Sample records for identify causal pathways

  1. ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework.

    PubMed

    Zhang, Kunlin; Chang, Suhua; Cui, Sijia; Guo, Liyuan; Zhang, Liuyan; Wang, Jing

    2011-07-01

    Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there is lack of support on biological mechanisms as represented by pathways. Although pathway-based analysis (PBA) has been designed to identify disease-related pathways by analyzing the full list of SNPs from GWAS, it does not emphasize on interpreting causal SNPs. To our knowledge, so far there is no web server available to solve the challenge for GWAS data interpretation within one analytical framework. ICSNPathway is developed to identify candidate causal SNPs and their corresponding candidate causal pathways from GWAS by integrating linkage disequilibrium (LD) analysis, functional SNP annotation and PBA. ICSNPathway provides a feasible solution to bridge the gap between GWAS and disease mechanism study by generating hypothesis of SNP → gene → pathway(s). The ICSNPathway server is freely available at http://icsnpathway.psych.ac.cn/.

  2. AOP: An R Package For Sufficient Causal Analysis in Pathway ...

    EPA Pesticide Factsheets

    Summary: How can I quickly find the key events in a pathway that I need to monitor to predict that a/an beneficial/adverse event/outcome will occur? This is a key question when using signaling pathways for drug/chemical screening in pharma-cology, toxicology and risk assessment. By identifying these sufficient causal key events, we have fewer events to monitor for a pathway, thereby decreasing assay costs and time, while maximizing the value of the information. I have developed the “aop” package which uses backdoor analysis of causal net-works to identify these minimal sets of key events that are suf-ficient for making causal predictions. Availability and Implementation: The source and binary are available online through the Bioconductor project (http://www.bioconductor.org/) as an R package titled “aop”. The R/Bioconductor package runs within the R statistical envi-ronment. The package has functions that can take pathways (as directed graphs) formatted as a Cytoscape JSON file as input, or pathways can be represented as directed graphs us-ing the R/Bioconductor “graph” package. The “aop” package has functions that can perform backdoor analysis to identify the minimal set of key events for making causal predictions.Contact: burgoon.lyle@epa.gov This paper describes an R/Bioconductor package that was developed to facilitate the identification of key events within an AOP that are the minimal set of sufficient key events that need to be tested/monit

  3. Causal pathways linking Farm to School to childhood obesity prevention.

    PubMed

    Joshi, Anupama; Ratcliffe, Michelle M

    2012-08-01

    Farm to School programs are rapidly gaining attention as a potential strategy for preventing childhood obesity; however, the causal linkages between Farm to School activities and health outcomes are not well documented. To capitalize on the increased interest in and momentum for Farm to School, researchers and practitioners need to move from developing and implementing evidence informed programs and policies to ones that are evidence-based. The purpose of this article is to outline a framework for facilitating an evidence base for Farm to School programs and policies through a systematic and coordinated approach. Employing the concepts of causal pathways, the authors introduce a proposed framework for organizing and systematically testing out multiple hypotheses (or potential causal links) for how, why, and under what conditions Farm to School Inputs and Activities may result in what Outputs, Effects, and Impacts. Using the causal pathways framework may help develop and test competing hypotheses, identify multicausality, strength, and interactions of causes, and discern the difference between catalysts and causes. In this article, we introduce causal pathways, present menus of potential independent and dependent variables from which to create and test causal pathways linking Farm to School interventions and their role in preventing childhood obesity, discuss their applicability to Farm to School research and practice, and outline proposed next steps for developing a coordinated research framework for Farm to School programs.

  4. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

    PubMed Central

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894

  5. Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype

    PubMed Central

    Gupta, Saumya; Radhakrishnan, Aparna; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M.; Gagneur, Julien; Sinha, Himanshu

    2015-01-01

    allele-specific transcriptional dynamics of mediating genes. Applications in higher eukaryotes can be valuable for inferring causal molecular pathways underlying complex dynamic processes, such as development, physiology and disease progression. PMID:26039065

  6. What Can Causal Networks Tell Us about Metabolic Pathways?

    PubMed Central

    Blair, Rachael Hageman; Kliebenstein, Daniel J.; Churchill, Gary A.

    2012-01-01

    Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies. PMID:22496633

  7. Identifying Causal Variants at Loci with Multiple Signals of Association

    PubMed Central

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-01-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515

  8. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction.

    PubMed

    Lamontagne, Maxime; Timens, Wim; Hao, Ke; Bossé, Yohan; Laviolette, Michel; Steiling, Katrina; Campbell, Joshua D; Couture, Christian; Conti, Massimo; Sherwood, Karen; Hogg, James C; Brandsma, Corry-Anke; van den Berge, Maarten; Sandford, Andrew; Lam, Stephen; Lenburg, Marc E; Spira, Avrum; Paré, Peter D; Nickle, David; Sin, Don D; Postma, Dirkje S

    2014-11-01

    COPD is a complex chronic disease with poorly understood pathogenesis. Integrative genomic approaches have the potential to elucidate the biological networks underlying COPD and lung function. We recently combined genome-wide genotyping and gene expression in 1111 human lung specimens to map expression quantitative trait loci (eQTL). To determine causal associations between COPD and lung function-associated single nucleotide polymorphisms (SNPs) and lung tissue gene expression changes in our lung eQTL dataset. We evaluated causality between SNPs and gene expression for three COPD phenotypes: FEV(1)% predicted, FEV(1)/FVC and COPD as a categorical variable. Different models were assessed in the three cohorts independently and in a meta-analysis. SNPs associated with a COPD phenotype and gene expression were subjected to causal pathway modelling and manual curation. In silico analyses evaluated functional enrichment of biological pathways among newly identified causal genes. Biologically relevant causal genes were validated in two separate gene expression datasets of lung tissues and bronchial airway brushings. High reliability causal relations were found in SNP-mRNA-phenotype triplets for FEV(1)% predicted (n=169) and FEV(1)/FVC (n=80). Several genes of potential biological relevance for COPD were revealed. eQTL-SNPs upregulating cystatin C (CST3) and CD22 were associated with worse lung function. Signalling pathways enriched with causal genes included xenobiotic metabolism, apoptosis, protease-antiprotease and oxidant-antioxidant balance. By using integrative genomics and analysing the relationships of COPD phenotypes with SNPs and gene expression in lung tissue, we identified CST3 and CD22 as potential causal genes for airflow obstruction. This study also augmented the understanding of previously described COPD pathways. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Identifying causal variants at loci with multiple signals of association.

    PubMed

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-10-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.

  10. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Identifying causal linkages between environmental variables and African conflicts

    NASA Astrophysics Data System (ADS)

    Nguy-Robertson, A. L.; Dartevelle, S.

    2017-12-01

    Environmental variables that contribute to droughts, flooding, and other natural hazards are often identified as factors contributing to conflict; however, few studies attempt to quantify these causal linkages. Recent research has demonstrated that the environment operates within a dynamical system framework and the influence of variables can be identified from convergent cross mapping (CCM) between shadow manifolds. We propose to use CCM to identify causal linkages between environmental variables and incidences of conflict. This study utilizes time series data from Climate Forecast System ver. 2 and MODIS satellite sensors processed using Google Earth Engine to aggregate country and regional trends. These variables are then compared to Armed Conflict Location & Event Data Project observations at similar scales. Results provide relative rankings of variables and their linkage to conflict. Being able to identify which factors contributed more strongly to a conflict can allow policy makers to prepare solutions to mitigate future crises. Knowledge of the primary environmental factors can lead to the identification of other variables to examine in the causal network influencing conflict.

  12. Gang membership and substance use: guilt as a gendered causal pathway

    PubMed Central

    Coffman, Donna L.; Melde, Chris; Esbensen, Finn-Aage

    2014-01-01

    Objectives We examine whether anticipated guilt for substance use is a gendered mechanism underlying the noted enhancement effect of gang membership on illegal drug use. We also demonstrate a method for making stronger causal inferences when assessing mediation in the presence of moderation and time-varying confounding. Methods We estimate a series of inverse propensity weighted models to obtain unbiased estimates of mediation in the presence of confounding of the exposure (i.e., gang membership) and mediator (i.e., anticipated guilt) using three waves of data from a multi-site panel study of a law-related education program for youth (N=1,113). Results The onset of gang membership significantly decreased anticipated substance use guilt among both male and female respondents. This reduction was significantly associated with increased frequency of substance use only for female respondents, however, suggesting that gender moderates the mechanism through which gang membership influences substance use. Conclusions Criminologists are often concerned with identifying causal pathways for antisocial and/or delinquent behavior, but confounders of the exposure, mediator, and outcome often interfere with efforts to assess mediation. Many new approaches have been proposed for strengthening causal inference for mediation effects. After controlling for confounding using inverse propensity weighting, our results suggest that interventions aimed at reducing substance use by current and former female gang members should focus on the normative aspects of these behaviors. PMID:26190954

  13. Gang membership and substance use: guilt as a gendered causal pathway.

    PubMed

    Coffman, Donna L; Melde, Chris; Esbensen, Finn-Aage

    2015-03-01

    We examine whether anticipated guilt for substance use is a gendered mechanism underlying the noted enhancement effect of gang membership on illegal drug use. We also demonstrate a method for making stronger causal inferences when assessing mediation in the presence of moderation and time-varying confounding. We estimate a series of inverse propensity weighted models to obtain unbiased estimates of mediation in the presence of confounding of the exposure (i.e., gang membership) and mediator (i.e., anticipated guilt) using three waves of data from a multi-site panel study of a law-related education program for youth ( N =1,113). The onset of gang membership significantly decreased anticipated substance use guilt among both male and female respondents. This reduction was significantly associated with increased frequency of substance use only for female respondents, however, suggesting that gender moderates the mechanism through which gang membership influences substance use. Criminologists are often concerned with identifying causal pathways for antisocial and/or delinquent behavior, but confounders of the exposure, mediator, and outcome often interfere with efforts to assess mediation. Many new approaches have been proposed for strengthening causal inference for mediation effects. After controlling for confounding using inverse propensity weighting, our results suggest that interventions aimed at reducing substance use by current and former female gang members should focus on the normative aspects of these behaviors.

  14. The complex spine: the multidimensional system of causal pathways for low-back disorders.

    PubMed

    Marras, William S

    2012-12-01

    The aim of this study was to examine the logic behind the knowledge of low-back problem causal pathways. Low-back pain and low-back disorders (LBDs) continue to represent the major musculoskeletal risk problem in the workplace,with the prevalence and costs of such disorders increasing over time. In recent years, there has been much criticism of the ability of ergonomics methods to control the risk of LBDs. Logical assessment of the systems logic associated with our understanding and prevention of LBDs. Current spine loading as well as spine tolerance research efforts are bringing the field to the point where there is a better systems understanding of the inextricable link between the musculoskeletal system and the cognitive system. Loading is influenced by both the physical environment factors as well as mental demands, whereas tolerances are defined by both physical tissue tolerance and biochemically based tissue sensitivities to pain. However, the logic used in many low-back risk assessment tools may be overly simplistic, given what is understood about causal pathways. Current tools typically assess only load or position in a very cursory manner. Efforts must work toward satisfying both the physical environment and the cognitive environment for the worker if one is to reliably lower the risk of low-back problems. This systems representation of LBD development may serve as a guide to identify gaps in our understanding of LBDs.

  15. New insights into old methods for identifying causal rare variants.

    PubMed

    Wang, Haitian; Huang, Chien-Hsun; Lo, Shaw-Hwa; Zheng, Tian; Hu, Inchi

    2011-11-29

    The advance of high-throughput next-generation sequencing technology makes possible the analysis of rare variants. However, the investigation of rare variants in unrelated-individuals data sets faces the challenge of low power, and most methods circumvent the difficulty by using various collapsing procedures based on genes, pathways, or gene clusters. We suggest a new way to identify causal rare variants using the F-statistic and sliced inverse regression. The procedure is tested on the data set provided by the Genetic Analysis Workshop 17 (GAW17). After preliminary data reduction, we ranked markers according to their F-statistic values. Top-ranked markers were then subjected to sliced inverse regression, and those with higher absolute coefficients in the most significant sliced inverse regression direction were selected. The procedure yields good false discovery rates for the GAW17 data and thus is a promising method for future study on rare variants.

  16. Causal pathways linking environmental change with health behaviour change: Natural experimental study of new transport infrastructure and cycling to work.

    PubMed

    Prins, R G; Panter, J; Heinen, E; Griffin, S J; Ogilvie, D B

    2016-06-01

    Mechanisms linking changes to the environment with changes in physical activity are poorly understood. Insights into mechanisms of interventions can help strengthen causal attribution and improve understanding of divergent response patterns. We examined the causal pathways linking exposure to new transport infrastructure with changes in cycling to work. We used baseline (2009) and follow-up (2012) data (N=469) from the Commuting and Health in Cambridge natural experimental study (Cambridge, UK). Exposure to new infrastructure in the form of the Cambridgeshire Guided Busway was defined using residential proximity. Mediators studied were changes in perceptions of the route to work, theory of planned behaviour constructs and self-reported use of the new infrastructure. Outcomes were modelled as an increase, decrease or no change in weekly cycle commuting time. We used regression analyses to identify combinations of mediators forming potential pathways between exposure and outcome. We then tested these pathways in a path model and stratified analyses by baseline level of active commuting. We identified changes in perceptions of the route to work, and use of the cycle path, as potential mediators. Of these potential mediators, only use of the path significantly explained (85%) the effect of the infrastructure in increasing cycling. Path use also explained a decrease in cycling among more active commuters. The findings strengthen the causal argument that changing the environment led to changes in health-related behaviour via use of the new infrastructure, but also show how some commuters may have spent less time cycling as a result. Copyright © 2016. Published by Elsevier Inc.

  17. Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam

    2016-10-01

    In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.

  18. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    PubMed Central

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  19. Pathway-driven gene stability selection of two rheumatoid arthritis GWAS identifies and validates new susceptibility genes in receptor mediated signalling pathways.

    PubMed

    Eleftherohorinou, Hariklia; Hoggart, Clive J; Wright, Victoria J; Levin, Michael; Coin, Lachlan J M

    2011-09-01

    Rheumatoid arthritis (RA) is the commonest chronic, systemic, inflammatory disorder affecting ∼1% of the world population. It has a strong genetic component and a growing number of associated genes have been discovered in genome-wide association studies (GWAS), which nevertheless only account for 23% of the total genetic risk. We aimed to identify additional susceptibility loci through the analysis of GWAS in the context of biological function. We bridge the gap between pathway and gene-oriented analyses of GWAS, by introducing a pathway-driven gene stability-selection methodology that identifies potential causal genes in the top-associated disease pathways that may be driving the pathway association signals. We analysed the WTCCC and the NARAC studies of ∼5000 and ∼2000 subjects, respectively. We examined 700 pathways comprising ∼8000 genes. Ranking pathways by significance revealed that the NARAC top-ranked ∼6% laid within the top 10% of WTCCC. Gene selection on those pathways identified 58 genes in WTCCC and 61 in NARAC; 21 of those were common (P(overlap)< 10(-21)), of which 16 were novel discoveries. Among the identified genes, we validated 10 known RA associations in WTCCC and 13 in NARAC, not discovered using single-SNP approaches on the same data. Gene ontology functional enrichment analysis on the identified genes showed significant over-representation of signalling activity (P< 10(-29)) in both studies. Our findings suggest a novel model of RA genetic predisposition, which involves cell-membrane receptors and genes in second messenger signalling systems, in addition to genes that regulate immune responses, which have been the focus of interest previously.

  20. Knowing Who Dunnit: Infants Identify the Causal Agent in an Unseen Causal Interaction

    ERIC Educational Resources Information Center

    Saxe, Rebecca; Tzelnic, Tania; Carey, Susan

    2007-01-01

    Preverbal infants can represent the causal structure of events, including distinguishing the agentive and receptive roles and categorizing entities according to stable causal dispositions. This study investigated how infants combine these 2 kinds of causal inference. In Experiments 1 and 2, 9.5-month-olds used the position of a human hand or a…

  1. Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data.

    PubMed

    Zhang, Junpeng; Le, Thuc Duy; Liu, Lin; Liu, Bing; He, Jianfeng; Goodall, Gregory J; Li, Jiuyong

    2014-12-01

    Discovering the regulatory relationships between microRNAs (miRNAs) and mRNAs is an important problem that interests many biologists and medical researchers. A number of computational methods have been proposed to infer miRNA-mRNA regulatory relationships, and are mostly based on the statistical associations between miRNAs and mRNAs discovered in observational data. The miRNA-mRNA regulatory relationships identified by these methods can be both direct and indirect regulations. However, differentiating direct regulatory relationships from indirect ones is important for biologists in experimental designs. In this paper, we present a causal discovery based framework (called DirectTarget) to infer direct miRNA-mRNA causal regulatory relationships in heterogeneous data, including expression profiles of miRNAs and mRNAs, and miRNA target information. DirectTarget is applied to the Epithelial to Mesenchymal Transition (EMT) datasets. The validation by experimentally confirmed target databases suggests that the proposed method can effectively identify direct miRNA-mRNA regulatory relationships. To explore the upstream regulators of miRNA regulation, we further identify the causal feedforward patterns (CFFPs) of TF-miRNA-mRNA to provide insights into the miRNA regulation in EMT. DirectTarget has the potential to be applied to other datasets to elucidate the direct miRNA-mRNA causal regulatory relationships and to explore the regulatory patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Causal Link between the Cortico-Rubral Pathway and Functional Recovery through Forced Impaired Limb Use in Rats with Stroke

    PubMed Central

    Ishida, Akimasa; Isa, Kaoru; Umeda, Tatsuya; Kobayashi, Kazuto; Kobayashi, Kenta; Hida, Hideki

    2016-01-01

    Intensive rehabilitation is believed to induce use-dependent plasticity in the injured nervous system; however, its causal relationship to functional recovery is unclear. Here, we performed systematic analysis of the effects of forced use of an impaired forelimb on the recovery of rats after lesioning the internal capsule with intracerebral hemorrhage (ICH). Forced limb use (FLU) group rats exhibited better recovery of skilled forelimb functions and their cortical motor area with forelimb representation was restored and enlarged on the ipsilesional side. In addition, abundant axonal sprouting from the reemerged forelimb area was found in the ipsilateral red nucleus after FLU. To test the causal relationship between the plasticity in the cortico-rubral pathway and recovery, loss-of-function experiments were conducted using a double-viral vector technique, which induces selective blockade of the target pathway. Blockade of the cortico-rubral tract resulted in deficits of the recovered forelimb function in FLU group rats. These findings suggest that the cortico-rubral pathway is a substrate for recovery induced by intensive rehabilitation after ICH. SIGNIFICANCE STATEMENT The research aimed at determining the causal linkage between reorganization of the motor pathway induced by intensive rehabilitative training and recovery after stroke. We clarified the expansion of the forelimb representation area of the ipsilesional motor cortex by forced impaired forelimb use (FLU) after lesioning the internal capsule with intracerebral hemorrhaging (ICH) in rats. Anterograde tracing showed robust axonal sprouting from the forelimb area to the red nucleus in response to FLU. Selective blockade of the cortico-rubral pathway by the novel double-viral vector technique clearly revealed that the increased cortico-rubral axonal projections had causal linkage to the recovery of reaching movements induced by FLU. Our data demonstrate that the cortico-rubral pathway is responsible for the

  3. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we

  4. Pathway Analysis and the Search for Causal Mechanisms

    ERIC Educational Resources Information Center

    Weller, Nicholas; Barnes, Jeb

    2016-01-01

    The study of causal mechanisms interests scholars across the social sciences. Case studies can be a valuable tool in developing knowledge and hypotheses about how causal mechanisms function. The usefulness of case studies in the search for causal mechanisms depends on effective case selection, and there are few existing guidelines for selecting…

  5. Applying causal mediation analysis to personality disorder research.

    PubMed

    Walters, Glenn D

    2018-01-01

    This article is designed to address fundamental issues in the application of causal mediation analysis to research on personality disorders. Causal mediation analysis is used to identify mechanisms of effect by testing variables as putative links between the independent and dependent variables. As such, it would appear to have relevance to personality disorder research. It is argued that proper implementation of causal mediation analysis requires that investigators take several factors into account. These factors are discussed under 5 headings: variable selection, model specification, significance evaluation, effect size estimation, and sensitivity testing. First, care must be taken when selecting the independent, dependent, mediator, and control variables for a mediation analysis. Some variables make better mediators than others and all variables should be based on reasonably reliable indicators. Second, the mediation model needs to be properly specified. This requires that the data for the analysis be prospectively or historically ordered and possess proper causal direction. Third, it is imperative that the significance of the identified pathways be established, preferably with a nonparametric bootstrap resampling approach. Fourth, effect size estimates should be computed or competing pathways compared. Finally, investigators employing the mediation method are advised to perform a sensitivity analysis. Additional topics covered in this article include parallel and serial multiple mediation designs, moderation, and the relationship between mediation and moderation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers.

    PubMed

    Kaluarachchi, Manuja R; Boulangé, Claire L; Garcia-Perez, Isabel; Lindon, John C; Minet, Emmanuel F

    2016-10-01

    Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC-MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment.

  7. Discovering causal signaling pathways through gene-expression patterns

    PubMed Central

    Parikh, Jignesh R.; Klinger, Bertram; Xia, Yu; Marto, Jarrod A.; Blüthgen, Nils

    2010-01-01

    High-throughput gene-expression studies result in lists of differentially expressed genes. Most current meta-analyses of these gene lists include searching for significant membership of the translated proteins in various signaling pathways. However, such membership enrichment algorithms do not provide insight into which pathways caused the genes to be differentially expressed in the first place. Here, we present an intuitive approach for discovering upstream signaling pathways responsible for regulating these differentially expressed genes. We identify consistently regulated signature genes specific for signal transduction pathways from a panel of single-pathway perturbation experiments. An algorithm that detects overrepresentation of these signature genes in a gene group of interest is used to infer the signaling pathway responsible for regulation. We expose our novel resource and algorithm through a web server called SPEED: Signaling Pathway Enrichment using Experimental Data sets. SPEED can be freely accessed at http://speed.sys-bio.net/. PMID:20494976

  8. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    PubMed

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  9. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    PubMed

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  10. Under What Assumptions Do Site-by-Treatment Instruments Identify Average Causal Effects?

    ERIC Educational Resources Information Center

    Reardon, Sean F.; Raudenbush, Stephen W.

    2011-01-01

    The purpose of this paper is to clarify the assumptions that must be met if this--multiple site, multiple mediator--strategy, hereafter referred to as "MSMM," is to identify the average causal effects (ATE) in the populations of interest. The authors' investigation of the assumptions of the multiple-mediator, multiple-site IV model demonstrates…

  11. Identifying Causal Risk Factors for Violence among Discharged Patients

    PubMed Central

    Coid, Jeremy W.; Kallis, Constantinos; Doyle, Mike; Shaw, Jenny; Ullrich, Simone

    2015-01-01

    Background Structured Professional Judgement (SPJ) is routinely administered in mental health and criminal justice settings but cannot identify violence risk above moderate accuracy. There is no current evidence that violence can be prevented using SPJ. This may be explained by routine application of predictive instead of causal statistical models when standardising SPJ instruments. Methods We carried out a prospective cohort study of 409 male and female patients discharged from medium secure services in England and Wales to the community. Measures were taken at baseline (pre-discharge), 6 and 12 months post-discharge using the Historical, Clinical and Risk-20 items version 3 (HCR-20v3) and Structural Assessment of Protective Factors (SAPROF). Information on violence was obtained via the McArthur community violence instrument and the Police National Computer. Results In a lagged model, HCR-20v3 and SAPROF items were poor predictors of violence. Eight items of the HCR-20v3 and 4 SAPROF items did not predict violent behaviour better than chance. In re-analyses considering temporal proximity of risk/ protective factors (exposure) on violence (outcome), risk was elevated due to violent ideation (OR 6.98, 95% CI 13.85–12.65, P<0.001), instability (OR 5.41, 95% CI 3.44–8.50, P<0.001), and poor coping/ stress (OR 8.35, 95% CI 4.21–16.57, P<0.001). All 3 risk factors were explanatory variables which drove the association with violent outcome. Self-control (OR 0.13, 95% CI 0.08–0.24, P<0.001) conveyed protective effects and explained the association of other protective factors with violence. Conclusions Using two standardised SPJ instruments, predictive (lagged) methods could not identify risk and protective factors which must be targeted in interventions for discharged patients with severe mental illness. Predictive methods should be abandoned if the aim is to progress from risk assessment to effective risk management and replaced by methods which identify factors

  12. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.

    2018-04-01

    Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

  13. Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.

    PubMed

    Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying

    2017-06-01

    Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RP<0.01 were defined as critical pathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RP<0.01, and the top 10 pathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing

  14. Identifying pathways affected by cancer mutations.

    PubMed

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A novel method to identify hub pathways of rheumatoid arthritis based on differential pathway networks.

    PubMed

    Wei, Shi-Tong; Sun, Yong-Hua; Zong, Shi-Hua

    2017-09-01

    The aim of the current study was to identify hub pathways of rheumatoid arthritis (RA) using a novel method based on differential pathway network (DPN) analysis. The present study proposed a DPN where protein‑protein interaction (PPI) network was integrated with pathway‑pathway interactions. Pathway data was obtained from background PPI network and the Reactome pathway database. Subsequently, pathway interactions were extracted from the pathway data by building randomized gene‑gene interactions and a weight value was assigned to each pathway interaction using Spearman correlation coefficient (SCC) to identify differential pathway interactions. Differential pathway interactions were visualized using Cytoscape to construct a DPN. Topological analysis was conducted to identify hub pathways that possessed the top 5% degree distribution of DPN. Modules of DPN were mined according to ClusterONE. A total of 855 pathways were selected to build pathway interactions. By filtrating pathway interactions of weight values >0.7, a DPN with 312 nodes and 791 edges was obtained. Topological degree analysis revealed 15 hub pathways, such as heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) degradation, HS‑GAG metabolism and keratan sulfate degradation for RA based on DPN. Furthermore, hub pathways were also important in modules, which validated the significance of hub pathways. In conclusion, the proposed method is a computationally efficient way to identify hub pathways of RA, which identified 15 hub pathways that may be potential biomarkers and provide insight to future investigation and treatment of RA.

  16. Interactions of information transfer along separable causal paths

    NASA Astrophysics Data System (ADS)

    Jiang, Peishi; Kumar, Praveen

    2018-04-01

    Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.

  17. Pharmacological Validation of Candidate Causal Sleep Genes Identified in an N2 Cross

    PubMed Central

    Brunner, Joseph I.; Gotter, Anthony L.; Millstein, Joshua; Garson, Susan; Binns, Jacquelyn; Fox, Steven V.; Savitz, Alan T.; Yang, He S.; Fitzpatrick, Karrie; Zhou, Lili; Owens, Joseph R.; Webber, Andrea L.; Vitaterna, Martha H.; Kasarskis, Andrew; Uebele, Victor N.; Turek, Fred; Renger, John J.; Winrow, Christopher J.

    2013-01-01

    Despite the substantial impact of sleep disturbances on human health and the many years of study dedicated to understanding sleep pathologies, the underlying genetic mechanisms that govern sleep and wake largely remain unknown. Recently, we completed large scale genetic and gene expression analyses in a segregating inbred mouse cross and identified candidate causal genes that regulate the mammalian sleep-wake cycle, across multiple traits including total sleep time, amounts of REM, non-REM, sleep bout duration and sleep fragmentation. Here we describe a novel approach toward validating candidate causal genes, while also identifying potential targets for sleep-related indications. Select small molecule antagonists and agonists were used to interrogate candidate causal gene function in rodent sleep polysomnography assays to determine impact on overall sleep architecture and to evaluate alignment with associated sleep-wake traits. Significant effects on sleep architecture were observed in validation studies using compounds targeting the muscarinic acetylcholine receptor M3 subunit (Chrm3)(wake promotion), nicotinic acetylcholine receptor alpha4 subunit (Chrna4)(wake promotion), dopamine receptor D5 subunit (Drd5)(sleep induction), serotonin 1D receptor (Htr1d)(altered REM fragmentation), glucagon-like peptide-1 receptor (Glp1r)(light sleep promotion and reduction of deep sleep), and Calcium channel, voltage-dependent, T type, alpha 1I subunit (Cacna1i)(increased bout duration slow wave sleep). Taken together, these results show the complexity of genetic components that regulate sleep-wake traits and highlight the importance of evaluating this complex behavior at a systems level. Pharmacological validation of genetically identified putative targets provides a rapid alternative to generating knock out or transgenic animal models, and may ultimately lead towards new therapeutic opportunities. PMID:22091728

  18. Identifying the Average Causal Mediation Effects with Multiple Mediators in the Presence of Treatment Non-Compliance

    ERIC Educational Resources Information Center

    Park, Soojin

    2015-01-01

    Identifying the causal mechanisms is becoming more essential in social and medical sciences. In the presence of treatment non-compliance, the Intent-To-Treated effect (hereafter, ITT effect) is identified as long as the treatment is randomized (Angrist et al., 1996). However, the mediated portion of effect is not identified without additional…

  19. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework

    PubMed Central

    Richmond, Rebecca C.; Ward, Mary E.; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L.; Ring, Susan M.; Gaunt, Tom R.; Lawlor, Debbie A.; Davey Smith, George; Relton, Caroline L.

    2016-01-01

    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. PMID:26861784

  20. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways.

    PubMed

    Wang, Q; Shi, C-J; Lv, S-H

    2017-03-30

    Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.

  1. Obesity and infection: reciprocal causality.

    PubMed

    Hainer, V; Zamrazilová, H; Kunešová, M; Bendlová, B; Aldhoon-Hainerová, I

    2015-01-01

    Associations between different infectious agents and obesity have been reported in humans for over thirty years. In many cases, as in nosocomial infections, this relationship reflects the greater susceptibility of obese individuals to infection due to impaired immunity. In such cases, the infection is not related to obesity as a causal factor but represents a complication of obesity. In contrast, several infections have been suggested as potential causal factors in human obesity. However, evidence of a causal linkage to human obesity has only been provided for adenovirus 36 (Adv36). This virus activates lipogenic and proinflammatory pathways in adipose tissue, improves insulin sensitivity, lipid profile and hepatic steatosis. The E4orf1 gene of Adv36 exerts insulin senzitizing effects, but is devoid of its pro-inflammatory modalities. The development of a vaccine to prevent Adv36-induced obesity or the use of E4orf1 as a ligand for novel antidiabetic drugs could open new horizons in the prophylaxis and treatment of obesity and diabetes. More experimental and clinical studies are needed to elucidate the mutual relations between infection and obesity, identify additional infectious agents causing human obesity, as well as define the conditions that predispose obese individuals to specific infections.

  2. Detecting causal drivers and empirical prediction of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Di Capua, G.; Vellore, R.; Raghavan, K.; Coumou, D.

    2017-12-01

    The Indian summer monsoon (ISM) is crucial for the economy, society and natural ecosystems on the Indian peninsula. Predict the total seasonal rainfall at several months lead time would help to plan effective water management strategies, improve flood or drought protection programs and prevent humanitarian crisis. However, the complexity and strong internal variability of the ISM circulation system make skillful seasonal forecasting challenging. Moreover, to adequately identify the low-frequency, and far-away processes which influence ISM behavior novel tools are needed. We applied a Response-Guided Causal Precursor Detection (RGCPD) scheme, which is a novel empirical prediction method which unites a response-guided community detection scheme with a causal discovery algorithm (CEN). These tool allow us to assess causal pathways between different components of the ISM circulation system and with far-away regions in the tropics, mid-latitudes or Arctic. The scheme has successfully been used to identify causal precursors of the Stratospheric polar vortex enabling skillful predictions at (sub) seasonal timescales (Kretschmer et al. 2016, J.Clim., Kretschmer et al. 2017, GRL). We analyze observed ISM monthly rainfall over the monsoon trough region. Applying causal discovery techniques, we identify several causal precursor communities in the fields of 2m-temperature, sea level pressure and snow depth over Eurasia. Specifically, our results suggest that surface temperature conditions in both tropical and Arctic regions contribute to ISM variability. A linear regression prediction model based on the identified set of communities has good hindcasting skills with 4-5 months lead times. Further we separate El Nino, La Nina and ENSO-neutral years from each other and find that the causal precursors are different dependent on ENSO state. The ENSO-state dependent causal precursors give even higher skill, especially for La Nina years when the ISM is relatively strong. These

  3. Pathway Interaction Network Analysis Identifies Dysregulated Pathways in Human Monocytes Infected by Listeria monocytogenes.

    PubMed

    Fan, Wufeng; Zhou, Yuhan; Li, Hao

    2017-01-01

    In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM) based on pathway interaction network (PIN) which presented the functional dependency between pathways. After genes were aligned to the pathways, principal component analysis (PCA) was used to calculate the pathway activity for each pathway, followed by detecting seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs), and cellular pathways. Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy. To evaluate whether the PIN method was feasible or not, we compared the introduced method with standard network centrality measures. The pathway of RNA polymerase II pretranscription events was selected as the seed pathway. Taking this seed pathway as start, one pathway set (9 dysregulated pathways) with AUC score of 1.00 was identified. Among the 5 hub pathways obtained using standard network centrality measures, 4 pathways were the common ones between the two methods. RNA polymerase II transcription and DNA replication owned a higher number of pathway genes and DEGs. These dysregulated pathways work together to influence the progression of LM infection, and they will be available as biomarkers to diagnose LM infection.

  4. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia.

    PubMed

    Gori, Simone; Seitz, Aaron R; Ronconi, Luca; Franceschini, Sandro; Facoetti, Andrea

    2016-10-17

    Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework.

    PubMed

    Richmond, Rebecca C; Sharp, Gemma C; Ward, Mary E; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L; Ring, Susan M; Gaunt, Tom R; Lawlor, Debbie A; Davey Smith, George; Relton, Caroline L

    2016-05-01

    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Leveraging network analytics to infer patient syndrome and identify causal genes in rare disease cases.

    PubMed

    Krämer, Andreas; Shah, Sohela; Rebres, Robert Anthony; Tang, Susan; Richards, Daniel Rene

    2017-08-11

    Next-generation sequencing is widely used to identify disease-causing variants in patients with rare genetic disorders. Identifying those variants from whole-genome or exome data can be both scientifically challenging and time consuming. A significant amount of time is spent on variant annotation, and interpretation. Fully or partly automated solutions are therefore needed to streamline and scale this process. We describe Phenotype Driven Ranking (PDR), an algorithm integrated into Ingenuity Variant Analysis, that uses observed patient phenotypes to prioritize diseases and genes in order to expedite causal-variant discovery. Our method is based on a network of phenotype-disease-gene relationships derived from the QIAGEN Knowledge Base, which allows for efficient computational association of phenotypes to implicated diseases, and also enables scoring and ranking. We have demonstrated the utility and performance of PDR by applying it to a number of clinical rare-disease cases, where the true causal gene was known beforehand. It is also shown that PDR compares favorably to a representative alternative tool.

  7. Implementation and reporting of causal mediation analysis in 2015: a systematic review in epidemiological studies.

    PubMed

    Liu, Shao-Hsien; Ulbricht, Christine M; Chrysanthopoulou, Stavroula A; Lapane, Kate L

    2016-07-20

    Causal mediation analysis is often used to understand the impact of variables along the causal pathway of an occurrence relation. How well studies apply and report the elements of causal mediation analysis remains unknown. We systematically reviewed epidemiological studies published in 2015 that employed causal mediation analysis to estimate direct and indirect effects of observed associations between an exposure on an outcome. We identified potential epidemiological studies through conducting a citation search within Web of Science and a keyword search within PubMed. Two reviewers independently screened studies for eligibility. For eligible studies, one reviewer performed data extraction, and a senior epidemiologist confirmed the extracted information. Empirical application and methodological details of the technique were extracted and summarized. Thirteen studies were eligible for data extraction. While the majority of studies reported and identified the effects of measures, most studies lacked sufficient details on the extent to which identifiability assumptions were satisfied. Although most studies addressed issues of unmeasured confounders either from empirical approaches or sensitivity analyses, the majority did not examine the potential bias arising from the measurement error of the mediator. Some studies allowed for exposure-mediator interaction and only a few presented results from models both with and without interactions. Power calculations were scarce. Reporting of causal mediation analysis is varied and suboptimal. Given that the application of causal mediation analysis will likely continue to increase, developing standards of reporting of causal mediation analysis in epidemiological research would be prudent.

  8. Ends, Principles, and Causal Explanation in Educational Justice

    ERIC Educational Resources Information Center

    Dum, Jenn

    2017-01-01

    Many principles characterize educational justice in terms of the relationship between educational inputs, outputs and distributive standards. Such principles depend upon the "causal pathway view" of education. It is implicit in this view that the causally effective aspects of education can be understood as separate from the normative…

  9. Identifying X-consumers using causal recipes: "whales" and "jumbo shrimps" casino gamblers.

    PubMed

    Woodside, Arch G; Zhang, Mann

    2012-03-01

    X-consumers are the extremely frequent (top 2-3%) users who typically consume 25% of a product category. This article shows how to use fuzzy-set qualitative comparative analysis (QCA) to provide "causal recipes" sufficient for profiling X-consumers accurately. The study extends Dik Twedt's "heavy-half" product users for building theory and strategies to nurture or control X-behavior. The study here applies QCA to offer configurations that are sufficient in identifying "whales" and "jumbo shrimps" among X-casino gamblers. The findings support the principle that not all X-consumers are alike. The theory and method are applicable for identifying the degree of consistency and coverage of alternative X-consumers among users of all product-service category and brands.

  10. ­Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Kumar, P.

    2017-12-01

    Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.

  11. Neural pathways in processing of sexual arousal: a dynamic causal modeling study.

    PubMed

    Seok, J-W; Park, M-S; Sohn, J-H

    2016-09-01

    Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.

  12. A Novel Method to Identify Differential Pathways in Hippocampus Alzheimer's Disease.

    PubMed

    Liu, Chun-Han; Liu, Lian

    2017-05-08

    BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The objective of this paper is to propose a novel method to identify differential pathways in hippocampus AD. MATERIAL AND METHODS We proposed a combined method by merging existed methods. Firstly, pathways were identified by four known methods (DAVID, the neaGUI package, the pathway-based co-expressed method, and the pathway network approach), and differential pathways were evaluated through setting weight thresholds. Subsequently, we combined all pathways by a rank-based algorithm and called the method the combined method. Finally, common differential pathways across two or more of five methods were selected. RESULTS Pathways obtained from different methods were also different. The combined method obtained 1639 pathways and 596 differential pathways, which included all pathways gained from the four existing methods; hence, the novel method solved the problem of inconsistent results. Besides, a total of 13 common pathways were identified, such as metabolism, immune system, and cell cycle. CONCLUSIONS We have proposed a novel method by combining four existing methods based on a rank product algorithm, and identified 13 significant differential pathways based on it. These differential pathways might provide insight into treatment and diagnosis of hippocampus AD.

  13. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    NASA Astrophysics Data System (ADS)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  14. Causal diagrams for empirical legal research: a methodology for identifying causation, avoiding bias and interpreting results

    PubMed Central

    VanderWeele, Tyler J.; Staudt, Nancy

    2014-01-01

    In this paper we introduce methodology—causal directed acyclic graphs—that empirical researchers can use to identify causation, avoid bias, and interpret empirical results. This methodology has become popular in a number of disciplines, including statistics, biostatistics, epidemiology and computer science, but has yet to appear in the empirical legal literature. Accordingly we outline the rules and principles underlying this new methodology and then show how it can assist empirical researchers through both hypothetical and real-world examples found in the extant literature. While causal directed acyclic graphs are certainly not a panacea for all empirical problems, we show they have potential to make the most basic and fundamental tasks, such as selecting covariate controls, relatively easy and straightforward. PMID:25685055

  15. Understanding causal pathways within health systems policy evaluation through mediation analysis: an application to payment for performance (P4P) in Tanzania.

    PubMed

    Anselmi, Laura; Binyaruka, Peter; Borghi, Josephine

    2017-02-02

    The evaluation of payment for performance (P4P) programmes has focused mainly on understanding contributions to health service coverage, without unpacking causal mechanisms. The overall aim of the paper is to test the causal pathways through which P4P schemes may (or may not) influence maternal care outcomes. We used data from an evaluation of a P4P programme in Tanzania. Data were collected from a sample of 3000 women who delivered in the 12 months prior to interview and 200 health workers at 150 health facilities from seven intervention and four comparison districts in Tanzania in January 2012 and in February 2013. We applied causal mediation analysis using a linear structural equation model to identify direct and indirect effects of P4P on institutional delivery rates and on the uptake of two doses of an antimalarial drug during pregnancy. We first ran a series of linear difference-in-difference regression models to test the effect of P4P on potential mediators, which we then included in a linear difference-in-difference model evaluating the impact of P4P on the outcome. We tested the robustness of our results to unmeasured confounding using semi-parametric methods. P4P reduced the probability of women paying for delivery care (-4.5 percentage points) which mediates the total effect of P4P on institutional deliveries (by 48%) and on deliveries in a public health facility (by 78%). P4P reduced the stock-out rate for some essential drugs, specifically oxytocin (-36 percentage points), which mediated the total effect of P4P on institutional deliveries (by 22%) and deliveries in a public health facility (by 30%). P4P increased kindness at delivery (5 percentage points), which mediated the effect of P4P on institutional deliveries (by 48%) and on deliveries in a public health facility (by 49%). P4P increased the likelihood of supervision visits taking place within the last 90 days (18 percentage points), which mediated 15% of the total P4P effect on the uptake of

  16. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    USGS Publications Warehouse

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  17. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands.

    PubMed

    Stagg, Camille L; Schoolmaster, Donald R; Krauss, Ken W; Cormier, Nicole; Conner, William H

    2017-08-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate-change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: (1) a direct pathway representing the effects of flooding on soil moisture, (2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and (3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to drought and sea-level rise, and increased decomposition following a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  18. Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease.

    PubMed

    Zhang, Mingming; Mu, Hongbo; Shang, Zhenwei; Kang, Kai; Lv, Hongchao; Duan, Lian; Li, Jin; Chen, Xinren; Teng, Yanbo; Jiang, Yongshuai; Zhang, Ruijie

    2017-01-06

    Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD. Copyright © 2016. Published by Elsevier Ltd.

