, as social and environmental factor, and periods of duty as individual factor had direct effect to stress (P< 0.05). Family support, as family factor, and wage, as individual factor had direct effect to stress (P < 0.05). Both family support and wage were the causal endogenous variables. Conclusion: Job & environmental condition and periods of duty were increased so that it associated with occupational stress among academic university employees at moderate level. PMID:26576371

  3. Kant on causal laws and powers.

    PubMed

    Henschen, Tobias

    2014-12-01

    The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.

  4. [A study of relation between hopelessness and causal attribution in school-aged children].

    PubMed

    Sakurai, S

    1989-12-01

    This study was conducted to investigate the relation between hopelessness and causal attribution in Japanese school-aged children. In Study 1, the Japanese edition of hopelessness scale for children developed by Kazdin, French, Unis, Esveldt-Dawsan, and Sherick (1983) was constructed. Seventeen original items were translated into Japanese and they were administrated to 405 fifth- and sixth-graders. All of the items could be included to the Japanese edition of hopelessness scale. The reliability and validity was examined. In Study 2, the relation between hopelessness and causal attribution in children were investigated. The causal attribution questionnaire developed by Higuchi, Kambare, and Otsuka (1983) and the hopelessness scale developed by Study 1 were administered to 188 sixth-graders. Children with high scores in hopelessness scale significantly attributed negative events to much more effort factor than children with low scores. It supports neither the reformulated learned helplessness model nor the causal attribution theory of achievement motivation. It was explained mainly from points of self-serving attribution, cultural difference, and social desirability. Some questions were discussed for developing studies on depression and causal attribution in Japan.

  5. Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer's disease.

    PubMed

    Iturria-Medina, Yasser; Carbonell, Félix M; Sotero, Roberto C; Chouinard-Decorte, Francois; Evans, Alan C

    2017-05-15

    Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional

  6. CADDIS Volume 1. Stressor Identification: About Causal Assessment

    EPA Pesticide Factsheets

    An introduction to the history of our approach to causal assessment, A chronology of causal history and philosophy, An introduction to causal history and philosophy, References for the Causal Assessment Background section of Stressor Identification

  7. What Can Causal Networks Tell Us about Metabolic Pathways?

    PubMed Central

    Blair, Rachael Hageman; Kliebenstein, Daniel J.; Churchill, Gary A.

    2012-01-01

    Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies. PMID:22496633

  8. MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data.

    PubMed

    Sella, Nadir; Verny, Louis; Uguzzoni, Guido; Affeldt, Séverine; Isambert, Hervé

    2018-07-01

    We present a web server running the MIIC algorithm, a network learning method combining constraint-based and information-theoretic frameworks to reconstruct causal, non-causal or mixed networks from non-perturbative data, without the need for an a priori choice on the class of reconstructed network. Starting from a fully connected network, the algorithm first removes dispensable edges by iteratively subtracting the most significant information contributions from indirect paths between each pair of variables. The remaining edges are then filtered based on their confidence assessment or oriented based on the signature of causality in observational data. MIIC online server can be used for a broad range of biological data, including possible unobserved (latent) variables, from single-cell gene expression data to protein sequence evolution and outperforms or matches state-of-the-art methods for either causal or non-causal network reconstruction. MIIC online can be freely accessed at https://miic.curie.fr. Supplementary data are available at Bioinformatics online.

  9. Therapists' causal attributions of clients' problems and selection of intervention strategies.

    PubMed

    Royce, W S; Muehlke, C V

    1991-04-01

    Therapists' choices of intervention strategies are influenced by many factors, including judgments about the bases of clients' problems. To assess the relationships between such causal attributions and the selection of intervention strategies, 196 counselors, psychologists, and social workers responded to the written transcript of a client's interview by answering two questionnaires, a 1982 scale (Causal Dimension Scale by Russell) which measured causal attribution of the client's problem, and another which measured preference for emotional, rational, and active intervention strategies in dealing with the client, based on the 1979 E-R-A taxonomy of Frey and Raming. A significant relationship was found between the two sets of variables, with internal attributions linked to rational intervention strategies and stable attributions linked to active strategies. The results support Halleck's 1978 hypothesis that theories of psychotherapy tie interventions to etiological considerations.

  10. Universal behavior of generalized causal set d’Alembertians in curved spacetime

    NASA Astrophysics Data System (ADS)

    Belenchia, Alessio

    2016-07-01

    Causal set non-local wave operators allow both for the definition of an action for causal set theory and the study of deviations from local physics that may have interesting phenomenological consequences. It was previously shown that, in all dimensions, the (unique) minimal discrete operators give averaged continuum non-local operators that reduce to \\square -R/2 in the local limit. Recently, dropping the constraint of minimality, it was shown that there exist an infinite number of discrete operators satisfying basic physical requirements and with the right local limit in flat spacetime. In this work, we consider this entire class of generalized causal set d’Alembertins in curved spacetimes and extend to them the result about the universality of the -R/2 factor. Finally, we comment on the relation of this result to the Einstein equivalence principle.

  11. Causal explanations for class inequality in health--an empirical analysis.

    PubMed

    Lundberg, O

    1991-01-01

    One of the most important issues for research on social class inequalities in health are the causes behind such differences. So far, the debate on class inequalities in health has mainly been centred around hypotheses on artefactual and selectional processes. Although most contributors to this branch of research have argued in favour of causal explanations, these have gained very little systematic scrutiny. In this article, several possible causal factors are singled out for empirical testing. The effect of these factors on class differences in physical and mental illness is studied by means of logit regressions. On the basis of these analyses, it is shown that physical working conditions are the prime source of class inequality in physical illness, although economic hardship during upbringing and health related behaviours also contribute. For class inequality in mental illness these three factors plus weak social network are important. In sum, a large part of the class differences in physical as well as mental illness can be understood as a result of systematic differences between classes in living conditions, primarily differences in working conditions.

  12. Causal inference in economics and marketing.

    PubMed

    Varian, Hal R

    2016-07-05

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.

  13. Detecting dynamic causal inference in nonlinear two-phase fracture flow

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris

    2017-08-01

    Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.

  14. A causal viscous cosmology without singularities

    NASA Astrophysics Data System (ADS)

    Laciana, Carlos E.

    2017-05-01

    An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: (a) energy density without singularities along time, (b) scale factor increasing with time, (c) universe accelerated at present time, (d) state equation for dark energy with " w" bounded and close to -1. It is found that those conditions are satisfied for the following two cases. (i) When the transport coefficient (τ _{Π}), associated to the causal correction, is negative, with the additional restriction ζ | τ _{Π}| >2/3, where ζ is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. (ii) For τ _{Π} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in relation to (i), because in (ii) the entropy is always increasing, while this does no happen in (i).

  15. Strategic environmental assessment performance factors and their interaction: An empirical study in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianwei, E-mail: li.tianwei@mep.gov.cn; Wang, Huizhi, E-mail: huizhiwangnk@163.com; Deng, Baole, E-mail: dengbaolekobe@126.com

    Strategic Environmental Assessment (SEA) has been seen as a preventive and participatory environmental management tool designed to integrate environmental protection into the decision-making process. However, the debate about SEA performance and effectiveness has increased in recent decades. Two main challenges exist in relation to this issue. The first is identifying the key influencing factors that affect SEA effectiveness, and the second is analyzing the relationship between SEA and these influencing factors. In this study, influencing factors were investigated through questionnaire surveys in the Chinese context, and then a Structural Equation Model (SEM) was developed and tested to identify potential linksmore » and causal relationships among factors. The associations between the independent factors were divided into direct and indirect causal associations. The results indicate that the decision-making process and policy context directly affect SEA implementation, while information and data sharing, public participation, expertise and SEA institutions are indirectly related with SEA. The results also suggest that a lack of cooperation between different sectors is an obstacle to the implementation of SEA. These findings could potentially contribute to the future management and implementation of SEA or enhance existing knowledge of SEA. The results show that the proposed model has a degree of feasibility and applicability. - Highlights: • Influencing factors were identified and investigated through questionnaire surveys. • Structural Equation Model (SEM) was developed and tested to identify potential links and causal relationships among factors. • Decision-making process and policy context directly affect SEA implementation. • Lack of cooperation among different sectors is an obstacle to the implementation of SEA. • The proposed model has a degree of feasibility and applicability.« less

  16. Generalized Causal Quantum Theories

    NASA Astrophysics Data System (ADS)

    Parmeggiani, Claudio

    2007-12-01

    We shall show that is always possible to construct causal Quantum Theories fully equivalent (as predictive tools) to acausal, standard Quantum Theory, relativistic or not relativistic; we re-obtain, as a particular case, the usual Quantum Bohmian Theory. Then we consider the measurement process, in causal theories, and we conclude that the state of affairs is not really improved, with respect to standard theories.

  17. Interactions of information transfer along separable causal paths

    NASA Astrophysics Data System (ADS)

    Jiang, Peishi; Kumar, Praveen

    2018-04-01

    Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.

  18. Does Causality Matter More Now? Increase in the Proportion of Causal Language in English Texts.

    PubMed

    Iliev, Rumen; Axelrod, Robert

    2016-05-01

    The vast majority of the work on culture and cognition has focused on cross-cultural comparisons, largely ignoring the dynamic aspects of culture. In this article, we provide a diachronic analysis of causal cognition over time. We hypothesized that the increased role of education, science, and technology in Western societies should be accompanied by greater attention to causal connections. To test this hypothesis, we compared word frequencies in English texts from different time periods and found an increase in the use of causal language of about 40% over the past two centuries. The observed increase was not attributable to general language effects or to changing semantics of causal words. We also found that there was a consistent difference between the 19th and the 20th centuries, and that the increase happened mainly in the 20th century. © The Author(s) 2016.

  19. Causal relationships among academic delay of gratification, motivation, and self-regulated learning in elementary school children.

    PubMed

    Zhang, Lili; Maruno, Shun'ichi

    2010-10-01

    Academic delay of gratification refers to the postponement of immediate rewards by students and the pursuit of more important, temporally remote academic goals. A path model was designed to identify the causal relationships among academic delay of gratification and motivation, self-regulated learning strategies (as specified in the Motivated Strategies for Learning Questionnaire), and grades among 386 Chinese elementary school children. Academic delay of gratification was found to be positively related to motivation and metacognition. Cognitive strategy, resource management, and grades mediated these two factors and were indirectly related to academic delay of gratification.

  20. Causal inference, probability theory, and graphical insights.

    PubMed

    Baker, Stuart G

    2013-11-10

    Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.

  1. Causal learning with local computations.

    PubMed

    Fernbach, Philip M; Sloman, Steven A

    2009-05-01

    The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure. Copyright 2009 APA, all rights reserved.

  2. Causal inference in economics and marketing

    PubMed Central

    Varian, Hal R.

    2016-01-01

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. PMID:27382144

  3. A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus.

    PubMed

    Patel, Zubin; Lu, Xiaoming; Miller, Daniel; Forney, Carmy R; Lee, Joshua; Lynch, Arthur; Schroeder, Connor; Parks, Lois; Magnusen, Albert F; Chen, Xiaoting; Pujato, Mario; Maddox, Avery; Zoller, Erin E; Namjou, Bahram; Brunner, Hermine I; Henrickson, Michael; Huggins, Jennifer L; Williams, Adrienne H; Ziegler, Julie T; Comeau, Mary E; Marion, Miranda C; Glenn, Stuart B; Adler, Adam; Shen, Nan; Nath, Swapan K; Stevens, Anne M; Freedman, Barry I; Pons-Estel, Bernardo A; Tsao, Betty P; Jacob, Chaim O; Kamen, Diane L; Brown, Elizabeth E; Gilkeson, Gary S; Alarcón, Graciela S; Martin, Javier; Reveille, John D; Anaya, Juan-Manuel; James, Judith A; Sivils, Kathy L; Criswell, Lindsey A; Vilá, Luis M; Petri, Michelle; Scofield, R Hal; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Bang, So-Young; Lee, Hye-Soon; Bae, Sang-Cheol; Boackle, Susan A; Cunninghame Graham, Deborah; Vyse, Timothy J; Merrill, Joan T; Niewold, Timothy B; Ainsworth, Hannah C; Silverman, Earl D; Weisman, Michael H; Wallace, Daniel J; Raj, Prithvi; Guthridge, Joel M; Gaffney, Patrick M; Kelly, Jennifer A; Alarcón-Riquelme, Marta E; Langefeld, Carl D; Wakeland, Edward K; Kaufman, Kenneth M; Weirauch, Matthew T; Harley, John B; Kottyan, Leah C

    2018-04-18

    Systemic Lupus Erythematosus (SLE or lupus) (OMIM: 152700) is a chronic autoimmune disease with debilitating inflammation that affects multiple organ systems. The STAT1-STAT4 locus is one of the first and most highly-replicated genetic loci associated with lupus risk. We performed a fine-mapping study to identify plausible causal variants within the STAT1-STAT4 locus associated with increased lupus disease risk. Using complementary frequentist and Bayesian approaches in trans-ancestral Discovery and Replication cohorts, we found one variant whose association with lupus risk is supported across ancestries in both the Discovery and Replication cohorts: rs11889341. In B cell lines from patients with lupus and healthy controls, the lupus risk allele of rs11889341 was associated with increased STAT1 expression. We demonstrated that the transcription factor HMGA1, a member of the HMG transcription factor family with an AT-hook DNA-binding domain, has enriched binding to the risk allele compared to the non-risk allele of rs11889341. We identified a genotype-dependent repressive element in the DNA within the intron of STAT4 surrounding rs11889341. Consistent with expression quantitative trait locus (eQTL) analysis, the lupus risk allele of rs11889341 decreased the activity of this putative repressor. Altogether, we present a plausible molecular mechanism for increased lupus risk at the STAT1-STAT4 locus in which the risk allele of rs11889341, the most probable causal variant, leads to elevated STAT1 expression in B cells due to decreased repressor activity mediated by increased binding of HMGA1.

  4. Causal localizations in relativistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a meremore » consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.« less

  5. Causal localizations in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  6. Causal structures in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Izumi, Keisuke

    2014-08-01

    We analyze causal structures in Gauss-Bonnet gravity. It is known that Gauss-Bonnet gravity potentially has superluminal propagation of gravitons due to its noncanonical kinetic terms. In a theory with superluminal modes, an analysis of causality based on null curves makes no sense, and thus, we need to analyze them in a different way. In this paper, using the method of the characteristics, we analyze the causal structure in Gauss-Bonnet gravity. We have the result that, on a Killing horizon, gravitons can propagate in the null direction tangent to the Killing horizon. Therefore, a Killing horizon can be a causal edge as in the case of general relativity; i.e. a Killing horizon is the "event horizon" in the sense of causality. We also analyze causal structures on nonstationary solutions with (D-2)-dimensional maximal symmetry, including spherically symmetric and flat spaces. If the geometrical null energy condition, RABNANB≥0 for any null vector NA, is satisfied, the radial velocity of gravitons must be less than or equal to that of light. However, if the geometrical null energy condition is violated, gravitons can propagate faster than light. Hence, on an evaporating black hole where the geometrical null energy condition is expected not to hold, classical gravitons can escape from the "black hole" defined with null curves. That is, the causal structures become nontrivial. It may be one of the possible solutions for the information loss paradox of evaporating black holes.

  7. Whither Causal Models in the Neuroscience of ADHD?

    ERIC Educational Resources Information Center

    Coghill, Dave; Nigg, Joel; Rothenberger, Aribert; Sonuga-Barke, Edmund; Tannock, Rosemary

    2005-01-01

    In this paper we examine the current status of the science of ADHD from a theoretical point of view. While the field has reached the point at which a number of causal models have been proposed, it remains some distance away from demonstrating the viability of such models empirically. We identify a number of existing barriers and make proposals as…

  8. Bayesian networks improve causal environmental ...

    EPA Pesticide Factsheets

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  9. Causal beliefs about depression in different cultural groups—what do cognitive psychological theories of causal learning and reasoning predict?

    PubMed Central

    Hagmayer, York; Engelmann, Neele

    2014-01-01

    Cognitive psychological research focuses on causal learning and reasoning while cognitive anthropological and social science research tend to focus on systems of beliefs. Our aim was to explore how these two types of research can inform each other. Cognitive psychological theories (causal model theory and causal Bayes nets) were used to derive predictions for systems of causal beliefs. These predictions were then applied to lay theories of depression as a specific test case. A systematic literature review on causal beliefs about depression was conducted, including original, quantitative research. Thirty-six studies investigating 13 non-Western and 32 Western cultural groups were analyzed by classifying assumed causes and preferred forms of treatment into common categories. Relations between beliefs and treatment preferences were assessed. Substantial agreement between cultural groups was found with respect to the impact of observable causes. Stress was generally rated as most important. Less agreement resulted for hidden, especially supernatural causes. Causal beliefs were clearly related to treatment preferences in Western groups, while evidence was mostly lacking for non-Western groups. Overall predictions were supported, but there were considerable methodological limitations. Pointers to future research, which may combine studies on causal beliefs with experimental paradigms on causal reasoning, are given. PMID:25505432

  10. Quantum-coherent mixtures of causal relations

    NASA Astrophysics Data System (ADS)

    Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-05-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  11. Quantum-coherent mixtures of causal relations

    PubMed Central

    MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-01-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394

  12. Quantum-coherent mixtures of causal relations.

    PubMed

    MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J

    2017-05-09

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  13. Do material, psychosocial and behavioural factors mediate the relationship between disability acquisition and mental health? A sequential causal mediation analysis.

    PubMed

    Aitken, Zoe; Simpson, Julie Anne; Gurrin, Lyle; Bentley, Rebecca; Kavanagh, Anne Marie

    2018-01-29

    There is evidence of a causal relationship between disability acquisition and poor mental health; however, the mechanism by which disability affects mental health is poorly understood. This gap in understanding limits the development of effective interventions to improve the mental health of people with disabilities. We used four waves of data from the Household, Income and Labour Dynamics in Australia Survey (2011-14) to compare self-reported mental health between individuals who acquired any disability (n=387) and those who remained disability-free (n=7936). We tested three possible pathways from disability acquisition to mental health, examining the effect of material, psychosocial and behavioural mediators. The effect was partitioned into natural direct and indirect effects through the mediators using a sequential causal mediation analysis approach. Multiple imputation using chained equations was used to assess the impact of missing data. Disability acquisition was estimated to cause a five-point decline in mental health [estimated mean difference: -5.3, 95% confidence interval (CI) -6.8, -3.7]. The indirect effect through material factors was estimated to be a 1.7-point difference (-1.7, 95% CI -2.8, -0.6), explaining 32% of the total effect, with a negligible proportion of the effect explained by the addition of psychosocial characteristics (material and psychosocial: -1.7, 95% CI -3.0, -0.5) and a further 5% by behavioural factors (material-psychosocial-behavioural: -2.0, 95% CI -3.4, -0.6). The finding that the effect of disability acquisition on mental health operates predominantly through material rather than psychosocial and behavioural factors has important implications. The results highlight the need for better social protection, including income support, employment and education opportunities, and affordable housing for people who acquire a disability. © The Author(s) 2018; all rights reserved. Published by Oxford University Press on behalf of the

  14. Localizing epileptic seizure onsets with Granger causality

    NASA Astrophysics Data System (ADS)

    Adhikari, Bhim M.; Epstein, Charles M.; Dhamala, Mukesh

    2013-09-01

    Accurate localization of the epileptic seizure onset zones (SOZs) is crucial for successful surgery, which usually depends on the information obtained from intracranial electroencephalography (IEEG) recordings. The visual criteria and univariate methods of analyzing IEEG recordings have not always produced clarity on the SOZs for resection and ultimate seizure freedom for patients. Here, to contribute to improving the localization of the SOZs and to understanding the mechanism of seizure propagation over the brain, we applied spectral interdependency methods to IEEG time series recorded from patients during seizures. We found that the high-frequency (>80 Hz) Granger causality (GC) occurs before the onset of any visible ictal activity and causal relationships involve the recording electrodes where clinically identifiable seizures later develop. These results suggest that high-frequency oscillatory network activities precede and underlie epileptic seizures, and that GC spectral measures derived from IEEG can assist in precise delineation of seizure onset times and SOZs.

  15. An algorithm for direct causal learning of influences on patient outcomes.

    PubMed

    Rathnam, Chandramouli; Lee, Sanghoon; Jiang, Xia

    2017-01-01

    these three algorithms for this network type. However, when we use a more continuous measure of accuracy, we find that all the DCL methods are able to better partially predict more direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had faster runtimes than the other algorithms. In the application to the real datasets, DCL identified rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct causes of late onset Alzheimer's disease (LOAD) development. In addition, DCL identified ER category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct predictor of 10-year breast cancer mortality. These predictors have been identified in previous studies to have a direct causal relationship with their respective phenotypes, supporting the predictive power of DCL. When the other algorithms discovered predictors from the real datasets, these predictors were either also found by DCL or could not be supported by previous studies. Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its potential for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Causal chain analysis and root causes: the GIWA approach.

    PubMed

    Belausteguigoitia, Juan Carlos

    2004-02-01

    The Global International Waters Assessment (GIWA) was created to help develop a priority setting mechanism for actions in international waters. Apart from assessing the severity of environmental problems in ecosystems, the GIWA's task is to analyze potential policy actions that could solve or mitigate these problems. Given the complex nature of the problems, understanding their root causes is essential to develop effective solutions. The GIWA provides a framework to analyze these causes, which is based on identifying the factors that shape human behavior in relation to the use (direct or indirect) of aquatic resources. Two sets of factors are analyzed. The first one consists of social coordination mechanisms (institutions). Faults in these mechanisms lead to wasteful use of resources. The second consists of factors that do not cause wasteful use of resources per se (poverty, trade, demographic growth, technology), but expose and magnify the faults of the first group of factors. The picture that comes out is that diagnosing simple generic causes, e.g. poverty or trade, without analyzing the case specific ways in which the root causes act and interact to degrade the environment, will likely ignore important links that may put the effectiveness of the recommended policies at risk. A summary of the causal chain analysis for the Colorado River Delta is provided as an example.

  17. A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2013-01-01

    The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…

  18. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?

    PubMed

    Kirkbride, James B; Susser, Ezra; Kundakovic, Marija; Kresovich, Jacob K; Davey Smith, George; Relton, Caroline L

    2012-06-01

    We posit that maternal prenatal nutrition can influence offspring schizophrenia risk via epigenetic effects. In this article, we consider evidence that prenatal nutrition is linked to epigenetic outcomes in offspring and schizophrenia in offspring, and that schizophrenia is associated with epigenetic changes. We focus upon one-carbon metabolism as a mediator of the pathway between perturbed prenatal nutrition and the subsequent risk of schizophrenia. Although post-mortem human studies demonstrate DNA methylation changes in brains of people with schizophrenia, such studies cannot establish causality. We suggest a testable hypothesis that utilizes a novel two-step Mendelian randomization approach, to test the component parts of the proposed causal pathway leading from prenatal nutritional exposure to schizophrenia. Applied here to a specific example, such an approach is applicable for wider use to strengthen causal inference of the mediating role of epigenetic factors linking exposures to health outcomes in population-based studies.

  19. Identifying Factors for Worker Motivation in Zambia's Rural Health Facilities.

    PubMed

    Cross, Samuel S; Baernholdt, Dr Marianne

    2017-01-01

    Within Zambia there is a shortage of health workers in rural areas. This study aims to identify motivating factors for retaining rural health workers. Sixty rural health workers completed surveys and 46 were interviewed. They rated the importance of six motivating factors and discussed these and other factors in interviews. An interview was conducted with a Government Human Resources Manager (HR Manager) to elicit contextual information. All six factors were identified as being very important motivators, as were two additional factors. Additional career training was identified by many as the most important factor. Comparison of results and the HR Manager interview revealed that workers lacked knowledge about opportunities and that the HR manager was aware of barriers to career development. The Zambian government might better motivate and retain rural health workers by offering them any combination of identified factors, and by addressing the barriers to career development.

  20. Expert Causal Reasoning and Explanation.

    ERIC Educational Resources Information Center

    Kuipers, Benjamin

    The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…

  1. Causal Learning with Local Computations

    ERIC Educational Resources Information Center

    Fernbach, Philip M.; Sloman, Steven A.

    2009-01-01

    The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require…

  2. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  3. Unveiling causal activity of complex networks

    NASA Astrophysics Data System (ADS)

    Williams-García, Rashid V.; Beggs, John M.; Ortiz, Gerardo

    2017-07-01

    We introduce a novel tool for analyzing complex network dynamics, allowing for cascades of causally-related events, which we call causal webs (c-webs), to be separated from other non-causally-related events. This tool shows that traditionally-conceived avalanches may contain mixtures of spatially-distinct but temporally-overlapping cascades of events, and dynamical disorder or noise. In contrast, c-webs separate these components, unveiling previously hidden features of the network and dynamics. We apply our method to mouse cortical data with resulting statistics which demonstrate for the first time that neuronal avalanches are not merely composed of causally-related events. The original version of this article was uploaded to the arXiv on March 17th, 2016 [1].

  4. Domain-specific perceptual causality in children depends on the spatio-temporal configuration, not motion onset

    PubMed Central

    Schlottmann, Anne; Cole, Katy; Watts, Rhianna; White, Marina

    2013-01-01

    Humans, even babies, perceive causality when one shape moves briefly and linearly after another. Motion timing is crucial in this and causal impressions disappear with short delays between motions. However, the role of temporal information is more complex: it is both a cue to causality and a factor that constrains processing. It affects ability to distinguish causality from non-causality, and social from mechanical causality. Here we study both issues with 3- to 7-year-olds and adults who saw two computer-animated squares and chose if a picture of mechanical, social or non-causality fit each event best. Prior work fit with the standard view that early in development, the distinction between the social and physical domains depends mainly on whether or not the agents make contact, and that this reflects concern with domain-specific motion onset, in particular, whether the motion is self-initiated or not. The present experiments challenge both parts of this position. In Experiments 1 and 2, we showed that not just spatial, but also animacy and temporal information affect how children distinguish between physical and social causality. In Experiments 3 and 4 we showed that children do not seem to use spatio-temporal information in perceptual causality to make inferences about self- or other-initiated motion onset. Overall, spatial contact may be developmentally primary in domain-specific perceptual causality in that it is processed easily and is dominant over competing cues, but it is not the only cue used early on and it is not used to infer motion onset. Instead, domain-specific causal impressions may be automatic reactions to specific perceptual configurations, with a complex role for temporal information. PMID:23874308

  5. Causal Relation Analysis Tool of the Case Study in the Engineer Ethics Education

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshio; Morita, Keisuke; Yasui, Mitsukuni; Tanada, Ichirou; Fujiki, Hiroyuki; Aoyagi, Manabu

    In engineering ethics education, the virtual experiencing of dilemmas is essential. Learning through the case study method is a particularly effective means. Many case studies are, however, difficult to deal with because they often include many complex causal relationships and social factors. It would thus be convenient if there were a tool that could analyze the factors of a case example and organize them into a hierarchical structure to get a better understanding of the whole picture. The tool that was developed applies a cause-and-effect matrix and simple graph theory. It analyzes the causal relationship between facts in a hierarchical structure and organizes complex phenomena. The effectiveness of this tool is shown by presenting an actual example.

  6. Non-Gaussian Methods for Causal Structure Learning.

    PubMed

    Shimizu, Shohei

    2018-05-22

    Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.

  7. Pilot Critical Incident Reports as a Means to Identify Human Factors of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2016-01-01

    It has been estimated that aviation accidents are typically preceded by numerous minor incidents arising from the same causal factors that ultimately produced the accident. Accident databases provide in-depth information on a relatively small number of occurrences, however incident databases have the potential to provide insights into the human factors of Remotely Piloted Aircraft System (RPAS) operations based on a larger volume of less-detailed reports. Currently, there is a lack of incident data dealing with the human factors of unmanned aircraft systems. An exploratory study is being conducted to examine the feasibility of collecting voluntary critical incident reports from RPAS pilots. Twenty-three experienced RPAS pilots volunteered to participate in focus groups in which they described critical incidents from their own experience. Participants were asked to recall (1) incidents that revealed a system flaw, or (2) highlighted a case where the human operator contributed to system resilience or mission success. Participants were asked to only report incidents that could be included in a public document. During each focus group session, a note taker produced a de-identified written record of the incident narratives. At the end of the session, participants reviewed each written incident report, and made edits and corrections as necessary. The incidents were later analyzed to identify contributing factors, with a focus on design issues that either hindered or assisted the pilot during the events. A total of 90 incidents were reported. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies. Pilots participated willingly and enthusiastically in the study

  8. Formalizing the role of agent-based modeling in causal inference and epidemiology.

    PubMed

    Marshall, Brandon D L; Galea, Sandro

    2015-01-15

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Supporting inquiry learning by promoting normative understanding of multivariable causality

    NASA Astrophysics Data System (ADS)

    Keselman, Alla

    2003-11-01

    Early adolescents may lack the cognitive and metacognitive skills necessary for effective inquiry learning. In particular, they are likely to have a nonnormative mental model of multivariable causality in which effects of individual variables are neither additive nor consistent. Described here is a software-based intervention designed to facilitate students' metalevel and performance-level inquiry skills by enhancing their understanding of multivariable causality. Relative to an exploration-only group, sixth graders who practiced predicting an outcome (earthquake risk) based on multiple factors demonstrated increased attention to evidence, improved metalevel appreciation of effective strategies, and a trend toward consistent use of a controlled comparison strategy. Sixth graders who also received explicit instruction in making predictions based on multiple factors showed additional improvement in their ability to compare multiple instances as a basis for inferences and constructed the most accurate knowledge of the system. Gains were maintained in transfer tasks. The cognitive skills and metalevel understanding examined here are essential to inquiry learning.

  10. Genetic Instrumental Variable Studies of Effects of Prenatal Risk Factors

    PubMed Central

    von Hinke Kessler Scholder, Stephanie

    2013-01-01

    Identifying the effects of maternal risk factors during pregnancy on infant and child health is an area of tremendous research interest. However, of interest to policy makers is unraveling the causal effects of prenatal risk factors, not their associations with child health, which may be confounded by several unobserved factors. In this paper, we evaluate the utility of genetic variants in three genes that have unequivocal evidence of being related to three major risk factors – CHRNA3 for smoking, ADH1B for alcohol use, and FTO for obesity – as instrumental variables for identifying the causal effects of such factors during pregnancy. Using two independent datasets, we find that these variants are overall predictive of the risk factors and are not systematically related to observed confounders, suggesting that they may be useful instruments. We also find some suggestive evidence that genetic effects are stronger during than before pregnancy. We provide an empirical example illustrating the use of these genetic variants as instruments to evaluate the effects of risk factors on birth weight. Finally, we offer suggestions for researchers contemplating the use of these variants as instruments. PMID:23701534

  11. Causality or Relatedness Assessment in Adverse Drug Reaction and Its Relevance in Dermatology.

    PubMed

    Pande, Sushil

    2018-01-01

    Causality assessment essentially means finding a causal association or relationship between a drug and drug reaction. Identifying the culprit drug or drugs can be lifesaving or helpful in preventing the further damage caused by the drug to our body systems. In dermatology practice, when it comes to cutaneous adverse drug reaction, this is much more important and relevant because many aetiologies can produce a similar cutaneous manifestation. There are multiple criteria or algorithms available as of now for establishing a causal relationship in cases of adverse drug reaction (ADR), indicating that none of them is specific or complete. Most of these causality assessment tools (CATs) use four cardinal principles of diagnosis of ADR such as temporal relationship of drug with the drug reaction, biological plausibility of the drug causing a reaction, dechallenge, and rechallenge. The present study reviews some of the established or commonly used CATs and its implications or relevance to dermatology in clinical practice.

  12. Exploring Individual Differences in Preschoolers' Causal Stance

    ERIC Educational Resources Information Center

    Alvarez, Aubry; Booth, Amy E.

    2016-01-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…

  13. Constraints on Children's Judgments of Magical Causality

    ERIC Educational Resources Information Center

    Woolley, Jacqueline D.; Browne, Cheryl A.; Boerger, Elizabeth A.

    2006-01-01

    In 3 studies we addressed the operation of constraints on children's causal judgments. Our primary focus was whether children's beliefs about magical causality, specifically wishing, are constrained by features that govern the attribution of ordinary causality. In Experiment 1, children witnessed situations in which a confederate's wish appeared…

  14. Sufficiency and Necessity Assumptions in Causal Structure Induction

    ERIC Educational Resources Information Center

    Mayrhofer, Ralf; Waldmann, Michael R.

    2016-01-01

    Research on human causal induction has shown that people have general prior assumptions about causal strength and about how causes interact with the background. We propose that these prior assumptions about the parameters of causal systems do not only manifest themselves in estimations of causal strength or the selection of causes but also when…

  15. The Development of Causal Categorization

    ERIC Educational Resources Information Center

    Hayes, Brett K.; Rehder, Bob

    2012-01-01

    Two experiments examined the impact of causal relations between features on categorization in 5- to 6-year-old children and adults. Participants learned artificial categories containing instances with causally related features and noncausal features. They then selected the most likely category member from a series of novel test pairs.…

  16. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome.

    PubMed

    Day, Felix R; Hinds, David A; Tung, Joyce Y; Stolk, Lisette; Styrkarsdottir, Unnur; Saxena, Richa; Bjonnes, Andrew; Broer, Linda; Dunger, David B; Halldorsson, Bjarni V; Lawlor, Debbie A; Laval, Guillaume; Mathieson, Iain; McCardle, Wendy L; Louwers, Yvonne; Meun, Cindy; Ring, Susan; Scott, Robert A; Sulem, Patrick; Uitterlinden, André G; Wareham, Nicholas J; Thorsteinsdottir, Unnur; Welt, Corrine; Stefansson, Kari; Laven, Joop S E; Ong, Ken K; Perry, John R B

    2015-09-29

    Polycystic ovary syndrome (PCOS) is the most common reproductive disorder in women, yet there is little consensus regarding its aetiology. Here we perform a genome-wide association study of PCOS in up to 5,184 self-reported cases of White European ancestry and 82,759 controls, with follow-up in a further ∼2,000 clinically validated cases and ∼100,000 controls. We identify six signals for PCOS at genome-wide statistical significance (P<5 × 10(-8)), in/near genes ERBB4/HER4, YAP1, THADA, FSHB, RAD50 and KRR1. Variants in/near three of the four epidermal growth factor receptor genes (ERBB2/HER2, ERBB3/HER3 and ERBB4/HER4) are associated with PCOS at or near genome-wide significance. Mendelian randomization analyses indicate causal roles in PCOS aetiology for higher BMI (P=2.5 × 10(-9)), higher insulin resistance (P=6 × 10(-4)) and lower serum sex hormone binding globulin concentrations (P=5 × 10(-4)). Furthermore, genetic susceptibility to later menopause is associated with higher PCOS risk (P=1.6 × 10(-8)) and PCOS-susceptibility alleles are associated with higher serum anti-Müllerian hormone concentrations in girls (P=8.9 × 10(-5)). This large-scale study implicates an aetiological role of the epidermal growth factor receptors, infers causal mechanisms relevant to clinical management and prevention, and suggests balancing selection mechanisms involved in PCOS risk.

  17. Granger-causality maps of diffusion processes.

    PubMed

    Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A

    2016-02-01

    Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.

  18. Establishing causal coherence across sentences: an ERP study

    PubMed Central

    Kuperberg, Gina R.; Paczynski, Martin; Ditman, Tali

    2011-01-01

    This study examined neural activity associated with establishing causal relationships across sentences during online comprehension. ERPs were measured while participants read and judged the relatedness of three-sentence scenarios in which the final sentence was highly causally related, intermediately related and causally unrelated to its context. Lexico-semantic co-occurrence was matched across the three conditions using a Latent Semantic Analysis. Critical words in causally unrelated scenarios evoked a larger N400 than words in both highly causally related and intermediately related scenarios, regardless of whether they appeared before or at the sentence-final position. At midline sites, the N400 to intermediately related sentence-final words was attenuated to the same degree as to highly causally related words, but otherwise the N400 to intermediately related words fell in between that evoked by highly causally related and intermediately related words. No modulation of the Late Positivity/P600 component was observed across conditions. These results indicate that both simple and complex causal inferences can influence the earliest stages of semantically processing an incoming word. Further, they suggest that causal coherence, at the situation level, can influence incremental word-by-word discourse comprehension, even when semantic relationships between individual words are matched. PMID:20175676

  19. Temporal Information of Directed Causal Connectivity in Multi-Trial ERP Data using Partial Granger Causality.

    PubMed

    Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt

    2016-01-01

    Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling.

  20. Interactions among poverty, gender, and health systems affect women's participation in services to prevent HIV transmission from mother to child: A causal loop analysis.

    PubMed

    Yourkavitch, Jennifer; Hassmiller Lich, Kristen; Flax, Valerie L; Okello, Elialilia S; Kadzandira, John; Katahoire, Anne Ruhweza; Munthali, Alister C; Thomas, James C

    2018-01-01

    Retention in care remains an important issue for prevention of mother-to-child transmission (PMTCT) programs according to WHO guidelines, formerly called the "Option B+" approach. The objective of this study was to examine how poverty, gender, and health system factors interact to influence women's participation in PMTCT services. We used qualitative research, literature, and hypothesized variable connections to diagram causes and effects in causal loop models. We found that many factors, including antiretroviral therapy (ART) use, service design and quality, stigma, disclosure, spouse/partner influence, decision-making autonomy, and knowledge about PMTCT, influence psychosocial health, which in turn affects women's participation in PMTCT services. Thus, interventions to improve psychosocial health need to address many factors to be successful. We also found that the design of PMTCT services, a modifiable factor, is important because it affects several other factors. We identified 66 feedback loops that may contribute to policy resistance-that is, a policy's failure to have its intended effect. Our findings point to the need for a multipronged intervention to encourage women's continued participation in PMTCT services and for longitudinal research to quantify and test our causal loop model.

  1. Multiple Causality: Consequences for Medical Practice

    PubMed Central

    Nydegger, Corinne N.

    1983-01-01

    When a scientifically trained health professional is called upon to deal with patients holding differing causal views of illness, the resulting lack of communication is frustrating to both. This discussion traces some implications for medical practice of significant cultural differences in two aspects of causal paradigms of illness: (1) terms accepted and (2) dimension or level of causality typically sought. The second is the more pervasive and intractable problem, having distinctive consequences for the role of curer, symptomatology, diagnosis and treatment. PMID:6858133

  2. Identity, causality, and pronoun ambiguity.

    PubMed

    Sagi, Eyal; Rips, Lance J

    2014-10-01

    This article looks at the way people determine the antecedent of a pronoun in sentence pairs, such as: Albert invited Ron to dinner. He spent hours cleaning the house. The experiment reported here is motivated by the idea that such judgments depend on reasoning about identity (e.g., the identity of the he who cleaned the house). Because the identity of an individual over time depends on the causal-historical path connecting the stages of the individual, the correct antecedent will also depend on causal connections. The experiment varied how likely it is that the event of the first sentence (e.g., the invitation) would cause the event of the second (the house cleaning) for each of the two individuals (the likelihood that if Albert invited Ron to dinner, this would cause Albert to clean the house, versus cause Ron to clean the house). Decisions about the antecedent followed causal likelihood. A mathematical model of causal identity accounted for most of the key aspects of the data from the individual sentence pairs. Copyright © 2014 Cognitive Science Society, Inc.

  3. Causal reasoning with mental models

    PubMed Central

    Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398

  4. Causal reasoning with mental models.

    PubMed

    Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  5. Wormholes, baby universes, and causality

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    1990-02-01

    In this paper wormholes defined on a Minkowski signature manifold are considered, both at the classical and quantum levels. It is argued that causality in quantum gravity may best be imposed by restricting the functional integral to include only causal Lorentzian spacetimes. Subject to this assumption, one can put very tight constraints on the quantum behavior of wormholes, their cousins the baby universes, and topology-changing processes in general. Even though topology-changing processes are tightly constrained, this still allows very interesting geometrical (rather than topological) effects. In particular, the laboratory construction of baby universes is not prohibited provided that the ``umbilical cord'' is never cut. Methods for relaxing these causality constraints are also discussed.

  6. Occupational Factors, Fatigue, and Cardiovascular Disease

    PubMed Central

    2009-01-01

    Purpose: Briefly identify the epidemiological evidence, propose pertinent mechanisms, and discuss physical therapy practice as well as research implications of a causal association between occupational factors and cardiovascular disease. Summary of Key Points: There is evidence that occupational metabolic demands and work organizations characterized by reduced worker control are associated with increased risk of cardiovascular disease. It is biologically plausible that these two factors interact to create a preclinical, intermediate state of fatigue (burnout) that is a critical component in the causal path from occupational factors to CVD. Physical therapists are uniquely qualified to contribute to an understanding of these mechanisms and their resultant implications for work organization, rehabilitation, and health promotion. Statement of Recommendations: Physical therapists engaged in ergonomic job analysis should consider work related metabolic demands, worker control, and fatigue in their assessment of risk for injury and illness, in recommendations for return to work, and in the prescription of health promotion leisure time physical activity PMID:20467535

  7. Causality in cancer research: a journey through models in molecular epidemiology and their philosophical interpretation.