  19. Causal and causally separable processes

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and

  20. Literature mining, gene-set enrichment and pathway analysis for target identification in Behçet's disease.

    PubMed

    Wilson, Paul; Larminie, Christopher; Smith, Rona

    2016-01-01

    To use literature mining to catalogue Behçet's associated genes, and advanced computational methods to improve the understanding of the pathways and signalling mechanisms that lead to the typical clinical characteristics of Behçet's patients. To extend this technique to identify potential treatment targets for further experimental validation. Text mining methods combined with gene enrichment tools, pathway analysis and causal analysis algorithms. This approach identified 247 human genes associated with Behçet's disease and the resulting disease map, comprising 644 nodes and 19220 edges, captured important details of the relationships between these genes and their associated pathways, as described in diverse data repositories. Pathway analysis has identified how Behçet's associated genes are likely to participate in innate and adaptive immune responses. Causal analysis algorithms have identified a number of potential therapeutic strategies for further investigation. Computational methods have captured pertinent features of the prominent disease characteristics presented in Behçet's disease and have highlighted NOD2, ICOS and IL18 signalling as potential therapeutic strategies.

  1. PPARα siRNA–Treated Expression Profiles Uncover the Causal Sufficiency Network for Compound-Induced Liver Hypertrophy

    PubMed Central

    Dai, Xudong; Souza, Angus T. De; Dai, Hongyue; Lewis, David L; Lee, Chang-kyu; Spencer, Andy G; Herweijer, Hans; Hagstrom, Jim E; Linsley, Peter S; Bassett, Douglas E; Ulrich, Roger G; He, Yudong D

    2007-01-01

    Uncovering pathways underlying drug-induced toxicity is a fundamental objective in the field of toxicogenomics. Developing mechanism-based toxicity biomarkers requires the identification of such novel pathways and the order of their sufficiency in causing a phenotypic response. Genome-wide RNA interference (RNAi) phenotypic screening has emerged as an effective tool in unveiling the genes essential for specific cellular functions and biological activities. However, eliciting the relative contribution of and sufficiency relationships among the genes identified remains challenging. In the rodent, the most widely used animal model in preclinical studies, it is unrealistic to exhaustively examine all potential interactions by RNAi screening. Application of existing computational approaches to infer regulatory networks with biological outcomes in the rodent is limited by the requirements for a large number of targeted permutations. Therefore, we developed a two-step relay method that requires only one targeted perturbation for genome-wide de novo pathway discovery. Using expression profiles in response to small interfering RNAs (siRNAs) against the gene for peroxisome proliferator-activated receptor α (Ppara), our method unveiled the potential causal sufficiency order network for liver hypertrophy in the rodent. The validity of the inferred 16 causal transcripts or 15 known genes for PPARα-induced liver hypertrophy is supported by their ability to predict non-PPARα–induced liver hypertrophy with 84% sensitivity and 76% specificity. Simulation shows that the probability of achieving such predictive accuracy without the inferred causal relationship is exceedingly small (p < 0.005). Five of the most sufficient causal genes have been previously disrupted in mouse models; the resulting phenotypic changes in the liver support the inferred causal roles in liver hypertrophy. Our results demonstrate the feasibility of defining pathways mediating drug-induced toxicity from

  2. Epidemiological causality.

    PubMed

    Morabia, Alfredo

    2005-01-01

    Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.

  3. Identifying Conditions That Support Causal Inference in Observational Studies in Education: Empirical Evidence from within Study Comparisons

    ERIC Educational Resources Information Center

    Hallberg, Kelly

    2013-01-01

    This dissertation is a collection of three papers that employ empirical within study comparisons (WSCs) to identify conditions that support causal inference in observational studies. WSC studies empirically estimate the extent to which a given observational study reproduces the result of a randomized clinical trial (RCT) when both share the same…

  4. A Causal and Mediation Analysis of the Comorbidity Between Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD).

    PubMed

    Sokolova, Elena; Oerlemans, Anoek M; Rommelse, Nanda N; Groot, Perry; Hartman, Catharina A; Glennon, Jeffrey C; Claassen, Tom; Heskes, Tom; Buitelaar, Jan K

    2017-06-01

    Autism spectrum disorder (ASD) and Attention-deficit/hyperactivity disorder (ADHD) are often comorbid. The purpose of this study is to explore the relationships between ASD and ADHD symptoms by applying causal modeling. We used a large phenotypic data set of 417 children with ASD and/or ADHD, 562 affected and unaffected siblings, and 414 controls, to infer a structural equation model using a causal discovery algorithm. Three distinct pathways between ASD and ADHD were identified: (1) from impulsivity to difficulties with understanding social information, (2) from hyperactivity to stereotypic, repetitive behavior, (3) a pairwise pathway between inattention, difficulties with understanding social information, and verbal IQ. These findings may inform future studies on understanding the pathophysiological mechanisms behind the overlap between ASD and ADHD.

  5. Using genetic data to strengthen causal inference in observational research.

    PubMed

    Pingault, Jean-Baptiste; O'Reilly, Paul F; Schoeler, Tabea; Ploubidis, George B; Rijsdijk, Frühling; Dudbridge, Frank

    2018-06-05

    Causal inference is essential across the biomedical, behavioural and social sciences.By progressing from confounded statistical associations to evidence of causal relationships, causal inference can reveal complex pathways underlying traits and diseases and help to prioritize targets for intervention. Recent progress in genetic epidemiology - including statistical innovation, massive genotyped data sets and novel computational tools for deep data mining - has fostered the intense development of methods exploiting genetic data and relatedness to strengthen causal inference in observational research. In this Review, we describe how such genetically informed methods differ in their rationale, applicability and inherent limitations and outline how they should be integrated in the future to offer a rich causal inference toolbox.

  6. Causality and Causal Inference in Social Work: Quantitative and Qualitative Perspectives

    PubMed Central

    Palinkas, Lawrence A.

    2015-01-01

    Achieving the goals of social work requires matching a specific solution to a specific problem. Understanding why the problem exists and why the solution should work requires a consideration of cause and effect. However, it is unclear whether it is desirable for social workers to identify cause and effect, whether it is possible for social workers to identify cause and effect, and, if so, what is the best means for doing so. These questions are central to determining the possibility of developing a science of social work and how we go about doing it. This article has four aims: (1) provide an overview of the nature of causality; (2) examine how causality is treated in social work research and practice; (3) highlight the role of quantitative and qualitative methods in the search for causality; and (4) demonstrate how both methods can be employed to support a “science” of social work. PMID:25821393

  7. Nightmares in the general population: identifying potential causal factors.

    PubMed

    Rek, Stephanie; Sheaves, Bryony; Freeman, Daniel

    2017-09-01

    Nightmares are inherently distressing, prevent restorative sleep, and are associated with a number of psychiatric problems, but have rarely been the subject of empirical study. Negative affect, linked to stressful events, is generally considered the key trigger of nightmares; hence nightmares have most often been considered in the context of post-traumatic stress disorder (PTSD). However, many individuals with heightened negative affect do not have nightmares. The objective of this study was to identify mechanistically plausible factors, beyond negative affect, that may explain why individuals experience nightmares. 846 participants from the UK general population completed an online survey about nightmare occurrence and severity (pre-occupation, distress, and impairment), negative affect, worry, depersonalisation, hallucinatory experiences, paranoia, alcohol use, sleep duration, physical activity levels, PTSD symptoms, and stressful life events. Associations of nightmares with the putative predictive factors were tested controlling for levels of negative affect. Analyses were also repeated controlling for levels of PTSD and the recent occurrence of stressful life events. Nightmare occurrence, adjusting for negative affect, was associated with higher levels of worry, depersonalisation, hallucinatory experiences, paranoia, and sleep duration (odds ratios 1.25-1.45). Nightmare severity, controlling for negative affect, was associated with higher levels of worry, depersonalisation, hallucinatory experiences, and paranoia (R 2 s: 0.33-0.39). Alcohol use and physical activity levels were not associated with nightmares. The study identifies a number of potential predictors of the occurrence and severity of nightmares. Causal roles require testing in future longitudinal, experimental, and treatment studies.

  8. Identifying Differentially Abundant Metabolic Pathways in Metagenomic Datasets

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Pop, Mihai

    Enabled by rapid advances in sequencing technology, metagenomic studies aim to characterize entire communities of microbes bypassing the need for culturing individual bacterial members. One major goal of such studies is to identify specific functional adaptations of microbial communities to their habitats. Here we describe a powerful analytical method (MetaPath) that can identify differentially abundant pathways in metagenomic data-sets, relying on a combination of metagenomic sequence data and prior metabolic pathway knowledge. We show that MetaPath outperforms other common approaches when evaluated on simulated datasets. We also demonstrate the power of our methods in analyzing two, publicly available, metagenomic datasets: a comparison of the gut microbiome of obese and lean twins; and a comparison of the gut microbiome of infant and adult subjects. We demonstrate that the subpathways identified by our method provide valuable insights into the biological activities of the microbiome.

  9. The relationship of family characteristics and bipolar disorder using causal-pie models.

    PubMed

    Chen, Y-C; Kao, C-F; Lu, M-K; Yang, Y-K; Liao, S-C; Jang, F-L; Chen, W J; Lu, R-B; Kuo, P-H

    2014-01-01

    Many family characteristics were reported to increase the risk of bipolar disorder (BPD). The development of BPD may be mediated through different pathways, involving diverse risk factor profiles. We evaluated the associations of family characteristics to build influential causal-pie models to estimate their contributions on the risk of developing BPD at the population level. We recruited 329 clinically diagnosed BPD patients and 202 healthy controls to collect information in parental psychopathology, parent-child relationship, and conflict within family. Other than logistic regression models, we applied causal-pie models to identify pathways involved with different family factors for BPD. The risk of BPD was significantly increased with parental depression, neurosis, anxiety, paternal substance use problems, and poor relationship with parents. Having a depressed mother further predicted early onset of BPD. Additionally, a greater risk for BPD was observed with higher numbers of paternal/maternal psychopathologies. Three significant risk profiles were identified for BPD, including paternal substance use problems (73.0%), maternal depression (17.6%), and through poor relationship with parents and conflict within the family (6.3%). Our findings demonstrate that different aspects of family characteristics elicit negative impacts on bipolar illness, which can be utilized to target specific factors to design and employ efficient intervention programs. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Right external globus pallidus changes are associated with altered causal awareness in youth with depression

    PubMed Central

    Griffiths, K R; Lagopoulos, J; Hermens, D F; Hickie, I B; Balleine, B W

    2015-01-01

    Cognitive impairment is a functionally disabling feature of depression contributing to maladaptive decision-making, a loss of behavioral control and an increased disease burden. The ability to calculate the causal efficacy of ones actions in achieving specific goals is critical to normal decision-making and, in this study, we combined voxel-based morphometry (VBM), shape analysis and diffusion tensor tractography to investigate the relationship between cortical–basal ganglia structural integrity and such causal awareness in 43 young subjects with depression and 21 demographically similar healthy controls. Volumetric analysis determined a relationship between right pallidal size and sensitivity to the causal status of specific actions. More specifically, shape analysis identified dorsolateral surface vertices where an inward location was correlated with reduced levels of causal awareness. Probabilistic tractography revealed that affected parts of the pallidum were primarily connected with the striatum, dorsal thalamus and hippocampus. VBM did not reveal any whole-brain gray matter regions that correlated with causal awareness. We conclude that volumetric reduction within the indirect pathway involving the right dorsolateral pallidum is associated with reduced awareness of the causal efficacy of goal-directed actions in young depressed individuals. This causal awareness task allows for the identification of a functionally and biologically relevant subgroup to which more targeted cognitive interventions could be applied, potentially enhancing the long-term outcomes for these individuals. PMID:26440541

  11. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    PubMed Central

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  12. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    PubMed

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-11-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  13. Adverse Outcome Pathways and Extrapolation Tools to Advance the Three Rs in Ecotoxicology

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are conceptual frameworks for identifying and organizing predictive and causal linkages between cellular-level responses and endpoints conventionally considered in ecological risk assessment (e.g., effects on survival, growth/development, and repro...

  14. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Vigorito, Elena; Kuchenbaecker, Karoline B.; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A.; Andrulis, Irene L.; Arun, Banu K.; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Chan, Salina B.; Claes, Kathleen B. M.; Cohn, David E.; Cook, Jackie; Daly, Mary B.; Damiola, Francesca; Davidson, Rosemarie; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Domchek, Susan M.; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F.; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D. Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D.; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A.; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K.; Goldgar, David E.; Hake, Christopher R.; Hansen, Thomas V. O.; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B. L.; Houdayer, Claude; Hulick, Peter J.; Imyanitov, Evgeny N.; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M.; Vijai, Joseph; Karlan, Beth Y.; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L.; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R.; Montagna, Marco; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I.; Ong, Kai-ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M.; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C.; Rookus, Matti A.; Ross, Eric A.; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F.; Slavin, Thomas P.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I.; Tea, Muy-Kheng; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J.; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N.; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J.; Greene, Mark H.; Couch, Fergus J.; Offit, Kenneth; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10−16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10−6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population. PMID:27463617

  15. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    PubMed

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A; Andrulis, Irene L; Arun, Banu K; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A; Campbell, Ian; Chan, Salina B; Claes, Kathleen B M; Cohn, David E; Cook, Jackie; Daly, Mary B; Damiola, Francesca; Davidson, Rosemarie; Pauw, Antoine de; Delnatte, Capucine; Diez, Orland; Domchek, Susan M; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K; Goldgar, David E; Hake, Christopher R; Hansen, Thomas V O; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B L; Houdayer, Claude; Hulick, Peter J; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R; Montagna, Marco; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I; Ong, Kai-Ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C; Rookus, Matti A; Ross, Eric A; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F; Slavin, Thomas P; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tea, Muy-Kheng; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J; Greene, Mark H; Couch, Fergus J; Offit, Kenneth; Pharoah, Paul D P; Chenevix-Trench, Georgia; Antoniou, Antonis C

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

  16. Developing Causal Understanding with Causal Maps: The Impact of Total Links, Temporal Flow, and Lateral Position of Outcome Nodes

    ERIC Educational Resources Information Center

    Jeong, Allan; Lee, Woon Jee

    2012-01-01

    This study examined some of the methodological approaches used by students to construct causal maps in order to determine which approaches help students understand the underlying causes and causal mechanisms in a complex system. This study tested the relationship between causal understanding (ratio of root causes correctly/incorrectly identified,…

  17. Causal Inference and Developmental Psychology

    ERIC Educational Resources Information Center

    Foster, E. Michael

    2010-01-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…

  18. An integrative framework for Bayesian variable selection with informative priors for identifying genes and pathways.

    PubMed

    Peng, Bin; Zhu, Dianwen; Ander, Bradley P; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R; Yang, Xiaowei

    2013-01-01

    The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with 'large p, small n' problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed.

  19. Causal discovery and inference: concepts and recent methodological advances.

    PubMed

    Spirtes, Peter; Zhang, Kun

    This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.

  20. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?

    PubMed

    Kirkbride, James B; Susser, Ezra; Kundakovic, Marija; Kresovich, Jacob K; Davey Smith, George; Relton, Caroline L

    2012-06-01

    We posit that maternal prenatal nutrition can influence offspring schizophrenia risk via epigenetic effects. In this article, we consider evidence that prenatal nutrition is linked to epigenetic outcomes in offspring and schizophrenia in offspring, and that schizophrenia is associated with epigenetic changes. We focus upon one-carbon metabolism as a mediator of the pathway between perturbed prenatal nutrition and the subsequent risk of schizophrenia. Although post-mortem human studies demonstrate DNA methylation changes in brains of people with schizophrenia, such studies cannot establish causality. We suggest a testable hypothesis that utilizes a novel two-step Mendelian randomization approach, to test the component parts of the proposed causal pathway leading from prenatal nutritional exposure to schizophrenia. Applied here to a specific example, such an approach is applicable for wider use to strengthen causal inference of the mediating role of epigenetic factors linking exposures to health outcomes in population-based studies.

  1. Stable Causal Relationships Are Better Causal Relationships.

    PubMed

    Vasilyeva, Nadya; Blanchard, Thomas; Lombrozo, Tania

    2018-05-01

    We report three experiments investigating whether people's judgments about causal relationships are sensitive to the robustness or stability of such relationships across a range of background circumstances. In Experiment 1, we demonstrate that people are more willing to endorse causal and explanatory claims based on stable (as opposed to unstable) relationships, even when the overall causal strength of the relationship is held constant. In Experiment 2, we show that this effect is not driven by a causal generalization's actual scope of application. In Experiment 3, we offer evidence that stable causal relationships may be seen as better guides to action. Collectively, these experiments document a previously underappreciated factor that shapes people's causal reasoning: the stability of the causal relationship. Copyright © 2018 Cognitive Science Society, Inc.

  2. Recognising discourse causality triggers in the biomedical domain.

    PubMed

    Mihăilă, Claudiu; Ananiadou, Sophia

    2013-12-01

    Current domain-specific information extraction systems represent an important resource for biomedical researchers, who need to process vast amounts of knowledge in a short time. Automatic discourse causality recognition can further reduce their workload by suggesting possible causal connections and aiding in the curation of pathway models. We describe here an approach to the automatic identification of discourse causality triggers in the biomedical domain using machine learning. We create several baselines and experiment with and compare various parameter settings for three algorithms, i.e. Conditional Random Fields (CRF), Support Vector Machines (SVM) and Random Forests (RF). We also evaluate the impact of lexical, syntactic, and semantic features on each of the algorithms, showing that semantics improves the performance in all cases. We test our comprehensive feature set on two corpora containing gold standard annotations of causal relations, and demonstrate the need for more gold standard data. The best performance of 79.35% F-score is achieved by CRFs when using all three feature types.

  3. Using Bioinformatic Approaches to Identify Pathways Targeted by Human Leukemogens

    PubMed Central

    Thomas, Reuben; Phuong, Jimmy; McHale, Cliona M.; Zhang, Luoping

    2012-01-01

    We have applied bioinformatic approaches to identify pathways common to chemical leukemogens and to determine whether leukemogens could be distinguished from non-leukemogenic carcinogens. From all known and probable carcinogens classified by IARC and NTP, we identified 35 carcinogens that were associated with leukemia risk in human studies and 16 non-leukemogenic carcinogens. Using data on gene/protein targets available in the Comparative Toxicogenomics Database (CTD) for 29 of the leukemogens and 11 of the non-leukemogenic carcinogens, we analyzed for enrichment of all 250 human biochemical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The top pathways targeted by the leukemogens included metabolism of xenobiotics by cytochrome P450, glutathione metabolism, neurotrophin signaling pathway, apoptosis, MAPK signaling, Toll-like receptor signaling and various cancer pathways. The 29 leukemogens formed 18 distinct clusters comprising 1 to 3 chemicals that did not correlate with known mechanism of action or with structural similarity as determined by 2D Tanimoto coefficients in the PubChem database. Unsupervised clustering and one-class support vector machines, based on the pathway data, were unable to distinguish the 29 leukemogens from 11 non-leukemogenic known and probable IARC carcinogens. However, using two-class random forests to estimate leukemogen and non-leukemogen patterns, we estimated a 76% chance of distinguishing a random leukemogen/non-leukemogen pair from each other. PMID:22851955

  4. Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments

    PubMed Central

    2014-01-01

    Background Knockdown or overexpression of genes is widely used to identify genes that play important roles in many aspects of cellular functions and phenotypes. Because next-generation sequencing generates high-throughput data that allow us to detect genes, it is important to identify genes that drive functional and phenotypic changes of cells. However, conventional methods rely heavily on the assumption of normality and they often give incorrect results when the assumption is not true. To relax the Gaussian assumption in causal inference, we introduce the non-paranormal method to test conditional independence in the PC-algorithm. Then, we present the non-paranormal intervention-calculus when the directed acyclic graph (DAG) is absent (NPN-IDA), which incorporates the cumulative nature of effects through a cascaded pathway via causal inference for ranking causal genes against a phenotype with the non-paranormal method for estimating DAGs. Results We demonstrate that causal inference with the non-paranormal method significantly improves the performance in estimating DAGs on synthetic data in comparison with the original PC-algorithm. Moreover, we show that NPN-IDA outperforms the conventional methods in exploring regulators of the flowering time in Arabidopsis thaliana and regulators that control the browning of white adipocytes in mice. Our results show that performance improvement in estimating DAGs contributes to an accurate estimation of causal effects. Conclusions Although the simplest alternative procedure was used, our proposed method enables us to design efficient intervention experiments and can be applied to a wide range of research purposes, including drug discovery, because of its generality. PMID:24980787

  5. Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments.

    PubMed

    Teramoto, Reiji; Saito, Chiaki; Funahashi, Shin-ichi

    2014-06-30

    Knockdown or overexpression of genes is widely used to identify genes that play important roles in many aspects of cellular functions and phenotypes. Because next-generation sequencing generates high-throughput data that allow us to detect genes, it is important to identify genes that drive functional and phenotypic changes of cells. However, conventional methods rely heavily on the assumption of normality and they often give incorrect results when the assumption is not true. To relax the Gaussian assumption in causal inference, we introduce the non-paranormal method to test conditional independence in the PC-algorithm. Then, we present the non-paranormal intervention-calculus when the directed acyclic graph (DAG) is absent (NPN-IDA), which incorporates the cumulative nature of effects through a cascaded pathway via causal inference for ranking causal genes against a phenotype with the non-paranormal method for estimating DAGs. We demonstrate that causal inference with the non-paranormal method significantly improves the performance in estimating DAGs on synthetic data in comparison with the original PC-algorithm. Moreover, we show that NPN-IDA outperforms the conventional methods in exploring regulators of the flowering time in Arabidopsis thaliana and regulators that control the browning of white adipocytes in mice. Our results show that performance improvement in estimating DAGs contributes to an accurate estimation of causal effects. Although the simplest alternative procedure was used, our proposed method enables us to design efficient intervention experiments and can be applied to a wide range of research purposes, including drug discovery, because of its generality.

  6. Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways

    PubMed Central

    Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun

    2016-01-01

    Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609

  7. Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures

    PubMed Central

    Foroushani, Amir B.K.; Brinkman, Fiona S.L.

    2013-01-01

    Motivation. Predominant pathway analysis approaches treat pathways as collections of individual genes and consider all pathway members as equally informative. As a result, at times spurious and misleading pathways are inappropriately identified as statistically significant, solely due to components that they share with the more relevant pathways. Results. We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as pairs of genes that, as a combination, are specific to a single pathway. We devised and implemented a novel approach to pathway analysis, Signature Over-representation Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-GPS in a user-specified gene list of interest. In a comparative evaluation of several published datasets, SIGORA outperformed traditional methods by delivering biologically more plausible and relevant results. Availability. An efficient implementation of SIGORA, as an R package with precompiled GPS data for several human and mouse pathway repositories is available for download from http://sigora.googlecode.com/svn/. PMID:24432194

  8. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  9. Xtalk: a path-based approach for identifying crosstalk between signaling pathways

    PubMed Central

    Tegge, Allison N.; Sharp, Nicholas; Murali, T. M.

    2016-01-01

    Motivation: Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. Results: We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. Availability and implementation: The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. Contact: ategge@vt.edu, murali@cs.vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26400040

  10. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability

    PubMed Central

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-01-01

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074

  11. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability.

    PubMed

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-07-08

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity.

  12. Causal Networks or Causal Islands? The Representation of Mechanisms and the Transitivity of Causal Judgment

    ERIC Educational Resources Information Center

    Johnson, Samuel G. B.; Ahn, Woo-kyoung

    2015-01-01

    Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge--an interconnected causal "network," where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms--causal "islands"--such that events in different…

  13. Causal Networks or Causal Islands? The Representation of Mechanisms and the Transitivity of Causal Judgment.

    PubMed

    Johnson, Samuel G B; Ahn, Woo-kyoung

    2015-09-01

    Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge—an interconnected causal network, where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms—causal islands—such that events in different mechanisms are not thought to be related even when they belong to the same causal chain. To distinguish these possibilities, we tested whether people make transitive judgments about causal chains by inferring, given A causes B and B causes C, that A causes C. Specifically, causal chains schematized as one chunk or mechanism in semantic memory (e.g., exercising, becoming thirsty, drinking water) led to transitive causal judgments. On the other hand, chains schematized as multiple chunks (e.g., having sex, becoming pregnant, becoming nauseous) led to intransitive judgments despite strong intermediate links ((Experiments 1-3). Normative accounts of causal intransitivity could not explain these intransitive judgments (Experiments 4 and 5). Copyright © 2015 Cognitive Science Society, Inc.

  14. Examination of tetrahydrobiopterin pathway genes in autism.

    PubMed

    Schnetz-Boutaud, N C; Anderson, B M; Brown, K D; Wright, H H; Abramson, R K; Cuccaro, M L; Gilbert, J R; Pericak-Vance, M A; Haines, J L

    2009-11-01

    Autism is a complex disorder with a high degree of heritability and significant phenotypic and genotypic heterogeneity. Although candidate gene studies and genome-wide screens have failed to identify major causal loci associated with autism, numerous studies have proposed association with several variations in genes in the dopaminergic and serotonergic pathways. Because tetrahydrobiopterin (BH4) is the essential cofactor in the synthesis of these two neurotransmitters, we genotyped 25 SNPs in nine genes of the BH4 pathway in a total of 403 families. Significant nominal association was detected in the gene for 6-pyruvoyl-tetrahydropterin synthase, PTS (chromosome 11), with P = 0.009; this result was not restricted to an affected male-only subset. Multilocus interaction was detected in the BH4 pathway alone, but not across the serotonin, dopamine and BH4 pathways.

  15. Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps

    PubMed Central

    Silver, Matt; Montana, Giovanni

    2012-01-01

    Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways. We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our “pathways group lasso with adaptive weights” (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets. In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small. PMID:22499682

  16. An Integrative Framework for Bayesian Variable Selection with Informative Priors for Identifying Genes and Pathways

    PubMed Central

    Ander, Bradley P.; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R.; Yang, Xiaowei

    2013-01-01

    The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed. PMID:23844055

  17. The use of functional chemical-protein associations to identify multi-pathway renoprotectants.

    PubMed

    Xu, Jia; Meng, Kexin; Zhang, Rui; Yang, He; Liao, Chang; Zhu, Wenliang; Jiao, Jundong

    2014-01-01

    Typically, most nephropathies can be categorized as complex human diseases in which the cumulative effect of multiple minor genes, combined with environmental and lifestyle factors, determines the disease phenotype. Thus, multi-target drugs would be more likely to facilitate comprehensive renoprotection than single-target agents. In this study, functional chemical-protein association analysis was performed to retrieve multi-target drugs of high pathway wideness from the STITCH 3.1 database. Pathway wideness of a drug evaluated the efficiency of regulation of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in quantity. We identified nine experimentally validated renoprotectants that exerted remarkable impact on KEGG pathways by targeting a limited number of proteins. We selected curcumin as an illustrative compound to display the advantage of multi-pathway drugs on renoprotection. We compared curcumin with hemin, an agonist of heme oxygenase-1 (HO-1), which significantly affects only one KEGG pathway, porphyrin and chlorophyll metabolism (adjusted p = 1.5×10-5). At the same concentration (10 µM), both curcumin and hemin equivalently mitigated oxidative stress in H2O2-treated glomerular mesangial cells. The benefit of using hemin was derived from its agonistic effect on HO-1, providing relief from oxidative stress. Selective inhibition of HO-1 completely blocked the action of hemin but not that of curcumin, suggesting simultaneous multi-pathway intervention by curcumin. Curcumin also increased cellular autophagy levels, enhancing its protective effect; however, hemin had no effects. Based on the fact that the dysregulation of multiple pathways is implicated in the etiology of complex diseases, we proposed a feasible method for identifying multi-pathway drugs from compounds with validated targets. Our efforts will help identify multi-pathway agents capable of providing comprehensive protection against renal injuries.

  18. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a

  19. A pedagogical walkthrough of computational modeling and simulation of Wnt signaling pathway using static causal models in MATLAB.

    PubMed

    Sinha, Shriprakash

    2016-12-01

    Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important scientific knowledge. A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static Bayesian network models is provided. The walkthrough might aid biologists/informaticians in understanding the design of computational experiments that is interleaved with exposition of the Matlab code and causal models from Bayesian network toolbox. The manuscript elucidates the coding contents of the advance article by Sinha (Integr. Biol. 6:1034-1048, 2014) and takes the reader in a step-by-step process of how (a) the collection and the transformation of the available biological information from literature is done, (b) the integration of the heterogeneous data and prior biological knowledge in the network is achieved, (c) the simulation study is designed, (d) the hypothesis regarding a biological phenomena is transformed into computational framework, and (e) results and inferences drawn using d -connectivity/separability are reported. The manuscript finally ends with a programming assignment to help the readers get hands-on experience of a perturbation project. Description of Matlab files is made available under GNU GPL v3 license at the Google code project on https://code.google.com/p/static-bn-for-wnt-signaling-pathway and https: //sites.google.com/site/shriprakashsinha/shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway. Latest updates can be found in the latter website.

  20. Detectability of Granger causality for subsampled continuous-time neurophysiological processes.

    PubMed

    Barnett, Lionel; Seth, Anil K

    2017-01-01

    Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity

  1. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram

    PubMed Central

    Vins, Holly; Bell, Jesse; Saha, Shubhayu; Hess, Jeremy J.

    2015-01-01

    Little is understood about the long term, indirect health consequences of drought (a period of abnormally dry weather). In particular, the implications of drought for mental health via pathways such as loss of livelihood, diminished social support, and rupture of place bonds have not been extensively studied, leaving a knowledge gap for practitioners and researchers alike. A systematic review of literature was performed to examine the mental health effects of drought. The systematic review results were synthesized to create a causal process diagram that illustrates the pathways linking drought effects to mental health outcomes. Eighty-two articles using a variety of methods in different contexts were gathered from the systematic review. The pathways in the causal process diagram with greatest support in the literature are those focusing on the economic and migratory effects of drought. The diagram highlights the complexity of the relationships between drought and mental health, including the multiple ways that factors can interact and lead to various outcomes. The systematic review and resulting causal process diagram can be used in both practice and theory, including prevention planning, public health programming, vulnerability and risk assessment, and research question guidance. The use of a causal process diagram provides a much needed avenue for integrating the findings of diverse research to further the understanding of the mental health implications of drought. PMID:26506367

  2. Application of Monte Carlo cross-validation to identify pathway cross-talk in neonatal sepsis.

    PubMed

    Zhang, Yuxia; Liu, Cui; Wang, Jingna; Li, Xingxia

    2018-03-01

    To explore genetic pathway cross-talk in neonates with sepsis, an integrated approach was used in this paper. To explore the potential relationships between differently expressed genes between normal uninfected neonates and neonates with sepsis and pathways, genetic profiling and biologic signaling pathway were first integrated. For different pathways, the score was obtained based upon the genetic expression by quantitatively analyzing the pathway cross-talk. The paired pathways with high cross-talk were identified by random forest classification. The purpose of the work was to find the best pairs of pathways able to discriminate sepsis samples versus normal samples. The results found 10 pairs of pathways, which were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways were identified according to analysis of extensive literature. Impact statement To find the best pairs of pathways able to discriminate sepsis samples versus normal samples, an RF classifier, the DS obtained by DEGs of paired pathways significantly associated, and Monte Carlo cross-validation were applied in this paper. Ten pairs of pathways were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways ((7) IL-6 Signaling and Phospholipase C Signaling (PLC); (8) Glucocorticoid Receptor (GR) Signaling and Dendritic Cell Maturation) were identified according to analysis of extensive literature.

  3. The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.

    PubMed

    Sun, Yahui; Ma, Chenkai; Halgamuge, Saman

    2017-12-28

    Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.

  4. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data

  5. Causal imprinting in causal structure learning.

    PubMed

    Taylor, Eric G; Ahn, Woo-Kyoung

    2012-11-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures "causal imprinting." Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Causal Imprinting in Causal Structure Learning

    PubMed Central

    Taylor, Eric G.; Ahn, Woo-kyoung

    2012-01-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures “causal imprinting.” Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. PMID:22859019

  7. Near miss and minor occupational injury: Does it share a common causal pathway with major injury?

    PubMed

    Alamgir, Hasanat; Yu, Shicheng; Gorman, Erin; Ngan, Karen; Guzman, Jaime

    2009-01-01

    An essential assumption of injury prevention programs is the common cause hypothesis that the causal pathways of near misses and minor injuries are similar to those of major injuries. The rates of near miss, minor injury and major injury of all reported incidents and musculoskeletal incidents (MSIs) were calculated for three health regions using information from a surveillance database and productive hours from payroll data. The relative distribution of individual causes and activities involved in near miss, minor injury and major injury were then compared. For all reported incidents, there were significant differences in the relative distribution of causes for near miss, minor, and major injury. However, the relative distribution of causes and activities involved in minor and major MSIs were similar. The top causes and activities involved were the same across near miss, minor, and major injury. Finding from this study support the use of near miss and minor injury data as potential outcome measures for injury prevention programs. (c) 2008 Wiley-Liss, Inc.

  8. Tools for Detecting Causality in Space Systems

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Wing, S.

    2017-12-01

    Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.

  9. Assessing natural direct and indirect effects through multiple pathways.

    PubMed

    Lange, Theis; Rasmussen, Mette; Thygesen, Lau Caspar

    2014-02-15

    Within the fields of epidemiology, interventions research and social sciences researchers are often faced with the challenge of decomposing the effect of an exposure into different causal pathways working through defined mediator variables. The goal of such analyses is often to understand the mechanisms of the system or to suggest possible interventions. The case of a single mediator, thus implying only 2 causal pathways (direct and indirect) from exposure to outcome, has been extensively studied. By using the framework of counterfactual variables, researchers have established theoretical properties and developed powerful tools. However, in practical problems, it is not uncommon to have several distinct causal pathways from exposure to outcome operating through different mediators. In this article, we suggest a widely applicable approach to quantifying and ranking different causal pathways. The approach is an extension of the natural effect models proposed by Lange et al. (Am J Epidemiol. 2012;176(3):190-195). By allowing the analysis of distinct multiple pathways, the suggested approach adds to the capabilities of modern mediation techniques. Furthermore, the approach can be implemented using standard software, and we have included with this article implementation examples using R (R Foundation for Statistical Computing, Vienna, Austria) and Stata software (StataCorp LP, College Station, Texas).

  10. Enriched pathways for major depressive disorder identified from a genome-wide association study.

    PubMed

    Kao, Chung-Feng; Jia, Peilin; Zhao, Zhongming; Kuo, Po-Hsiu

    2012-11-01

    Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.

  11. Optimal causal inference: estimating stored information and approximating causal architecture.

    PubMed

    Still, Susanne; Crutchfield, James P; Ellison, Christopher J

    2010-09-01

    We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.

  12. Amodal causal capture in the tunnel effect.

    PubMed

    Bae, Gi Yeul; Flombaum, Jonathan I

    2011-01-01

    In addition to identifying individual objects in the world, the visual system must also characterize the relationships between objects, for instance when objects occlude one another or cause one another to move. Here we explored the relationship between perceived causality and occlusion. Can one perceive causality in an occluded location? In several experiments, observers judged whether a centrally presented event involved a single object passing behind an occluder, or one object causally launching another (out of view and behind the occluder). With no additional context, the centrally presented event was typically judged as a non-causal pass, even when the occluding and disoccluding objects were different colors--an illusion known as the 'tunnel effect' that results from spatiotemporal continuity. However, when a synchronized context event involved an unambiguous causal launch, participants perceived a causal launch behind the occluder. This percept of an occluded causal interaction could also be driven by grouping and synchrony cues in the absence of any explicitly causal interaction. These results reinforce the hypothesis that causality is an aspect of perception. It is among the interpretations of the world that are independently available to vision when resolving ambiguity, and that the visual system can 'fill in' amodally.

  13. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    PubMed

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  14. Intimate Relationships and Depression: Is There a Causal Connection?

    ERIC Educational Resources Information Center

    Burns, David D.; And Others

    1994-01-01

    Estimated causal pathways that link depression and dissatisfaction in intimate relationships in 115 depressed patients during first 12 weeks of treatment. Depression severity, as measured by Beck Depression Inventory, was negatively correlated with relationship satisfaction at intake and at 12 weeks. Structural equation modeling was not consistent…

  15. Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers

    PubMed Central

    2013-01-01

    Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816

  16. Causality

    NASA Astrophysics Data System (ADS)

    Pearl, Judea

    2000-03-01

    Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

  17. Presenilin-Based Genetic Screens in Drosophila melanogaster Identify Novel Notch Pathway Modifiers

    PubMed Central

    Mahoney, Matt B.; Parks, Annette L.; Ruddy, David A.; Tiong, Stanley Y. K.; Esengil, Hanife; Phan, Alexander C.; Philandrinos, Panos; Winter, Christopher G.; Chatterjee, Runa; Huppert, Kari; Fisher, William W.; L'Archeveque, Lynn; Mapa, Felipa A.; Woo, Wendy; Ellis, Michael C.; Curtis, Daniel

    2006-01-01

    Presenilin is the enzymatic component of γ-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for γ-tubulin in the pathway. PMID:16415372

  18. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers.

    PubMed

    Mahoney, Matt B; Parks, Annette L; Ruddy, David A; Tiong, Stanley Y K; Esengil, Hanife; Phan, Alexander C; Philandrinos, Panos; Winter, Christopher G; Chatterjee, Runa; Huppert, Kari; Fisher, William W; L'Archeveque, Lynn; Mapa, Felipa A; Woo, Wendy; Ellis, Michael C; Curtis, Daniel

    2006-04-01

    Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.

  19. Links between causal effects and causal association for surrogacy evaluation in a gaussian setting.

    PubMed

    Conlon, Anna; Taylor, Jeremy; Li, Yun; Diaz-Ordaz, Karla; Elliott, Michael

    2017-11-30

    Two paradigms for the evaluation of surrogate markers in randomized clinical trials have been proposed: the causal effects paradigm and the causal association paradigm. Each of these paradigms rely on assumptions that must be made to proceed with estimation and to validate a candidate surrogate marker (S) for the true outcome of interest (T). We consider the setting in which S and T are Gaussian and are generated from structural models that include an unobserved confounder. Under the assumed structural models, we relate the quantities used to evaluate surrogacy within both the causal effects and causal association frameworks. We review some of the common assumptions made to aid in estimating these quantities and show that assumptions made within one framework can imply strong assumptions within the alternative framework. We demonstrate that there is a similarity, but not exact correspondence between the quantities used to evaluate surrogacy within each framework, and show that the conditions for identifiability of the surrogacy parameters are different from the conditions, which lead to a correspondence of these quantities. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Identification of causal genes for complex traits

    PubMed Central

    Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar

    2015-01-01

    Motivation: Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider ‘causal variants’ as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. Results: In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Availability and implementation: Software is freely available for download at genetics.cs.ucla.edu/caviar. Contact: eeskin@cs.ucla.edu PMID:26072484

  1. Identification of causal genes for complex traits.

    PubMed

    Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar

    2015-06-15

    Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider 'causal variants' as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Software is freely available for download at genetics.cs.ucla.edu/caviar. © The Author 2015. Published by Oxford University Press.

  2. Childhood trauma and health outcomes in HIV-infected patients: An exploration of causal pathways

    PubMed Central

    Pence, Brian Wells; Mugavero, Michael J.; Carter, Tandrea J.; Leserman, Jane; Thielman, Nathan M.; Raper, James L.; Proeschold-Bell, Rae Jean; Reif, Susan; Whetten, Kathryn

    2011-01-01

    OBJECTIVE Traumatic life histories are highly prevalent in people living with HIV/AIDS (PLWHA) and predict sexual risk behaviors, medication adherence, and all-cause mortality. Yet the causal pathways explaining these relationships remain poorly understood. We sought to quantify the association of trauma with negative behavioral and health outcomes and to assess whether those associations were explained by mediation through psychosocial characteristics. METHODS In 611 outpatient PLWHA, we tested whether trauma's influence on later health and behaviors was mediated by coping styles, self efficacy, social support, trust in the medical system, recent stressful life events, mental health, and substance abuse. RESULTS In models adjusting only for sociodemographic and transmission category confounders (estimating total effects), past trauma exposure was associated with 7 behavioral and health outcomes including increased odds or hazard of recent unprotected sex (OR=1.17 per each additional type of trauma, 95% CI=1.07–1.29), medication nonadherence (OR=1.13, 1.02–1.25), hospitalizations (HR=1.12, 1.04–1.22), and HIV disease progression (HR=1.10, 0.98–1.23). When all hypothesized mediators were included, the associations of trauma with health care utilization outcomes were reduced by about 50%, suggesting partial mediation (e.g., OR for hospitalization changed from 1.12 to 1.07) whereas point estimates for behavioral and incident health outcomes remained largely unchanged, suggesting no mediation (e.g., OR for unprotected sex changed from 1.17 to 1.18). Trauma remained associated with most outcomes even after adjusting for all hypothesized psychosocial mediators. CONCLUSIONS These data suggest that past trauma influences adult health and behaviors through pathways other than the psychosocial mediators considered in this model. PMID:22107822

  3. CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS

    PubMed Central

    Shpitser, Ilya; Tchetgen, Eric Tchetgen

    2017-01-01

    Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl’s front-door criterion. PMID:28919652

  4. CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS.

    PubMed

    Shpitser, Ilya; Tchetgen, Eric Tchetgen

    2016-12-01

    Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl's front-door criterion.

  5. Determining causal miRNAs and their signaling cascade in diseases using an influence diffusion model.

    PubMed

    Nalluri, Joseph J; Rana, Pratip; Barh, Debmalya; Azevedo, Vasco; Dinh, Thang N; Vladimirov, Vladimir; Ghosh, Preetam

    2017-08-15

    In recent studies, miRNAs have been found to be extremely influential in many of the essential biological processes. They exhibit a self-regulatory mechanism through which they act as positive/negative regulators of expression of genes and other miRNAs. This has direct implications in the regulation of various pathophysiological conditions, signaling pathways and different types of cancers. Studying miRNA-disease associations has been an extensive area of research; however deciphering miRNA-miRNA network regulatory patterns in several diseases remains a challenge. In this study, we use information diffusion theory to quantify the influence diffusion in a miRNA-miRNA regulation network across multiple disease categories. Our proposed methodology determines the critical disease specific miRNAs which play a causal role in their signaling cascade and hence may regulate disease progression. We extensively validate our framework using existing computational tools from the literature. Furthermore, we implement our framework on a comprehensive miRNA expression data set for alcohol dependence and identify the causal miRNAs for alcohol-dependency in patients which were validated by the phase-shift in their expression scores towards the early stages of the disease. Finally, our computational framework for identifying causal miRNAs implicated in diseases is available as a free online tool for the greater scientific community.