    PubMed

    Vineis, Paolo; Illari, Phyllis; Russo, Federica

    2017-01-01

    In the last decades, Systems Biology (including cancer research) has been driven by technology, statistical modelling and bioinformatics. In this paper we try to bring biological and philosophical thinking back. We thus aim at making different traditions of thought compatible: (a) causality in epidemiology and in philosophical theorizing-notably, the "sufficient-component-cause framework" and the "mark transmission" approach; (b) new acquisitions about disease pathogenesis, e.g. the "branched model" in cancer, and the role of biomarkers in this process; (c) the burgeoning of omics research, with a large number of "signals" and of associations that need to be interpreted. In the paper we summarize first the current views on carcinogenesis, and then explore the relevance of current philosophical interpretations of "cancer causes". We try to offer a unifying framework to incorporate biomarkers and omic data into causal models, referring to a position called "evidential pluralism". According to this view, causal reasoning is based on both "evidence of difference-making" (e.g. associations) and on "evidence of underlying biological mechanisms". We conceptualize the way scientists detect and trace signals in terms of information transmission , which is a generalization of the mark transmission theory developed by philosopher Wesley Salmon. Our approach is capable of helping us conceptualize how heterogeneous factors such as micro and macro-biological and psycho-social-are causally linked. This is important not only to understand cancer etiology, but also to design public health policies that target the right causal factors at the macro-level.

  8. Foundational perspectives on causality in large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  9. Monitoring signals for vaccine safety: the assessment of individual adverse event reports by an expert advisory committee. Advisory Committee on Causality Assessment.

    PubMed Central

    Collet, J. P.; MacDonald, N.; Cashman, N.; Pless, R.

    2000-01-01

    Monitoring vaccine safety is a complex and shared responsibility. It can be carried out in many ways, one of which is the reporting of individual cases of adverse reactions thought to be due to vaccination. The task is difficult because ascribing causality to an individual case report is fraught with challenges. A standardized evaluation instrument--known as the causality assessment form--was therefore developed for use by an expert advisory committee to facilitate the process. By following the several sections in this form, the members of the committee are taken through a series of points to establish causality. These points include the basic criteria for causation such as biological plausibility, the time elapsed between the vaccine administration and the onset of the adverse event, and whether other factors (drugs, chemicals or underlying disease) could account for the adverse symptoms. The form concludes with a consensus assessment of causality, a commentary about the assessment, and advice for further study or follow-up. This method of assessing the more serious cases of adverse reaction reported to vaccination has proven useful in evaluating ongoing safety of vaccines in Canada. Through analyses such as this, new signals can be identified and investigated further. PMID:10743282

  10. Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the Jing-Jin-Ji region

    NASA Astrophysics Data System (ADS)

    Chen, Ziyue; Cai, Jun; Gao, Bingbo; Xu, Bing; Dai, Shuang; He, Bin; Xie, Xiaoming

    2017-01-01

    Due to complicated interactions in the atmospheric environment, quantifying the influence of individual meteorological factors on local PM2.5 concentration remains challenging. The Beijing-Tianjin-Hebei (short for Jing-Jin-Ji) region is infamous for its serious air pollution. To improve regional air quality, characteristics and meteorological driving forces for PM2.5 concentration should be better understood. This research examined seasonal variations of PM2.5 concentration within the Jing-Jin-Ji region and extracted meteorological factors strongly correlated with local PM2.5 concentration. Following this, a convergent cross mapping (CCM) method was employed to quantify the causality influence of individual meteorological factors on PM2.5 concentration. The results proved that the CCM method was more likely to detect mirage correlations and reveal quantitative influences of individual meteorological factors on PM2.5 concentration. For the Jing-Jin-Ji region, the higher PM2.5 concentration, the stronger influences meteorological factors exert on PM2.5 concentration. Furthermore, this research suggests that individual meteorological factors can influence local PM2.5 concentration indirectly by interacting with other meteorological factors. Due to the significant influence of local meteorology on PM2.5 concentration, more emphasis should be given on employing meteorological means for improving local air quality.

  11. Causal Set Phenomenology

    NASA Astrophysics Data System (ADS)

    Philpott, Lydia

    2010-09-01

    Central to the development of any new theory is the investigation of the observable consequences of the theory. In the search for quantum gravity, research in phenomenology has been dominated by models violating Lorentz invariance (LI) -- despite there being, at present, no evidence that LI is violated. Causal set theory is a LI candidate theory of QG that seeks not to quantise gravity as such, but rather to develop a new understanding of the universe from which both GR and QM could arise separately. The key hypothesis is that spacetime is a discrete partial order: a set of events where the partial ordering is the physical causal ordering between the events. This thesis investigates Lorentz invariant QG phenomenology motivated by the causal set approach. Massive particles propagating in a discrete spacetime will experience diffusion in both position and momentum in proper time. This thesis considers this idea in more depth, providing a rigorous derivation of the diffusion equation in terms of observable cosmic time. The diffusion behaviour does not depend on any particular underlying particle model. Simulations of three different models are conducted, revealing behaviour that matches the diffusion equation despite limitations on the size of causal set simulated. The effect of spacetime discreteness on the behaviour of massless particles is also investigated. Diffusion equations in both affine time and cosmic time are derived, and it is found that massless particles undergo diffusion and drift in energy. Constraints are placed on the magnitudes of the drift and diffusion parameters by considering the blackbody nature of the CMB. Spacetime discreteness also has a potentially observable effect on photon polarisation. For linearly polarised photons, underlying discreteness is found to cause a rotation in polarisation angle and a suppression in overall polarisation.

  12. A self-agency bias in preschoolers' causal inferences

    PubMed Central

    Kushnir, Tamar; Wellman, Henry M.; Gelman, Susan A.

    2013-01-01

    Preschoolers' causal learning from intentional actions – causal interventions – is subject to a self-agency bias. We propose that this bias is evidence-based; it is responsive to causal uncertainty. In the current studies, two causes (one child-controlled, one experimenter-controlled) were associated with one or two effects, first independently, then simultaneously. When initial independent effects were probabilistic, and thus subsequent simultaneous actions were causally ambiguous, children showed a self-agency bias. Children showed no bias when initial effects were deterministic. Further controls establish that children's self-agency bias is not a wholesale preference but rather is influenced by uncertainty in causal evidence. These results demonstrate that children's own experience of action influences their causal learning, and suggest possible benefits in uncertain and ambiguous everyday learning contexts. PMID:19271843

  13. [Antibibiotic resistance by nosocomial infections' causal agents].

    PubMed

    Salazar-Holguín, Héctor Daniel; Cisneros-Robledo, María Elena

    2016-01-01

    The antibibiotic resistance by nosocomial infections (NI) causal agents constitutes a seriously global problematic that involves the Mexican Institute of Social Security's Regional General Hospital 1 in Chihuahua, Mexico; although with special features that required to be specified and evaluated, in order to concrete an effective therapy. Observational, descriptive and prospective study; by means of active vigilance all along 2014 in order to detect the nosocomial infections, for epidemiologic study, culture and antibiogram to identify its causal agents and antibiotics resistance and sensitivity. Among 13527 hospital discharges, 1079 displayed NI (8 %), standed out: the related on vascular lines, of surgical site, pneumonia and urinal track; they added up two thirds of the total. We carried out culture and antibiogram about 300 of them (27.8 %); identifying 31 bacterian species, mainly seven of those (77.9 %): Escherichia coli, Staphylococcus aureus and epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Enterobacter cloacae; showing multiresistance to 34 tested antibiotics, except in seven with low or without resistance at all: vancomycin, teicoplanin, linezolid, quinupristin-dalfopristin, piperacilin-tazobactam, amikacin and carbapenems. When we contrasted those results with the recommendations in the clinical practice guides, it aroused several contradictions; so they must be taken with reserves and has to be tested in each hospital, by means of cultures and antibiograms in practically every case of nosocomial infection.

  14. Uncovering cyanobacteria ecological networks from long-term monitoring data using Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Munoz-Carpena, R.; Kaplan, D. A.; Phlips, E. J.

    2016-12-01

    In many aquatic systems, cyanobacteria form harmful blooms capable of producing toxins, prompting hypoxia, and/or introducing internal nitrogen loads via N2-fixation, among other impacts. Traditionally, system-specific cyanobacteria drivers are determined by performing controlled experiments and bioassays, but these approaches may neglect the influences of confounding factors and over assign importance to only those variables considered within experimental designs. For example, a bioassay may conclude that the cyanobacteria in a particular system are limited by phosphorus, but will not explicitly take into account the role of flow as a control on phosphorus delivery. This study aims to address this analytical gap by identifying environmental controls on cyanobacteria while removing the effects of potentially confounding variables. In the present work, we evaluate a unique long-term (17 year) dataset composed of monthly observations of phytoplankton and zooplankton species abundances, water quality constituents, and hydrologic variables from Lake George, a flow-through lake of the St. Johns River (FL) impacted by cyanobacterial blooms. Using conditional Granger causality analysis, a time series approach that infers causality while removing the effects of confounding variables, data were evaluated to identify biological and physicochemical drivers of cyanobacteria. The analysis was performed for three response variable sets: total cyanobacteria, N2-fixers and non-fixers, and cyanobacteria genera. Results depicted increasing levels of ecological complexity as subdivisions of cyanobacteria became more detailed; whereas causal networks produced from analyses of cyanobacteria genera provided novel insights relevant for management (i.e. nutrients, flow), the total cyanobacteria network only included water temperature as a significant driver. Additionally, the more detailed cyanobacteria subdivisions uncovered that N2-fixation was only evident with the earliest season

  15. Cross-lagged relations between mentoring received from supervisors and employee OCBs: Disentangling causal direction and identifying boundary conditions.

    PubMed

    Eby, Lillian T; Butts, Marcus M; Hoffman, Brian J; Sauer, Julia B

    2015-07-01

    Although mentoring has documented relationships with employee attitudes and outcomes of interest to organizations, neither the causal direction nor boundary conditions of the relationship between mentoring and organizational citizenship behaviors (OCBs) has been fully explored. On the basis of Social Learning Theory (SLT; Bandura, 1977, 1986), we predicted that mentoring received by supervisors would causally precede OCBs, rather than employee OCBs resulting in the receipt of more mentoring from supervisors. Results from cross-lagged data collected at 2 points in time from 190 intact supervisor-employee dyads supported our predictions; however, only for OCBs directed at individuals (OCB-Is) and not for OCBs directed at the organization (OCB-Os). Further supporting our theoretical rationale for expecting mentoring to precede OCBs, we found that coworker support operates as a substitute for mentoring in predicting OCB-Is. By contrast, no moderating effects were found for perceived organizational support. The results are discussed in terms of theoretical implications for mentoring and OCB research, as well as practical suggestions for enhancing employee citizenship behaviors. (c) 2015 APA, all rights reserved).

  16. Spatio-temporal Granger causality: a new framework

    PubMed Central

    Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng

    2015-01-01

    That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924

  17. Causal premise semantics.

    PubMed

    Kaufmann, Stefan

    2013-08-01

    The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal semantic analysis of conditionals, Kratzer-style premise semantics, allows for a straightforward implementation of the crucial ideas and insights of Pearl-style causal networks. I spell out the details of such an implementation, focusing especially on the notions of intervention on a network and backtracking interpretations of counterfactuals. Copyright © 2013 Cognitive Science Society, Inc.

  18. Entanglement entropy in causal set theory

    NASA Astrophysics Data System (ADS)

    Sorkin, Rafael D.; Yazdi, Yasaman K.

    2018-04-01

    Entanglement entropy is now widely accepted as having deep connections with quantum gravity. It is therefore desirable to understand it in the context of causal sets, especially since they provide in a natural manner the UV cutoff needed to render entanglement entropy finite. Formulating a notion of entanglement entropy in a causal set is not straightforward because the type of canonical hypersurface-data on which its definition typically relies is not available. Instead, we appeal to the more global expression given in Sorkin (2012 (arXiv:1205.2953)) which, for a Gaussian scalar field, expresses the entropy of a spacetime region in terms of the field’s correlation function within that region (its ‘Wightman function’ W(x, x') ). Carrying this formula over to the causal set, one obtains an entropy which is both finite and of a Lorentz invariant nature. We evaluate this global entropy-expression numerically for certain regions (primarily order-intervals or ‘causal diamonds’) within causal sets of 1  +  1 dimensions. For the causal-set counterpart of the entanglement entropy, we obtain, in the first instance, a result that follows a (spacetime) volume law instead of the expected (spatial) area law. We find, however, that one obtains an area law if one truncates the commutator function (‘Pauli–Jordan operator’) and the Wightman function by projecting out the eigenmodes of the Pauli–Jordan operator whose eigenvalues are too close to zero according to a geometrical criterion which we describe more fully below. In connection with these results and the questions they raise, we also study the ‘entropy of coarse-graining’ generated by thinning out the causal set, and we compare it with what one obtains by similarly thinning out a chain of harmonic oscillators, finding the same, ‘universal’ behaviour in both cases.

  19. In defense of causal-formative indicators: A minority report.

    PubMed

    Bollen, Kenneth A; Diamantopoulos, Adamantios

    2017-09-01

    Causal-formative indicators directly affect their corresponding latent variable. They run counter to the predominant view that indicators depend on latent variables and are thus often controversial. If present, such indicators have serious implications for factor analysis, reliability theory, item response theory, structural equation models, and most measurement approaches that are based on reflective or effect indicators. Psychological Methods has published a number of influential articles on causal and formative indicators as well as launching the first major backlash against them. This article examines 7 common criticisms of these indicators distilled from the literature: (a) A construct measured with "formative" indicators does not exist independently of its indicators; (b) Such indicators are causes rather than measures; (c) They imply multiple dimensions to a construct and this is a liability; (d) They are assumed to be error-free, which is unrealistic; (e) They are inherently subject to interpretational confounding; (f) They fail proportionality constraints; and (g) Their coefficients should be set in advance and not estimated. We summarize each of these criticisms and point out the flaws in the logic and evidence marshaled in their support. The most common problems are not distinguishing between what we call causal-formative and composite-formative indicators, tautological fallacies, and highlighting issues that are common to all indicators, but presenting them as special problems of causal-formative indicators. We conclude that measurement theory needs (a) to incorporate these types of indicators, and (b) to better understand their similarities to and differences from traditional indicators. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Foundational perspectives on causality in large-scale brain networks.

    PubMed

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  1. Causal Superlearning Arising from Interactions Among Cues

    PubMed Central

    Urushihara, Kouji; Miller, Ralph R.

    2017-01-01

    Superconditioning refers to supernormal responding to a conditioned stimulus (CS) that sometimes occurs in classical conditioning when the CS is paired with an unconditioned stimulus (US) in the presence of a conditioned inhibitor for that US. In the present research, we conducted four experiments to investigate causal superlearning, a phenomenon in human causal learning analogous to superconditioning. Experiment 1 demonstrated superlearning relative to appropriate control conditions. Experiment 2 showed that superlearning wanes when the number of cues used in an experiment is relatively large. Experiment 3 determined that even when relatively many cues are used, superlearning can be observed provided testing is conducted immediately after training, which is problematic for explanations by most contemporary learning theories. Experiment 4 found that ratings of a superlearning cue are weaker than those to the training excitor which gives basis to the conditioned inhibitor-like causal preventor used during causal superlearning training. This is inconsistent with the prediction by propositional reasoning accounts of causal cue competition, but is readily explained by associative learning models. In sum, the current experiments revealed some weaknesses of both the associative and propositional reasoning models with respect to causal superlearning. PMID:28383940

  2. Updating during reading comprehension: why causality matters.

    PubMed

    Kendeou, Panayiota; Smith, Emily R; O'Brien, Edward J

    2013-05-01

    The present set of 7 experiments systematically examined the effectiveness of adding causal explanations to simple refutations in reducing or eliminating the impact of outdated information on subsequent comprehension. The addition of a single causal-explanation sentence to a refutation was sufficient to eliminate any measurable disruption in comprehension caused by the outdated information (Experiment 1) but was not sufficient to eliminate its reactivation (Experiment 2). However, a 3 sentence causal-explanation addition to a refutation eliminated both any measurable disruption in comprehension (Experiment 3) and the reactivation of the outdated information (Experiment 4). A direct comparison between the 1 and 3 causal-explanation conditions provided converging evidence for these findings (Experiment 5). Furthermore, a comparison of the 3 sentence causal-explanation condition with a 3 sentence qualified-elaboration condition demonstrated that even though both conditions were sufficient to eliminate any measurable disruption in comprehension (Experiment 6), only the causal-explanation condition was sufficient to eliminate the reactivation of the outdated information (Experiment 7). These results establish a boundary condition under which outdated information will influence comprehension; they also have broader implications for both the updating process and knowledge revision in general.

  3. The good, the bad, and the timely: how temporal order and moral judgment influence causal selection

    PubMed Central

    Reuter, Kevin; Kirfel, Lara; van Riel, Raphael; Barlassina, Luca

    2014-01-01

    Causal selection is the cognitive process through which one or more elements in a complex causal structure are singled out as actual causes of a certain effect. In this paper, we report on an experiment in which we investigated the role of moral and temporal factors in causal selection. Our results are as follows. First, when presented with a temporal chain in which two human agents perform the same action one after the other, subjects tend to judge the later agent to be the actual cause. Second, the impact of temporal location on causal selection is almost canceled out if the later agent did not violate a norm while the former did. We argue that this is due to the impact that judgments of norm violation have on causal selection—even if the violated norm has nothing to do with the obtaining effect. Third, moral judgments about the effect influence causal selection even in the case in which agents could not have foreseen the effect and did not intend to bring it about. We discuss our findings in connection to recent theories of the role of moral judgment in causal reasoning, on the one hand, and to probabilistic models of temporal location, on the other. PMID:25477851

  4. Discovering Coherent Structures Using Local Causal States

    NASA Astrophysics Data System (ADS)

    Rupe, Adam; Crutchfield, James P.; Kashinath, Karthik; Prabhat, Mr.

    2017-11-01

    Coherent structures were introduced in the study of fluid dynamics and were initially defined as regions characterized by high levels of coherent vorticity, i.e. regions where instantaneously space and phase correlated vorticity are high. In a more general spatiotemporal setting, coherent structures can be seen as localized broken symmetries which persist in time. Building off the computational mechanics framework, which integrates tools from computation and information theory to capture pattern and structure in nonlinear dynamical systems, we introduce a theory of coherent structures, in the more general sense. Central to computational mechanics is the causal equivalence relation, and a local spatiotemporal generalization of it is used to construct the local causal states, which are utilized to uncover a system's spatiotemporal symmetries. Coherent structures are then identified as persistent, localized deviations from these symmetries. We illustrate how novel patterns and structures can be discovered in cellular automata and outline the path from them to laminar, transitional and turbulent flows. Funded by Intel through the Big Data Center at LBNL and the IPCC at UC Davis.