  6. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    PubMed Central

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  7. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of Wilt in Chickpea.

    PubMed

    Kulkarni, Guruprasad B; Sanjeevkumar, S; Kirankumar, B; Santoshkumar, M; Karegoudar, T B

    2013-02-01

    Fusarium delphinoides (Ascomycota; Nectriaceae) is an indole-3-acetic acid (IAA) producing plant pathogen and a causal agent of wilt in chickpea. The IAA biosynthetic pathway in F. delphinoides strain GPK (FDG) was examined by analyzing metabolic intermediates and by feeding experiments. Gas chromatograph (GC) analysis of FDG culture filtrates showed the presence of metabolic intermediates of indole-3-pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine (TRA) pathways. The different IAA biosynthetic pathways were further confirmed by identifying the presence of different enzymes of these pathways. Substrate specificity study of aromatic amino acid aminotransferase revealed that the enzyme is highly specific for tryptophan (Trp) and α-ketoglutarate (α-kg) as amino group donor and acceptor, respectively. Furthermore, the concentration-dependent effect of exogenous IAA on fungal growth was established. Low concentration of exogenous IAA increases the fungal growth and at high concentration it decreases the growth of FDG.

  8. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE PAGES

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild; ...

    2016-10-05

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  9. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  10. Systems-Based Analysis of the Sarcocystis neurona Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle

    PubMed Central

    Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A.; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S.; Hung, Stacy S.; Bridgers, Joshua; Ricklefs, Stacy M.; Boulanger, Martin J.; Dubey, Jitender P.; Porcella, Stephen F.; Kissinger, Jessica C.; Howe, Daniel K.

    2015-01-01

    ABSTRACT Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. PMID:25670772

  11. Effective connectivity: Influence, causality and biophysical modeling

    PubMed Central

    Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl

    2011-01-01

    This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655

  12. TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction

    PubMed Central

    Gunasekara, Chathura; Zhang, Kui; Deng, Wenping; Brown, Laura

    2018-01-01

    Abstract Despite their important roles, the regulators for most metabolic pathways and biological processes remain elusive. Presently, the methods for identifying metabolic pathway and biological process regulators are intensively sought after. We developed a novel algorithm called triple-gene mutual interaction (TGMI) for identifying these regulators using high-throughput gene expression data. It first calculated the regulatory interactions among triple gene blocks (two pathway genes and one transcription factor (TF)), using conditional mutual information, and then identifies significantly interacted triple genes using a newly identified novel mutual interaction measure (MIM), which was substantiated to reflect strengths of regulatory interactions within each triple gene block. The TGMI calculated the MIM for each triple gene block and then examined its statistical significance using bootstrap. Finally, the frequencies of all TFs present in all significantly interacted triple gene blocks were calculated and ranked. We showed that the TFs with higher frequencies were usually genuine pathway regulators upon evaluating multiple pathways in plants, animals and yeast. Comparison of TGMI with several other algorithms demonstrated its higher accuracy. Therefore, TGMI will be a valuable tool that can help biologists to identify regulators of metabolic pathways and biological processes from the exploded high-throughput gene expression data in public repositories. PMID:29579312

  13. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways.

    PubMed

    Sonuga-Barke, Edmund J S

    2005-06-01

    Until recently, causal models of attention-deficit/hyperactivity disorder (ADHD) have tended to focus on the role of common, simple, core deficits. One such model highlights the role of executive dysfunction due to deficient inhibitory control resulting from disturbances in the frontodorsal striatal circuit and associated mesocortical dopaminergic branches. An alternative model presents ADHD as resulting from impaired signaling of delayed rewards arising from disturbances in motivational processes, involving frontoventral striatal reward circuits and mesolimbic branches terminating in the ventral striatum, particularly the nucleus accumbens. In the present article, these models are elaborated in two ways. First, they are each placed within their developmental context by consideration of the role of person x environment correlation and interaction and individual adaptation to developmental constraint. Second, their relationship to one another is reviewed in the light of recent data suggesting that delay aversion and executive functions might each make distinctive contributions to the development of the disorder. This provides an impetus for theoretical models built around the idea of multiple neurodevelopmental pathways. The possibility of neuropathologic heterogeneity in ADHD is likely to have important implications for the clinical management of the condition, potentially impacting on both diagnostic strategies and treatment options.

  14. Inferring causal relationships between phenotypes using summary statistics from genome-wide association studies.

    PubMed

    Meng, Xiang-He; Shen, Hui; Chen, Xiang-Ding; Xiao, Hong-Mei; Deng, Hong-Wen

    2018-03-01

    Genome-wide association studies (GWAS) have successfully identified numerous genetic variants associated with diverse complex phenotypes and diseases, and provided tremendous opportunities for further analyses using summary association statistics. Recently, Pickrell et al. developed a robust method for causal inference using independent putative causal SNPs. However, this method may fail to infer the causal relationship between two phenotypes when only a limited number of independent putative causal SNPs identified. Here, we extended Pickrell's method to make it more applicable for the general situations. We extended the causal inference method by replacing the putative causal SNPs with the lead SNPs (the set of the most significant SNPs in each independent locus) and tested the performance of our extended method using both simulation and empirical data. Simulations suggested that when the same number of genetic variants is used, our extended method had similar distribution of test statistic under the null model as well as comparable power under the causal model compared with the original method by Pickrell et al. But in practice, our extended method would generally be more powerful because the number of independent lead SNPs was often larger than the number of independent putative causal SNPs. And including more SNPs, on the other hand, would not cause more false positives. By applying our extended method to summary statistics from GWAS for blood metabolites and femoral neck bone mineral density (FN-BMD), we successfully identified ten blood metabolites that may causally influence FN-BMD. We extended a causal inference method for inferring putative causal relationship between two phenotypes using summary statistics from GWAS, and identified a number of potential causal metabolites for FN-BMD, which may provide novel insights into the pathophysiological mechanisms underlying osteoporosis.

  15. Systematic analysis of microarray datasets to identify Parkinson's disease‑associated pathways and genes.

    PubMed

    Feng, Yinling; Wang, Xuefeng

    2017-03-01

    In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.

  16. Inferring Causalities in Landscape Genetics: An Extension of Wright's Causal Modeling to Distance Matrices.

    PubMed

    Fourtune, Lisa; Prunier, Jérôme G; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Blanchet, Simon

    2018-04-01

    Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.

  17. Whole-Exome Sequencing to Identify Novel Biological Pathways Associated With Infertility After Pelvic Inflammatory Disease.

    PubMed

    Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L

    2017-01-01

    Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.

  18. Causal mediation analysis with multiple mediators.

    PubMed

    Daniel, R M; De Stavola, B L; Cousens, S N; Vansteelandt, S

    2015-03-01

    In diverse fields of empirical research-including many in the biological sciences-attempts are made to decompose the effect of an exposure on an outcome into its effects via a number of different pathways. For example, we may wish to separate the effect of heavy alcohol consumption on systolic blood pressure (SBP) into effects via body mass index (BMI), via gamma-glutamyl transpeptidase (GGT), and via other pathways. Much progress has been made, mainly due to contributions from the field of causal inference, in understanding the precise nature of statistical estimands that capture such intuitive effects, the assumptions under which they can be identified, and statistical methods for doing so. These contributions have focused almost entirely on settings with a single mediator, or a set of mediators considered en bloc; in many applications, however, researchers attempt a much more ambitious decomposition into numerous path-specific effects through many mediators. In this article, we give counterfactual definitions of such path-specific estimands in settings with multiple mediators, when earlier mediators may affect later ones, showing that there are many ways in which decomposition can be done. We discuss the strong assumptions under which the effects are identified, suggesting a sensitivity analysis approach when a particular subset of the assumptions cannot be justified. These ideas are illustrated using data on alcohol consumption, SBP, BMI, and GGT from the Izhevsk Family Study. We aim to bridge the gap from "single mediator theory" to "multiple mediator practice," highlighting the ambitious nature of this endeavor and giving practical suggestions on how to proceed. © 2014 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  19. [Causal analysis approaches in epidemiology].

    PubMed

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the

  20. Meta-dimensional data integration identifies critical pathways for susceptibility, tumorigenesis and progression of endometrial cancer.

    PubMed

    Wei, Runmin; De Vivo, Immaculata; Huang, Sijia; Zhu, Xun; Risch, Harvey; Moore, Jason H; Yu, Herbert; Garmire, Lana X

    2016-08-23

    Endometrial Cancer (EC) is one of the most common female cancers. Genome-wide association studies (GWAS) have been investigated to identify genetic polymorphisms that are predictive of EC risks. Here we utilized a meta-dimensional integrative approach to seek genetically susceptible pathways that may be associated with tumorigenesis and progression of EC. We analyzed GWAS data obtained from Connecticut Endometrial Cancer Study (CECS) and identified the top 20 EC susceptible pathways. To further verify the significance of top 20 EC susceptible pathways, we conducted pathway-level multi-omics analyses using EC exome-Seq, RNA-Seq and survival data, all based on The Cancer Genome Atlas (TCGA) samples. We measured the overall consistent rankings of these pathways in all four data types. Some well-studied pathways, such as p53 signaling and cell cycle pathways, show consistently high rankings across different analyses. Additionally, other cell signaling pathways (e.g. IGF-1/mTOR, rac-1 and IL-5 pathway), genetic information processing pathway (e.g. homologous recombination) and metabolism pathway (e.g. sphingolipid metabolism) are also highly associated with EC risks, diagnosis and prognosis. In conclusion, the meta-dimensional integration of EC cohorts has suggested some common pathways that may be associated from predisposition, tumorigenesis to progression.

  1. Predicting hepatocellular carcinoma through cross-talk genes identified by risk pathways

    PubMed Central

    Shao, Zhuo; Huo, Diwei; Zhang, Denan; Xie, Hongbo; Yang, Jingbo; Liu, Qiuqi; Chen, Xiujie

    2018-01-01

    Hepatocellular carcinoma (HCC) is the most frequent type of liver cancer with poor survival rate and high mortality. Despite efforts on the mechanism of HCC, new molecular markers are needed for exact diagnosis, evaluation and treatment. Here, we combined transcriptome of HCC with networks and pathways to identify reliable molecular markers. Through integrating 249 differentially expressed genes with syncretic protein interaction networks, we constructed a HCC-specific network, from which we further extracted 480 pivotal genes. Based on the cross-talk between the enriched pathways of the pivotal genes, we finally identified a HCC signature of 45 genes, which could accurately distinguish HCC patients with normal individuals and reveal the prognosis of HCC patients. Among these 45 genes, 15 showed dysregulated expression patterns and a part have been reported to be associated with HCC and/or other cancers. These findings suggested that our identified 45 gene signature could be potential and valuable molecular markers for diagnosis and evaluation of HCC. PMID:29765536

  2. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  3. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  4. From Classification to Causality: Advancing Understanding of Mechanisms of Change in Implementation Science.

    PubMed

    Lewis, Cara C; Klasnja, Predrag; Powell, Byron J; Lyon, Aaron R; Tuzzio, Leah; Jones, Salene; Walsh-Bailey, Callie; Weiner, Bryan

    2018-01-01

    The science of implementation has offered little toward understanding how different implementation strategies work. To improve outcomes of implementation efforts, the field needs precise, testable theories that describe the causal pathways through which implementation strategies function. In this perspective piece, we describe a four-step approach to developing causal pathway models for implementation strategies. First, it is important to ensure that implementation strategies are appropriately specified. Some strategies in published compilations are well defined but may not be specified in terms of its core component that can have a reliable and measureable impact. Second, linkages between strategies and mechanisms need to be generated. Existing compilations do not offer mechanisms by which strategies act, or the processes or events through which an implementation strategy operates to affect desired implementation outcomes. Third, it is critical to identify proximal and distal outcomes the strategy is theorized to impact, with the former being direct, measurable products of the strategy and the latter being one of eight implementation outcomes (1). Finally, articulating effect modifiers, like preconditions and moderators, allow for an understanding of where, when, and why strategies have an effect on outcomes of interest. We argue for greater precision in use of terms for factors implicated in implementation processes; development of guidelines for selecting research design and study plans that account for practical constructs and allow for the study of mechanisms; psychometrically strong and pragmatic measures of mechanisms; and more robust curation of evidence for knowledge transfer and use.

  5. What Women Think: Cancer Causal Attributions in a Diverse Sample of Women

    PubMed Central

    Rodríguez, Vivian M.; Gyure, Maria E.; Corona, Rosalie; Bodurtha, Joann N.; Bowen, Deborah J.; Quillin, John M.

    2014-01-01

    Women hold diverse beliefs about cancer etiology, potentially affecting their use of cancer preventive behaviors. To date, research has greatly focused on the causal attributions cancer patients and survivors hold about cancer, and studies have been conducted primarily with White participants. Less is known about causal attributions held by women with and without a family history of cancer from a diverse community sample. This study sought to identify cancer causal attributions of women with and without a family history of cancer, and explore its relation to socio-cultural factors. Diverse women (60% African-American) recruited at an urban, safety-net women's health clinic (N=471) reported factors they believed cause cancer. Responses were coded into nine attributions and analyzed using chi-squares and logistic regressions. Lifestyle-choices (63%), genetics/heredity (34%), and environmental-exposures (19%) were the top causal attributions identified. Women without a family history of cancer were more likely to identify genetics/heredity as an attribution for cancer than women with a history of cancer in their families. Women who identified as White, who had a higher educational attainment, and had commercial insurance were more likely to report genetics/heredity as a causal attribution for cancer. These findings suggest that socio-cultural factors may play a role in the causal attributions individuals make about cancer, which can, in turn, inform cancer awareness and prevention messages. PMID:25398057

  6. Granger Causality Testing with Intensive Longitudinal Data.

    PubMed

    Molenaar, Peter C M

    2018-06-01

    The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.

  7. Inferring action structure and causal relationships in continuous sequences of human action.

    PubMed

    Buchsbaum, Daphna; Griffiths, Thomas L; Plunkett, Dillon; Gopnik, Alison; Baldwin, Dare

    2015-02-01

    In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a sequence of observed behavior into meaningful actions, and determining which of those actions lead to effects in the world. Here we present a Bayesian analysis of how statistical and causal cues to segmentation should optimally be combined, as well as four experiments investigating human action segmentation and causal inference. We find that both people and our model are sensitive to statistical regularities and causal structure in continuous action, and are able to combine these sources of information in order to correctly infer both causal relationships and segmentation boundaries. Copyright © 2014. Published by Elsevier Inc.

  8. An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types

    PubMed Central

    Park, Sunho; Kim, Seung-Jun; Yu, Donghyeon; Peña-Llopis, Samuel; Gao, Jianjiong; Park, Jin Suk; Chen, Beibei; Norris, Jessie; Wang, Xinlei; Chen, Min; Kim, Minsoo; Yong, Jeongsik; Wardak, Zabi; Choe, Kevin; Story, Michael; Starr, Timothy; Cheong, Jae-Ho; Hwang, Tae Hyun

    2016-01-01

    Motivation: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. Availability and implementation: The code is available at: http://www.taehyunlab.org. Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26635139

  9. The cradle of causal reasoning: newborns' preference for physical causality.

    PubMed

    Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio; Simion, Francesca

    2013-05-01

    Perception of mechanical (i.e. physical) causality, in terms of a cause-effect relationship between two motion events, appears to be a powerful mechanism in our daily experience. In spite of a growing interest in the earliest causal representations, the role of experience in the origin of this sensitivity is still a matter of dispute. Here, we asked the question about the innate origin of causal perception, never tested before at birth. Three experiments were carried out to investigate sensitivity at birth to some visual spatiotemporal cues present in a launching event. Newborn babies, only a few hours old, showed that they significantly preferred a physical causality event (i.e. Michotte's Launching effect) when matched to a delay event (i.e. a delayed launching; Experiment 1) or to a non-causal event completely identical to the causal one except for the order of the displacements of the two objects involved which was swapped temporally (Experiment 3). This preference for the launching event, moreover, also depended on the continuity of the trajectory between the objects involved in the event (Experiment 2). These results support the hypothesis that the human system possesses an early available, possibly innate basic mechanism to compute causality, such a mechanism being sensitive to the additive effect of certain well-defined spatiotemporal cues present in the causal event independently of any prior visual experience. © 2013 Blackwell Publishing Ltd.

  10. Partial Granger causality--eliminating exogenous inputs and latent variables.

    PubMed

    Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng

    2008-07-15

    Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

  11. Cause and Event: Supporting Causal Claims through Logistic Models

    ERIC Educational Resources Information Center

    O'Connell, Ann A.; Gray, DeLeon L.

    2011-01-01

    Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…

  12. Spot the difference: Causal contrasts in scientific diagrams.

    PubMed

    Scholl, Raphael

    2016-12-01

    An important function of scientific diagrams is to identify causal relationships. This commonly relies on contrasts that highlight the effects of specific difference-makers. However, causal contrast diagrams are not an obvious and easy to recognize category because they appear in many guises. In this paper, four case studies are presented to examine how causal contrast diagrams appear in a wide range of scientific reports, from experimental to observational and even purely theoretical studies. It is shown that causal contrasts can be expressed in starkly different formats, including photographs of complexly visualized macromolecules as well as line graphs, bar graphs, or plots of state spaces. Despite surface differences, however, there is a measure of conceptual unity among such diagrams. In empirical studies they often serve not only to infer and communicate specific causal claims, but also as evidence for them. The key data of some studies is given nowhere except in the diagrams. Many diagrams show multiple causal contrasts in order to demonstrate both that an effect exists and that the effect is specific - that is, to narrowly circumscribe the phenomenon to be explained. In a large range of scientific reports, causal contrast diagrams reflect the core epistemic claims of the researchers. Copyright © 2016. Published by Elsevier Ltd.

  13. Normalizing the causality between time series.

    PubMed

    Liang, X San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  14. Normalizing the causality between time series

    NASA Astrophysics Data System (ADS)

    Liang, X. San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  15. Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization.

    PubMed

    Yang, Jihong; Li, Zheng; Fan, Xiaohui; Cheng, Yiyu

    2014-09-22

    The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug-disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug-target-pathway-gene-disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug-disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug-disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and

  16. PathScore: a web tool for identifying altered pathways in cancer data.

    PubMed

    Gaffney, Stephen G; Townsend, Jeffrey P

    2016-12-01

    PathScore quantifies the level of enrichment of somatic mutations within curated pathways, applying a novel approach that identifies pathways enriched across patients. The application provides several user-friendly, interactive graphic interfaces for data exploration, including tools for comparing pathway effect sizes, significance, gene-set overlap and enrichment differences between projects. Web application available at pathscore.publichealth.yale.edu. Site implemented in Python and MySQL, with all major browsers supported. Source code available at: github.com/sggaffney/pathscore with a GPLv3 license. stephen.gaffney@yale.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Sensory Impairments and Autism: A Re-Examination of Causal Modelling

    ERIC Educational Resources Information Center

    Gerrard, Sue; Rugg, Gordon

    2009-01-01

    Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…

  18. Repeated causal decision making.

    PubMed

    Hagmayer, York; Meder, Björn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in such situations and how they use their knowledge to adapt to changes in the decision context. Our studies show that decision makers' behavior is strongly contingent on their causal beliefs and that people exploit their causal knowledge to assess the consequences of changes in the decision problem. A high consistency between hypotheses about causal structure, causally expected values, and actual choices was observed. The experiments show that (a) existing causal hypotheses guide the interpretation of decision feedback, (b) consequences of decisions are used to revise existing causal beliefs, and (c) decision makers use the experienced feedback to induce a causal model of the choice situation even when they have no initial causal hypotheses, which (d) enables them to adapt their choices to changes of the decision problem. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  19. Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients.

    PubMed

    Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Ji, Lin-Dan

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the "neurotrophin-MAPK signaling pathway" was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment.

  20. Causality as a Rigorous Notion and Quantitative Causality Analysis with Time Series

    NASA Astrophysics Data System (ADS)

    Liang, X. S.

    2017-12-01

    Given two time series, can one faithfully tell, in a rigorous and quantitative way, the cause and effect between them? Here we show that this important and challenging question (one of the major challenges in the science of big data), which is of interest in a wide variety of disciplines, has a positive answer. Particularly, for linear systems, the maximal likelihood estimator of the causality from a series X2 to another series X1, written T2→1, turns out to be concise in form: T2→1 = [C11 C12 C2,d1 — C112 C1,d1] / [C112 C22 — C11C122] where Cij (i,j=1,2) is the sample covariance between Xi and Xj, and Ci,dj the covariance between Xi and ΔXj/Δt, the difference approximation of dXj/dt using the Euler forward scheme. An immediate corollary is that causation implies correlation, but not vice versa, resolving the long-standing debate over causation versus correlation. The above formula has been validated with touchstone series purportedly generated with one-way causality that evades the classical approaches such as Granger causality test and transfer entropy analysis. It has also been applied successfully to the investigation of many real problems. Through a simple analysis with the stock series of IBM and GE, an unusually strong one-way causality is identified from the former to the latter in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a "Giant" for the computer market. Another example presented here regards the cause-effect relation between the two climate modes, El Niño and Indian Ocean Dipole (IOD). In general, these modes are mutually causal, but the causality is asymmetric. To El Niño, the information flowing from IOD manifests itself as a propagation of uncertainty from the Indian Ocean. In the third example, an unambiguous one-way causality is found between CO2 and the global mean temperature anomaly. While it is confirmed that CO2 indeed drives the recent global warming

  1. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    PubMed

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. DEVELOPMENT PLAN FOR THE CAUSAL ANALYSIS ...

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System (CADDIS) is a web-based system that provides technical support for states, tribes and other users of the Office of Water's Stressor Identification Guidance. The Stressor Identification Guidance provides a rigorous and scientifically defensible method for determining the causes of biological impairments of aquatic ecosystems. It is being used by states as part of the TMDL process and is being applied to other impaired ecosystems such as Superfund sites. However, because of the complexity of causal relationships in ecosystems, and because the guidance includes a strength-of-evidence analysis which uses multiple causal considerations, the process is complex and information intensive. CADDIS helps users deal with that inherent complexity. Increasingly, the regulatory, remedial, and restoration actions taken to manage impaired environments are based on measurement and analysis of the biotic community. When an aquatic assemblage has been identified as impaired, an accurate and defensible assessment of the cause can help ensure that appropriate actions are taken. The U.S. EPA's Stressor Identification Guidance describes a methodology for identifying the most likely causes of observed impairments in aquatic systems. Stressor identification requires extensive knowledge of the mechanisms, symptoms, and stressor-response relationships for various specific stressors as well as the ability to use that knowledge in a

  3. Pathways to Aggression in Urban Elementary School Youth

    ERIC Educational Resources Information Center

    Ozkol, Hivren; Zucker, Marla; Spinazzola, Joseph

    2011-01-01

    This study examined the pathways from violence exposure to aggressive behaviors in urban, elementary school youth. We utilized structural equation modeling to examine putative causal pathways between children's exposure to violence, development of posttraumatic stress symptoms, permissive attitudes towards violence, and engagement in aggressive…

  4. Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients

    PubMed Central

    Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the “neurotrophin-MAPK signaling pathway” was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment. PMID:28900628

  5. A Causal Model of Sentence Recall: Effects of Familiarity, Concreteness, Comprehensibility, and Interestingness.

    ERIC Educational Resources Information Center

    Sadoski, Mark; And Others

    1993-01-01

    Presents and tests a theoretically derived causal model of the recall of sentences. Notes that the causal model identifies familiarity and concreteness as causes of comprehensibility; familiarity, concreteness, and comprehensibility as causes of interestingness; and all the identified variables as causes of both immediate and delayed recall.…

  6. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  7. Encoding dependence in Bayesian causal networks

    USDA-ARS?s Scientific Manuscript database

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  8. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease.

    PubMed

    Eisenberg, Marisa C; Robertson, Suzanne L; Tien, Joseph H

    2013-05-07

    Cholera and many waterborne diseases exhibit multiple characteristic timescales or pathways of infection, which can be modeled as direct and indirect transmission. A major public health issue for waterborne diseases involves understanding the modes of transmission in order to improve control and prevention strategies. An important epidemiological question is: given data for an outbreak, can we determine the role and relative importance of direct vs. environmental/waterborne routes of transmission? We examine whether parameters for a differential equation model of waterborne disease transmission dynamics can be identified, both in the ideal setting of noise-free data (structural identifiability) and in the more realistic setting in the presence of noise (practical identifiability). We used a differential algebra approach together with several numerical approaches, with a particular emphasis on identifiability of the transmission rates. To examine these issues in a practical public health context, we apply the model to a recent cholera outbreak in Angola (2006). Our results show that the model parameters-including both water and person-to-person transmission routes-are globally structurally identifiable, although they become unidentifiable when the environmental transmission timescale is fast. Even for water dynamics within the identifiable range, when noisy data are considered, only a combination of the water transmission parameters can practically be estimated. This makes the waterborne transmission parameters difficult to estimate, leading to inaccurate estimates of important epidemiological parameters such as the basic reproduction number (R0). However, measurements of pathogen persistence time in environmental water sources or measurements of pathogen concentration in the water can improve model identifiability and allow for more accurate estimation of waterborne transmission pathway parameters as well as R0. Parameter estimates for the Angola outbreak suggest

  9. Neural Connectivity in Epilepsy as Measured by Granger Causality.

    PubMed

    Coben, Robert; Mohammad-Rezazadeh, Iman

    2015-01-01

    Epilepsy is a chronic neurological disorder characterized by repeated seizures or excessive electrical discharges in a group of brain cells. Prevalence rates include about 50 million people worldwide and 10% of all people have at least one seizure at one time in their lives. Connectivity models of epilepsy serve to provide a deeper understanding of the processes that control and regulate seizure activity. These models have received initial support and have included measures of EEG, MEG, and MRI connectivity. Preliminary findings have shown regions of increased connectivity in the immediate regions surrounding the seizure foci and associated low connectivity in nearby regions and pathways. There is also early evidence to suggest that these patterns change during ictal events and that these changes may even by related to the occurrence or triggering of seizure events. We present data showing how Granger causality can be used with EEG data to measure connectivity across brain regions involved in ictal events and their resolution. We have provided two case examples as a demonstration of how to obtain and interpret such data. EEG data of ictal events are processed, converted to independent components and their dipole localizations, and these are used to measure causality and connectivity between these locations. Both examples have shown hypercoupling near the seizure foci and low causality across nearby and associated neuronal pathways. This technique also allows us to track how these measures change over time and during the ictal and post-ictal periods. Areas for further research into this technique, its application to epilepsy, and the formation of more effective therapeutic interventions are recommended.

  10. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    PubMed

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  11. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease

    PubMed Central

    Relton, Caroline L; Davey Smith, George

    2012-01-01

    The burgeoning interest in the field of epigenetics has precipitated the need to develop approaches to strengthen causal inference when considering the role of epigenetic mediators of environmental exposures on disease risk. Epigenetic markers, like any other molecular biomarker, are vulnerable to confounding and reverse causation. Here, we present a strategy, based on the well-established framework of Mendelian randomization, to interrogate the causal relationships between exposure, DNA methylation and outcome. The two-step approach first uses a genetic proxy for the exposure of interest to assess the causal relationship between exposure and methylation. A second step then utilizes a genetic proxy for DNA methylation to interrogate the causal relationship between DNA methylation and outcome. The rationale, origins, methodology, advantages and limitations of this novel strategy are presented. PMID:22422451

  12. Hydrograph Separations can Identify Contaminant-Specific Pathways for Conservation Targeting in a Tile-Drained Watershed

    USDA-ARS?s Scientific Manuscript database

    Water quality issues continue to vex agriculture. Understanding contaminant-specific pathways could help clarify effective water quality management strategies in watersheds. Hypothesis: If conducted at nested scales, hydrograph separation techniques can identify contaminant-specific pathways that co...

  13. Causality re-established.

    PubMed

    D'Ariano, Giacomo Mauro

    2018-07-13

    Causality has never gained the status of a 'law' or 'principle' in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of 'determinism', and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the 'block Universe' and the connected 'past hypothesis' are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of 'super-determinism'.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  14. Fine-mapping the human leukocyte antigen locus in rheumatoid arthritis and other rheumatic diseases: identifying causal amino acid variants?

    PubMed

    van Heemst, Jurgen; Huizinga, Tom J W; van der Woude, Diane; Toes, René E M

    2015-05-01

    To provide an update on and the context of the recent findings obtained with novel statistical methods on the association of the human leukocyte antigen (HLA) locus with rheumatic diseases. Novel single nucleotide polymorphism fine-mapping data obtained for the HLA locus have indicated the strongest association with amino acid positions 11 and 13 of HLA-DRB1 molecule for several rheumatic diseases. On the basis of these data, a dominant role for position 11/13 in driving the association with these diseases is proposed and the identification of causal variants in the HLA region in relation to disease susceptibility implicated. The HLA class II locus is the most important risk factor for several rheumatic diseases. Recently, new statistical approaches have identified previously unrecognized amino acid positions in the HLA-DR molecule that associate with anticitrullinated protein antibody-negative and anticitrullinated protein antibody-positive rheumatoid arthritis. Likewise, similar findings have been made for other rheumatic conditions such as giant-cell arteritis and systemic lupus erythematosus. Interestingly, all these studies point toward an association with the same amino acid positions: amino acid positions 11 and 13 of the HLA-DR β chain. As both these positions influence peptide binding by HLA-DR and have been implicated in antigen presentation, the novel fine-mapping approach is proposed to map causal variants in the HLA region relevant to rheumatoid arthritis and several rheumatic diseases. If these interpretations are correct, they would direct the biological research aiming to address the explanation for the HLA-disease association. Here, we provide an overview of the recent findings and evidence from literature that, although relevant new insights have been obtained on HLA-disease associations, the interpretation of the biological role of these amino acids as causal variants explaining that such associations should be taken with caution.

  15. Learning to learn causal models.

    PubMed

    Kemp, Charles; Goodman, Noah D; Tenenbaum, Joshua B

    2010-09-01

    Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. Copyright © 2010 Cognitive Science Society, Inc.

  16. The social determinants of oral health: new approaches to conceptualizing and researching complex causal networks.

    PubMed

    Newton, J Timothy; Bower, Elizabeth J

    2005-02-01

    Oral epidemiological research into the social determinants of oral health has been limited by the absence of a theoretical framework which reflects the complexity of real life social processes and the network of causal pathways between social structure and oral health and disease. In the absence of such a framework, social determinants are treated as isolated risk factors, attributable to the individual, having a direct impact on oral health. There is little sense of how such factors interrelate over time and place and the pathways between the factors and oral health. Features of social life which impact on individuals' oral health but are not reducible to the individual remain under-researched. A conceptual framework informing mainstream epidemiological research into the social determinants of health is applied to oral epidemiology. The framework suggests complex causal pathways between social structure and health via interlinking material, psychosocial and behavioural pathways. Methodological implications for oral epidemiological research informed by the framework, such as the use of multilevel modelling, path analysis and structural equation modelling, combining qualitative and quantitative research methods, and collaborative research, are discussed. Copyright Blackwell Munksgaard, 2005.

  17. Disease causality extraction based on lexical semantics and document-clause frequency from biomedical literature.

    PubMed

    Lee, Dong-Gi; Shin, Hyunjung

    2017-05-18

    Recently, research on human disease network has succeeded and has become an aid in figuring out the relationship between various diseases. In most disease networks, however, the relationship between diseases has been simply represented as an association. This representation results in the difficulty of identifying prior diseases and their influence on posterior diseases. In this paper, we propose a causal disease network that implements disease causality through text mining on biomedical literature. To identify the causality between diseases, the proposed method includes two schemes: the first is the lexicon-based causality term strength, which provides the causal strength on a variety of causality terms based on lexicon analysis. The second is the frequency-based causality strength, which determines the direction and strength of causality based on document and clause frequencies in the literature. We applied the proposed method to 6,617,833 PubMed literature, and chose 195 diseases to construct a causal disease network. From all possible pairs of disease nodes in the network, 1011 causal pairs of 149 diseases were extracted. The resulting network was compared with that of a previous study. In terms of both coverage and quality, the proposed method showed outperforming results; it determined 2.7 times more causalities and showed higher correlation with associated diseases than the existing method. This research has novelty in which the proposed method circumvents the limitations of time and cost in applying all possible causalities in biological experiments and it is a more advanced text mining technique by defining the concepts of causality term strength.

  18. A quantum causal discovery algorithm

    NASA Astrophysics Data System (ADS)

    Giarmatzi, Christina; Costa, Fabio

    2018-03-01

    Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.

  19. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of

  20. Imputation of adverse drug reactions: Causality assessment in hospitals

    PubMed Central

    Mastroianni, Patricia de Carvalho

    2017-01-01

    Background & objectives Different algorithms have been developed to standardize the causality assessment of adverse drug reactions (ADR). Although most share common characteristics, the results of the causality assessment are variable depending on the algorithm used. Therefore, using 10 different algorithms, the study aimed to compare inter-rater and multi-rater agreement for ADR causality assessment and identify the most consistent to hospitals. Methods Using ten causality algorithms, four judges independently assessed the first 44 cases of ADRs reported during the first year of implementation of a risk management service in a medium complexity hospital in the state of Sao Paulo (Brazil). Owing to variations in the terminology used for causality, the equivalent imputation terms were grouped into four categories: definite, probable, possible and unlikely. Inter-rater and multi-rater agreement analysis was performed by calculating the Cohen´s and Light´s kappa coefficients, respectively. Results None of the algorithms showed 100% reproducibility in the causal imputation. Fair inter-rater and multi-rater agreement was found. Emanuele (1984) and WHO-UMC (2010) algorithms showed a fair rate of agreement between the judges (k = 0.36). Interpretation & conclusions Although the ADR causality assessment algorithms were poorly reproducible, our data suggest that WHO-UMC algorithm is the most consistent for imputation in hospitals, since it allows evaluating the quality of the report. However, to improve the ability of assessing the causality using algorithms, it is necessary to include criteria for the evaluation of drug-related problems, which may be related to confounding variables that underestimate the causal association. PMID:28166274

  1. Causal Analysis After Haavelmo

    PubMed Central

    Heckman, James; Pinto, Rodrigo

    2014-01-01

    Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123

  2. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    PubMed

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  3. Entanglement, holography and causal diamonds

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  4. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    PubMed

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  5. The HEART Pathway randomized trial: identifying emergency department patients with acute chest pain for early discharge.

    PubMed

    Mahler, Simon A; Riley, Robert F; Hiestand, Brian C; Russell, Gregory B; Hoekstra, James W; Lefebvre, Cedric W; Nicks, Bret A; Cline, David M; Askew, Kim L; Elliott, Stephanie B; Herrington, David M; Burke, Gregory L; Miller, Chadwick D

    2015-03-01

    The HEART Pathway is a decision aid designed to identify emergency department patients with acute chest pain for early discharge. No randomized trials have compared the HEART Pathway with usual care. Adult emergency department patients with symptoms related to acute coronary syndrome without ST-elevation on ECG (n=282) were randomized to the HEART Pathway or usual care. In the HEART Pathway arm, emergency department providers used the HEART score, a validated decision aid, and troponin measures at 0 and 3 hours to identify patients for early discharge. Usual care was based on American College of Cardiology/American Heart Association guidelines. The primary outcome, objective cardiac testing (stress testing or angiography), and secondary outcomes, index length of stay, early discharge, and major adverse cardiac events (death, myocardial infarction, or coronary revascularization), were assessed at 30 days by phone interview and record review. Participants had a mean age of 53 years, 16% had previous myocardial infarction, and 6% (95% confidence interval, 3.6%-9.5%) had major adverse cardiac events within 30 days of randomization. Compared with usual care, use of the HEART Pathway decreased objective cardiac testing at 30 days by 12.1% (68.8% versus 56.7%; P=0.048) and length of stay by 12 hours (9.9 versus 21.9 hours; P=0.013) and increased early discharges by 21.3% (39.7% versus 18.4%; P<0.001). No patients identified for early discharge had major adverse cardiac events within 30 days. The HEART Pathway reduces objective cardiac testing during 30 days, shortens length of stay, and increases early discharges. These important efficiency gains occurred without any patients identified for early discharge suffering MACE at 30 days. URL: http://www.clinicaltrials.gov. Unique Identifier: NCT01665521. © 2015 American Heart Association, Inc.

  6. An Integrated Human/Murine Transcriptome and Pathway Approach To Identify Prenatal Treatments For Down Syndrome.

    PubMed

    Guedj, Faycal; Pennings, Jeroen LA; Massingham, Lauren J; Wick, Heather C; Siegel, Ashley E; Tantravahi, Umadevi; Bianchi, Diana W

    2016-09-02

    Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.5 forebrains from Ts1Cje, Ts65Dn, and Dp16 mice. The new datasets were compared to other publicly available datasets from humans with DS. We used the human Connectivity Map (CMap) database and created a murine adaptation to identify FDA-approved drugs that can rescue affected pathways. USP16 and TTC3 were dysregulated in all affected human cells and two mouse models. DS-associated pathway abnormalities were either the result of gene dosage specific effects or the consequence of a global cell stress response with activation of compensatory mechanisms. CMap analyses identified 56 molecules with high predictive scores to rescue abnormal gene expression in both species. Our novel integrated human/murine systems biology approach identified commonly dysregulated genes and pathways. This can help to prioritize therapeutic molecules on which to further test safety and efficacy. Additional studies in human cells are ongoing prior to pre-clinical prenatal treatment in mice.

  7. A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.

    PubMed

    Hu, Shoubo; Chen, Zhitang; Chan, Laiwan

    2018-05-01

    Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.

  8. The discourse of causal explanations in school science

    NASA Astrophysics Data System (ADS)

    Slater, Tammy Jayne Anne

    Researchers and educators working from a systemic functional linguistic perspective have provided a body of work on science discourse which offers an excellent starting point for examining the linguistic aspects of the development of causal discourse in school science, discourse which Derewianka (1995) claimed is critical to success in secondary school. No work has yet described the development of causal language by identifying the linguistic features present in oral discourse or by comparing the causal discourse of native and non-native (ESL) speakers of English. The current research responds to this gap by examining the oral discourse collected from ESL and non-ESL students at the primary and high school grades. Specifically, it asks the following questions: (1) How do the teachers and students in these four contexts develop causal explanations and their relevant taxonomies through classroom interactions? (2) What are the causal discourse features being used by the students in these four contexts to construct oral causal explanations? The findings of the social practice analysis showed that the teachers in the four contexts differed in their approaches to teaching, with the primary school mainstream teacher focusing largely on the hands-on practice , the primary school ESL teacher moving from practice to theory, the high school mainstream teacher moving from theory to practice, and the high school ESL teacher relying primarily on theory. The findings from the quantitative, small corpus approach suggest that the developmental path of cause which has been identified in the writing of experts shows up not only in written texts but also in the oral texts which learners construct. Moreover, this move appears when the discourse of high school ESL and non-ESL students is compared, suggesting a developmental progression in the acquisition of these features by these students. The findings also reveal that the knowledge constructed, as shown by the concept maps created

  9. The role of causal criteria in causal inferences: Bradford Hill's "aspects of association".

    PubMed

    Ward, Andrew C

    2009-06-17

    As noted by Wesley Salmon and many others, causal concepts are ubiquitous in every branch of theoretical science, in the practical disciplines and in everyday life. In the theoretical and practical sciences especially, people often base claims about causal relations on applications of statistical methods to data. However, the source and type of data place important constraints on the choice of statistical methods as well as on the warrant attributed to the causal claims based on the use of such methods. For example, much of the data used by people interested in making causal claims come from non-experimental, observational studies in which random allocations to treatment and control groups are not present. Thus, one of the most important problems in the social and health sciences concerns making justified causal inferences using non-experimental, observational data. In this paper, I examine one method of justifying such inferences that is especially widespread in epidemiology and the health sciences generally - the use of causal criteria. I argue that while the use of causal criteria is not appropriate for either deductive or inductive inferences, they do have an important role to play in inferences to the best explanation. As such, causal criteria, exemplified by what Bradford Hill referred to as "aspects of [statistical] associations", have an indispensible part to play in the goal of making justified causal claims.

  10. The role of causal criteria in causal inferences: Bradford Hill's "aspects of association"

    PubMed Central

    Ward, Andrew C

    2009-01-01

    As noted by Wesley Salmon and many others, causal concepts are ubiquitous in every branch of theoretical science, in the practical disciplines and in everyday life. In the theoretical and practical sciences especially, people often base claims about causal relations on applications of statistical methods to data. However, the source and type of data place important constraints on the choice of statistical methods as well as on the warrant attributed to the causal claims based on the use of such methods. For example, much of the data used by people interested in making causal claims come from non-experimental, observational studies in which random allocations to treatment and control groups are not present. Thus, one of the most important problems in the social and health sciences concerns making justified causal inferences using non-experimental, observational data. In this paper, I examine one method of justifying such inferences that is especially widespread in epidemiology and the health sciences generally – the use of causal criteria. I argue that while the use of causal criteria is not appropriate for either deductive or inductive inferences, they do have an important role to play in inferences to the best explanation. As such, causal criteria, exemplified by what Bradford Hill referred to as "aspects of [statistical] associations", have an indispensible part to play in the goal of making justified causal claims. PMID:19534788

  11. Timing and Causality in the Generation of Learned Eyelid Responses

    PubMed Central

    Sánchez-Campusano, Raudel; Gruart, Agnès; Delgado-García, José M.

    2011-01-01

    The cerebellum-red nucleus-facial motoneuron (Mn) pathway has been reported as being involved in the proper timing of classically conditioned eyelid responses. This special type of associative learning serves as a model of event timing for studying the role of the cerebellum in dynamic motor control. Here, we have re-analyzed the firing activities of cerebellar posterior interpositus (IP) neurons and orbicularis oculi (OO) Mns in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. The aim was to revisit the hypothesis that the IP neurons (IPns) can be considered a neuronal phase-modulating device supporting OO Mns firing with an emergent timing mechanism and an explicit correlation code during learned eyelid movements. Optimized experimental and computational tools allowed us to determine the different causal relationships (temporal order and correlation code) during and between trials. These intra- and inter-trial timing strategies expanding from sub-second range (millisecond timing) to longer-lasting ranges (interval timing) expanded the functional domain of cerebellar timing beyond motor control. Interestingly, the results supported the above-mentioned hypothesis. The causal inferences were influenced by the precise motor and pre-motor spike timing in the cause-effect interval, and, in addition, the timing of the learned responses depended on cerebellar–Mn network causality. Furthermore, the timing of CRs depended upon the probability of simulated causal conditions in the cause-effect interval and not the mere duration of the inter-stimulus interval. In this work, the close relation between timing and causality was verified. It could thus be concluded that the firing activities of IPns may be related more to the proper performance of ongoing CRs (i.e., the proper timing as a consequence of the pertinent causality) than to their generation and/or initiation. PMID:21941469

  12. A Theory of Causal Learning in Children: Causal Maps and Bayes Nets

    ERIC Educational Resources Information Center

    Gopnik, Alison; Glymour, Clark; Sobel, David M.; Schulz, Laura E.; Kushnir, Tamar; Danks, David

    2004-01-01

    The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously…

  13. Conjectures on the relations of linking and causality in causally simple spacetimes

    NASA Astrophysics Data System (ADS)

    Chernov, Vladimir

    2018-05-01

    We formulate the generalization of the Legendrian Low conjecture of Natario and Tod (proved by Nemirovski and myself before) to the case of causally simple spacetimes. We prove a weakened version of the corresponding statement. In all known examples, a causally simple spacetime can be conformally embedded as an open subset into some globally hyperbolic and the space of light rays in is an open submanifold of the space of light rays in . If this is always the case, this provides an approach to solving the conjectures relating causality and linking in causally simple spacetimes.

  14. Analogy in causal inference: rethinking Austin Bradford Hill's neglected consideration.

    PubMed

    Weed, Douglas L

    2018-05-01

    The purpose of this article was to rethink and resurrect Austin Bradford Hill's "criterion" of analogy as an important consideration in causal inference. In epidemiology today, analogy is either completely ignored (e.g., in many textbooks), or equated with biologic plausibility or coherence, or aligned with the scientist's imagination. None of these examples, however, captures Hill's description of analogy. His words suggest that there may be something gained by contrasting two bodies of evidence, one from an established causal relationship, the other not. Coupled with developments in the methods of systematic assessments of evidence-including but not limited to meta-analysis-analogy can be restructured as a key component in causal inference. This new approach will require that a collection-a library-of known cases of causal inference (i.e., bodies of evidence involving established causal relationships) be developed. This library would likely include causal assessments by organizations such as the International Agency for Research on Cancer, the National Toxicology Program, and the United States Environmental Protection Agency. In addition, a process for describing key features of a causal relationship would need to be developed along with what will be considered paradigm cases of causation. Finally, it will be important to develop ways to objectively compare a "new" body of evidence with the relevant paradigm case of causation. Analogy, along with all other existing methods and causal considerations, may improve our ability to identify causal relationships. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Causal Systems Categories: Differences in Novice and Expert Categorization of Causal Phenomena

    ERIC Educational Resources Information Center

    Rottman, Benjamin M.; Gentner, Dedre; Goldwater, Micah B.

    2012-01-01

    We investigated the understanding of causal systems categories--categories defined by common causal structure rather than by common domain content--among college students. We asked students who were either novices or experts in the physical sciences to sort descriptions of real-world phenomena that varied in their causal structure (e.g., negative…

  16. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  17. Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma.

    PubMed

    Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

  18. A review of causal inference for biomedical informatics

    PubMed Central

    Kleinberg, Samantha; Hripcsak, George

    2011-01-01

    Causality is an important concept throughout the health sciences and is particularly vital for informatics work such as finding adverse drug events or risk factors for disease using electronic health records. While philosophers and scientists working for centuries on formalizing what makes something a cause have not reached a consensus, new methods for inference show that we can make progress in this area in many practical cases. This article reviews core concepts in understanding and identifying causality and then reviews current computational methods for inference and explanation, focusing on inference from large-scale observational data. While the problem is not fully solved, we show that graphical models and Granger causality provide useful frameworks for inference and that a more recent approach based on temporal logic addresses some of the limitations of these methods. PMID:21782035

  19. Time-varying causality between energy consumption, CO2 emissions, and economic growth: evidence from US states.

    PubMed

    Tzeremes, Panayiotis

    2018-02-01

    This study is the first attempt to investigate the relationship between CO 2 emissions, energy consumption, and economic growth at a state level, for the 50 US states, through a time-varying causality approach using annual data over the periods 1960-2010. The time-varying causality test facilitates the better understanding of the causal relationship between the covariates owing to the fact that it might identify causalities when the time-constant hypothesis is rejected. Our findings indicate the existence of a time-varying causality at the state level. Specifically, the results probe eight bidirectional time-varying causalities between energy consumption and CO 2 emission, six cases of two-way time-varying causalities between economic growth and energy consumption, and five bidirectional time-varying causalities between economic growth and CO 2 emission. Moreover, we examine the traditional environmental Kuznets curve hypothesis for the states. Notably, our results do not endorse the validity of the EKC, albeit the majority of states support an inverted N-shaped relationship. Lastly, we can identify multiple policy implications based on the empirical results.

  20. Pathway analysis of high-throughput biological data within a Bayesian network framework.

    PubMed

    Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H

    2011-06-15

    Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.

  1. Trust and health: testing the reverse causality hypothesis

    PubMed Central

    Giordano, Giuseppe Nicola; Lindström, Martin

    2016-01-01

    Background Social capital research has consistently shown positive associations between generalised trust and health outcomes over 2 decades. Longitudinal studies attempting to test causal relationships further support the theory that trust is an independent predictor of health. However, as the reverse causality hypothesis has yet to be empirically tested, a knowledge gap remains. The aim of this study, therefore, was to investigate if health status predicts trust. Methods Data employed in this study came from 4 waves of the British Household Panel Survey between years 2000 and 2007 (N=8114). The sample was stratified by baseline trust to investigate temporal relationships between prior self-rated health (SRH) and changes in trust. We used logistic regression models with random effects, as trust was expected to be more similar within the same individuals over time. Results From the ‘Can trust at baseline’ cohort, poor SRH at time (t−1) predicted low trust at time (t) (OR=1.38). Likewise, good health predicted high trust within the ‘Cannot’ trust cohort (OR=1.30). These patterns of positive association remained after robustness checks, which adjusted for misclassification of outcome (trust) status and the existence of other temporal pathways. Conclusions This study offers empirical evidence to support the circular nature of trust/health relationship. The stability of association between prior health status and changes in trust over time differed between cohorts, hinting at the existence of complex pathways rather than a simple positive feedback loop. PMID:26546287

  2. Does Causal Action Facilitate Causal Perception in Infants Younger than 6 Months of Age?

    ERIC Educational Resources Information Center

    Rakison, David H.; Krogh, Lauren

    2012-01-01

    Previous research has established that infants are unable to perceive causality until 6 1/4 months of age. The current experiments examined whether infants' ability to engage in causal action could facilitate causal perception prior to this age. In Experiment 1, 4 1/2-month-olds were randomly assigned to engage in causal action experience via…

  3. Complex Causal Process Diagrams for Analyzing the Health Impacts of Policy Interventions

    PubMed Central

    Joffe, Michael; Mindell, Jennifer

    2006-01-01

    Causal diagrams are rigorous tools for controlling confounding. They also can be used to describe complex causal systems, which is done routinely in communicable disease epidemiology. The use of change diagrams has advantages over static diagrams, because change diagrams are more tractable, relate better to interventions, and have clearer interpretations. Causal diagrams are a useful basis for modeling. They make assumptions explicit, provide a framework for analysis, generate testable predictions, explore the effects of interventions, and identify data gaps. Causal diagrams can be used to integrate different types of information and to facilitate communication both among public health experts and between public health experts and experts in other fields. Causal diagrams allow the use of instrumental variables, which can help control confounding and reverse causation. PMID:16449586

  4. Agency, time, and causality

    PubMed Central

    Widlok, Thomas

    2014-01-01

    Cognitive Scientists interested in causal cognition increasingly search for evidence from non-Western Educational Industrial Rich Democratic people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition. PMID:25414683

  5. Integrated pathway-based approach identifies association between genomic regions at CTCF and CACNB2 and schizophrenia.

    PubMed

    Juraeva, Dilafruz; Haenisch, Britta; Zapatka, Marc; Frank, Josef; Witt, Stephanie H; Mühleisen, Thomas W; Treutlein, Jens; Strohmaier, Jana; Meier, Sandra; Degenhardt, Franziska; Giegling, Ina; Ripke, Stephan; Leber, Markus; Lange, Christoph; Schulze, Thomas G; Mössner, Rainald; Nenadic, Igor; Sauer, Heinrich; Rujescu, Dan; Maier, Wolfgang; Børglum, Anders; Ophoff, Roel; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Mattheisen, Manuel; Brors, Benedikt

    2014-06-01

    In the present study, an integrated hierarchical approach was applied to: (1) identify pathways associated with susceptibility to schizophrenia; (2) detect genes that may be potentially affected in these pathways since they contain an associated polymorphism; and (3) annotate the functional consequences of such single-nucleotide polymorphisms (SNPs) in the affected genes or their regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database. Fourteen of the gene-sets or pathways identified in the discovery dataset were confirmed in the replication dataset. These include functional processes involved in transcriptional regulation and gene expression, synapse organization, cell adhesion, and apoptosis. For two genes, i.e. CTCF and CACNB2, evidence for association with schizophrenia was available (at the gene-level) in both the discovery study and published data from the Psychiatric Genomics Consortium schizophrenia study. Furthermore, these genes mapped to four of the 14 presently identified pathways. Several of the SNPs assigned to CTCF and CACNB2 have potential functional consequences, and a gene in close proximity to CACNB2, i.e. ARL5B, was identified as a potential gene of interest. Application of the present hierarchical approach thus allowed: (1) identification of novel biological gene-sets or pathways with potential involvement in the etiology of schizophrenia, as well as replication of these findings in an independent cohort; (2) detection of genes of interest for future follow-up studies; and (3) the highlighting of novel genes in previously reported candidate regions for schizophrenia.

  6. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  7. A Whole-Cell Phenotypic Screening Platform for Identifying Methylerythritol Phosphate Pathway-Selective Inhibitors as Novel Antibacterial Agents

    PubMed Central

    Johnson, L. Jeffrey

    2012-01-01

    Isoprenoid biosynthesis is essential for survival of all living organisms. More than 50,000 unique isoprenoids occur naturally, with each constructed from two simple five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Two pathways for the biosynthesis of IPP and DMAPP are found in nature. Humans exclusively use the mevalonate (MVA) pathway, while most bacteria, including all Gram-negative and many Gram-positive species, use the unrelated methylerythritol phosphate (MEP) pathway. Here we report the development of a novel, whole-cell phenotypic screening platform to identify compounds that selectively inhibit the MEP pathway. Strains of Salmonella enterica serovar Typhimurium were engineered to have separately inducible MEP (native) and MVA (nonnative) pathways. These strains, RMC26 and CT31-7d, were then used to differentiate MVA pathway- and MEP pathway-specific perturbation. Compounds that inhibit MEP pathway-dependent bacterial growth but leave MVA-dependent growth unaffected represent MEP pathway-selective antibacterials. This screening platform offers three significant results. First, the compound is antibacterial and is therefore cell permeant, enabling access to the intracellular target. Second, the compound inhibits one or more MEP pathway enzymes. Third, the MVA pathway is unaffected, suggesting selectivity for targeting the bacterial versus host pathway. The cell lines also display increased sensitivity to two reported MEP pathway-specific inhibitors, further biasing the platform toward inhibitors selective for the MEP pathway. We demonstrate development of a robust, high-throughput screening platform that combines phenotypic and target-based screening that can identify MEP pathway-selective antibacterials simply by monitoring optical density as the readout for cell growth/inhibition. PMID:22777049

  8. The development of causal reasoning.

    PubMed

    Kuhn, Deanna

    2012-05-01

    How do inference rules for causal learning themselves change developmentally? A model of the development of causal reasoning must address this question, as well as specify the inference rules. Here, the evidence for developmental changes in processes of causal reasoning is reviewed, with the distinction made between diagnostic causal inference and causal prediction. Also addressed is the paradox of a causal reasoning literature that highlights the competencies of young children and the proneness to error among adults. WIREs Cogn Sci 2012, 3:327-335. doi: 10.1002/wcs.1160 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  9. THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...

    EPA Pesticide Factsheets

    CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc

  10. Learning a theory of causality.

    PubMed

    Goodman, Noah D; Ullman, Tomer D; Tenenbaum, Joshua B

    2011-01-01

    The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be learned from co-occurrence of events. We begin by phrasing the causal Bayes nets theory of causality and a range of alternatives in a logical language for relational theories. This allows us to explore simultaneous inductive learning of an abstract theory of causality and a causal model for each of several causal systems. We find that the correct theory of causality can be learned relatively quickly, often becoming available before specific causal theories have been learned--an effect we term the blessing of abstraction. We then explore the effect of providing a variety of auxiliary evidence and find that a collection of simple perceptual input analyzers can help to bootstrap abstract knowledge. Together, these results suggest that the most efficient route to causal knowledge may be to build in not an abstract notion of causality but a powerful inductive learning mechanism and a variety of perceptual supports. While these results are purely computational, they have implications for cognitive development, which we explore in the conclusion.

  11. Finding the Cause: Verbal Framing Helps Children Extract Causal Evidence Embedded in a Complex Scene

    ERIC Educational Resources Information Center

    Butler, Lucas P.; Markman, Ellen M.

    2012-01-01

    In making causal inferences, children must both identify a causal problem and selectively attend to meaningful evidence. Four experiments demonstrate that verbally framing an event ("Which animals make Lion laugh?") helps 4-year-olds extract evidence from a complex scene to make accurate causal inferences. Whereas framing was unnecessary when…

  12. Analyzing brain networks with PCA and conditional Granger causality.

    PubMed

    Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun

    2009-07-01

    Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series. Copyright 2009 Wiley-Liss, Inc

  13. Causality discovery technology

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.

    2012-11-01

    Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.

  14. Distinguishing time-delayed causal interactions using convergent cross mapping

    PubMed Central

    Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George

    2015-01-01

    An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402

  15. Reasoning with Causal Cycles

    ERIC Educational Resources Information Center

    Rehder, Bob

    2017-01-01

    This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…

  16. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease

    PubMed Central

    Li, Xinzhong; Long, Jintao; He, Taigang; Belshaw, Robert; Scott, James

    2015-01-01

    Previous studies have evaluated gene expression in Alzheimer’s disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD. PMID:26202100

  17. .Network analytics for adverse outcome pathways

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) organize toxicological knowledge from the molecular level up to the population level, providing evidence-based causal linkages at each step. The AOPWiki serves as a repository of AOPs. With the international adoption of the AOP framework, the AOPw...

  18. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways

    PubMed Central

    Burgess, Stephen; Daniel, Rhian M; Butterworth, Adam S; Thompson, Simon G

    2015-01-01

    Background: Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. Methods: We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. Results: These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. Conclusions: These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes. PMID:25150977

  19. Causal discovery in the geosciences-Using synthetic data to learn how to interpret results

    NASA Astrophysics Data System (ADS)

    Ebert-Uphoff, Imme; Deng, Yi

    2017-02-01

    Causal discovery algorithms based on probabilistic graphical models have recently emerged in geoscience applications for the identification and visualization of dynamical processes. The key idea is to learn the structure of a graphical model from observed spatio-temporal data, thus finding pathways of interactions in the observed physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data have shown great potential for scientific discovery. However, in these initial studies no ground truth was available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed physically plausible. The lack of ground truth is a typical problem when using causal discovery in the geosciences. Furthermore, while most of the connections found by this method match domain knowledge, we encountered one type of connection for which no explanation was found. To address both of these issues we developed a simulation framework that generates synthetic data of typical atmospheric processes (advection and diffusion). Applying the causal discovery algorithm to the synthetic data allowed us (1) to develop a better understanding of how these physical processes appear in the resulting connectivity graphs, and thus how to better interpret such connectivity graphs when obtained from real-world data; (2) to solve the mystery of the previously unexplained connections.

  20. Causal-explanatory pluralism: How intentions, functions, and mechanisms influence causal ascriptions.

    PubMed

    Lombrozo, Tania

    2010-12-01

    Both philosophers and psychologists have argued for the existence of distinct kinds of explanations, including teleological explanations that cite functions or goals, and mechanistic explanations that cite causal mechanisms. Theories of causation, in contrast, have generally been unitary, with dominant theories focusing either on counterfactual dependence or on physical connections. This paper argues that both approaches to causation are psychologically real, with different modes of explanation promoting judgments more or less consistent with each approach. Two sets of experiments isolate the contributions of counterfactual dependence and physical connections in causal ascriptions involving events with people, artifacts, or biological traits, and manipulate whether the events are construed teleologically or mechanistically. The findings suggest that when events are construed teleologically, causal ascriptions are sensitive to counterfactual dependence and relatively insensitive to the presence of physical connections, but when events are construed mechanistically, causal ascriptions are sensitive to both counterfactual dependence and physical connections. The conclusion introduces an account of causation, an "exportable dependence theory," that provides a way to understand the contributions of physical connections and teleology in terms of the functions of causal ascriptions. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Climate change and mental health: a causal pathways framework.

    PubMed

    Berry, Helen Louise; Bowen, Kathryn; Kjellstrom, Tord

    2010-04-01

    Climate change will bring more frequent, long lasting and severe adverse weather events and these changes will affect mental health. We propose an explanatory framework to enhance consideration of how these effects may operate and to encourage debate about this important aspect of the health impacts of climate change. Literature review. Climate change may affect mental health directly by exposing people to trauma. It may also affect mental health indirectly, by affecting (1) physical health (for example, extreme heat exposure causes heat exhaustion in vulnerable people, and associated mental health consequences) and (2) community wellbeing. Within community, wellbeing is a sub-process in which climate change erodes physical environments which, in turn, damage social environments. Vulnerable people and places, especially in low-income countries, will be particularly badly affected. Different aspects of climate change may affect mental health through direct and indirect pathways, leading to serious mental health problems, possibly including increased suicide mortality. We propose that it is helpful to integrate these pathways in an explanatory framework, which may assist in developing public health policy, practice and research.

  2. Structure and Strength in Causal Induction

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2005-01-01

    We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…

  3. Investigating Causality Between Interacting Brain Areas with Multivariate Autoregressive Models of MEG Sensor Data

    PubMed Central

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-01-01

    Abstract In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. PMID:22328419

  4. Targeting the link between loneliness and paranoia via an interventionist-causal model framework.

    PubMed

    Gollwitzer, Anton; Wilczynska, Magdalena; Jaya, Edo S

    2018-05-01

    Targeting the antecedents of paranoia may be one potential method to reduce or prevent paranoia. For instance, targeting a potential antecedent of paranoia - loneliness - may reduce paranoia. Our first research question was whether loneliness heightens subclinical paranoia and whether negative affect may mediate this effect. Second, we wondered whether this potential effect could be targeted via two interventionist pathways in line with an interventionist-causal model approach: (1) decreasing loneliness, and (2) intervening on the potential mediator - negative affect. In Study 1 (N = 222), recollecting an experience of companionship reduced paranoia in participants high in pre-manipulation paranoia but not in participants low in pre-manipulation paranoia. Participants recollecting an experience of loneliness, on the other hand, exhibited increased paranoia, and this effect was mediated by negative affect. In Study 2 (N = 196), participants who utilized an emotion-regulation strategy, cognitive reappraisal, to regulate the negative affect associated with loneliness successfully attenuated the effect of loneliness on paranoia. Targeting the effect of loneliness on paranoia by identifying interventionist pathways may be one promising route for reducing and preventing subclinical paranoia. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Reasoning about Causal Relationships: Inferences on Causal Networks

    PubMed Central

    Rottman, Benjamin Margolin; Hastie, Reid

    2013-01-01

    Over the last decade, a normative framework for making causal inferences, Bayesian Probabilistic Causal Networks, has come to dominate psychological studies of inference based on causal relationships. The following causal networks—[X→Y→Z, X←Y→Z, X→Y←Z]—supply answers for questions like, “Suppose both X and Y occur, what is the probability Z occurs?” or “Suppose you intervene and make Y occur, what is the probability Z occurs?” In this review, we provide a tutorial for how normatively to calculate these inferences. Then, we systematically detail the results of behavioral studies comparing human qualitative and quantitative judgments to the normative calculations for many network structures and for several types of inferences on those networks. Overall, when the normative calculations imply that an inference should increase, judgments usually go up; when calculations imply a decrease, judgments usually go down. However, two systematic deviations appear. First, people’s inferences violate the Markov assumption. For example, when inferring Z from the structure X→Y→Z, people think that X is relevant even when Y completely mediates the relationship between X and Z. Second, even when people’s inferences are directionally consistent with the normative calculations, they are often not as sensitive to the parameters and the structure of the network as they should be. We conclude with a discussion of productive directions for future research. PMID:23544658

  6. Dynamics of Quantum Causal Structures

    NASA Astrophysics Data System (ADS)

    Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2018-01-01

    It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.

  7. Causality and causal inference in epidemiology: the need for a pluralistic approach

    PubMed Central

    Vandenbroucke, Jan P; Broadbent, Alex; Pearce, Neil

    2016-01-01

    Abstract Causal inference based on a restricted version of the potential outcomes approach reasoning is assuming an increasingly prominent place in the teaching and practice of epidemiology. The proposed concepts and methods are useful for particular problems, but it would be of concern if the theory and practice of the complete field of epidemiology were to become restricted to this single approach to causal inference. Our concerns are that this theory restricts the questions that epidemiologists may ask and the study designs that they may consider. It also restricts the evidence that may be considered acceptable to assess causality, and thereby the evidence that may be considered acceptable for scientific and public health decision making. These restrictions are based on a particular conceptual framework for thinking about causality. In Section 1, we describe the characteristics of the restricted potential outcomes approach (RPOA) and show that there is a methodological movement which advocates these principles, not just for solving particular problems, but as ideals for which epidemiology as a whole should strive. In Section 2, we seek to show that the limitation of epidemiology to one particular view of the nature of causality is problematic. In Section 3, we argue that the RPOA is also problematic with regard to the assessment of causality. We argue that it threatens to restrict study design choice, to wrongly discredit the results of types of observational studies that have been very useful in the past and to damage the teaching of epidemiological reasoning. Finally, in Section 4 we set out what we regard as a more reasonable ‘working hypothesis’ as to the nature of causality and its assessment: pragmatic pluralism. PMID:26800751

  8. Redundant variables and Granger causality

    NASA Astrophysics Data System (ADS)

    Angelini, L.; de Tommaso, M.; Marinazzo, D.; Nitti, L.; Pellicoro, M.; Stramaglia, S.

    2010-03-01

    We discuss the use of multivariate Granger causality in presence of redundant variables: the application of the standard analysis, in this case, leads to under estimation of causalities. Using the un-normalized version of the causality index, we quantitatively develop the notions of redundancy and synergy in the frame of causality and propose two approaches to group redundant variables: (i) for a given target, the remaining variables are grouped so as to maximize the total causality and (ii) the whole set of variables is partitioned to maximize the sum of the causalities between subsets. We show the application to a real neurological experiment, aiming to a deeper understanding of the physiological basis of abnormal neuronal oscillations in the migraine brain. The outcome by our approach reveals the change in the informational pattern due to repetitive transcranial magnetic stimulations.

  9. Identifying HIV associated neurocognitive disorder using large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    DSouza, Adora M.; Abidin, Anas Z.; Leistritz, Lutz; Wismüller, Axel

    2017-02-01

    We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system. The current paradigm for assessing such impairment is through neuropsychological testing. With fMRI data analysis, we aim at non-invasively capturing differences in brain connectivity patterns between healthy subjects and subjects presenting with symptoms of HAND. To classify the extracted interaction patterns among brain regions, we use a prototype-based learning algorithm called Generalized Matrix Learning Vector Quantization (GMLVQ). Our approach to characterize connectivity using lsGC followed by GMLVQ for subsequent classification yields good prediction results with an accuracy of 87% and an area under the ROC curve (AUC) of up to 0.90. We obtain a statistically significant improvement (p<0.01) over a conventional Granger causality approach (accuracy = 0.76, AUC = 0.74). High accuracy and AUC values using our multivariate method to connectivity analysis suggests that our approach is able to better capture changes in interaction patterns between different brain regions when compared to conventional Granger causality analysis known from the literature.

  10. Occupational safety management: the role of causal attribution.

    PubMed

    Gyekye, Seth Ayim

    2010-12-01

    The paper addresses the causal attribution theory, an old and well-established theme in social psychology which denotes the everyday, commonsense explanations that people use to explain events and the world around them. The attribution paradigm is considered one of the most appropriate analytical tools for exploratory and descriptive studies in social psychology and organizational literature. It affords the possibility of describing accident processes as objectively as possible and with as much detail as possible. Causal explanations are vital to the formal analysis of workplace hazards and accidents, as they determine how organizations act to prevent accident recurrence. Accordingly, they are regarded as fundamental and prerequisite elements for safety management policies. The paper focuses primarily on the role of causal attributions in occupational and industrial accident analyses and implementation of safety interventions. It thus serves as a review of the contribution of attribution theory to occupational and industrial accidents. It comprises six sections. The first section presents an introduction to the classic attribution theories, and the second an account of the various ways in which the attribution paradigm has been applied in organizational settings. The third and fourth sections review the literature on causal attributions and demographic and organizational variables respectively. The sources of attributional biases in social psychology and how they manifest and are identified in the causal explanations for industrial and occupational accidents are treated in the fifth section. Finally, conclusion and recommendations are presented. The recommendations are particularly important for the reduction of workplace accidents and associated costs. The paper touches on the need for unbiased causal analyses, belief in the preventability of accidents, and the imperative role of management in occupational safety management.

  11. Causality analysis in business performance measurement system using system dynamics methodology

    NASA Astrophysics Data System (ADS)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  12. Serum Metabolomic Profiling in Acute Alcoholic Hepatitis Identifies Multiple Dysregulated Pathways

    PubMed Central

    Rachakonda, Vikrant; Gabbert, Charles; Raina, Amit; Bell, Lauren N.; Cooper, Sara; Malik, Shahid; Behari, Jaideep

    2014-01-01

    Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is

  13. Experimental test of nonlocal causality.

    PubMed

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro

    2016-08-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.

  14. Climate Modeling and Causal Identification for Sea Ice Predictability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.« less

  15. Causality and causal inference in epidemiology: the need for a pluralistic approach.

    PubMed

    Vandenbroucke, Jan P; Broadbent, Alex; Pearce, Neil

    2016-12-01

    Causal inference based on a restricted version of the potential outcomes approach reasoning is assuming an increasingly prominent place in the teaching and practice of epidemiology. The proposed concepts and methods are useful for particular problems, but it would be of concern if the theory and practice of the complete field of epidemiology were to become restricted to this single approach to causal inference. Our concerns are that this theory restricts the questions that epidemiologists may ask and the study designs that they may consider. It also restricts the evidence that may be considered acceptable to assess causality, and thereby the evidence that may be considered acceptable for scientific and public health decision making. These restrictions are based on a particular conceptual framework for thinking about causality. In Section 1, we describe the characteristics of the restricted potential outcomes approach (RPOA) and show that there is a methodological movement which advocates these principles, not just for solving particular problems, but as ideals for which epidemiology as a whole should strive. In Section 2, we seek to show that the limitation of epidemiology to one particular view of the nature of causality is problematic. In Section 3, we argue that the RPOA is also problematic with regard to the assessment of causality. We argue that it threatens to restrict study design choice, to wrongly discredit the results of types of observational studies that have been very useful in the past and to damage the teaching of epidemiological reasoning. Finally, in Section 4 we set out what we regard as a more reasonable 'working hypothesis' as to the nature of causality and its assessment: pragmatic pluralism. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  16. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia

    PubMed Central

    Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.

    2018-01-01

    Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1

  17. The Causal Effects of Father Absence

    PubMed Central

    McLanahan, Sara; Tach, Laura; Schneider, Daniel

    2014-01-01

    The literature on father absence is frequently criticized for its use of cross-sectional data and methods that fail to take account of possible omitted variable bias and reverse causality. We review studies that have responded to this critique by employing a variety of innovative research designs to identify the causal effect of father absence, including studies using lagged dependent variable models, growth curve models, individual fixed effects models, sibling fixed effects models, natural experiments, and propensity score matching models. Our assessment is that studies using more rigorous designs continue to find negative effects of father absence on offspring well-being, although the magnitude of these effects is smaller than what is found using traditional cross-sectional designs. The evidence is strongest and most consistent for outcomes such as high school graduation, children’s social-emotional adjustment, and adult mental health. PMID:24489431

  18. Instrumental variable approaches to identifying the causal effect of educational attainment on dementia risk

    PubMed Central

    Nguyen, Thu T.; Tchetgen Tchetgen, Eric J.; Kawachi, Ichiro; Gilman, Stephen E.; Walter, Stefan; Liu, Sze Y.; Manly, Jennifer; Glymour, M. Maria

    2015-01-01

    Purpose Education is an established correlate of cognitive status in older adulthood, but whether expanding educational opportunities would improve cognitive functioning remains unclear given limitations of prior studies for causal inference. Therefore, we conducted instrumental variable (IV) analyses of the association between education and dementia risk, using for the first time in this area, genetic variants as instruments as well as state-level school policies. Methods IV analyses in the Health and Retirement Study cohort (1998–2010) used two sets of instruments: 1) a genetic risk score constructed from three single nucleotide polymorphisms (SNPs) (n=8,054); and 2) compulsory schooling laws (CSLs) and state school characteristics (term length, student teacher ratios, and expenditures) (n=13,167). Results Employing the genetic risk score as an IV, there was a 1.1% reduction in dementia risk per year of schooling (95% CI: −2.4, 0.02). Leveraging compulsory schooling laws and state school characteristics as IVs, there was a substantially larger protective effect (−9.5%; 95% CI: −14.8, −4.2). Analyses evaluating the plausibility of the IV assumptions indicated estimates derived from analyses relying on CSLs provide the best estimates of the causal effect of education. Conclusion IV analyses suggest education is protective against risk of dementia in older adulthood. PMID:26633592

  19. A new screening pathway for identifying asymptomatic patients using dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Matsumoto, Takuya; Sawagashira, Tsuyoshi; Tagami, Motoki; Katsumata, Akitoshi; Hayashi, Yoshinori; Muramatsu, Chisako; Zhou, Xiangrong; Iida, Yukihiro; Matsuoka, Masato; Katagi, Kiyoji; Fujita, Hiroshi

    2012-03-01

    To identify asymptomatic patients is the challenging task and the essential first step in diagnosis. Findings of dental panoramic radiographs include not only dental conditions but also radiographic signs that are suggestive of possible systemic diseases such as osteoporosis, arteriosclerosis, and maxillary sinusitis. Detection of such signs on panoramic radiographs has a potential to provide supplemental benefits for patients. However, it is not easy for general dental practitioners to pay careful attention to such signs. We addressed the development of a computer-aided detection (CAD) system that detects radiographic signs of pathology on panoramic images, and the design of the framework of new screening pathway by cooperation of dentists and our CAD system. The performance evaluation of our CAD system showed the sensitivity and specificity in the identification of osteoporotic patients were 92.6 % and 100 %, respectively, and those of the maxillary sinus abnormality were 89.6 % and 73.6 %, respectively. The detection rate of carotid artery calcifications that suggests the need for further medical evaluation was approximately 93.6 % with 4.4 false-positives per image. To validate the utility of the new screening pathway, preliminary clinical trials by using our CAD system were conducted. To date, 223 panoramic images were processed and 4 asymptomatic patients with suspected osteoporosis, 7 asymptomatic patients with suspected calcifications, and 40 asymptomatic patients with suspected maxillary sinusitis were detected in our initial trial. It was suggested that our new screening pathway could be useful to identify asymptomatic patients with systemic diseases.

  20. Experimental test of nonlocal causality

    PubMed Central

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro

    2016-01-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045

  1. Causal inference in public health.

    PubMed

    Glass, Thomas A; Goodman, Steven N; Hernán, Miguel A; Samet, Jonathan M

    2013-01-01

    Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action's consequences rather than the less precise notion of a risk factor's causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world.

  2. Causal conditionals and counterfactuals

    PubMed Central

    Frosch, Caren A.; Byrne, Ruth M.J.

    2012-01-01

    Causal counterfactuals e.g., ‘if the ignition key had been turned then the car would have started’ and causal conditionals e.g., ‘if the ignition key was turned then the car started’ are understood by thinking about multiple possibilities of different sorts, as shown in six experiments using converging evidence from three different types of measures. Experiments 1a and 1b showed that conditionals that comprise enabling causes, e.g., ‘if the ignition key was turned then the car started’ primed people to read quickly conjunctions referring to the possibility of the enabler occurring without the outcome, e.g., ‘the ignition key was turned and the car did not start’. Experiments 2a and 2b showed that people paraphrased causal conditionals by using causal or temporal connectives (because, when), whereas they paraphrased causal counterfactuals by using subjunctive constructions (had…would have). Experiments 3a and 3b showed that people made different inferences from counterfactuals presented with enabling conditions compared to none. The implications of the results for alternative theories of conditionals are discussed. PMID:22858874

  3. Causal Discovery of Dynamic Systems

    ERIC Educational Resources Information Center

    Voortman, Mark

    2010-01-01

    Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…

  4. The Mediation Formula: A Guide to the Assessment of Causal Pathways in Nonlinear Models

    DTIC Science & Technology

    2011-10-27

    through (25), (26) and (27), rather than going through (23) ( van der Laan and Rubin, 2006). 29 values, though disparities in parameters may not...graphs. Epidemiology 22 378–381. Petersen, M., Sinisi, S. and van der Laan, M. (2006). Estimation of direct causal effects. Epidemiology 17 276–284...and J. Halpern, eds.). College Publications, UK, 415–444. van der Laan, M. J. and Rubin, D. (2006). Targeted maximum likelihood learning. The

  5. Formalizing Neurath's ship: Approximate algorithms for online causal learning.

    PubMed

    Bramley, Neil R; Dayan, Peter; Griffiths, Thomas L; Lagnado, David A

    2017-04-01

    Higher-level cognition depends on the ability to learn models of the world. We can characterize this at the computational level as a structure-learning problem with the goal of best identifying the prevailing causal relationships among a set of relata. However, the computational cost of performing exact Bayesian inference over causal models grows rapidly as the number of relata increases. This implies that the cognitive processes underlying causal learning must be substantially approximate. A powerful class of approximations that focuses on the sequential absorption of successive inputs is captured by the Neurath's ship metaphor in philosophy of science, where theory change is cast as a stochastic and gradual process shaped as much by people's limited willingness to abandon their current theory when considering alternatives as by the ground truth they hope to approach. Inspired by this metaphor and by algorithms for approximating Bayesian inference in machine learning, we propose an algorithmic-level model of causal structure learning under which learners represent only a single global hypothesis that they update locally as they gather evidence. We propose a related scheme for understanding how, under these limitations, learners choose informative interventions that manipulate the causal system to help elucidate its workings. We find support for our approach in the analysis of 3 experiments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Experimental Approaches to Systematic Discovery and Development of Reproductive Adverse Outcome Pathways in Fish

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are conceptual frameworks that portray causal and predictive linkages between key events at multiple scales of biological organization that connect molecular initiating events and early cellular perturbations (e.g., initiation of toxicity pathways)...

  7. Experimental verification of an indefinite causal order

    PubMed Central

    Rubino, Giulia; Rozema, Lee A.; Feix, Adrien; Araújo, Mateus; Zeuner, Jonas M.; Procopio, Lorenzo M.; Brukner, Časlav; Walther, Philip

    2017-01-01

    Investigating the role of causal order in quantum mechanics has recently revealed that the causal relations of events may not be a priori well defined in quantum theory. Although this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. We report the first decisive demonstration of a process with an indefinite causal order. To do this, we quantify how incompatible our setup is with a definite causal order by measuring a “causal witness.” This mathematical object incorporates a series of measurements that are designed to yield a certain outcome only if the process under examination is not consistent with any well-defined causal order. In our experiment, we perform a measurement in a superposition of causal orders—without destroying the coherence—to acquire information both inside and outside of a “causally nonordered process.” Using this information, we experimentally determine a causal witness, demonstrating by almost 7 SDs that the experimentally implemented process does not have a definite causal order. PMID:28378018

  8. Transcriptome profiling identified differentially expressed genes and pathways associated with tamoxifen resistance in human breast cancer

    PubMed Central

    Men, Xin; Ma, Jun; Wu, Tong; Pu, Junyi; Wen, Shaojia; Shen, Jianfeng; Wang, Xun; Wang, Yamin; Chen, Chao; Dai, Penggao

    2018-01-01

    Tamoxifen (TAM) resistance is an important clinical problem in the treatment of breast cancer. In order to identify the mechanism of TAM resistance for estrogen receptor (ER)-positive breast cancer, we screened the transcriptome using RNA-seq and compared the gene expression profiles between the MCF-7 mamma carcinoma cell line and the TAM-resistant cell line TAMR/MCF-7, 52 significant differential expression genes (DEGs) were identified including SLIT2, ROBO, LHX, KLF, VEGFC, BAMBI, LAMA1, FLT4, PNMT, DHRS2, MAOA and ALDH. The DEGs were annotated in the GO, COG and KEGG databases. Annotation of the function of the DEGs in the KEGG database revealed the top three pathways enriched with the most DEGs, including pathways in cancer, the PI3K-AKT pathway, and focal adhesion. Then we compared the gene expression profiles between the Clinical progressive disease (PD) and the complete response (CR) from the cancer genome altas (TCGA). 10 common DEGs were identified through combining the clinical and cellular analysis results. Protein-protein interaction network was applied to analyze the association of ER signal pathway with the 10 DEGs. 3 significant genes (GFRA3, NPY1R and PTPRN2) were closely related to ER related pathway. These significant DEGs regulated many biological activities such as cell proliferation and survival, motility and migration, and tumor cell invasion. The interactions between these DEGs and drug resistance phenomenon need to be further elucidated at a functional level in further studies. Based on our findings, we believed that these DEGs could be therapeutic targets, which can be explored to develop new treatment options. PMID:29423105

  9. Transitive closure of subsumption and causal relations in a large ontology of radiological diagnosis.

    PubMed

    Kahn, Charles E

    2016-06-01

    The Radiology Gamuts Ontology (RGO)-an ontology of diseases, interventions, and imaging findings-was developed to aid in decision support, education, and translational research in diagnostic radiology. The ontology defines a subsumption (is_a) relation between more general and more specific terms, and a causal relation (may_cause) to express the relationship between disorders and their possible imaging manifestations. RGO incorporated 19,745 terms with their synonyms and abbreviations, 1768 subsumption relations, and 55,558 causal relations. Transitive closure was computed iteratively; it yielded 2154 relations over subsumption and 1,594,896 relations over causality. Five causal cycles were discovered, all with path length of no more than 5. The graph-theoretic metrics of in-degree and out-degree were explored; the most useful metric to prioritize modification of the ontology was found to be the product of the in-degree of transitive closure over subsumption and the out-degree of transitive closure over causality. Two general types of error were identified: (1) causal assertions that used overly general terms because they implicitly assumed an organ-specific context and (2) subsumption relations where a site-specific disorder was asserted to be a subclass of the general disorder. Transitive closure helped identify incorrect assertions, prioritized and guided ontology revision, and aided resources that applied the ontology's knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Confounding factors in determining causal soil moisture-precipitation feedback

    NASA Astrophysics Data System (ADS)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  11. Is There a Causal Effect of High School Math on Labor Market Outcomes?

    ERIC Educational Resources Information Center

    Joensen, Juanna Schroter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…

  12. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems

    PubMed Central

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K.; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com PMID:25887162

  13. Quantum correlations with no causal order

    PubMed Central

    Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav

    2012-01-01

    The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068

  14. Paradoxical Behavior of Granger Causality

    NASA Astrophysics Data System (ADS)

    Witt, Annette; Battaglia, Demian; Gail, Alexander

    2013-03-01

    Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen

  15. FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants1

    PubMed Central

    Tohge, Takayuki; Klie, Sebastian; Fernie, Alisdair R.

    2016-01-01

    Gene duplications generate new genes that can acquire similar but often diversified functions. Recent studies of gene coexpression networks have indicated that, not only genes, but also pathways can be multiplied and diversified to perform related functions in different parts of an organism. Identification of such diversified pathways, or modules, is needed to expand our knowledge of biological processes in plants and to understand how biological functions evolve. However, systematic explorations of modules remain scarce, and no user-friendly platform to identify them exists. We have established a statistical framework to identify modules and show that approximately one-third of the genes of a plant’s genome participate in hundreds of multiplied modules. Using this framework as a basis, we implemented a platform that can explore and visualize multiplied modules in coexpression networks of eight plant species. To validate the usefulness of the platform, we identified and functionally characterized pollen- and root-specific cell wall modules that multiplied to confer tip growth in pollen tubes and root hairs, respectively. Furthermore, we identified multiplied modules involved in secondary metabolite synthesis and corroborated them by metabolite profiling of tobacco (Nicotiana tabacum) tissues. The interactive platform, referred to as FamNet, is available at http://www.gene2function.de/famnet.html. PMID:26754669

  16. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in

  17. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE PAGES

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...

    2015-07-07

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in

  18. Fostering Deeper Critical Inquiry with Causal Layered Analysis

    ERIC Educational Resources Information Center

    Haigh, Martin

    2016-01-01

    Causal layered analysis (CLA) is a technique that enables deeper critical inquiry through a structured exploration of four layers of causation. CLA's layers reach down from the surface litany of media understanding, through the layer of systemic causes identified by conventional research, to underpinning worldviews, ideologies and philosophies,…

  19. On the Inference of Functional Circadian Networks Using Granger Causality

    PubMed Central

    Pourzanjani, Arya; Herzog, Erik D.; Petzold, Linda R.