  5. Right external globus pallidus changes are associated with altered causal awareness in youth with depression

    PubMed Central

    Griffiths, K R; Lagopoulos, J; Hermens, D F; Hickie, I B; Balleine, B W

    2015-01-01

    Cognitive impairment is a functionally disabling feature of depression contributing to maladaptive decision-making, a loss of behavioral control and an increased disease burden. The ability to calculate the causal efficacy of ones actions in achieving specific goals is critical to normal decision-making and, in this study, we combined voxel-based morphometry (VBM), shape analysis and diffusion tensor tractography to investigate the relationship between cortical–basal ganglia structural integrity and such causal awareness in 43 young subjects with depression and 21 demographically similar healthy controls. Volumetric analysis determined a relationship between right pallidal size and sensitivity to the causal status of specific actions. More specifically, shape analysis identified dorsolateral surface vertices where an inward location was correlated with reduced levels of causal awareness. Probabilistic tractography revealed that affected parts of the pallidum were primarily connected with the striatum, dorsal thalamus and hippocampus. VBM did not reveal any whole-brain gray matter regions that correlated with causal awareness. We conclude that volumetric reduction within the indirect pathway involving the right dorsolateral pallidum is associated with reduced awareness of the causal efficacy of goal-directed actions in young depressed individuals. This causal awareness task allows for the identification of a functionally and biologically relevant subgroup to which more targeted cognitive interventions could be applied, potentially enhancing the long-term outcomes for these individuals. PMID:26440541

  6. Form and function: Optional complementizers reduce causal inferences

    PubMed Central

    Rohde, Hannah; Tyler, Joseph; Carlson, Katy

    2017-01-01

    Many factors are known to influence the inference of the discourse coherence relationship between two sentences. Here, we examine the relationship between two conjoined embedded clauses in sentences like The professor noted that the student teacher did not look confident and (that) the students were poorly behaved. In two studies, we find that the presence of that before the second embedded clause in such sentences reduces the possibility of a forward causal relationship between the clauses, i.e., the inference that the student teacher’s confidence was what affected student behavior. Three further studies tested the possibility of a backward causal relationship between clauses in the same structure, and found that the complementizer’s presence aids that relationship, especially in a forced-choice paradigm. The empirical finding that a complementizer, a linguistic element associated primarily with structure rather than event-level semantics, can affect discourse coherence is novel and illustrates an interdependence between syntactic parsing and discourse parsing. PMID:28804781

  7. Causal Relationships Among Time Series of the Lange Bramke Catchment (Harz Mountains, Germany)

    NASA Astrophysics Data System (ADS)

    Aufgebauer, Britta; Hauhs, Michael; Bogner, Christina; Meesenburg, Henning; Lange, Holger

    2016-04-01

    Convergent Cross Mapping (CCM) has recently been introduced by Sugihara et al. for the identification and quantification of causal relationships among ecosystem variables. In particular, the method allows to decide on the direction of causality; in some cases, the causality might be bidirectional, indicating a network structure. We extend this approach by introducing a method of surrogate data to obtain confidence intervals for CCM results. We then apply this method to time series from stream water chemistry. Specifically, we analyze a set of eight dissolved major ions from three different catchments belonging to the hydrological monitoring system at the Bramke valley in the Harz Mountains, Germany. Our results demonstrate the potentials and limits of CCM as a monitoring instrument in forestry and hydrology or as a tool to identify processes in ecosystem research. While some networks of causally linked ions can be associated with simple physical and chemical processes, other results illustrate peculiarities of the three studied catchments, which are explained in the context of their special history.

  8. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    PubMed

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  9. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  10. Quasi-Experimental Designs for Causal Inference

    ERIC Educational Resources Information Center

    Kim, Yongnam; Steiner, Peter

    2016-01-01

    When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…

  11. Factors Influencing the Sahelian Paradox at the Local Watershed Scale: Causal Inference Insights

    NASA Astrophysics Data System (ADS)

    Van Gordon, M.; Groenke, A.; Larsen, L.

    2017-12-01

    While the existence of paradoxical rainfall-runoff and rainfall-groundwater correlations are well established in the West African Sahel, the hydrologic mechanisms involved are poorly understood. In pursuit of mechanistic explanations, we perform a causal inference analysis on hydrologic variables in three watersheds in Benin and Niger. Using an ensemble of techniques, we compute the strength of relationships between observational soil moisture, runoff, precipitation, and temperature data at seasonal and event timescales. Performing analysis over a range of time lags allows dominant time scales to emerge from the relationships between variables. By determining the time scales of hydrologic connectivity over vertical and lateral space, we show differences in the importance of overland and subsurface flow over the course of the rainy season and between watersheds. While previous work on the paradoxical hydrologic behavior in the Sahel focuses on surface processes and infiltration, our results point toward the importance of subsurface flow to rainfall-runoff relationships in these watersheds. The hypotheses generated from our ensemble approach suggest that subsequent explorations of mechanistic hydrologic processes in the region include subsurface flow. Further, this work highlights how an ensemble approach to causal analysis can reveal nuanced relationships between variables even in poorly understood hydrologic systems.

  12. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  13. Translating context to causality in cardiovascular disparities research.

    PubMed

    Benn, Emma K T; Goldfeld, Keith S

    2016-04-01

    Moving from a descriptive focus to a comprehensive analysis grounded in causal inference can be particularly daunting for disparities researchers. However, even a simple model supported by the theoretical underpinnings of causality gives researchers a better chance to make correct inferences about possible interventions that can benefit our most vulnerable populations. This commentary provides a brief description of how race/ethnicity and context relate to questions of causality, and uses a hypothetical scenario to explore how different researchers might analyze the data to estimate causal effects of interest. Perhaps although not entirely removed of bias, these causal estimates will move us a step closer to understanding how to intervene. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Interpretational Confounding or Confounded Interpretations of Causal Indicators?

    ERIC Educational Resources Information Center

    Bainter, Sierra A.; Bollen, Kenneth A.

    2014-01-01

    In measurement theory, causal indicators are controversial and little understood. Methodological disagreement concerning causal indicators has centered on the question of whether causal indicators are inherently sensitive to interpretational confounding, which occurs when the empirical meaning of a latent construct departs from the meaning…

  15. How multiple causes combine: independence constraints on causal inference.

    PubMed

    Liljeholm, Mimi

    2015-01-01

    According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.

  16. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome

    PubMed Central

    Day, Felix R.; Hinds, David A.; Tung, Joyce Y.; Stolk, Lisette; Styrkarsdottir, Unnur; Saxena, Richa; Bjonnes, Andrew; Broer, Linda; Dunger, David B.; Halldorsson, Bjarni V.; Lawlor, Debbie A.; Laval, Guillaume; Mathieson, Iain; McCardle, Wendy L.; Louwers, Yvonne; Meun, Cindy; Ring, Susan; Scott, Robert A.; Sulem, Patrick; Uitterlinden, André G.; Wareham, Nicholas J.; Thorsteinsdottir, Unnur; Welt, Corrine; Stefansson, Kari; Laven, Joop S. E.; Ong, Ken K.; Perry, John R. B.

    2015-01-01

    Polycystic ovary syndrome (PCOS) is the most common reproductive disorder in women, yet there is little consensus regarding its aetiology. Here we perform a genome-wide association study of PCOS in up to 5,184 self-reported cases of White European ancestry and 82,759 controls, with follow-up in a further ∼2,000 clinically validated cases and ∼100,000 controls. We identify six signals for PCOS at genome-wide statistical significance (P<5 × 10−8), in/near genes ERBB4/HER4, YAP1, THADA, FSHB, RAD50 and KRR1. Variants in/near three of the four epidermal growth factor receptor genes (ERBB2/HER2, ERBB3/HER3 and ERBB4/HER4) are associated with PCOS at or near genome-wide significance. Mendelian randomization analyses indicate causal roles in PCOS aetiology for higher BMI (P=2.5 × 10−9), higher insulin resistance (P=6 × 10−4) and lower serum sex hormone binding globulin concentrations (P=5 × 10−4). Furthermore, genetic susceptibility to later menopause is associated with higher PCOS risk (P=1.6 × 10−8) and PCOS-susceptibility alleles are associated with higher serum anti-Müllerian hormone concentrations in girls (P=8.9 × 10−5). This large-scale study implicates an aetiological role of the epidermal growth factor receptors, infers causal mechanisms relevant to clinical management and prevention, and suggests balancing selection mechanisms involved in PCOS risk. PMID:26416764

  17. Development and Coherence of Beliefs Regarding Disease Causality and Prevention

    ERIC Educational Resources Information Center

    Sigelman, Carol K.

    2014-01-01

    Guided by a naïve theories perspective on the development of thinking about disease, this study of 188 children aged 6 to 18 examined knowledge of HIV/AIDS causality and prevention using parallel measures derived from open-ended and structured interviews. Knowledge of both risk factors and prevention rules, as well as conceptual understanding of…

  18. The role of counterfactual theory in causal reasoning.

    PubMed

    Maldonado, George

    2016-10-01

    In this commentary I review the fundamentals of counterfactual theory and its role in causal reasoning in epidemiology. I consider if counterfactual theory dictates that causal questions must be framed in terms of well-defined interventions. I conclude that it does not. I hypothesize that the interventionist approach to causal inference in epidemiology stems from elevating the randomized trial design to the gold standard for thinking about causal inference. I suggest that instead the gold standard we should use for thinking about causal inference in epidemiology is the thought experiment that, for example, compares an actual disease frequency under one exposure level with a counterfactual disease frequency under a different exposure level (as discussed in Greenland and Robins (1986) and Maldonado and Greenland (2002)). I also remind us that no method should be termed "causal" unless it addresses the effect of other biases in addition to the problem of confounding. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Are bruxism and the bite causally related?

    PubMed

    Lobbezoo, F; Ahlberg, J; Manfredini, D; Winocur, E

    2012-07-01

    In the dental profession, the belief that bruxism and dental (mal-)occlusion ('the bite') are causally related is widespread. The aim of this review was to critically assess the available literature on this topic. A PubMed search of the English-language literature, using the query 'Bruxism [Majr] AND (Dental Occlusion [Majr] OR Malocclusion [Majr])', yielded 93 articles, of which 46 papers were finally included in the present review*. Part of the included publications dealt with the possible associations between bruxism and aspects of occlusion, from which it was concluded that neither for occlusal interferences nor for factors related to the anatomy of the oro-facial skeleton, there is any evidence available that they are involved in the aetiology of bruxism. Instead, there is a growing awareness of other factors (viz. psychosocial and behavioural ones) being important in the aetiology of bruxism. Another part of the included papers assessed the possible mediating role of occlusion between bruxism and its purported consequences (e.g. tooth wear, loss of periodontal tissues, and temporomandibular pain and dysfunction). Even though most dentists agree that bruxism may have several adverse effects on the masticatory system, for none of these purported adverse effects, evidence for a mediating role of occlusion and articulation has been found to date. Hence, based on this review, it should be concluded that to date, there is no evidence whatsoever for a causal relationship between bruxism and the bite. © 2012 Blackwell Publishing Ltd.

  20. Protocol for a Controlled Experiment to Identify the Causal Role of Acute Alcohol Consumption in Condomless Sex among HIV-Positive MSM: Study Procedures, Ethical Considerations, and Implications for HIV Prevention.

    PubMed

    Shuper, Paul A; Joharchi, Narges; Rehm, Jürgen

    2016-01-01

    Although alcohol consumption is frequently perceived as a driver of condomless sex and subsequent HIV acquisition, the causal nature of this relationship remains unclear, and little is known about alcohol's direct versus indirect impact on the sexual risk dynamics of those who are HIV-positive. To address this gap, we present the protocol for an in-progress NIAAA-funded controlled experiment, wherein a sample of HIV-positive men-who-have-sex-with-men (MSM) undergoes an alcohol consumption manipulation (alcohol/placebo/control) and sexual arousal induction (sexually aroused/non-aroused), and then reports intentions to engage in condom-protected and condomless sexual acts with hypothetical sexual partners differing in HIV serostatus (HIV+/HIV-/HIV status unknown), condom use preference (use/don't use/not stated), and physical attractiveness (attractive/unattractive). Study outcomes will identify alcohol's impact on HIV-positive MSM's condomless sex intentions in the context of experimentally-manipulated factors as well as risk-relevant personality traits and alcohol-related expectancies. Detailed experimental procedures, ethical considerations, and potential implications for HIV prevention are discussed.

  1. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    PubMed

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015

  2. Subjective spacetime derived from a causal histories approach

    NASA Astrophysics Data System (ADS)

    Gunji, Yukio-Pegio; Haruna, Taichi; Uragami, Daisuke; Nishikawa, Asaki

    2009-10-01

    The internal description of spacetime can reveal ambiguity regarding an observer’s perception of the present, where an observer can refer to the present as if he were outside spacetime while actually existing in the present. This ambiguity can be expressed as the compatibility between an element and a set, and is here called a/{a}-compatibility. We describe a causal set as a lattice and a causal history as a quotient lattice, and implement the a/{a}-compatibility in the framework of a causal histories approach. This leads to a perpetual change of a pair of causal set and causal history, and can be used to describe subjective spacetime including the déjà vu experience and/or schizophrenic time.

  3. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  4. Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments

    PubMed Central

    2014-01-01

    Background Knockdown or overexpression of genes is widely used to identify genes that play important roles in many aspects of cellular functions and phenotypes. Because next-generation sequencing generates high-throughput data that allow us to detect genes, it is important to identify genes that drive functional and phenotypic changes of cells. However, conventional methods rely heavily on the assumption of normality and they often give incorrect results when the assumption is not true. To relax the Gaussian assumption in causal inference, we introduce the non-paranormal method to test conditional independence in the PC-algorithm. Then, we present the non-paranormal intervention-calculus when the directed acyclic graph (DAG) is absent (NPN-IDA), which incorporates the cumulative nature of effects through a cascaded pathway via causal inference for ranking causal genes against a phenotype with the non-paranormal method for estimating DAGs. Results We demonstrate that causal inference with the non-paranormal method significantly improves the performance in estimating DAGs on synthetic data in comparison with the original PC-algorithm. Moreover, we show that NPN-IDA outperforms the conventional methods in exploring regulators of the flowering time in Arabidopsis thaliana and regulators that control the browning of white adipocytes in mice. Our results show that performance improvement in estimating DAGs contributes to an accurate estimation of causal effects. Conclusions Although the simplest alternative procedure was used, our proposed method enables us to design efficient intervention experiments and can be applied to a wide range of research purposes, including drug discovery, because of its generality. PMID:24980787

  5. Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments.

    PubMed

    Teramoto, Reiji; Saito, Chiaki; Funahashi, Shin-ichi

    2014-06-30

    Knockdown or overexpression of genes is widely used to identify genes that play important roles in many aspects of cellular functions and phenotypes. Because next-generation sequencing generates high-throughput data that allow us to detect genes, it is important to identify genes that drive functional and phenotypic changes of cells. However, conventional methods rely heavily on the assumption of normality and they often give incorrect results when the assumption is not true. To relax the Gaussian assumption in causal inference, we introduce the non-paranormal method to test conditional independence in the PC-algorithm. Then, we present the non-paranormal intervention-calculus when the directed acyclic graph (DAG) is absent (NPN-IDA), which incorporates the cumulative nature of effects through a cascaded pathway via causal inference for ranking causal genes against a phenotype with the non-paranormal method for estimating DAGs. We demonstrate that causal inference with the non-paranormal method significantly improves the performance in estimating DAGs on synthetic data in comparison with the original PC-algorithm. Moreover, we show that NPN-IDA outperforms the conventional methods in exploring regulators of the flowering time in Arabidopsis thaliana and regulators that control the browning of white adipocytes in mice. Our results show that performance improvement in estimating DAGs contributes to an accurate estimation of causal effects. Although the simplest alternative procedure was used, our proposed method enables us to design efficient intervention experiments and can be applied to a wide range of research purposes, including drug discovery, because of its generality.

  6. The psychophysics of comic: Effects of incongruity in causality and animacy.

    PubMed

    Parovel, Giulia; Guidi, Stefano

    2015-07-01

    According to several theories of humour (see Berger, 2012; Martin, 2007), incongruity - i.e., the presence of two incompatible meanings in the same situation - is a crucial condition for an event being evaluated as comical. The aim of this research was to test with psychophysical methods the role of incongruity in visual perception by manipulating the causal paradigm (Michotte, 1946/1963) to get a comic effect. We ran three experiments. In Experiment 1, we tested the role of speed ratio between the first and the second movement, and the effect of animacy cues (i.e. frog-like and jumping-like trajectories) in the second movement; in Experiment 2, we manipulated the temporal delay between the movements to explore the relationship between perceptual causal contingencies and comic impressions; in Experiment 3, we compared the strength of the comic impressions arising from incongruent trajectories based on animacy cues with those arising from incongruent trajectories not based on animacy cues (bouncing and rotating) in the second part of the causal event. General findings showed that the paradoxical juxtaposition of a living behaviour in the perceptual causal paradigm is a powerful factor in eliciting comic appreciations, coherently with the Bergsonian perspective in particular (Bergson, 2003), and with incongruity theories in general. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Non-parametric causality detection: An application to social media and financial data

    NASA Astrophysics Data System (ADS)

    Tsapeli, Fani; Musolesi, Mirco; Tino, Peter

    2017-10-01

    According to behavioral finance, stock market returns are influenced by emotional, social and psychological factors. Several recent works support this theory by providing evidence of correlation between stock market prices and collective sentiment indexes measured using social media data. However, a pure correlation analysis is not sufficient to prove that stock market returns are influenced by such emotional factors since both stock market prices and collective sentiment may be driven by a third unmeasured factor. Controlling for factors that could influence the study by applying multivariate regression models is challenging given the complexity of stock market data. False assumptions about the linearity or non-linearity of the model and inaccuracies on model specification may result in misleading conclusions. In this work, we propose a novel framework for causal inference that does not require any assumption about a particular parametric form of the model expressing statistical relationships among the variables of the study and can effectively control a large number of observed factors. We apply our method in order to estimate the causal impact that information posted in social media may have on stock market returns of four big companies. Our results indicate that social media data not only correlate with stock market returns but also influence them.

  8. Post-traumatic stress disorder and cardiometabolic disease: improving causal inference to inform practice.

    PubMed

    Koenen, K C; Sumner, J A; Gilsanz, P; Glymour, M M; Ratanatharathorn, A; Rimm, E B; Roberts, A L; Winning, A; Kubzansky, L D

    2017-01-01

    Post-traumatic stress disorder (PTSD) has been declared 'a life sentence' based on evidence that the disorder leads to a host of physical health problems. Some of the strongest empirical research - in terms of methodology and findings - has shown that PTSD predicts higher risk of cardiometabolic diseases, specifically cardiovascular disease (CVD) and type 2 diabetes (T2D). Despite mounting evidence, PTSD is not currently acknowledged as a risk factor by cardiovascular or endocrinological medicine. This view is unlikely to change absent compelling evidence that PTSD causally contributes to cardiometabolic disease. This review suggests that with developments in methods for epidemiological research and the rapidly expanding knowledge of the behavioral and biological effects of PTSD the field is poised to provide more definitive answers to questions of causality. First, we discuss methods to improve causal inference using the observational data most often used in studies of PTSD and health, with particular reference to issues of temporality and confounding. Second, we consider recent work linking PTSD with specific behaviors and biological processes, and evaluate whether these may plausibly serve as mechanisms by which PTSD leads to cardiometabolic disease. Third, we evaluate how looking more comprehensively into the PTSD phenotype provides insight into whether specific aspects of PTSD phenomenology are particularly relevant to cardiometabolic disease. Finally, we discuss new areas of research that are feasible and could enhance understanding of the PTSD-cardiometabolic relationship, such as testing whether treatment of PTSD can halt or even reverse the cardiometabolic risk factors causally related to CVD and T2D.

  9. Assessing the causal effect of policies: an example using stochastic interventions.

    PubMed

    Díaz, Iván; van der Laan, Mark J

    2013-11-19

    Assessing the causal effect of an exposure often involves the definition of counterfactual outcomes in a hypothetical world in which the stochastic nature of the exposure is modified. Although stochastic interventions are a powerful tool to measure the causal effect of a realistic intervention that intends to alter the population distribution of an exposure, their importance to answer questions about plausible policy interventions has been obscured by the generalized use of deterministic interventions. In this article, we follow the approach described in Díaz and van der Laan (2012) to define and estimate the effect of an intervention that is expected to cause a truncation in the population distribution of the exposure. The observed data parameter that identifies the causal parameter of interest is established, as well as its efficient influence function under the non-parametric model. Inverse probability of treatment weighted (IPTW), augmented IPTW and targeted minimum loss-based estimators (TMLE) are proposed, their consistency and efficiency properties are determined. An extension to longitudinal data structures is presented and its use is demonstrated with a real data example.

  10. Causality attribution biases oculomotor responses.

    PubMed

    Badler, Jeremy; Lefèvre, Philippe; Missal, Marcus

    2010-08-04

    When viewing one object move after being struck by another, humans perceive that the action of the first object "caused" the motion of the second, not that the two events occurred independently. Although established as a perceptual and linguistic concept, it is not yet known whether the notion of causality exists as a fundamental, preattentional "Gestalt" that can influence predictive motor processes. Therefore, eye movements of human observers were measured while viewing a display in which a launcher impacted a tool to trigger the motion of a second "reaction" target. The reaction target could move either in the direction predicted by transfer of momentum after the collision ("causal") or in a different direction ("noncausal"), with equal probability. Control trials were also performed with identical target motion, either with a 100 ms time delay between the collision and reactive motion, or without the interposed tool. Subjects made significantly more predictive movements (smooth pursuit and saccades) in the causal direction during standard trials, and smooth pursuit latencies were also shorter overall. These trends were reduced or absent in control trials. In addition, pursuit latencies in the noncausal direction were longer during standard trials than during control trials. The results show that causal context has a strong influence on predictive movements.