    2015-01-01

    Being able to infer one way direct connections in an oscillatory network such as the suprachiastmatic nucleus (SCN) of the mammalian brain using time series data is difficult but crucial to understanding network dynamics. Although techniques have been developed for inferring networks from time series data, there have been no attempts to adapt these techniques to infer directional connections in oscillatory time series, while accurately distinguishing between direct and indirect connections. In this paper an adaptation of Granger Causality is proposed that allows for inference of circadian networks and oscillatory networks in general called Adaptive Frequency Granger Causality (AFGC). Additionally, an extension of this method is proposed to infer networks with large numbers of cells called LASSO AFGC. The method was validated using simulated data from several different networks. For the smaller networks the method was able to identify all one way direct connections without identifying connections that were not present. For larger networks of up to twenty cells the method shows excellent performance in identifying true and false connections; this is quantified by an area-under-the-curve (AUC) 96.88%. We note that this method like other Granger Causality-based methods, is based on the detection of high frequency signals propagating between cell traces. Thus it requires a relatively high sampling rate and a network that can propagate high frequency signals. PMID:26413748

  20. Causal language and strength of inference in academic and media articles shared in social media (CLAIMS): A systematic review.

    PubMed

    Haber, Noah; Smith, Emily R; Moscoe, Ellen; Andrews, Kathryn; Audy, Robin; Bell, Winnie; Brennan, Alana T; Breskin, Alexander; Kane, Jeremy C; Karra, Mahesh; McClure, Elizabeth S; Suarez, Elizabeth A

    2018-01-01

    The pathway from evidence generation to consumption contains many steps which can lead to overstatement or misinformation. The proliferation of internet-based health news may encourage selection of media and academic research articles that overstate strength of causal inference. We investigated the state of causal inference in health research as it appears at the end of the pathway, at the point of social media consumption. We screened the NewsWhip Insights database for the most shared media articles on Facebook and Twitter reporting about peer-reviewed academic studies associating an exposure with a health outcome in 2015, extracting the 50 most-shared academic articles and media articles covering them. We designed and utilized a review tool to systematically assess and summarize studies' strength of causal inference, including generalizability, potential confounders, and methods used. These were then compared with the strength of causal language used to describe results in both academic and media articles. Two randomly assigned independent reviewers and one arbitrating reviewer from a pool of 21 reviewers assessed each article. We accepted the most shared 64 media articles pertaining to 50 academic articles for review, representing 68% of Facebook and 45% of Twitter shares in 2015. Thirty-four percent of academic studies and 48% of media articles used language that reviewers considered too strong for their strength of causal inference. Seventy percent of academic studies were considered low or very low strength of inference, with only 6% considered high or very high strength of causal inference. The most severe issues with academic studies' causal inference were reported to be omitted confounding variables and generalizability. Fifty-eight percent of media articles were found to have inaccurately reported the question, results, intervention, or population of the academic study. We find a large disparity between the strength of language as presented to the

  1. Causal language and strength of inference in academic and media articles shared in social media (CLAIMS): A systematic review

    PubMed Central

    Smith, Emily R.; Moscoe, Ellen; Audy, Robin; Bell, Winnie; Brennan, Alana T.; Breskin, Alexander; Kane, Jeremy C.; Suarez, Elizabeth A.

    2018-01-01

    Background The pathway from evidence generation to consumption contains many steps which can lead to overstatement or misinformation. The proliferation of internet-based health news may encourage selection of media and academic research articles that overstate strength of causal inference. We investigated the state of causal inference in health research as it appears at the end of the pathway, at the point of social media consumption. Methods We screened the NewsWhip Insights database for the most shared media articles on Facebook and Twitter reporting about peer-reviewed academic studies associating an exposure with a health outcome in 2015, extracting the 50 most-shared academic articles and media articles covering them. We designed and utilized a review tool to systematically assess and summarize studies’ strength of causal inference, including generalizability, potential confounders, and methods used. These were then compared with the strength of causal language used to describe results in both academic and media articles. Two randomly assigned independent reviewers and one arbitrating reviewer from a pool of 21 reviewers assessed each article. Results We accepted the most shared 64 media articles pertaining to 50 academic articles for review, representing 68% of Facebook and 45% of Twitter shares in 2015. Thirty-four percent of academic studies and 48% of media articles used language that reviewers considered too strong for their strength of causal inference. Seventy percent of academic studies were considered low or very low strength of inference, with only 6% considered high or very high strength of causal inference. The most severe issues with academic studies’ causal inference were reported to be omitted confounding variables and generalizability. Fifty-eight percent of media articles were found to have inaccurately reported the question, results, intervention, or population of the academic study. Conclusions We find a large disparity between the

  2. Causal capture effects in chimpanzees (Pan troglodytes).

    PubMed

    Matsuno, Toyomi; Tomonaga, Masaki

    2017-01-01

    Extracting a cause-and-effect structure from the physical world is an important demand for animals living in dynamically changing environments. Human perceptual and cognitive mechanisms are known to be sensitive and tuned to detect and interpret such causal structures. In contrast to rigorous investigations of human causal perception, the phylogenetic roots of this perception are not well understood. In the present study, we aimed to investigate the susceptibility of nonhuman animals to mechanical causality by testing whether chimpanzees perceived an illusion called causal capture (Scholl & Nakayama, 2002). Causal capture is a phenomenon in which a type of bistable visual motion of objects is perceived as causal collision due to a bias from a co-occurring causal event. In our experiments, we assessed the susceptibility of perception of a bistable stream/bounce motion event to a co-occurring causal event in chimpanzees. The results show that, similar to in humans, causal "bounce" percepts were significantly increased in chimpanzees with the addition of a task-irrelevant causal bounce event that was synchronously presented. These outcomes suggest that the perceptual mechanisms behind the visual interpretation of causal structures in the environment are evolutionarily shared between human and nonhuman animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis.

    PubMed

    Azad, T; Janse van Rensburg, H J; Lightbody, E D; Neveu, B; Champagne, A; Ghaffari, A; Kay, V R; Hao, Y; Shen, H; Yeung, B; Croy, B A; Guan, K L; Pouliot, F; Zhang, J; Nicol, C J B; Yang, X

    2018-03-13

    The Hippo pathway is a central regulator of tissue development and homeostasis, and has been reported to have a role during vascular development. Here we develop a bioluminescence-based biosensor that monitors the activity of the Hippo core component LATS kinase. Using this biosensor and a library of small molecule kinase inhibitors, we perform a screen for kinases modulating LATS activity and identify VEGFR as an upstream regulator of the Hippo pathway. We find that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which subsequently inhibits LATS and activates the Hippo effectors YAP and TAZ. We further show that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and tumor vasculogenic mimicry. Thus, our work offers a biosensor tool for the study of the Hippo pathway and suggests a role for Hippo signaling in regulating blood vessel formation in physiological and pathological settings.

  4. A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations

    PubMed Central

    Zhang, Han; Wheeler, William; Hyland, Paula L.; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai

    2016-01-01

    Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs. PMID:27362418

  5. A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations.

    PubMed

    Zhang, Han; Wheeler, William; Hyland, Paula L; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai

    2016-06-01

    Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs.

  6. Measuring causal perception: connections to representational momentum?

    PubMed

    Choi, Hoon; Scholl, Brian J

    2006-01-01

    In a collision between two objects, we can perceive not only low-level properties, such as color and motion, but also the seemingly high-level property of causality. It has proven difficult, however, to measure causal perception in a quantitatively rigorous way which goes beyond perceptual reports. Here we focus on the possibility of measuring perceived causality using the phenomenon of representational momentum (RM). Recent studies suggest a relationship between causal perception and RM, based on the fact that RM appears to be attenuated for causally 'launched' objects. This is explained by appeal to the visual expectation that a 'launched' object is inert and thus should eventually cease its movement after a collision, without a source of self-propulsion. We first replicated these demonstrations, and then evaluated this alleged connection by exploring RM for different types of displays, including the contrast between causal launching and non-causal 'passing'. These experiments suggest that the RM-attenuation effect is not a pure measure of causal perception, but rather may reflect lower-level spatiotemporal correlates of only some causal displays. We conclude by discussing the strengths and pitfalls of various methods of measuring causal perception.

  7. Investigating the multi-causal and complex nature of the accident causal influence of construction project features.

    PubMed

    Manu, Patrick A; Ankrah, Nii A; Proverbs, David G; Suresh, Subashini

    2012-09-01

    Construction project features (CPFs) are organisational, physical and operational attributes that characterise construction projects. Although previous studies have examined the accident causal influence of CPFs, the multi-causal attribute of this causal phenomenon still remain elusive and thus requires further investigation. Aiming to shed light on this facet of the accident causal phenomenon of CPFs, this study examines relevant literature and crystallises the attained insight of the multi-causal attribute by a graphical model which is subsequently operationalised by a derived mathematical risk expression that offers a systematic approach for evaluating the potential of CPFs to cause harm and consequently their health and safety (H&S) risk implications. The graphical model and the risk expression put forth by the study thus advance current understanding of the accident causal phenomenon of CPFs and they present an opportunity for project participants to manage the H&S risk associated with CPFs from the early stages of project procurement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Towards graphical causal structures

    NASA Astrophysics Data System (ADS)

    Paulsson, K. Johan

    2012-12-01

    Folowing recent work by R. Spekkens, M. Leifer and B. Coecke we investigate causal settings in a limited categorical version of the conditional density operator formalism. We particularly show how the compact structure for causal and acausal settings apply on the measurements of stabiliser theory.

  9. University Students' Causal Conceptions about Social Mobility: Diverging Pathways for Believers in Personal Merit and Luck

    ERIC Educational Resources Information Center

    Shane, Jacob; Heckhausen, Jutta

    2013-01-01

    Many college students hold ambitious goals for upward social mobility via post-college careers. However, in the current economic recession such optimistic expectations are not a given. The present study examines how college students' current social status and beliefs in causal factors for socioeconomic status (SES) attainment lead to diverging…

  10. Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology

    PubMed Central

    Marshall, Brandon D. L.; Galea, Sandro

    2015-01-01

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821

  11. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    PubMed Central

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  12. Principal stratification in causal inference.

    PubMed

    Frangakis, Constantine E; Rubin, Donald B

    2002-03-01

    Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.

  13. ‘Candidatus Liberibacter asiaticus’, causal agent of citrus Huanglongbing, is reduced by treatment with Brassinosteroids

    DOE PAGES

    Canales, Eduardo; Coll, Yamilet; Hernández, Ingrid; ...

    2016-01-05

    Huanglongbing (HLB) constitutes the most destructive disease of citrus worldwide, yet no established efficient management measures exist for it. Brassinosteroids, a family of plant steroidal compounds, are essential for plant growth, development and stress tolerance. As a possible control strategy for HLB, epibrassinolide was applied to as a foliar spray to citrus plants infected with the causal agent of HLB, ‘Candidatus Liberibacter asiaticus’. The bacterial titers were reduced after treatment with epibrassinolide under both greenhouse and field conditions but were stronger in the greenhouse. Known defense genes were induced in leaves by epibrassinolide. With the SuperSAGE technology combined with nextmore » generation sequencing, induction of genes known to be associated with defense response to bacteria and hormone transduction pathways were identified. Lastly, the results demonstrate that epibrassinolide may provide a useful tool for the management of HLB.« less

  14. ‘Candidatus Liberibacter asiaticus’, causal agent of citrus Huanglongbing, is reduced by treatment with Brassinosteroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canales, Eduardo; Coll, Yamilet; Hernández, Ingrid

    Huanglongbing (HLB) constitutes the most destructive disease of citrus worldwide, yet no established efficient management measures exist for it. Brassinosteroids, a family of plant steroidal compounds, are essential for plant growth, development and stress tolerance. As a possible control strategy for HLB, epibrassinolide was applied to as a foliar spray to citrus plants infected with the causal agent of HLB, ‘Candidatus Liberibacter asiaticus’. The bacterial titers were reduced after treatment with epibrassinolide under both greenhouse and field conditions but were stronger in the greenhouse. Known defense genes were induced in leaves by epibrassinolide. With the SuperSAGE technology combined with nextmore » generation sequencing, induction of genes known to be associated with defense response to bacteria and hormone transduction pathways were identified. Lastly, the results demonstrate that epibrassinolide may provide a useful tool for the management of HLB.« less

  15. Children's Counterfactual Reasoning About Causally Overdetermined Events.

    PubMed

    Nyhout, Angela; Henke, Lena; Ganea, Patricia A

    2017-08-07

    In two experiments, one hundred and sixty-two 6- to 8-year-olds were asked to reason counterfactually about events with different causal structures. All events involved overdetermined outcomes in which two different causal events led to the same outcome. In Experiment 1, children heard stories with either an ambiguous causal relation between events or causally unrelated events. Children in the causally unrelated version performed better than chance and better than those in the ambiguous condition. In Experiment 2, children heard stories in which antecedent events were causally connected or causally disconnected. Eight-year-olds performed above chance in both conditions, whereas 6-year-olds performed above chance only in the connected condition. This work provides the first evidence that children can reason counterfactually in causally overdetermined contexts by age 8. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  16. Identifying Pathways of Teachers' PCK Development

    ERIC Educational Resources Information Center

    Wongsopawiro, Dirk S.; Zwart, Rosanne C.; van Driel, Jan H.

    2017-01-01

    This paper describes a method of analysing teacher growth in the context of science education. It focuses on the identification of pathways in the development of secondary school teachers' pedagogical content knowledge (PCK) by the use of the interconnected model of teachers' professional growth (IMTPG).The teachers (n = 12) participated in a…

  17. The impact of human development on individual health: a causal mediation analysis examining pathways through education and body mass index.

    PubMed

    Wang, Aolin; Arah, Onyebuchi A

    2017-01-01

    The macro environment we live in projects what we can achieve and how we behave, and in turn, shapes our health in complex ways. Policymaking will benefit from insights into the mechanisms underlying how national socioeconomic context affects health. This study examined the impact of human development on individual health and the possible mediating roles of education and body mass index (BMI). We analyzed World Health Survey data on 109,448 participants aged 25 or older from 42 low- and middle-income countries with augmented human development index (HDI) in 1990. We used principal components method to create a health score based on measures from eight health state domains, used years of schooling as education indicator and calculated BMI from self-reported height and weight. We used causal mediation analysis technique with random intercepts to account for the multilevel structure. Below a reference HDI level of 0.48, HDI was negatively associated with good health (total effect at HDI of 0.23: b  =  - 3.44, 95% CI [-6.39--0.49] for males and b  =  - 5.16, 95% CI [-9.24,--1.08] for females) but was positively associated with good health above this reference level (total effect at HDI of 0.75: b  = 4.16, 95% CI [-0.33-8.66] for males and b  = 6.62, 95% CI [0.85-12.38] for females). We found a small positive effect of HDI on health via education across reference HDI levels ( b ranging from 0.24 to 0.29 for males and 0.40 to 0.49 for females) but not via pathways involving BMI only. Human development has a non-linear effect on individual health, but the impact appears to be mainly through pathways other than education and BMI.

  18. A Hierarchical Causal Taxonomy of Psychopathology across the Life Span

    PubMed Central

    Lahey, Benjamin B.; Krueger, Robert F.; Rathouz, Paul J.; Waldman, Irwin D.; Zald, David H.

    2016-01-01

    We propose a taxonomy of psychopathology based on patterns of shared causal influences identified in a review of multivariate behavior genetic studies that distinguish genetic and environmental influences that are either common to multiple dimensions of psychopathology or unique to each dimension. At the phenotypic level, first-order dimensions are defined by correlations among symptoms; correlations among first-order dimensions similarly define higher-order domains (e.g., internalizing or externalizing psychopathology). We hypothesize that the robust phenotypic correlations among first-order dimensions reflect a hierarchy of increasingly specific etiologic influences. Some nonspecific etiologic factors increase risk for all first-order dimensions of psychopathology to varying degrees through a general factor of psychopathology. Other nonspecific etiologic factors increase risk only for all first-order dimensions within a more specific higher-order domain. Furthermore, each first-order dimension has its own unique causal influences. Genetic and environmental influences common to family members tend to be nonspecific, whereas environmental influences unique to each individual are more dimension-specific. We posit that these causal influences on psychopathology are moderated by sex and developmental processes. This causal taxonomy also provides a novel framework for understanding the heterogeneity of each first-order dimension: Different persons exhibiting similar symptoms may be influenced by different combinations of etiologic influences from each of the three levels of the etiologic hierarchy. Furthermore, we relate the proposed causal taxonomy to transdimensional psychobiological processes, which also impact the heterogeneity of each psychopathology dimension. This causal taxonomy implies the need for changes in strategies for studying the etiology, psychobiology, prevention, and treatment of psychopathology. PMID:28004947

  19. Exploring individual differences in preschoolers' causal stance.

    PubMed

    Alvarez, Aubry; Booth, Amy E

    2016-03-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In this study, we explored the coherence and short-term stability of individual differences in children's causal stance. We also began to investigate the origins of this variability, focusing particularly on the potential role of mothers' explanatory talk in shaping the causal stance of their children. Two measures of causal stance correlated with each other, as well as themselves across time. Both also revealed internal consistency of response. The strength of children's causal stance also correlated with mother's responses on the same tasks and the frequency with which mothers emphasized causality during naturalistic joint activities with their children. Implications for theory and practice are discussed. (c) 2016 APA, all rights reserved).

  20. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  1. Causal knowledge and the development of inductive reasoning.

    PubMed

    Bright, Aimée K; Feeney, Aidan

    2014-06-01

    We explored the development of sensitivity to causal relations in children's inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey→predator) or diagnostic (predator→prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children's inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Theory-Based Causal Induction

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2009-01-01

    Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…

  3. Designing Effective Supports for Causal Reasoning

    ERIC Educational Resources Information Center

    Jonassen, David H.; Ionas, Ioan Gelu

    2008-01-01

    Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and…

  4. The selective power of causality on memory errors.

    PubMed

    Marsh, Jessecae K; Kulkofsky, Sarah

    2015-01-01

    We tested the influence of causal links on the production of memory errors in a misinformation paradigm. Participants studied a set of statements about a person, which were presented as either individual statements or pairs of causally linked statements. Participants were then provided with causally plausible and causally implausible misinformation. We hypothesised that studying information connected with causal links would promote representing information in a more abstract manner. As such, we predicted that causal information would not provide an overall protection against memory errors, but rather would preferentially help in the rejection of misinformation that was causally implausible, given the learned causal links. In two experiments, we measured whether the causal linkage of information would be generally protective against all memory errors or only selectively protective against certain types of memory errors. Causal links helped participants reject implausible memory lures, but did not protect against plausible lures. Our results suggest that causal information may promote an abstract storage of information that helps prevent only specific types of memory errors.

  5. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems.

    PubMed

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com © The Author(s) 2015. Published by Oxford University Press.

  6. Assessment of the population-level effectiveness of the Avahan HIV-prevention programme in South India: a preplanned, causal-pathway-based modelling analysis.

    PubMed

    Pickles, Michael; Boily, Marie-Claude; Vickerman, Peter; Lowndes, Catherine M; Moses, Stephen; Blanchard, James F; Deering, Kathleen N; Bradley, Janet; Ramesh, Banadakoppa M; Washington, Reynold; Adhikary, Rajatashuvra; Mainkar, Mandar; Paranjape, Ramesh S; Alary, Michel

    2013-11-01

    Avahan, the India AIDS initiative of the Bill & Melinda Gates Foundation, was a large-scale, targeted HIV prevention intervention. We aimed to assess its overall effectiveness by estimating the number and proportion of HIV infections averted across Avahan districts, following the causal pathway of the intervention. We created a mathematical model of HIV transmission in high-risk groups and the general population using data from serial cross-sectional surveys (integrated behavioural and biological assessments, IBBAs) within a Bayesian framework, which we used to reproduce HIV prevalence trends in female sex workers and their clients, men who have sex with men, and the general population in 24 South Indian districts over the first 4 years (2004-07 or 2005-08 dependent on the district) and the full 10 years (2004-13) of the Avahan programme. We tested whether these prevalence trends were more consistent with self-reported increases in consistent condom use after the implementation of Avahan or with a counterfactual (assuming consistent condom use increased at slower, pre-Avahan rates) using a Bayes factor, which gave a measure of the strength of evidence for the effectiveness estimates. Using regression analysis, we extrapolated the prevention effect in the districts covered by IBBAs to all 69 Avahan districts. In 13 of 24 IBBA districts, modelling suggested medium to strong evidence for the large self-reported increase in consistent condom use since Avahan implementation. In the remaining 11 IBBA districts, the evidence was weaker, with consistent condom use generally already high before Avahan began. Roughly 32700 HIV infections (95% credibility interval 17900-61600) were averted over the first 4 years of the programme in the IBBA districts with moderate to strong evidence. Addition of the districts with weaker evidence increased this total to 62800 (32000-118000) averted infections, and extrapolation suggested that 202000 (98300-407000) infections were averted

  7. Suppressors of systemin signaling identify genes in the tomato wound response pathway.

    PubMed Central

    Howe, G A; Ryan, C A

    1999-01-01

    In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2). PMID:10545469

  8. Different Kinds of Causality in Event Cognition

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Tamplin, Andrea K.; Armendarez, Joseph; Thompson, Alexis N.

    2014-01-01

    Narrative memory is better for information that is more causally connected and occurs at event boundaries, such as a causal break. However, it is unclear whether there are common or distinct influences of causality. For the event boundaries that arise as a result of causal breaks, the events that follow may subsequently become more causally…

  9. Neural theory for the perception of causal actions.

    PubMed

    Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A

    2012-07-01

    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.

  10. How causal analysis can reveal autonomy in models of biological systems

    NASA Astrophysics Data System (ADS)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  11. Causal essentialism in kinds.

    PubMed

    Ahn, Woo-kyoung; Taylor, Eric G; Kato, Daniel; Marsh, Jessecae K; Bloom, Paul

    2013-06-01

    The current study examines causal essentialism, derived from psychological essentialism of concepts. We examine whether people believe that members of a category share some underlying essence that is both necessary and sufficient for category membership and that also causes surface features. The main claim is that causal essentialism is restricted to categories that correspond to our intuitive notions of existing kinds and hence is more attenuated for categories that are based on arbitrary criteria. Experiments 1 and 3 found that people overtly endorse causal essences in nonarbitrary kinds but are less likely to do so for arbitrary categories. Experiments 2 and 4 found that people were more willing to generalize a member's known causal relations (or lack thereof) when dealing with a kind than when dealing with an arbitrary category. These differences between kinds and arbitrary categories were found across various domains-not only for categories of living things, but also for artefacts. These findings have certain real-world implications, including how people make sense of mental disorders that are treated as real kinds.

  12. Expectations and Interpretations during Causal Learning

    ERIC Educational Resources Information Center

    Luhmann, Christian C.; Ahn, Woo-kyoung

    2011-01-01

    In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…

  13. Representing Personal Determinants in Causal Structures.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1984-01-01

    Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…

  14. Identifying mutant pathways in the histiocytoses.

    PubMed

    Prince, H Miles

    2014-11-06

    In this issue of Blood, the findings of Chakraborty et al and Emile et al support a model in which the mitogen-activated protein kinase (MAPK) and PI3K/AKT pathways are critical in the pathogenesis of 2 of the most common histiocytoses—Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD)—whereas their respective mutational profiles demonstrate important similarities and differences.

  15. Repeated Causal Decision Making

    ERIC Educational Resources Information Center

    Hagmayer, York; Meder, Bjorn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in…

  16. Causality in Classical Electrodynamics

    ERIC Educational Resources Information Center

    Savage, Craig

    2012-01-01

    Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…

  17. Kant on causal laws and powers.

    PubMed

    Henschen, Tobias

    2014-12-01

    The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.

  18. A hierarchical causal taxonomy of psychopathology across the life span.

    PubMed

    Lahey, Benjamin B; Krueger, Robert F; Rathouz, Paul J; Waldman, Irwin D; Zald, David H

    2017-02-01

    We propose a taxonomy of psychopathology based on patterns of shared causal influences identified in a review of multivariate behavior genetic studies that distinguish genetic and environmental influences that are either common to multiple dimensions of psychopathology or unique to each dimension. At the phenotypic level, first-order dimensions are defined by correlations among symptoms; correlations among first-order dimensions similarly define higher-order domains (e.g., internalizing or externalizing psychopathology). We hypothesize that the robust phenotypic correlations among first-order dimensions reflect a hierarchy of increasingly specific etiologic influences . Some nonspecific etiologic factors increase risk for all first-order dimensions of psychopathology to varying degrees through a general factor of psychopathology. Other nonspecific etiologic factors increase risk only for all first-order dimensions within a more specific higher-order domain. Furthermore, each first-order dimension has its own unique causal influences. Genetic and environmental influences common to family members tend to be nonspecific, whereas environmental influences unique to each individual are more dimension-specific. We posit that these causal influences on psychopathology are moderated by sex and developmental processes. This causal taxonomy also provides a novel framework for understanding the heterogeneity of each first-order dimension: Different persons exhibiting similar symptoms may be influenced by different combinations of etiologic influences from each of the 3 levels of the etiologic hierarchy. Furthermore, we relate the proposed causal taxonomy to transdimensional psychobiological processes, which also impact the heterogeneity of each psychopathology dimension. This causal taxonomy implies the need for changes in strategies for studying the etiology, psychobiology, prevention, and treatment of psychopathology. (PsycINFO Database Record (c) 2017 APA, all rights

  19. An assessment of predominant causal factors of pilot deviations that contribute to runway incursions

    NASA Astrophysics Data System (ADS)

    Campbell, Denado M.

    The aim of this study was to identify predominant causal factors of pilot deviations in runway incursions over a two-year period. Runway incursion reports were obtained from NASA's Aviation Safety Reporting System (ASRS), and a qualitative method was used by classifying and coding each report to a specific causal factor(s). The causal factors that were used were substantiated by research from the Aircraft Owner's and Pilot's Association that found that these causal factors were the most common in runway incursion incidents and accidents. An additional causal factor was also utilized to determine the significance of pilot training in relation to runway incursions. From the reports examined, it was found that miscommunication and situational awareness have the greatest impact on pilots and are most often the major causes of runway incursions. This data can be used to assist airports, airlines, and the FAA to understand trends in pilot deviations, and to find solutions for specific problem areas in runway incursion incidents.

  20. Knowledge-Assisted Approach to Identify Pathways with Differential Dependencies | Office of Cancer Genomics

    Cancer.gov

    We have previously developed a statistical method to identify gene sets enriched with condition-specific genetic dependencies. The method constructs gene dependency networks from bootstrapped samples in one condition and computes the divergence between distributions of network likelihood scores from different conditions. It was shown to be capable of sensitive and specific identification of pathways with phenotype-specific dysregulation, i.e., rewiring of dependencies between genes in different conditions.

  1. Detecting dynamic causal inference in nonlinear two-phase fracture flow

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris

    2017-08-01

    Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.

  2. CADDIS Volume 1. Stressor Identification: About Causal Assessment

    EPA Pesticide Factsheets

    An introduction to the history of our approach to causal assessment, A chronology of causal history and philosophy, An introduction to causal history and philosophy, References for the Causal Assessment Background section of Stressor Identification

  3. MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data.

    PubMed

    Sella, Nadir; Verny, Louis; Uguzzoni, Guido; Affeldt, Séverine; Isambert, Hervé

    2018-07-01

    We present a web server running the MIIC algorithm, a network learning method combining constraint-based and information-theoretic frameworks to reconstruct causal, non-causal or mixed networks from non-perturbative data, without the need for an a priori choice on the class of reconstructed network. Starting from a fully connected network, the algorithm first removes dispensable edges by iteratively subtracting the most significant information contributions from indirect paths between each pair of variables. The remaining edges are then filtered based on their confidence assessment or oriented based on the signature of causality in observational data. MIIC online server can be used for a broad range of biological data, including possible unobserved (latent) variables, from single-cell gene expression data to protein sequence evolution and outperforms or matches state-of-the-art methods for either causal or non-causal network reconstruction. MIIC online can be freely accessed at https://miic.curie.fr. Supplementary data are available at Bioinformatics online.

  4. Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways

    PubMed Central

    Cappi, C; Brentani, H; Lima, L; Sanders, S J; Zai, G; Diniz, B J; Reis, V N S; Hounie, A G; Conceição do Rosário, M; Mariani, D; Requena, G L; Puga, R; Souza-Duran, F L; Shavitt, R G; Pauls, D L; Miguel, E C; Fernandez, T V

    2016-01-01

    Studies of rare genetic variation have identified molecular pathways conferring risk for developmental neuropsychiatric disorders. To date, no published whole-exome sequencing studies have been reported in obsessive-compulsive disorder (OCD). We sequenced all the genome coding regions in 20 sporadic OCD cases and their unaffected parents to identify rare de novo (DN) single-nucleotide variants (SNVs). The primary aim of this pilot study was to determine whether DN variation contributes to OCD risk. To this aim, we evaluated whether there is an elevated rate of DN mutations in OCD, which would justify this approach toward gene discovery in larger studies of the disorder. Furthermore, to explore functional molecular correlations among genes with nonsynonymous DN SNVs in OCD probands, a protein–protein interaction (PPI) network was generated based on databases of direct molecular interactions. We applied Degree-Aware Disease Gene Prioritization (DADA) to rank the PPI network genes based on their relatedness to a set of OCD candidate genes from two OCD genome-wide association studies (Stewart et al., 2013; Mattheisen et al., 2014). In addition, we performed a pathway analysis with genes from the PPI network. The rate of DN SNVs in OCD was 2.51 × 10−8 per base per generation, significantly higher than a previous estimated rate in unaffected subjects using the same sequencing platform and analytic pipeline. Several genes harboring DN SNVs in OCD were highly interconnected in the PPI network and ranked high in the DADA analysis. Nearly all the DN SNVs in this study are in genes expressed in the human brain, and a pathway analysis revealed enrichment in immunological and central nervous system functioning and development. The results of this pilot study indicate that further investigation of DN variation in larger OCD cohorts is warranted to identify specific risk genes and to confirm our preliminary finding with regard to PPI network enrichment for particular

  5. Diagnostic causal reasoning with verbal information.

    PubMed

    Meder, Björn; Mayrhofer, Ralf

    2017-08-01

    In diagnostic causal reasoning, the goal is to infer the probability of causes from one or multiple observed effects. Typically, studies investigating such tasks provide subjects with precise quantitative information regarding the strength of the relations between causes and effects or sample data from which the relevant quantities can be learned. By contrast, we sought to examine people's inferences when causal information is communicated through qualitative, rather vague verbal expressions (e.g., "X occasionally causes A"). We conducted three experiments using a sequential diagnostic inference task, where multiple pieces of evidence were obtained one after the other. Quantitative predictions of different probabilistic models were derived using the numerical equivalents of the verbal terms, taken from an unrelated study with different subjects. We present a novel Bayesian model that allows for incorporating the temporal weighting of information in sequential diagnostic reasoning, which can be used to model both primacy and recency effects. On the basis of 19,848 judgments from 292 subjects, we found a remarkably close correspondence between the diagnostic inferences made by subjects who received only verbal information and those of a matched control group to whom information was presented numerically. Whether information was conveyed through verbal terms or numerical estimates, diagnostic judgments closely resembled the posterior probabilities entailed by the causes' prior probabilities and the effects' likelihoods. We observed interindividual differences regarding the temporal weighting of evidence in sequential diagnostic reasoning. Our work provides pathways for investigating judgment and decision making with verbal information within a computational modeling framework. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Use of RNA-seq to identify cardiac genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy

    PubMed Central

    Friedenberg, Steven G.; Chdid, Lhoucine; Keene, Bruce; Sherry, Barbara; Motsinger-Reif, Alison; Meurs, Kathryn M.

    2017-01-01

    OBJECTIVE To identify cardiac tissue genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy (DCM). ANIMALS 8 dogs with and 5 dogs without DCM. PROCEDURES Following euthanasia, samples of left ventricular myocardium were collected from each dog. Total RNA was extracted from tissue samples, and RNA sequencing was performed on each sample. Samples from dogs with and without DCM were grouped to identify genes that were differentially regulated between the 2 populations. Overrepresentation analysis was performed on upregulated and downregulated gene sets to identify altered molecular pathways in dogs with DCM. RESULTS Genes involved in cellular energy metabolism, especially metabolism of carbohydrates and fats, were significantly downregulated in dogs with DCM. Expression of cardiac structural proteins was also altered in affected dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that RNA sequencing may provide important insights into the pathogenesis of DCM in dogs and highlight pathways that should be explored to identify causative mutations and develop novel therapeutic interventions. PMID:27347821

  7. Use of RNA-seq to identify cardiac genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy.

    PubMed

    Friedenberg, Steven G; Chdid, Lhoucine; Keene, Bruce; Sherry, Barbara; Motsinger-Reif, Alison; Meurs, Kathryn M

    2016-07-01

    OBJECTIVE To identify cardiac tissue genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy (DCM). ANIMALS 8 dogs with and 5 dogs without DCM. PROCEDURES Following euthanasia, samples of left ventricular myocardium were collected from each dog. Total RNA was extracted from tissue samples, and RNA sequencing was performed on each sample. Samples from dogs with and without DCM were grouped to identify genes that were differentially regulated between the 2 populations. Overrepresentation analysis was performed on upregulated and downregulated gene sets to identify altered molecular pathways in dogs with DCM. RESULTS Genes involved in cellular energy metabolism, especially metabolism of carbohydrates and fats, were significantly downregulated in dogs with DCM. Expression of cardiac structural proteins was also altered in affected dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that RNA sequencing may provide important insights into the pathogenesis of DCM in dogs and highlight pathways that should be explored to identify causative mutations and develop novel therapeutic interventions.

  8. Causal inference in economics and marketing.

    PubMed

    Varian, Hal R

    2016-07-05

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.

  9. Extending double modulation: combinatorial rules for identifying the modulations necessary for determining elasticities in metabolic pathways.

    PubMed

    Giersch, C; Cornish-Bowden, A

    1996-10-07

    The double modulation method for determining the elasticities of pathway enzymes, originally devised by Kacser & Burns (Biochem. Soc. Trans. 7, 1149-1160, 1979), is extended to pathways of complex topological structure, including branching and feedback loops. An explicit system of linear equations for the unknown elasticities is derived. The constraints imposed on this linear system imply that modulations of more than one enzyme are not necessarily independent. Simple combinatorial rules are described for identifying without using any algebra the set of independent modulations that allow the determination of the elasticities of any enzyme. By repeated application, the minimum numbers of modulations required to determine the elasticities of all enzymes of a given pathway can be determined. The procedure is illustrated with numerous examples.

  10. Computational Approaches for Identifying Adverse Outcome Pathways

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) provide a framework for organizing toxicity information to improve predictions of the potential adverse impact of environment stressors on humans or wildlife populations, but these benefits are currently limited by the small number of AOPs currentl...

  11. Whither Causal Models in the Neuroscience of ADHD?

    ERIC Educational Resources Information Center

    Coghill, Dave; Nigg, Joel; Rothenberger, Aribert; Sonuga-Barke, Edmund; Tannock, Rosemary

    2005-01-01

    In this paper we examine the current status of the science of ADHD from a theoretical point of view. While the field has reached the point at which a number of causal models have been proposed, it remains some distance away from demonstrating the viability of such models empirically. We identify a number of existing barriers and make proposals as…

  12. Does Causality Matter More Now? Increase in the Proportion of Causal Language in English Texts.

    PubMed

    Iliev, Rumen; Axelrod, Robert

    2016-05-01

    The vast majority of the work on culture and cognition has focused on cross-cultural comparisons, largely ignoring the dynamic aspects of culture. In this article, we provide a diachronic analysis of causal cognition over time. We hypothesized that the increased role of education, science, and technology in Western societies should be accompanied by greater attention to causal connections. To test this hypothesis, we compared word frequencies in English texts from different time periods and found an increase in the use of causal language of about 40% over the past two centuries. The observed increase was not attributable to general language effects or to changing semantics of causal words. We also found that there was a consistent difference between the 19th and the 20th centuries, and that the increase happened mainly in the 20th century. © The Author(s) 2016.

  13. Causal inference, probability theory, and graphical insights.

    PubMed

    Baker, Stuart G

    2013-11-10

    Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.

  14. Generalized Causal Quantum Theories

    NASA Astrophysics Data System (ADS)

    Parmeggiani, Claudio

    2007-12-01

    We shall show that is always possible to construct causal Quantum Theories fully equivalent (as predictive tools) to acausal, standard Quantum Theory, relativistic or not relativistic; we re-obtain, as a particular case, the usual Quantum Bohmian Theory. Then we consider the measurement process, in causal theories, and we conclude that the state of affairs is not really improved, with respect to standard theories.

  15. Negative regulation of DAB2IP by Akt and SCFFbw7 pathways.

    PubMed

    Dai, Xiangping; North, Brian J; Inuzuka, Hiroyuki

    2014-05-30

    Deletion of ovarian carcinoma 2/disabled homolog 2 (DOC-2/DAB2) interacting protein (DAB2IP), is a tumor suppressor that serves as a scaffold protein involved in coordinately regulating cell proliferation, survival and apoptotic pathways. DAB2IP is epigenetically down-regulated in a variety of tumors through the action of the histone methyltransferase EZH2. Although DAB2IP is transcriptionally down-regulated in a variety of tumors, it remains unclear if other mechanisms contribute to functional inactivation of DAB2IP. Here we demonstrate that DAB2IP can be functionally down-regulated by two independent mechanisms. First, we identified that Akt1 can phosphorylate DAB2IP on S847, which regulates the interaction between DAB2IP and its effector molecules H-Ras and TRAF2. Second, we demonstrated that DAB2IP can be degraded in part through ubiquitin-proteasome pathway by SCF(Fbw7). DAB2IP harbors two Fbw7 phosho-degron motifs, which can be regulated by the kinase, CK1δ. Our data hence indicate that in addition to epigenetic down-regulation, two additional pathways can functional inactivate DAB2IP. Given that DAB2IP has previously been identified to possess direct causal role in tumorigenesis and metastasis, our data indicate that a variety of pathways may pass through DAB2IP to govern cancer development, and therefore highlight DAB2IP agonists as potential therapeutic approaches for future anti-cancer drug development.

  16. Causal inference in economics and marketing

    PubMed Central

    Varian, Hal R.

    2016-01-01

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. PMID:27382144

  17. An algorithm for direct causal learning of influences on patient outcomes.

    PubMed

    Rathnam, Chandramouli; Lee, Sanghoon; Jiang, Xia

    2017-01-01

    these three algorithms for this network type. However, when we use a more continuous measure of accuracy, we find that all the DCL methods are able to better partially predict more direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had faster runtimes than the other algorithms. In the application to the real datasets, DCL identified rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct causes of late onset Alzheimer's disease (LOAD) development. In addition, DCL identified ER category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct predictor of 10-year breast cancer mortality. These predictors have been identified in previous studies to have a direct causal relationship with their respective phenotypes, supporting the predictive power of DCL. When the other algorithms discovered predictors from the real datasets, these predictors were either also found by DCL or could not be supported by previous studies. Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its potential for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2013-01-01

    The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…

  19. Causal learning with local computations.

    PubMed

    Fernbach, Philip M; Sloman, Steven A

    2009-05-01

    The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure. Copyright 2009 APA, all rights reserved.

  20. A Multi-Ethnic Meta-Analysis of Genome-Wide Association Studies in Over 100,000 Subjects Identifies 23 Fibrinogen-Associated Loci but no Strong Evidence of a Causal Association between Circulating Fibrinogen and Cardiovascular Disease

    PubMed Central

    Sabater-Lleal, Maria; Huang, Jie; Chasman, Daniel; Naitza, Silvia; Dehghan, Abbas; Johnson, Andrew D; Teumer, Alexander; Reiner, Alex P; Folkersen, Lasse; Basu, Saonli; Rudnicka, Alicja R; Trompet, Stella; Mälarstig, Anders; Baumert, Jens; Bis, Joshua C.; Guo, Xiuqing; Hottenga, Jouke J; Shin, So-Youn; Lopez, Lorna M; Lahti, Jari; Tanaka, Toshiko; Yanek, Lisa R; Oudot-Mellakh, Tiphaine; Wilson, James F; Navarro, Pau; Huffman, Jennifer E; Zemunik, Tatijana; Redline, Susan; Mehra, Reena; Pulanic, Drazen; Rudan, Igor; Wright, Alan F; Kolcic, Ivana; Polasek, Ozren; Wild, Sarah H; Campbell, Harry; Curb, J David; Wallace, Robert; Liu, Simin; Eaton, Charles B.; Becker, Diane M.; Becker, Lewis C.; Bandinelli, Stefania; Räikkönen, Katri; Widen, Elisabeth; Palotie, Aarno; Fornage, Myriam; Green, David; Gross, Myron; Davies, Gail; Harris, Sarah E; Liewald, David C; Starr, John M; Williams, Frances M.K.; Grant, P.J.; Spector, Timothy D.; Strawbridge, Rona J; Silveira, Angela; Sennblad, Bengt; Rivadeneira, Fernando; Uitterlinden, Andre G; Franco, Oscar H; Hofman, Albert; van Dongen, Jenny; Willemsen, G; Boomsma, Dorret I; Yao, Jie; Jenny, Nancy Swords; Haritunians, Talin; McKnight, Barbara; Lumley, Thomas; Taylor, Kent D; Rotter, Jerome I; Psaty, Bruce M; Peters, Annette; Gieger, Christian; Illig, Thomas; Grotevendt, Anne; Homuth, Georg; Völzke, Henry; Kocher, Thomas; Goel, Anuj; Franzosi, Maria Grazia; Seedorf, Udo; Clarke, Robert; Steri, Maristella; Tarasov, Kirill V; Sanna, Serena; Schlessinger, David; Stott, David J; Sattar, Naveed; Buckley, Brendan M; Rumley, Ann; Lowe, Gordon D; McArdle, Wendy L; Chen, Ming-Huei; Tofler, Geoffrey H; Song, Jaejoon; Boerwinkle, Eric; Folsom, Aaron R.; Rose, Lynda M.; Franco-Cereceda, Anders; Teichert, Martina; Ikram, M Arfan; Mosley, Thomas H; Bevan, Steve; Dichgans, Martin; Rothwell, Peter M.; Sudlow, Cathie L M; Hopewell, Jemma C.; Chambers, John C.; Saleheen, Danish; Kooner, Jaspal S.; Danesh, John; Nelson, Christopher P; Erdmann, Jeanette; Reilly, Muredach P.; Kathiresan, Sekar; Schunkert, Heribert; Morange, Pierre-Emmanuel; Ferrucci, Luigi; Eriksson, Johan G; Jacobs, David; Deary, Ian J; Soranzo, Nicole; Witteman, Jacqueline CM; de Geus, Eco JC; Tracy, Russell P.; Hayward, Caroline; Koenig, Wolfgang; Cucca, Francesco; Jukema, J Wouter; Eriksson, Per; Seshadri, Sudha; Markus, Hugh S.; Watkins, Hugh; Samani, Nilesh J; Wallaschofski, Henri; Smith, Nicholas L.; Tregouet, David; Ridker, Paul M.; Tang, Weihong; Strachan, David P.; Hamsten, Anders; O’Donnell, Christopher J.

    2013-01-01

    Background Estimates of the heritability of plasma fibrinogen concentration, an established predictor of cardiovascular disease (CVD), range from 34 to 50%. Genetic variants so far identified by genome-wide association (GWA) studies only explain a small proportion (< 2%) of its variation. Methods and Results We conducted a meta-analysis of 28 GWA studies, including more than 90,000 subjects of European ancestry, the first GWA meta-analysis of fibrinogen levels in 7 African Americans studies totaling 8,289 samples, and a GWA study in Hispanic-Americans totaling 1,366 samples. Evaluation for association of SNPs with clinical outcomes included a total of 40,695 cases and 85,582 controls for coronary artery disease (CAD), 4,752 cases and 24,030 controls for stroke, and 3,208 cases and 46,167 controls for venous thromboembolism (VTE). Overall, we identified 24 genome-wide significant (P<5×10−8) independent signals in 23 loci, including 15 novel associations, together accounting for 3.7% of plasma fibrinogen variation. Gene-set enrichment analysis highlighted key roles in fibrinogen regulation for the three structural fibrinogen genes and pathways related to inflammation, adipocytokines and thyrotrophin-releasing hormone signaling. Whereas lead SNPs in a few loci were significantly associated with CAD, the combined effect of all 24 fibrinogen-associated lead SNPs was not significant for CAD, stroke or VTE. Conclusion We identify 23 robustly associated fibrinogen loci, 15 of which are new. Clinical outcome analysis of these loci does not support a causal relationship between circulating levels of fibrinogen and CAD, stroke or VTE. PMID:23969696

  1. Localizing epileptic seizure onsets with Granger causality

    NASA Astrophysics Data System (ADS)

    Adhikari, Bhim M.; Epstein, Charles M.; Dhamala, Mukesh

    2013-09-01

    Accurate localization of the epileptic seizure onset zones (SOZs) is crucial for successful surgery, which usually depends on the information obtained from intracranial electroencephalography (IEEG) recordings. The visual criteria and univariate methods of analyzing IEEG recordings have not always produced clarity on the SOZs for resection and ultimate seizure freedom for patients. Here, to contribute to improving the localization of the SOZs and to understanding the mechanism of seizure propagation over the brain, we applied spectral interdependency methods to IEEG time series recorded from patients during seizures. We found that the high-frequency (>80 Hz) Granger causality (GC) occurs before the onset of any visible ictal activity and causal relationships involve the recording electrodes where clinically identifiable seizures later develop. These results suggest that high-frequency oscillatory network activities precede and underlie epileptic seizures, and that GC spectral measures derived from IEEG can assist in precise delineation of seizure onset times and SOZs.

  2. Causal localizations in relativistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a meremore » consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.« less

  3. Causal localizations in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  4. Causal structures in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Izumi, Keisuke

    2014-08-01

    We analyze causal structures in Gauss-Bonnet gravity. It is known that Gauss-Bonnet gravity potentially has superluminal propagation of gravitons due to its noncanonical kinetic terms. In a theory with superluminal modes, an analysis of causality based on null curves makes no sense, and thus, we need to analyze them in a different way. In this paper, using the method of the characteristics, we analyze the causal structure in Gauss-Bonnet gravity. We have the result that, on a Killing horizon, gravitons can propagate in the null direction tangent to the Killing horizon. Therefore, a Killing horizon can be a causal edge as in the case of general relativity; i.e. a Killing horizon is the "event horizon" in the sense of causality. We also analyze causal structures on nonstationary solutions with (D-2)-dimensional maximal symmetry, including spherically symmetric and flat spaces. If the geometrical null energy condition, RABNANB≥0 for any null vector NA, is satisfied, the radial velocity of gravitons must be less than or equal to that of light. However, if the geometrical null energy condition is violated, gravitons can propagate faster than light. Hence, on an evaporating black hole where the geometrical null energy condition is expected not to hold, classical gravitons can escape from the "black hole" defined with null curves. That is, the causal structures become nontrivial. It may be one of the possible solutions for the information loss paradox of evaporating black holes.

  5. Causal beliefs about depression in different cultural groups—what do cognitive psychological theories of causal learning and reasoning predict?

    PubMed Central

    Hagmayer, York; Engelmann, Neele

    2014-01-01

    Cognitive psychological research focuses on causal learning and reasoning while cognitive anthropological and social science research tend to focus on systems of beliefs. Our aim was to explore how these two types of research can inform each other. Cognitive psychological theories (causal model theory and causal Bayes nets) were used to derive predictions for systems of causal beliefs. These predictions were then applied to lay theories of depression as a specific test case. A systematic literature review on causal beliefs about depression was conducted, including original, quantitative research. Thirty-six studies investigating 13 non-Western and 32 Western cultural groups were analyzed by classifying assumed causes and preferred forms of treatment into common categories. Relations between beliefs and treatment preferences were assessed. Substantial agreement between cultural groups was found with respect to the impact of observable causes. Stress was generally rated as most important. Less agreement resulted for hidden, especially supernatural causes. Causal beliefs were clearly related to treatment preferences in Western groups, while evidence was mostly lacking for non-Western groups. Overall predictions were supported, but there were considerable methodological limitations. Pointers to future research, which may combine studies on causal beliefs with experimental paradigms on causal reasoning, are given. PMID:25505432

  6. Bayesian networks improve causal environmental ...

    EPA Pesticide Factsheets

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  7. Formalizing the role of agent-based modeling in causal inference and epidemiology.

    PubMed

    Marshall, Brandon D L; Galea, Sandro

    2015-01-15

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Quantum-coherent mixtures of causal relations

    NASA Astrophysics Data System (ADS)

    Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-05-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  9. Quantum-coherent mixtures of causal relations

    PubMed Central

    MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-01-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394

  10. Quantum-coherent mixtures of causal relations.

    PubMed

    MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J

    2017-05-09

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  11. Causal uncertainty, claimed and behavioural self-handicapping.

    PubMed

    Thompson, Ted; Hepburn, Jonathan

    2003-06-01

    Causal uncertainty beliefs involve doubts about the causes of events, and arise as a consequence of non-contingent evaluative feedback: feedback that leaves the individual uncertain about the causes of his or her achievement outcomes. Individuals high in causal uncertainty are frequently unable to confidently attribute their achievement outcomes, experience anxiety in achievement situations and as a consequence are likely to engage in self-handicapping behaviour. Accordingly, we sought to establish links between trait causal uncertainty, claimed and behavioural self-handicapping. Participants were N=72 undergraduate students divided equally between high and low causally uncertain groups. We used a 2 (causal uncertainty status: high, low) x 3 (performance feedback condition: success, non-contingent success, non-contingent failure) between-subjects factorial design to examine the effects of causal uncertainty on achievement behaviour. Following performance feedback, participants completed 20 single-solution anagrams and 12 remote associate tasks serving as performance measures, and 16 unicursal tasks to assess practice effort. Participants also completed measures of claimed handicaps, state anxiety and attributions. Relative to low causally uncertain participants, high causally uncertain participants claimed more handicaps prior to performance on the anagrams and remote associates, reported higher anxiety, attributed their failure to internal, stable factors, and reduced practice effort on the unicursal tasks, evident in fewer unicursal tasks solved. These findings confirm links between trait causal uncertainty and claimed and behavioural self-handicapping, highlighting the need for educators to facilitate means by which students can achieve surety in the manner in which they attribute the causes of their achievement outcomes.

  12. Causality or Relatedness Assessment in Adverse Drug Reaction and Its Relevance in Dermatology.

    PubMed

    Pande, Sushil

    2018-01-01

    Causality assessment essentially means finding a causal association or relationship between a drug and drug reaction. Identifying the culprit drug or drugs can be lifesaving or helpful in preventing the further damage caused by the drug to our body systems. In dermatology practice, when it comes to cutaneous adverse drug reaction, this is much more important and relevant because many aetiologies can produce a similar cutaneous manifestation. There are multiple criteria or algorithms available as of now for establishing a causal relationship in cases of adverse drug reaction (ADR), indicating that none of them is specific or complete. Most of these causality assessment tools (CATs) use four cardinal principles of diagnosis of ADR such as temporal relationship of drug with the drug reaction, biological plausibility of the drug causing a reaction, dechallenge, and rechallenge. The present study reviews some of the established or commonly used CATs and its implications or relevance to dermatology in clinical practice.

  13. Unveiling causal activity of complex networks

    NASA Astrophysics Data System (ADS)

    Williams-García, Rashid V.; Beggs, John M.; Ortiz, Gerardo

    2017-07-01

    We introduce a novel tool for analyzing complex network dynamics, allowing for cascades of causally-related events, which we call causal webs (c-webs), to be separated from other non-causally-related events. This tool shows that traditionally-conceived avalanches may contain mixtures of spatially-distinct but temporally-overlapping cascades of events, and dynamical disorder or noise. In contrast, c-webs separate these components, unveiling previously hidden features of the network and dynamics. We apply our method to mouse cortical data with resulting statistics which demonstrate for the first time that neuronal avalanches are not merely composed of causally-related events. The original version of this article was uploaded to the arXiv on March 17th, 2016 [1].

  14. Expert Causal Reasoning and Explanation.

    ERIC Educational Resources Information Center

    Kuipers, Benjamin

    The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…

  15. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  16. Causal Learning with Local Computations

    ERIC Educational Resources Information Center

    Fernbach, Philip M.; Sloman, Steven A.

    2009-01-01

    The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require…

  17. Why cachexia kills: examining the causality of poor outcomes in wasting conditions.

    PubMed

    Kalantar-Zadeh, Kamyar; Rhee, Connie; Sim, John J; Stenvinkel, Peter; Anker, Stefan D; Kovesdy, Csaba P

    2013-06-01

    Weight loss is the hallmark of any progressive acute or chronic disease state. In its extreme form of significant lean body mass (including skeletal muscle) and fat loss, it is referred to as cachexia. It has been known for millennia that muscle and fat wasting leads to poor outcomes including death. On one hand, conditions and risk factors that lead to cachexia and inadequate nutrition may independently lead to increased mortality. Additionaly, cachexia per se, withdrawal of nutritional support in progressive cachexia, and advanced age may lead to death via cachexia-specific pathways. Despite the strong and consistent association of cachexia with mortality, no unifying mechanism has yet been suggested as to why wasting conditions are associated with an exceptionally high mortality risk. Hence, the causality of the cachexia-death association, even though it is biologically plausible, is widely unknown. This century-long uncertainty may have played a role as to why the field of cachexia treatment development has not shown major advances over the past decades. We suggest that cachexia-associated relative thrombocytosis and platelet activation may play a causal role in cachexia-related death, while other mechanisms may also contribute including arrhythmia-associated sudden deaths, endocrine disorders such as hypothyroidism, and immune system compromise leading to infectious events and deaths. Multidimensional research including examining biologically plausible models is urgently needed to investigate the causality of the cachexia-death association.

  18. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network

    PubMed Central

    RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG

    2015-01-01

    The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425

  19. Non-Gaussian Methods for Causal Structure Learning.

    PubMed

    Shimizu, Shohei

    2018-05-22

    Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.

  20. SPV: a JavaScript Signaling Pathway Visualizer.

    PubMed

    Calderone, Alberto; Cesareni, Gianni

    2018-03-24

    The visualization of molecular interactions annotated in web resources is useful to offer to users such information in a clear intuitive layout. These interactions are frequently represented as binary interactions that are laid out in free space where, different entities, cellular compartments and interaction types are hardly distinguishable. SPV (Signaling Pathway Visualizer) is a free open source JavaScript library which offers a series of pre-defined elements, compartments and interaction types meant to facilitate the representation of signaling pathways consisting of causal interactions without neglecting simple protein-protein interaction networks. freely available under Apache version 2 license; Source code: https://github.com/Sinnefa/SPV_Signaling_Pathway_Visualizer_v1.0. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. sinnefa@gmail.com.

  1. Illness causal beliefs in Turkish immigrants

    PubMed Central

    Minas, Harry; Klimidis, Steven; Tuncer, Can

    2007-01-01

    Background People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Methods Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Results Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Conclusion Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and

  2. Illness causal beliefs in Turkish immigrants.

    PubMed

    Minas, Harry; Klimidis, Steven; Tuncer, Can

    2007-07-24

    People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and acculturative influences. Different

  3. Systems-based analysis of the Sarcocystis neurona genome identifies pathways that contribute to a heteroxenous life cycle.

    PubMed

    Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S; Hung, Stacy S; Bridgers, Joshua; Ricklefs, Stacy M; Boulanger, Martin J; Dubey, Jitender P; Porcella, Stephen F; Kissinger, Jessica C; Howe, Daniel K; Grigg, Michael E; Parkinson, John

    2015-02-10

    Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals-including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with

  4. Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging.

    PubMed

    Edifizi, Diletta; Schumacher, Björn

    2017-11-04

    DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.

  5. Sufficiency and Necessity Assumptions in Causal Structure Induction

    ERIC Educational Resources Information Center

    Mayrhofer, Ralf; Waldmann, Michael R.

    2016-01-01

    Research on human causal induction has shown that people have general prior assumptions about causal strength and about how causes interact with the background. We propose that these prior assumptions about the parameters of causal systems do not only manifest themselves in estimations of causal strength or the selection of causes but also when…

  6. Exploring Individual Differences in Preschoolers' Causal Stance

    ERIC Educational Resources Information Center

    Alvarez, Aubry; Booth, Amy E.

    2016-01-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…

  7. Constraints on Children's Judgments of Magical Causality

    ERIC Educational Resources Information Center

    Woolley, Jacqueline D.; Browne, Cheryl A.; Boerger, Elizabeth A.

    2006-01-01

    In 3 studies we addressed the operation of constraints on children's causal judgments. Our primary focus was whether children's beliefs about magical causality, specifically wishing, are constrained by features that govern the attribution of ordinary causality. In Experiment 1, children witnessed situations in which a confederate's wish appeared…

  8. The Development of Causal Categorization

    ERIC Educational Resources Information Center

    Hayes, Brett K.; Rehder, Bob

    2012-01-01

    Two experiments examined the impact of causal relations between features on categorization in 5- to 6-year-old children and adults. Participants learned artificial categories containing instances with causally related features and noncausal features. They then selected the most likely category member from a series of novel test pairs.…

  9. Establishing causal coherence across sentences: an ERP study

    PubMed Central

    Kuperberg, Gina R.; Paczynski, Martin; Ditman, Tali

    2011-01-01

    This study examined neural activity associated with establishing causal relationships across sentences during online comprehension. ERPs were measured while participants read and judged the relatedness of three-sentence scenarios in which the final sentence was highly causally related, intermediately related and causally unrelated to its context. Lexico-semantic co-occurrence was matched across the three conditions using a Latent Semantic Analysis. Critical words in causally unrelated scenarios evoked a larger N400 than words in both highly causally related and intermediately related scenarios, regardless of whether they appeared before or at the sentence-final position. At midline sites, the N400 to intermediately related sentence-final words was attenuated to the same degree as to highly causally related words, but otherwise the N400 to intermediately related words fell in between that evoked by highly causally related and intermediately related words. No modulation of the Late Positivity/P600 component was observed across conditions. These results indicate that both simple and complex causal inferences can influence the earliest stages of semantically processing an incoming word. Further, they suggest that causal coherence, at the situation level, can influence incremental word-by-word discourse comprehension, even when semantic relationships between individual words are matched. PMID:20175676

  10. Granger-causality maps of diffusion processes.

    PubMed

    Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A

    2016-02-01

    Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.

  11. Temporal Information of Directed Causal Connectivity in Multi-Trial ERP Data using Partial Granger Causality.

    PubMed

    Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt

    2016-01-01

    Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling.

  12. Drug Induced Liver Injury: Can Biomarkers Assist RUCAM in Causality Assessment?

    PubMed Central

    Teschke, Rolf; Schulze, Johannes; Eickhoff, Axel; Danan, Gaby

    2017-01-01

    Drug induced liver injury (DILI) is a potentially serious adverse reaction in a few susceptible individuals under therapy by various drugs. Health care professionals facing DILI are confronted with a wealth of drug-unrelated liver diseases with high incidence and prevalence rates, which can confound the DILI diagnosis. Searching for alternative causes is a key element of RUCAM (Roussel Uclaf Causality Assessment Method) to assess rigorously causality in suspected DILI cases. Diagnostic biomarkers as blood tests would be a great help to clinicians, regulators, and pharmaceutical industry would be more comfortable if, in addition to RUCAM, causality of DILI can be confirmed. High specificity and sensitivity are required for any diagnostic biomarker. Although some risk factors are available to evaluate liver safety of drugs in patients, no valid diagnostic or prognostic biomarker exists currently for idiosyncratic DILI when a liver injury occurred. Identifying a biomarker in idiosyncratic DILI requires detailed knowledge of cellular and biochemical disturbances leading to apoptosis or cell necrosis and causing leakage of specific products in blood. As idiosyncratic DILI is typically a human disease and hardly reproducible in animals, pathogenetic events and resulting possible biomarkers remain largely undisclosed. Potential new diagnostic biomarkers should be evaluated in patients with DILI and RUCAM-based established causality. In conclusion, causality assessment in cases of suspected idiosyncratic DILI is still best achieved using RUCAM since specific biomarkers as diagnostic blood tests that could enhance RUCAM results are not yet available. PMID:28398242

  13. Causal relationships between milk quality and coagulation properties in Italian Holstein-Friesian dairy cattle.

    PubMed

    Tiezzi, Francesco; Valente, Bruno D; Cassandro, Martino; Maltecca, Christian

    2015-05-13

    Recently, selection for milk technological traits was initiated in the Italian dairy cattle industry based on direct measures of milk coagulation properties (MCP) such as rennet coagulation time (RCT) and curd firmness 30 min after rennet addition (a30) and on some traditional milk quality traits that are used as predictors, such as somatic cell score (SCS) and casein percentage (CAS). The aim of this study was to shed light on the causal relationships between traditional milk quality traits and MCP. Different structural equation models that included causal effects of SCS and CAS on RCT and a30 and of RCT on a30 were implemented in a Bayesian framework. Our results indicate a non-zero magnitude of the causal relationships between the traits studied. Causal effects of SCS and CAS on RCT and a30 were observed, which suggests that the relationship between milk coagulation ability and traditional milk quality traits depends more on phenotypic causal pathways than directly on common genetic influence. While RCT does not seem to be largely controlled by SCS and CAS, some of the variation in a30 depends on the phenotypes of these traits. However, a30 depends heavily on coagulation time. Our results also indicate that, when direct effects of SCS, CAS and RCT are considered simultaneously, most of the overall genetic variability of a30 is mediated by other traits. This study suggests that selection for RCT and a30 should not be performed on correlated traits such as SCS or CAS but on direct measures because the ability of milk to coagulate is improved through the causal effect that the former play on the latter, rather than from a common source of genetic variation. Breaking the causal link (e.g. standardizing SCS or CAS before the milk is processed into cheese) would reduce the impact of the improvement due to selective breeding. Since a30 depends heavily on RCT, the relative emphasis that is put on this trait should be reconsidered and weighted for the fact that the pure

  14. Cross-lagged relations between mentoring received from supervisors and employee OCBs: Disentangling causal direction and identifying boundary conditions.

    PubMed

    Eby, Lillian T; Butts, Marcus M; Hoffman, Brian J; Sauer, Julia B

    2015-07-01

    Although mentoring has documented relationships with employee attitudes and outcomes of interest to organizations, neither the causal direction nor boundary conditions of the relationship between mentoring and organizational citizenship behaviors (OCBs) has been fully explored. On the basis of Social Learning Theory (SLT; Bandura, 1977, 1986), we predicted that mentoring received by supervisors would causally precede OCBs, rather than employee OCBs resulting in the receipt of more mentoring from supervisors. Results from cross-lagged data collected at 2 points in time from 190 intact supervisor-employee dyads supported our predictions; however, only for OCBs directed at individuals (OCB-Is) and not for OCBs directed at the organization (OCB-Os). Further supporting our theoretical rationale for expecting mentoring to precede OCBs, we found that coworker support operates as a substitute for mentoring in predicting OCB-Is. By contrast, no moderating effects were found for perceived organizational support. The results are discussed in terms of theoretical implications for mentoring and OCB research, as well as practical suggestions for enhancing employee citizenship behaviors. (c) 2015 APA, all rights reserved).

  15. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    PubMed

    Cordell, Heather J; Han, Younghun; Mells, George F; Li, Yafang; Hirschfield, Gideon M; Greene, Casey S; Xie, Gang; Juran, Brian D; Zhu, Dakai; Qian, David C; Floyd, James A B; Morley, Katherine I; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Gershwin, M Eric; Anderson, Carl A; Lazaridis, Konstantinos N; Invernizzi, Pietro; Seldin, Michael F; Sandford, Richard N; Amos, Christopher I; Siminovitch, Katherine A

    2015-09-22

    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist.

  16. Morphological covariance in anatomical MRI scans can identify discrete neural pathways in the brain and their disturbances in persons with neuropsychiatric disorders.

    PubMed

    Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S

    2015-05-01

    We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology

  17. Multiple Causality: Consequences for Medical Practice

    PubMed Central

    Nydegger, Corinne N.

    1983-01-01

    When a scientifically trained health professional is called upon to deal with patients holding differing causal views of illness, the resulting lack of communication is frustrating to both. This discussion traces some implications for medical practice of significant cultural differences in two aspects of causal paradigms of illness: (1) terms accepted and (2) dimension or level of causality typically sought. The second is the more pervasive and intractable problem, having distinctive consequences for the role of curer, symptomatology, diagnosis and treatment. PMID:6858133

  18. [Antibibiotic resistance by nosocomial infections' causal agents].

    PubMed

    Salazar-Holguín, Héctor Daniel; Cisneros-Robledo, María Elena

    2016-01-01

    The antibibiotic resistance by nosocomial infections (NI) causal agents constitutes a seriously global problematic that involves the Mexican Institute of Social Security's Regional General Hospital 1 in Chihuahua, Mexico; although with special features that required to be specified and evaluated, in order to concrete an effective therapy. Observational, descriptive and prospective study; by means of active vigilance all along 2014 in order to detect the nosocomial infections, for epidemiologic study, culture and antibiogram to identify its causal agents and antibiotics resistance and sensitivity. Among 13527 hospital discharges, 1079 displayed NI (8 %), standed out: the related on vascular lines, of surgical site, pneumonia and urinal track; they added up two thirds of the total. We carried out culture and antibiogram about 300 of them (27.8 %); identifying 31 bacterian species, mainly seven of those (77.9 %): Escherichia coli, Staphylococcus aureus and epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Enterobacter cloacae; showing multiresistance to 34 tested antibiotics, except in seven with low or without resistance at all: vancomycin, teicoplanin, linezolid, quinupristin-dalfopristin, piperacilin-tazobactam, amikacin and carbapenems. When we contrasted those results with the recommendations in the clinical practice guides, it aroused several contradictions; so they must be taken with reserves and has to be tested in each hospital, by means of cultures and antibiograms in practically every case of nosocomial infection.

  19. Identity, causality, and pronoun ambiguity.

    PubMed

    Sagi, Eyal; Rips, Lance J

    2014-10-01

    This article looks at the way people determine the antecedent of a pronoun in sentence pairs, such as: Albert invited Ron to dinner. He spent hours cleaning the house. The experiment reported here is motivated by the idea that such judgments depend on reasoning about identity (e.g., the identity of the he who cleaned the house). Because the identity of an individual over time depends on the causal-historical path connecting the stages of the individual, the correct antecedent will also depend on causal connections. The experiment varied how likely it is that the event of the first sentence (e.g., the invitation) would cause the event of the second (the house cleaning) for each of the two individuals (the likelihood that if Albert invited Ron to dinner, this would cause Albert to clean the house, versus cause Ron to clean the house). Decisions about the antecedent followed causal likelihood. A mathematical model of causal identity accounted for most of the key aspects of the data from the individual sentence pairs. Copyright © 2014 Cognitive Science Society, Inc.

  20. Causal reasoning with mental models

    PubMed Central

    Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398

  1. Causal reasoning with mental models.

    PubMed

    Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  2. Wormholes, baby universes, and causality

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    1990-02-01

    In this paper wormholes defined on a Minkowski signature manifold are considered, both at the classical and quantum levels. It is argued that causality in quantum gravity may best be imposed by restricting the functional integral to include only causal Lorentzian spacetimes. Subject to this assumption, one can put very tight constraints on the quantum behavior of wormholes, their cousins the baby universes, and topology-changing processes in general. Even though topology-changing processes are tightly constrained, this still allows very interesting geometrical (rather than topological) effects. In particular, the laboratory construction of baby universes is not prohibited provided that the ``umbilical cord'' is never cut. Methods for relaxing these causality constraints are also discussed.

  3. Foundational perspectives on causality in large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  4. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data

    PubMed Central

    Zhang, Wanhong; Zhou, Tong

    2015-01-01

    Motivation Identifying gene regulatory networks (GRNs) which consist of a large number of interacting units has become a problem of paramount importance in systems biology. Situations exist extensively in which causal interacting relationships among these units are required to be reconstructed from measured expression data and other a priori information. Though numerous classical methods have been developed to unravel the interactions of GRNs, these methods either have higher computing complexities or have lower estimation accuracies. Note that great similarities exist between identification of genes that directly regulate a specific gene and a sparse vector reconstruction, which often relates to the determination of the number, location and magnitude of nonzero entries of an unknown vector by solving an underdetermined system of linear equations y = Φx. Based on these similarities, we propose a novel framework of sparse reconstruction to identify the structure of a GRN, so as to increase accuracy of causal regulation estimations, as well as to reduce their computational complexity. Results In this paper, a sparse reconstruction framework is proposed on basis of steady-state experiment data to identify GRN structure. Different from traditional methods, this approach is adopted which is well suitable for a large-scale underdetermined problem in inferring a sparse vector. We investigate how to combine the noisy steady-state experiment data and a sparse reconstruction algorithm to identify causal relationships. Efficiency of this method is tested by an artificial linear network, a mitogen-activated protein kinase (MAPK) pathway network and the in silico networks of the DREAM challenges. The performance of the suggested approach is compared with two state-of-the-art algorithms, the widely adopted total least-squares (TLS) method and those available results on the DREAM project. Actual results show that, with a lower computational cost, the proposed method can

  5. A self-agency bias in preschoolers' causal inferences

    PubMed Central

    Kushnir, Tamar; Wellman, Henry M.; Gelman, Susan A.

    2013-01-01

    Preschoolers' causal learning from intentional actions – causal interventions – is subject to a self-agency bias. We propose that this bias is evidence-based; it is responsive to causal uncertainty. In the current studies, two causes (one child-controlled, one experimenter-controlled) were associated with one or two effects, first independently, then simultaneously. When initial independent effects were probabilistic, and thus subsequent simultaneous actions were causally ambiguous, children showed a self-agency bias. Children showed no bias when initial effects were deterministic. Further controls establish that children's self-agency bias is not a wholesale preference but rather is influenced by uncertainty in causal evidence. These results demonstrate that children's own experience of action influences their causal learning, and suggest possible benefits in uncertain and ambiguous everyday learning contexts. PMID:19271843

  6. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa.

    PubMed

    de Oliveira Ceita, Geruza; Vilas-Boas, Laurival Antônio; Castilho, Marcelo Santos; Carazzolle, Marcelo Falsarella; Pirovani, Carlos Priminho; Selbach-Schnadelbach, Alessandra; Gramacho, Karina Peres; Ramos, Pablo Ivan Pereira; Barbosa, Luciana Veiga; Pereira, Gonçalo Amarante Guimarães; Góes-Neto, Aristóteles

    2014-10-01

    The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

  7. Spatio-temporal Granger causality: a new framework

    PubMed Central

    Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng

    2015-01-01

    That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924

  8. Causal Set Phenomenology

    NASA Astrophysics Data System (ADS)

    Philpott, Lydia

    2010-09-01

    Central to the development of any new theory is the investigation of the observable consequences of the theory. In the search for quantum gravity, research in phenomenology has been dominated by models violating Lorentz invariance (LI) -- despite there being, at present, no evidence that LI is violated. Causal set theory is a LI candidate theory of QG that seeks not to quantise gravity as such, but rather to develop a new understanding of the universe from which both GR and QM could arise separately. The key hypothesis is that spacetime is a discrete partial order: a set of events where the partial ordering is the physical causal ordering between the events. This thesis investigates Lorentz invariant QG phenomenology motivated by the causal set approach. Massive particles propagating in a discrete spacetime will experience diffusion in both position and momentum in proper time. This thesis considers this idea in more depth, providing a rigorous derivation of the diffusion equation in terms of observable cosmic time. The diffusion behaviour does not depend on any particular underlying particle model. Simulations of three different models are conducted, revealing behaviour that matches the diffusion equation despite limitations on the size of causal set simulated. The effect of spacetime discreteness on the behaviour of massless particles is also investigated. Diffusion equations in both affine time and cosmic time are derived, and it is found that massless particles undergo diffusion and drift in energy. Constraints are placed on the magnitudes of the drift and diffusion parameters by considering the blackbody nature of the CMB. Spacetime discreteness also has a potentially observable effect on photon polarisation. For linearly polarised photons, underlying discreteness is found to cause a rotation in polarisation angle and a suppression in overall polarisation.

  9. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  10. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    PubMed Central

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; van der Veen, JP Wietze; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W.; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R.; Santorico, Stephanie A; Spritz, Richard A

    2016-01-01

    Vitiligo is an autoimmune disease in which depigmented skin results from destruction of melanocytes1, with epidemiologic association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1, GWAS2), we identified 27 vitiligo susceptibility loci in patients of European (EUR) ancestry. We carried out a third GWAS (GWAS3) in EUR subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new loci and 7 suggestive loci, most encoding immune and apoptotic regulators, some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some corresponding to eQTL at these loci. Together, the identified genes provide a framework for vitiligo genetic architecture and pathobiology, highlight relationships to other autoimmune diseases and melanoma, and offer potential targets for treatment. PMID:27723757

  11. An integrated analysis of genes and functional pathways for aggression in human and rodent models.

    PubMed

    Zhang-James, Yanli; Fernàndez-Castillo, Noèlia; Hess, Jonathan L; Malki, Karim; Glatt, Stephen J; Cormand, Bru; Faraone, Stephen V

    2018-06-01

    Human genome-wide association studies (GWAS), transcriptome analyses of animal models, and candidate gene studies have advanced our understanding of the genetic architecture of aggressive behaviors. However, each of these methods presents unique limitations. To generate a more confident and comprehensive view of the complex genetics underlying aggression, we undertook an integrated, cross-species approach. We focused on human and rodent models to derive eight gene lists from three main categories of genetic evidence: two sets of genes identified in GWAS studies, four sets implicated by transcriptome-wide studies of rodent models, and two sets of genes with causal evidence from online Mendelian inheritance in man (OMIM) and knockout (KO) mice reports. These gene sets were evaluated for overlap and pathway enrichment to extract their similarities and differences. We identified enriched common pathways such as the G-protein coupled receptor (GPCR) signaling pathway, axon guidance, reelin signaling in neurons, and ERK/MAPK signaling. Also, individual genes were ranked based on their cumulative weights to quantify their importance as risk factors for aggressive behavior, which resulted in 40 top-ranked and highly interconnected genes. The results of our cross-species and integrated approach provide insights into the genetic etiology of aggression.

  12. Entanglement entropy in causal set theory

    NASA Astrophysics Data System (ADS)

    Sorkin, Rafael D.; Yazdi, Yasaman K.

    2018-04-01

    Entanglement entropy is now widely accepted as having deep connections with quantum gravity. It is therefore desirable to understand it in the context of causal sets, especially since they provide in a natural manner the UV cutoff needed to render entanglement entropy finite. Formulating a notion of entanglement entropy in a causal set is not straightforward because the type of canonical hypersurface-data on which its definition typically relies is not available. Instead, we appeal to the more global expression given in Sorkin (2012 (arXiv:1205.2953)) which, for a Gaussian scalar field, expresses the entropy of a spacetime region in terms of the field’s correlation function within that region (its ‘Wightman function’ W(x, x') ). Carrying this formula over to the causal set, one obtains an entropy which is both finite and of a Lorentz invariant nature. We evaluate this global entropy-expression numerically for certain regions (primarily order-intervals or ‘causal diamonds’) within causal sets of 1  +  1 dimensions. For the causal-set counterpart of the entanglement entropy, we obtain, in the first instance, a result that follows a (spacetime) volume law instead of the expected (spatial) area law. We find, however, that one obtains an area law if one truncates the commutator function (‘Pauli–Jordan operator’) and the Wightman function by projecting out the eigenmodes of the Pauli–Jordan operator whose eigenvalues are too close to zero according to a geometrical criterion which we describe more fully below. In connection with these results and the questions they raise, we also study the ‘entropy of coarse-graining’ generated by thinning out the causal set, and we compare it with what one obtains by similarly thinning out a chain of harmonic oscillators, finding the same, ‘universal’ behaviour in both cases.

  13. Causal Relationships Among Time Series of the Lange Bramke Catchment (Harz Mountains, Germany)

    NASA Astrophysics Data System (ADS)

    Aufgebauer, Britta; Hauhs, Michael; Bogner, Christina; Meesenburg, Henning; Lange, Holger

    2016-04-01

    Convergent Cross Mapping (CCM) has recently been introduced by Sugihara et al. for the identification and quantification of causal relationships among ecosystem variables. In particular, the method allows to decide on the direction of causality; in some cases, the causality might be bidirectional, indicating a network structure. We extend this approach by introducing a method of surrogate data to obtain confidence intervals for CCM results. We then apply this method to time series from stream water chemistry. Specifically, we analyze a set of eight dissolved major ions from three different catchments belonging to the hydrological monitoring system at the Bramke valley in the Harz Mountains, Germany. Our results demonstrate the potentials and limits of CCM as a monitoring instrument in forestry and hydrology or as a tool to identify processes in ecosystem research. While some networks of causally linked ions can be associated with simple physical and chemical processes, other results illustrate peculiarities of the three studied catchments, which are explained in the context of their special history.

  14. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    PubMed

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  15. Causal premise semantics.

    PubMed

    Kaufmann, Stefan

    2013-08-01

    The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal semantic analysis of conditionals, Kratzer-style premise semantics, allows for a straightforward implementation of the crucial ideas and insights of Pearl-style causal networks. I spell out the details of such an implementation, focusing especially on the notions of intervention on a network and backtracking interpretations of counterfactuals. Copyright © 2013 Cognitive Science Society, Inc.

  16. Discovering Coherent Structures Using Local Causal States

    NASA Astrophysics Data System (ADS)

    Rupe, Adam; Crutchfield, James P.; Kashinath, Karthik; Prabhat, Mr.

    2017-11-01

    Coherent structures were introduced in the study of fluid dynamics and were initially defined as regions characterized by high levels of coherent vorticity, i.e. regions where instantaneously space and phase correlated vorticity are high. In a more general spatiotemporal setting, coherent structures can be seen as localized broken symmetries which persist in time. Building off the computational mechanics framework, which integrates tools from computation and information theory to capture pattern and structure in nonlinear dynamical systems, we introduce a theory of coherent structures, in the more general sense. Central to computational mechanics is the causal equivalence relation, and a local spatiotemporal generalization of it is used to construct the local causal states, which are utilized to uncover a system's spatiotemporal symmetries. Coherent structures are then identified as persistent, localized deviations from these symmetries. We illustrate how novel patterns and structures can be discovered in cellular automata and outline the path from them to laminar, transitional and turbulent flows. Funded by Intel through the Big Data Center at LBNL and the IPCC at UC Davis.

  17. Modelling possible causality in the associations between unemployment, cannabis use, and alcohol misuse.

    PubMed

    Boden, Joseph M; Lee, Jungeun Olivia; Horwood, L John; Grest, Carolina Villamil; McLeod, Geraldine F H

    2017-02-01

    There has been considerable interest in the extent to which substance use and unemployment may be related, particularly the causal pathways that may be involved in these associations. It has been argued that these associations may reflect social causation, in which unemployment influences substance use, or that they may reflect social selection, in which substance use increases the risk of becoming and remaining unemployed. The present study sought to test these competing explanations. Data from the Christchurch Health and Development Study, featuring a longitudinal birth cohort, were used to model the associations between unemployment and both cannabis and alcohol. Data on patterns of unemployment, involvement with cannabis, and symptoms of alcohol use disorder were examined from ages 18-35 years. The associations between unemployment and both cannabis dependence and alcohol use disorder (AUD) were modelled using conditional fixed-effects regression models, augmented by time-dynamic covariate factors. The analyses showed evidence of possible reciprocal causal processes in the association between unemployment and cannabis dependence, in which unemployment of at least three months' duration significantly (p < 0.0001) increased the risk of cannabis dependence, and cannabis dependence significantly (p < 0.0001) increased the risk of being unemployed. Similar evidence was found for the associations between unemployment and AUD, although these associations were smaller in magnitude. The present findings support both social causation and social selection arguments, by indicating that unemployment plays a causal role in substance misuse, and that it is also likely that a reverse causal process whereby substance misuse increases the risk of unemployment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations

    PubMed Central

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727

  19. Foundational perspectives on causality in large-scale brain networks.

    PubMed

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  20. Causal Superlearning Arising from Interactions Among Cues

    PubMed Central

    Urushihara, Kouji; Miller, Ralph R.

    2017-01-01

    Superconditioning refers to supernormal responding to a conditioned stimulus (CS) that sometimes occurs in classical conditioning when the CS is paired with an unconditioned stimulus (US) in the presence of a conditioned inhibitor for that US. In the present research, we conducted four experiments to investigate causal superlearning, a phenomenon in human causal learning analogous to superconditioning. Experiment 1 demonstrated superlearning relative to appropriate control conditions. Experiment 2 showed that superlearning wanes when the number of cues used in an experiment is relatively large. Experiment 3 determined that even when relatively many cues are used, superlearning can be observed provided testing is conducted immediately after training, which is problematic for explanations by most contemporary learning theories. Experiment 4 found that ratings of a superlearning cue are weaker than those to the training excitor which gives basis to the conditioned inhibitor-like causal preventor used during causal superlearning training. This is inconsistent with the prediction by propositional reasoning accounts of causal cue competition, but is readily explained by associative learning models. In sum, the current experiments revealed some weaknesses of both the associative and propositional reasoning models with respect to causal superlearning. PMID:28383940

  1. Updating during reading comprehension: why causality matters.

    PubMed

    Kendeou, Panayiota; Smith, Emily R; O'Brien, Edward J

    2013-05-01

    The present set of 7 experiments systematically examined the effectiveness of adding causal explanations to simple refutations in reducing or eliminating the impact of outdated information on subsequent comprehension. The addition of a single causal-explanation sentence to a refutation was sufficient to eliminate any measurable disruption in comprehension caused by the outdated information (Experiment 1) but was not sufficient to eliminate its reactivation (Experiment 2). However, a 3 sentence causal-explanation addition to a refutation eliminated both any measurable disruption in comprehension (Experiment 3) and the reactivation of the outdated information (Experiment 4). A direct comparison between the 1 and 3 causal-explanation conditions provided converging evidence for these findings (Experiment 5). Furthermore, a comparison of the 3 sentence causal-explanation condition with a 3 sentence qualified-elaboration condition demonstrated that even though both conditions were sufficient to eliminate any measurable disruption in comprehension (Experiment 6), only the causal-explanation condition was sufficient to eliminate the reactivation of the outdated information (Experiment 7). These results establish a boundary condition under which outdated information will influence comprehension; they also have broader implications for both the updating process and knowledge revision in general.

  2. Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE).

    PubMed

    Paull, Evan O; Carlin, Daniel E; Niepel, Mario; Sorger, Peter K; Haussler, David; Stuart, Joshua M

    2013-11-01

    Identifying the cellular wiring that connects genomic perturbations to transcriptional changes in cancer is essential to gain a mechanistic understanding of disease initiation, progression and ultimately to predict drug response. We have developed a method called Tied Diffusion Through Interacting Events (TieDIE) that uses a network diffusion approach to connect genomic perturbations to gene expression changes characteristic of cancer subtypes. The method computes a subnetwork of protein-protein interactions, predicted transcription factor-to-target connections and curated interactions from literature that connects genomic and transcriptomic perturbations. Application of TieDIE to The Cancer Genome Atlas and a breast cancer cell line dataset identified key signaling pathways, with examples impinging on MYC activity. Interlinking genes are predicted to correspond to essential components of cancer signaling and may provide a mechanistic explanation of tumor character and suggest subtype-specific drug targets. Software is available from the Stuart lab's wiki: https://sysbiowiki.soe.ucsc.edu/tiedie. jstuart@ucsc.edu. Supplementary data are available at Bioinformatics online.

  3. Quasi-Experimental Designs for Causal Inference

    ERIC Educational Resources Information Center

    Kim, Yongnam; Steiner, Peter

    2016-01-01

    When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…

  4. Inverse odds ratio-weighted estimation for causal mediation analysis.

    PubMed

    Tchetgen Tchetgen, Eric J

    2013-11-20

    An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Setting the stage to advance the adverse outcome pathway (AOP) framework through horizon scanning

    EPA Science Inventory

    Recognizing the international interest surrounding the adverse outcome pathway framework, which captures existing information describing causal linkages between a molecular initiating event through levels of biological organization to an adverse outcome of regulatory significance...