  11. Are Hill's criteria for causality satisfied for vitamin D and periodontal disease?

    PubMed

    Grant, William B; Boucher, Barbara J

    2010-01-01

    There is mounting evidence that periodontal disease (PD) is linked to low serum 25-hydroxyvitamin D [25(OH)D] concentrations in addition to recognized risk factors like diet and smoking. This paper reviews this evidence using Hill's criteria for causality in a biological system. Evidence for strength of association, consistency, cohesion and 'dose-effects' [biological 'gradients'] include strong inverse correlations between serum 25(OH) and PD cross-sectionally and that PD is consistently more prevalent in darker vs. lighter skinned people and increases at higher latitudes with analogy for gingivitis and for disorders associated with PD whose risks also increase with hypovitaminosis D. Evidence for plausibility includes that vitamin D increases calcium absorption and protects bone strength; induces formation of cathelicidin and other defensins that combat bacterial infection; reduces tissue production of destructive matrix metalloproteinases actively associated with PD and that prevalence of PD varies with common vitamin D receptor polymorphisms. Experimental evidence from limited supplementation studies [using calcium and vitamin D] shows that supplementation reduces tooth loss. Thus, existing evidence for hypovitaminosis D as a risk factor for PD to date meets Hill's criteria for causality in a biological system. Further experimental evidence for effectiveness and temporality, preferably from randomized controlled trials of vitamin D supplementation [adjusting for other PD risk factors including diet and smoking to reduce confounding] are necessary to confirm causality. If confirmed, dentists and periodontists could perform a valuable service to their patients by discussing the importance of adequate vitamin D status and how to avoid deficiency.

  12. Are Hill's criteria for causality satisfied for vitamin D and periodontal disease?

    PubMed Central

    Boucher, Barbara J

    2010-01-01

    There is mounting evidence that periodontal disease (PD) is linked to low serum 25-hydroxyvitamin D [25(OH)D] concentrations in addition to recognized risk factors like diet and smoking. This paper reviews this evidence using Hill's criteria for causality in a biological system. Evidence for strength of association, consistency, cohesion and ‘dose-effects’ [biological ‘gradients’] include strong inverse correlations between serum 25(OH) and PD cross-sectionally and that PD is consistently more prevalent in darker vs. lighter skinned people and increases at higher latitudes with analogy for gingivitis and for disorders associated with PD whose risks also increase with hypovitaminosis D. Evidence for plausibility includes that vitamin D increases calcium absorption and protects bone strength; induces formation of cathelicidin and other defensins that combat bacterial infection; reduces tissue production of destructive matrix metalloproteinases actively associated with PD and that prevalence of PD varies with common vitamin D receptor polymorphisms. Experimental evidence from limited supplementation studies [using calcium and vitamin D] shows that supplementation reduces tooth loss. Thus, existing evidence for hypovitaminosis D as a risk factor for PD to date meets Hill's criteria for causality in a biological system. Further experimental evidence for effectiveness and temporality, preferably from randomized controlled trials of vitamin D supplementation [adjusting for other PD risk factors including diet and smoking to reduce confounding] are necessary to confirm causality. If confirmed, dentists and periodontists could perform a valuable service to their patients by discussing the importance of adequate vitamin D status and how to avoid deficiency. PMID:21547146

  13. Causality, mediation and time: a dynamic viewpoint

    PubMed Central

    Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno

    2012-01-01

    Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356

  14. Causal relations and feature similarity in children's inductive reasoning.

    PubMed

    Hayes, Brett K; Thompson, Susan P

    2007-08-01

    Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations as a basis for property induction, although the proportion of causal inferences increased with age. Subsequent experiments pitted causal relations against featural similarity in induction. It was found that adults and 8-year-olds, but not 5-year-olds, preferred shared causal relations over strong featural similarity as a basis for induction. The implications for models of inductive reasoning and development are discussed.

  15. [Causality link in criminal law: role of epidemiology].

    PubMed

    Zocchetti, C; Riboldi, L

    2003-01-01

    This paper focusses on the role of epidemiology in demonstrating causality in criminal trials of toxic tort litigation. First of all, consideration is given of the specificity of the criminal trial and of the role of the epidemiologist as expert witness. As a second step the concept of causality is examined separating general from specific (individual level) causality. As regards general causality, strategies based on some criteria (example: Bradford-Hill criteria) are contrasted with approaches that do not consider causality a matter of science but one of health policy; and specific methods frequently used (meta-analysis, risk assessment, International Boards evaluation,....) are discussed, with special reference to the adoption of high-level standards and to the context of cross-examination. As regards individual level causality the difficulties of the epidemiologic approach to such evaluation are stressed, with special reference to topics like expected value, attributable risk, and probability of causation. All examples are taken from Italian court trials. A general comment on the difficulties of using the criminal trial (dominated by the "but for" rule) for toxic tort litigation and on the opportunity to switch to trials (civil, administrative) with less stringent causal rules ("more probable than not") is offered, with a consideration also of what are called "class actions".

  16. Pathway Analysis and the Search for Causal Mechanisms

    ERIC Educational Resources Information Center

    Weller, Nicholas; Barnes, Jeb

    2016-01-01

    The study of causal mechanisms interests scholars across the social sciences. Case studies can be a valuable tool in developing knowledge and hypotheses about how causal mechanisms function. The usefulness of case studies in the search for causal mechanisms depends on effective case selection, and there are few existing guidelines for selecting…

  17. Causal inference in biology networks with integrated belief propagation.

    PubMed

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  18. A general, multivariate definition of causal effects in epidemiology.

    PubMed

    Flanders, W Dana; Klein, Mitchel

    2015-07-01

    Population causal effects are often defined as contrasts of average individual-level counterfactual outcomes, comparing different exposure levels. Common examples include causal risk difference and risk ratios. These and most other examples emphasize effects on disease onset, a reflection of the usual epidemiological interest in disease occurrence. Exposure effects on other health characteristics, such as prevalence or conditional risk of a particular disability, can be important as well, but contrasts involving these other measures may often be dismissed as non-causal. For example, an observed prevalence ratio might often viewed as an estimator of a causal incidence ratio and hence subject to bias. In this manuscript, we provide and evaluate a definition of causal effects that generalizes those previously available. A key part of the generalization is that contrasts used in the definition can involve multivariate, counterfactual outcomes, rather than only univariate outcomes. An important consequence of our generalization is that, using it, one can properly define causal effects based on a wide variety of additional measures. Examples include causal prevalence ratios and differences and causal conditional risk ratios and differences. We illustrate how these additional measures can be useful, natural, easily estimated, and of public health importance. Furthermore, we discuss conditions for valid estimation of each type of causal effect, and how improper interpretation or inferences for the wrong target population can be sources of bias.

  19. Challenges to inferring causality from viral information dispersion in dynamic social networks

    NASA Astrophysics Data System (ADS)

    Ternovski, John

    2014-06-01

    Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.

  20. Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy

    PubMed Central

    Li, Zhaohui; Li, Xiaoli

    2013-01-01

    Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662

  1. Perceived causal relations between anxiety, posttraumatic stress and depression: extension to moderation, mediation, and network analysis.

    PubMed

    Frewen, Paul A; Schmittmann, Verena D; Bringmann, Laura F; Borsboom, Denny

    2013-01-01

    Previous research demonstrates that posttraumatic memory reexperiencing, depression, anxiety, and guilt-shame are frequently co-occurring problems that may be causally related. The present study utilized Perceived Causal Relations (PCR) scaling in order to assess participants' own attributions concerning whether and to what degree these co-occurring problems may be causally interrelated. 288 young adults rated the frequency and respective PCR scores associating their symptoms of posttraumatic reexperiencing, depression, anxiety, and guilt-shame. PCR scores were found to moderate associations between the frequency of posttraumatic memory reexperiencing, depression, anxiety, and guilt-shame. Network analyses showed that the number of feedback loops between PCR scores was positively associated with symptom frequencies. Results tentatively support the interpretation of PCR scores as moderators of the association between different psychological problems, and lend support to the hypothesis that increased symptom frequencies are observed in the presence of an increased number of causal feedback loops between symptoms. Additionally, a perceived causal role for the reexperiencing of traumatic memories in exacerbating emotional disturbance was identified.

  2. Resting-state brain networks revealed by granger causal connectivity in frogs.

    PubMed

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-10-15

    Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Causal Mediation Analysis: Warning! Assumptions Ahead

    ERIC Educational Resources Information Center

    Keele, Luke

    2015-01-01

    In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…

  4. Time-varying causal network of the Korean financial system based on firm-specific risk premiums

    NASA Astrophysics Data System (ADS)

    Song, Jae Wook; Ko, Bonggyun; Cho, Poongjin; Chang, Woojin

    2016-09-01

    The aim of this paper is to investigate the Korean financial system based on time-varying causal network. We discover many stylized facts by utilizing the firm-specific risk premiums for measuring the causality direction from a firm to firm. At first, we discover that the interconnectedness of causal network is affected by the outbreak of financial events; the co-movement of firm-specific risk premium is strengthened after each positive event, and vice versa. Secondly, we find that the major sector of the Korean financial system is the Depositories, and the financial reform in June-2011 achieves its purpose by weakening the power of risk-spillovers of Broker-Dealers. Thirdly, we identify that the causal network is a small-world network with scale-free topology where the power-law exponents of out-Degree and negative event are more significant than those of in-Degree and positive event. Lastly, we discuss that the current aspects of causal network are closely related to the long-term future scenario of the KOSPI Composite index where the direction and stability are significantly affected by the power of risk-spillovers and the power-law exponents of degree distributions, respectively.

  5. Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses.

    PubMed

    Shim, Woo H; Baek, Kwangyeol; Kim, Jeong Kon; Chae, Yongwook; Suh, Ji-Yeon; Rosen, Bruce R; Jeong, Jaeseung; Kim, Young R

    2013-01-01

    Resting-state functional MRI (fMRI) has emerged as an important method for assessing neural networks, enabling extensive connectivity analyses between multiple brain regions. Among the analysis techniques proposed, partial directed coherence (PDC) provides a promising tool to unveil causal connectivity networks in the frequency domain. Using the MRI time series obtained from the rat sensorimotor system, we applied PDC analysis to determine the frequency-dependent causality networks. In particular, we compared in vivo and postmortem conditions to establish the statistical significance of directional PDC values. Our results demonstrate that two distinctive frequency populations drive the causality networks in rat; significant, high-frequency causal connections clustered in the range of 0.2-0.4 Hz, and the frequently documented low-frequency connections <0.15 Hz. Frequency-dependence and directionality of the causal connection are characteristic between sensorimotor regions, implying the functional role of frequency bands to transport specific resting-state signals. In particular, whereas both intra- and interhemispheric causal connections between heterologous sensorimotor regions are robust over all frequency levels, the bilaterally homologous regions are interhemispherically linked mostly via low-frequency components. We also discovered a significant, frequency-independent, unidirectional connection from motor cortex to thalamus, indicating dominant cortical inputs to the thalamus in the absence of external stimuli. Additionally, to address factors underlying the measurement error, we performed signal simulations and revealed that the interactive MRI system noise alone is a likely source of the inaccurate PDC values. This work demonstrates technical basis for the PDC analysis of resting-state fMRI time series and the presence of frequency-dependent causality networks in the sensorimotor system.

  6. Testing the Causal Direction of Mediation Effects in Randomized Intervention Studies.

    PubMed

    Wiedermann, Wolfgang; Li, Xintong; von Eye, Alexander

    2018-05-21

    In a recent update of the standards for evidence in research on prevention interventions, the Society of Prevention Research emphasizes the importance of evaluating and testing the causal mechanism through which an intervention is expected to have an effect on an outcome. Mediation analysis is commonly applied to study such causal processes. However, these analytic tools are limited in their potential to fully understand the role of theorized mediators. For example, in a design where the treatment x is randomized and the mediator (m) and the outcome (y) are measured cross-sectionally, the causal direction of the hypothesized mediator-outcome relation is not uniquely identified. That is, both mediation models, x → m → y or x → y → m, may be plausible candidates to describe the underlying intervention theory. As a third explanation, unobserved confounders can still be responsible for the mediator-outcome association. The present study introduces principles of direction dependence which can be used to empirically evaluate these competing explanatory theories. We show that, under certain conditions, third higher moments of variables (i.e., skewness and co-skewness) can be used to uniquely identify the direction of a mediator-outcome relation. Significance procedures compatible with direction dependence are introduced and results of a simulation study are reported that demonstrate the performance of the tests. An empirical example is given for illustrative purposes and a software implementation of the proposed method is provided in SPSS.

  7. How to Be Causal: Time, Spacetime and Spectra

    ERIC Educational Resources Information Center

    Kinsler, Paul

    2011-01-01

    I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…

  8. Quantum probability assignment limited by relativistic causality.

    PubMed

    Han, Yeong Deok; Choi, Taeseung

    2016-03-14

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment.

  9. On the road toward formal reasoning: reasoning with factual causal and contrary-to-fact causal premises during early adolescence.

    PubMed

    Markovits, Henry

    2014-12-01

    Understanding the development of conditional (if-then) reasoning is critical for theoretical and educational reasons. Here we examined the hypothesis that there is a developmental transition between reasoning with true and contrary-to-fact (CF) causal conditionals. A total of 535 students between 11 and 14 years of age received priming conditions designed to encourage use of either a true or CF alternatives generation strategy and reasoning problems with true causal and CF causal premises (with counterbalanced order). Results show that priming had no effect on reasoning with true causal premises. By contrast, priming with CF alternatives significantly improved logical reasoning with CF premises. Analysis of the effect of order showed that reasoning with CF premises reduced logical responding among younger students but had no effect among older students. Results support the idea that there is a transition in the reasoning processes in this age range associated with the nature of the alternatives generation process required for logical reasoning with true and CF causal conditionals. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Category transfer in sequential causal learning: the unbroken mechanism hypothesis.

    PubMed

    Hagmayer, York; Meder, Björn; von Sydow, Momme; Waldmann, Michael R

    2011-07-01

    The goal of the present set of studies is to explore the boundary conditions of category transfer in causal learning. Previous research has shown that people are capable of inducing categories based on causal learning input, and they often transfer these categories to new causal learning tasks. However, occasionally learners abandon the learned categories and induce new ones. Whereas previously it has been argued that transfer is only observed with essentialist categories in which the hidden properties are causally relevant for the target effect in the transfer relation, we here propose an alternative explanation, the unbroken mechanism hypothesis. This hypothesis claims that categories are transferred from a previously learned causal relation to a new causal relation when learners assume a causal mechanism linking the two relations that is continuous and unbroken. The findings of two causal learning experiments support the unbroken mechanism hypothesis. Copyright © 2011 Cognitive Science Society, Inc.

  11. Compact Representations of Extended Causal Models

    ERIC Educational Resources Information Center

    Halpern, Joseph Y.; Hitchcock, Christopher

    2013-01-01

    Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…

  12. Stratified exact tests for the weak causal null hypothesis in randomized trials with a binary outcome.

    PubMed

    Chiba, Yasutaka

    2017-09-01

    Fisher's exact test is commonly used to compare two groups when the outcome is binary in randomized trials. In the context of causal inference, this test explores the sharp causal null hypothesis (i.e. the causal effect of treatment is the same for all subjects), but not the weak causal null hypothesis (i.e. the causal risks are the same in the two groups). Therefore, in general, rejection of the null hypothesis by Fisher's exact test does not mean that the causal risk difference is not zero. Recently, Chiba (Journal of Biometrics and Biostatistics 2015; 6: 244) developed a new exact test for the weak causal null hypothesis when the outcome is binary in randomized trials; the new test is not based on any large sample theory and does not require any assumption. In this paper, we extend the new test; we create a version of the test applicable to a stratified analysis. The stratified exact test that we propose is general in nature and can be used in several approaches toward the estimation of treatment effects after adjusting for stratification factors. The stratified Fisher's exact test of Jung (Biometrical Journal 2014; 56: 129-140) tests the sharp causal null hypothesis. This test applies a crude estimator of the treatment effect and can be regarded as a special case of our proposed exact test. Our proposed stratified exact test can be straightforwardly extended to analysis of noninferiority trials and to construct the associated confidence interval. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Causal Responsibility and Counterfactuals

    PubMed Central

    Lagnado, David A; Gerstenberg, Tobias; Zultan, Ro'i

    2013-01-01

    How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in multiple agent contexts. We draw on the structural model account of actual causation (e.g., Halpern & Pearl, 2005) and its extension to responsibility judgments (Chockler & Halpern, 2004). We review the main theoretical and empirical issues that arise from this literature and propose a novel model of intuitive judgments of responsibility. This model is a function of both pivotality (whether an agent made a difference to the outcome) and criticality (how important the agent is perceived to be for the outcome, before any actions are taken). The model explains empirical results from previous studies and is supported by a new experiment that manipulates both pivotality and criticality. We also discuss possible extensions of this model to deal with a broader range of causal situations. Overall, our approach emphasizes the close interrelations between causality, counterfactuals, and responsibility attributions. PMID:23855451

  14. Causality networks from multivariate time series and application to epilepsy.

    PubMed

    Siggiridou, Elsa; Koutlis, Christos; Tsimpiris, Alkiviadis; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2015-08-01

    Granger causality and variants of this concept allow the study of complex dynamical systems as networks constructed from multivariate time series. In this work, a large number of Granger causality measures used to form causality networks from multivariate time series are assessed. For this, realizations on high dimensional coupled dynamical systems are considered and the performance of the Granger causality measures is evaluated, seeking for the measures that form networks closest to the true network of the dynamical system. In particular, the comparison focuses on Granger causality measures that reduce the state space dimension when many variables are observed. Further, the linear and nonlinear Granger causality measures of dimension reduction are compared to a standard Granger causality measure on electroencephalographic (EEG) recordings containing episodes of epileptiform discharges.

  15. The causal structure of utility conditionals.

    PubMed

    Bonnefon, Jean-François; Sloman, Steven A

    2013-01-01

    The psychology of reasoning is increasingly considering agents' values and preferences, achieving greater integration with judgment and decision making, social cognition, and moral reasoning. Some of this research investigates utility conditionals, ''if p then q'' statements where the realization of p or q or both is valued by some agents. Various approaches to utility conditionals share the assumption that reasoners make inferences from utility conditionals based on the comparison between the utility of p and the expected utility of q. This article introduces a new parameter in this analysis, the underlying causal structure of the conditional. Four experiments showed that causal structure moderated utility-informed conditional reasoning. These inferences were strongly invited when the underlying structure of the conditional was causal, and significantly less so when the underlying structure of the conditional was diagnostic. This asymmetry was only observed for conditionals in which the utility of q was clear, and disappeared when the utility of q was unclear. Thus, an adequate account of utility-informed inferences conditional reasoning requires three components: utility, probability, and causal structure. Copyright © 2012 Cognitive Science Society, Inc.

  16. Non-Western students' causal reasoning about biologically adaptive changes in humans, other animals and plants: instructional and curricular implications

    NASA Astrophysics Data System (ADS)

    Mbajiorgu, Ngozika; Anidu, Innocent

    2017-06-01

    Senior secondary school students (N = 360), 14- to 18-year-olds, from the Igbo culture of eastern Nigeria responded to a questionnaire requiring them to give causal explanations of biologically adaptive changes in humans, other animals and plants. A student subsample (n = 36) was, subsequently, selected for in-depth interviews. Significant differences were found between prompts within the prompt categories, suggesting item feature effects. However, the most coherent pattern was found within the plant category as patterns differed for the mechanistic proximate (MP) reasoning category only. Patterns also differed highly significantly between the prompt categories, with patterns for teleology, MP, mechanistic ultimate and don't know categories similar for plants and other animals but different for the human category. Both urban and rural students recognise commonalities in causality between the three prompt categories, in that their preferences for causal explanations were similar across four reasoning categories. The rural students, however, were more likely than their urban counterparts to give multiple causal explanations in the span of a single response and less likely to attribute causal agency to God. Two factors, religious belief and language, for all the students; and one factor, ecological closeness to nature, for rural students were suspected to have produced these patterns.

  17. Causal Analysis/Diagnosis Decision Information System (CADDIS)

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems to determine the cause of contamination.

  18. Causal Modeling of Secondary Science Students' Intentions to Enroll in Physics.

    ERIC Educational Resources Information Center

    Crawley, Frank E.; Black, Carolyn B.

    1992-01-01

    Reports a study using the causal modeling method to verify underlying causes of student interest in enrolling in physics as predicted by the theory of planned behavior. Families were identified as major referents in the social support system for physics enrollment. Course and extracurricular conflicts and fear of failure were primary beliefs…

  19. On the origin of Hill's causal criteria.

    PubMed

    Morabia, A

    1991-09-01

    The rules to assess causation formulated by the eighteenth century Scottish philosopher David Hume are compared to Sir Austin Bradford Hill's causal criteria. The strength of the analogy between Hume's rules and Hill's causal criteria suggests that, irrespective of whether Hume's work was known to Hill or Hill's predecessors, Hume's thinking expresses a point of view still widely shared by contemporary epidemiologists. The lack of systematic experimental proof to causal inferences in epidemiology may explain the analogy of Hume's and Hill's, as opposed to Popper's, logic.

  20. Dual Causality and the Autonomy of Biology.

    PubMed

    Bock, Walter J

    2017-03-01

    Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.

  1. Can chance cause cancer? A causal consideration.

    PubMed

    Stensrud, Mats Julius; Strohmaier, Susanne; Valberg, Morten; Aalen, Odd Olai

    2017-04-01

    The role of randomness, environment and genetics in cancer development is debated. We approach the discussion by using the potential outcomes framework for causal inference. By briefly considering the underlying assumptions, we suggest that the antagonising views arise due to estimation of substantially different causal effects. These effects may be hard to interpret, and the results cannot be immediately compared. Indeed, it is not clear whether it is possible to define a causal effect of chance at all. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Causal "cancer personality" attribution--an expression of maladaptive coping with illness?].

    PubMed

    Faller, H; Lang, H; Schilling, S

    1996-01-01

    In psycho-oncology, the concept of a "cancer-prone personality" has gained some attention. This notion means that persons who try to stay pseudo-normal in spite of severe life stress, suppress negative emotions, particularly anger, and sacrifice themselves for other people without uttering any personal demands, are at a high risk to develop cancer. However, it has been demonstrated by previous research that features of the cancer-prone personality could only be found if the ill person was convinced to suffer from cancer, irrespective of what the factual diagnosis was. Thus it can be concluded that at least some aspects of the so called cancer personality might be the results of coping with the belief of having cancer. The present study had the objective to describe causal attributions to psychosocial factors in cancer patients, and to find out if these were connected with emotional state and coping. N = 120 newly diagnosed lung cancer patients were included in the study. The instruments consisted of a semi-structured interview, a check-list of subjective causal factors, self-reports and interviewer ratings on emotional state and standardised questionnaires about depression and coping. Patients who made a psychosocial causal attribution proved to suffer from greater emotional distress, to be more depressed and less hopeful than other patients. This difference seemed to be mediated by a depressive way of coping with the illness (brooding, wrangling). Thus, an attribution of the illness to psychological factors seems indicative of a maladaptive way of coping with illness. This result is supported by similar findings of previous research. The question is put up to discussion if the psychosomatic concept of a cancer personality may reflect patients' subjective theories which in turn may be the expression of their depressive coping modes.

  3. Determining Directional Dependency in Causal Associations

    ERIC Educational Resources Information Center

    Pornprasertmanit, Sunthud; Little, Todd D.

    2012-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of…

  4. Study on localization of epileptic focus based on causality analysis

    NASA Astrophysics Data System (ADS)

    Shan, Shaojie; Li, Hanjun; Tang, Xiaoying

    2018-05-01

    In this paper, we considered that the ECoG signal contain abundant pathological information, which can be used for the localization of epileptic focus before epileptic seizures in 1-2 mins. In order to validate this hypothesis, cutting the ECoG into three stages: before seizure, seizure and after seizure, then through using Granger causality algorithm, PSI causality algorithm, Transfer Entropy causality algorithm at different stages of epilepsy ECoG, we were able to do the causality analysis of ECoG data. The results have shown that there is significant difference with the causality value of the epileptic focus area in before seizure, seizure and after seizure. An increase is in the causality value of each channel during epileptic seizure. After epileptic seizure, the causality between the channels showed a downward trend, but the difference was not obvious. The difference of the causality provides a reliable technical method to assist the clinical diagnosis of epileptic focus.

  5. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological

  6. Causal strength induction from time series data.

    PubMed

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. The temporal stability and predictive validity of pupils' causal attributions for difficult classroom behaviour.

    PubMed

    Lambert, Nathan; Miller, Andy

    2010-12-01

    Recent studies have investigated the causal attributions for difficult pupil behaviour made by teachers, pupils, and parents but none have investigated the temporal stability or predictive validity of these attributions. This study examines the causal attributions made for difficult classroom behaviour by students on two occasions 30 months apart. The longitudinal stability of these attributions is considered as is the predictive validity of the first set of attributions in relation to teachers' later judgments about individual students' behaviour. Two hundred and seventeen secondary school age pupils (114 males, 103 females) provided data on the two occasions. Teachers also rated each student's behaviour at the two times. A questionnaire listing 63 possible causes of classroom misbehaviour was delivered to pupils firstly when they were in Year 7 (aged 11-12) and then again, 30 months later. Responses were analysed through exploratory factor analysis (EFA). Additionally, teachers were asked to rate the standard of behaviour of each of the students on the two occasions. EFA of the Years 7 and 10 data indicated that pupils' attributions yielded broadly similar five-factor models with the perceived relative importance of these factors remaining the same. Analysis also revealed a predictive relationship between pupils' attributions regarding the factor named culture of misbehaviour in Year 7, and teachers' judgments of their standard of behaviour in Year 10. The present study suggests that young adolescents' causal attributions for difficult classroom behaviour remain stable over time and are predictive of teachers' later judgments about their behaviour.

  8. Processing of Positive-Causal and Negative-Causal Coherence Relations in Primary School Children and Adults: A Test of the Cumulative Cognitive Complexity Approach in German

    ERIC Educational Resources Information Center

    Knoepke, Julia; Richter, Tobias; Isberner, Maj-Britt; Naumann, Johannes; Neeb, Yvonne; Weinert, Sabine

    2017-01-01

    Establishing local coherence relations is central to text comprehension. Positive-causal coherence relations link a cause and its consequence, whereas negative-causal coherence relations add a contrastive meaning (negation) to the causal link. According to the cumulative cognitive complexity approach, negative-causal coherence relations are…

  9. Zika Virus Infection and Microcephaly: Evidence for a Causal Link.

    PubMed

    Wang, Jin-Na; Ling, Feng

    2016-10-20

    Zika virus (ZIKV) is a flavivirus related to the Dengue, yellow fever and West Nile viruses. Since the explosive outbreaks of ZIKV in Latin America in 2015, a sudden increase in the number of microcephaly cases has been observed in infants of women who were pregnant when they contracted the virus. The severity of this condition raises grave concerns, and extensive studies on the possible link between ZIKV infection and microcephaly have been conducted. There is substantial evidence suggesting that there is a causal link between ZIKV and microcephaly, however, future studies are warranted to solidify this association. To summarize the most recent evidence on this issue and provide perspectives for future studies, we reviewed the literature to identify existing evidence of the causal link between ZIKV infection and microcephaly within research related to the epidemics, laboratory diagnosis, and possible mechanisms.

  10. Explaining quantum correlations through evolution of causal models

    NASA Astrophysics Data System (ADS)

    Harper, Robin; Chapman, Robert J.; Ferrie, Christopher; Granade, Christopher; Kueng, Richard; Naoumenko, Daniel; Flammia, Steven T.; Peruzzo, Alberto

    2017-04-01

    We propose a framework for the systematic and quantitative generalization of Bell's theorem using causal networks. We first consider the multiobjective optimization problem of matching observed data while minimizing the causal effect of nonlocal variables and prove an inequality for the optimal region that both strengthens and generalizes Bell's theorem. To solve the optimization problem (rather than simply bound it), we develop a genetic algorithm treating as individuals causal networks. By applying our algorithm to a photonic Bell experiment, we demonstrate the trade-off between the quantitative relaxation of one or more local causality assumptions and the ability of data to match quantum correlations.

  11. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  12. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients.

    PubMed

    Bonnet, Crystel; Riahi, Zied; Chantot-Bastaraud, Sandra; Smagghe, Luce; Letexier, Mélanie; Marcaillou, Charles; Lefèvre, Gaëlle M; Hardelin, Jean-Pierre; El-Amraoui, Aziz; Singh-Estivalet, Amrit; Mohand-Saïd, Saddek; Kohl, Susanne; Kurtenbach, Anne; Sliesoraityte, Ieva; Zobor, Ditta; Gherbi, Souad; Testa, Francesco; Simonelli, Francesca; Banfi, Sandro; Fakin, Ana; Glavač, Damjan; Jarc-Vidmar, Martina; Zupan, Andrej; Battelino, Saba; Martorell Sampol, Loreto; Claveria, Maria Antonia; Catala Mora, Jaume; Dad, Shzeena; Møller, Lisbeth B; Rodriguez Jorge, Jesus; Hawlina, Marko; Auricchio, Alberto; Sahel, José-Alain; Marlin, Sandrine; Zrenner, Eberhart; Audo, Isabelle; Petit, Christine

    2016-12-01

    Usher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods.

  13. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients

    PubMed Central

    Bonnet, Crystel; Riahi, Zied; Chantot-Bastaraud, Sandra; Smagghe, Luce; Letexier, Mélanie; Marcaillou, Charles; Lefèvre, Gaëlle M; Hardelin, Jean-Pierre; El-Amraoui, Aziz; Singh-Estivalet, Amrit; Mohand-Saïd, Saddek; Kohl, Susanne; Kurtenbach, Anne; Sliesoraityte, Ieva; Zobor, Ditta; Gherbi, Souad; Testa, Francesco; Simonelli, Francesca; Banfi, Sandro; Fakin, Ana; Glavač, Damjan; Jarc-Vidmar, Martina; Zupan, Andrej; Battelino, Saba; Martorell Sampol, Loreto; Claveria, Maria Antonia; Catala Mora, Jaume; Dad, Shzeena; Møller, Lisbeth B; Rodriguez Jorge, Jesus; Hawlina, Marko; Auricchio, Alberto; Sahel, José-Alain; Marlin, Sandrine; Zrenner, Eberhart; Audo, Isabelle; Petit, Christine

    2016-01-01

    Usher syndrome (USH), the most prevalent cause of hereditary deafness–blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1–3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods. PMID:27460420

  14. Morphological and Molecular Identification of the Causal Agent of Anthracnose Disease of Avocado in Kenya

    PubMed Central

    Monda, E.; Cheruiyot, R. C.; Mbaka, J.; Alakonya, A.

    2018-01-01

    Anthracnose disease of avocado contributes to a huge loss of avocado fruits due to postharvest rot in Kenya. The causal agent of this disease has not been clear but presumed to be Colletotrichum gloeosporioides as reported in other regions where avocado is grown. The fungus mainly infects fruits causing symptoms such as small blackish spots, “pepper spots,” and black spots with raised margin which coalesce as infection progresses. Due to economic losses associated with the disease and emerging information of other species of fungi as causal agents of the disease, this study was aimed at identifying causal agent(s) of the disease. A total of 80 fungal isolates were collected from diseased avocado fruits in Murang'a County, the main avocado growing region in Kenya. Forty-six isolates were morphologically identified as Colletotrichum spp. based on their cultural characteristics, mainly whitish, greyish, and creamish colour and cottony/velvety mycelia on the top side of the culture and greyish cream with concentric zonation on the reverse side. Their spores were straight with rounded end and nonseptate. Thirty-four isolates were identified as Pestalotiopsis spp. based on their cultural characteristics: whitish grey mycelium with black fruiting structure on the upper side and greyish black one on the lower side and septate spores with 3-4 septa and 2 or 3 appendages at one end. Further molecular studies using ITS indicated Colletotrichum gloeosporioides, Colletotrichum boninense, and Pestalotiopsis microspora as the causal agents of anthracnose disease in avocado. However, with this being the first report, there is a need to conduct further studies to establish whether there is coinfection or any interaction thereof. PMID:29681943

  15. Morphological and Molecular Identification of the Causal Agent of Anthracnose Disease of Avocado in Kenya.

    PubMed

    Kimaru, S K; Monda, E; Cheruiyot, R C; Mbaka, J; Alakonya, A

    2018-01-01

    Anthracnose disease of avocado contributes to a huge loss of avocado fruits due to postharvest rot in Kenya. The causal agent of this disease has not been clear but presumed to be Colletotrichum gloeosporioides as reported in other regions where avocado is grown. The fungus mainly infects fruits causing symptoms such as small blackish spots, "pepper spots," and black spots with raised margin which coalesce as infection progresses. Due to economic losses associated with the disease and emerging information of other species of fungi as causal agents of the disease, this study was aimed at identifying causal agent(s) of the disease. A total of 80 fungal isolates were collected from diseased avocado fruits in Murang'a County, the main avocado growing region in Kenya. Forty-six isolates were morphologically identified as Colletotrichum spp. based on their cultural characteristics, mainly whitish, greyish, and creamish colour and cottony/velvety mycelia on the top side of the culture and greyish cream with concentric zonation on the reverse side. Their spores were straight with rounded end and nonseptate. Thirty-four isolates were identified as Pestalotiopsis spp. based on their cultural characteristics: whitish grey mycelium with black fruiting structure on the upper side and greyish black one on the lower side and septate spores with 3-4 septa and 2 or 3 appendages at one end. Further molecular studies using ITS indicated Colletotrichum gloeosporioides , Colletotrichum boninense , and Pestalotiopsis microspora as the causal agents of anthracnose disease in avocado. However, with this being the first report, there is a need to conduct further studies to establish whether there is coinfection or any interaction thereof.

  16. Causal Attribution and Illness Perception: A Cross-Sectional Study in Mexican Patients with Psychosis

    PubMed Central

    Gómez-de-Regil, Lizzette

    2014-01-01

    Health psychology researchers have begun to focus greater attention on people's beliefs about health/illness since these beliefs can clearly affect behavior. This cross-sectional study aimed at (1) identifying the most common factors psychotic patients attribute their illness to and (2) assessing the association between causal attribution and illness perception (cognitive, emotional, and comprehensibility dimensions). Sixty-two patients (56.5% females) who had been treated for psychosis at a public psychiatric hospital in Mexico answered the Angermeyer and Klusmann Illness Attribution Scale and the Brief Illness Perception Questionnaire. Results showed that most patients attributed psychosis onset to social factors and that attribution to their personality might have an overwhelmingly negative effect on their lives. Acknowledging psychotic patient attributional beliefs and considering them in clinical practice could improve treatment efficacy and overall recovery success. This is particularly important in psychosis, since symptoms are often severe and/or persistent and require long-term treatment. PMID:25525628

  17. Causal inference from observational data.

    PubMed

    Listl, Stefan; Jürges, Hendrik; Watt, Richard G

    2016-10-01

    Randomized controlled trials have long been considered the 'gold standard' for causal inference in clinical research. In the absence of randomized experiments, identification of reliable intervention points to improve oral health is often perceived as a challenge. But other fields of science, such as social science, have always been challenged by ethical constraints to conducting randomized controlled trials. Methods have been established to make causal inference using observational data, and these methods are becoming increasingly relevant in clinical medicine, health policy and public health research. This study provides an overview of state-of-the-art methods specifically designed for causal inference in observational data, including difference-in-differences (DiD) analyses, instrumental variables (IV), regression discontinuity designs (RDD) and fixed-effects panel data analysis. The described methods may be particularly useful in dental research, not least because of the increasing availability of routinely collected administrative data and electronic health records ('big data'). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Processing of positive-causal and negative-causal coherence relations in primary school children and adults: a test of the cumulative cognitive complexity approach in German.

    PubMed

    Knoepke, Julia; Richter, Tobias; Isberner, Maj-Britt; Naumann, Johannes; Neeb, Yvonne; Weinert, Sabine

    2017-03-01

    Establishing local coherence relations is central to text comprehension. Positive-causal coherence relations link a cause and its consequence, whereas negative-causal coherence relations add a contrastive meaning (negation) to the causal link. According to the cumulative cognitive complexity approach, negative-causal coherence relations are cognitively more complex than positive-causal ones. Therefore, they require greater cognitive effort during text comprehension and are acquired later in language development. The present cross-sectional study tested these predictions for German primary school children from Grades 1 to 4 and adults in reading and listening comprehension. Accuracy data in a semantic verification task support the predictions of the cumulative cognitive complexity approach. Negative-causal coherence relations are cognitively more demanding than positive-causal ones. Moreover, our findings indicate that children's comprehension of negative-causal coherence relations continues to develop throughout the course of primary school. Findings are discussed with respect to the generalizability of the cumulative cognitive complexity approach to German.

  19. In Support of Clinical Case Reports: A System of Causality Assessment

    PubMed Central

    Hamre, Harald J.; Kienle, Gunver S.

    2013-01-01

    The usefulness of clinical research depends on an assessment of causality. This assessment determines what constitutes clinical evidence. Case reports are an example of evidence that is frequently overlooked because it is believed they cannot address causal links between treatment and outcomes. This may be a mistake. Clarity on the topic of causality and its assessment will be of benefit for researchers and clinicians. This article outlines an overall system of causality and causality assessment. The system proposed involves two dimensions: horizontal and vertical; each of these dimensions consists of three different types of causality and three corresponding types of causality assessment. Included in this system are diverse forms of case causality illustrated with examples from everyday life and clinical medicine. Assessing case causality can complement conventional clinical research in an era of personalized medicine. PMID:24416665

  20. Modelling the impact of causal and non-causal factors on disruption duration for Toronto's subway system: An exploratory investigation using hazard modelling.

    PubMed

    Louie, Jacob; Shalaby, Amer; Habib, Khandker Nurul

    2017-01-01

    Most investigations of incident-related delay duration in the transportation context are restricted to highway traffic, with little attention given to delays due to transit service disruptions. Studies of transit-based delay duration are also considerably less comprehensive than their highway counterparts with respect to examining the effects of non-causal variables on the delay duration. However, delays due to incidents in public transit service can have serious consequences on the overall urban transportation system due to the pivotal and vital role of public transit. The ability to predict the durations of various types of transit system incidents is indispensable for better management and mitigation of service disruptions. This paper presents a detailed investigation on incident delay durations in Toronto's subway system over the year 2013, focusing on the effects of the incidents' location and time, the train-type involved, and the non-adherence to proper recovery procedures. Accelerated Failure Time (AFT) hazard models are estimated to investigate the relationship between these factors and the resulting delay duration. The empirical investigation reveals that incident types that impact both safety and operations simultaneously generally have longer expected delays than incident types that impact either safety or operations alone. Incidents at interchange stations are cleared faster than incidents at non-interchange stations. Incidents during peak periods have nearly the same delay durations as off-peak incidents. The estimated models are believed to be useful tools in predicting the relative magnitude of incident delay duration for better management of subway operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Drug and herb induced liver injury: Council for International Organizations of Medical Sciences scale for causality assessment

    PubMed Central

    Teschke, Rolf; Wolff, Albrecht; Frenzel, Christian; Schwarzenboeck, Alexander; Schulze, Johannes; Eickhoff, Axel

    2014-01-01

    Causality assessment of suspected drug induced liver injury (DILI) and herb induced liver injury (HILI) is hampered by the lack of a standardized approach to be used by attending physicians and at various subsequent evaluating levels. The aim of this review was to analyze the suitability of the liver specific Council for International Organizations of Medical Sciences (CIOMS) scale as a standard tool for causality assessment in DILI and HILI cases. PubMed database was searched for the following terms: drug induced liver injury; herb induced liver injury; DILI causality assessment; and HILI causality assessment. The strength of the CIOMS lies in its potential as a standardized scale for DILI and HILI causality assessment. Other advantages include its liver specificity and its validation for hepatotoxicity with excellent sensitivity, specificity and predictive validity, based on cases with a positive reexposure test. This scale allows prospective collection of all relevant data required for a valid causality assessment. It does not require expert knowledge in hepatotoxicity and its results may subsequently be refined. Weaknesses of the CIOMS scale include the limited exclusion of alternative causes and qualitatively graded risk factors. In conclusion, CIOMS appears to be suitable as a standard scale for attending physicians, regulatory agencies, expert panels and other scientists to provide a standardized, reproducible causality assessment in suspected DILI and HILI cases, applicable primarily at all assessing levels involved. PMID:24653791

  2. The complex spine: the multidimensional system of causal pathways for low-back disorders.

    PubMed

    Marras, William S

    2012-12-01

    The aim of this study was to examine the logic behind the knowledge of low-back problem causal pathways. Low-back pain and low-back disorders (LBDs) continue to represent the major musculoskeletal risk problem in the workplace,with the prevalence and costs of such disorders increasing over time. In recent years, there has been much criticism of the ability of ergonomics methods to control the risk of LBDs. Logical assessment of the systems logic associated with our understanding and prevention of LBDs. Current spine loading as well as spine tolerance research efforts are bringing the field to the point where there is a better systems understanding of the inextricable link between the musculoskeletal system and the cognitive system. Loading is influenced by both the physical environment factors as well as mental demands, whereas tolerances are defined by both physical tissue tolerance and biochemically based tissue sensitivities to pain. However, the logic used in many low-back risk assessment tools may be overly simplistic, given what is understood about causal pathways. Current tools typically assess only load or position in a very cursory manner. Efforts must work toward satisfying both the physical environment and the cognitive environment for the worker if one is to reliably lower the risk of low-back problems. This systems representation of LBD development may serve as a guide to identify gaps in our understanding of LBDs.

  3. Attributions of Social Causality and Responsibility.

    DTIC Science & Technology

    The paper reviews relevant research on attributions of causality and attributions of responsibility . It is suggested that inconsistencies among...findings in the attribution literature may be due to discrepancies between the meaning of ’ responsibility ’ and ’causality’. Definitions for the two terms...opposed to responsibility attribution may serve to eliminate some of the problems in attribution research. (Author)

  4. Causal beliefs about intellectual disability and schizophrenia and their relationship with awareness of the condition and social distance.

    PubMed

    Scior, Katrina; Furnham, Adrian

    2016-09-30

    Evidence on mental illness stigma abounds yet little is known about public perceptions of intellectual disability. This study examined causal beliefs about intellectual disability and schizophrenia and how these relate to awareness of the condition and social distance. UK lay people aged 16+(N=1752), in response to vignettes depicting intellectual disability and schizophrenia, noted their interpretation of the difficulties, and rated their agreement with 22 causal and four social distance items. They were most likely to endorse environmental causes for intellectual disability, and biomedical factors, trauma and early disadvantage for schizophrenia. Accurate identification of both vignettes was associated with stronger endorsement of biomedical causes, alongside weaker endorsement of adversity, environmental and supernatural causes. Biomedical causal beliefs and social distance were negatively correlated for intellectual disability, but not for schizophrenia. Causal beliefs mediated the relationship between identification of the condition and social distance for both conditions. While all four types of causal beliefs acted as mediators for intellectual disability, for schizophrenia only supernatural causal beliefs did. Educating the public and promoting certain causal beliefs may be of benefit in tackling intellectual disability stigma, but for schizophrenia, other than tackling supernatural attributions, may be of little benefit in reducing stigma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Application of the revised WHO causality assessment protocol for adverse events following immunization in India.

    PubMed

    Singh, Awnish Kumar; Wagner, Abram L; Joshi, Jyoti; Carlson, Bradley F; Aneja, Satinder; Boulton, Matthew L

    2017-07-24

    In 2013, the World Health Organization (WHO) and CIOMS introduced a revised Causality Assessment Protocol (CAP) for Adverse Events following Immunization (AEFI). India is one of the first countries to adopt the revised CAP. This study describes the application of the revised CAP in India. We describe use of CAP by India's AEFI surveillance program to assess reported AEFIs. Using publicly available results of causality assessment for reported AEFIs, we describe the results by demographic characteristics and review the trends for the results of the causality assessment. A total of 771 reports of AEFI between January 2012 and January 2015, completed causality review by August 2016. The cases were reported as belonging to a cluster (54%; n=302), hospitalized or requiring hospitalization (41%; n=270), death (25%; n=195), or resulting in disability (0.4%; n=3). The most common combinations of vaccines leading to report of an AEFI were DTwP, Hepatitis B, and OPV (14%; n=106), followed by Pentavalent and OPV (13%; n=103), and JE vaccine (13%; n=101). Using the WHO Algorithm, most AEFI reports (89%, n=683) were classifiable. Classifiable AEFI reports included those with a consistent causal association (53%; n=407), an inconsistent causal association (29%; n=226) or were indeterminate causal association with implicated vaccine(s) or vaccination process (6.5%; n=50) (Fig. 1); 88 reports remained unclassifiable. The revised CAP was informative and useful in classifying most of the reviewed AEFIs in India. Unclassifiable reports could be minimized with more complete information from health records. Improvements in causality assessment, and standardization in reporting between countries, can improve public confidence in vaccine system performance and identify important vaccine safety signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data

    PubMed Central

    2017-01-01

    Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations. Findr outperformed existing methods on the DREAM5 Systems Genetics challenge and on the prediction of microRNA and transcription factor targets in human lymphoblastoid cells, while being nearly a million times faster. Findr is publicly available at https://github.com/lingfeiwang/findr. PMID:28821014

  7. Attention Deficit Hyperactivity Disorder Symptoms and Low Educational Achievement: Evidence Supporting A Causal Hypothesis.

    PubMed

    de Zeeuw, Eveline L; van Beijsterveldt, Catharina E M; Ehli, Erik A; de Geus, Eco J C; Boomsma, Dorret I

    2017-05-01

    Attention Deficit Hyperactivity Disorder (ADHD) and educational achievement are negatively associated in children. Here we test the hypothesis that there is a direct causal effect of ADHD on educational achievement. The causal effect is tested in a genetically sensitive design to exclude the possibility of confounding by a third factor (e.g. genetic pleiotropy) and by comparing educational achievement and secondary school career in children with ADHD who take or do not take methylphenidate. Data on ADHD symptoms, educational achievement and methylphenidate usage were available in a primary school sample of ~10,000 12-year-old twins from the Netherlands Twin Register. A substantial group also had longitudinal data at ages 7-12 years. ADHD symptoms were cross-sectionally and longitudinally, associated with lower educational achievement at age 12. More ADHD symptoms predicted a lower-level future secondary school career at age 14-16. In both the cross-sectional and longitudinal analyses, testing the direct causal effect of ADHD on educational achievement, while controlling for genetic and environmental factors, revealed an association between ADHD symptoms and educational achievement independent of genetic and environmental pleiotropy. These findings were confirmed in MZ twin intra-pair differences models, twins with more ADHD symptoms scored lower on educational achievement than their co-twins. Furthermore, children with ADHD medication, scored significantly higher on the educational achievement test than children with ADHD who did not use medication. Taken together, the results are consistent with a direct causal effect of ADHD on educational achievement.

  8. Causal learning and inference as a rational process: the new synthesis.

    PubMed

    Holyoak, Keith J; Cheng, Patricia W

    2011-01-01

    Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.

  9. Nonlinear parametric model for Granger causality of time series

    NASA Astrophysics Data System (ADS)

    Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2006-06-01

    The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.

  10. New Insights into Signed Path Coefficient Granger Causality Analysis

    PubMed Central

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an “excitatory” or “inhibitory” influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation. PMID:27833547

  11. New Insights into Signed Path Coefficient Granger Causality Analysis.

    PubMed

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.

  12. Inductive reasoning about causally transmitted properties.

    PubMed

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B

    2008-11-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.

  13. Neural correlates of continuous causal word generation.

    PubMed

    Wende, Kim C; Straube, Benjamin; Stratmann, Mirjam; Sommer, Jens; Kircher, Tilo; Nagels, Arne

    2012-09-01

    Causality provides a natural structure for organizing our experience and language. Causal reasoning during speech production is a distinct aspect of verbal communication, whose related brain processes are yet unknown. The aim of the current study was to investigate the neural mechanisms underlying the continuous generation of cause-and-effect coherences during overt word production. During fMRI data acquisition participants performed three verbal fluency tasks on identical cue words: A novel causal verbal fluency task (CVF), requiring the production of multiple reasons to a given cue word (e.g. reasons for heat are fire, sun etc.), a semantic (free association, FA, e.g. associations with heat are sweat, shower etc.) and a phonological control task (phonological verbal fluency, PVF, e.g. rhymes with heat are meat, wheat etc.). We found that, in contrast to PVF, both CVF and FA activated a left lateralized network encompassing inferior frontal, inferior parietal and angular regions, with further bilateral activation in middle and inferior as well as superior temporal gyri and the cerebellum. For CVF contrasted against FA, we found greater bold responses only in the left middle frontal cortex. Large overlaps in the neural activations during free association and causal verbal fluency indicate that the access to causal relationships between verbal concepts is at least partly based on the semantic neural network. The selective activation in the left middle frontal cortex for causal verbal fluency suggests that distinct neural processes related to cause-and-effect-relations are associated with the recruitment of middle frontal brain areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Collinearity and Causal Diagrams: A Lesson on the Importance of Model Specification.

    PubMed

    Schisterman, Enrique F; Perkins, Neil J; Mumford, Sunni L; Ahrens, Katherine A; Mitchell, Emily M

    2017-01-01

    Correlated data are ubiquitous in epidemiologic research, particularly in nutritional and environmental epidemiology where mixtures of factors are often studied. Our objectives are to demonstrate how highly correlated data arise in epidemiologic research and provide guidance, using a directed acyclic graph approach, on how to proceed analytically when faced with highly correlated data. We identified three fundamental structural scenarios in which high correlation between a given variable and the exposure can arise: intermediates, confounders, and colliders. For each of these scenarios, we evaluated the consequences of increasing correlation between the given variable and the exposure on the bias and variance for the total effect of the exposure on the outcome using unadjusted and adjusted models. We derived closed-form solutions for continuous outcomes using linear regression and empirically present our findings for binary outcomes using logistic regression. For models properly specified, total effect estimates remained unbiased even when there was almost perfect correlation between the exposure and a given intermediate, confounder, or collider. In general, as the correlation increased, the variance of the parameter estimate for the exposure in the adjusted models increased, while in the unadjusted models, the variance increased to a lesser extent or decreased. Our findings highlight the importance of considering the causal framework under study when specifying regression models. Strategies that do not take into consideration the causal structure may lead to biased effect estimation for the original question of interest, even under high correlation.

  15. Essays on Causal Inference for Public Policy

    ERIC Educational Resources Information Center

    Zajonc, Tristan

    2012-01-01

    Effective policymaking requires understanding the causal effects of competing proposals. Relevant causal quantities include proposals' expected effect on different groups of recipients, the impact of policies over time, the potential trade-offs between competing objectives, and, ultimately, the optimal policy. This dissertation studies causal…

  16. Preschool Children Learn about Causal Structure from Conditional Interventions

    ERIC Educational Resources Information Center

    Schulz, Laura E.; Gopnik, Alison; Glymour, Clark

    2007-01-01

    The conditional intervention principle is a formal principle that relates patterns of interventions and outcomes to causal structure. It is a central assumption of experimental design and the causal Bayes net formalism. Two studies suggest that preschoolers can use the conditional intervention principle to distinguish causal chains, common cause…

  17. Aging and Retrospective Revaluation of Causal Learning

    PubMed Central

    Mutter, Sharon A.; Atchley, Anthony R.; Plumlee, Leslie M.

    2011-01-01

    In a two-stage causal learning task, young and older participants first learned which foods presented in compound were followed by an allergic reaction (e.g., STEAK - BEANS → REACTION) and then the causal efficacy of one food from these compounds was revalued (e.g., BEANS → NO REACTION). In Experiment 1, unrelated food pairs were used and although there were no age differences in compound or single cue – outcome learning, older adults did not retrospectively revalue the causal efficacy of the absent target cues (e.g. STEAK). However, they had weaker within – compound associations for the unrelated foods and this may have prevented them from retrieving the representations of these cues. In Experiment 2, older adults still showed no retrospective revaluation of absent cues even though compound food cues with pre-existing associations were used (e.g., STEAK - POTATO) and they received additional learning trials. Finally, in Experiment 3, older adults revalued the causal efficacy of the target cues when small, unobtrusive icons of these cues were present during single cue revaluation. These findings suggest that age – related deficits in causal learning for absent cues are due to ineffective associative binding and reactivation processes. PMID:21843025

  18. Human error and commercial aviation accidents: an analysis using the human factors analysis and classification system.

    PubMed

    Shappell, Scott; Detwiler, Cristy; Holcomb, Kali; Hackworth, Carla; Boquet, Albert; Wiegmann, Douglas A

    2007-04-01

    The aim of this study was to extend previous examinations of aviation accidents to include specific aircrew, environmental, supervisory, and organizational factors associated with two types of commercial aviation (air carrier and commuter/ on-demand) accidents using the Human Factors Analysis and Classification System (HFACS). HFACS is a theoretically based tool for investigating and analyzing human error associated with accidents and incidents. Previous research has shown that HFACS can be reliably used to identify human factors trends associated with military and general aviation accidents. Using data obtained from both the National Transportation Safety Board and the Federal Aviation Administration, 6 pilot-raters classified aircrew, supervisory, organizational, and environmental causal factors associated with 1020 commercial aviation accidents that occurred over a 13-year period. The majority of accident causal factors were attributed to aircrew and the environment, with decidedly fewer associated with supervisory and organizational causes. Comparisons were made between HFACS causal categories and traditional situational variables such as visual conditions, injury severity, and regional differences. These data will provide support for the continuation, modification, and/or development of interventions aimed at commercial aviation safety. HFACS provides a tool for assessing human factors associated with accidents and incidents.

  19. Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing.

    PubMed

    Garcia, Virginie; Bres, Cécile; Just, Daniel; Fernandez, Lucie; Tai, Fabienne Wong Jun; Mauxion, Jean-Philippe; Le Paslier, Marie-Christine; Bérard, Aurélie; Brunel, Dominique; Aoki, Koh; Alseekh, Saleh; Fernie, Alisdair R; Fraser, Paul D; Rothan, Christophe

    2016-12-01

    The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F 2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F 2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping.

  20. Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Bae, H. J.; Encinar, M. P.; Lozano-Durán, A.

    2018-04-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical configurations. Most common approaches to investigate the turbulence phenomena do not provide a clear causal inference between events, which is essential to determine the dynamics of self-sustaining processes. In the present work, we examine the causal interactions between streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. We choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocity modes. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear which controls the dynamics and time-scales. The well-known lift-up effect is also identified, but shown to be of secondary importance in the causal network between shear, streaks and rolls.

  1. Testing the causal theory of reference.

    PubMed

    Domaneschi, Filippo; Vignolo, Massimiliano; Di Paola, Simona

    2017-04-01

    Theories of reference are a crucial research topic in analytic philosophy. Since the publication of Kripke's Naming and Necessity, most philosophers have endorsed the causal/historical theory of reference. The goal of this paper is twofold: (i) to discuss a method for testing experimentally the causal theory of reference for proper names by investigating linguistic usage and (ii) to present the results from two experiments conducted with that method. Data collected in our experiments confirm the causal theory of reference for people proper names and for geographical proper names. A secondary but interesting result is that the semantic domain affects reference assignment: while with people proper names speakers tend to assign the semantic reference, with geographical proper names they are prompted to assign the speaker's reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Causal Model of Faculty Research Productivity.

    ERIC Educational Resources Information Center

    Bean, John P.

    A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…

  3. Causal mediation analysis with multiple causally non-ordered mediators.

    PubMed

    Taguri, Masataka; Featherstone, John; Cheng, Jing

    2018-01-01

    In many health studies, researchers are interested in estimating the treatment effects on the outcome around and through an intermediate variable. Such causal mediation analyses aim to understand the mechanisms that explain the treatment effect. Although multiple mediators are often involved in real studies, most of the literature considered mediation analyses with one mediator at a time. In this article, we consider mediation analyses when there are causally non-ordered multiple mediators. Even if the mediators do not affect each other, the sum of two indirect effects through the two mediators considered separately may diverge from the joint natural indirect effect when there are additive interactions between the effects of the two mediators on the outcome. Therefore, we derive an equation for the joint natural indirect effect based on the individual mediation effects and their interactive effect, which helps us understand how the mediation effect works through the two mediators and relative contributions of the mediators and their interaction. We also discuss an extension for three mediators. The proposed method is illustrated using data from a randomized trial on the prevention of dental caries.

  4. An Efficient Two-Tier Causal Protocol for Mobile Distributed Systems

    PubMed Central

    Dominguez, Eduardo Lopez; Pomares Hernandez, Saul E.; Gomez, Gustavo Rodriguez; Medina, Maria Auxilio

    2013-01-01

    Causal ordering is a useful tool for mobile distributed systems (MDS) to reduce the non-determinism induced by three main aspects: host mobility, asynchronous execution, and unpredictable communication delays. Several causal protocols for MDS exist. Most of them, in order to reduce the overhead and the computational cost over wireless channels and mobile hosts (MH), ensure causal ordering at and according to the causal view of the Base Stations. Nevertheless, these protocols introduce certain disadvantage, such as unnecessary inhibition at the delivery of messages. In this paper, we present an efficient causal protocol for groupware that satisfies the MDS's constraints, avoiding unnecessary inhibitions and ensuring the causal delivery based on the view of the MHs. One interesting aspect of our protocol is that it dynamically adapts the causal information attached to each message based on the number of messages with immediate dependency relation, and this is not directly proportional to the number of MHs. PMID:23585828

  5. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    PubMed Central

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  6. Perceived Causal Relations: Novel Methodology for Assessing Client Attributions about Causal Associations between Variables Including Symptoms and Functional Impairment

    ERIC Educational Resources Information Center

    Frewen, Paul A.; Allen, Samantha L.; Lanius, Ruth A.; Neufeld, Richard W. J.

    2012-01-01

    Researchers have argued that the investigation of causal interrelationships between symptoms may help explain the high comorbidity rate between certain psychiatric disorders. Clients' own attributions concerning the causal interrelationships linking the co-occurrence of their symptoms represent data that may inform their clinical case…

  7. Mind and Meaning: Piaget and Vygotsky on Causal Explanation.

    ERIC Educational Resources Information Center

    Beilin, Harry

    1996-01-01

    Piaget's theory has been characterized as descriptive and not explanatory, not qualifying as causal explanation. Piaget was consistent in showing how his theory was both explanatory and causal. Vygotsky also endorsed causal-genetic explanation but, on the basis of knowledge of only Piaget's earliest works, he claimed that Piaget's theory was not…

  8. CADDIS Volume 5. Causal Databases: Home page (Duplicate?)

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  9. Beyond Markov: Accounting for independence violations in causal reasoning.

    PubMed

    Rehder, Bob

    2018-06-01

    Although many theories of causal cognition are based on causal graphical models, a key property of such models-the independence relations stipulated by the Markov condition-is routinely violated by human reasoners. This article presents three new accounts of those independence violations, accounts that share the assumption that people's understanding of the correlational structure of data generated from a causal graph differs from that stipulated by causal graphical model framework. To distinguish these models, experiments assessed how people reason with causal graphs that are larger than those tested in previous studies. A traditional common cause network (Y 1 ←X→Y 2 ) was extended so that the effects themselves had effects (Z 1 ←Y 1 ←X→Y 2 →Z 2 ). A traditional common effect network (Y 1 →X←Y 2 ) was extended so that the causes themselves had causes (Z 1 →Y 1 →X←Y 2 ←Z 2 ). Subjects' inferences were most consistent with the beta-Q model in which consistent states of the world-those in which variables are either mostly all present or mostly all absent-are viewed as more probable than stipulated by the causal graphical model framework. Substantial variability in subjects' inferences was also observed, with the result that substantial minorities of subjects were best fit by one of the other models (the dual prototype or a leaky gate models). The discrepancy between normative and human causal cognition stipulated by these models is foundational in the sense that they locate the error not in people's causal reasoning but rather in their causal representations. As a result, they are applicable to any cognitive theory grounded in causal graphical models, including theories of analogy, learning, explanation, categorization, decision-making, and counterfactual reasoning. Preliminary evidence that independence violations indeed generalize to other judgment types is presented. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Simplifying Causal Complexity: How Interactions between Modes of Causal Induction and Information Availability Lead to Heuristic-Driven Reasoning

    ERIC Educational Resources Information Center

    Grotzer, Tina A.; Tutwiler, M. Shane

    2014-01-01

    This article considers a set of well-researched default assumptions that people make in reasoning about complex causality and argues that, in part, they result from the forms of causal induction that we engage in and the type of information available in complex environments. It considers how information often falls outside our attentional frame…

  11. Updating during Reading Comprehension: Why Causality Matters

    ERIC Educational Resources Information Center

    Kendeou, Panayiota; Smith, Emily R.; O'Brien, Edward J.

    2013-01-01

    The present set of 7 experiments systematically examined the effectiveness of adding causal explanations to simple refutations in reducing or eliminating the impact of outdated information on subsequent comprehension. The addition of a single causal-explanation sentence to a refutation was sufficient to eliminate any measurable disruption in…

  12. Causal Inferences in the Campbellian Validity System

    ERIC Educational Resources Information Center

    Lund, Thorleif

    2010-01-01

    The purpose of the present paper is to critically examine causal inferences and internal validity as defined by Campbell and co-workers. Several arguments are given against their counterfactual effect definition, and this effect definition should be considered inadequate for causal research in general. Moreover, their defined independence between…

  13. Causal-Explanatory Pluralism: How Intentions, Functions, and Mechanisms Influence Causal Ascriptions

    ERIC Educational Resources Information Center

    Lombrozo, Tania

    2010-01-01

    Both philosophers and psychologists have argued for the existence of distinct kinds of explanations, including teleological explanations that cite functions or goals, and mechanistic explanations that cite causal mechanisms. Theories of causation, in contrast, have generally been unitary, with dominant theories focusing either on counterfactual…

  14. A qualitative study evaluating causality attribution for serious adverse events during early phase oncology clinical trials.

    PubMed

    Mukherjee, Som D; Coombes, Megan E; Levine, Mitch; Cosby, Jarold; Kowaleski, Brenda; Arnold, Andrew

    2011-10-01

    In early phase oncology trials, novel targeted therapies are increasingly being tested in combination with traditional agents creating greater potential for enhanced and new toxicities. When a patient experiences a serious adverse event (SAE), investigators must determine whether the event is attributable to the investigational drug or not. This study seeks to understand the clinical reasoning, tools used and challenges faced by the researchers who assign causality to SAE's. Thirty-two semi-structured interviews were conducted with medical oncologists and trial coordinators at six Canadian academic cancer centres. Interviews were recorded and transcribed verbatim. Individual interview content analysis was followed by thematic analysis across the interview set. Our study found that causality assessment tends to be a rather complex process, often without complete clinical and investigational data at hand. Researchers described using a common processing strategy whereby they gather pertinent information, eliminate alternative explanations, and consider whether or not the study drug resulted in the SAE. Many of the interviewed participants voiced concern that causality assessments are often conducted quickly and tend to be highly subjective. Many participants were unable to identify any useful tools to help in assigning causality and welcomed more objectivity in the overall process. Attributing causality to SAE's is a complex process. Clinical trial researchers apply a logical system of reasoning, but feel that the current method of assigning causality could be improved. Based on these findings, future research involving the development of a new causality assessment tool specifically for use in early phase oncology clinical trials may be useful.

  15. Causal inference in survival analysis using pseudo-observations.

    PubMed

    Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T

    2017-07-30

    Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs to address right-censoring, and often, special techniques are required for that purpose. We will show how censoring can be dealt with 'once and for all' by means of so-called pseudo-observations when doing causal inference in survival analysis. The pseudo-observations can be used as a replacement of the outcomes without censoring when applying 'standard' causal inference methods, such as (1) or (2) earlier. We study this idea for estimating the average causal effect of a binary treatment on the survival probability, the restricted mean lifetime, and the cumulative incidence in a competing risks situation. The methods will be illustrated in a small simulation study and via a study of patients with acute myeloid leukemia who received either myeloablative or non-myeloablative conditioning before allogeneic hematopoetic cell transplantation. We will estimate the average causal effect of the conditioning regime on outcomes such as the 3-year overall survival probability and the 3-year risk of chronic graft-versus-host disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. A General Approach to Causal Mediation Analysis

    ERIC Educational Resources Information Center

    Imai, Kosuke; Keele, Luke; Tingley, Dustin

    2010-01-01

    Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and implemented within the framework of linear structural equation models. We argue and demonstrate that this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent of a particular statistical model, the…

  17. A Challenge for Diagnosing Acute Liver Injury with Concomitant/Sequential Exposure to Multiple Drugs: Can Causality Assessment Scales Be Utilized to Identify the Offending Drug?

    PubMed Central

    Lim, Roxanne; Conner, Kim; Karnsakul, Wikrom

    2014-01-01

    Drug-induced hepatotoxicity most commonly manifests as an acute hepatitis syndrome and remains the leading cause of drug-induced death/mortality and the primary reason for withdrawal of drugs from the pharmaceutical market. We report a case of acute liver injury in a 12-year-old Hispanic boy, who received a series of five antibiotics (amoxicillin, ceftriaxone, vancomycin, ampicillin/sulbactam, and clindamycin) for cervical lymphadenitis/retropharyngeal cellulitis. Histopathology of the liver biopsy specimen revealed acute cholestatic hepatitis. All known causes of acute liver injury were appropriately excluded and (only) drug-induced liver injury was left as a cause of his cholestasis. Liver-specific causality assessment scales such as Council for the International Organization of Medical Sciences/Roussel Uclaf Causality Assessment Method scoring system (CIOMS/RUCAM), Maria and Victorino scale, and Digestive Disease Week-Japan were applied to seek the most likely offending drug. Although clindamycin is the most likely cause by clinical diagnosis, none of causality assessment scales aid in the diagnosis. PMID:25506455

  18. Omission of Causal Indicators: Consequences and Implications for Measurement

    ERIC Educational Resources Information Center

    Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Marakas, George M.

    2016-01-01

    One of the central assumptions of the causal-indicator literature is that all causal indicators must be included in the research model and that the exclusion of one or more relevant causal indicators would have severe negative consequences by altering the meaning of the latent variable. In this research we show that the omission of a relevant…

  19. Evaluating Social Causality and Responsibility Models: An Initial Report

    DTIC Science & Technology

    2005-01-01

    ICT Technical Report ICT-TR-03-2005 Evaluating Social Causality and Responsibility ... social intelligent agents. In this report, we present a general computational model of social causality and responsibility , and empirical results of...2005 to 00-00-2005 4. TITLE AND SUBTITLE Evaluating Social Causality and Responsibility Models: An Initial Report 5a. CONTRACT NUMBER 5b. GRANT

  20. Quantum computation with indefinite causal structures

    NASA Astrophysics Data System (ADS)

    Araújo, Mateus; Guérin, Philippe Allard; Baumeler, ńmin

    2017-11-01

    One way to study the physical plausibility of closed timelike curves (CTCs) is to examine their computational power. This has been done for Deutschian CTCs (D-CTCs) and postselection CTCs (P-CTCs), with the result that they allow for the efficient solution of problems in PSPACE and PP, respectively. Since these are extremely powerful complexity classes, which are not expected to be solvable in reality, this can be taken as evidence that these models for CTCs are pathological. This problem is closely related to the nonlinearity of this models, which also allows, for example, cloning quantum states, in the case of D-CTCs, or distinguishing nonorthogonal quantum states, in the case of P-CTCs. In contrast, the process matrix formalism allows one to model indefinite causal structures in a linear way, getting rid of these effects and raising the possibility that its computational power is rather tame. In this paper, we show that process matrices correspond to a linear particular case of P-CTCs, and therefore that its computational power is upperbounded by that of PP. We show, furthermore, a family of processes that can violate causal inequalities but nevertheless can be simulated by a causally ordered quantum circuit with only a constant overhead, showing that indefinite causality is not necessarily hard to simulate.

  1. Feedback Both Helps and Hinders Learning: The Causal Role of Prior Knowledge

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; Rittle-Johnson, Bethany

    2016-01-01

    Feedback can be a powerful learning tool, but its effects vary widely. Research has suggested that learners' prior knowledge may moderate the effects of feedback; however, no causal link has been established. In Experiment 1, we randomly assigned elementary school children (N = 108) to a condition based on a crossing of 2 factors: induced strategy…

  2. Wage subsidies and hiring chances for the disabled: some causal evidence.

    PubMed

    Baert, Stijn

    2016-01-01

    This study evaluated the effectiveness of wage subsidies as a policy instrument to integrate disabled individuals into the labor market. To identify causal effects, a large-scale field experiment was conducted in Belgium. The results show that the likelihood of a disabled candidate receiving a positive response to a job application is not positively influenced by disclosing entitlement to the Flemish Supporting Subsidy.

  3. Inference of boundaries in causal sets

    NASA Astrophysics Data System (ADS)

    Cunningham, William J.

    2018-05-01

    We investigate the extrinsic geometry of causal sets in (1+1) -dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons–Hawking–York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space. We discuss algorithms to differentiate between different types of regions, consider when these distinctions are possible, and then apply the algorithms to several spacetime regions. Numerical results indicate the volumes of timelike boundaries can be measured to within 0.5% accuracy for flat boundaries and within 10% accuracy for highly curved boundaries for medium-sized causal sets with N  =  214 spacetime elements.

  4. Enhancing causal interpretations of quality improvement interventions

    PubMed Central

    Cable, G

    2001-01-01

    In an era of chronic resource scarcity it is critical that quality improvement professionals have confidence that their project activities cause measured change. A commonly used research design, the single group pre-test/post-test design, provides little insight into whether quality improvement interventions cause measured outcomes. A re-evaluation of a quality improvement programme designed to reduce the percentage of bilateral cardiac catheterisations for the period from January 1991 to October 1996 in three catheterisation laboratories in a north eastern state in the USA was performed using an interrupted time series design with switching replications. The accuracy and causal interpretability of the findings were considerably improved compared with the original evaluation design. Moreover, the re-evaluation provided tangible evidence in support of the suggestion that more rigorous designs can and should be more widely employed to improve the causal interpretability of quality improvement efforts. Evaluation designs for quality improvement projects should be constructed to provide a reasonable opportunity, given available time and resources, for causal interpretation of the results. Evaluators of quality improvement initiatives may infrequently have access to randomised designs. Nonetheless, as shown here, other very rigorous research designs are available for improving causal interpretability. Unilateral methodological surrender need not be the only alternative to randomised experiments. Key Words: causal interpretations; quality improvement; interrupted time series design; implementation fidelity PMID:11533426

  5. Poverty, inequality, and increased consumption of high calorie food: Experimental evidence for a causal link.

    PubMed

    Bratanova, Boyka; Loughnan, Steve; Klein, Olivier; Claassen, Almudena; Wood, Robert

    2016-05-01

    Rising obesity represents a serious, global problem. It is now well established that obesity is associated with poverty and wealth inequality, suggesting that these factors may promote caloric intake. Whereas previous work has examined these links from an epidemiological perspective, the current paper examined them experimentally. In Study 1 we found that people experimentally induced to view themselves as poor (v. wealthy) exhibited increased calorie intake. In Study 2, participants who believed that they were poorer or wealthier than their interaction partners exhibited higher levels of anxiety compared to those in an equal partners condition; this anxiety in turn led to increased calorie consumption for people who had a strong need to belong. The findings provide causal evidence for the poverty-intake and inequality-intake links. Further, we identify social anxiety and a strong need to belong as important social psychological factors linking inequality to increased calorie intake. Copyright © 2016. Published by Elsevier Ltd.

  6. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model.

    PubMed

    Hao, Shao-Rui; Geng, Shi-Chao; Fan, Lin-Xiao; Chen, Jia-Jia; Zhang, Qin; Li, Lan-Juan

    2017-05-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.

  7. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model*

    PubMed Central

    Hao, Shao-rui; Geng, Shi-chao; Fan, Lin-xiao; Chen, Jia-jia; Zhang, Qin; Li, Lan-juan

    2017-01-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A “chaining” inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. PMID:28471111

  8. Context and Time in Causal Learning: Contingency and Mood Dependent Effects

    PubMed Central

    Msetfi, Rachel M.; Wade, Caroline; Murphy, Robin A.

    2013-01-01

    Defining cues for instrumental causality are the temporal, spatial and contingency relationships between actions and their effects. In this study, we carried out a series of causal learning experiments that systematically manipulated time and context in positive and negative contingency conditions. In addition, we tested participants categorized as non-dysphoric and mildly dysphoric because depressed mood has been shown to affect the processing of all these causal cues. Findings showed that causal judgements made by non-dysphoric participants were contextualized at baseline and were affected by the temporal spacing of actions and effects only with generative, but not preventative, contingency relationships. Participants categorized as dysphoric made less contextualized causal ratings at baseline but were more sensitive than others to temporal manipulations across the contingencies. These effects were consistent with depression affecting causal learning through the effects of slowed time experience on accrued exposure to the context in which causal events took place. Taken together, these findings are consistent with associative approaches to causal judgement. PMID:23691147

  9. Factors associated with variation in financial condition among voluntary hospitals.

    PubMed Central

    Brecher, C; Nesbitt, S

    1985-01-01

    This article uses multiple regression analysis to identify factors which affect variations in the financial condition of voluntary hospitals in New York State. Six separate ratios are used to measure financial condition and 18 independent variables are considered. The factors affecting financial conditions were found to vary among dimensions of financial health, and different causal relationships were evident among hospitals in New York City than among those in the rest of the state. PMID:4019212

  10. Non-Bayesian Inference: Causal Structure Trumps Correlation

    ERIC Educational Resources Information Center

    Bes, Benedicte; Sloman, Steven; Lucas, Christopher G.; Raufaste, Eric

    2012-01-01

    The study tests the hypothesis that conditional probability judgments can be influenced by causal links between the target event and the evidence even when the statistical relations among variables are held constant. Three experiments varied the causal structure relating three variables and found that (a) the target event was perceived as more…

  11. Counterfactual overdetermination vs. the causal exclusion problem.

    PubMed

    Sparber, Georg

    2005-01-01

    This paper aims to show that a counterfactual approach to causation is not sufficient to provide a solution to the causal exclusion problem in the form of systematic overdetermination. Taking into account the truthmakers of causal counterfactuals provides a strong argument in favour of the identity of causes in situations of translevel, causation.

  12. Questions on causality and responsibility arising from an outbreak of Pseudomonas aeruginosa infections in Norway

    PubMed Central

    Iversen, Bjørn G; Hofmann, Bjørn; Aavitsland, Preben

    2008-01-01

    In 2002, Norway experienced a large outbreak of Pseudomonas aeruginosa infections in hospitals with 231 confirmed cases. This fuelled intense public and professional debates on what were the causes and who were responsible. In epidemiology, other sciences, in philosophy and in law there is a long tradition of discussing the concept of causality. We use this outbreak as a case; apply various theories of causality from different disciplines to discuss the roles and responsibilities of some of the parties involved. Mackie's concept of INUS conditions, Hill's nine viewpoints to study association for claiming causation, deterministic and probabilistic ways of reasoning, all shed light on the issues of causality in this outbreak. Moreover, applying legal theories of causation (counterfactual reasoning and the "but-for" test and the NESS test) proved especially useful, but the case also illustrated the weaknesses of the various theories of causation. We conclude that many factors contributed to causing the outbreak, but that contamination of a medical device in the production facility was the major necessary condition. The reuse of the medical device in hospitals contributed primarily to the size of the outbreak. The unintended error by its producer – and to a minor extent by the hospital practice – was mainly due to non-application of relevant knowledge and skills, and appears to constitute professional negligence. Due to criminal procedure laws and other factors outside the discourse of causality, no one was criminally charged for the outbreak which caused much suffering and shortening the life of at least 34 people. PMID:18947429

  13. Causality and complexity: the myth of objectivity in science.

    PubMed

    Mikulecky, Donald C

    2007-10-01

    Two distinctly different worldviews dominate today's thinking in science and in the world of ideas outside of science. Using the approach advocated by Robert M. Hutchins, it is possible to see a pattern of interaction between ideas in science and in other spheres such as philosophy, religion, and politics. Instead of compartmentalizing these intellectual activities, it is worthwhile to look for common threads of mutual influence. Robert Rosen has created an approach to scientific epistemology that might seem radical to some. However, it has characteristics that resemble ideas in other fields, in particular in the writings of George Lakoff, Leo Strauss, and George Soros. Historically, the atmosphere at the University of Chicago during Hutchins' presidency gave rise to Rashevsky's relational biology, which Rosen carried forward. Strauss was writing his political philosophy there at the same time. One idea is paramount in all this, and it is Lakoff who gives us the most insight into how the worldviews differ using this idea. The central difference has to do with causality, the fundamental concept that we use to build a worldview. Causal entailment has two distinct forms in Lakoff 's analysis: direct causality and complex causality. Rosen's writings on complexity create a picture of complex causality that is extremely useful in its detail, grounding in the ideas of Aristotle. Strauss asks for a return to the ancients to put philosophy back on track. Lakoff sees the weaknesses in Western philosophy in a similar way, and Rosen provides tools for dealing with the problem. This introduction to the relationships between the thinking of these authors is meant to stimulate further discourse on the role of complex causal entailment in all areas of thought, and how it brings them together in a holistic worldview. The worldview built on complex causality is clearly distinct from that built around simple, direct causality. One important difference is that the impoverished causal

  14. Causal Relations and Feature Similarity in Children's Inductive Reasoning

    ERIC Educational Resources Information Center

    Hayes, Brett K.; Thompson, Susan P.

    2007-01-01

    Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations…

  15. Biological causal links on physiological and evolutionary time scales.

    PubMed

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  16. Campbell's and Rubin's Perspectives on Causal Inference

    ERIC Educational Resources Information Center

    West, Stephen G.; Thoemmes, Felix

    2010-01-01

    Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…

  17. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram

    PubMed Central

    Vins, Holly; Bell, Jesse; Saha, Shubhayu; Hess, Jeremy J.

    2015-01-01

    Little is understood about the long term, indirect health consequences of drought (a period of abnormally dry weather). In particular, the implications of drought for mental health via pathways such as loss of livelihood, diminished social support, and rupture of place bonds have not been extensively studied, leaving a knowledge gap for practitioners and researchers alike. A systematic review of literature was performed to examine the mental health effects of drought. The systematic review results were synthesized to create a causal process diagram that illustrates the pathways linking drought effects to mental health outcomes. Eighty-two articles using a variety of methods in different contexts were gathered from the systematic review. The pathways in the causal process diagram with greatest support in the literature are those focusing on the economic and migratory effects of drought. The diagram highlights the complexity of the relationships between drought and mental health, including the multiple ways that factors can interact and lead to various outcomes. The systematic review and resulting causal process diagram can be used in both practice and theory, including prevention planning, public health programming, vulnerability and risk assessment, and research question guidance. The use of a causal process diagram provides a much needed avenue for integrating the findings of diverse research to further the understanding of the mental health implications of drought. PMID:26506367

  18. The Relative Predictive Contribution and Causal Role of Phoneme Awareness, Rhyme Awareness, and Verbal Short-Term Memory in Reading Skills: A Review

    ERIC Educational Resources Information Center

    Melby-Lervag, Monica

    2012-01-01

    The acknowledgement that educational achievement is highly dependent on successful reading development has led to extensive research on its underlying factors. A strong argument has been made for a causal relationship between reading and phoneme awareness; similarly, causal relations have been suggested for reading with short-term memory and rhyme…

  19. CAUSAL ANALYSIS AND PROBABILITY DATA: EXAMPLES FOR IMPAIRED AQUATIC CONDITION

    EPA Science Inventory

    Causal analysis is plausible reasoning applied to diagnosing observed effect(s), for example, diagnosing

    cause of biological impairment in a stream. Sir Bradford Hill basically defined the application of causal

    analysis when he enumerated the elements of causality f...

  20. Aging and Integration of Contingency Evidence in Causal Judgment

    PubMed Central

    Mutter, Sharon A.; Plumlee, Leslie F.

    2009-01-01

    Age differences in causal judgment are consistently greater for preventative/negative relationships than for generative/positive relationships. We used a feature analytic procedure (Mandel & Lehman, 1998) to determine whether this effect might be due to differences in young and older adults’ integration of contingency evidence during causal induction. To reduce the impact of age-related changes in learning/memory we presented contingency evidence for preventative, non-contingent, and generative relationships in summary form and to induce participants to integrate greater or lesser amounts of this evidence, we varied the meaningfulness of the causal context. Young adults showed greater flexibility in their integration processes than older adults. In an abstract causal context, there were no age differences in causal judgment or integration, but in meaningful contexts, young adults’ judgments for preventative relationships were more accurate than older adults’ and they assigned more weight to the contingency evidence confirming these relationships. These differences were mediated by age-related changes in processing speed. The decline in this basic cognitive resource may place boundaries on the amount or the type of evidence that older adults can integrate for causal judgment. PMID:20025406