  6. Translating context to causality in cardiovascular disparities research.

    PubMed

    Benn, Emma K T; Goldfeld, Keith S

    2016-04-01

    Moving from a descriptive focus to a comprehensive analysis grounded in causal inference can be particularly daunting for disparities researchers. However, even a simple model supported by the theoretical underpinnings of causality gives researchers a better chance to make correct inferences about possible interventions that can benefit our most vulnerable populations. This commentary provides a brief description of how race/ethnicity and context relate to questions of causality, and uses a hypothetical scenario to explore how different researchers might analyze the data to estimate causal effects of interest. Perhaps although not entirely removed of bias, these causal estimates will move us a step closer to understanding how to intervene. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Interpretational Confounding or Confounded Interpretations of Causal Indicators?

    ERIC Educational Resources Information Center

    Bainter, Sierra A.; Bollen, Kenneth A.

    2014-01-01

    In measurement theory, causal indicators are controversial and little understood. Methodological disagreement concerning causal indicators has centered on the question of whether causal indicators are inherently sensitive to interpretational confounding, which occurs when the empirical meaning of a latent construct departs from the meaning…

  8. A high throughput screening for TLR3-IRF3 signaling pathway modulators identifies several antipsychotic drugs as TLR inhibitors1

    PubMed Central

    Zhu, Jianzhong; Smith, Kevin; Hsieh, Paishiun N.; Mburu, Yvonne K.; Chattopadhyay, Saurabh; Sen, Ganes C.; Sarkar, Saumendra N.

    2010-01-01

    Toll-like Receptor 3 (TLR3) is one of the major innate immune sensors of double stranded RNA (dsRNA). The signal transduction pathway activated by TLR3, upon binding to dsRNA, leads to the activation of two major transcription factors: NF-κB and IRF3. In an effort to identify specific chemical modulators of TLR3-IRF3 signal transduction pathway we developed a cell-based read out system. Using the interferon stimulated gene 56 (ISG56) promoter driven firefly luciferase gene stably integrated in a TLR3 expressing HEK293 cell line, we were able to generate a cell line where treatment with dsRNA resulted in a dose dependent induction of luciferase activity. A screen of two pharmacologically active compound libraries using this system, identified a number of TLR3-IRF3 signaling pathway modulators. Among them we focused on a subset of inhibitors and characterized their mode of action. Several antipsychotic drugs, such as Sertraline, Trifluoperazine and Fluphenazine were found to be direct inhibitors of the innate immune signaling pathway. These inhibitors also showed the ability to inhibit ISG56 induction mediated by TLR4 and TLR7/8 pathways. Interestingly, they did not show significant effect on TLR3, TLR7 and TLR8 mediated NF-κB activation. Detailed analysis of the signaling pathway indicated that these drugs may be exerting their inhibitory effects on IRF3 via PI3K signaling pathway. The data presented here provides mechanistic explanation of possible anti-inflammatory roles of some antipsychotic drugs. PMID:20382888

  9. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  10. How multiple causes combine: independence constraints on causal inference.

    PubMed

    Liljeholm, Mimi

    2015-01-01

    According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.

  11. Use of a bovine genome chip to identify new biological pathways for beef quality in cattle.

    PubMed

    Guifen, Liu; Xiaomu, Liu; Fachun, Wan; Xiuwen, Tan; Haijian, Cheng; Enliang, Song

    2012-12-01

    The accumulation of muscle is largely influenced by the genetic background of cattle. Muscle tissue was collected from the longissimus muscle of Lilu beef cattle at 12, 18, 24 and 30 months old. Using meat quality analysis, we found that the Lilu beef cattle have good production and slaughter performance, the performance meets the criterion of beef cattle. Microarray analysis was able to identify a total of 4,219 genes that are differentially expressed (P ≤ 0.01) between the two groups of cattle (12 vs 18; 18 vs 24; 24 vs 30). Bioinformatics analysis results suggested that most of the differentially expressed genes are involved in the metabolic pathways and neuroactive ligand-receptor interaction pathways. In the future study that aims to look for genes relating to growth and meat quality, we will focus on the genes that have been shown to have a significant variation between groups and are involved in the two pathways.

  12. Does sufficient evidence exist to support a causal association between vitamin D status and cardiovascular disease risk? An assessment using Hill's criteria for causality.

    PubMed

    Weyland, Patricia G; Grant, William B; Howie-Esquivel, Jill

    2014-09-02

    Serum 25-hydroxyvitamin D (25(OH)D) levels have been found to be inversely associated with both prevalent and incident cardiovascular disease (CVD) risk factors; dyslipidemia, hypertension and diabetes mellitus. This review looks for evidence of a causal association between low 25(OH)D levels and increased CVD risk. We evaluated journal articles in light of Hill's criteria for causality in a biological system. The results of our assessment are as follows. Strength of association: many randomized controlled trials (RCTs), prospective and cross-sectional studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Consistency of observed association: most studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors in various populations, locations and circumstances. Temporality of association: many RCTs and prospective studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Biological gradient (dose-response curve): most studies assessing 25(OH)D levels and CVD risk found an inverse association exhibiting a linear biological gradient. Plausibility of biology: several plausible cellular-level causative mechanisms and biological pathways may lead from a low 25(OH)D level to increased risk for CVD with mediators, such as dyslipidemia, hypertension and diabetes mellitus. Experimental evidence: some well-designed RCTs found increased CVD risk factors with decreasing 25(OH)D levels. Analogy: the association between serum 25(OH)D levels and CVD risk is analogous to that between 25(OH)D levels and the risk of overall cancer, periodontal disease, multiple sclerosis and breast cancer. all relevant Hill criteria for a causal association in a biological system are satisfied to indicate a low 25(OH)D level as a CVD risk factor.

  13. Contours of a causal feedback mechanism between adaptive personality and psychosocial function in patients with personality disorders: a secondary analysis from a randomized clinical trial.

    PubMed

    Klungsøyr, Ole; Antonsen, Bjørnar; Wilberg, Theresa

    2017-06-05

    Patients with personality disorders commonly exhibit impairment in psychosocial function that persists over time even with diagnostic remission. Further causal knowledge may help to identify and assess factors with a potential to alleviate this impairment. Psychosocial function is associated with personality functioning which describes personality disorder severity in DSM-5 (section III) and which can reportedly be improved by therapy. The reciprocal association between personality functioning and psychosocial function was assessed, in 113 patients with different personality disorders, in a secondary longitudinal analysis of data from a randomized clinical trial, over six years. Personality functioning was represented by three domains of the Severity Indices of Personality Problems: Relational Capacity, Identity Integration, and Self-control. Psychosocial function was measured by Global Assessment of Functioning. The marginal structural model was used for estimation of causal effects of the three personality functioning domains on psychosocial function, and vice versa. The attractiveness of this model lies in the ability to assess an effect of a time - varying exposure on an outcome, while adjusting for time - varying confounding. Strong causal effects were found. A hypothetical intervention to increase Relational Capacity by one standard deviation, both at one and two time-points prior to assessment of psychosocial function, would increase psychosocial function by 3.5 standard deviations (95% CI: 2.0, 4.96). Significant effects of Identity Integration and Self-control on psychosocial function, and from psychosocial function on all three domains of personality functioning, although weaker, were also found. This study indicates that persistent impairment in psychosocial function can be addressed through a causal pathway of personality functioning, with interventions of at least 18 months duration.

  14. Investigating Driver Fatigue versus Alertness Using the Granger Causality Network.

    PubMed

    Kong, Wanzeng; Lin, Weicheng; Babiloni, Fabio; Hu, Sanqing; Borghini, Gianluca

    2015-08-05

    Driving fatigue has been identified as one of the main factors affecting drivers' safety. The aim of this study was to analyze drivers' different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers' fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain's ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers' fatigue levels, and as reference work for future studies.

  15. Investigating Driver Fatigue versus Alertness Using the Granger Causality Network

    PubMed Central

    Kong, Wanzeng; Lin, Weicheng; Babiloni, Fabio; Hu, Sanqing; Borghini, Gianluca

    2015-01-01

    Driving fatigue has been identified as one of the main factors affecting drivers’ safety. The aim of this study was to analyze drivers’ different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers’ fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain’s ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers’ fatigue levels, and as reference work for future studies. PMID:26251909

  16. Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging

    PubMed Central

    Edifizi, Diletta; Schumacher, Björn

    2017-01-01

    DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process. PMID:29113067

  17. The role of counterfactual theory in causal reasoning.

    PubMed

    Maldonado, George

    2016-10-01

    In this commentary I review the fundamentals of counterfactual theory and its role in causal reasoning in epidemiology. I consider if counterfactual theory dictates that causal questions must be framed in terms of well-defined interventions. I conclude that it does not. I hypothesize that the interventionist approach to causal inference in epidemiology stems from elevating the randomized trial design to the gold standard for thinking about causal inference. I suggest that instead the gold standard we should use for thinking about causal inference in epidemiology is the thought experiment that, for example, compares an actual disease frequency under one exposure level with a counterfactual disease frequency under a different exposure level (as discussed in Greenland and Robins (1986) and Maldonado and Greenland (2002)). I also remind us that no method should be termed "causal" unless it addresses the effect of other biases in addition to the problem of confounding. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Chronic Fatigue and Personality: A Twin Study of Causal Pathways and Shared Liabilities

    PubMed Central

    Poeschla, Brian; Strachan, Eric; Dansie, Elizabeth; Buchwald, Dedra S.; Afari, Niloofar

    2013-01-01

    Background The etiology of chronic fatigue syndrome (CFS) remains unknown. Personality traits influence well-being and may play a role in CFS and unexplained chronic fatigue. Purpose To examine the association of emotional instability and extraversion with chronic fatigue and CFS in a genetically informative sample. Methods We evaluated 245 twin pairs for two definitions of chronic fatigue. They completed the Neuroticism and Extraversion subscales of the NEO-FFI. Using a co-twin control design, we examined the association between personality and chronic fatigue. Results Higher emotional instability was associated with both definitions of chronic fatigue and was confounded by shared genetics. Lower extraversion was also associated with both definitions of fatigue, but was not confounded by familial factors. Conclusions Both emotional instability and extraversion are related to chronic fatigue and CFS. Whereas emotional instability and chronic fatigue are linked by shared genetic mechanisms, the relationship with extraversion may be causal and bi-directional. PMID:23361410

  19. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    PubMed

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015

  20. Assessing the causal effect of policies: an example using stochastic interventions.

    PubMed

    Díaz, Iván; van der Laan, Mark J

    2013-11-19

    Assessing the causal effect of an exposure often involves the definition of counterfactual outcomes in a hypothetical world in which the stochastic nature of the exposure is modified. Although stochastic interventions are a powerful tool to measure the causal effect of a realistic intervention that intends to alter the population distribution of an exposure, their importance to answer questions about plausible policy interventions has been obscured by the generalized use of deterministic interventions. In this article, we follow the approach described in Díaz and van der Laan (2012) to define and estimate the effect of an intervention that is expected to cause a truncation in the population distribution of the exposure. The observed data parameter that identifies the causal parameter of interest is established, as well as its efficient influence function under the non-parametric model. Inverse probability of treatment weighted (IPTW), augmented IPTW and targeted minimum loss-based estimators (TMLE) are proposed, their consistency and efficiency properties are determined. An extension to longitudinal data structures is presented and its use is demonstrated with a real data example.

  1. Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification

    PubMed Central

    Faye, Laura L.; Machiela, Mitchell J.; Kraft, Peter; Bull, Shelley B.; Sun, Lei

    2013-01-01

    Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website. PMID:23950724

  2. Subjective spacetime derived from a causal histories approach

    NASA Astrophysics Data System (ADS)

    Gunji, Yukio-Pegio; Haruna, Taichi; Uragami, Daisuke; Nishikawa, Asaki

    2009-10-01

    The internal description of spacetime can reveal ambiguity regarding an observer’s perception of the present, where an observer can refer to the present as if he were outside spacetime while actually existing in the present. This ambiguity can be expressed as the compatibility between an element and a set, and is here called a/{a}-compatibility. We describe a causal set as a lattice and a causal history as a quotient lattice, and implement the a/{a}-compatibility in the framework of a causal histories approach. This leads to a perpetual change of a pair of causal set and causal history, and can be used to describe subjective spacetime including the déjà vu experience and/or schizophrenic time.

  3. Causal Beliefs and Effects upon Mental Illness Identification Among Chinese Immigrant Relatives of Individuals with Psychosis

    PubMed Central

    Wonpat-Borja, Ahtoy J.

    2013-01-01

    Identifying factors that facilitate treatment for psychotic disorders among Chinese-immigrants is crucial due to delayed treatment use. Identifying causal beliefs held by relatives that might predict identification of ‘mental illness’ as opposed to other ‘indigenous labels’ may promote more effective mental health service use. We examine what effects beliefs of ‘physical causes’ and other non-biomedical causal beliefs (‘general social causes’, and ‘indigenous Chinese beliefs’ or culture-specific epistemologies of illness) might have on mental illness identification. Forty-nine relatives of Chinese-immigrant consumers with psychosis were sampled. Higher endorsement of ‘physical causes’ was associated with mental illness labeling. However among the non-biomedical causal beliefs, ‘general social causes’ demonstrated no relationship with mental illness identification, while endorsement of ‘indigenous Chinese beliefs’ showed a negative relationship. Effective treatment- and community-based psychoeducation, in addition to emphasizing biomedical models, might integrate indigenous Chinese epistemologies of illness to facilitate rapid identification of psychotic disorders and promote treatment use. PMID:22075770

  4. Causal Beliefs and Effects upon Mental Illness Identification Among Chinese Immigrant Relatives of Individuals with Psychosis.

    PubMed

    Yang, Lawrence H; Wonpat-Borja, Ahtoy J

    2012-08-01

    Identifying factors that facilitate treatment for psychotic disorders among Chinese-immigrants is crucial due to delayed treatment use. Identifying causal beliefs held by relatives that might predict identification of 'mental illness' as opposed to other 'indigenous labels' may promote more effective mental health service use. We examine what effects beliefs of 'physical causes' and other non-biomedical causal beliefs ('general social causes', and 'indigenous Chinese beliefs' or culture-specific epistemologies of illness) might have on mental illness identification. Forty-nine relatives of Chinese-immigrant consumers with psychosis were sampled. Higher endorsement of 'physical causes' was associated with mental illness labeling. However among the non-biomedical causal beliefs, 'general social causes' demonstrated no relationship with mental illness identification, while endorsement of 'indigenous Chinese beliefs' showed a negative relationship. Effective treatment- and community-based psychoeducation, in addition to emphasizing biomedical models, might integrate indigenous Chinese epistemologies of illness to facilitate rapid identification of psychotic disorders and promote treatment use.

  5. Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23.

    PubMed

    McGovern, Amanda; Schoenfelder, Stefan; Martin, Paul; Massey, Jonathan; Duffus, Kate; Plant, Darren; Yarwood, Annie; Pratt, Arthur G; Anderson, Amy E; Isaacs, John D; Diboll, Julie; Thalayasingam, Nishanthi; Ospelt, Caroline; Barton, Anne; Worthington, Jane; Fraser, Peter; Eyre, Stephen; Orozco, Gisela

    2016-11-01

    The identification of causal genes from genome-wide association studies (GWAS) is the next important step for the translation of genetic findings into biologically meaningful mechanisms of disease and potential therapeutic targets. Using novel chromatin interaction detection techniques and allele specific assays in T and B cell lines, we provide compelling evidence that redefines causal genes at the 6q23 locus, one of the most important loci that confers autoimmunity risk. Although the function of disease-associated non-coding single nucleotide polymorphisms (SNPs) at 6q23 is unknown, the association is generally assigned to TNFAIP3, the closest gene. However, the DNA fragment containing the associated SNPs interacts through chromatin looping not only with TNFAIP3, but also with IL20RA, located 680 kb upstream. The risk allele of the most likely causal SNP, rs6927172, is correlated with both a higher frequency of interactions and increased expression of IL20RA, along with a stronger binding of both the NFκB transcription factor and chromatin marks characteristic of active enhancers in T-cells. Our results highlight the importance of gene assignment for translating GWAS findings into biologically meaningful mechanisms of disease and potential therapeutic targets; indeed, monoclonal antibody therapy targeting IL-20 is effective in the treatment of rheumatoid arthritis and psoriasis, both with strong GWAS associations to this region.

  6. Challenges to inferring causality from viral information dispersion in dynamic social networks

    NASA Astrophysics Data System (ADS)

    Ternovski, John

    2014-06-01

    Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.

  7. Perceived causal relations between anxiety, posttraumatic stress and depression: extension to moderation, mediation, and network analysis.

    PubMed

    Frewen, Paul A; Schmittmann, Verena D; Bringmann, Laura F; Borsboom, Denny

    2013-01-01

    Previous research demonstrates that posttraumatic memory reexperiencing, depression, anxiety, and guilt-shame are frequently co-occurring problems that may be causally related. The present study utilized Perceived Causal Relations (PCR) scaling in order to assess participants' own attributions concerning whether and to what degree these co-occurring problems may be causally interrelated. 288 young adults rated the frequency and respective PCR scores associating their symptoms of posttraumatic reexperiencing, depression, anxiety, and guilt-shame. PCR scores were found to moderate associations between the frequency of posttraumatic memory reexperiencing, depression, anxiety, and guilt-shame. Network analyses showed that the number of feedback loops between PCR scores was positively associated with symptom frequencies. Results tentatively support the interpretation of PCR scores as moderators of the association between different psychological problems, and lend support to the hypothesis that increased symptom frequencies are observed in the presence of an increased number of causal feedback loops between symptoms. Additionally, a perceived causal role for the reexperiencing of traumatic memories in exacerbating emotional disturbance was identified.

  8. Causal relations and feature similarity in children's inductive reasoning.

    PubMed

    Hayes, Brett K; Thompson, Susan P

    2007-08-01

    Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations as a basis for property induction, although the proportion of causal inferences increased with age. Subsequent experiments pitted causal relations against featural similarity in induction. It was found that adults and 8-year-olds, but not 5-year-olds, preferred shared causal relations over strong featural similarity as a basis for induction. The implications for models of inductive reasoning and development are discussed.

  9. Causality, mediation and time: a dynamic viewpoint

    PubMed Central

    Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno

    2012-01-01

    Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356

  10. Identification of differential pathways in papillary thyroid carcinoma utilizing pathway co-expression analysis.

    PubMed

    Qiu, Wei-Hai; Chen, Gui-Yan; Cui, Lu; Zhang, Ting-Ming; Wei, Feng; Yang, Yong

    2016-01-01

    To identify differential pathways between papillary thyroid carcinoma (PTC) patients and normal controls utilizing a novel method which combined pathway with co-expression network. The proposed method included three steps. In the first step, we conducted pretreatments for background pathways and gained representative pathways in PTC. Subsequently, a co-expression network for representative pathways was constructed using empirical Bayes (EB) approach to assign a weight value for each pathway. Finally, random model was extracted to set the thresholds of identifying differential pathways. We obtained 1267 representative pathways and their weight values based on the co-expressed pathway network, and then by meeting the criterion (Weight > 0.0296), 87 differential pathways in total across PTC patients and normal controls were identified. The top three ranked differential pathways were CREB phosphorylation, attachment of GPI anchor to urokinase plasminogen activator receptor (uPAR) and loss of function of SMAD2/3 in cancer. In conclusion, we successfully identified differential pathways (such as CREB phosphorylation, attachment of GPI anchor to uPAR and post-translational modification: synthesis of GPI-anchored proteins) for PTC using the proposed pathway co-expression method, and these pathways might be potential biomarkers for target therapy and detection of PTC.

  11. Causality attribution biases oculomotor responses.

    PubMed

    Badler, Jeremy; Lefèvre, Philippe; Missal, Marcus

    2010-08-04

    When viewing one object move after being struck by another, humans perceive that the action of the first object "caused" the motion of the second, not that the two events occurred independently. Although established as a perceptual and linguistic concept, it is not yet known whether the notion of causality exists as a fundamental, preattentional "Gestalt" that can influence predictive motor processes. Therefore, eye movements of human observers were measured while viewing a display in which a launcher impacted a tool to trigger the motion of a second "reaction" target. The reaction target could move either in the direction predicted by transfer of momentum after the collision ("causal") or in a different direction ("noncausal"), with equal probability. Control trials were also performed with identical target motion, either with a 100 ms time delay between the collision and reactive motion, or without the interposed tool. Subjects made significantly more predictive movements (smooth pursuit and saccades) in the causal direction during standard trials, and smooth pursuit latencies were also shorter overall. These trends were reduced or absent in control trials. In addition, pursuit latencies in the noncausal direction were longer during standard trials than during control trials. The results show that causal context has a strong influence on predictive movements.

  12. Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy

    PubMed Central

    Li, Zhaohui; Li, Xiaoli

    2013-01-01

    Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662

  13. [Causality link in criminal law: role of epidemiology].

    PubMed

    Zocchetti, C; Riboldi, L

    2003-01-01

    This paper focusses on the role of epidemiology in demonstrating causality in criminal trials of toxic tort litigation. First of all, consideration is given of the specificity of the criminal trial and of the role of the epidemiologist as expert witness. As a second step the concept of causality is examined separating general from specific (individual level) causality. As regards general causality, strategies based on some criteria (example: Bradford-Hill criteria) are contrasted with approaches that do not consider causality a matter of science but one of health policy; and specific methods frequently used (meta-analysis, risk assessment, International Boards evaluation,....) are discussed, with special reference to the adoption of high-level standards and to the context of cross-examination. As regards individual level causality the difficulties of the epidemiologic approach to such evaluation are stressed, with special reference to topics like expected value, attributable risk, and probability of causation. All examples are taken from Italian court trials. A general comment on the difficulties of using the criminal trial (dominated by the "but for" rule) for toxic tort litigation and on the opportunity to switch to trials (civil, administrative) with less stringent causal rules ("more probable than not") is offered, with a consideration also of what are called "class actions".

  14. Time-varying causal network of the Korean financial system based on firm-specific risk premiums

    NASA Astrophysics Data System (ADS)

    Song, Jae Wook; Ko, Bonggyun; Cho, Poongjin; Chang, Woojin

    2016-09-01

    The aim of this paper is to investigate the Korean financial system based on time-varying causal network. We discover many stylized facts by utilizing the firm-specific risk premiums for measuring the causality direction from a firm to firm. At first, we discover that the interconnectedness of causal network is affected by the outbreak of financial events; the co-movement of firm-specific risk premium is strengthened after each positive event, and vice versa. Secondly, we find that the major sector of the Korean financial system is the Depositories, and the financial reform in June-2011 achieves its purpose by weakening the power of risk-spillovers of Broker-Dealers. Thirdly, we identify that the causal network is a small-world network with scale-free topology where the power-law exponents of out-Degree and negative event are more significant than those of in-Degree and positive event. Lastly, we discuss that the current aspects of causal network are closely related to the long-term future scenario of the KOSPI Composite index where the direction and stability are significantly affected by the power of risk-spillovers and the power-law exponents of degree distributions, respectively.

  15. Testing the Causal Direction of Mediation Effects in Randomized Intervention Studies.

    PubMed

    Wiedermann, Wolfgang; Li, Xintong; von Eye, Alexander

    2018-05-21

    In a recent update of the standards for evidence in research on prevention interventions, the Society of Prevention Research emphasizes the importance of evaluating and testing the causal mechanism through which an intervention is expected to have an effect on an outcome. Mediation analysis is commonly applied to study such causal processes. However, these analytic tools are limited in their potential to fully understand the role of theorized mediators. For example, in a design where the treatment x is randomized and the mediator (m) and the outcome (y) are measured cross-sectionally, the causal direction of the hypothesized mediator-outcome relation is not uniquely identified. That is, both mediation models, x → m → y or x → y → m, may be plausible candidates to describe the underlying intervention theory. As a third explanation, unobserved confounders can still be responsible for the mediator-outcome association. The present study introduces principles of direction dependence which can be used to empirically evaluate these competing explanatory theories. We show that, under certain conditions, third higher moments of variables (i.e., skewness and co-skewness) can be used to uniquely identify the direction of a mediator-outcome relation. Significance procedures compatible with direction dependence are introduced and results of a simulation study are reported that demonstrate the performance of the tests. An empirical example is given for illustrative purposes and a software implementation of the proposed method is provided in SPSS.

  16. Adolescents Can Know Best: Using concept mapping to identify factors and pathways driving adolescent sexuality in Lima, Peru

    PubMed Central

    Bayer, Angela M.; Cabrera, Lilia Z.; Gilman, Robert H.; Hindin, Michelle J.; Tsui, Amy O.

    2011-01-01

    The primary objective of this study was to identify and describe individual- and environmental-level factors that Peruvian adolescents perceive to be related to adolescent sexuality. A series of concept mapping sessions were carried out from January-March 2006 with 63 15–17 year olds from a low-income community near Lima in order for adolescents to (1) brainstorm items that they thought were related to sexuality (2) sort, group and rate items to score their importance for sexuality-related outcomes, and (3) create pathways from the groups of items to engaging in sex. Brainstorming resulted in 61 items, which participants grouped into 11 clusters. The highest rated clusters were personal values, respect and confidence in relationships, future achievements and parent-child communication. The pathway of decision-making about having sex primarily contained items rated as only moderately important. This study identified important understudied factors, new perspectives on previously-recognized factors, and possible pathways to sexual behavior. These interesting, provocative findings underscore the importance of directly integrating adolescent voices into future sexual and reproductive health research, policies and programs that target this population. PMID:20382462

  17. Resting-state brain networks revealed by granger causal connectivity in frogs.

    PubMed

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-10-15

    Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma

    PubMed Central

    Weiser, Keith C.; Liu, Bin; Hansen, Gwenn M.; Skapura, Darlene; Hentges, Kathryn E.; Yarlagadda, Sujatha; Morse III, Herbert C.

    2007-01-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision. PMID:17926094

  19. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma.

    PubMed

    Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J

    2007-10-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .

  20. Causal inference in biology networks with integrated belief propagation.

    PubMed

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  1. A general, multivariate definition of causal effects in epidemiology.

    PubMed

    Flanders, W Dana; Klein, Mitchel

    2015-07-01

    Population causal effects are often defined as contrasts of average individual-level counterfactual outcomes, comparing different exposure levels. Common examples include causal risk difference and risk ratios. These and most other examples emphasize effects on disease onset, a reflection of the usual epidemiological interest in disease occurrence. Exposure effects on other health characteristics, such as prevalence or conditional risk of a particular disability, can be important as well, but contrasts involving these other measures may often be dismissed as non-causal. For example, an observed prevalence ratio might often viewed as an estimator of a causal incidence ratio and hence subject to bias. In this manuscript, we provide and evaluate a definition of causal effects that generalizes those previously available. A key part of the generalization is that contrasts used in the definition can involve multivariate, counterfactual outcomes, rather than only univariate outcomes. An important consequence of our generalization is that, using it, one can properly define causal effects based on a wide variety of additional measures. Examples include causal prevalence ratios and differences and causal conditional risk ratios and differences. We illustrate how these additional measures can be useful, natural, easily estimated, and of public health importance. Furthermore, we discuss conditions for valid estimation of each type of causal effect, and how improper interpretation or inferences for the wrong target population can be sources of bias.

  2. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways

    PubMed Central

    Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia

    2015-01-01

    Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156

  3. Novel Angiogenic Domains: Use in Identifying Unique Transforming and Tumor Promoting Pathways in Human Breast Cancer

    DTIC Science & Technology

    2004-10-01

    Cancer PRINCIPAL INVESTIGATOR: Thomas F. Deuel, M.D. CONTRACTING ORGANIZATION: The Scripps Research Institute...NUMBER Novel Angiogenic Domains: Use in Identifying Unique Transforming and Tumor Promoting Pathways in Human Breast Cancer 5b. GRANT NUMBER DAMD17...SUPPLEMENTARY NOTES 14. ABSTRACT Breast cancers in humans often grow slowly or even remain undetectable for long periods of time only to

  4. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients.

    PubMed

    Bonnet, Crystel; Riahi, Zied; Chantot-Bastaraud, Sandra; Smagghe, Luce; Letexier, Mélanie; Marcaillou, Charles; Lefèvre, Gaëlle M; Hardelin, Jean-Pierre; El-Amraoui, Aziz; Singh-Estivalet, Amrit; Mohand-Saïd, Saddek; Kohl, Susanne; Kurtenbach, Anne; Sliesoraityte, Ieva; Zobor, Ditta; Gherbi, Souad; Testa, Francesco; Simonelli, Francesca; Banfi, Sandro; Fakin, Ana; Glavač, Damjan; Jarc-Vidmar, Martina; Zupan, Andrej; Battelino, Saba; Martorell Sampol, Loreto; Claveria, Maria Antonia; Catala Mora, Jaume; Dad, Shzeena; Møller, Lisbeth B; Rodriguez Jorge, Jesus; Hawlina, Marko; Auricchio, Alberto; Sahel, José-Alain; Marlin, Sandrine; Zrenner, Eberhart; Audo, Isabelle; Petit, Christine

    2016-12-01

    Usher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods.

  5. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients

    PubMed Central

    Bonnet, Crystel; Riahi, Zied; Chantot-Bastaraud, Sandra; Smagghe, Luce; Letexier, Mélanie; Marcaillou, Charles; Lefèvre, Gaëlle M; Hardelin, Jean-Pierre; El-Amraoui, Aziz; Singh-Estivalet, Amrit; Mohand-Saïd, Saddek; Kohl, Susanne; Kurtenbach, Anne; Sliesoraityte, Ieva; Zobor, Ditta; Gherbi, Souad; Testa, Francesco; Simonelli, Francesca; Banfi, Sandro; Fakin, Ana; Glavač, Damjan; Jarc-Vidmar, Martina; Zupan, Andrej; Battelino, Saba; Martorell Sampol, Loreto; Claveria, Maria Antonia; Catala Mora, Jaume; Dad, Shzeena; Møller, Lisbeth B; Rodriguez Jorge, Jesus; Hawlina, Marko; Auricchio, Alberto; Sahel, José-Alain; Marlin, Sandrine; Zrenner, Eberhart; Audo, Isabelle; Petit, Christine

    2016-01-01

    Usher syndrome (USH), the most prevalent cause of hereditary deafness–blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1–3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods. PMID:27460420

  6. Impacts of agricultural land use on biological integrity: A causal analysis

    USGS Publications Warehouse

    Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D.

    2011-01-01

    Agricultural land use has often been linked to nutrient enrichment, habitat degradation, hydrologic alteration, and loss of biotic integrity in streams. The U.S. Geological Survey's National Water Quality Assessment Program sampled 226 stream sites located in eight agriculture-dominated study units across the United States to investigate the geographic variability and causes of agricultural impacts on stream biotic integrity. In this analysis we used structural equation modeling (SEM) to develop a national and set of regional causal models linking agricultural land use to measured instream conditions. We then examined the direct, indirect, and total effects of agriculture on biotic integrity as it acted through multiple water quality and habitat pathways. In our nation-wide model, cropland affected benthic communities by both altering structural habitats and by imposing water quality-related stresses. Regionspecific modeling demonstrated that geographic context altered the relative importance of causal pathways through which agricultural activities affected stream biotic integrity. Cropland had strong negative total effects on the invertebrate community in the national, Midwest, and Western models, but a very weak effect in the Eastern Coastal Plain model. In theWestern Arid and Eastern Coastal Plain study regions, cropland impacts were transmitted primarily through dissolved water quality contaminants, but in the Midwestern region, they were transmitted primarily through particulate components of water quality. Habitat effects were important in the Western Arid model, but negligible in the Midwest and Eastern Coastal Plain models. The relative effects of riparian forested wetlands also varied regionally, having positive effects on biotic integrity in the Eastern Coastal Plain andWestern Arid region models, but no statistically significant effect in the Midwest. These differences in response to cropland and riparian cover suggest that best management practices and

  7. Does Sufficient Evidence Exist to Support a Causal Association between Vitamin D Status and Cardiovascular Disease Risk? An Assessment Using Hill’s Criteria for Causality

    PubMed Central

    Weyland, Patricia G.; Grant, William B.; Howie-Esquivel, Jill

    2014-01-01

    Serum 25-hydroxyvitamin D (25(OH)D) levels have been found to be inversely associated with both prevalent and incident cardiovascular disease (CVD) risk factors; dyslipidemia, hypertension and diabetes mellitus. This review looks for evidence of a causal association between low 25(OH)D levels and increased CVD risk. We evaluated journal articles in light of Hill’s criteria for causality in a biological system. The results of our assessment are as follows. Strength of association: many randomized controlled trials (RCTs), prospective and cross-sectional studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Consistency of observed association: most studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors in various populations, locations and circumstances. Temporality of association: many RCTs and prospective studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Biological gradient (dose-response curve): most studies assessing 25(OH)D levels and CVD risk found an inverse association exhibiting a linear biological gradient. Plausibility of biology: several plausible cellular-level causative mechanisms and biological pathways may lead from a low 25(OH)D level to increased risk for CVD with mediators, such as dyslipidemia, hypertension and diabetes mellitus. Experimental evidence: some well-designed RCTs found increased CVD risk factors with decreasing 25(OH)D levels. Analogy: the association between serum 25(OH)D levels and CVD risk is analogous to that between 25(OH)D levels and the risk of overall cancer, periodontal disease, multiple sclerosis and breast cancer. Conclusion: all relevant Hill criteria for a causal association in a biological system are satisfied to indicate a low 25(OH)D level as a CVD risk factor. PMID:25184368

  8. Causal Modeling of Secondary Science Students' Intentions to Enroll in Physics.

    ERIC Educational Resources Information Center

    Crawley, Frank E.; Black, Carolyn B.

    1992-01-01

    Reports a study using the causal modeling method to verify underlying causes of student interest in enrolling in physics as predicted by the theory of planned behavior. Families were identified as major referents in the social support system for physics enrollment. Course and extracurricular conflicts and fear of failure were primary beliefs…

  9. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.

    PubMed

    Cirulli, Elizabeth T; Lasseigne, Brittany N; Petrovski, Slavé; Sapp, Peter C; Dion, Patrick A; Leblond, Claire S; Couthouis, Julien; Lu, Yi-Fan; Wang, Quanli; Krueger, Brian J; Ren, Zhong; Keebler, Jonathan; Han, Yujun; Levy, Shawn E; Boone, Braden E; Wimbish, Jack R; Waite, Lindsay L; Jones, Angela L; Carulli, John P; Day-Williams, Aaron G; Staropoli, John F; Xin, Winnie W; Chesi, Alessandra; Raphael, Alya R; McKenna-Yasek, Diane; Cady, Janet; Vianney de Jong, J M B; Kenna, Kevin P; Smith, Bradley N; Topp, Simon; Miller, Jack; Gkazi, Athina; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan; Silani, Vincenzo; Ticozzi, Nicola; Shaw, Christopher E; Baloh, Robert H; Appel, Stanley; Simpson, Ericka; Lagier-Tourenne, Clotilde; Pulst, Stefan M; Gibson, Summer; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Grossman, Murray; Shneider, Neil A; Chung, Wendy K; Ravits, John M; Glass, Jonathan D; Sims, Katherine B; Van Deerlin, Vivianna M; Maniatis, Tom; Hayes, Sebastian D; Ordureau, Alban; Swarup, Sharan; Landers, John; Baas, Frank; Allen, Andrew S; Bedlack, Richard S; Harper, J Wade; Gitler, Aaron D; Rouleau, Guy A; Brown, Robert; Harms, Matthew B; Cooper, Gregory M; Harris, Tim; Myers, Richard M; Goldstein, David B

    2015-03-27

    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention. Copyright © 2015, American Association for the Advancement of Science.

  10. Causal Mediation Analysis: Warning! Assumptions Ahead

    ERIC Educational Resources Information Center

    Keele, Luke

    2015-01-01

    In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…

  11. How to Be Causal: Time, Spacetime and Spectra

    ERIC Educational Resources Information Center

    Kinsler, Paul

    2011-01-01

    I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…

  12. On the road toward formal reasoning: reasoning with factual causal and contrary-to-fact causal premises during early adolescence.

    PubMed

    Markovits, Henry

    2014-12-01

    Understanding the development of conditional (if-then) reasoning is critical for theoretical and educational reasons. Here we examined the hypothesis that there is a developmental transition between reasoning with true and contrary-to-fact (CF) causal conditionals. A total of 535 students between 11 and 14 years of age received priming conditions designed to encourage use of either a true or CF alternatives generation strategy and reasoning problems with true causal and CF causal premises (with counterbalanced order). Results show that priming had no effect on reasoning with true causal premises. By contrast, priming with CF alternatives significantly improved logical reasoning with CF premises. Analysis of the effect of order showed that reasoning with CF premises reduced logical responding among younger students but had no effect among older students. Results support the idea that there is a transition in the reasoning processes in this age range associated with the nature of the alternatives generation process required for logical reasoning with true and CF causal conditionals. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Using multiple cause-of-death data to investigate associations and causality between conditions listed on the death certificate.

    PubMed

    Redelings, Matthew D; Wise, Matthew; Sorvillo, Frank

    2007-07-01

    Death rarely results from only one cause, and it can be caused by a variety of factors. Multiple cause-of-death data files can list as many as 20 contributing causes of death in addition to the reported underlying cause of death. Analysis of multiple cause-of-death data can provide information on associations between causes of death, revealing common combinations of events or conditions which lead to death. Additionally, physicians report the causal train of events through which they believe that different conditions or events may have led to each other and ultimately caused death. In this paper, the authors discuss methods used in studying associations between reported causes of death and in investigating commonly reported causal pathways between events or conditions listed on the death certificate.

  14. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.

    PubMed

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; Wietze van der Veen, J P; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R; Santorico, Stephanie A; Spritz, Richard A

    2016-11-01

    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment.

  15. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological

  16. Category transfer in sequential causal learning: the unbroken mechanism hypothesis.

    PubMed

    Hagmayer, York; Meder, Björn; von Sydow, Momme; Waldmann, Michael R

    2011-07-01

    The goal of the present set of studies is to explore the boundary conditions of category transfer in causal learning. Previous research has shown that people are capable of inducing categories based on causal learning input, and they often transfer these categories to new causal learning tasks. However, occasionally learners abandon the learned categories and induce new ones. Whereas previously it has been argued that transfer is only observed with essentialist categories in which the hidden properties are causally relevant for the target effect in the transfer relation, we here propose an alternative explanation, the unbroken mechanism hypothesis. This hypothesis claims that categories are transferred from a previously learned causal relation to a new causal relation when learners assume a causal mechanism linking the two relations that is continuous and unbroken. The findings of two causal learning experiments support the unbroken mechanism hypothesis. Copyright © 2011 Cognitive Science Society, Inc.

  17. Quantum probability assignment limited by relativistic causality.

    PubMed

    Han, Yeong Deok; Choi, Taeseung

    2016-03-14

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment.

  18. Using Smoke Injection in Drains to Identify Potential Preferential Pathways in a Drained Arable Field

    NASA Astrophysics Data System (ADS)

    Nielsen, M. H.; Petersen, C. T.; Hansen, S.

    2014-12-01

    Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P < 0.05) in SEMP with strong plumes (average rate: 247 mL min-1 n = 19) compared to SEMP with weak plumes (average rate: 87 mL min-1 n = 16) and no plumes (average rate: 56 mL min-1 n = 17). The results suggest that the smoke injection method

  19. Causality networks from multivariate time series and application to epilepsy.

    PubMed

    Siggiridou, Elsa; Koutlis, Christos; Tsimpiris, Alkiviadis; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2015-08-01

    Granger causality and variants of this concept allow the study of complex dynamical systems as networks constructed from multivariate time series. In this work, a large number of Granger causality measures used to form causality networks from multivariate time series are assessed. For this, realizations on high dimensional coupled dynamical systems are considered and the performance of the Granger causality measures is evaluated, seeking for the measures that form networks closest to the true network of the dynamical system. In particular, the comparison focuses on Granger causality measures that reduce the state space dimension when many variables are observed. Further, the linear and nonlinear Granger causality measures of dimension reduction are compared to a standard Granger causality measure on electroencephalographic (EEG) recordings containing episodes of epileptiform discharges.

  20. Putative adverse outcome pathways relevant to neurotoxicity

    PubMed Central

    Bal-Price, Anna; Crofton, Kevin M.; Sachana, Magdalini; Shafer, Timothy J.; Behl, Mamta; Forsby, Anna; Hargreaves, Alan; Landesmann, Brigitte; Lein, Pamela J.; Louisse, Jochem; Monnet-Tschudi, Florianne; Paini, Alicia; Rolaki, Alexandra; Schrattenholz, André; Suñol, Cristina; van Thriel, Christoph; Whelan, Maurice; Fritsche, Ellen

    2016-01-01

    The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways. PMID:25605028

  1. Compact Representations of Extended Causal Models

    ERIC Educational Resources Information Center

    Halpern, Joseph Y.; Hitchcock, Christopher

    2013-01-01

    Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…

  2. Identification of altered pathways in breast cancer based on individualized pathway aberrance score.

    PubMed

    Shi, Sheng-Hong; Zhang, Wei; Jiang, Jing; Sun, Long

    2017-08-01

    The objective of the present study was to identify altered pathways in breast cancer based on the individualized pathway aberrance score (iPAS) method combined with the normal reference (nRef). There were 4 steps to identify altered pathways using the iPAS method: Data preprocessing conducted by the robust multi-array average (RMA) algorithm; gene-level statistics based on average Z ; pathway-level statistics according to iPAS; and a significance test dependent on 1 sample Wilcoxon test. The altered pathways were validated by calculating the changed percentage of each pathway in tumor samples and comparing them with pathways from differentially expressed genes (DEGs). A total of 688 altered pathways with P<0.01 were identified, including kinesin (KIF)- and polo-like kinase (PLK)-mediated events. When the percentage of change reached 50%, 310 pathways were involved in the total 688 altered pathways, which may validate the present results. In addition, there were 324 DEGs and 155 common genes between DEGs and pathway genes. DEGs and common genes were enriched in the same 9 significant terms, which also were members of altered pathways. The iPAS method was suitable for identifying altered pathways in breast cancer. Altered pathways (such as KIF and PLK mediated events) were important for understanding breast cancer mechanisms and for the future application of customized therapeutic decisions.

  3. The causal structure of utility conditionals.

    PubMed

    Bonnefon, Jean-François; Sloman, Steven A

    2013-01-01

    The psychology of reasoning is increasingly considering agents' values and preferences, achieving greater integration with judgment and decision making, social cognition, and moral reasoning. Some of this research investigates utility conditionals, ''if p then q'' statements where the realization of p or q or both is valued by some agents. Various approaches to utility conditionals share the assumption that reasoners make inferences from utility conditionals based on the comparison between the utility of p and the expected utility of q. This article introduces a new parameter in this analysis, the underlying causal structure of the conditional. Four experiments showed that causal structure moderated utility-informed conditional reasoning. These inferences were strongly invited when the underlying structure of the conditional was causal, and significantly less so when the underlying structure of the conditional was diagnostic. This asymmetry was only observed for conditionals in which the utility of q was clear, and disappeared when the utility of q was unclear. Thus, an adequate account of utility-informed inferences conditional reasoning requires three components: utility, probability, and causal structure. Copyright © 2012 Cognitive Science Society, Inc.

  4. [FROM STATISTICAL ASSOCIATIONS TO SCIENTIFIC CAUSALITY].

    PubMed

    Golan, Daniel; Linn, Shay

    2015-06-01

    The pathogenesis of most chronic diseases is complex and probably involves the interaction of multiple genetic and environmental risk factors. One way to learn about disease triggers is from statistically significant associations in epidemiological studies. However, associations do not necessarily prove causation. Associations can commonly result from bias, confounding and reverse causation. Several paradigms for causality inference have been developed. Henle-Koch postulates are mainly applied for infectious diseases. Austin Bradford Hill's criteria may serve as a practical tool to weigh the evidence regarding the probability that a single new risk factor for a given disease is indeed causal. These criteria are irrelevant for estimating the causal relationship between exposure to a risk factor and disease whenever biological causality has been previously established. Thus, it is highly probable that past exposure of an individual to definite carcinogens is related to his cancer, even without proving an association between this exposure and cancer in his group. For multifactorial diseases, Rothman's model of interacting sets of component causes can be applied.

  5. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.

    PubMed

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen

    2017-11-01

    Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Morphological and Molecular Identification of the Causal Agent of Anthracnose Disease of Avocado in Kenya

    PubMed Central

    Monda, E.; Cheruiyot, R. C.; Mbaka, J.; Alakonya, A.

    2018-01-01

    Anthracnose disease of avocado contributes to a huge loss of avocado fruits due to postharvest rot in Kenya. The causal agent of this disease has not been clear but presumed to be Colletotrichum gloeosporioides as reported in other regions where avocado is grown. The fungus mainly infects fruits causing symptoms such as small blackish spots, “pepper spots,” and black spots with raised margin which coalesce as infection progresses. Due to economic losses associated with the disease and emerging information of other species of fungi as causal agents of the disease, this study was aimed at identifying causal agent(s) of the disease. A total of 80 fungal isolates were collected from diseased avocado fruits in Murang'a County, the main avocado growing region in Kenya. Forty-six isolates were morphologically identified as Colletotrichum spp. based on their cultural characteristics, mainly whitish, greyish, and creamish colour and cottony/velvety mycelia on the top side of the culture and greyish cream with concentric zonation on the reverse side. Their spores were straight with rounded end and nonseptate. Thirty-four isolates were identified as Pestalotiopsis spp. based on their cultural characteristics: whitish grey mycelium with black fruiting structure on the upper side and greyish black one on the lower side and septate spores with 3-4 septa and 2 or 3 appendages at one end. Further molecular studies using ITS indicated Colletotrichum gloeosporioides, Colletotrichum boninense, and Pestalotiopsis microspora as the causal agents of anthracnose disease in avocado. However, with this being the first report, there is a need to conduct further studies to establish whether there is coinfection or any interaction thereof. PMID:29681943

  7. Morphological and Molecular Identification of the Causal Agent of Anthracnose Disease of Avocado in Kenya.

    PubMed

    Kimaru, S K; Monda, E; Cheruiyot, R C; Mbaka, J; Alakonya, A

    2018-01-01

    Anthracnose disease of avocado contributes to a huge loss of avocado fruits due to postharvest rot in Kenya. The causal agent of this disease has not been clear but presumed to be Colletotrichum gloeosporioides as reported in other regions where avocado is grown. The fungus mainly infects fruits causing symptoms such as small blackish spots, "pepper spots," and black spots with raised margin which coalesce as infection progresses. Due to economic losses associated with the disease and emerging information of other species of fungi as causal agents of the disease, this study was aimed at identifying causal agent(s) of the disease. A total of 80 fungal isolates were collected from diseased avocado fruits in Murang'a County, the main avocado growing region in Kenya. Forty-six isolates were morphologically identified as Colletotrichum spp. based on their cultural characteristics, mainly whitish, greyish, and creamish colour and cottony/velvety mycelia on the top side of the culture and greyish cream with concentric zonation on the reverse side. Their spores were straight with rounded end and nonseptate. Thirty-four isolates were identified as Pestalotiopsis spp. based on their cultural characteristics: whitish grey mycelium with black fruiting structure on the upper side and greyish black one on the lower side and septate spores with 3-4 septa and 2 or 3 appendages at one end. Further molecular studies using ITS indicated Colletotrichum gloeosporioides , Colletotrichum boninense , and Pestalotiopsis microspora as the causal agents of anthracnose disease in avocado. However, with this being the first report, there is a need to conduct further studies to establish whether there is coinfection or any interaction thereof.

  8. Causal Analysis/Diagnosis Decision Information System (CADDIS)

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems to determine the cause of contamination.

  9. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer.

    PubMed

    Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John

    2007-06-01

    We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.

  10. Causal Responsibility and Counterfactuals

    PubMed Central

    Lagnado, David A; Gerstenberg, Tobias; Zultan, Ro'i

    2013-01-01

    How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in multiple agent contexts. We draw on the structural model account of actual causation (e.g., Halpern & Pearl, 2005) and its extension to responsibility judgments (Chockler & Halpern, 2004). We review the main theoretical and empirical issues that arise from this literature and propose a novel model of intuitive judgments of responsibility. This model is a function of both pivotality (whether an agent made a difference to the outcome) and criticality (how important the agent is perceived to be for the outcome, before any actions are taken). The model explains empirical results from previous studies and is supported by a new experiment that manipulates both pivotality and criticality. We also discuss possible extensions of this model to deal with a broader range of causal situations. Overall, our approach emphasizes the close interrelations between causality, counterfactuals, and responsibility attributions. PMID:23855451

  11. On the origin of Hill's causal criteria.

    PubMed

    Morabia, A

    1991-09-01

    The rules to assess causation formulated by the eighteenth century Scottish philosopher David Hume are compared to Sir Austin Bradford Hill's causal criteria. The strength of the analogy between Hume's rules and Hill's causal criteria suggests that, irrespective of whether Hume's work was known to Hill or Hill's predecessors, Hume's thinking expresses a point of view still widely shared by contemporary epidemiologists. The lack of systematic experimental proof to causal inferences in epidemiology may explain the analogy of Hume's and Hill's, as opposed to Popper's, logic.

  12. Dual Causality and the Autonomy of Biology.

    PubMed

    Bock, Walter J

    2017-03-01

    Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.

  13. Can chance cause cancer? A causal consideration.

    PubMed

    Stensrud, Mats Julius; Strohmaier, Susanne; Valberg, Morten; Aalen, Odd Olai

    2017-04-01

    The role of randomness, environment and genetics in cancer development is debated. We approach the discussion by using the potential outcomes framework for causal inference. By briefly considering the underlying assumptions, we suggest that the antagonising views arise due to estimation of substantially different causal effects. These effects may be hard to interpret, and the results cannot be immediately compared. Indeed, it is not clear whether it is possible to define a causal effect of chance at all. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Method for Gene-Based Pathway Analysis Using Genomewide Association Study Summary Statistics Reveals Nine New Type 1 Diabetes Associations

    PubMed Central

    Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris

    2014-01-01

    Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed () with 12 of the 22 SNPs showing . Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, ), NRP1 (rs722988, ), BAD (rs694739, ), CTSB (rs1296023, ), FYN (rs11964650, ), UBE2G1 (rs9906760, ), MAP3K14 (rs17759555, ), ITGB1 (rs1557150, ), and IL7R (rs1445898, ). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. PMID:25371288

  15. Zika Virus Infection and Microcephaly: Evidence for a Causal Link.

    PubMed

    Wang, Jin-Na; Ling, Feng

    2016-10-20

    Zika virus (ZIKV) is a flavivirus related to the Dengue, yellow fever and West Nile viruses. Since the explosive outbreaks of ZIKV in Latin America in 2015, a sudden increase in the number of microcephaly cases has been observed in infants of women who were pregnant when they contracted the virus. The severity of this condition raises grave concerns, and extensive studies on the possible link between ZIKV infection and microcephaly have been conducted. There is substantial evidence suggesting that there is a causal link between ZIKV and microcephaly, however, future studies are warranted to solidify this association. To summarize the most recent evidence on this issue and provide perspectives for future studies, we reviewed the literature to identify existing evidence of the causal link between ZIKV infection and microcephaly within research related to the epidemics, laboratory diagnosis, and possible mechanisms.

  16. Study on localization of epileptic focus based on causality analysis

    NASA Astrophysics Data System (ADS)

    Shan, Shaojie; Li, Hanjun; Tang, Xiaoying

    2018-05-01

    In this paper, we considered that the ECoG signal contain abundant pathological information, which can be used for the localization of epileptic focus before epileptic seizures in 1-2 mins. In order to validate this hypothesis, cutting the ECoG into three stages: before seizure, seizure and after seizure, then through using Granger causality algorithm, PSI causality algorithm, Transfer Entropy causality algorithm at different stages of epilepsy ECoG, we were able to do the causality analysis of ECoG data. The results have shown that there is significant difference with the causality value of the epileptic focus area in before seizure, seizure and after seizure. An increase is in the causality value of each channel during epileptic seizure. After epileptic seizure, the causality between the channels showed a downward trend, but the difference was not obvious. The difference of the causality provides a reliable technical method to assist the clinical diagnosis of epileptic focus.

  17. Determining Directional Dependency in Causal Associations

    ERIC Educational Resources Information Center

    Pornprasertmanit, Sunthud; Little, Todd D.

    2012-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of…

  18. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network.

    PubMed

    Song, Xian-Dong; Song, Xian-Xu; Liu, Gui-Bo; Ren, Chun-Hui; Sun, Yuan-Bo; Liu, Ke-Xin; Liu, Bo; Liang, Shuang; Zhu, Zhu

    2018-03-01

    The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.

  19. Processing of Positive-Causal and Negative-Causal Coherence Relations in Primary School Children and Adults: A Test of the Cumulative Cognitive Complexity Approach in German

    ERIC Educational Resources Information Center

    Knoepke, Julia; Richter, Tobias; Isberner, Maj-Britt; Naumann, Johannes; Neeb, Yvonne; Weinert, Sabine

    2017-01-01

    Establishing local coherence relations is central to text comprehension. Positive-causal coherence relations link a cause and its consequence, whereas negative-causal coherence relations add a contrastive meaning (negation) to the causal link. According to the cumulative cognitive complexity approach, negative-causal coherence relations are…

  20. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  1. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome.

    PubMed

    Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D; Dutta, Tumpa; Carter, Rickey E; Singh, Ravinder J; Nair, K Sreekumaran

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. This multiethnic, obese sample was matched by age (PCOS, 37±6; MetS, 40±6years) and body mass index (BMI) (PCOS, 34.6±5.1; MetS, 33.7±5.2kg/m 2 ). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P=.02), essential amino acids (P=.03), the essential amino acid lysine (P=.02), and the lysine metabolite α-aminoadipic acid (P=.02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between

  2. Combining a Nontargeted and Targeted Metabolomics Approach to Identify Metabolic Pathways Significantly Altered in Polycystic Ovary Syndrome

    PubMed Central

    Chang, Alice Y.; Lalia, Antigoni Z.; Jenkins, Gregory D.; Dutta, Tumpa; Carter, Rickey E.; Singh, Ravinder J.; Sreekumaran Nair, K.

    2017-01-01

    Objective Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Methods Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. Results This multiethnic, obese sample was matched by age (PCOS, 37 ± 6; MetS, 40 ± 6 years) and body mass index (BMI) (PCOS, 34.6 ± 5.1; MetS, 33.7 ± 5.2 kg/m2). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P = .02), essential amino acids (P = .03), the essential amino acid lysine (P = .02), and the lysine metabolite α-aminoadipic acid (P = .02) in models adjusted for surrogate variables representing technical variation in

  3. Causality in medicine: the case of tumours and viruses.

    PubMed Central

    Vonka, V

    2000-01-01

    Clarification of the aetiology of chronic human diseases such as atherosclerosis or cancer is one of the dominant topics in contemporary medical research. It is believed that identification of the causal factors will enable more efficient prevention and diagnosis of these diseases and, in some instances, also permit more effective therapy. The task is difficult because of the multistep and multifactorial origin of these diseases. A special case in contemporary aetiological studies is definition of the role of viruses in the pathogenesis of human cancer. Virus-associated cancer develops only in a small minority of infected subjects, which implies that, if the virus does play a role in the pathogenesis of the malignancy, other factors must also be involved. In this paper the author attempts to review the present methodological approaches to aetiological studies of chronic diseases, discusses the role of criteria for identifying causal relationships and proposes guidelines that might help to determine the role of viruses in human cancer. PMID:11205344

  4. Causal strength induction from time series data.

    PubMed

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family

    PubMed Central

    Chen, Hua-Wei; Chen, Xiu; Oh, Su-Wan; Marinissen, Maria J.; Gutkind, J. Silvio; Hou, Steven X.

    2002-01-01

    The JAK/STAT signal transduction pathway controls numerous events in Drosophila melanogaster development. Receptors for the pathway have yet to be identified. Here we have identified a Drosophila gene that shows embryonic mutant phenotypes identical to those in the hopscotch (hop)/JAK kinase and marelle (mrl)/Stat92e mutations. We named this gene master of marelle (mom). Genetic analyses place mom's function between upd (the ligand) and hop. We further show that cultured cells transfected with the mom gene bind UPD and activate the HOP/STAT92E signal transduction pathway. mom encodes a protein distantly related to the mammalian cytokine receptor family. These data show that mom functions as a receptor of the Drosophila JAK/STAT signal transduction pathway. PMID:11825879

  6. Pathways to psychosis in cannabis abuse.

    PubMed

    Shrivastava, Amresh; Johnston, Megan; Terpstra, Kristen; Bureau, Yves

    2015-04-01

    Cannabis has been implicated as a risk factor for the development of schizophrenia, but the exact biological mechanisms remain unclear. In this review, we attempt to understand the neurobiological pathways that link cannabis use to schizophrenia. This has been an area of great debate; despite similarities between cannabis users and schizophrenia patients, the evidence is not sufficient to establish cause-and-effect. There have been advances in the understanding of the mechanisms of cannabis dependence as well as the role of the cannabinoid system in the development of psychosis and schizophrenia. The neurobiological mechanisms associated with the development of psychosis and effects from cannabis use may be similar but remain elusive. In order to better understand these associations, this paper will show common neurobiological and neuroanatomical changes as well as common cognitive dysfunction in cannabis users and patients of schizophrenia. We conclude that epidemiologic evidence highlights potential causal links; however, neurobiological evidence for causality remains weak.

  7. Processing of positive-causal and negative-causal coherence relations in primary school children and adults: a test of the cumulative cognitive complexity approach in German.

    PubMed

    Knoepke, Julia; Richter, Tobias; Isberner, Maj-Britt; Naumann, Johannes; Neeb, Yvonne; Weinert, Sabine

    2017-03-01

    Establishing local coherence relations is central to text comprehension. Positive-causal coherence relations link a cause and its consequence, whereas negative-causal coherence relations add a contrastive meaning (negation) to the causal link. According to the cumulative cognitive complexity approach, negative-causal coherence relations are cognitively more complex than positive-causal ones. Therefore, they require greater cognitive effort during text comprehension and are acquired later in language development. The present cross-sectional study tested these predictions for German primary school children from Grades 1 to 4 and adults in reading and listening comprehension. Accuracy data in a semantic verification task support the predictions of the cumulative cognitive complexity approach. Negative-causal coherence relations are cognitively more demanding than positive-causal ones. Moreover, our findings indicate that children's comprehension of negative-causal coherence relations continues to develop throughout the course of primary school. Findings are discussed with respect to the generalizability of the cumulative cognitive complexity approach to German.

  8. Application of the revised WHO causality assessment protocol for adverse events following immunization in India.

    PubMed

    Singh, Awnish Kumar; Wagner, Abram L; Joshi, Jyoti; Carlson, Bradley F; Aneja, Satinder; Boulton, Matthew L

    2017-07-24

    In 2013, the World Health Organization (WHO) and CIOMS introduced a revised Causality Assessment Protocol (CAP) for Adverse Events following Immunization (AEFI). India is one of the first countries to adopt the revised CAP. This study describes the application of the revised CAP in India. We describe use of CAP by India's AEFI surveillance program to assess reported AEFIs. Using publicly available results of causality assessment for reported AEFIs, we describe the results by demographic characteristics and review the trends for the results of the causality assessment. A total of 771 reports of AEFI between January 2012 and January 2015, completed causality review by August 2016. The cases were reported as belonging to a cluster (54%; n=302), hospitalized or requiring hospitalization (41%; n=270), death (25%; n=195), or resulting in disability (0.4%; n=3). The most common combinations of vaccines leading to report of an AEFI were DTwP, Hepatitis B, and OPV (14%; n=106), followed by Pentavalent and OPV (13%; n=103), and JE vaccine (13%; n=101). Using the WHO Algorithm, most AEFI reports (89%, n=683) were classifiable. Classifiable AEFI reports included those with a consistent causal association (53%; n=407), an inconsistent causal association (29%; n=226) or were indeterminate causal association with implicated vaccine(s) or vaccination process (6.5%; n=50) (Fig. 1); 88 reports remained unclassifiable. The revised CAP was informative and useful in classifying most of the reviewed AEFIs in India. Unclassifiable reports could be minimized with more complete information from health records. Improvements in causality assessment, and standardization in reporting between countries, can improve public confidence in vaccine system performance and identify important vaccine safety signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure underpinning obesity

    PubMed Central

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F; Masca, Nicholas GD; Manning, Alisa K; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie CY; Reiner, Alex P; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W; Abecasis, Goncalo; Aben, Katja K; Alam, Dewan S; Alharthi, Sameer E; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber A; Butterworth, Adam S; Campbell, Peter T; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Heijer, Martin; den Hollander, Anneke I; den Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M; Easton, Douglas F; Edwards, Todd L; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I. Sadaf; Faul, Jessica D; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H; Franke, Andre; Franks, Paul W; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E.; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan FA; Grarup, Niels; Griffiths, Helen L; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L; Heath, Andrew C; Heid, Iris M; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna MM; Hu, Yao; Huang, Paul L; Huffman, Jennifer E; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lamparter, David; Lange, Ethan M; Lange, Leslie A; Langenberg, Claudia; Larson, Eric B; Lee, Nanette R; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J; Liu, Yongmei; Lo, Ken Sin; Lophatananon, Artitaya; Lotery, Andrew J; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I; McKean-Cowdin, Roberta; Medland, Sarah E; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Narisu, Narisu; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Nyholt, Dale R; O'Connel, Jeffrey R; O’Donoghue, Michelle L.; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Palmer, Nicholette D; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John RB; Pers, Tune H; Person, Thomas N; Peters, Annette; Petersen, Eva RB; Peyser, Patricia A; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M; Rioux, John D; Rivas, Manuel A; Roberts, David J; Robertson, Neil R; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H-H; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert Vernon; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Uusitupa, Matti; van der Laan, Sander W; van Duijn, Cornelia M; van Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Ware, Erin B; Wareham, Nicholas J; Warren, Helen R; Waterworth, Dawn M; Wessel, Jennifer; White, Harvey D; Willer, Cristen J; Wilson, James G; Witte, Daniel R; Wood, Andrew R; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zhou, Wei; Zondervan, Krina T; Rotter, Jerome I; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Lettre, Guillaume; North, Kari E; Lindgren, Cecilia M; Hirschhorn, Joel N; Loos, Ruth JF

    2018-01-01

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 718,734 individuals to discover rare and low-frequency (MAF<5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which eight in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169) newly implicated in human obesity, two (MC4R, KSR2) previously observed in extreme obesity, and two variants in GIPR. Effect sizes of rare variants are ~10 times larger than of common variants, with the largest effect observed in carriers of an MC4R stop-codon (p.Tyr35Ter, MAF=0.01%), weighing ~7kg more than non-carriers. Pathway analyses confirmed enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically-supported therapeutic targets to treat obesity. PMID:29273807

  10. Explaining quantum correlations through evolution of causal models

    NASA Astrophysics Data System (ADS)

    Harper, Robin; Chapman, Robert J.; Ferrie, Christopher; Granade, Christopher; Kueng, Richard; Naoumenko, Daniel; Flammia, Steven T.; Peruzzo, Alberto

    2017-04-01

    We propose a framework for the systematic and quantitative generalization of Bell's theorem using causal networks. We first consider the multiobjective optimization problem of matching observed data while minimizing the causal effect of nonlocal variables and prove an inequality for the optimal region that both strengthens and generalizes Bell's theorem. To solve the optimization problem (rather than simply bound it), we develop a genetic algorithm treating as individuals causal networks. By applying our algorithm to a photonic Bell experiment, we demonstrate the trade-off between the quantitative relaxation of one or more local causality assumptions and the ability of data to match quantum correlations.

  11. In Support of Clinical Case Reports: A System of Causality Assessment

    PubMed Central

    Hamre, Harald J.; Kienle, Gunver S.

    2013-01-01

    The usefulness of clinical research depends on an assessment of causality. This assessment determines what constitutes clinical evidence. Case reports are an example of evidence that is frequently overlooked because it is believed they cannot address causal links between treatment and outcomes. This may be a mistake. Clarity on the topic of causality and its assessment will be of benefit for researchers and clinicians. This article outlines an overall system of causality and causality assessment. The system proposed involves two dimensions: horizontal and vertical; each of these dimensions consists of three different types of causality and three corresponding types of causality assessment. Included in this system are diverse forms of case causality illustrated with examples from everyday life and clinical medicine. Assessing case causality can complement conventional clinical research in an era of personalized medicine. PMID:24416665

  12. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa

    PubMed Central

    de Oliveira Ceita, Geruza; Vilas-Boas, Laurival Antônio; Castilho, Marcelo Santos; Carazzolle, Marcelo Falsarella; Pirovani, Carlos Priminho; Selbach-Schnadelbach, Alessandra; Gramacho, Karina Peres; Ramos, Pablo Ivan Pereira; Barbosa, Luciana Veiga; Pereira, Gonçalo Amarante Guimarães; Góes-Neto, Aristóteles

    2014-01-01

    The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches’ broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea. PMID:25505843

  13. Causal inference from observational data.

    PubMed

    Listl, Stefan; Jürges, Hendrik; Watt, Richard G

    2016-10-01

    Randomized controlled trials have long been considered the 'gold standard' for causal inference in clinical research. In the absence of randomized experiments, identification of reliable intervention points to improve oral health is often perceived as a challenge. But other fields of science, such as social science, have always been challenged by ethical constraints to conducting randomized controlled trials. Methods have been established to make causal inference using observational data, and these methods are becoming increasingly relevant in clinical medicine, health policy and public health research. This study provides an overview of state-of-the-art methods specifically designed for causal inference in observational data, including difference-in-differences (DiD) analyses, instrumental variables (IV), regression discontinuity designs (RDD) and fixed-effects panel data analysis. The described methods may be particularly useful in dental research, not least because of the increasing availability of routinely collected administrative data and electronic health records ('big data'). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system.

    PubMed

    Gao, Xiangyun; Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng

    2018-03-01

    Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion.

  15. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system

    PubMed Central

    Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng

    2018-01-01

    Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion. PMID:29657804

  16. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle.

    PubMed

    Doran, Anthony G; Berry, Donagh P; Creevey, Christopher J

    2014-10-01

    Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Following adjustment for false discovery (q-value < 0.05), 479 quantitative trait loci (QTL) were associated with at least one of the four carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth

  17. A SPRY2 mutation leading to MAPK/ERK pathway inhibition is associated with an autosomal dominant form of IgA nephropathy.

    PubMed

    Milillo, Annamaria; La Carpia, Francesca; Costanzi, Stefano; D'Urbano, Vanessa; Martini, Maurizio; Lanuti, Paola; Vischini, Gisella; Larocca, Luigi M; Marchisio, Marco; Miscia, Sebastiano; Amoroso, Antonio; Gurrieri, Fiorella; Sangiorgi, Eugenio

    2015-12-01

    IgA nephropathy (IgAN) represents the most common primary glomerulonephritis worldwide with a prevalence of 25-50% among patients with primary glomerulopathies. In ~5-10% of the patients the disease segregates with an autosomal dominant (AD) pattern. Association studies identified loci on chromosomes 1q32, 6p21, 8p23, 17p13, 22q12, whereas classical linkage studies on AD families identified loci on chromosomes 2q36, 4q26-31, 6q22, 17q12-22. We have studied a large Sicilian family where IgAN segregates with an AD transmission. To identify the causal gene, the exomes of two affected and one unaffected individual have been sequenced. From the bioinformatics analysis a p.(Arg119Trp) variant in the SPRY2 gene was identified as the probable disease-causing mutation. Moreover, functional characterization of this variant showed that it is responsible for the inhibition of the MAPK/ERK1/2 pathway. The same effect was observed in two sporadic IgAN patients carriers of wild-type SPRY2, suggesting that downregulation of the MAPK/ERK1/2 pathway represents a common mechanism leading to IgAN.

  18. Causal learning and inference as a rational process: the new synthesis.

    PubMed

    Holyoak, Keith J; Cheng, Patricia W

    2011-01-01

    Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.

  19. Attributions of Social Causality and Responsibility.

    DTIC Science & Technology

    The paper reviews relevant research on attributions of causality and attributions of responsibility . It is suggested that inconsistencies among...findings in the attribution literature may be due to discrepancies between the meaning of ’ responsibility ’ and ’causality’. Definitions for the two terms...opposed to responsibility attribution may serve to eliminate some of the problems in attribution research. (Author)

  20. Nonsyndromic cleft lip with or without cleft palate: Increased burden of rare variants within Gremlin-1, a component of the bone morphogenetic protein 4 pathway.

    PubMed

    Al Chawa, Taofik; Ludwig, Kerstin U; Fier, Heide; Pötzsch, Bernd; Reich, Rudolf H; Schmidt, Gül; Braumann, Bert; Daratsianos, Nikolaos; Böhmer, Anne C; Schuencke, Hannah; Alblas, Margrieta; Fricker, Nadine; Hoffmann, Per; Knapp, Michael; Lange, Christoph; Nöthen, Markus M; Mangold, Elisabeth

    2014-06-01

    The genes Gremlin-1 (GREM1) and Noggin (NOG) are components of the bone morphogenetic protein 4 pathway, which has been implicated in craniofacial development. Both genes map to recently identified susceptibility loci (chromosomal region 15q13, 17q22) for nonsyndromic cleft lip with or without cleft palate (nsCL/P). The aim of the present study was to determine whether rare variants in either gene are implicated in nsCL/P etiology. The complete coding regions, untranslated regions, and splice sites of GREM1 and NOG were sequenced in 96 nsCL/P patients and 96 controls of Central European ethnicity. Three burden and four nonburden tests were performed. Statistically significant results were followed up in a second case-control sample (n = 96, respectively). For rare variants observed in cases, segregation analyses were performed. In NOG, four rare sequence variants (minor allele frequency < 1%) were identified. Here, burden and nonburden analyses generated nonsignificant results. In GREM1, 33 variants were identified, 15 of which were rare. Of these, five were novel. Significant p-values were generated in three nonburden analyses. Segregation analyses revealed incomplete penetrance for all variants investigated. Our study did not provide support for NOG being the causal gene at 17q22. However, the observation of a significant excess of rare variants in GREM1 supports the hypothesis that this is the causal gene at chr. 15q13. Because no single causal variant was identified, future sequencing analyses of GREM1 should involve larger samples and the investigation of regulatory elements. © 2014 Wiley Periodicals, Inc.

  1. Private schooling and admission to medicine: a case study using matched samples and causal mediation analysis.

    PubMed

    Houston, Muir; Osborne, Michael; Rimmer, Russell

    2015-08-20

    Are applicants from private schools advantaged in gaining entry to degrees in medicine? This is of international significance and there is continuing research in a range of nations including the USA, the UK, other English-speaking nations and EU countries. Our purpose is to seek causal explanations using a quantitative approach. We took as a case study admission to medicine in the UK and drew samples of those who attended private schools and those who did not, with sample members matched on background characteristics. Unlike other studies in the area, causal mediation analysis was applied to resolve private-school influence into direct and indirect effects. In so doing, we sought a benchmark, using data for 2004, against which the effectiveness of policies adopted over the past decade can be assessed. Private schooling improved admission likelihood. This did not occur indirectly via the effect of school type on academic performance; but arose directly from attending private schools. A sensitivity analysis suggests this finding is unlikely to be eliminated by the influence of an unobserved variable. Academic excellence is not a certain pathway into medicine at university; yet applying with good grades after attending private school is more certain. The results of our paper differ from those in an earlier observational study and find support in a later study. Consideration of sources of difference from the earlier observational study suggest the causal approach offers substantial benefits and the consequences in the causal study for gender, ethnicity, socio-economic classification and region of residence provide a benchmark for assessing policy in future research.

  2. Nonlinear parametric model for Granger causality of time series

    NASA Astrophysics Data System (ADS)

    Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2006-06-01

    The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.

  3. New Insights into Signed Path Coefficient Granger Causality Analysis

    PubMed Central

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an “excitatory” or “inhibitory” influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation. PMID:27833547

  4. New Insights into Signed Path Coefficient Granger Causality Analysis.

    PubMed

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.

  5. Identifying alternate pathways for climate change to impact inland recreational fishers

    USGS Publications Warehouse

    Hunt, Len M.; Fenichel, Eli P.; Fulton, David C.; Mendelsohn, Robert; Smith, Jordan W.; Tunney, Tyler D.; Lynch, Abigail J.; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Fisheries and human dimensions literature suggests that climate change influences inland recreational fishers in North America through three major pathways. The most widely recognized pathway suggests that climate change impacts habitat and fish populations (e.g., water temperature impacting fish survival) and cascades to impact fishers. Climate change also impacts recreational fishers by influencing environmental conditions that directly affect fishers (e.g., increased temperatures in northern climates resulting in extended open water fishing seasons and increased fishing effort). The final pathway occurs from climate change mitigation and adaptation efforts (e.g., refined energy policies result in higher fuel costs, making distant trips more expensive). To address limitations of past research (e.g., assessing climate change impacts for only one pathway at a time and not accounting for climate variability, extreme weather events, or heterogeneity among fishers), we encourage researchers to refocus their efforts to understand and document climate change impacts to inland fishers.

  6. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yongbaek; Thai-Vu Ton; De Angelo, Anthony B.

    2006-07-15

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo arrays, with over 20,000 target genes, were used to evaluate o-NT- and BCA-induced RPMs, when compared to a non-transformed mesothelial cell line (Fred-PE). Analysis using Ingenuity Pathway Analysis software revealed 169 cancer-related genes that were categorized into binding activity, growth and proliferation, cell cycle progression, apoptosis, and invasion and metastasis. The microarray data were validated by positive correlation with quantitative real-time RT-PCRmore » on 16 selected genes including igf1, tgfb3 and nov. Important carcinogenic pathways involved in RPM formation included insulin-like growth factor 1 (IGF-1), p38 MAPkinase, Wnt/{beta}-catenin and integrin signaling pathways. This study demonstrated that mesotheliomas in rats exposed to o-NT- and BCA were similar to mesotheliomas in humans, at least at the cellular and molecular level.« less

  7. Soldier, civilian, criminal: identifying pathways to offending of ex-armed forces personnel in prison

    PubMed Central

    Wainwright, Verity; McDonnell, Sharon; Lennox, Charlotte; Shaw, Jenny; Senior, Jane

    2016-01-01

    ABSTRACT Little is known about why some ex-armed forces personnel become involved in the criminal justice system, however, they represent the largest known occupational group in prison. In-depth interviews were employed to explore possible pathways to offending. Twenty ex-armed forces personnel in prison were recruited from five prisons in England. Data were analysed using a combination of thematic analysis and constant comparison methods rooted in grounded theory. Four predominant themes were identified: experiences of trauma and adversity; belonging; impulsivity and creating a soldier. Participants had experienced a number of traumatic incidents and adversity in their lives, encompassing pre, during and post-service but felt a sense of belonging in the armed forces. Participants demonstrated impulsivity in a number of areas with links to both their service in the armed forces and offending behaviour. The creation of the identity of ‘soldier’ was perceived to impact participants’ lives in a number of ways, including their offending, alcohol use and coping with trauma. The interplay of these themes and their potential impact on participants’ pathways to offending are discussed. PMID:27570440

  8. Multivariate causal attribution and cost-effectiveness of a national mass media campaign in the Philippines.

    PubMed

    Kincaid, D Lawrence; Do, Mai Phuong

    2006-01-01

    Cost-effectiveness analysis is based on a simple formula. A dollar estimate of the total cost to conduct a program is divided by the number of people estimated to have been affected by it in terms of some intended outcome. The direct, total costs of most communication campaigns are usually available. Estimating the amount of effect that can be attributed to the communication alone, however is problematical in full-coverage, mass media campaigns where the randomized control group design is not feasible. Single-equation, multiple regression analysis controls for confounding variables but does not adequately address the issue of causal attribution. In this article, multivariate causal attribution (MCA) methods are applied to data from a sample survey of 1,516 married women in the Philippines to obtain a valid measure of the number of new adopters of modern contraceptives that can be causally attributed to a national mass media campaign and to calculate its cost-effectiveness. The MCA analysis uses structural equation modeling to test the causal pathways and to test for endogeneity, biprobit analysis to test for direct effects of the campaign and endogeneity, and propensity score matching to create a statistically equivalent, matched control group that approximates the results that would have been obtained from a randomized control group design. The MCA results support the conclusion that the observed, 6.4 percentage point increase in modern contraceptive use can be attributed to the national mass media campaign and to its indirect effects on attitudes toward contraceptives. This net increase represented 348,695 new adopters in the population of married women at a cost of U.S. $1.57 per new adopter.

  9. Causal Attribution and Coping Maxims Differences between Immigrants and Non-Immigrants Suffering from Back Pain in Switzerland.

    PubMed

    Mantwill, Sarah; Schulz, Peter J

    2016-01-01

    This study aimed at investigating the relationship between causal attributions and coping maxims in people suffering from back pain. Further, it aimed at identifying in how far causal attributions and related coping maxims would defer between immigrants and non-immigrants in Switzerland. Data for this study came from a larger survey study that was conducted among immigrant populations in the German- and Italian-speaking part of Switzerland. Included in the analyses were native Swiss participants, as well as Albanian- and Serbian-speaking immigrants, who had indicated to have suffered from back pain within the last 12 months prior to the study. Data was analyzed for overall 495 participants. Items for causal attributions and coping maxims were subject to factor analyses. Cultural differences were assessed with ANOVA and regression analyses. Interaction terms were included to investigate whether the relationship between causal attributions and coping maxims would differ with cultural affiliation. For both immigrant groups the physician's influence on the course of their back pain was more important than for Swiss participants (p <.05). With regard to coping, both immigrant groups were more likely to agree with maxims that were related to the improvement of the back pain, as well as the acceptance of the current situation (p <.05). The only consistent interaction effect that was found indicated that being Albanian-speaking negatively moderated the relationship between physical activity as an attributed cause of back pain and all three identified coping maxims. The study shows that differences in causal attribution and coping maxims between immigrants and non-immigrants exist. Further, the results support the assumption of an association between causal attribution and coping maxims. However cultural affiliation did not considerably moderate this relationship.

  10. Causal Attribution and Coping Maxims Differences between Immigrants and Non-Immigrants Suffering from Back Pain in Switzerland

    PubMed Central

    2016-01-01

    Objectives This study aimed at investigating the relationship between causal attributions and coping maxims in people suffering from back pain. Further, it aimed at identifying in how far causal attributions and related coping maxims would defer between immigrants and non-immigrants in Switzerland. Methods Data for this study came from a larger survey study that was conducted among immigrant populations in the German- and Italian-speaking part of Switzerland. Included in the analyses were native Swiss participants, as well as Albanian- and Serbian-speaking immigrants, who had indicated to have suffered from back pain within the last 12 months prior to the study. Data was analyzed for overall 495 participants. Items for causal attributions and coping maxims were subject to factor analyses. Cultural differences were assessed with ANOVA and regression analyses. Interaction terms were included to investigate whether the relationship between causal attributions and coping maxims would differ with cultural affiliation. Results For both immigrant groups the physician’s influence on the course of their back pain was more important than for Swiss participants (p <.05). With regard to coping, both immigrant groups were more likely to agree with maxims that were related to the improvement of the back pain, as well as the acceptance of the current situation (p <.05). The only consistent interaction effect that was found indicated that being Albanian-speaking negatively moderated the relationship between physical activity as an attributed cause of back pain and all three identified coping maxims. Conclusion The study shows that differences in causal attribution and coping maxims between immigrants and non-immigrants exist. Further, the results support the assumption of an association between causal attribution and coping maxims. However cultural affiliation did not considerably moderate this relationship. PMID:27583445

  11. Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing.

    PubMed

    Garcia, Virginie; Bres, Cécile; Just, Daniel; Fernandez, Lucie; Tai, Fabienne Wong Jun; Mauxion, Jean-Philippe; Le Paslier, Marie-Christine; Bérard, Aurélie; Brunel, Dominique; Aoki, Koh; Alseekh, Saleh; Fernie, Alisdair R; Fraser, Paul D; Rothan, Christophe

    2016-12-01

    The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F 2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F 2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping.

  12. Inductive reasoning about causally transmitted properties.

    PubMed

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B

    2008-11-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.

  13. Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Bae, H. J.; Encinar, M. P.; Lozano-Durán, A.

    2018-04-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical configurations. Most common approaches to investigate the turbulence phenomena do not provide a clear causal inference between events, which is essential to determine the dynamics of self-sustaining processes. In the present work, we examine the causal interactions between streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. We choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocity modes. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear which controls the dynamics and time-scales. The well-known lift-up effect is also identified, but shown to be of secondary importance in the causal network between shear, streaks and rolls.

  14. Neural correlates of continuous causal word generation.

    PubMed

    Wende, Kim C; Straube, Benjamin; Stratmann, Mirjam; Sommer, Jens; Kircher, Tilo; Nagels, Arne

    2012-09-01

    Causality provides a natural structure for organizing our experience and language. Causal reasoning during speech production is a distinct aspect of verbal communication, whose related brain processes are yet unknown. The aim of the current study was to investigate the neural mechanisms underlying the continuous generation of cause-and-effect coherences during overt word production. During fMRI data acquisition participants performed three verbal fluency tasks on identical cue words: A novel causal verbal fluency task (CVF), requiring the production of multiple reasons to a given cue word (e.g. reasons for heat are fire, sun etc.), a semantic (free association, FA, e.g. associations with heat are sweat, shower etc.) and a phonological control task (phonological verbal fluency, PVF, e.g. rhymes with heat are meat, wheat etc.). We found that, in contrast to PVF, both CVF and FA activated a left lateralized network encompassing inferior frontal, inferior parietal and angular regions, with further bilateral activation in middle and inferior as well as superior temporal gyri and the cerebellum. For CVF contrasted against FA, we found greater bold responses only in the left middle frontal cortex. Large overlaps in the neural activations during free association and causal verbal fluency indicate that the access to causal relationships between verbal concepts is at least partly based on the semantic neural network. The selective activation in the left middle frontal cortex for causal verbal fluency suggests that distinct neural processes related to cause-and-effect-relations are associated with the recruitment of middle frontal brain areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Preschool Children Learn about Causal Structure from Conditional Interventions

    ERIC Educational Resources Information Center

    Schulz, Laura E.; Gopnik, Alison; Glymour, Clark

    2007-01-01

    The conditional intervention principle is a formal principle that relates patterns of interventions and outcomes to causal structure. It is a central assumption of experimental design and the causal Bayes net formalism. Two studies suggest that preschoolers can use the conditional intervention principle to distinguish causal chains, common cause…

  16. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    PubMed Central

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  17. Essays on Causal Inference for Public Policy

    ERIC Educational Resources Information Center

    Zajonc, Tristan

    2012-01-01

    Effective policymaking requires understanding the causal effects of competing proposals. Relevant causal quantities include proposals' expected effect on different groups of recipients, the impact of policies over time, the potential trade-offs between competing objectives, and, ultimately, the optimal policy. This dissertation studies causal…

  18. A Complex Systems Approach to Causal Discovery in Psychiatry.

    PubMed

    Saxe, Glenn N; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C; Aliferis, Constantin

    2016-01-01

    Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry.

  19. Aging and Retrospective Revaluation of Causal Learning

    PubMed Central

    Mutter, Sharon A.; Atchley, Anthony R.; Plumlee, Leslie M.

    2011-01-01

    In a two-stage causal learning task, young and older participants first learned which foods presented in compound were followed by an allergic reaction (e.g., STEAK - BEANS → REACTION) and then the causal efficacy of one food from these compounds was revalued (e.g., BEANS → NO REACTION). In Experiment 1, unrelated food pairs were used and although there were no age differences in compound or single cue – outcome learning, older adults did not retrospectively revalue the causal efficacy of the absent target cues (e.g. STEAK). However, they had weaker within – compound associations for the unrelated foods and this may have prevented them from retrieving the representations of these cues. In Experiment 2, older adults still showed no retrospective revaluation of absent cues even though compound food cues with pre-existing associations were used (e.g., STEAK - POTATO) and they received additional learning trials. Finally, in Experiment 3, older adults revalued the causal efficacy of the target cues when small, unobtrusive icons of these cues were present during single cue revaluation. These findings suggest that age – related deficits in causal learning for absent cues are due to ineffective associative binding and reactivation processes. PMID:21843025

  20. NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

    PubMed Central

    Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor

    2011-01-01

    Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID