PINS chemical identification software
Caffrey, Augustine J.; Krebs, Kennth M.
2004-09-14
An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.
[Studies on chemical constituents from leaves and stems of Aconitum coreanum].
Li, Yan; Liang, Shuai
2009-05-01
To study the chemical constituents in the leaves and stems of Aconitum coreanum. The isolation and purification of chemical constituents were carried out on silica gel and polyamide column chromatographic. Their structures were identified by physico-chemical properties and spectral analysis. Five compounds were obtained and their structures were identified as guan-fu base I (1), guan-fu base R (2), beta-sitosterol (3), D-mannitol (4), daucosterol (5). Compound 2 is a new compound. Compounds 1 and 3, 4 are isolated from the leaves and stems of A. coreanum for the first time.
[Chemical Constituents from Mallotus paniculatus (II)].
Zhu, Chun-ling
2015-04-01
To study the chemical constituents of Mallotus paniculaus radix. The compounds were isolated with column chromatography. The chemical structures were identified by spectral and spectroscopic technology. Seven compounds were isolated from the n-BuOH extract and identified as scopoletin(1), isoscopletin(2), erythordiol(3), apigenin(4), 4-methoxybenzoic acid(5), acetylaleuritolic acid(6) and β-daucosterol (7). compounds 2 - 6 are isolated from this plant for the first time.
Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents.
Adeyemi, Oluyomi Stephen; Sugi, Tatsuki; Han, Yongmei; Kato, Kentaro
2018-02-01
Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease that affects nearly one-third of the human population. The primary infection can be asymptomatic in healthy individuals but may prove fatal in immunocompromised individuals. Available treatment options for toxoplasmosis patients are limited, underscoring the urgent need to identify and develop new therapies. Non-biased screening of libraries of chemical compounds including the repurposing of well-characterized compounds is emerging as viable approach to achieving this goal. In the present investigation, we screened libraries of natural product and FDA-approved compounds to identify those that inhibited T. gondii growth. We identified 32 new compounds that potently inhibit T. gondii growth. Our findings are new and promising, and further strengthen the prospects of drug repurposing as well as the screening of a wide range of chemical compounds as a viable source of alternative anti-parasitic therapeutic agents.
Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.
2015-01-01
Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798
[Chemical constituents from herbs of Swertia delavayi].
Xia, Cong-long; Liu, Guang-ming; Zhang, Hao
2008-08-01
To isolate and identify the chemical constituents of 95% alcohol extract from Swertia delavayi. The compounds were isolated and purified by column chromatogrphy and their structures were identified by the physicochemical properties and spectral analyses. Seven compounds were isolated and identified as oleanolic acid (1), gentiopcroside (2), swertiamarin (3), daucosterol (4), swertiadecoraxanthone-II (5), isovitexin (6), isoorientin (7). Compounds 2-7 were isolated from S. delavayi for the first time. While the compound 6 was firstly reported from the genus Swertia.
[Studies on chemical constituents of cultivated Cistanche salsa].
Yang, Jian-Hu; Hu, Jun-Ping; Rena, Kasimu; Du, Nian-Sheng
2008-11-01
To study the chemical constituents of cultivated Cistanche salsa. Compounds were isolated and purified on several chromatography, and then were identified by physico-chemical properties and structurally elucidated by spectral analysis. Seven compounds were isolated and identified as beta-sitosterol (I), daucosterol (II), beta-sitosteryl glucoside 3'-O-heptadecoicate (III), 8-hydroxygeraniol 1-beta-D-glucopyranoside (IV), 2-methanol-5-hydroxy-pyridine (V), betaine (VI), galactitol (VII). The chemical constituents of artificial cultivated Cistanche salsa are studied for the first time. Among them, compound III and IV are isolated from the plant for the first time, compound V is isolated from this genus for the first time.
Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling.
Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.
Shah, Falgun; Greene, Nigel
2014-01-21
The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds.
40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...
40 CFR 721.9668 - Organotin lithium compound.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...
40 CFR 721.9668 - Organotin lithium compound.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...
40 CFR 721.9668 - Organotin lithium compound.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...
40 CFR 721.9668 - Organotin lithium compound.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...
40 CFR 721.9668 - Organotin lithium compound.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...
Chemical Biology Probes from Advanced DNA-encoded Libraries.
Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas
2016-02-19
The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.
Chen, Lei; Chu, Chen; Lu, Jing; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong
2015-09-01
Cancer is one of the leading causes of human death. Based on current knowledge, one of the causes of cancer is exposure to toxic chemical compounds, including radioactive compounds, dioxin, and arsenic. The identification of new carcinogenic chemicals may warn us of potential danger and help to identify new ways to prevent cancer. In this study, a computational method was proposed to identify potential carcinogenic chemicals, as well as non-carcinogenic chemicals. According to the current validated carcinogenic and non-carcinogenic chemicals from the CPDB (Carcinogenic Potency Database), the candidate chemicals were searched in a weighted chemical network constructed according to chemical-chemical interactions. Then, the obtained candidate chemicals were further selected by a randomization test and information on chemical interactions and structures. The analyses identified several candidate carcinogenic chemicals, while those candidates identified as non-carcinogenic were supported by a literature search. In addition, several candidate carcinogenic/non-carcinogenic chemicals exhibit structural dissimilarity with validated carcinogenic/non-carcinogenic chemicals.
[Study on the chemical constituents of the fruit handles from Schizandra chinensis].
Shi, Lin; He, Xiao-Xia; Pan, Ying; Han, Ling; Yang, Xiao-Ou; Zhao, Yu-Qing
2009-07-01
To study the chemical constituents of the fruit handles from Schizandra chinensis. Compounds from the 85% ethanol extracts were isolated by silica gel, Sephadex LH-20, recrystal, etc., and their structures were identified by the spectral analysis and chemical evidence. Eight compounds were isolated and identified as wuweizisu C (I), ganwuweizic acid(II), beta-sitosterol(III), gomisin A(IV), schizandrin(V), daucosterol(VI), wuweizisu A(VII), gamma-schizandrin (VIII). Compounds I - VIII are isolated from the fruit handles of Schizandra chinensis for the first time.
[Studies on the chemical constituents of Phlomis younghusbandii].
Gao, Yong-li; Lin, Rui-chao; Wang, Gang-li; Zhao, Han-ru; Gao, Yuan; Ciren, Bianha
2007-10-01
To study the chemical constituents of Phlomis younghusbandii. Compounds were isolated from the ethanolic extract by silica gel column chromatography, and their structures were identified by physical and chemical evidences and spectral methods. Eight compounds were isolated and identified respectively as 8-acetylshanzhiside methyl ester (1), shanzhiside methyl ester (2), phlomiol (3), 2-butoxy-2-(hydroxymthyl) tetrahydro-2H-3,4,5-pyrantriol (4), sesamoside (5), pulchelloside-I (6), luteolin-7-O-beta-D-glucopyranoside (7) and daucosterol (8). All the compounds were isolated from the plant for the first time.
[Study on the chemical constituents of Rhizoma Cyperi].
Wu, Xi; Xia, Hou-Lin; Huang, Li-Hua; Chen, Dan-Dan; Chen, Jin-Yu; Weng, Hai-Ting
2008-07-01
To study the chemical constituents of Rhizoma Cyperi. The constituents were separated and purified by silica gel column chromatography, their structures were identified on the basis of physico-chemical properties and spectral data. Six compounds were isolated and identified as physicion (1), hexadecanoic acid (2), beta-sitosterol (3), stigmasterol (4), catenarin (5), daucosterol (6). Compounds 1, 4, 5 were isolated from this plant for the first fime.
Faridi, Mohd Hafeez; Maiguel, Dony; Brown, Brock T.; Suyama, Eigo; Barth, Constantinos J.; Hedrick, Michael; Vasile, Stefan; Sergienko, Eduard; Schürer, Stephan; Gupta, Vineet
2010-01-01
Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique. PMID:20188705
Chuprov-Netochin, Roman; Neskorodov, Yaroslav; Marusich, Elena; Mishutkina, Yana; Volynchuk, Polina; Leonov, Sergey; Skryabin, Konstantin; Ivashenko, Andrey; Palme, Klaus; Touraev, Alisher
2016-09-06
Small synthetic molecules provide valuable tools to agricultural biotechnology to circumvent the need for genetic engineering and provide unique benefits to modulate plant growth and development. We developed a method to explore molecular mechanisms of plant growth by high-throughput phenotypic screening of haploid populations of pollen cells. These cells rapidly germinate to develop pollen tubes. Compounds acting as growth inhibitors or stimulators of pollen tube growth are identified in a screen lasting not longer than 8 h high-lighting the potential broad applicability of this assay to prioritize chemicals for future mechanism focused investigations in plants. We identified 65 chemical compounds that influenced pollen development. We demonstrated the usefulness of the identified compounds as promotors or inhibitors of tobacco and Arabidopsis thaliana seed growth. When 7 days old seedlings were grown in the presence of these chemicals twenty two of these compounds caused a reduction in Arabidopsis root length in the range from 4.76 to 49.20 % when compared to controls grown in the absence of the chemicals. Two of the chemicals sharing structural homology with thiazolidines stimulated root growth and increased root length by 129.23 and 119.09 %, respectively. The pollen tube growth stimulating compound (S-02) belongs to benzazepin-type chemicals and increased Arabidopsis root length by 126.24 %. In this study we demonstrate the usefulness of plant pollen tube based assay for screening small chemical compound libraries for new biologically active compounds. The pollen tubes represent an ultra-rapid screening tool with which even large compound libraries can be analyzed in very short time intervals. The broadly applicable high-throughput protocol is suitable for automated phenotypic screening of germinating pollen resulting in combination with seed germination assays in identification of plant growth inhibitors and stimulators.
Ambiguity of non-systematic chemical identifiers within and between small-molecule databases.
Akhondi, Saber A; Muresan, Sorel; Williams, Antony J; Kors, Jan A
2015-01-01
A wide range of chemical compound databases are currently available for pharmaceutical research. To retrieve compound information, including structures, researchers can query these chemical databases using non-systematic identifiers. These are source-dependent identifiers (e.g., brand names, generic names), which are usually assigned to the compound at the point of registration. The correctness of non-systematic identifiers (i.e., whether an identifier matches the associated structure) can only be assessed manually, which is cumbersome, but it is possible to automatically check their ambiguity (i.e., whether an identifier matches more than one structure). In this study we have quantified the ambiguity of non-systematic identifiers within and between eight widely used chemical databases. We also studied the effect of chemical structure standardization on reducing the ambiguity of non-systematic identifiers. The ambiguity of non-systematic identifiers within databases varied from 0.1 to 15.2 % (median 2.5 %). Standardization reduced the ambiguity only to a small extent for most databases. A wide range of ambiguity existed for non-systematic identifiers that are shared between databases (17.7-60.2 %, median of 40.3 %). Removing stereochemistry information provided the largest reduction in ambiguity across databases (median reduction 13.7 percentage points). Ambiguity of non-systematic identifiers within chemical databases is generally low, but ambiguity of non-systematic identifiers that are shared between databases, is high. Chemical structure standardization reduces the ambiguity to a limited extent. Our findings can help to improve database integration, curation, and maintenance.
Bioassay-directed chemical analysis fractionation has been used for 30 years to identify mutagenic classes of compounds in complex mixtures. Most studies have used the Salmonella (Ames) mutagenicity assay, and we have recently applied this methodology to two standard reference sa...
40 CFR 721.9970 - o-Xylene compound (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false o-Xylene compound (generic name). 721... Substances § 721.9970 o-Xylene compound (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an o-xylene compound (PMN P-95...
Soso, Simone B; Koziel, Jacek A
2016-06-25
Scent-marking is the most effective method of communication in the presence or absence of a signaler. These complex mixtures result in a multifaceted interaction triggered by the sense of smell. The objective was to identify volatile organic compound (VOC) composition and odors emitted by total marking fluid (MF) associated with Siberian tigers (Panthera tigris altaica). Siberian tiger, an endangered species, was chosen because its MF had never been analyzed. Solid phase microextraction (SPME) for headspace volatile collection combined with multidimensional gas chromatography-mass spectrometry-olfactometry for simultaneous chemical and sensory analyses were used. Thirty-two VOCs emitted from MF were identified. 2-acetyl-1-pyrroline, the sole previously identified compound responsible for the "characteristic" odor of P. tigris MF, was identified along with two additional compounds confirmed with standards (urea, furfural) and four tentatively identified compounds (3-methylbutanamine, (R)-3-methylcyclopentanone, propanedioic acid, and 3-hydroxybutanal) as being responsible for the characteristic aroma of Siberian tiger MF. Simultaneous chemical and sensory analyses improved characterization of scent-markings and identified compounds not previously reported in MF of other tiger species. This research will assist animal ecologists, behaviorists, and zookeepers in understanding how scents from specific MF compounds impact tiger and wildlife communication and improve management practices related to animal behavior. Simultaneous chemical and sensory analyses is applicable to unlocking scent-marking information for other species.
Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D
2015-12-18
There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.
[Studies on chemical constituents from Elaeocarpus sylvestris].
Zhang, Hong-Chao; Shi, Hai-Ming
2008-10-01
To study the chemical constituents of Elaeocarpus sylvestris. The compounds were isolated by chromatographic methods and their structures were elucidated by physico-chemical properties and spectral analysis. Six compounds were isolated and identified as: 2-hydroxy-benzaldehyde (1), coniferyl alcohol (2), umbelliferone (3), scopoletin (4), beta-sitosterol (5), daucosterol (6). All above compounds are isolated from Elaeocarpus Genus for the first time.
Marin, Stephanie J; Doyle, Kelly; Chang, Annie; Concheiro-Guisan, Marta; Huestis, Marilyn A; Johnson-Davis, Kamisha L
2016-01-01
Some amphetamine (AMP) and ecstacy (MDMA) urine immunoassay (IA) kits are prone to false-positive results due to poor specificity of the antibody. We employed two techniques, high-resolution mass spectrometry (HRMS) and an in silico structure search, to identify compounds likely to cause false-positive results. Hundred false-positive IA specimens for AMP and/or MDMA were analyzed by an Agilent 6230 time-of-flight (TOF) mass spectrometer. Separately, SciFinder (Chemical Abstracts) was used as an in silico structure search to generate a library of compounds that are known to cross-react with AMP/MDMA IAs. Chemical formulas and exact masses of 145 structures were then compared against masses identified by TOF. Compounds known to have cross-reactivity with the IAs were identified in the structure-based search. The chemical formulas and exact masses of 145 structures (of 20 chemical formulas) were compared against masses identified by TOF. Urine analysis by HRMS correlates accurate mass with chemical formulae, but provides little information regarding compound structure. Structural data of targeted antigens can be utilized to correlate HRMS-derived chemical formulas with structural analogs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Attene-Ramos, Matias S.; Huang, Ruili; Michael, Sam; Witt, Kristine L.; Richard, Ann; Tice, Raymond R.; Simeonov, Anton; Austin, Christopher P.
2014-01-01
Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p < 0.05]. More than 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. Conclusions: Our multiplexed qHTS approach allowed us to generate a robust and reliable data set to evaluate the ability of thousands of drugs and environmental compounds to decrease MMP. The use of structure-based clustering analysis allowed us to identify molecular features that are likely responsible for the observed activity. Citation: Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect 123:49–56; http://dx.doi.org/10.1289/ehp.1408642 PMID:25302578
Chen, Yan-ping; Tan, Dao-peng; Zeng, Qi; Wang, Yu; Yan, Qi-xin; Zeng, Ling-jie
2015-03-01
To study the chemical constituents from the leaves of Acanthus ilicifolius. The compounds were isolated by silica and gel column chromatographic methods and identified by spectoscopic analysis. The anti-influenza virus activities of these compounds were obtained by measuring the neuraminidase activity of influenza virus. Five compounds were isolated and their structures were identified as blepharin(1), acteoside(2), isoverbascoside(3), daucosterol(4), and 3-O-β-D-glucopyranosyl-stigmasterol(5). All the compounds are isolated from the leaves of Acanthus ilicifolius for the first time, and compounds 1 ~ 3 exhibit the anti-influenza virus activities.
[Studies on chemical constitutents in roots of Jasminum sambac].
Zhang, Zheng-fu; Bian, Bao-lin; Yang, Jian; Tian, Xiu-feng
2004-03-01
To isolate and identify the chemical constitutents in roots of Jasminum sambac. The compounds were isolated by means of chromatography and the structures were identified on the basis of physical and spectral data. Dotriacontanoic acid, dotriacontanol, oleanolic acid, daucosterol and hesperidin were elucidated. All compounds were found in this plant for the first time.
Design of a fragment library that maximally represents available chemical space.
Schulz, M N; Landström, J; Bright, K; Hubbard, R E
2011-07-01
Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).
[Studies on the chemical constituents of Gueldenstaedtia stenophylla].
Wei, You-xia; Chen, Li; Wang, Jun-xian
2007-08-01
To study the chemical constituents of Gueldenstaeditia stenophylla. The constituents were isolated by alcohol extraction, column chromatography on silica gel. Their structures were elucidated by chemical and spectroscopic methods. Six compounds were obtained, and five of them were identified as n-hexadecanioc acid (I), beta-sitosterol (II), daucosterol (III), apigenin (IV), D-fructose (VI). Compound V was being determined. Five compounds are isolated from Gueldenstaedtia stenophylla and compounds I, III are extracted from Gueldenstaedtia Fisch for the first time.
Functional annotation of chemical libraries across diverse biological processes.
Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles
2017-09-01
Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.
Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin
2015-11-01
The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cohall, D; Carrington, S
2012-01-01
Barbados has a strong base in the practice of folklore botanical medicines. Consistent with the rest of the Caribbean region, the practice is criticized due to lack of evidence on the efficacy and safety testing. The objectives of this review article are i) to categorize and identify plants by their possible indications and their scientific classification and ii) to determine if the chemical constituents of the plants will be able to provide some insight into their possible uses in folklore medicine based on existing scientific research on their chemical constituents and also by their classification. A review of the folklore botanical medicines of Barbados was done. Plants were primarily grouped based on their use to treat particular communicable and non-communicable diseases. Plants were then secondarily grouped based on their families. The chemical profiles of the plants were then compared to established drug compounds currently approved for the conventional treatment of illnesses and also to established phytochemicals. The extensive literature review identified phytochemical compounds in particular plants used in Barbadian folklore medicine. Sixty-six per cent of reputed medicinal plants contain pharmacologically active phytochemicals; fifty-one per cent of these medicinal plants contain phytochemicals with activities consistent with their reported use. Folklore botanical medicine is well grounded on investigation of the scientific rationale. The research showed that fifty-one per cent of the identified medicinal plants have chemical compounds which have been identified to be responsible for its associated medicinal activity. To a lesser extent, approved drug compounds from drug regulatory bodies with similar chemical structure to the bioactive compounds in the plants proved to validate the use of some of these plants to treat illnesses.
40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...
40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...
40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...
40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...
40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...
[Study on the chemical constituets in ethyl acetante extraction from semen litchi].
Huang, Kai-Wen; Guo, Jie-Wen; Chen, Jian-Mei; Lin, Li-Jing; Xu, Feng
2012-01-01
To study the chemical constituents in ethyl acetate extraction of Semen Litchi. The compounds were isolated and purified by column chromatography on silica gel and Sephadex LH-20 coupled with preparative silica gel TLC, their structures were identified by physicochemical properties and spectrum analysis. Five compounds were isolated and identified as stigmasterol (1), P-hydroxy-benzaldehyde (2), protocatechuic acid (3), daucosterol (4) and kaempferol-3-O-beta-D-glucopyranoside (5). Compounds 2 and 5 are obtained from this plant for the first time.
[Research on chemical constituents from stem of Gymnema sylvestre].
Zhen, Han-shen; Zhu, Xue-yan; Lu, Ru-mei; Liang, Jie; Qiu, Qin; Meng, Qi-miao
2008-08-01
To study on the chemical constituents from the stem of Gymnema sylvestre. The constituents were extracted by percolation with ethanol. Then the extract was separated by systemic solvent separation methods. The part of n-butanol extract was isolated and purified by macroporous adsorptive resins, silica gel column chromatography, sephadex gel column chromatography and recrystallization. The isolated compounds were identified by spectrum methods. Eight compounds were isolated and identified as fallows: Conduritol A(I), 1-Heptadecanol(II), Stigmasterol glucoside(III), 1-Quercitol(IV), 1-Octadecanol(V), Potassium nitrate(VI), Lupeol cinnamate(VII), Stigmasterol(VIII). Chemical compounds II, III, V, VII are firstly obtained from this plant.
[Studies on chemical constituents of Dendrobium crystallinum].
Wang, Lei; Zhang, Chao-feng; Wang, Zheng-tao; Zhang, Mian; Shao, Li; Xu, Luo-shan
2008-08-01
To study the chemical constituents of Dendobium crystallinum. Compounds were isolated and purified by silica gel and Sephadex LH-20 column chromatography. Their structures were identified by physicochemical properties and spectral analyses. Nine compounds were obtained and identified as: 4, 4'-dihydroxy-3, 5-dimethoxybi-benzyl (1), gigantol (2), naringenin (3) , p-hydroxybenzoic acid (4), n-tetracosyl trans-p-cou-marate (5), n-octacosy trans-p-coumarate (6), n-hexacosyl trans-ferulate (7), stigmasterol (8), daucosterol (9). All these compounds were obtained from this plant for the first time, compounds 1 and 4 were isolated firstly from the genus.
[Studies on alkaloids of Asteropyrum cavaleriei (Lévl. et Vant.) Drumm. et Hutch].
Xu, H L
2000-08-01
To investigate the chemical constituents in the plant of Asteropyrum cavaleriei. The Chemical constituents were extracted with cation exchange resin 732 and separated by column chromatography, and the structures were identified by spectral analysis. Four compounds were isolated and identified as berberine, berberrabine, palmatine and magnoflorine. All compounds were separated from A. Cavaleriei for the first time.
[Studies on chemical constituents of aerial parts of Ammopiptanthus mongolicus].
Tian, Xiao-Ming; Chen, Shi-Zhong; Tu, Peng-Fei; Lei, Lian-Di
2008-10-01
To investigate the chemical constituents of the aerial parts of Ammopiptanthus mongolicus. The chemical constituents were isolated by various column chromatographic methods. The structures were identified by spectral data. Ten compounds were isolated and identified as m-hydroxybenzoic acid (1), 1-(4-hydroxyphenyl) ethanone (2), beta-sitosterol (3), (-)-syringaresinol (4), (+)-lariciresinol (5), blumenol A (6), blumenol B (7), beta-daucosterol (8), coniferin (9), syringin (10). The ten compounds were obtained from the genus Ammopiptanthus for the first time.
Jia, Zhixin; Wu, Caisheng; Jin, Hongtao; Zhang, Jinlan
2014-11-15
Saussurea involucrata is a rare traditional Chinese medicine (TCM) that displays anti-fatigue, anti-inflammatory and anti-tumor effects. In this paper, the different chemical components of Saussurea involucrata were characterized and identified over a wide dynamic range by high-performance liquid chromatography coupled with high-resolution hybrid mass spectrometry (HPLC/HRMS/MS(n)) and the mass spectral trees similarity filter (MTSF) technique. The aerial parts of Saussurea involucrata were extracted with 75% ethanol. The partial extract was separated on a chromatography column to concentrate the low-concentration compounds. Mass data were acquired using full-scan mass analysis (resolving power 50,000) with data-dependent incorporation of dynamic exclusion analysis. The identified compounds were used as templates to construct a database of mass spectral trees. Data for the unknown compounds were matched with those templates and matching candidate structures were obtained. The detected compounds were characterized based on matching to candidate structures by the MTSF technique and were further identified by their accurate mass weight, multiple-stage analysis and fragmentation patterns and through comparison with literature data. A total of 38 compounds were identified including 19 flavones, 11 phenylpropanoids and 8 sphingolipids. Among them, 7 flavonoids, 8 phenylpropanoids and 8 sphingolipids were identified for the first time in Saussurea involucrata. HPLC/HRMS/MS(n) combined with MTSF was successfully used to discover and identify the chemical compounds in Saussurea involucrata. The results indicated that this combined technique was extremely useful for the rapid detection and identification of the chemical components in TCMs. Copyright © 2014 John Wiley & Sons, Ltd.
Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake
Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung
2015-01-01
High concentrations of cesium (Cs+) inhibit plant growth but the detailed mechanisms of Cs+ uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs+, chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs+ tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs+ concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs+. Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs+ tolerance enhancer isolated here renders plants tolerant to Cs+ by inhibiting Cs+ entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland. PMID:25740624
Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.
Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung
2015-03-05
High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs(+) tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs(+) concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs(+). Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs(+) tolerance enhancer isolated here renders plants tolerant to Cs(+) by inhibiting Cs(+) entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.
[Chemical constituents of Pileostegia viburnoides var. glabrescens].
Zou, Ju-ying; Chen, Sheng-huang; Li, Qin-wen; Ou, Yang-wen; Chen, Han-jun; Wang, Wei
2012-05-01
To study the chemical constituents of Pileostegia viburnoides var. glabrescens. The compounds were isolated and purified by various techniques. Their structures were determined by physicochemical properties and spectral analysis. Five compounds were isolated and identified as friedelin (1), beta-sitosterol (2), umbelliferone (3), daucosterol (4) and skimmin (5). All the compounds were isolated from this genus for the first time.
ERIC Educational Resources Information Center
Scholtz, R. G.; And Others
This final report of a feasibility study describes the research performed in assessing the requirements for a chemical signature file and search scheme for organic compound identification and information retrieval. The research performed to determined feasibility of identifying an unknown compound involved screening the compound against a file of…
[Chemical constituents from flowers of Chrysanthemum indicum].
Wang, Jinyue; Chen, Dong; Liang, Lijuan; Xue, Peifeng; Tu, Pengfei
2010-03-01
To investigate the chemical constituents of the flowers of Chrysanthemum indicum. The chemical constituents were isolated by various column chromatographic methods. The structures were identified by spectral data. Twelve compounds were isolated and identified as acacetin (1), tricin (2), 2',4'-dihydroxychalcone(3), 5-hydroxy-4',7-dimethoxyflavon(4),7hydroxyflavonone (5), isorhamnetin (6),5,6,7-trihydroxy- 3',4', 5'-trimethoxyflanon (7 ), quercetin (8) , (3 beta, 5 alpha, 6 beta, 7 beta, 14 beta)-eudesmen-3,5,6,11-tetrol (9), syringaresinol (10), liriodendrin (11), and genkwanin (12). Compounds 3-7, 10-12 were isolated from this species for the first time, and compounds 3, 5, 7, 10, 11 were obtained from genus Chrysanthemum for the first time.
Profiling of the Tox21 Chemical Collection for Mitochondrial ...
Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding how different environmental chemicals and drug-like molecules impact mitochondrial function represents an initial step in predicting exposure-related toxic effects and defining a possible role for such compounds in the onset of various diseases. OBJECTIVES: To identify individual chemicals and general structural features associated with the disruption of mitochondrial membrane potential (MMP). METHODS: We used a multiplexed quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 10,000 compound library (~8300 unique chemicals) at 15 concentrations in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. RESULTS: In the primary screening, approximately 11% of the compounds (913 unique compounds) decreased the MMP after 1 h of treatment without affecting cell viability. Additionally, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay) ≤ 3, p<0.05]. Over 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. CONCLUSIONS: Our multiplexed qHTS approach
[Study on the constituents of petroleum ether fraction of Buxus microphylla].
Dai, Zhi-Kai; Liang, Jun; Su, Xiao-Jian; Xu, Qing; Zhang, Hui-Qin
2009-07-01
To study the chemical constituents from the petroleum ether fraction of Buxus microphylla. The petroleum ether fraction of Buxus microphylla was isolated and identified by silica gel column chromatography. And the anticancer activity of different chemical constituents was measured by MTT reduction test. Eight compounds were isolated and identified as lupeol (1), butulin (3), beta-sitosterol (4), stigmasterol (5), dibutyl phthalate (6), 3beta, 30-dihydroxy-lup-20 (29) ene (7), daucosterol (8). Compound 7 inhibited KB cells' proliferation in a dose-dependent manner. Compounds 2 - 5, 7, 8 are isolated from this genus for the first time. Compound 7 has certainly anticancer effects.
[Chemical constituents from supercritical CO2 extraction of Schisandra chinensis].
Zhu, Hong-yan; Lin, Hai-cheng; Wang, Guo-li; Zhang, Lian-xue
2014-11-01
To study the chemical constituents from the supercritical CO2 extraction of Schisandra chinensis. The compounds were separated and purified by conventional column chromatography and their structures were identified by spectroscopic methods. Nine compounds were isolated from the supercritical CO2 extraction of Schisandra chinensis, and their structures were identified as chrysophanol(1),schisandrin B(2), β-sitosterol(3), schisandrin C(4),schisandrol A(5), angeloylgomisin H(6), daucosterol(7) 1, 5-dimethyl citrate (8), and shikimic acid (9). Compounds 1, 8 and 9 are isolated from Schisandra chinensis for the first time,and compound 1 as an anthraquinone is isolated from this genus for the first time.
[Studies on the chemical constituents of the ethyl acetate portion of Nervilia fordii].
Zhen, Han-shen; Zhou, Yan-yuan; Yuan, Ye-fei; Mo, Huan-heng; Zhong, Zhen-guo; Liang, Chen-yan
2007-08-01
To study the chemical constituents of the ethyl acetate portion in the herb of Nervilia fordii from guangxi. The constituents were separated and purified by using column chromatography with silica gel. These compounds were identified by their physical and spectral data. Five compounds were isolated and identified as norleucine (crystal I), 24 (S/beta)-dihydrocycloeucalenol-(E)-p-hydroxy cinnamate (crystal II) , rhamnocitrin (crystal III), rhamnazin (crystal IV), daucosterol (crystal V). Compounds I , II, III, IV, V were isolated from this plant for the first time.
[Studies on chemical constituents of Pinus armandii].
Yang, Xin; Ding, Yi; Sun, Zhi-hao; Zhang, Dong-ming
2005-05-01
To study chemical constituents from pine cone of Pinus armandii Franch. The constituents were isolated by chromatographic method and the structures were identified on the basis of spectral analysis. Four compounds were identified as 7-oxo-12alpha, 13beta-dihydroxyabiet-8(14)-en18-oic acid (I), 7-oxo-13beta-hydroxyabiet-8 (14)-en-18-oic acid (II), 8 (14)-podocarpen-13-on-18-oic acid (III) and lambertianic acid (IV). Compound I is a new diterpenoid and compounds II, III were isolated from this plant for the first time.
Rodriguez-Furlán, Cecilia; Hicks, Glenn R; Norambuena, Lorena
2014-01-01
The plant endomembrane trafficking system is a highly complex set of processes. This complexity presents a challenge for its study. Classical plant genetics often struggles with loss-of-function lethality and gene redundancy. Chemical genomics allows overcoming many of these issues by using small molecules of natural or synthetic origin to inhibit specific trafficking proteins thereby affecting the processes in a tunable and reversible manner. Bioactive chemicals identified by high-throughput phenotype screens must be characterized in detail starting with understanding of the specific trafficking pathways affected. Here, we describe approaches to characterize bioactive compounds that perturb vesicle trafficking. This should equip researchers with practical knowledge on how to identify endomembrane-specific trafficking pathways that may be perturbed by specific compounds and will help to eventually identify molecular targets for these small molecules.
2015-01-01
Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter. PMID:25634295
Hinners, Paige; O'Neill, Kelly C; Lee, Young Jin
2018-03-26
Fingerprints, specifically the ridge details within the print, have long been used in forensic investigations for individual identification. Beyond the ridge detail, fingerprints contain useful chemical information. The study of fingerprint chemical information has become of interest, especially with mass spectrometry imaging technologies. Mass spectrometry imaging visualizes the spatial relationship of each compound detected, allowing ridge detail and chemical information in a single analysis. In this work, a range of exogenous fingerprint compounds that may reveal a personal lifestyle were studied using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Studied chemical compounds include various brands of bug sprays and sunscreens, as well as food oils, alcohols, and citrus fruits. Brand differentiation and source determination were possible based on the active ingredients or exclusive compounds left in fingerprints. Tandem mass spectrometry was performed for the key compounds, so that these compounds could be confidently identified in a single multiplex mass spectrometry imaging data acquisition.
[Study on Chemical Constituents from Roots of Lonicera macranthoides].
Liu, Wen-juan; Chen, Yu; Ma, Xin; Zhao, You-yi; Feng, Xu
2014-12-01
To study chemical constituents of the roots of Lonicera macranthoides. The chemical constituents were isolated and purified by means of several chromatographic techniques and their structures were elucidated by spectroscopic methods. Seven compounds were isolated and identified as ribenol (1), excoecarin C (2), 18-hydroxy-13-epi-manoyloxide (3), asiatic acid (4), oleanolic acid (5), β-sitosterol (6) and β-daucosterol (7). Compounds 1-4 are obtained from this genus for the first time. Compound 5 is obtained from this plant for the first time. All the compounds are found from the roots of Lonicera mac- ranthoides for the first time.
Meng, Li-Li; Huang, Chu-Sheng; Liu, Hong-Xing; Chen, Xi-Hui
2009-10-01
To study the chemical constituents of ethyl acetate extract from the roots of Actinidia chrysantha. Chromatographic methods were used to isolate the compounds from ethyl acetate extract from the roots of Actinidia chrysantha and chemical and spectral methods were used to elucidate the structures of the isolated compounds. Five compounds were identified as stigmast-3, 6-dione (I), beta-sitosterol (II), ursolicacid (III), beta-daucosterol (IV), 2alpha, 3beta, 23-triol-12-en-28-ursolic acid (V). Those compounds are obtained from the plant for the first time.
Charting Biologically Relevant Spirocyclic Compound Space.
Müller, Gerhard; Berkenbosch, Tim; Benningshof, Jorg C J; Stumpfe, Dagmar; Bajorath, Jürgen
2017-01-12
Spirocycles frequently occur in natural products and experience increasing interest in drug discovery, given their richness in sp 3 centers and distinct three-dimensionality. We have systematically explored chemical space populated with currently available bioactive spirocycles. Compounds containing spiro systems were classified and their scaffolds and spirocyclic ring combinations analyzed. Nearly 47 000 compounds were identified that contained spirocycles in different structural contexts and were active against roughly 200 targets, among which several pharmaceutically relevant members of the G protein-coupled receptor (GPCR) family were identified. Spirocycles and corresponding compounds displayed notable scaffold diversity but contained only limited numbers of combinations of differently sized rings. These observations indicate that there should be significant potential to further expand spirocyclic chemical space for drug discovery, exploiting the privileged substructure concept. Inspired by those findings, we embarked on the design and chemical synthesis of three distinct novel spirocyclic scaffolds that qualify for downstream library synthesis, thus exploring principally new chemical space with high potential for pharmaceutical research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compound prioritization methods increase rates of chemical probe discovery in model organisms
Wallace, Iain M; Urbanus, Malene L; Luciani, Genna M; Burns, Andrew R; Han, Mitchell KL; Wang, Hao; Arora, Kriti; Heisler, Lawrence E; Proctor, Michael; St. Onge, Robert P; Roemer, Terry; Roy, Peter J; Cummins, Carolyn L; Bader, Gary D; Nislow, Corey; Giaever, Guri
2011-01-01
SUMMARY Pre-selection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in S. cerevisiae and identified ~7,500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. This data was used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7,500 growth-inhibitory molecules has been made commercially available and the computational model and filter used are provided. PMID:22035796
ION COMPOSITION ELUCIDATION (ICE): A HIGH ...
Unidentified Organic Compounds. For target analytes, standards are purchased, extraction and clean-up procedures are optimized, and mass spectra and retention times for the chromatographic separation are obtained for comparison to the target compounds in environmental sample extracts. This is an efficient approach and selective extraction and clean-up can decrease detection limits for the target compounds relative to analyzing a raw extract containing compounds that yield mass interferences. But selection of a class of compounds for study ignores many potentially toxic compounds. All compounds should be considered, because even trace amounts of compounds found to be endocrine disrupting chemicals might influence embryonic development. Before the toxicology of the hundreds of compounds found in sewage treatment effluents and water reservoirs can be studied alone and in mixtures, they must first be identified. A given compound might be one of the 3800 high production volume chemicals used commercially, a human or microorganism metabolite of such a compound, a photochemical degradation, hydrolysis, or thermal decomposition product, a chlorination or ozonolysis byproduct for drinking water samples, or a naturally occurring compound. Numerous researchers targeting assorted classes of analytes could easily overlook or be unable to identify many of these compounds. Most non-targeted compounds will not be in mass spectral libraries and can seldom be tentatively identifi
Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1993-01-01
Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.
Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...
[Chemical Compositions from Stems and Branches of Sorbaria arborea].
Wang, Jian; Ma, Yang-min; Yan, Meng-ru; Xu, Qian; Qu, Zi-rui; Miao, Zhi
2015-10-01
To investigate the chemical constituents from the stems and branches of Sorbaria arborea. The chemical constituents were isolated and purified by silica gel column chromatography, Sephadex LH-20 column chromatography and recrystallization. Their structures were identified by physicochemical properties and spectra analysis. Ten compounds were isolated and identified as ursolic acid (1), cucurbitacin F (2), (-) -epicatechin (3), daucosterol (4), arbutin (5), 3-O-β-anthemisol (6), 2,6-dimethoxy-p-hydroquinone-4-O-β-D-glucopyranoside (7), lupeol (8), betulin (9) and lup-20 (29) -en-3β, 30-diol (10). All the compounds are isolated from this plant for the first time, and compounds 1, 6 - 8 and 10 are obtained from Sorbaria genus for the first time.
40 CFR 721.10029 - Isocyanate compound, modified with methoxysilane (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... to those contained in the corresponding section 5(e) consent order. (ii) Hazard communication program...) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as isocyanate compound, modified with methoxysilane (PMN P-01-918) is subject to reporting under...
Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas
Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions.more » Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.« less
[Chemical constituents in aerial part of Reineckea carnea].
Xu, Xin; Fu, Hong-Zheng
2008-10-01
To study the chemical constituents in the aerial part of Reineckea carnea. The compounds were isolated by extraction, silica gel, gel, and reversed-phase silica gel coloum chromatography, and high-performance liquid chromatography. The structures were identified by various spectroscopic methods including 1D and 2D NMR spectrum, MS, IR, etc. Six compounds were isolated and identified as 1alpha, 3beta-dihydroxy-5beta-pregn-16-en-20-one-3-O-beta-D-glucopyranoside (1), syringaresinol-beta-D-glucoside (2), sophoraflavone B (3), stigmast-5, 22-dien-3-O-beta-D-glucopyranoside (4), daucosterol (5), a-D-glucose (6). Compound 1 was a new compound, coumpounds 2-6 were obtained from the plant for the first time.
[Study on Chemical Constituents of Petroleum Ether Fraction from Rubus alceaefolius].
Chen, Pan; Fang, Zhi-jian; Yan, Han-jing; Zhou, Hong-bo; Mei, Quan-xi
2015-01-01
To investigate the chemical constituents of Rubus alceaefolius. Nine compounds were isolated and purified from the petroleum ether extract of 95% alcohol extract of Rubus alceaefolius by repeated column chromatography on silica, Sephadex LH-20 and structurally identified by spectral analysis. The compounds were identified as chrysophanol(1), physcion (2), β-sitosterol(3), 3-oxotirucalla-7, 24-dien-21-oic acid(4), myricadiol(5), 19-α-hydroxy-3-acetyl-ursolic acid(6), N-benzoylphenylalaninyl-N-benzoylphenylalaninate(7), aurantiamide acetate(8) and euscaphic acid(9). Compounds land 4~8 are isolated from this plant for the first time, and compounds 4 - 8 are found in plants of Rubus genus for the first time.
[Studies on the chemical constituents of the roots of Anemone altaica].
Zou, Zhong-jie; Yang, Jun-shan
2008-01-01
To investigate the chemical constituents of the roots of Anemone altaica Fisch. ex C. A. May. The constituents of n-BuOH-soluble portion were isolated and purified by means of chromatography. Compounds were identified by their physical characteristics and spectral features. Six compounds were isolated and identified as cimigenol-3-O-beta-D-xylopyranoside (1), cimigenol-3-O-beta-D-xylopyranol (1 -->3)-beta-D-xylopyranoside (2), isolariciresinol-9-O-beta-D-glucopyranoside (3), adenosine (4), uridine (5) and methyl-beta-D-glucopyranoside (6). All compounds are isolated from this genus for the first time.
Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Jesse D.; Bowden, Mark; Tom Resch, C.
2017-01-01
Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride,more » and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.« less
Avonto, Cristina; Wang, Mei; Chittiboyina, Amar G; Vukmanovic, Stanislav; Khan, Ikhlas A
2018-02-01
Twenty-four pure fragrance ingredients have been identified as potential concern for skin sensitization. Several of these compounds are chemically unstable and convert into reactive species upon exposure to air or light. In the present work, a systematic investigation of the correlation between chemical stability and reactivity has been undertaken. The compounds were subjected to forced photodegradation for three months and the chemical changes were studied with GC-MS. At the end of the stability study, two-thirds of the samples were found to be unstable. The generation of chemically reactive species was investigated using the in chemico HTS-DCYA assay. Eleven and fourteen compounds were chemically reactive before and after three months, respectively. A significant increase in reactivity upon degradation was found for isoeugenol, linalool, limonene, lyral, citronellol and geraniol; in the same conditions, the reactivity of hydroxycitronellal decreased. The non-reactive compounds α-isomethyl ionone, benzyl alcohol, amyl cinnamal and farnesol became reactive after photo-oxidative degradation. Overall, forced degradation resulted in four non-reactive fragrance compounds to display in chemico thiol reactivity, while ten out of 24 compounds remained inactive. Chemical degradation does not necessarily occur with generation of reactive species. Non-chemical activation may be involved for the 10 stable unreactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Target Fishing for Chemical Compounds using Target-Ligand Activity data and Ranking based Methods
Wale, Nikil; Karypis, George
2009-01-01
In recent years the development of computational techniques that identify all the likely targets for a given chemical compound, also termed as the problem of Target Fishing, has been an active area of research. Identification of likely targets of a chemical compound helps to understand problems such as toxicity, lack of efficacy in humans, and poor physical properties associated with that compound in the early stages of drug discovery. In this paper we present a set of techniques whose goal is to rank or prioritize targets in the context of a given chemical compound such that most targets that this compound may show activity against appear higher in the ranked list. These methods are based on our extensions to the SVM and Ranking Perceptron algorithms for this problem. Our extensive experimental study shows that the methods developed in this work outperform previous approaches by 2% to 60% under different evaluation criterions. PMID:19764745
Boonsri, Pornthip; Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng; Herdendorf, Timothy J.; Miziorko, Henry M.; Hannongbua, Supa; Sem, Daniel S.
2012-01-01
Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using Autodock. Promising hits were verified and their affinity measured using NMR-based 1H-15N Heteronuclear Single Quantum Coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (Kd). Tight binding compounds with Kd’s ranging from 6–60 µM were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC crosspeak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development. PMID:23146631
[Studies on the chemical constituents from Cissus pteroclada].
Chi, Cui-Yun; Wang, Feng; Lei, Ting; Xu, Shao-Yu; Hong, Ai-Hua; Cen, Ying-Zhou
2010-10-01
To study the chemical constituents of Yao Medicine Cissus pteroclada. The compounds were isolated and purified by column chromatography with silica gel, TLC and recrystallization. Their structures were elucidated on the basis of physicochemical properties and spectra analysis. Six compounds were isolated and identified as beta-sitosterol (I), bergenin (II), 11-O-galloylbergenin (III), 11-O-(4-hydroxy benzoyl) bergenin (IV), gallic acid (V), daucosterol (VI). Compounds III and NIV are obtained from the genus for the first time. All the compounds are isolated from this plant for the first time except the compound II.
Wassermann, Anne Mai; Lounkine, Eugen; Glick, Meir
2013-03-25
Virtual screening using bioactivity profiles has become an integral part of currently applied hit finding methods in pharmaceutical industry. However, a significant drawback of this approach is that it is only applicable to compounds that have been biologically tested in the past and have sufficient activity annotations for meaningful profile comparisons. Although bioactivity data generated in pharmaceutical institutions are growing on an unprecedented scale, the number of biologically annotated compounds still covers only a minuscule fraction of chemical space. For a newly synthesized compound or an isolated natural product to be biologically characterized across multiple assays, it may take a considerable amount of time. Consequently, this chemical matter will not be included in virtual screening campaigns based on bioactivity profiles. To overcome this problem, we herein introduce bioturbo similarity searching that uses chemical similarity to map molecules without biological annotations into bioactivity space and then searches for biologically similar compounds in this reference system. In benchmark calculations on primary screening data, we demonstrate that our approach generally achieves higher hit rates and identifies structurally more diverse compounds than approaches using chemical information only. Furthermore, our method is able to discover hits with novel modes of inhibition that traditional 2D and 3D similarity approaches are unlikely to discover. Test calculations on a set of natural products reveal the practical utility of the approach for identifying novel and synthetically more accessible chemical matter.
Purriños, Laura; Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M
2011-01-01
Volatile compounds were determined throughout the manufacture of dry-cured "lacón," a traditional dry-salted, and ripened meat product made in the north-west of Spain from the foreleg of the pig following a similar process to that of dry-cured ham. Volatiles were extracted by a purge-and-trap method and analyzed by gas chromatographic/mass spectrometry. One hundred and two volatile compounds were identified. In raw material, only 34 volatile compounds were found and at very low levels. The number of volatile compounds increased during processing. The substances identified belonged to several chemical classes: aldehydes (23), alcohols (9), ketones (15), hydrocarbons (37), esters (4), acids (3), furans (4), sulphur compounds (1), chloride compounds (1), and other compounds (4). Results indicated that the most abundant chemical family in flavor at the end of the manufacturing process was aldehydes, followed by hydrocarbons and ketones. Lipids were the most important precursor of flavor compounds of dry-cured "lacón."
Identification of polar volatile organic compounds in consumer products and common microenvironments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, L.A.; Nelson, W.C.; Pellizzari, E.
1991-03-01
Polar volatile organic compounds were identified in the headspace of 31 fragrance products such as perfumes, colognes and soaps. About 150 different chemicals were identified in a semiquantitative fashion, using two methods to analyze the headspace: direct injection into a gas chromatograph and collection by an evacuated canister, each followed by GC-MS analysis. The canister method displayed low recoveries for most of the 25 polar chemical standards tested. However, reconstructed ion chromatograms (RICs) from the canister showed good agreement with RICs from the direct injection method except for some high boiling point compounds. Canister samples collected in 15 microenvironments expectedmore » to contain the fragrance products tested (potpourri stores, fragrance sections of department stores, etc.) showed relatively low concentrations of most of these polar chemicals compared with certain common nonpolar chemicals. The results presented will be useful for models of personal exposure and indoor air quality.« less
2015-01-01
Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation. PMID:25526519
Chemical characterization of fingerprints from adults and children
NASA Astrophysics Data System (ADS)
Buchanan, Michelle V.; Asano, Keiji; Bohanon, Arthur
1997-02-01
The observation that the fingerprints of children disappear from surfaces more quickly than those of adults initiated a study to characterize the chemical components in fingerprints. Samples were obtained from about 50 individuals ranging in age from three to 64 by extracting chemicals from the fintertips using rubbing alcohol. Using combined gas chromatography/mass spectrometry, a wide range of compounds were identified. It was found that the chemical compositions of fingerprints were quite different in children and adults. In general, the samples obtained from children contained higher levels of relatively volatile free fatty acids. Samples from adults were found to have higher concentrations of less volatile long chain esters of fatty acids. These esters are thought to originate from sebaceous glands located on the face and the levels of these compounds increase substantially after puberty. In addition to these compounds, a variety of other compounds were observed that could be used to develop improved methods for fingerprint detection at a crime scene. Further, the observation of specific compounds raises the possibility of being able to identify personal traits (gender, habits, diseases, etc.) via the analysis of components in fingerprints and/or skin.
He, Mingzhen; Jia, Jia; Li, Junmao; Wu, Bei; Huang, Wenping; Liu, Mi; Li, Yan; Yang, Shilin; Ouyang, Hui; Feng, Yulin
2018-06-15
Efficient targeted identification of chemical constituents from traditional Chinese medicine is still a major challenge. In this study, we used a characteristic ion filtering strategy to characterize compounds of Eucommia ulmoides Oliv. by ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS). By using the ion filtering approach, target constituents of Eucommia ulmoides Oliv. were easily tentatively identified from the enormous LC/MS data set. The strategy consisted of the following three steps: 1) To establishing a characteristic ion database by diagnostic product ions or neutral loss fragments; 2) To evaluate the structural information of the compounds by high-resolution diagnostic characteristic ion filtering; 3) To confirm the different classes by chemical profiling according to their MS/MS spectra. In this study, characteristic ions are summarized as five major groups of compounds in Eucommia ulmoides Oliv. In total, 113 compounds were tentatively identified, including 23 potentially novel compounds. The results form a foundation for the quality control and chemical basis of Eucommia ulmoides Oliv. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas
Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compoundsmore » include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.« less
Zou, Ju-Ying; Chen, Sheng-Huang; Li, Qin-Wen; Chen, Han-Jun; Liu, Bei-Bei; Du, Fan
2012-04-01
To analyze the chemical constituents of volatile oil from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by GC-MS. The volatile oil was extracted from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by steam distillation. The constituents of volatile oil were identified by GC-MS technology. 37 compounds were identified from the oil of rhizomes. 36 compounds were identified from the oil of leaves. The rhizomes and leaves volatile oil had 18 compounds in common. This study is the first one to report the volatile components of Pileostegia viburnoides var. glabrescens. It can provide a scientific basis for rational use of the rhizomes and leaves of Pileostegia viburnoides var. glabrescens.
Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...
Studies on the chemical constituents from the stem and leaves of Tagetes erecta.
Zhang, Yu; Zhang, Ting-Ting
2010-09-01
To investigate the chemical constituents of the stem and leaves of Tagetes erecta. The materials extracted with ethanol were first purified with D101 resin and then separated by repeated silica gel column chromatography as well as recrystallization to get single compounds. The chemical structures of the compounds were elucidated on the basis of physicochemical properties, spectroscopic analysis and comparing with standard sample and literatures. Six compounds were identified as 4'-methoxy-eupatolitin-3-O-glucoside (I), kaempferitrin (II), rutin (III), beta-sitosterol (IV), daucosterol (V) and gallic acid (VI). Compounds I, II, III are isolated from the plant for the first time; the compounds IV, V, VI are isolated from the stem and leaves of the plant for the first time.
[Study on Chemical Constituents of Peanut Hull].
Zuo, Ai-xue; Sun, Yun; Qian, Shao-xiang; Rao, Gao-xiong
2015-02-01
To investigate the chemical constituents of peanut hull. Several chromatography methods such as silica gel and Sephadex LH-20 combined with recrystallization were applied to isolate the compounds. Based on spectrum technologies (MS,1H-NMR and 13C-NMR) and physico-chemical methods, structures of isolated compounds were identified. Twelve compounds were isolated and elucidated as luteolin (1), diosmetin (2), 5,7,3',4'-tetrahydroxy-8-prenyflavone (3),5,7,3'-trihydroxy-4'- methoxy-8-prenylflavone(4), eriodicrtyol (5), racemoflavone (6), hydnocarpin (7), 5,7-dihydroxy chromone (8), 5-hydroxy-chromone- 7-O-β-D-glucoside (9), ferulic acid (10), β-sitosterol (11) and daucosterol(12). Except compounds 1, 5 and 8, all compounds are obtained from peanut hull for the first time.
[Studies on chemical constituents from stems and leaves of Jasminum lanceolarium].
Sun, Jia-ming; Yang, Jun-shan; Zhang, Hui
2008-09-01
To investigate the chemical constituents in stem and leaves of Jasminum lanceolarium. The constituents of the EtOAc-soluble portion of the 95% ethanol extractive were isolated and purified by means of column chromatographic methods. Compounds were identified by their physical characteristics and spectral features. Eight compounds were isolated and identified as 5, 7, 3', 5'-tetrahydroxyflavanone (1), (2S)-5, 7, 3', 4'-tetrahydroxyflavan-5-O-beta-D-glucopyranosie (2), mannitol (3), nonacosane (4), trans-p-coumaric acid (5), cis-p-coumaric acid (6), ferulic acid (7) and, trans-cinnamic acid (8). Compounds 14 were isolated from this genus for the first time. And compounds 5 and 6 were isolated from this plant for the first time.
Zheng, Wei; Wang, Fangxu; Zhao, Yang; Sun, Xinguang; Kang, Liping; Fan, Ziquan; Qiao, Lirui; Yan, Renyi; Liu, Shuchen; Ma, Baiping
2017-11-01
A strategy for rapid identification of the chemical constituents from crude extracts of Tribulus terrestris was proposed using an informatics platform for the UHPLC/Q-TOF MS E data analyses. This strategy mainly utilizes neutral losses, characteristic fragments, and in-house library to rapidly identify the structure of the compounds. With this strategy, rapid characterization of the chemical components of T. terrestris from Beijing, China was successfully achieved. A total of 82 steroidal saponins and nine flavonoids were identified or tentatively identified from T. terrestris. Among them, 15 new components were deduced based on retention times and characteristic MS fragmentation patterns. Furthermore, the chemical components of T. terrestris, including the other two samples from Xinjiang Uygur Autonomous region, China, and Rome, Italy, were also identified with this strategy. Altogether, 141 chemical components were identified from these three samples, of which 39 components were identified or tentatively identified as new compounds, including 35 groups of isomers. It demonstrated that this strategy provided an efficient protocol for the rapid identification of chemical constituents in complex samples such as traditional Chinese medicines (TCMs) by UHPLC/Q-TOF MS E with informatics platform. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Zheng, Wei; Wang, Fangxu; Zhao, Yang; Sun, Xinguang; Kang, Liping; Fan, Ziquan; Qiao, Lirui; Yan, Renyi; Liu, Shuchen; Ma, Baiping
2017-08-01
A strategy for rapid identification of the chemical constituents from crude extracts of Tribulus terrestris was proposed using an informatics platform for the UHPLC/Q-TOF MSE data analyses. This strategy mainly utilizes neutral losses, characteristic fragments, and in-house library to rapidly identify the structure of the compounds. With this strategy, rapid characterization of the chemical components of T. terrestris from Beijing, China was successfully achieved. A total of 82 steroidal saponins and nine flavonoids were identified or tentatively identified from T. terrestris. Among them, 15 new components were deduced based on retention times and characteristic MS fragmentation patterns. Furthermore, the chemical components of T. terrestris, including the other two samples from Xinjiang Uygur Autonomous region, China, and Rome, Italy, were also identified with this strategy. Altogether, 141 chemical components were identified from these three samples, of which 39 components were identified or tentatively identified as new compounds, including 35 groups of isomers. It demonstrated that this strategy provided an efficient protocol for the rapid identification of chemical constituents in complex samples such as traditional Chinese medicines (TCMs) by UHPLC/Q-TOF MSE with informatics platform. [Figure not available: see fulltext.
[Chemical constituents of Changium smyrnioides].
Ren, Dong-chun; Qian, Shi-hui; Yang, Nian-yun; Xie, Ning; Duan, Jin-ao
2008-01-01
To study chemical constituents of Changium smyrnioides Wolff. The chemical components were isolated and purified by silica gel column and recrystallization. The chemical structures were elucidated on the basis of physico-chemical properties and spectral data. Ten compounds were isolated and identified as lignoceric acid (1), beta-sitosterol (2), stigmasterol (3), 5-hydroxy-8-methoxypsoralen (4), glycerylmonopalmitate (5), L-pyroglutamic acid (6), succinic acid (7), vanillic acid-4-O-beta-D-glucopyranoside (8 ), vanillic acid (9), daucosterol (10). Compounds 1, 4, 5, 6, 8 and 9 are obtained from the plant for the first time.
Osorio, Yaneth; Travi, Bruno L; Renslo, Adam R; Peniche, Alex G; Melby, Peter C
2011-02-15
New drugs are needed to treat visceral leishmaniasis (VL) because the current therapies are toxic, expensive, and parasite resistance may weaken drug efficacy. We established a novel ex vivo splenic explant culture system from hamsters infected with luciferase-transfected Leishmania donovani to screen chemical compounds for anti-leishmanial activity. THIS MODEL HAS ADVANTAGES OVER IN VITRO SYSTEMS IN THAT IT: 1) includes the whole cellular population involved in the host-parasite interaction; 2) is initiated at a stage of infection when the immunosuppressive mechanisms that lead to progressive VL are evident; 3) involves the intracellular form of Leishmania; 4) supports parasite replication that can be easily quantified by detection of parasite-expressed luciferase; 5) is adaptable to a high-throughput screening format; and 6) can be used to identify compounds that have both direct and indirect anti-parasitic activity. The assay showed excellent discrimination between positive (amphotericin B) and negative (vehicle) controls with a Z' Factor >0.8. A duplicate screen of 4 chemical libraries containing 4,035 compounds identified 202 hits (5.0%) with a Z score of <-1.96 (p<0.05). Eighty-four (2.1%) of the hits were classified as lead compounds based on the in vitro therapeutic index (ratio of the compound concentration causing 50% cytotoxicity in the HepG(2) cell line to the concentration that caused 50% reduction in the parasite load). Sixty-nine (82%) of the lead compounds were previously unknown to have anti-leishmanial activity. The most frequently identified lead compounds were classified as quinoline-containing compounds (14%), alkaloids (10%), aromatics (11%), terpenes (8%), phenothiazines (7%) and furans (5%). The ex vivo splenic explant model provides a powerful approach to identify new compounds active against L. donovani within the pathophysiologic environment of the infected spleen. Further in vivo evaluation and chemical optimization of these lead compounds may generate new candidates for preclinical studies of treatment for VL.
Shi, Xiao-Feng; Bai, Zhao-Hui; Liu, Dong-Yan; Li, Shuang
2012-03-01
To study the chemical constituents of the dichloromethane extracted from pine needles of Cedrus deodara. Compounds were isolated and purified from the dichloromethane extract of pine needles by chromatography on silica gel and Sephadex LH-20. Their structures were identified on the basis of spectroscopic analysis and physicochemical property. Nine compounds were isolated and purified. Their structures were identified as stigmasterol (1), oleanolic acid (2), parahydroxybenzaldehyde (3), beta-sitosterol (4), syringaresinol (5), daucosterol (6), p-hydroxybenzoic acid (7), gallicin (8) and gallic acid (9). Compounds 1-3, 5 -9 are isolated from pine needles of this genus for the first time.
2016-01-01
Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308
Chemical constituents from aerial part of Curcuma wenyujin.
Tao, Zheng-Ming; Li, Ying-Yu; Ji, Ping; Wang, Yu-Bo; Qin, Guo-Wei
2007-12-01
To investigate the chemical constituents from aerial part of Curcuma wenyujin. Compounds were isolated by repeated column chromatography on silica gel. Their structures were elucidated on the basis of spectral analysis and comparison with literature data. Six compounds were isolated and identified as codonolactone (1), voleneol (2), octacosanoic acid (3), beta-sitosterol (4), mangdesisterol (5), and daucosterol (6). Compounds 1, 2, and 5 were isolated from the plant for the first time.
[Two new glycosides from Erigeron breviscapus (Vant.) Hand.-Mazz].
Zhang, W D; Chen, W S; Wang, Y H; Liu, W Y; Kong, D Y; Li, H T
2001-10-01
To study the chemical constituents from the upground part of Erigeron breviscapus. The compounds were separated and purified by column chromatography with silica gel, and identified by IR, MS, NMR and 2D-NMR. Two new compounds were isolated and identified as 5,4'-dihydroxy flavonod-7-O-beta-D-pyranglycuronate buthyl ester(VI) and 3,5-dimethoxy benzene carbonic acid-4-O-beta-D-pyranglucose(VII). Compounds VI and VII were new compounds.
Rendon, Nikki M; Soini, Helena A; Scotti, Melissa-Ann L; Weigel, Ellen R; Novotny, Milos V; Demas, Gregory E
2016-05-01
Chemical communication is a critical component of social behavior as it facilitates social encounters, allows for evaluation of the social partner, defines territories and resources, and advertises information such as sex and physiological state of an animal. Odors provide a key source of information about the social environment to rodents; however, studies identifying chemical compounds have thus far focused primarily on few species, particularly the house mouse. Moreover, considerably less attention has been focused on how environmental factors, reproductive phenotype, and behavioral context alter these compounds outside of reproduction. We examined the effects of photoperiod, sex, and social context on chemical communication in the seasonally breeding Siberian hamster. We sampled ventral gland secretions in both male and female hamsters before and after an aggressive encounter and identified changes in a range of volatile compounds. Next, we investigated how photoperiod, reproductive phenotype, and aggression altered ventral gland volatile compound composition across the sexes. Males exhibited a more diverse chemical composition, more sex-specific volatiles, and showed higher levels of excretion compared to females. Individual volatiles were also differentially excreted across photoperiod and reproductive phenotype, as well as differentially altered in response to an aggressive encounter. Female volatile compound composition, in contrast, did not differ across photoperiods or in response to aggression. Collectively, these data contribute to a greater understanding of context-dependent changes in chemical communication in a seasonally breeding rodent. Copyright © 2016 Elsevier Inc. All rights reserved.
[Study on the chemical constituents in roots of Gentiana dahurica].
Chen, Qian-Liang; Shi, Zhang-Yan; Zhang, Ya-Hui; Zheng, Jiang-Bin
2011-08-01
To systematically study the chemical constituents in the roots of Gentiana dahurica. Various column chromatographic techniques were used for isolation and purification. The structures were elucidated on the basis of spectral data (UV, IR, MS, NMR) and identified by comparing with the authentic substance. Seven compounds were isolated and identified as: roburic acid (1), oleanolic acid (2), beta-sitosterol (3), daucosterol (4), gentiopicroside(5), swertiamarine (6), sweroside (7). Compounds 1, 2 and 4 are isolated from this plant for the first time.
Kemp, Belinda; Condé, Bruna; Jégou, Sandrine; Howell, Kate; Vasserot, Yann; Marchal, Richard
2018-02-08
The visual properties of sparkling wine including foam and bubbles are an indicator of sparkling wine quality. Foam properties, particularly foam height (FH) and foam stability (TS), are significantly influenced by the chemical composition of the wine. This review investigates our current knowledge of specific chemical compounds and, the mechanisms by which they influence the foam properties of sparkling wines. Grape and yeast proteins, amino acids, polysaccharides, phenolic compounds, organic acids, fatty acids, ethanol and sugar are examined with respect to their contribution to foam characteristics in sparkling wines made with the Traditional, Transfer, and Charmat and carbonation methods. Contradictory results have been identified that appear to be due to the analytical methods used to measure and quantify compounds and foam. Biopolymer complexes are discussed and absent knowledge with regards to thaumatin-like proteins (TLPs), polysaccharides, amino acids, oak-derived phenolic compounds and organic acids are identified. Future research is also likely to concentrate on visual analysis of sparkling wines by in-depth imaging analysis and specific sensory analysis techniques.
Volatile pollutants emitted from selected liquid household products.
Kwon, Ki-Dong; Jo, Wan-Kuen; Lim, Ho-Jin; Jeong, Woo-Sik
2008-09-01
To identify household products that may be potential sources of indoor air pollution, the chemical composition emitted from the products should be surveyed. Although this kind of survey has been conducted by certain research groups in Western Europe and the USA, there is still limited information in scientific literature. Moreover, chemical components and their proportions of household products are suspected to be different with different manufacturers. Consequently, the current study evaluated the emission composition for 42 liquid household products sold in Korea, focusing on five product classes (deodorizers, household cleaners, color removers, pesticides, and polishes). The present study included two phase experiments. First, the chemical components and their proportions in household products were determined using a gas chromatograph and mass spectrometer system. For the 19 target compounds screened by the first phase of the experiment and other selection criteria, the second phase was done to identify their proportions in the purged-gas phase. The number of chemicals in the household products surveyed ranged from 9 to 113. Eight (product class of pesticides) to 17 (product class of cleaning products) compounds were detected in the purged-gas phase of each product class. Several compounds were identified in more than one product class. Six chemicals (acetone, ethanol, limonene, perchloroethylene (PCE), phenol, and 1-propanol) were identified in all five product classes. There were 13 analytes occurring with a frequency of more than 10% in the household products: limonene (76.2%), ethanol (71.4%), PCE (66.7%), phenol (40.5%), 1-propanol (35.7%), decane (33%), acetone (28.6%), toluene (19.0%), 2-butoxy ethanol (16.7%), o-xylene (16.7%), chlorobenzene (14.3%), ethylbenzene (11.9%), and hexane (11.9%). All of the 42 household products analyzed were found to contain one or more of the 19 compounds. The chemical composition varied broadly along with the product classes or product categories, and it was different from that reported in other studies abroad, although certain target chemicals were identified in both studies. This finding supports an assertion that chemical components emitted from household products may be different in different products and with different manufacturers. The chlorinated pollutants identified in the present study have not been reported to be components of cleaning products in papers published since the early 1990s. Limonene was identified as having the highest occurrence in the household products in the present study, although it was not detected in any of 67 household products sold in the U.S. The emission composition of selected household products was successfully examined by purge-and-trap analysis. Along with other exposure information such as use pattern of household products and the indoor climate, this composition data can be used to estimate personal exposure levels of building occupants. This exposure data can be employed to link environmental exposure to health risk. It is noteworthy that many liquid household products sold in Korea emitted several toxic aromatic and chlorinated organic compounds. Moreover, the current finding suggests that product types and manufacturers should be considered, when evaluating building occupants' exposure to chemical components emitted from household products. The current findings can provide valuable information for the semiquantitative estimation of the population inhalation exposure to these compounds in indoor environments and for the selection of safer household products. However, although the chemical composition is known, the emissions of household products might include compounds formed during the use of the product or compounds not identified as ingredients by this study. Accordingly, further studies are required, and testing must be done to determine the actual composition being emitted. Similar to eco-labeling of shampoos, shower gels, and foam baths proposed by a previous study, eco-labeling of other household products is suggested.
[Chemical constituents of Cocculus orbiculatus var. mollis root].
Liao, Jing; Lei, Yu; Wang, Jian-Zhong
2014-02-01
To study the chemical constituents in the root of Cocculus orbiculatus var. mollis. The compounds were isolated by silica gel chromatography, their structures were established by spectroscopic methods. Eleven compounds were isolated and identified as wattisine A (I), O-methylcocsoline (II), (+) cocsoline (III), (+) cocsuline (IV), magnoflorine (V), sino-coculine (VI), isosinococuline (VII), (-) coclaurine (VIII), daucosterol (IX), beta-sitosterol (X) and 1-oleioyl-3-(9Z, 12Z-arachoyl) glycerol (XI). Compound I is isolated from this genus for the first time,and compound II - XI are isolated from this plant for the first time.
Metabolites from the endophytic fungus Penicillium sp. FJ-1 of Ceriops tagal.
Jin, Peng-fei; Zuo, Wen-jian; Guo, Zhi-kai; Mei, Wen-li; Dai, Hao-fu
2013-11-01
To investigate the chemical constituents of the endophytic fungus Penicillium sp. FJ-1 of Ceriops tagal, the chemical constituents were isolated by column chromatography on silica gel and Sephadex LH-20. Their structures were elucidated on the basis of spectroscopic analysis. Their antibacterial activity was tested by paper disco diffusion method. Two compounds were isolated and identified as 7-hydroxy-deoxytalaroflavone (1), and deoxytalaroflavone (2). Compound 1 is a new compound, and compounds 1 and 2 showed weak activity against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus.
[Chemical constituents of Carya cathayensis and their antitumor bioactivity].
Wu, De-lin; Chen, Shi-yun; Liu, Jing-song; Jin, Chuan-shan; Xu, Feng-qing
2011-07-01
To investigate the chemical constituents of Carya cathayensis and their antitumor bioactivity. The compounds were isolated by Sephadex LH-20 and silica gel column chromatography. Their structures were identified by physicochemical properties and spectroscopic analysis. Then their cytotoxic activity was studied. Five compounds were elucidated as chrysophanol (1), physcion (2), beta-sitosterol (3), pinostrobin(4), 4,8-dihydroxy-1-tetralone (5). Compounds 2 and 5 are isolated from Carya cathayensis for the first time. In the MTT antitumor experiments, the compounds 1,4 and 5 have the cytotoxic activity to KB cell.
Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.
2002-06-01
Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less
IDENTIFICATION OF POLAR VOLATILE ORGANIC COMPOUNDS IN CONSUMER PRODUCTS AND COMMON MICROENVIRONMENTS
Polar volatile organic compounds were identified in the headspace of 31 fragrance products such as perfumes, colognes and soaps. About 150 different chemicals were identified in a semiquantitative fashion, using two methods to analyze the headspace: direct injection into a gas ch...
Kotapalli, Sudha Sravanti; Nallam, Sri Satya Anila; Nadella, Lavanya; Banerjee, Tanmay; Rode, Haridas B; Mainkar, Prathama S; Ummanni, Ramesh
2015-01-01
The purpose of this study was to provide a number of diverse and promising early-lead compounds that will feed into the drug discovery pipeline for developing new antitubercular agents. The results from the phenotypic screening of the open-source compound library against Mycobacterium smegmatis and Mycobacterium bovis (BCG) with hit validation against M. tuberculosis (H37Rv) have identified novel potent hit compounds. To determine their druglikeness, a systematic analysis of physicochemical properties of the hit compounds has been performed using cheminformatics tools. The hit molecules were analysed by clustering based on their chemical finger prints and structural similarity determining their chemical diversity. The hit compound library is also filtered for druglikeness based on the physicochemical descriptors following Lipinski filters. The robust filtration of hits followed by secondary screening against BCG, H37Rv and cytotoxicity evaluation has identified 12 compounds with potential against H37Rv (MIC range 0.4 to 12.5 μM). Furthermore in cytotoxicity assays, 12 compounds displayed low cytotoxicity against liver and lung cells providing high therapeutic index > 50. To avoid any variations in activity due to the route of chemical synthesis, the hit compounds were re synthesized independently and confirmed for their potential against H37Rv. Taken together, the hits reported here provides copious potential starting points for generation of new leads eventually adds to drug discovery pipeline against tuberculosis.
Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy
NASA Astrophysics Data System (ADS)
Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.
2017-01-01
Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.
Chemical characterization of fingerprints from adults and children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, M.V.; Asano, K.; Bohanon, A.
1996-12-31
Observation that children`s fingerprints disappear from surfaces more quickly than adults`, initiated a study to characterize the chemical components in fingerprints. Samples were obtained from about 50 individuals ranging in age from 3 to 64 by extracting chemicals from the fingertips using rubbing alcohol. Using combined gas chromatography/mass spectrometry, a wide range of compounds were identified. Samples from children contained higher levels of relatively volatile free fatty acids, while those from adults had higher levels of less volatile long chain esters of fatty acids. These esters are thought to originate from sebaceous glands located on the face and levels ofmore » these compounds increase substantially after puberty. Also, other compounds were observed that could be used to develop improved methods for fingerprint detection at a crime scene. Further, observation of specific compounds raises the possibility of being able to identify personal traits (gender, habits, diseases, etc. ) via analysis of components in fingerprints and/or skin.« less
Chemical compounds from Chenopodium album Linn.
NASA Astrophysics Data System (ADS)
Zheng, Wei
2017-06-01
Bioactive components from Chenopodium album Linn. were isolated and identified in this research. Light petroleum, dichloromethane and n-BuOH were firstly applied to partition the 75% EtOH extract of Chenopodium album Linn. which were then subjected to normal-phase silica, ODS silica gel column chromatography and semi-preparative HPLC chromatography. By the employment of NMR method in this study, chemical structures of the compounds were elucidated. Three known compounds were isolated from Chenopodium album Linn., and identified as Isolariciresinol 4-O-β-D-glucopyranoside (1), (7’S, 8R, 8’R)-Isolariciresinol (2) and (7’S, 8R, 8’S)-Isolariciresinol (3) by comparison of their spectral data with references. This is the first time that isolation of the compounds mentioned above from Chenopodium album Linn. was achieved.
VanderVen, Brian C.; Fahey, Ruth J.; Lee, Wonsik; Liu, Yancheng; Abramovitch, Robert B.; Memmott, Christine; Crowe, Adam M.; Eltis, Lindsay D.; Perola, Emanuele; Deininger, David D.; Wang, Tiansheng; Locher, Christopher P.; Russell, David G.
2015-01-01
Mycobacterium tuberculosis (Mtb) relies on a specialized set of metabolic pathways to support growth in macrophages. By conducting an extensive, unbiased chemical screen to identify small molecules that inhibit Mtb metabolism within macrophages, we identified a significant number of novel compounds that limit Mtb growth in macrophages and in medium containing cholesterol as the principle carbon source. Based on this observation, we developed a chemical-rescue strategy to identify compounds that target metabolic enzymes involved in cholesterol metabolism. This approach identified two compounds that inhibit the HsaAB enzyme complex, which is required for complete degradation of the cholesterol A/B rings. The strategy also identified an inhibitor of PrpC, the 2-methylcitrate synthase, which is required for assimilation of cholesterol-derived propionyl-CoA into the TCA cycle. These chemical probes represent new classes of inhibitors with novel modes of action, and target metabolic pathways required to support growth of Mtb in its host cell. The screen also revealed a structurally-diverse set of compounds that target additional stage(s) of cholesterol utilization. Mutants resistant to this class of compounds are defective in the bacterial adenylate cyclase Rv1625/Cya. These data implicate cyclic-AMP (cAMP) in regulating cholesterol utilization in Mtb, and are consistent with published reports indicating that propionate metabolism is regulated by cAMP levels. Intriguingly, reversal of the cholesterol-dependent growth inhibition caused by this subset of compounds could be achieved by supplementing the media with acetate, but not with glucose, indicating that Mtb is subject to a unique form of metabolic constraint induced by the presence of cholesterol. PMID:25675247
Nanowire Electron Scattering Spectroscopy
NASA Technical Reports Server (NTRS)
Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano
2009-01-01
Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.
Gao, Bo; Zhang, Jianming; Xie, Lianhui
2018-01-01
The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria . In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR) spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria .
Gao, Bo; Zhang, Jianming
2018-01-01
The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria. In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR) spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria. PMID:29808104
[Chemical constituents from Ajuga nipponensis].
He, Gui-xia; Liang, Xiao-lan; Ouyang, Wen; Yi, Gang-qiang; Li, Yun-yao; Zhao, Jian-ping; Ikhlas, Khan
2013-12-01
To study the chemical constituents of Ajuga nipponensis. The chemical constituents were isolated by repeated silica gel column chromatography and their structures were elucidated by phyisochemical properties and spectral analysis. Ten compounds were isolated and identified as:hexadecanoic acid(1), ajuforrestin A(2), beta-sitosterol(3), acacetin(4), apigenin(5), ajugamacrin B(6), ursolic acid(7), beta-ecdysone(8), 8-acetylharpagide(9) and daucosterol(10). Compounds 1-7 and 10 are isolated from this plant for the first time.
[Chemical constituents from the aerial part of Stauntonia obovatifoliola Hayata subsp. urophylla].
Peng, Xiao-bing; Gao, Wei-lue; Hu, Dong-qun; Ma, Fang-fang; Fu, Li-gang; Deng, Qian; Wei, Ying
2013-11-01
To study the chemical constituents of the aerial part of Stauntonia obovatifoliola. The chemical constituents of ethyl acetate fraction were isolated and purified by several chromatography. Their structures were elucidated by their physiochemical properties and spectral methods. Six known compounds were isolated and identified as lupeone(1), lupeol(2), stigmasterol(3),3beta-O-acetyloleanolic acid(4), resinone(5) and daucosterol(6). Compounds 1-6 are isolated from this plant for the first time.
[Studies on chemical constituents from seeds of Euryale ferox].
Sun, Hai-lin; Zhang, Ya-qiong; Xie, Xiao-yan; Che, Yan-yun
2014-11-01
To study the chemical constituents from the seeds of Euryale ferox. The chemical constituents were isolated by silica gel column, Sephadex LH-20 and their structures were identified by physico-chemical and spectral analysis. Seven compounds were purified from the 95% ethanol extract. These constituents were elucidated as protocatechuic acid (1), gallic acid (2), gallic acid ethyl ester(3),5 ,7-dihydroxychromone(4), β-sitosterol(5), daucosterol(6), and 5,7-dihydroxy-6,4'-dimethoxyflavone(7), respectively. All compounds are isolated from this plant for the first time.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1989-01-01
Chemical compatibility of several reinforcement materials with three niobium aluminides, Nb3Al, Nb2Al, and NbAl3, were examined from thermodynamic considerations. The reinforcement materials considered in this study include carbides, borides, nitrides, oxides, silicides, and Engel-Brewer compounds. Thermodynamics of the Nb-Al system were reviewed and activities of Nb and Al were derived at desired calculation temperatures. Criteria for chemical compatibility between the reinforcement material and Nb-Al compounds have been defined and several chemically compatible reinforcement materials have been identified.
[Isolation and characterization of polyphenols in seed of Litchi chinensis].
Yan, Ren-Liang; Liu, Zhi-Gang
2009-04-01
To study the chemical constituents of polyphenols in seed of Litchi chinensis. The seeds of Litchi chinensis were extracted by 65% ethanol, then the compounds were separated by repeated silica gel, polyamide and preparative TLC. The structures of polyphones isolated were identified by analysis of their spectral datas and chemical properties. Four polyphones compounds were isolated as protocatechuic aldehyde (I), protocatechuic acid (II), daucosterol (III) and (-) -epicatichin (IV). Compounds I , III and IV are isolated from this plant for the first time.
[Chemical constituents from involatile moiety of Pogostemon cablin].
Huang, Liejun; Mu, Shuzhen; Zhang, Jianxin; Deng, Bin; Song, Zhiqin; Hao, Xiaojiang
2009-02-01
To study the chemical constituents of involatile moiety of Pogostemon cablin. Compounds were isolated and purified by repeated column chromatography, and their structures were elucidated by spectroscopic analysis. Nine compounds have been isolated and identified: epifriedelinol (1), 5-hydroxymethol-2-furfural (2), succinic acid (3), beta-sitosterol (4), daucosterol (5), crenatoside (6), 3'''-O-methylcrenatoside (7), isocrenatoside (8), and apigenin-7-O-beta-D-(6"-p-coumaryl)-glucoside (9). Compounds 2, 3, 6-8 were isolated from Pogostemon genus for the first time.
[Study on the chemical constituents from Clematis brevicaudata].
Yang, Ai-Mei; Du, Jing; Miao, Zhong-Huan; Yuan, Hui-Jun
2009-10-01
To study the chemical constituents from Clematis brevicaudata. The compounds were isolated by column chromatography and their structures were elucidated through spectroscopic analysis (NMR). Eight compounds were isolated and identified as: palmitic acid (1), 1-docosanol (2), pentacosanoic acid-2', 3'-dihydroxypropyl ester (3), beta-sitosterol (4), daucosterol (5), a mixture of the trans-p-coumarate of the n-alkanols (6), 3,4-dihydroxy-trans coumatate ethyl ester (7), syringaresinol-O-D-glucopyranoside (8). All these compounds are obtained from Clematis brevicaudata for the first time.
Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauschild, Veronique; Watson, Annetta Paule
2013-01-01
Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facilitymore » recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.« less
Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D
2013-08-13
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.
Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.
2013-01-01
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis. PMID:23904484
Chemical assessment and in vitro antioxidant capacity of Ficus carica latex.
Oliveira, Andreia P; Silva, Luís R; Ferreres, Federico; Guedes de Pinho, Paula; Valentão, Patrícia; Silva, Branca M; Pereira, José A; Andrade, Paula B
2010-03-24
Ficus species possess latex-like material within their vasculatures, affording protection and self-healing from physical attacks. In this work, metabolite profiling was performed on Ficus carica latex. Volatiles profile was determined by HS-SPME/GC-IT-MS, with 34 compounds being identified, distributed by distinct chemical classes: 5 aldehydes, 7 alcohols, 1 ketone, 9 monoterpenes, 9 sesquiterpenes and 3 other compounds. Sesquiterpenes constituted the most abundant class in latex (ca. 91% of total identified compounds). Organic acids composition was also characterized, by HPLC-UV, and oxalic, citric, malic, quinic, shikimic and fumaric acids were determined. Malic and shikimic acids were present in higher amounts (ca. 26%, each). The antioxidant potential of this material was checked by distinct in vitro chemical assays. A concentration-dependent activity was noticed against DPPH, nitric oxide and superoxide radicals. Additionally, acetylcholinesterase inhibitory capacity was evaluated, but a weak effect was found.
Combining functional genomics and chemical biology to identify targets of bioactive compounds.
Ho, Cheuk Hei; Piotrowski, Jeff; Dixon, Scott J; Baryshnikova, Anastasia; Costanzo, Michael; Boone, Charles
2011-02-01
Genome sequencing projects have revealed thousands of suspected genes, challenging researchers to develop efficient large-scale functional analysis methodologies. Determining the function of a gene product generally requires a means to alter its function. Genetically tractable model organisms have been widely exploited for the isolation and characterization of activating and inactivating mutations in genes encoding proteins of interest. Chemical genetics represents a complementary approach involving the use of small molecules capable of either inactivating or activating their targets. Saccharomyces cerevisiae has been an important test bed for the development and application of chemical genomic assays aimed at identifying targets and modes of action of known and uncharacterized compounds. Here we review yeast chemical genomic assays strategies for drug target identification. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bailey, T.A.
1984-01-01
Four species of aquatic fungi (Achlya flagellata, A. racemosa, Saprolegnia hypogyna, and S. megasperma) were exposed to 25 chemicals representing seven classes of compounds for 15 and 60 min, in an effort to identify potential fungicidal agents for use in fish culture. The antifungal activity of each chemical was compared with that of malachite green, a reference compound with known fungicidal properties but not registered for fishery use. Six compounds which inhibited fungal growth on artificial media at concentrations of < 100 mg/l (listed in order of decreasing antifungal activity) were the cationics Du-terA? and copper oxychloride sulfate, the amine LesanA?, the amide BAS-389-O1F and the cationics CuprimyxinA? and RoccalA? II. Certain chemicals from these classes of compounds may have promise as aquatic fungicides.
[Chemical Constituents of Ethyl Acetate Fraction of Suaeda glauca].
Qiu, Ping; Wang, Qi-zhi; Yin, Min; Wang, Ming; Zhao, You-yi; Shan, Yu; Feng, Xu
2015-04-01
To study the chemical constituents of Suaeda glauca. The chemical constituents were isolated and purified with several separation and purification techniques. Their structures were identified by physicochemical properties and various spectroscopic methods. Ten compounds were isolated from the ethyl acetate fraction as lignoceric acid (1), β-amyrin-n-nonyl ether(2), β-sitosterol(3), β-daucosterol(4), quercetin(5), luteolin(6), luteolin-7-O-β-D-glucoside(7), isorhamnetin(8), scopoletin (9) and stigmasterol(10). Compounds 1, 2, 6, 7, 8, 9 and 10 are isolated from Suaeda genus for the first time and compounds 3 - 5 are isolated from this plant for the first time.
[Study on chemical constituents from leaves of Tripterygium wilfordii].
Cao, Xu; Li, Chuangjun; Yang, Jingzhi; Wei, Baixing; Luo, Yongming; Zhang, Dongming
2011-04-01
In order to study the chemical constituents of the leaves of Tripterygium wilfordii and provide references for the bio-active study, we isolated nine compounds from the dried leaves of Tripterygium wilfordii. Their structures were determined by application of spectroscopic (NMR, MS) and chemical methods. These compounds were isolated and identified as (+)-lyoniresinol (1), (+)-isolariciresinol (2), burselignan (3), dibutyl phthalate (4), cyclo-(S-Pro-R-Phe) (5), cyclo-(S-Pro-R-Leu) (6), cyclo-(S-Pro-S-Ile) (7), 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone (8) and daucosterol (9). Compounds 1-3, 5-8 were isolated from this plant for the first time.
[Studies on chemical constituents from leaves of Vaccinium bracteatum].
Li, Zeng-Liang; Zhang, Lin; Tian, Jing-Kui; Zhou, Wen-Ming
2008-09-01
To investigate the chemical constituents from the leaves of Vaccinium bracteatum. Many column chromatographic techniques were used for the isolation and separation of chemical constituents. Their structures were elucidated on the basis of spectral analysis and chemical evidences. Twelve compounds were isolated from the plant, and they were identified as chrysoeriol (1), scopoletin (2), trans-p-hydroxycinnamic acid (3), trans-p-hydroxycinnamic acid ethyl ester (4), cafeic acid ethyl ester (5), beta-sitosterol (6), iuteolin (7), quercetin (8), esculetin (9), cafeic acid (10), isolariciresinol-9-O-beta-D-xyloside (11), 10-O-trans-p-coumaroylsandoside (12). Compounds 4, 5, 11, 12 were isolated from the genus Vaccinium for the first time, and compounds 1, 2, 9, 10 were isolated from this plant for the first time.
Egner, John M; Jensen, Davin R; Olp, Michael D; Kennedy, Nolan W; Volkman, Brian F; Peterson, Francis C; Smith, Brian C; Hill, R Blake
2018-03-02
An academic chemical screening approach was developed by using 2D protein-detected NMR, and a 352-chemical fragment library was screened against three different protein targets. The approach was optimized against two protein targets with known ligands: CXCL12 and BRD4. Principal component analysis reliably identified compounds that induced nonspecific NMR crosspeak broadening but did not unambiguously identify ligands with specific affinity (hits). For improved hit detection, a novel scoring metric-difference intensity analysis (DIA)-was devised that sums all positive and negative intensities from 2D difference spectra. Applying DIA quickly discriminated potential ligands from compounds inducing nonspecific NMR crosspeak broadening and other nonspecific effects. Subsequent NMR titrations validated chemotypes important for binding to CXCL12 and BRD4. A novel target, mitochondrial fission protein Fis1, was screened, and six hits were identified by using DIA. Screening these diverse protein targets identified quinones and catechols that induced nonspecific NMR crosspeak broadening, hampering NMR analyses, but are currently not computationally identified as pan-assay interference compounds. The results established a streamlined screening workflow that can easily be scaled and adapted as part of a larger screening pipeline to identify fragment hits and assess relative binding affinities in the range of 0.3-1.6 mm. DIA could prove useful in library screening and other applications in which NMR chemical shift perturbations are measured. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Study on the chemical constituents from Melicope ptelefolia].
Xie, Yu-Feng; Liang, Yue; Du, Qing-Tao; Guo, Li-Bing
2011-03-01
To study the chemical constituents from Melicope ptelefolia. Several chromatographic methods were applied to isolate and purify compounds. Their structures were identified on the basis of physicochemical properties and spectroscopic data. Seven compounds were isolated and elucidated as n-octadecanyl palmitate (I), beta-sitosterol (II), palmitic acid (III), 3, 5,3'-trihydroxy-8,4'-dimethoxy-7-(3-methylbut-2-enyloxy) flavone (IV), daucosterol (V), salylic acid (VI), kaempferol-3-O-alpha-D-arabinpyranoside (VII). Compound VII is isolated from the genus for the first time, Compounds V and VI are isolated from Melicope ptelefolia for the first time.
Functional screening of selective mitochondrial inhibitors of Plasmodium.
Gomez-Lorenzo, Maria G; Rodríguez-Alejandre, Ane; Moliner-Cubel, Sonia; Martínez-Hoyos, María; Bahamontes-Rosa, Noemí; Gonzalez Del Rio, Rubén; Ródenas, Carolina; Fuente, Jesús de la; Lavandera, Jose Luis; García-Bustos, Jose F; Mendoza-Losana, Alfonso
2018-05-09
Phenotypic screening has produced most of the new chemical entities currently in clinical development for malaria, plus many lead compounds active against Plasmodium falciparum asexual stages. However, lack of knowledge about the mode of action of these compounds delays and may even hamper their future development. Identifying the mode of action of the inhibitors greatly helps to prioritise compounds for further development as novel antimalarials. Here we describe a whole-cell method to detect inhibitors of the mitochondrial electron transport chain, using oxygen consumption as high throughput readout in 384-well plate format. The usefulness of the method has been confirmed with the Tres Cantos Antimalarial Compound Set (TCAMS). The assay identified 124 respiratory inhibitors in TCAMS, seven of which were novel anti-plasmodial chemical structures never before described as mitochondrial inhibitors. Copyright © 2018. Published by Elsevier Ltd.
When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...
[Studies on chemical constituents of Taxillus sutchuenenisis].
Chen, Jiang-tao; Feng, Feng
2007-11-01
To study the chemical constituents of Taxillus sutchuenenisis (Lecomte) Danser. Chromatography and spectrum analysis were employed to isolated and elucidate the chemical constituents in the plant. 9 compounds were isolated and identified as quercetin (I), quervetin 3-O-beta-D-galactoside (II), isoquercitrin (III), quercitrin (IV), rutin (V), gallic acid (VI), ferulic acid (VII), beta-sitosterol (VIII), daucosterol (IX), respectively. Compounds III-IX are isolated from this plant for the first time. The work provide evidence for the exploitation and utilization of this plant resouce.
[Studies on the chemical constituents from the roots of Kalopanax septemlobus].
Yao, Huan-Kai; Duan, Jing-Yu; Li, Yan; Wang, Jian-Hui; Yin, Xiao-Xing; Duan, Hong-Quan
2011-05-01
To investigate the chemical constituents of Kalopanax septemlobus. Chromatographic techniques including silica gel, gel, semi-preparative HPLC and PTLC as well as recrystallization were employed in the isolation and purification, and the structures were elucidated by spectral analysis and physical and chemical properties. 6 compounds were identified as liriodendrin (1), (-) -syringarenol (2), trans-coniferyl aldehyde (3), trans-caffeic acid (4), beta-daucosterol (5), beta-sitosterol (6). Compounds 2 -5 are obtained from this genus for the first time.
Foreign Language Translation of Chemical Nomenclature by Computer
2009-01-01
Chemical compound names remain the primary method for conveying molecular structures between chemists and researchers. In research articles, patents, chemical catalogues, government legislation, and textbooks, the use of IUPAC and traditional compound names is universal, despite efforts to introduce more machine-friendly representations such as identifiers and line notations. Fortunately, advances in computing power now allow chemical names to be parsed and generated (read and written) with almost the same ease as conventional connection tables. A significant complication, however, is that although the vast majority of chemistry uses English nomenclature, a significant fraction is in other languages. This complicates the task of filing and analyzing chemical patents, purchasing from compound vendors, and text mining research articles or Web pages. We describe some issues with manipulating chemical names in various languages, including British, American, German, Japanese, Chinese, Spanish, Swedish, Polish, and Hungarian, and describe the current state-of-the-art in software tools to simplify the process. PMID:19239237
Montenegro, Gloria; Díaz-Forestier, Javiera; Fredes, Carolina; Rodríguez, Sharon
2013-01-01
Quillaja saponaria Mol. (Quillajaceae) is one of the most important melliferous species in Chile, mainly as a source of monofloral honey. Honey made by A. mellifera presents biological activity against pathogens and antioxidant capacity associated with the presence of phenolic compounds deriving from the nectar, as a result of bee honey foraging. The aim of this study was to identify and quantify the phenolic compounds from the floral nectar of Q. saponaria and the honey made in apiaries in the central zone, and compare the composition of the chromatographic profiles of nectar and honey to known phenolic compounds. The results obtained by HPLC-DAD (high-performance liquid chromatography with diode-array detection) showed a similar profile of phenolic compounds, in which gallic acid, myricetin, rutin, quercetin and naringenin were identified. The phenolic compounds detected could be used as a reference for future studies for determining potential chemical markers of this honey, complementing the present identification of honeys by determining their botanical origin. The identification of bioindicators of the floral origins for honey of this species could provide added value to honey commercialization by certifying the botanical origin of their chemical features and biological attributes.
Open innovation for phenotypic drug discovery: The PD2 assay panel.
Lee, Jonathan A; Chu, Shaoyou; Willard, Francis S; Cox, Karen L; Sells Galvin, Rachelle J; Peery, Robert B; Oliver, Sarah E; Oler, Jennifer; Meredith, Tamika D; Heidler, Steven A; Gough, Wendy H; Husain, Saba; Palkowitz, Alan D; Moxham, Christopher M
2011-07-01
Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.
Exudate Chemical Profiles Derived from Lespedeza and Other Tallgrass Prairie Plant Species
2017-05-01
assayed by liquid chromatography–tandem mass spec- trometry (LC-MS/MS) and gas chromatography/mass spectrometry (GC/MS). The objective was to elucidate...molecular weight compounds were identified via gas chromatography/mass spectrometry (GC/MS) and tentatively identified as benzophenone and 1,4...diacetylbenzene. Three higher molecular weight compounds were identified by liquid chromatography-electrospray ionization- mass spectrometry (LC-ESI-MS
Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser
2013-05-01
To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases.
Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser
2013-01-01
Objective To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). Methods The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. Results About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. Conclusions The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases. PMID:23646297
[Isolation and identification of diterpenoids from Pinus koraiensis].
Yang, Xin; Zhang, Ying-chun; Zhang, Hua; Wang, Jing
2008-01-01
To study chemical compounds from Pinus koraiensis. The constituents were isolated by chromatographic method and the structures were identified on the basis of spectral alanlysis. Eight compounds were identified as 8 (14)-podocarpen-13-on-18-oic acid (1), 15-hydroxydehydroabietic acid (2), 12-hydroxyabietic acid (3), lambertianic acid (4), dehydroabietic acid (5), sandaracopimaric acid (6), beta-sitosterol (7), daucosterol (8). Compounds 1--6 are isolated from this plant for the first time.
[Studies on the chemical constituents of Buddleja albiflora (II)].
Zhang, Hai-Ping; Tao, Liang
2010-06-01
To study the chemical constituents of Buddleja albiflora. The constituents were isolated by column chromatography and their structures were elucidated by spectroscopic analyses. seven compounds were isolated and identified as aucubin (1), catalpol (2), acteoside (3), martynoside (4), ursolicacid (5), daucosterol (6), beta-sitosterol-3-0-beta-D-(6'-0-palmitate) glucopyranosisde (7). All these compounds are obtained from Buddleja albiflora for the first time.
[Studies on the chemical constituents of Ficus microcarpa].
Li, Yan-Wen; Sun, Zhi-Rong; Li, Zhi-Yong; Jin, Jia-Xing; Wang, Wen-Quan; Yan, Yu-Ning
2010-06-01
To study the chemical constituents of the Ficus microcarpa. Isolation and identification were carried out by using various chromatography techniques and spectral methods. Eight compounds were isolated. Their structures were identified as beta-amyrone (I), lupeol (II), lupeol acetate (III), maslinic acid (IV), epifriedelinol (V), stearic acid (VI), beta-sitosterol (VI), daucosterol (VI). Compounds I, II, VI are isolated from this plant for the first time.
[Study on chemical constituents from the roots and rhizomes of Sinopodophyllum emodi].
Sun, Yan-Jun; Li, Zhan-Lin; Chen, Hong; Zhou, Wei; Hua, Hui-Ming
2012-10-01
To investigate the chemical constituents in the roots and rhizomes of Sinopodophyllum emodi. The compounds were isolated by many different chromatographic methods such as silica gel, Sephadex LH-20, and ODS column. Their structures were identified by their physicochemical properties and spectrascopic data. Nine compounds were isolated and identified as isopicrodeoxypodophyllotoxin(I), 3beta-hydroxy-7alpha-methoxy-24beta-ethyl-cholest-5-ene(II), 5alpha, 8alpha-epidioxy-(22E,24R)-erg-osta-6,22-dien-3beta-ol(III), 7beta-hydroxysitosterol (IV), beta-sitosterol (V), daucosterol (VI), alpha-glyceryl palmitate (VII), alpha-D-glucose (VIII), 5-hydromethyl furaldehyde (IX). Compounds I - IV, VII - IX are obtained from this genus for the first time.
Integrated Risk Index of Chemical Aquatic Pollution (IRICAP): case studies in Iberian rivers.
Fàbrega, Francesc; Marquès, Montse; Ginebreda, Antoni; Kuzmanovic, Maja; Barceló, Damià; Schuhmacher, Marta; Domingo, José L; Nadal, Martí
2013-12-15
The hazard of chemical compounds can be prioritized according to their PBT (persistence, bioaccumulation, toxicity) properties by using Self-Organizing Maps (SOM). The objective of the present study was to develop an Integrated Risk Index of Chemical Aquatic Pollution (IRICAP), useful to evaluate the risk associated to the exposure of chemical mixtures contained in river waters. Four Spanish river basins were considered as case-studies: Llobregat, Ebro, Jucar and Guadalquivir. A SOM-based hazard index (HI) was estimated for 205 organic compounds. IRICAP was calculated as the product of the HI by the concentration of each pollutant, and the results of all substances were aggregated. Finally, Pareto distribution was applied to the ranked lists of compounds in each site to prioritize those chemicals with the most significant incidence on the IRICAP. According to the HI outcomes, perfluoroalkyl substances, as well as specific illicit drugs and UV filters, were among the most hazardous compounds. Xylazine was identified as one of the chemicals with the highest contribution to the total IRICAP value in the different river basins, together with other pharmaceutical products such as loratadine and azaperol. These organic compounds should be proposed as target chemicals in the implementation of monitoring programs by regulatory organizations. Copyright © 2013 Elsevier B.V. All rights reserved.
Pavković-Lučić, Sofija; Todosijević, Marina; Savić, Tatjana; Vajs, Vlatka; Trajković, Jelena; Anđelković, Boban; Lučić, Luka; Krstić, Gordana; Makarov, Slobodan; Tomić, Vladimir; Miličić, Dragana; Vujisić, Ljubodrag
2016-02-01
Cuticular hydrocarbons (CHCs) in Drosophila melanogaster represent the basis of chemical communication being involved in many important biological functions. The aim of this study was to characterize chemical composition and variation of cuticular profiles in five D. melanogaster strains. These strains were reared for approximately 300 generations on five diets: standard cornmeal medium and substrates prepared with apple, banana, tomato, and carrot. Differences in quantity and/or quality in CHCs were assumed as a result of activation of different metabolic pathways involved in food digestion and adaptations to the particular diet type. In total, independently of sex and strain, 66 chemical compounds were identified. In females of all strains, 60 compounds were identified, while, in males, 47 compounds were extracted. Certain new chemical compounds for D. melanogaster were found. MANOVA confirmed that CHC amounts significantly depend on sex and substrates, as well as on their interactions. Discriminant analysis revealed that flies belonging to 'apple' and 'carrot' strains exhibited the most noticeable differences in CHC repertoires. A non-hydrocarbon pheromone, cis-vaccenyl acetate (cVA) also contributed to the variation in the pheromone bouquet among the strains. Variability detected in CHCs and cVA may be used in the explanation of differences in mating behaviour previously determined in analyzed fly strains. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
[Study on chemical constituents from Schisandra chinensis stem].
Zheng, Li-shi; Du, Shu-shan; Cai, Qian
2014-10-01
To separate and identify the chemical constituents from the stem of Schisandra chinensis. Various chromatographic techniques were used to separate and purify the chemical constituents from 95% ethanol extraction of the stem of Schisandra chinensis. Their structures were elucidated based on the physico-chemical properties and spectral data. Ten compounds were obtained and elucidated as (+)-deoxyschizandrin (1), γ-schizandrin (2), wuweizisu C (3), gomisin N (4), schizandrin (5), anwuweizic acid (6), (-)-dihydroguaiaretic acid (7), tetradecanoic acid (8), β-sitosterol (9) and daucosterol (10). Compounds 6-8 are obtained from the stem of Schisandra chinensis for the first time.
NASA Astrophysics Data System (ADS)
Kunimoto, Ryo; Bajorath, Jürgen
2017-09-01
Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boonsri, Pornthip; Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900; Neumann, Terrence S.
2013-01-04
Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored,more » plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.« less
Identification of compounds that modulate retinol signaling using a cell-based qHTS assay
Chen, Yanling; Sakamuru, Srilatha; Huang, Ruili; Reese, David H.; Xia, Menghang
2016-01-01
In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling. PMID:26820057
An approach in building a chemical compound search engine in oracle database.
Wang, H; Volarath, P; Harrison, R
2005-01-01
A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework.
NASA Astrophysics Data System (ADS)
Priore, Ryan J.; Jacksen, Niels
2016-05-01
Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.
Palhares, Rafael Melo; Gonçalves Drummond, Marcela; dos Santos Alves Figueiredo Brasil, Bruno; Pereira Cosenza, Gustavo; das Graças Lins Brandão, Maria; Oliveira, Guilherme
2015-01-01
Medicinal plants are used throughout the world, and the regulations defining their proper use, such as identification of the correct species and verification of the presence, purity and concentration of the required chemical compounds, are widely recognized. Herbal medicines are made from vegetal drugs, the processed products of medicinal species. These processed materials present a number of challenges in terms of botanical identification, and according to the World Health Organization (WHO), the use of incorrect species is a threat to consumer safety. The samples used in this study consisted of the dried leaves, flowers and roots of 257 samples from 8 distinct species approved by the WHO for the production of medicinal herbs and sold in Brazilian markets. Identification of the samples in this study using DNA barcoding (matK, rbcL and ITS2 regions) revealed that the level of substitutions may be as high as 71%. Using qualitative and quantitative chemical analyses, this study identified situations in which the correct species was being sold, but the chemical compounds were not present. Even more troubling, some samples identified as substitutions using DNA barcoding contained the chemical compounds from the correct species at the minimum required concentration. This last situation may lead to the use of unknown species or species whose safety for human consumption remains unknown. This study concludes that DNA barcoding should be used in a complementary manner for species identification with chemical analyses to detect and quantify the required chemical compounds, thus improving the quality of this class of medicines. PMID:25978064
[Studies on chemical constituents from stem barks of Fraxinus paxiana].
Ma, Zhi-jing; Zhao, Zhi-juan
2008-08-01
To investigate the chemical constituents of Fraxinus paxiana. The chemical constituents were isolated and purified by chromatographic techniques and the structures of the compounds were identified with or by spectroscopic methods. Fifteen compounds were obtained from the methanol extract of F. paxiana and their structures were elucidated as esculin (1), esculetin (2), fraxin (3), fraxetin (4), salidroside (5), osmanthuside H (6), liriodendrin (7), 3-(4-beta-D-glucopyranosyloxy-3-methoxy)-phenyl-2E-propenol (8), threo-syringylglycerol (9), euscaphic acid (10), 3-hydroxy-1-(4-hydroxy-3, 5-dimethoxyphenyl)-1-propanone (11), omega-hydroxypropioguaiacone (12), sinapyladehyde (13), betulinic acid (14) and mannitol (15). All compounds were obtained from this plant for the first time.
[Chemical constituents from stems of Ilex pubescens].
Xing, Xian-dong; Zhang, Qian; Feng, Feng; Liu, Wen-yuan
2012-09-01
To study the chemical constituents from the stems of Ilex pubescens Hook. et Am. The chemical constituents were isolated and purified by various column chromatographic methods with diatomite, silica gel, ODS and Sephadex LH-20. Their structures were identified on physical properties and spectroscopic methods. Nine compounds were isolated and determined as luteolin(1), quercetin(2), hyperoside(3), rutin(4), 1, 5-dihydroxy-3-methyl-anthraquinone(5),3,5-dimethoxy-4-hydroxy-benzoic acid-1-O-beta-D-glucoside(6), hexadecanoic acid(7), stearic acid(8), n-tetratriacontanol(9), respectively. All the compounds are isolated from this plant for the first time, and compounds 5 and 6 are isolated from this genus for the first time.
Characterization of Chemical Constituents of Human Sweat: A Study Based on Indian Population.
Moulvi, Aafrinnaz; Minz, Pooja; Rath, Subrata; Ashma, Richa
2018-06-01
There is a strong evidence in the literature that human odor is unique to an individual; therefore, the focus of this study was to strengthen this evidence through the testing of sweat samples on unrelated individuals with the same ethnicity. Sweat samples were collected from 42 unrelated Indian males and females residing in the same city to determine the chemical constituents in human sweat. The volatile compounds of sweat were subsequently analyzed and identified using gas chromatography-mass spectrometry, and a National Institute of Standards and Technology library was used for individual profiling. A total of 78 compounds were identified in human sweat tested with 22 compounds found to be unique to the individual (frequency of occurrence one). A scent profile, or "chexmotype," unique to the sweat of each individual was obtained. This is the first extensive study on an Indian population with 36 new compounds detected in human sweat.
Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander
2015-01-01
Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using random forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674
Efficient hit-finding approaches for histone methyltransferases: the key parameters.
Ahrens, Thomas; Bergner, Andreas; Sheppard, David; Hafenbradl, Doris
2012-01-01
For many novel epigenetics targets the chemical ligand space and structural information were limited until recently and are still largely unknown for some targets. Hit-finding campaigns are therefore dependent on large and chemically diverse libraries. In the specific case of the histone methyltransferase G9a, the authors have been able to apply an efficient process of intelligent selection of compounds for primary screening, rather than screening the full diverse deck of 900 000 compounds to identify hit compounds. A number of different virtual screening methods have been applied for the compound selection, and the results have been analyzed in the context of their individual success rates. For the primary screening of 2112 compounds, a FlashPlate assay format and full-length histone H3.1 substrate were employed. Validation of hit compounds was performed using the orthogonal fluorescence lifetime technology. Rated by purity and IC(50) value, 18 compounds (0.9% of compound screening deck) were finally considered validated primary G9a hits. The hit-finding approach has led to novel chemotypes being identified, which can facilitate hit-to-lead projects. This study demonstrates the power of virtual screening technologies for novel, therapeutically relevant epigenetics protein targets.
[Two new sesquiterpene lactones from the pericarp of Illicium macranthum].
Ma, Hai-juan; Ma, Chang-hua; Huang, Jian-mei
2010-03-01
Silica gel column chromatography was used for the isolation and purification of the chemical constituents of the pericarp of Illicium macranthum. From dichloromethane-EtOAc (1:1) fraction and EtOAc fraction of the methanol extracts, eleven compounds were identified on the basis of chemical and spectral data. Two new compounds were elucidated to be 6-deoxyneomajucin (1) and 2-oxo-6-deoxyneomajucin (2), along with nine known compounds 6-deoxypseudoanisatin (3), pseudoanisatin (4), anisatin (5), pseudomajucin (6), protocatecheuic acid (7), shikimic acid (8), shikimic acid methylester (9), beta-sitosterol (10) and daucosterol (11). Compounds 1 and 2 are new majucin-type sesquiterpene lactones.
Gusenleitner, Daniel; Auerbach, Scott S.; Melia, Tisha; Gómez, Harold F.; Sherr, David H.; Monti, Stefano
2014-01-01
Background Despite an overall decrease in incidence of and mortality from cancer, about 40% of Americans will be diagnosed with the disease in their lifetime, and around 20% will die of it. Current approaches to test carcinogenic chemicals adopt the 2-year rodent bioassay, which is costly and time-consuming. As a result, fewer than 2% of the chemicals on the market have actually been tested. However, evidence accumulated to date suggests that gene expression profiles from model organisms exposed to chemical compounds reflect underlying mechanisms of action, and that these toxicogenomic models could be used in the prediction of chemical carcinogenicity. Results In this study, we used a rat-based microarray dataset from the NTP DrugMatrix Database to test the ability of toxicogenomics to model carcinogenicity. We analyzed 1,221 gene-expression profiles obtained from rats treated with 127 well-characterized compounds, including genotoxic and non-genotoxic carcinogens. We built a classifier that predicts a chemical's carcinogenic potential with an AUC of 0.78, and validated it on an independent dataset from the Japanese Toxicogenomics Project consisting of 2,065 profiles from 72 compounds. Finally, we identified differentially expressed genes associated with chemical carcinogenesis, and developed novel data-driven approaches for the molecular characterization of the response to chemical stressors. Conclusion Here, we validate a toxicogenomic approach to predict carcinogenicity and provide strong evidence that, with a larger set of compounds, we should be able to improve the sensitivity and specificity of the predictions. We found that the prediction of carcinogenicity is tissue-dependent and that the results also confirm and expand upon previous studies implicating DNA damage, the peroxisome proliferator-activated receptor, the aryl hydrocarbon receptor, and regenerative pathology in the response to carcinogen exposure. PMID:25058030
Franco, M R; Shibamoto, T
2000-04-01
Twenty-one volatile compounds were identified for the first time by GC-MS in umbu-caja and in camu-camu, plus 30 volatile compounds were identified in araça-boi samples. Terpenic compounds predominated among the volatile compounds in these fruit samples, with the major compounds being identified as cis-beta-ocimene and caryophyllene in the northeastern fruit; alpha-pinene and d-limonene were the most abundant volatile compounds in the headspace of the Amazonian fruit camu-camu. Sesquiterpenes were the most abundant compounds in the araça-boi sample, with germacrene D presenting a higher relative percentage. The chemical class of esters predominated in the cupuaçu sample. Ethyl butyrate and hexanoate were the major compounds in the headspace of this Amazonian fruit.
Boiret, Mathieu; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel
2016-02-20
Raman chemical imaging provides both spectral and spatial information on a pharmaceutical drug product. Even if the main objective of chemical imaging is to obtain distribution maps of each formulation compound, identification of pure signals in a mixture dataset remains of huge interest. In this work, an iterative approach is proposed to identify the compounds in a pharmaceutical drug product, assuming that the chemical composition of the product is not known by the analyst and that a low dose compound can be present in the studied medicine. The proposed approach uses a spectral library, spectral distances and orthogonal projections to iteratively detect pure compounds of a tablet. Since the proposed method is not based on variance decomposition, it should be well adapted for a drug product which contains a low dose product, interpreted as a compound located in few pixels and with low spectral contributions. The method is tested on a tablet specifically manufactured for this study with one active pharmaceutical ingredient and five excipients. A spectral library, constituted of 24 pure pharmaceutical compounds, is used as a reference spectral database. Pure spectra of active and excipients, including a modification of the crystalline form and a low dose compound, are iteratively detected. Once the pure spectra are identified, multivariate curve resolution-alternating least squares process is performed on the data to provide distribution maps of each compound in the studied sample. Distributions of the two crystalline forms of active and the five excipients were in accordance with the theoretical formulation. Copyright © 2015 Elsevier B.V. All rights reserved.
Sato, Tomohiro; Hashimoto, Noriaki; Honma, Teruki
2017-12-26
To assist in the structural optimization of hit/lead compounds during drug discovery, various computational approaches to identify potentially useful bioisosteric conversions have been reported. Here, the preference of chemical fragments to hydrogen bonds with specific amino acid residues was used to identify potential bioisosteric conversions. We first compiled a data set of chemical fragments frequently occurring in complex structures contained in the Protein Data Bank. We then used a computational approach to determine the amino acids to which these chemical fragments most frequently hydrogen bonded. The results of the frequency analysis were used to hierarchically cluster chemical fragments according to their amino acid preferences. The Euclid distance between amino acid preferences of chemical fragments for hydrogen bonding was then compared to MMP information in the ChEMBL database. To demonstrate the applicability of the approach for compound optimization, the similarity of amino acid preferences was used to identify known bioisosteric conversions of the epidermal growth factor receptor inhibitor gefitinib. The amino acid preference distance successfully detected bioisosteric fragments corresponding to the morpholine ring in gefitinib with a higher ROC score compared to those based on topological similarity of substituents and frequency of MMP in the ChEMBL database.
[Studies on the chemical constituents of the fruit of Xylocarpus granatum].
Cheng, Fan; Zhou, Yuan; Zou, Kun; Wu, Jun
2009-08-01
To study the chemical constituents of the fruit of Xylocarpus granatum. The chemical constituents were isolated by chromatographic methods and their structures were elucidated by NMR spectra and physicochemical properties. Ten compounds were isolated from the fruit of Xylocarpus granatum and the structures of them were identified as spicatin (1), xyloccensin K(2), 6-acetoxycedrodorin (3), aurantiamide acetate (4), (+)-catechin (5), alpha-tocopherol (6), abscisic acid (7), daucosterol (8), 4-hydroxybenzoic acid (9) and ethyl 3,4-dihydroxybenzoate (10). Compound 4 -10 are isolated from this plant for the first time.
Tan, Guangguo; Zhu, Zhenyu; Jing, Jing; Lv, Lei; Lou, Ziyang; Zhang, Guoqing; Chai, Yifeng
2011-08-01
A high-performance liquid chromatography with diode-array detection coupled to time-of-flight mass spectrometry (HPLC/DAD/TOFMS) method was established to clarify the chemical composition of Sini decoction (SND) and rat plasma after oral administration of SND. With dynamic adjustment of fragmentor voltage in TOFMS, an efficient transmission of the ions was achieved to obtain the best sensitivity for providing the molecular formula for each analyte and abundant fragment ions for structural information. By accurate mass measurements within 5 ppm error for each molecular ion and subsequent fragment ions, 53 compounds including diterpenoid alkaloids, flavonoids, triterpenoids and gingerol-related compounds were identified in SND. Major compounds identified from SND were further assigned in the three individual herbs. After oral administration of SND, 33 compounds and five metabolites in rat plasma were detected and identified by comparing and contrasting the compounds measured in SND with those in the plasma samples by HPLC/DAD/TOFMS. The results provided helpful chemical information for further pharmacology and active mechanism research on SND. Copyright © 2010 John Wiley & Sons, Ltd.
Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin
2016-01-01
An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493
[Studies on the chemical constituents from the flowers of Ophiopogon japonicus].
Zhu, Yu-Hong; Zhao, Min; Ren, Lu; Tian, Di; Dou, Fang; Wang, Jun-Xian
2011-05-01
To study the chemical constituents from the flowers of Ophiopogon japonicus. Column chromatography and spectral analysis were used to isolate and identify the constituents. Eleven compounds were obtained and identified as beta-sitosterol (I), diosgenin (II), daucosterol (III), ophiopogonin C' (IV), dioscin (V), 7-dihy-droxy-6-methyl-3-(4'-hydroxybenzyl) chroman-4-one(VI), luteolin (VII), kaempferol-3-O-beta-D-glucopyranosides (VIII), kaempferol-3-O-(6"-tigloyl) -beta-D-glucopyranosides (IX), kaempferol-3-O-(6"-acetyl) -beta-D-glucopyranosides (X), glucose (XI). Eleven compounds are obtained from the flowers of O. japonicus for the first time. Compond VI is isolated as a simple substance compound of O. japonicus for the first time. Componds VII, VIII, IX and X are isolated from this genus for the first time.
Marušić, Nives; Petrović, Marinko; Vidaček, Sanja; Petrak, Tomislav; Medić, Helga
2011-08-01
The aroma-active compounds of Istrian dry-cured ham were investigated by using headspace-solid phase microextraction and gas chromatography-mass spectrometry (GC-MS). Samples of biceps femoris were also evaluated by measuring physical and chemical characteristics: moisture, protein, fat, ash and NaCl content, a(w) value; colour: L*, a*, b* and oxidation of fat: TBARS test. About 50 volatile compounds were identified and quantified which belonged to several classes of chemical: 5 alcohols, 8 aldehydes, 7 alkanes, 1 ketone, 2 esters, 9 monoterpenes and 15 sesquiterpenes. Except volatile compounds derived from lipolysis and proteolysis the most abundant constituents were terpenes (62.97; 41.43%) that originate from spices added in the salting phase of the production process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Why relevant chemical information cannot be exchanged without disclosing structures
NASA Astrophysics Data System (ADS)
Filimonov, Dmitry; Poroikov, Vladimir
2005-09-01
Both society and industry are interested in increasing the safety of pharmaceuticals. Potentially dangerous compounds could be filtered out at early stages of R&D by computer prediction of biological activity and ADMET characteristics. Accuracy of such predictions strongly depends on the quality & quantity of information contained in a training set. Suggestion that some relevant chemical information can be added to such training sets without disclosing chemical structures was generated at the recent ACS Symposium. We presented arguments that such safety exchange of relevant chemical information is impossible. Any relevant information about chemical structures can be used for search of either a particular compound itself or its close analogues. Risk of identifying such structures is enough to prevent pharma industry from relevant chemical information exchange.
Yangui, Islem; Zouaoui Boutiti, Meriem; Boussaid, Mohamed; Messaoud, Chokri
2017-07-01
The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC-FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 - 96.83% of the total oil according to species, were identified. The main compounds were 1,8-cineole, α-pinene, p-cymene, γ-gurjunene, α-aromadendrene, and β-phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 - 98.91% of the total oil were identified. α-Pinene, 1,8-cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC 50 = 3.83 mg/ml) and M. communis oil from Zaghouan (IC 50 = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p-cymene, carvacrol, cuminaldehyde, and linalool. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.
2011-01-01
One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.
[Study on chemical constituents from ethyl acetate extract of Myricaria bracteata].
Zhang, Ying; Yuan, Yi; Cui, Baosong; Li, Shuai
2011-04-01
To study the chemical constituents from the ethyl acetate extract of Myricaria bracteata. The chemical constituents were isolated and purified by chromatographic techniques, and their structures were identified by physical characters and spectroscopic analysis. Sixteen compounds were isolated from the ethyl acetate portion of the 95% ethanolic extract of Myricaria bracteata, and identified as myricarin (1), myricarin B (2), 3alpha-hydroxytaraxer-14-en-28-oic acid (3), myricadiol (4), trans-ferulic acid 22-hydroxydocosanoic acid ester (5), docosyl-3, 4-dihydroxy-trans-cinnamate (6), dillenetin (7), 3, 5, 4'-trihydroxy-7-methoxyflavone (8), 3, 5, 4'-trihydroxy-7, 3'-dimethoxyflavone (9), methyl 3, 5-dihydroxy-4-methoxybenzoate (10), 3-hydroxy-4-methoxy cinnamic acid (11), sinapaldehyde (12), vanillin (13), syringaldehyde (14), 3, 3', 4'-trimethoxyellagic acid (15), methyl p-hyroxybenzoate (16). Compounds 5, 6, 12-16 were isolated from the genus Myricaria for the fist time, all of the compounds were isolated from this plant for the fist time, except for 8 and 9.
Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen
2017-08-01
Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Air Quality: Revision to Definition of Volatile Organic Compounds--Exclusion of a Group of Four... amending its definition of VOC at 40 CFR 51.100(s) to exclude a group of four HFPE's identified as HCF 2... adds four chemical compounds to the list of compounds excluded from the definition of VOC on the basis...
Identifying interactions between chemical entities in biomedical text.
Lamurias, Andre; Ferreira, João D; Couto, Francisco M
2014-10-23
Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, \\"Identifying Interactions between Chemical Entities\\" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to state-of-the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice.
Identifying interactions between chemical entities in biomedical text.
Lamurias, Andre; Ferreira, João D; Couto, Francisco M
2014-12-01
Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, "Identifying Interactions between Chemical Entities" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to stateof- the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Liang, Le; Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn
2014-10-28
Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearlymore » determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.« less
Jung, Heeyong; Lee, Seung-Joo; Lim, Jeong Ho; Kim, Bum Keun; Park, Kee Jai
2014-01-01
The chemical and sensory profiles of 12 commercial samples of makgeolli, a Korean rice wine, were determined using descriptive sensory, chemical, and volatile components analyses. The sample wines were analysed for their titratable acidity, ethanol content, pH, Hunter colour value and total reducing sugars. The chemical compositions of the makgeolli samples were found to be significantly different. The volatile compounds were extracted with solid-phase microextraction and analysed by gas chromatography time-of-flight mass spectrometry. In all, 45 major volatile compounds, consisting of 33 esters, 8 alcohols, 1 aldehyde, 1 acid, 1 phenol and 1 terpene, were identified; each makgeolli sample included 28-35 volatile compounds. Based on principal component analysis of the sensory data, samples RW1, RW2, RW5, RW8 and RW12 were associated with roasted cereal, mouldy, bubbles, sweet and sour attributes; the other samples were associated with sensory attributes of yellowness, yeast, full body, turbidity, continuation, swallow, alcohol, fruit aroma and whiteness. Copyright © 2014. Published by Elsevier Ltd.
[Study on the chemical constituents of the leaves of Ipomoea batatas].
Lv, Ling-Yuz; Shi, Gao-Feng; Li, Chun-Lei; Han, Xue-Zhe; Lv, Qiu-Nan
2009-06-01
To study the chemical constituents of the leaves of Ipomoea batatas. The constituents were isolated and purified by silica gel and TLC, and their structures were elucidated by spectroscopy. Six compounds were isolated from 90% ethanol extract and identified as tetracosane (I ), myristic acid (II), beta-sitosterol (II), beta-carotene (IV), daucosterol (V) and quercetin (VI). Compounds I, II, IV, V are isolated from this plant for the first time.
ZHENG, CHUN-SONG; WU, YIN-SHENG; BAO, HONG-JUAN; XU, XIAO-JIE; CHEN, XING-QIANG; YE, HONG-ZHI; WU, GUANG-WEN; XU, HUI-FENG; LI, XI-HAI; CHEN, JIA-SHOU; LIU, XIAN-XIANG
2014-01-01
Xiao Chai Hu Tang (XCHT), a traditional herbal formula, is widely administered as a cancer treatment. However, the underlying molecular mechanisms of its anticancer effects are not fully understood. In the present study, a computational pharmacological model that combined chemical space mapping, molecular docking and network analysis was employed to predict which chemical compounds in XCHT are potential inhibitors of cancer-associated targets, and to establish a compound-target (C-T) network and compound-compound (C-C) association network. The identified compounds from XCHT demonstrated diversity in chemical space. Furthermore, they occupied regions of chemical space that were the same, or close to, those occupied by drug or drug-like compounds that are associated with cancer, according to the Therapeutic Targets Database. The analysis of the molecular docking and the C-T network demonstrated that the potential inhibitors possessed the properties of promiscuous drugs and combination therapies. The C-C network was classified into four clusters and the different clusters contained various multi-compound combinations that acted on different targets. The study indicated that XCHT has a polypharmacological role in treating cancer and the potential inhibitory components of XCHT require further investigation as potential therapeutic strategies for cancer patients. PMID:24926384
[Chemical Constituents from Melissa officinalis Leaves].
Ji, Zi-yang; Yang, Yan-xia; Zhuang, Fang-fang; Yan, Fu-lin; Wang, Chang-hong
2015-03-01
To investigate the chemical constituents of Melissa officinalis leaves. The chemical constituents were separated by silica gel column chromatography and their structures were determined by spectroscopic experiments. 13 compounds were isolated and identified as protocatechuyl aldehyde(1), serratagenic acid(2), vanillin(3), 2α,3β-dihydroxy-urs-12-en-28-oic acid(4), ursolic acid(5), oleanolic acid(6), daucosterol(7),2α,3β,23,29-tetrahydroxyolean-12-en-28-oic acid-29-O-β-D-gluco- pyranoside(8), luteolin(9) rosmarinic acid(10), luteolin-7-O-β-D-glucoside (11), β-stitosterol(12) and palmitic acid(13). Compounds 1 ~ 8 are separated from this plant for the first time and compounds 1-4 and 8 are isolated from this genus for the first time.
Compounds from the roots of Jasminum sambac.
Zeng, Lin-Hong; Hu, Min; Yan, Yong-Ming; Lu, Qing; Cheng, Yong-Xian
2012-01-01
Four new compounds (+)-jasminoids A, B, C, and D, together with seven known compounds, were isolated from the roots of Jasminum sambac. Their structures were identified using spectroscopic methods. This study provides a better understanding to the chemical composition of J. sambac roots that have been thought to be one ingredient of an ancient prescription 'Ma-Fei-San'.
[Chemical constituents from Imperata cylindrica].
Liu, Xuan; Zhang, Binfeng; Chou, Guixin; Yang, Li; Wang, Zhengtao
2012-08-01
Chemical investigation of Imperata cylindrica led to the isolation of thirteen compounds using various chromatographic techniques. The structure of these compounds were identified as: three phenylpropanoids, 1-(3,4,5-trimethoxyphenyl)-1,2,3-propanetriol ( 1 ), 1-O-p-coumaroylglycerol (2), 4-methoxy-5-methyl coumarin-7-O-beta-D-glucopyranoside (3); four organic acids, 4-hydroxybenzene carboxylic acid(4), 3,4-dihydroxybenzoic acid (5), vanillic acid (6), 3, 4-dihydroxybutyric acid (7); one phenolic compound, salicin (8); and five triterpenes, namely, arundoin (9), cylindrin (10), fernenol (11), simiarenol (12), glutinone (13) by their physicochemical properties and spectral data analysis. Among them, compounds 1-8 were isolated from the genus Imperata for the first time.
[Chemical constituents from the rhizoma of Arundina graminifolia].
Liu, Mei-feng; Han, Yun; Xing, Dong-ming; Wang, Wei; Xu, Li-zhen; Du, Li-jun; Ding, Yi
2004-02-01
To isolate and elucidate the chemical constituents from the tuber of Arundina graminifolia. The compounds were extracted by 95% alcohol and isolated by column chromatography on silica gel, SephedaxLH-20 and ODS. The structures were determined by UV, IR, NMR and MS spectral analysis. Five compounds were isolated, and their structures were identified as (2E)-, 2-propenoic acid, 3-(4-hydroxy-3-methoxyphenyl)-decosyl ester (I), p-hydroxybenzyl alcohol (II), triacontanol (III) and p-hydroxybenzylethyl ether (IV), 3-hydroxy-5-methoxybibenzyl (V), respectively. All compounds were isolated from the genus of Arundina for the first time.
Meenupriya, J; Thangaraj, M
2011-10-01
To isolate and characterize the bioactive secondary metabolites from Aspergillus ochraceus (A. ochraceus) MP2 fungi. The anti bacterial activity of marine sponge derived fungi A. ochraceus MP2 was thoroughly investigated against antagonistic human pathogens. The optimum inhibitory concentration of the fungi in the elite solvent was also determined. The promising extracts that showed good antimicrobial activity were subjected to further analytical separation to get individual distinct metabolites and the eluants were further identified by GC MS instrumental analysis. The molecular characterization of the elite fungal strains were done by isolating their genomic DNA and amplify the internal transcribed spacer (ITS) region of 5.8s rRNA using specific ITS primer. The novelty of the strain was proved by homology search tools and elite sequences was submitted to GENBANK. Three bioactive compounds were characterized to reveal their identity, chemical formula and structure. The first elutant was identified asα- Campholene aldehyde with chemical formula C10 H16 O and molecular weight 152 Da. The second elutant was identified as Lucenin-2 and chemical formula C27 H30 O16 and molecular weight 610 Da. The third elutant was identified as 6-Ethyloct- 3-yl- 2- ethylhexyl ester with Chemical formula C26 H42 O4 with molecular weight 418 Da. The isolated compounds showed significant antimicrobial activity against potential human pathogens. Microbial secondary metabolites represent a large source of compounds endowed with ingenious structures and potent biological activities.
Classification of Chemical Compounds to Support Complex Queries in a Pathway Database
Weidemann, Andreas; Kania, Renate; Peiss, Christian; Rojas, Isabel
2004-01-01
Data quality in biological databases has become a topic of great discussion. To provide high quality data and to deal with the vast amount of biochemical data, annotators and curators need to be supported by software that carries out part of their work in an (semi-) automatic manner. The detection of errors and inconsistencies is a part that requires the knowledge of domain experts, thus in most cases it is done manually, making it very expensive and time-consuming. This paper presents two tools to partially support the curation of data on biochemical pathways. The tool enables the automatic classification of chemical compounds based on their respective SMILES strings. Such classification allows the querying and visualization of biochemical reactions at different levels of abstraction, according to the level of detail at which the reaction participants are described. Chemical compounds can be classified in a flexible manner based on different criteria. The support of the process of data curation is provided by facilitating the detection of compounds that are identified as different but that are actually the same. This is also used to identify similar reactions and, in turn, pathways. PMID:18629066
Bennetts, Victor Hernandez; Schaffernicht, Erik; Pomareda, Victor; Lilienthal, Achim J; Marco, Santiago; Trincavelli, Marco
2014-09-17
In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.
Speciated Chemical Composition of Biomass Burning Aerosol from Various Fuels during FIREX
NASA Astrophysics Data System (ADS)
Jen, C.; Hatch, L. E.; Kreisberg, N. M.; Selimovic, V.; Yokelson, R. J.; Barsanti, K.; Goldstein, A. H.
2017-12-01
Biomass burning is the largest global source of atmospheric primary carbonaceous aerosols and the second largest global source of non-methane organic compounds, including volatile and semi-volatile organic compounds that are now understood to be major contributors to secondary particle formation in the atmosphere. As wildfires in forested regions such as the western United States become larger and more frequent, understanding the chemical composition of biomass burning organic aerosol is needed to better predict their increasing impact on human health, air quality, and climate. This study presents emission profiles of chemically speciated intermediate and semi-volatile organic compounds present in biomass burning aerosol particles ≤1.0 μm. Biomass burning organic aerosol (BBOA) samples from a variety of fuel types and burning conditions were collected during the FIREX campaign at the USDA Fire Lab (Missoula, MT). Fuels were primarily selected from vegetation commonly found in the western United States, such as ponderosa pine, lodgepole pine, ceanothus, and chaparral. Collected BBOA was thermally desorbed from the filters and analyzed using online derivatization and 2-dimensional gas chromatography with an electron impact (70 eV) and vacuum ultra violet light (10.5 eV) high resolution time of flight mass spectrometer for compound identification. Emission profiles for specific compounds (e.g., levoglucosan) and families of compounds (e.g., sugars and methoxyphenols) show distinct variations between different fuel types, with major differences between fresh and partially decomposed fuels. Results also illustrate the variability in chemical species between burns conducted under similar conditions. Furthermore, chemical fingerprints, representing ratios of normalized emissions for key chemical compounds, were measured for specific fuels/conditions and could be used in future field studies to help identify contributions of various vegetation to total BBOA and in models to estimate the chemical composition of BBOA emissions.
Procida, Giuseppe; Cichelli, Angelo; Lagazio, Corrado; Conte, Lanfranco S
2016-01-15
The volatile fraction of virgin olive oil is characterised by low molecular weight compounds that vaporise at room temperature. In order to obtain an aroma profile similar to natural olfactory perception, the composition of the volatile compounds was determined by applying dynamic headspace gas chromatography, performed at room temperature, with a cryogenic trap directly connected to a gas chromatograph-mass spectrometer system. Samples were also evaluated according to European Union and International Olive Council official methods for sensory evaluation. In this paper, the composition of the volatile fraction of 25 extra virgin olive oils from different regions of Italy was analysed and some preliminary considerations on relationships between chemical composition of volatile fraction and sensory characteristics are reported. Forty-two compounds were identified by means of the particular analytical technique used. All the analysed samples, classified as extra virgin by the panel test, never present peaks whose magnitude is important enough in defected oils. The study was focused on the evaluation of volatile compounds responsible for the positive impact on olive odour properties ('green-fruity' and 'sweet') and olfactory perception. Chemometric evaluation of data, obtained through headspace analysis and the panel test evaluation, showed a correlation between chemical compounds and sensory properties. On the basis of the results, the positive attributes of virgin olive oil are divided into two separated groups: sweet types or green types. Sixteen volatile compounds with known positive impact on odour properties were extracted and identified. In particular, eight compounds seem correlated with sweet properties whereas the green sensation appears to be correlated with eight other different substances. The content of the compounds at six carbon atoms proves to be very important in defining positive attributes of extra virgin olive oils and sensory evaluation. © 2015 Society of Chemical Industry.
Mata, Gerardo; Valdez, Karina; Mendoza, Remedios; Trigos, Ángel
2014-01-01
The chemical composition of the aroma of fresh fruiting bodies of the cultivated mushroom Lentinus boryanus is described here and compared with medicinal shiitake mushroom L. edodes. Volatile compounds were analyzed through headspace sampling coupled with gas chromatography-mass spectrometry. The mushrooms under study were grown on different substrates based on barley straw, sugarcane bagasse, oak wood sawdust, and beech leaf litter. It was determined that L. boryanus as well as L. edodes contain an abundant amount of a volatile compound identified as 3-octanone with a sweet fruity aroma. On the other hand, only L. boryanus produced 3-octanol a characteristic aroma of cod liver oil. In total, 10 aromatic compounds were identified, some of which were obtained exclusively in one species or substrate.
Are mammal olfactory signals hiding right under our noses?
NASA Astrophysics Data System (ADS)
Apps, Peter James
2013-06-01
Chemical communication via olfactory semiochemicals plays a central role in the social behaviour and reproduction of mammals, but even after four decades of research, only a few mammal semiochemicals have been chemically characterized. Expectations that mammal chemical signals are coded by quantitative relationships among multiple components have persisted since the earliest studies of mammal semiochemistry, and continue to direct research strategies. Nonetheless, the chemistry of mammal excretions and secretions and the characteristics of those semiochemicals that have been identified show that mammal semiochemicals are as likely to be single compounds as to be mixtures, and are as likely to be coded by the presence and absence of chemical compounds as by their quantities. There is very scant support for the view that mammal semiochemicals code signals as specific ratios between components, and no evidence that they depend on a Gestalt or a chemical image. Of 31 semiochemicals whose chemical composition is known, 15 have a single component and 16 are coded by presence/absence, one may depend on a ratio between two compounds and none of them are chemical images. The expectation that mammal chemical signals have multiple components underpins the use of multivariate statistical analyses of chromatographic data, but the ways in which multivariate statistics are commonly used to search for active mixtures leads to single messenger compounds and signals that are sent by the presence and absence of compounds being overlooked. Research on mammal semiochemicals needs to accommodate the possibility that simple qualitative differences are no less likely than complex quantitative differences to encode chemical signals.
A Market-Basket Approach to Predict the Acute Aquatic Toxicity of Munitions and Energetic Materials.
Burgoon, Lyle D
2016-06-01
An ongoing challenge in chemical production, including the production of insensitive munitions and energetics, is the ability to make predictions about potential environmental hazards early in the process. To address this challenge, a quantitative structure activity relationship model was developed to predict acute fathead minnow toxicity of insensitive munitions and energetic materials. Computational predictive toxicology models like this one may be used to identify and prioritize environmentally safer materials early in their development. The developed model is based on the Apriori market-basket/frequent itemset mining approach to identify probabilistic prediction rules using chemical atom-pairs and the lethality data for 57 compounds from a fathead minnow acute toxicity assay. Lethality data were discretized into four categories based on the Globally Harmonized System of Classification and Labelling of Chemicals. Apriori identified toxicophores for categories two and three. The model classified 32 of the 57 compounds correctly, with a fivefold cross-validation classification rate of 74 %. A structure-based surrogate approach classified the remaining 25 chemicals correctly at 48 %. This result is unsurprising as these 25 chemicals were fairly unique within the larger set.
[Chemical constituents from Neo-Taraxacum siphonathum].
Shi, Shuyun; Zhou, Honghao; Zhang, Yuping; Huang, Kelong; Liu, Suqin
2009-04-01
To study the chemical constituents from the antioxidant fraction of Neo-Taraxacum siphonathum. Various chromatographic techniques were used to isolate and purify the constituents. The structures were elucidated on the basis of chemical evidence and spectral analysis. Ten compounds were isolated and identified from Neo-T. siphonathum, caffeic acid (1), chlorogenic acid (2), quercetin (3), luteolin (4), quercetin-3-O-beta-D-glucopyranoside (5), quercetin-3-O-alpha-D-arabinofuranoside (6), quercetin-3-O-alpha-D-arabinopyranoside (7), luteolin-7-O-beta-D-glucopyranoside (8), beta-sitosterol (9) and daucosterol (10). Compounds 1-10 were isolated from this plant for the first time.
Chemical-genetic profile analysis of five inhibitory compounds in yeast.
Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan
2010-08-06
Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.
Nishihara, Kana; Huang, Ruili; Zhao, Jinghua; Shahane, Sampada A.; Witt, Kristine L.; Smith-Roe, Stephanie L.; Tice, Raymond R.; Takeda, Shunichi; Xia, Menghang
2016-01-01
DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 −/−/RAD54 −/− and REV3 −/−) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA. PMID:26243743
Wang, Caihong; Zhang, Jinlan; Wu, Caisheng; Wang, Zhe
2017-10-06
It is very important to rapidly discover and identify the multiple components of traditional Chinese medicine (TCM) formula. High performance liquid chromatography with high resolution tandem mass spectrometry (HPLC-HRMS/MS) has been widely used to analyze TCM formula and contains multiple-dimension data including retention time (RT), high resolution mass (HRMS), multiple-stage mass spectrometric (MS n ), and isotope intensity distribution (IID) data. So it is very necessary to exploit a useful strategy to utilize multiple-dimension data to rapidly probe structural information and identify chemical compounds. In this study, a new strategy to initiatively use the multiple-dimension LC-MS data has been developed to discover and identify unknown compounds of TCM in many styles. The strategy guarantees the fast discovery of candidate structural information and provides efficient structure clues for identification. The strategy contains four steps in sequence: (1) to discover potential compounds and obtain sub-structure information by the mass spectral tree similarity filter (MTSF) technique, based on HRMS and MS n data; (2) to classify potential compounds into known chemical classes by discriminant analysis (DA) on the basis of RT and HRMS data; (3) to hit the candidate structural information of compounds by intersection sub-structure between MTSF and DA (M,D-INSS); (4) to annotate and confirm candidate structures by IID data. This strategy allowed for the high exclusion efficiency (greater than 41%) of irrelevant ions in er-xian decoction (EXD) while providing accurate structural information of 553 potential compounds and identifying 66 candidates, therefore accelerating and simplifying the discovery and identification of unknown compounds in TCM formula. Copyright © 2017 Elsevier B.V. All rights reserved.
Kumar, Raj; Son, Minky; Bavi, Rohit; Lee, Yuno; Park, Chanin; Arulalapperumal, Venkatesh; Cao, Guang Ping; Kim, Hyong-ha; Suh, Jung-keun; Kim, Yong-seong; Kwon, Yong Jung; Lee, Keun Woo
2015-01-01
Aim: Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. Methods: The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. Results: The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. Conclusion: Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors. PMID:26051108
Barrow, Esther W; Clinkenbeard, Patricia A; Duncan-Decocq, Rebecca A; Perteet, Rachel F; Hill, Kimberly D; Bourne, Philip C; Valderas, Michelle W; Bourne, Christina R; Clarkson, Nicole L; Clinkenbeard, Kenneth D; Barrow, William W
2012-08-01
One of the objectives of the National Institutes of Allergy and Infectious Diseases (NIAID) Biodefense Program is to identify or develop broad-spectrum antimicrobials for use against bioterrorism pathogens and emerging infectious agents. As a part of that program, our institution has screened the 10 000-compound MyriaScreen Diversity Collection of high-purity druglike compounds against three NIAID category A and one category B priority pathogens in an effort to identify potential compound classes for further drug development. The effective use of a Clinical and Laboratory Standards Institute-based high-throughput screening (HTS) 96-well-based format allowed for the identification of 49 compounds that had in vitro activity against all four pathogens with minimum inhibitory concentration values of ≤16 µg/mL. Adaptation of the HTS process was necessary to conduct the work in higher-level containment, in this case, biosafety level 3. Examination of chemical scaffolds shared by some of the 49 compounds and assessment of available chemical databases indicates that several may represent broad-spectrum antimicrobials whose activity is based on novel mechanisms of action.
Usami, Atsushi; Motooka, Ryota; Takagi, Ayumi; Nakahashi, Hiroshi; Okuno, Yoshiharu; Miyazawa, Mitsuo
2014-01-01
The chemical composition of the volatile oil extracted from the aerial parts of Brassica rapa cv. "yukina" was analyzed using GC-MS, GC-PFPD, and GC-O. A total of 50 compounds were identified. The most prominent constituents were (E)-1,5-heptadiene (40.27%), 3-methyl-3-butenenitrile (25.97%) and 3-phenylpropanenitrile (12.41%). With regard to aroma compounds, 12 compounds were identified by GC-O analysis. The main aroma-active compounds were dimethyl tetrasulfide (sulphury-cabbage, FD = 64), 3-phenylpropanenitrile (nutty, FD = 64), 3-methylindole (pungent, FD = 64), and methional (potato, FD = 32). The antioxidant activity of the aroma-active compounds of the oil was determined using an oxygen radical absorbance capacity (ORAC) assay using fluorescein as the fluorescent probe. The ORAC values were found to be 785 ± 67 trolox equivalents (μmol TE/g) for B. rapa cv. "yukina" oil. The results obtained showed that the volatile oil extracted from the aerial parts is a good dietary source of antioxidants.
The use of high-throughput screening techniques to evaluate mitochondrial toxicity.
Wills, Lauren P
2017-11-01
Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards. Copyright © 2017 Elsevier B.V. All rights reserved.
A search map for organic additives and solvents applicable in high-voltage rechargeable batteries.
Park, Min Sik; Park, Insun; Kang, Yoon-Sok; Im, Dongmin; Doo, Seok-Gwang
2016-09-29
Chemical databases store information such as molecular formulas, chemical structures, and the physical and chemical properties of compounds. Although the massive databases of organic compounds exist, the search of target materials is constrained by a lack of physical and chemical properties necessary for specific applications. With increasing interest in the development of energy storage systems such as high-voltage rechargeable batteries, it is critical to find new electrolytes efficiently. Here we build a search map to screen organic additives and solvents with novel core and functional groups, and thus establish a database of electrolytes to identify the most promising electrolyte for high-voltage rechargeable batteries. This search map is generated from MAssive Molecular Map BUilder (MAMMBU) by combining a high-throughput quantum chemical simulation with an artificial neural network algorithm. MAMMBU is designed for predicting the oxidation and reduction potentials of organic compounds existing in the massive organic compound database, PubChem. We develop a search map composed of ∼1 000 000 redox potentials and elucidate the quantitative relationship between the redox potentials and functional groups. Finally, we screen a quinoxaline compound for an anode additive and apply it to electrolytes and improve the capacity retention from 64.3% to 80.8% near 200 cycles for a lithium ion battery in experiments.
2,3,3,3-tetrafluoropropene No Longer Regulated as a Volatile Organic Compound
The Environmental Protection Agency has issued a final rule that identified 2,3,3,3-tetrafluoropropene (also known as HFO-1234yf) as a chemical compound that will no longer be regulated as a VOC under the Clean Air Act.
Wei, Qiang; Ji, Xiao-ying; Long, Xian-shun; Li, Qian-rong; Yin, Hao
2015-02-01
To study the chemical constituents from the leaves of "Chuju" Chrysanthemum morifolium. All compounds were separated and purified by column chromatography over silica gel, Sephadex LH-20 and preparative HPLC. Their structures were identified by spectral methods including 1H-NMR and 13C-NMR. 21 compounds were isolated and identified as octa-cosyl alcohol (1), β-sitosterol (2), lupeol (3), α-amyrin (4), daucosterol (5), ineupatorolide B (6), syringin (7), chlorogenic acid (8), petasiphenol (9), physcion (10), acacetin (11), eupatilin (12), quercetin (13), diosmetin (14), luteolin (15), apigenin (16), apigenin- 7-O-β-D-glucopyranoside (17), quercetin-3-O-β-D-glucopyranoside (18), luteolin-7-O-β-D-gluco pyranoside (19), apigenin-7-O-β-D- neospheroside (20), and acacetin-7-O-β-D-glucoside (21). Compounds 1-12, 18 and 20 are isolated from this plant for the first time. Compounds 10, 13, 14, 15 and 16 have shown strong antioxidant activities by DPPH · scavenging activity better than Vit C.
An "EAR" on environmental surveillance and monitoring: A ...
Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on chemical concentration alone, it can be difficult to identify which compounds may be of toxicological concern for prioritization for further monitoring or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high throughput screening data like the ToxCast™ database, which contains data for over 9,000 compounds screened through up to 1,100 assays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast™ effects database were used to calculate exposure-activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast™ database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Biological pathways were then linked to adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts. Anthropogenic contaminants are frequently reported in environm
Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir
2018-05-24
Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.
A plant-based chemical genomics screen for the identification of flowering inducers.
Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H
2017-01-01
Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.
Zhang, Ya-Zhou; Xu, Feng; Yi, Tao; Zhang, Jian-Ye; Xu, Jun; Tang, Yi-Na; He, Xi-Chen; Liu, Jing; Chen, Hu-Biao
2014-04-30
Danggui Buxue Tang (DBT) is a Traditional Chinese Medicine (TCM) formula primarily used to treat symptoms associated with menopause in women. Usually, DBT is composed of one portion of Radix Angelicae Sinensis (RAS) and five portions of Radix Astragali (RA). Clinically, Radix Hedysari (RH) is sometimes used by TCM physicians to replace RA in DBT. In order to verity whether the chemical constituents of the DBT1 (RA:RAS = 5:1, w/w) and DBT2 (RH:RAS = 5:1, w/w) share similarities the chemical profiles of the two DBTs crude extracts and urine samples were analyzed and compared with the aid of HPLC-DAD-ESI-IT-TOF-MSn, which determines the total ion chromatogram (TIC) and multi-stage mass spectra (MSn). Then, the DBT1 and DBT2 were identified and compared on the basis of the TIC and the MSn. In the first experiment (with crude extracts), 69 compounds (C1-C69) were identified from the DBT1; 46 compounds (c1-c46) were identified from the DBT2. In the second experiment(with urine samples), 44 compounds (M1-M44) were identified from the urine samples of rats that had been administered DBT1, and 34 compounds (m1-m34) were identified from the urine samples of rats that had been administered DBT2. Identification and comparison of the chemical compositions were carried out between the DBT1 and DBT2 of the crude extracts and urine samples respectively. Our results showed that the two crude extracts of the DBTs have quite different chemical profiles. The reasons for their differences were that the special astragalosides in DBT1 and the isoflavonoid glycosides formed the malonic acid esters undergo single esterification and acetyl esters undergo acetylation in DBT1. In contrast, the urine from DBT1-treated rats strongly resembled that of DBT2-treated rats. These metabolites originate mainly from formononetin, calycosin and their related glycosides, and they were formed mainly by the metabolic process of reduction, deglycosylation, demethylation, hydrogenation and sulfation. The HPLC-DAD-ESI-IT-TOF-MSn method was successfully applied for the rapid chemical profiles evaluation of two DBTs and their related urine samples.
Shi, Zixiao; Zhang, Juan; Chen, Shuangquan; Li, Yanxin; Lei, Xuepei; Qiao, Huimin; Zhu, Qianwen; Hu, Baoyang; Zhou, Qi; Jiao, Jianwei
2016-01-01
Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5–7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons. PMID:27137935
Phenolic glycosides with antimalarial activity from Grevillea "Poorinda Queen".
Ovenden, Simon P B; Cobbe, Melanie; Kissell, Rebecca; Birrell, Geoffrey W; Chavchich, Marina; Edstein, Michael D
2011-01-28
In search of new antimalarial compounds, three new phenolic glycosides, robustasides E (1), F (2), and G (3), in addition to the known compounds robustaside D (4) and quercetin-7-O-[α-l-rhamnopyranosyl(1→6)-β-d-galactopyranoside] (5), were identified during chemical investigations of the MeOH extract from the leaves and twigs of Grevillea "Poorinda Queen". The chemical structures of the new compounds were elucidated through 2D NMR spectroscopy, while the absolute configuration of the sugar was elucidated through chemical degradation and comparison with an authentic standard. Discussed in detail are the isolation and structure elucidation of 1-3, as well as the associated in vitro anitmalarial activities for 1-5. Also discussed are the in vivo anitmalarial and in vitro cytotoxic activities for 1, 3, and 4.
Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Loesel, Jens; McLoughlin, David; Mills, James; Peakman, Marie-Claire; Sharp, Robert E; Williams, Christine; Zhu, Hongyao
2016-11-01
High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.
[Two new flavones from Fordia cauliflora of Yunnan].
Liang, Zhi-Yuan; Yang, Xiao-Sheng; Zhu, Hai-Yan; Hao, Xiao-Jiang
2006-06-01
To study the chemical constituents of the stem of Fordia cauliflora of Yunnan province. The constituents were separated and purified by repeated silica column chromatography. The structures were elucidated by physical-chemical properties and spectroscopic data. Six compounds were isolated from the ethanol extract of the stem of Fordia cauliflora. They were identified as: 6-hydroxy-3-methoxy-6",6"-dimethylchromeno-(2", 3" : 7, 8)-flavone (1), 3-methoxy-6-(3-methyl-but-2-enyloxy)-6", 6"-dimethylchromeno-( 2", 3" : 7, 8)-flavone (2), 3, 6-dimethoxy-6", 6"-dimethylchromeno-( 2", 3" : 7, 8)-flavone (3), 7-hydroxy-4'-methoxyisoflavone (4), 7, 4'-dihydroxyisoflavone (5) and karanjin (6). Compounds 1 and 2 are new compounds. Compounds 3 -5 were isolated from the plant for the first time.
EVALUATION OF DRINKING WATER TREATMENT TECHNOLOGIES FOR REMOVAL OF ENDOCRINE DISRUPTING COMPOUNDS
Many of the chemicals identified as potential endocrine disrupting compounds (EDCs) may be present in surface or ground waters used as drinking water sources due to their introduction from domestic and industrial sewage treatment systems and wet-weather runoff. In order to dec...
[Chemical constituents from leaves of Paulownia fortunei].
Li, Xiao-Qiang; Wu, Jing-Lian; Cao, Fei-Hua; Li, Chong
2008-06-01
To study the chemical constituents of leaves of Paulownia fortunei (Seem.) Hemsl. The constituents were isolated by column chromatography and their structures were elucidated through spectroscopic analysis. The compounds were identified as mimulone (I), apigenin (II), luteolin (III), 2alpha, 3beta, 19beta-trihydroxyurs-28-O-beta-D-galactonopyranos ylester (anserinoside, IV), 3alpha-hydroxyl-ursolicacid (V), ursolicacid (VI), daucosterol (VII), beta-sitosterol (VIII). The compounds I - V are obtained from leaves of Paulownia fortunei (Seem.) Hemsl for the first time.
[Studies on the chemical constituents of the root and rhizoma of Ligusticum jeholense].
Zhang, Bo; Sun, Jia-Ming; Chang, Ren-Long; Zhang, Hui
2009-05-01
To study the chemical constituents of the root and rhizoma of Ligusticum jeholense. The constituents were isolated by silica gel column chromatography, Sephadex LH-20 column chromatography and their structures were elucidated through spectral analysis. Seven compounds were separated from the EtOH extracts. Their structures were identified as levistolide A (1), xiongterpene (2), linoleic acid (3), sucrose (4), daucosterol (5), ferulic acid (6) and beta-sitosterol (7). Compounds 1-5 are isolated from the genus for the first time.
Chemical characterization of some aqueous leachates from crop residues in 'CELSS'
NASA Technical Reports Server (NTRS)
Madsen, Brooks C.
1992-01-01
Aqueous leachate samples prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions have been compared and general chemical characterization has been accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified, however, general composition related to the presence of phenol-like compounds was explored.
Sun, Guo-Dong; Huo, Jin-Hai; Xie, Rong-Juan; Wang, Wei-Ming
2017-08-01
To analyze the dynamic changes in components in exocarp of Juglans mandshurica at different browning periods. Twenty-six batches of exocarp of J. mandshurica samples from thirteen browning periods were assessed by UPLC-Q-TOF-MS/MS. The formula of different compounds were determined by accurate mass and isotopic abundance ratio from target screening function of Peakview 2.0/masterview1.0 software. Then their structures were determined by analysis of MS/MS fragment or comparison with standard substances and references. The contents of chemical components were changed significantly in different browning periods and twenty five compounds were identified or inferred. Of the 13 naphthoquinone compounds, the contents of 6 compounds with similar parent nucleus as juglone and 3 naphthoquinone glycosides compounds were decreased significantly, and 4 naphthoquinone derivatives such as regiolone were produced; the contents of four flavones and two phenolic acids compounds were decreased significantly; and the contents of 6 diarylheptanoids compounds were increased significantly. UPLC-Q-TOF/MS method can be used to identify and analyze the chemical constituents from exocarp of J. mandshurica rapidly and accurately, and analyze the rules of dynamic changes, to reveal the browning of Chinese medicinal materials and its effects on compositions of fruits and vegetables. Copyright© by the Chinese Pharmaceutical Association.
Alfonso, Salvatore; Cocozza, Martina; Porretta, Giulio Cesare; Ballell, Lluís; Rullas, Joaquin; Ortega, Fátima; De Logu, Alessandro; Agus, Emanuela; La Rosa, Valentina; Pasca, Maria Rosalia; De Rossi, Edda; Wae, Baojie; Franzblau, Scott G.; Manetti, Fabrizio; Botta, Maurizio; Biava, Mariangela
2013-01-01
1,5-Diphenyl pyrroles were previously identified as a class of compounds endowed with high in vitro efficacy against M. tuberculosis. To improve the physical chemical properties and drug-like parameters of this class of compounds, a medicinal chemistry effort was undertaken. By selecting the optimal substitution patterns for the phenyl rings at N1 and C5 and by replacing the thiomorpholine moiety with a morpholine one, a new series of compounds was produced. The replacement of the sulfur with oxygen gave compounds with lower lipophilicity and improved in vitro microsomal stability. Moreover, since the parent compound of this family has been shown to target MmpL3, mycobacterial mutants resistant to two compounds have been isolated and characterized by sequencing the mmpL3 gene; all the mutants showed point mutations in this gene. The best compound identified to date was progressed to dose-response studies in an acute murine TB infection model. The resulting ED99 of 49 mg/Kg is within the range of commonly employed tuberculosis drugs, demonstrating the potential of this chemical series. The in vitro and in vivo target validation evidence presented here adds further weight to MmpL3 as a druggable target of interest for anti-tubercular drug discovery. PMID:23437287
[Study on the chemical constituents in Pouzolzia zeylanica].
Fu, Ming; Niu, You-Ya; Yu, Juan; Kong, Qing-Tong
2012-11-01
To study the chemical constituents of Pouzolzia zeylanica. Many chromatography means were used in separation and purification, and the structures of all compounds were identified by the means of spectroscopic analysis and physicochemical properties. 14 compounds were elucidated as: beta-sitosterol (1), daucosterol (2), oleanolic acid (3), epicatechin (4), alpha-amyrin (5), eugenyl-beta-rutinoside (6), 2alpha, 3alpha, 19alpha-trihydroxyurs-12-en-28-oic (7), scopolin (8), scutellarein-7-O-alpha-L-rhamnoside (9), scopoletin (10), quercetin (11), quercetin-3-O-beta-D-glucoside (12), apigenin (13), 2alpha-hydroxyursolic acid (14). All compounds are obtained from this plant for the first time.
[Study on the chemical constituents from Cyathea spinulosa].
Jiang, Jian-Shuang; Zhan, Zhi-Lai; Feng, Zi-Ming; Yang, Ya-Nan; Zhang, Pei-Cheng
2012-04-01
To study the chemical constituents from Cyathea spinulosa. Compounds were isolated by chromatographic techniques. Their structures were elucidated by spectral methods. Eight compounds were isolated from the ethanol extract of Cyathea spinulosa and identified as stigmast-4-ene-3,6-dione (1), stigmast-3,6-dione (2), ergosterol (3), protocatechuic aldehyde (4), 1-O-beta-D-glucopyranosyl-(2S,3R,4E,8Z)-2-[(2-hydroxyoctadecanoyl) amido]-4,8- octadecadiene-1,3-diol (5), (2S,3S, 4R)-2-[(2'R) -2'-hydroxytetracosanoylamino]-1,3,4-octadecanetriol (6), beta-sitosterol (7), daucosterol (8). Compounds 1-6 are isolated from this plant for the first time.
Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana
2016-01-01
The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Das, Bhaskar C; McCartin, Kellie; Liu, Ting-Chun; Peterson, Randall T; Evans, Todd
2010-04-02
Retinoids regulate key developmental pathways throughout life, and have potential uses for differentiation therapy. It should be possible to identify novel retinoids by coupling new chemical reactions with screens using the zebrafish embryonic model. We synthesized novel retinoid analogues and derivatives by amide coupling, obtaining 80-92% yields. A small library of these compounds was screened for bioactivity in living zebrafish embryos. We found that several structurally related compounds significantly affect development. Distinct phenotypes are generated depending on time of exposure, and we characterize one compound (BT10) that produces specific cardiovascular defects when added 1 day post fertilization. When compared to retinoic acid (ATRA), BT10 shows similar but not identical changes in the expression pattern of embryonic genes that are known targets of the retinoid pathway. Reporter assays determined that BT10 interacts with all three RAR receptor sub-types, but has no activity for RXR receptors, at all concentrations tested. Our screen has identified a novel retinoid with specificity for retinoid receptors. This lead compound may be useful for manipulating components of retinoid signaling networks, and may be further derivatized for enhanced activity.
Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens
Powers, Matthew J.; Sanabria-Valentín, Edgardo; Bowers, Albert A.
2015-01-01
ABSTRACT Interspecies interactions have been described for numerous bacterial systems, leading to the identification of chemical compounds that impact bacterial physiology and differentiation for processes such as biofilm formation. Here, we identified soil microbes that inhibit biofilm formation and sporulation in the common soil bacterium Bacillus subtilis. We did so by creating a reporter strain that fluoresces when the transcription of a biofilm-specific gene is repressed. Using this reporter in a coculture screen, we identified Pseudomonas putida and Pseudomonas protegens as bacteria that secrete compounds that inhibit biofilm gene expression in B. subtilis. The active compound produced by P. protegens was identified as the antibiotic and antifungal molecule 2,4-diacetylphloroglucinol (DAPG). Colonies of B. subtilis grown adjacent to a DAPG-producing P. protegens strain had altered colony morphologies relative to B. subtilis colonies grown next to a DAPG-null P. protegens strain (phlD strain). Using a subinhibitory concentration of purified DAPG in a pellicle assay, we saw that biofilm-specific gene transcription was delayed relative to transcription in untreated samples. These transcriptional changes also corresponded to phenotypic alterations: both biofilm biomass and spore formation were reduced in B. subtilis liquid cultures treated with subinhibitory concentrations of DAPG. Our results add DAPG to the growing list of antibiotics that impact bacterial development and physiology at subinhibitory concentrations. These findings also demonstrate the utility of using coculture as a means to uncover chemically mediated interspecies interactions between bacteria. IMPORTANCE Biofilms are communities of bacteria adhered to surfaces by an extracellular matrix; such biofilms can have important effects in both clinical and agricultural settings. To identify chemical compounds that inhibited biofilm formation, we used a fluorescent reporter to screen for bacteria that inhibited biofilm gene expression in Bacillus subtilis. We identified Pseudomonas protegens as one such bacterium and found that the biofilm-inhibiting compound it produces was the antibiotic 2,4-diacetylphloroglucinol (DAPG). We showed that even at subinhibitory concentrations, DAPG inhibits biofilm formation and sporulation in B. subtilis. These findings have potential implications for understanding the interactions between these two microbes in the natural world and support the idea that many compounds considered antibiotics can impact bacterial development at subinhibitory concentrations. PMID:25825426
Identification of Broad-Based HIV-1 Protease Inhibitors From Combinatorial Libraries
Chang, Max W.; Giffin, Michael J.; Muller, Rolf; Savage, Jeremiah; Lin, Ying C.; Hong, Sukwon; Jin, Wei; Whitby, Landon R.; Elder, John H.; Boger, Dale L.; Torbett, Bruce E.
2011-01-01
Clinically approved inhibitors of HIV-1 protease function via a competitive mechanism. A particular vulnerability of competitive inhibitors is their sensitivity to increases in substrate concentration, as may occur during virion assembly, budding and processing into a mature, infectious viral particle. Advances in chemical synthesis have led to the development of new chemical libraries with high diversity using rapid in-solution syntheses. These libraries have been previously shown to be effective at disrupting protein-protein and protein-nucleic acid interfaces. We have screened 44,000 compounds from such a library to identify inhibitors of HIV-1 protease. One compound was identified that inhibits wild type protease, as well as a drug-resistant protease with 6 mutations. Moreover, analysis of this compound suggests an allosteric, non-competitive mechanism of inhibition and may represent a starting point for an additional strategy for anti-retroviral therapy. PMID:20507280
Lemieux, George A; Keiser, Michael J; Sassano, Maria F; Laggner, Christian; Mayer, Fahima; Bainton, Roland J; Werb, Zena; Roth, Bryan L; Shoichet, Brian K; Ashrafi, Kaveh
2013-11-01
Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.
Chiang, Wei-Chung; Wei, Yongjie; Kuo, Yi-Chun; Wei, Shuguang; Zhou, Anwu; Zou, Zhongju; Yehl, Jenna; Ranaghan, Matthew J; Skepner, Adam; Bittker, Joshua A; Perez, Jose R; Posner, Bruce A; Levine, Beth
2018-06-21
Autophagy, a lysosomal degradation pathway, plays a crucial role in cellular homeostasis, development, immunity, tumor suppression, metabolism, prevention of neurodegeneration, and lifespan extension. Thus, pharmacological stimulation of autophagy may be an effective approach for preventing or treating certain human diseases and/or aging. We sought to establish a method for developing new chemical compounds that specifically induce autophagy. To do this, we developed two assays to identify compounds that target a key regulatory node of autophagy induction-specifically, the binding of Bcl-2 (a negative regulator of autophagy) to Beclin 1 (an allosteric modulator of the Beclin 1/VPS34 lipid kinase complex that functions in autophagy initiation). These assays use either a split-luciferase assay to measure Beclin 1/Bcl-2 binding in cells or an AlphaLISA assay to directly measure direct Beclin 1/Bcl-2 binding in vitro. We screened two different chemical compound libraries, comprising ∼300 K compounds, to identify small molecules that disrupt Beclin 1/Bcl-2 binding and induce autophagy. Three novel compounds were identified that directly inhibit Beclin 1/Bcl-2 interaction with an IC 50 in the micromolar range and increase autophagic flux. These compounds do not demonstrate significant cytotoxicity, and they exert selectivity for disruption of Bcl-2 binding to the BH3 domain of Beclin 1 compared with the BH3 domain of the pro-apoptotic Bcl-2 family members, Bax and Bim. Thus, we have identified candidate molecules that serve as lead templates for developing potent and selective Beclin 1/Bcl-2 inhibitors that may be clinically useful as autophagy-inducing agents.
Novel Chemical Space Exploration via Natural Products
Rosén, Josefin; Gottfries, Johan; Muresan, Sorel; Backlund, Anders; Oprea, Tudor I.
2009-01-01
Natural products (NPs) are a rich source of novel compound classes and new drugs. In the present study we have used the chemical space navigation tool ChemGPS-NP to evaluate the chemical space occupancy by NPs and bioactive medicinal chemistry compounds from the database WOMBAT. The two sets differ notable in coverage of chemical space, and tangible lead-like NPs were found to cover regions of chemical space that lack representation in WOMBAT. Property based similarity calculations were performed to identify NP neighbours of approved drugs. Several of the NPs revealed by this method, were confirmed to exhibit the same activity as their drug neighbours. The identification of leads from a NP starting point may prove a useful strategy for drug discovery, in the search for novel leads with unique properties. PMID:19265440
[Chemical constituents of Rauvolfia verticillata].
Hong, Bo; Li, Wen-Jing; Zhao, Chun-Jie
2012-06-01
The study on the Rauvolfia verticillata (Lour.) Baill., which belongs to Apocynaceae, was carried out to look for its chemical constituents and pharmacological activity. The isolation and purification were performed by chromatography on silica gel, Sephadex LH-20 and ODS (octadecyl silane) open column. The structures of obtained compounds were elucidated on the basis of physicochemical properties and spectral analysis. Three indole alkaloids and one acridone alkaloid were isolated from chloroform layer extract and identified as ajmalicine B (1), sandwicine (2), raunescine (3) and 7-hydroxynoracronycine (4) separately. Ajmalicine B (1) is a new compound belonging to indole alkaloid. Compound 4 as an acridone alkaloid was a new type compound isolated from Rauvolfia genus for the first time. We also did some biological activity research on the new type compound (4) to explore other pharmacological activities in addition to antihypertensive activity.
Automated recycling of chemistry for virtual screening and library design.
Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian
2012-07-23
An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, Vinicius M.; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599; Muratov, Eugene
Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putativemore » sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative chemical hazards in the Scorecard database were found using our models.« less
Addressing safety aspects of drugs and environmental chemicals has historically been undertaken through animal testing. However, the quantity of chemicals needing assessment and the challenge of species extrapolation require development of alternative approaches. Assessing phenot...
The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay
Hu, Huabin; Xue, Wenjie; Wang, Xiang Simon; Wu, Song
2018-01-01
Abstract Histone deacetylase 3 (HDAC3) is a potential target for the treatment of human diseases such as cancers, diabetes, chronic inflammation and neurodegenerative diseases. Previously, we proposed a virtual screening (VS) pipeline named “Hypo1_FRED_SAHA-3” for the discovery of HDAC3 inhibitors (HDAC3Is) and had thoroughly validated it by theoretical calculations. In this study, we attempted to explore its practical utility in a large-scale VS campaign. To this end, we used the VS pipeline to hierarchically screen the Specs chemical library. In order to facilitate compound cherry-picking, we then developed a knowledge-based pose filter (PF) by using our in-house quantitative structure activity relationship- (QSAR-) modelling approach and coupled it with FRED and Autodock Vina. Afterward, we purchased and tested 11 diverse compounds for their HDAC3 inhibitory activity in vitro. The bioassay has identified compound 2 (Specs ID: AN-979/41971160) as a HDAC3I (IC50 = 6.1 μM), which proved the efficacy of our workflow. As a medicinal chemistry study, we performed a follow-up substructure search and identified two more hit compounds of the same chemical type, i.e. 2–1 (AQ-390/42122119, IC50 = 1.3 μM) and 2–2 (AN-329/43450111, IC50 = 12.5 μM). Based on the chemical structures and activities, we have demonstrated the essential role of the capping group in maintaining the activity for this class of HDAC3Is. In addition, we tested the hit compounds for their in vitro activities on other HDACs, including HDAC1, HDAC2, HDAC8, HDAC4 and HDAC6. We have identified these compounds are HDAC1/2/3 selective inhibitors, of which compound 2 show the best selectivity profile. Taken together, the present study is an experimental validation and an update to our earlier VS strategy. The identified hits could be used as starting structures for the development of highly potent and selective HDAC3Is. PMID:29464997
High performance, high density hydrocarbon fuels
NASA Technical Reports Server (NTRS)
Frankenfeld, J. W.; Hastings, T. W.; Lieberman, M.; Taylor, W. F.
1978-01-01
The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified.
Analysis of hydraulic fracturing additives by LC/Q-TOF-MS.
Ferrer, Imma; Thurman, E Michael
2015-08-01
The chemical additives used in fracturing fluids can be used as tracers of water contamination caused by hydraulic fracturing operations. For this purpose, a complete chemical characterization is necessary using advanced analytical techniques. Liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC/Q-TOF-MS) was used to identify chemical additives present in flowback and produced waters. Accurate mass measurements of main ions and fragments were used to characterize the major components of fracking fluids. Sodium adducts turned out to be the main molecular adduct ions detected for some additives due to oxygen-rich structures. Among the classes of chemical components analyzed by mass spectrometry include gels (guar gum), biocides (glutaraldehyde and alkyl dimethyl benzyl ammonium chloride), and surfactants (cocamidopropyl dimethylamines, cocamidopropyl hydroxysultaines, and cocamidopropyl derivatives). The capabilities of accurate mass and MS-MS fragmentation are explored for the unequivocal identification of these compounds. A special emphasis is given to the mass spectrometry elucidation approaches used to identify a major class of hydraulic fracturing compounds, surfactants.
Kufareva, Irina; Abagyan, Ruben
2014-01-01
Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor α (ERα). In silico models can be used to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early alerts for newly designed compounds. However, many of the current computational models are overly dependent on the chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the identification of novel EDCs that act via the ligand-binding domain of ERα. These models were highly accurate in the retrospective task of distinguishing known high-affinity ERα modulators from inactive or decoy molecules, with minimal training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over 6000 environmental chemicals and evaluated the 24 top-ranked hits in an ERα transcriptional activation assay and a differential scanning fluorimetry-based ERα binding assay. Promisingly, six chemicals displayed ERα agonist activity (32nM–3.98μM) and two chemicals had moderately stabilizing effects on ERα. Two newly identified active compounds were chemically related β-adrenergic receptor (βAR) agonists, dobutamine, and ractopamine (a feed additive that promotes leanness in cattle and poultry), which are the first βAR agonists identified as activators of ERα-mediated gene transcription. This approach can be applied to other receptors implicated in endocrine disruption. PMID:24928891
McRobb, Fiona M; Kufareva, Irina; Abagyan, Ruben
2014-09-01
Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor α (ERα). In silico models can be used to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early alerts for newly designed compounds. However, many of the current computational models are overly dependent on the chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the identification of novel EDCs that act via the ligand-binding domain of ERα. These models were highly accurate in the retrospective task of distinguishing known high-affinity ERα modulators from inactive or decoy molecules, with minimal training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over 6000 environmental chemicals and evaluated the 24 top-ranked hits in an ERα transcriptional activation assay and a differential scanning fluorimetry-based ERα binding assay. Promisingly, six chemicals displayed ERα agonist activity (32nM-3.98μM) and two chemicals had moderately stabilizing effects on ERα. Two newly identified active compounds were chemically related β-adrenergic receptor (βAR) agonists, dobutamine, and ractopamine (a feed additive that promotes leanness in cattle and poultry), which are the first βAR agonists identified as activators of ERα-mediated gene transcription. This approach can be applied to other receptors implicated in endocrine disruption. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Rosu, Cornelia; Cueto, Rafael; Veillion, Lucas; David, Connie; Laine, Roger A.; Russo, Paul S.
2017-01-01
Volatile compounds from polymeric materials such as weatherstripping were identified by solid-phase microextraction (SPME), a solvent-free analytical method, coupled to gas chromatography-mass spectrometry (GC-MS). These compounds, originating from additives and fillers used in weatherstripping processing, were mostly polycyclic aromatic…
Potency determination is important to identify the most promising drug candidates as well as identification of and ranking of compound toxicity. In our laboratory, we have utilized MEA recording techniques to determine the relative potency of 11 insecticidal compounds and rank th...
Research task- Are physicochemical properties of soil and house dust predictive of the bioaccessibility of sorbed organic compoundsGoalIdentify dust and soil characteristics that influence the bioaccessibility of organic compounds and provide chemical specific data on the fractio...
[Studies on chemical constituents of leaves of Psidium guajava].
Fu, Huizheng; Luo, Yongming; Zhang, Dongming
2009-03-01
To study the chemical constituents of the leaves of Psidium guajava. The chemical constituents were isolated by column chromatography on silica gel, Sephadex LH-20 and MPLC. Their structures were elucidated on the basis of spectral analysis. Nine compounds were isolated from this plant, and the structure of them were identified as ursolic acid (1), 2alpha-hydroxyursolic acid (2), 2alpha-hydroxyoleanolic acid (3), morin-3-O-alpha-L-arabopyranoside (4), quercetin (5), hyperin (6), myricetin-3-O-beta-D-glucoside (7), quercetin-3-O-beta-D-glucuronopyranoside (8), 1-O-galloyl-beta-D-glucose (9). Compounds 3, 7-9 were isolated from this plant for the first time.
Kaiser, Marcel; Chatelain, Eric; Moawad, Sarah R.; Ganame, Danny; Ioset, Jean-Robert; Avery, Vicky M.
2012-01-01
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill. PMID:23209849
Analytical methods in environmental effects-directed investigations of effluents.
Hewitt, L Mark; Marvin, Chris H
2005-05-01
Effluent discharges are released into aquatic environments as complex mixtures for which there is commonly either no knowledge of the toxic components or a lack of understanding of how known toxicants interact with other effluent components. Effects-directed investigations consist of chemical extraction and iterative fractionation steps directed by a biological endpoint that is designed to permit the identification or characterization of the chemical classes or compounds in a complex mixture responsible for the observed biological activity. Our review of the literature on effects-directed analyses of effluents for non-mutagenic as well as mutagenic endpoints showed that common extraction and concentration methods have been used. Since the mid-1980s, the methods have evolved from the use of XAD resins to C18 solid-phase extraction (SPE). Blue cotton, blue rayon, and blue chitin have been used specifically for investigations of mutagenic activity where polycyclic compounds were involved or suspected. After isolation, subsequent fractionations have been accomplished using SPE or a high-pressure liquid chromatography (HPLC) system commonly fitted with a C18 reverse-phase column. Substances in active fractions are characterized by gas chromatography/mass spectrometry (GC-MS) and/or other spectrometric techniques for identification. LC-MS methods have been developed for difficult-to-analyze polar substances identified from effects-directed studies, but the potential for LC-MS to identify unknown polar compounds has yet to be fully realized. Salmonella-based assays (some miniaturized) have been coupled with fractionation methods for most studies aimed at identifying mutagenic fractions and chemical classes in mixtures. Effects-directed investigations of mutagens have focused mostly on drinking water and sewage, whereas extensive investigations of non-mutagenic effects have also included runoff, pesticides, and pulp mill effluents. The success of effects-directed investigations should be based on a realistic initial objective of each project. Identification of chemical classes associated with the measured biological endpoint is frequently achievable; however, confirmation of individual compounds is much more difficult and not always a necessary goal of effects-directed chemical analysis.
Discovery of new antimalarial chemotypes through chemical methodology and library development.
Brown, Lauren E; Chih-Chien Cheng, Ken; Wei, Wan-Guo; Yuan, Pingwei; Dai, Peng; Trilles, Richard; Ni, Feng; Yuan, Jing; MacArthur, Ryan; Guha, Rajarshi; Johnson, Ronald L; Su, Xin-zhuan; Dominguez, Melissa M; Snyder, John K; Beeler, Aaron B; Schaus, Scott E; Inglese, James; Porco, John A
2011-04-26
In an effort to expand the stereochemical and structural complexity of chemical libraries used in drug discovery, the Center for Chemical Methodology and Library Development at Boston University has established an infrastructure to translate methodologies accessing diverse chemotypes into arrayed libraries for biological evaluation. In a collaborative effort, the NIH Chemical Genomics Center determined IC(50)'s for Plasmodium falciparum viability for each of 2,070 members of the CMLD-BU compound collection using quantitative high-throughput screening across five parasite lines of distinct geographic origin. Three compound classes displaying either differential or comprehensive antimalarial activity across the lines were identified, and the nascent structure activity relationships (SAR) from this experiment used to initiate optimization of these chemotypes for further development.
2012-01-01
Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total 14C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors. PMID:22321051
[Studies on chemical constituents of Valeriana officinalis].
Jiang, Xia; Zhang, Jian-chao; Liu, Yan-wen; Fang, Yin
2007-11-01
From Valeriana officinalis L., 4 compounds were isolated and identified by various spectral analysis and chemical conversion, as valerenic acid, beta-sitosterol, ursolic acid, 4, 4', 8, 8'-tetrahydroxy-3, 3'-dimethoxyl-dibenzyl-ditetrahydrofuran and caryophyllene acide,valerane, naphthalene, linoleic acid, ethyl ester, myrtenyl acetate were identified by GC-MS. Ursolic acid and 4, 4', 8, 8'-tetrahydroxy-3, 3'-dimethoxyl-dibenzyl-ditetrahydrofuran were discovered in this plant for the first time.
ToxiFly: Can Fruit Flies be Used to Identify Toxicity Pathways for Airborne Chemicals?
Current high-throughput and alternative screening assays for chemical toxicity are unable to test volatile organic compounds (VOCs), thus limiting their scope. Further, the data generated by these assays require mechanistic information to link effects at molecular targets to adve...
Chemical analysis of plants that poison livestock: Successes, challenges, and opportunities
USDA-ARS?s Scientific Manuscript database
Poisonous plants have a devastating impact on the livestock industry, as well as human health. In order to fully understand the effects of poisonous plants, multiple scientific disciplines are required. Chemical analysis of plant secondary compounds is key to identifying the responsible toxins, char...
Lacey, Michael J; Sémon, Etienne; Krasulová, Jana; Sillam-Dussès, David; Robert, Alain; Cornette, Richard; Hoskovec, Michal; Záček, Petr; Valterová, Irena; Bordereau, Christian
2011-12-01
The trail-following pheromone and sex pheromones were investigated in the Indomalayan termite Hodotermopsis sjoestedti belonging to the new family Archotermopsidae. Gas chromatography coupled to mass spectrometry (GC-MS) after solid phase microextraction (SPME) of the sternal gland secretion of pseudergates and trail-following bioassays demonstrated that the trail-following pheromone of H. sjoestedti was syn-4,6-dimethylundecan-1-ol, a new chemical structure for termite pheromones. GC-MS after SPME of the sternal gland secretion of alates also allowed the identification of sex-specific compounds. In female alates, the major sex-specific compound was identified as (5E)-2,6,10-trimethylundeca-5,9-dienal, a compound previously identified as the female sex pheromone of the termite Zootermopsis nevadensis. In male alates, the major sex-specific compound was identified as syn-4,6-dimethylundecanal, a homolog of syn-4,6-dimethyldodecanal, which has previously been confirmed as the male sex pheromone of Z. nevadensis. The presence of sex-specific compounds in alates of H. sjoestedti strongly suggests for this termite the presence of sex-specific pairing pheromones which were only known until now in Z. nevadensis. Our results showed therefore a close chemical relationship between the pheromones of the taxa Hodotermopsis and Zootermopsis and, in contrast, a clear difference with the taxa Stolotermes and Porotermes, which is in total agreement with the recent creation of the families Archotermopsidae and Stolotermitidae as a substitute for the former family Termopsidae. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chemical Sniffing Instrumentation for Security Applications.
Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; Marshall, Alan; Verbeck, Guido F
2016-07-27
Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and (c) threat compounds (drugs, explosives, and chemical warfare agents).
Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on chemical concentration alone, it can be difficult to identify which compounds may be of toxicological concern for prioritization for further monitoring or management. This can be...
Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P
2014-12-01
Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.
Zhuang, Guorong V; Xu, Kang; Yang, Hui; Jow, T Richard; Ross, Philip N
2005-09-22
Lithium ethylene dicarbonate ((CH2OCO2Li)2) was chemically synthesized and its Fourier transform infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2 M lithium hexafluorophosphate (LiPF6)/ethylene carbonate (EC):ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in the passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established on the basis of analysis of the IR spectrum.
Blackwell, Brett R.; Ankley, Gerald T.; Corsi, Steven; DeCicco, Laura; Houck, Kieth A.; Judson, Richard S.; Li, Shibin; Martin, Matthew T.; Murphy, Elizabeth; Schroeder, Anthony L.; Smith, Edwin R.; Swintek, Joe; Villeneuve, Daniel L.
2017-01-01
Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high-throughput screening (HTS) data, such as the ToxCast database, which contains information for over 9000 compounds screened through up to 1100 bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast effects database were used to calculate exposure–activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were linked to discrete adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts.
[Chalcones from Bauhinia glauca subsp. pernervosa].
Wu, Zengbao; Wang, Bin; Zhao, Yuying; Yang, Xiuwei; Liang, Hong
2009-07-01
To study the chemical constituents of Bauhinia glauca subsp. pernervosa. The coulis of B. glauca subsp. pernervosa were extracted with 95% EtOH at room temperature. The compounds were isolated and separated by chromatographic techniques, and structures were identified by spectroscopic methods. Seven chalcones were isolated and identified: butein-4-methyl ether (1), isoliquiritigenin (2), butein (3), isoliquiritigenin-2'-methyl ether (4), 2',4'-dihydroxychalcone (5), isoliquiritigenin-4-methyl ether (6), 4-hydroxy-2',4'-dimethoxychalcone (7). Compounds 1, 3, and 7 were isolated from the genus Bauhinia for the first time, the other compounds were obtained from this plant for the first time.
Huang, Jihan; Cheung, Fan; Tan, Hor-Yue; Hong, Ming; Wang, Ning; Yang, Juan; Feng, Yibin; Zheng, Qingshan
2017-01-01
Yinchenhao decoction (YCHD) is a traditional Chinese medicine formulation, which has been widely used for the treatment of jaundice for 2,000 years. Currently, YCHD is used to treat various liver disorders and metabolic diseases, however its chemical/pharmacologic profiles remain to be elucidated. The present study identified the active compounds and significant pathways of YCHD based on network pharmacology. All of the chemical ingredients of YCHD were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. Absorption, distribution, metabolism and excretion screening with oral bioavailability (OB) screening, drug-likeness (DL) and intestinal epithelial permeability (Caco-2) evaluation were applied to discover the bioactive compounds in YCHD. Following this, target prediction, pathway identification and network construction were employed to clarify the mechanism of action of YCHD. Following OB screening, and evaluation of DL and Caco-2, 34 compounds in YCHD were identified as potential active ingredients, of which 30 compounds were associated with 217 protein targets. A total of 31 significant pathways were obtained by performing enrichment analyses of 217 proteins using the JEPETTO 3.x plugin, and 16 classes of gene-associated diseases were revealed by performing enrichment analyses using Database for Annotation, Visualization and Integrated Discovery v6.7. The present study identified potential active compounds and significant pathways in YCHD. In addition, the mechanism of action of YCHD in the treatment of various diseases through multiple pathways was clarified. PMID:28791364
Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; ...
2016-02-02
Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less
Hahn, Christian; Erb, Klaus Joseph
2008-06-01
Identifying and developing novel chemical entities (NCE) for the treatment of asthma is a time-consuming process and liabilities that endanger the successful progression of a compound from research into the patient are found throughout all phases of drug discovery. In particular the failure of advanced compounds in clinical studies due to lack of efficacy and/or safety concerns is tremendously costly. Therefore, in order to try and reduce the failure rate in clinical trials various in vitro and in vivo tests are performed during preclinical development, to rapidly identify liabilities, eliminate high risk compounds and promote promising potential drug candidates. To achieve this objective, numerous prerequisites have to be met regarding the physico-chemical properties of the compound, and bioactivity or model systems are needed to rate the therapeutic potential of new compounds. Drug liabilities such as target and species specificity, formulation issues, pharmacokinetics as well as pharmacodynamics and the toxic potential of the compound have to be analyzed in great detail before a compound can enter a clinical trial. A particularly challenging aspect of developing novel NCEs for the treatment of asthma is choosing and setting up in vivo models believed to be predictive for human disease. Numerous companies have in the past and are currently developing NCEs targeting many different pathways and cells with the aim to treat asthma. However, currently the only NCE having a significant market share are long-acting beta-agonists (LABA), inhaled and orally active steroids and leukotriene receptor antagonists. In the past many novel NCE for the treatment of asthma were effective in animal models but failed in the clinic. In this review we outline the prerequisites of novel NCE needed for clinical development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.
Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less
A new glycosylated dihydrophaseic acid from cacao germs (Theobroma cacao L.).
Sannohe, Yumiko; Gomi, Shuichi; Murata, Takashi; Ohyama, Makoto; Yonekura, Kumiko; Kanegae, Minoru; Koga, Jinichiro
2011-01-01
Cacao beans are composed of cacao nibs and germs. Although numerous chemical and physiological studies on cacao nib compounds have been reported, there is little information on cacao germ compounds. We therefore analyzed an extract from the cacao germ, and found two compounds that were specific to the germ. One of these two compounds was identified as the new glycosylated abscisic acid metabolite, dihydrophaseic acid-4'-O-6″-(β-ribofuranosyl)-β-glucopyranoside, and the other as the known compound, dihydrophaseic acid-4'-O-β-D-glucopyranoside.
[Studies on the chemical constituents of the volatiles of Clerodendron bungei].
Yu, Ai-nong
2004-02-01
To analyse chemical constituents of the volatiles of Clerodendron bungei. The volatiles of C. bungei were extracted through steam distillation, and then the constituents were separated by GC and identified by MS. 33 Compounds were identified. The principal chemical constituents of the volatiles of C. bungei are ethanol, acetone, 1-penten-3-ol,2-pentanol, (Z)-2-penten-1-ol, 3-furaldehyde, 3-hexen-1-ol, 4-hexen-1-ol, 1-hexanol, 1-octen-3-ol, 3-octanol, benzenemethanol, linal-ool oxide, trans-Linalool oxide, linalool,2,5-dimethylcyclohexanol, phenylethyl alcohol, etc.
Mas, Flore; Harper, Aimee; Horner, Rachael; Welsh, Taylor; Jaksons, Peter; Suckling, David M
2018-02-15
Crop breeding programmes generally select for traits for improved yield and human consumption preferences. Yet, they often overlook one fundamental trait essential for insect-pollinated crops: pollinator attraction. This is even more critical for hybrid plants that rely on cross-pollination between the male-fertile line and the male-sterile line to set seeds. This study investigated the role of floral odours for honey bee pollination that could explain the poor seed yield in hybrid crops. The key floral bioactive compounds that honey bees detect were identified for three vegetable hybrid crops. It was found that 30% of the variation in bioactive compound quantities was explained by variety. Differences in quantities of the bioactive compounds triggered different degrees of olfactory response and were also associated with varied appetitive response. Correlating the abundance of each bioactive compound with seed yield, it was found that aldehydes such as nonanal and decanal can have a strong negative influence on seed yield with increasing quantity. Using these methodologies to identify relevant bioactive compounds associated with honey bee pollination, plant breeding programmes should also consider selecting for floral traits attractive to honey bees to improve crop pollination for enhanced seed yield. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min
2017-05-10
The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC 50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC 50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 50 0.15 ± 0.01 mg/mL.
[Study on chemical constituents from rhizome of Rabdosia flavida].
Zhao, Ming-Zao; Li, Jin-Qiang; Zhang, Yu; Zhang, Xue-Jiao; Jiang, Bei
2014-07-01
To study the chemical constituents from the rhizome of Rabdosia flavida. The compounds were isolated and purified by various chromatographic methods, and their structures were elucidated on the basis of spectral data and physicochemical properties. Ten compounds were obtained from ethyl acetate fraction of the 70% acetone extract of Rabdosia flavida rhizome and identified as ferruginol (1), dehydrocostuslactone (2), taraxasterol (3), oleic acid (4), ursolic cid (5), coniferyl aldehyde (6), oleanolic acid (7), 6,12, 15-trihydroxy-5, 8,11, 13-abietetra-7-one (8), 5α, 8α-epidioxyergosta-6,22-dien-3β-ol (9), and daucosterol (10). All the compounds are isolated from Rabdosia flavida for the first time.
[Chemical study on fruiting bodies of Boletus vioaceo-fuscus].
Ma, Bing-ji; Ruan, Yuan; Liu, Ji-kai
2007-09-01
To investigate the chemical constituents of Boletus vioaceo-fuscus. The compounds were isolated with column chromatography. The structures were determined by spectroscopic techniques. Six compounds were isolated from the fruiting bodies of Boletus vioaceo-fiuscus. They were identified as ergosta-5, 7, 22-triene-3beta-ol (1), dihydrofuran-2, 5-dione (2), (22E, 24R)-5alpha, 6alpha-epoxyergosta-8, 22-diene-3beta, 7alpha-diol (3), (22E, 24R)-5alpha, 6alpha-epoxyergosta-8 (14), 22-diene-3beta, 7alphadiol (4), cerebroside B (5) and adenosine (6), respectively. All the Compounds were obtained from the fruiting bodies of Boletus vioaceo-fiscus for the first time.
Computationally identified novel agonists for GPRC6A
Ye, Ruisong; Hwang, Dong-Jin; Miller, Duane D.; Smith, Jeremy C.; Baudry, Jerome; Quarles, L. Darryl
2018-01-01
New insights into G protein coupled receptor regulation of glucose metabolism by β-cells, skeletal muscle and liver hepatocytes identify GPRC6A as a potential therapeutic target for treating type 2 diabetes mellitus (T2D). Activating GPRC6A with a small molecule drug represents a potential paradigm-shifting opportunity to make significant strides in regulating glucose homeostasis by simultaneously correcting multiple metabolic derangements that underlie T2D, including abnormalities in β-cell proliferation and insulin secretion and peripheral insulin resistance. Using a computational, structure-based high-throughput screening approach, we identified novel tri-phenyl compounds predicted to bind to the venus fly trap (VFT) and 7-transmembrane (7-TM) domains of GPRC6A. Experimental testing found that these compounds dose-dependently stimulated GPRC6A signaling in a heterologous cell expression system. Additional chemical modifications and functional analysis identified one tri-phenyl lead compound, DJ-V-159 that demonstrated the greatest potency in stimulating insulin secretion in β-cells and lowering serum glucose in wild-type mice. Collectively, these studies show that GPRC6A is a “druggable” target for developing chemical probes to treat T2DM. PMID:29684031
[Chemical Constituents from Ethyl Acetate Extract of Psidium guajava Leaves (II)].
Ouyang, Wen; Zhu, Xiao-ai; He, Cui-xia; Chen, Xue-xiang; Ye, Shu-min; Peng, Shan; Cao, Yong
2015-08-01
To study the chemical constituents from ethyl acetate extract of Psidium guajava leaves. The constituents were separated and purified by silica gel and Sephadex LH-20 column chromatography and their structures were identified on the basis of physicochemical properties and spectral data. Eleven compounds were isolated and identified as 6,10,14-trimethyl-2-pentadecanone (1), phytyl-acetate (2), cubenol (3), eucalyptin (4), n-docosanoic acid-p-hydroxy-phenethylol ester (5),8-methyl-5,7- dihydroxy-flavonone (6), 6-methyl-5,7-dihydroxy-flavonone (7), betulinic acid (8), carnosol (9), quercetin (10), and 2,4,6-tirhydroxy- 3,5-dimethyl-diphenylketone-4-O-(6'"-O-galloyl)-β-D-glucoside (11). Compounds 1-9 are isolated from this plant for the first time.
Using Pareto points for model identification in predictive toxicology
2013-01-01
Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology. PMID:23517649
Clarke, Bradley O; Smith, Stephen R
2011-01-01
A broad spectrum of organic chemicals is essential to modern society. Once discharged from industrial, domestic and urban sources into the urban wastewater collection system they may transfer to the residual solids during wastewater treatment and assessment of their significance and implications for beneficial recycling of the treated sewage sludge biosolids is required. Research on organic contaminants (OCs) in biosolids has been undertaken for over thirty years and the increasing body of evidence demonstrates that the majority of compounds studied do not place human health at risk when biosolids are recycled to farmland. However, there are 143,000 chemicals registered in the European Union for industrial use and all could be potentially found in biosolids. Therefore, a literature review of 'emerging' OCs in biosolids has been conducted for a selection of chemicals of potential concern for land application based upon human toxicity, evidence of adverse effects on the environment and endocrine disruption. To identify monitoring and research priorities the selected chemicals were ranked using an assessment matrix approach. Compounds were evaluated based upon environmental persistence, human toxicity, evidence of bioaccumulation in humans and the environment, evidence of ecotoxicity and the number and quality of studies focussed on the contaminant internationally. The identified chemicals of concern were ranked in decreasing order of priority: perfluorinated chemicals (PFOS, PFOA); polychlorinated alkanes (PCAs), polychlorinated naphthalenes (PCNs); organotins (OTs), polybrominated diphenyl ethers (PBDEs), triclosan (TCS), triclocarban (TCC); benzothiazoles; antibiotics and pharmaceuticals; synthetic musks; bisphenol A, quaternary ammonium compounds (QACs), steroids; phthalate acid esters (PAEs) and polydimethylsiloxanes (PDMSs). A number of issues were identified and recommendations for the prioritisation of further research and monitoring of 'emerging' OCs for the agricultural use of biosolids are provided. In particular, a number of 'emerging' OCs (PFOS, PFOA and PCAs) were identified for priority attention that are environmentally persistent and potentially toxic with unique chemical properties, or are present in large concentrations in sludge, that make it theoretically possible for them to enter human and ecological food-chains from biosolids-amended soil. Copyright © 2010 Elsevier Ltd. All rights reserved.
2013-01-01
Background Athrixia phylicoides DC. (Asteraceae) is used medicinally in South Africa to treat a plethora of ailments, including heart problems, diabetes, diarrhoea, sores and infected wounds. It is also prepared in the form of a tea (hot decoction) taken as a refreshing, pleasant-tasting beverage with commercialization potential. Methods Extracts of the dried ground aerial parts were prepared using organic solvents (diethyl ether, dichloromethane/methanol, ethyl acetate and ethanol) and water. These extracts were subjected to HPLC, TLC and bioautography analysis with the aim of linking a range of peaks visualized in HPLC chromatography profiles to antibacterial and antifungal activity of the same extracts. Results HPLC revealed a group of compounds extracted by more than one solvent. Compounds identified include inositol, caffeic acid, quercetin, kaempferol, apigenin, hymenoxin and oleanolic acid. The organic extracts displayed similar TLC profiles, and bioautography indicated approximately five antibacterial compounds, but only two antifungal compounds in these extracts. Bioautography indicated that cold water extracted the least antimicrobial compounds. Conclusions Several previously unknown compounds were identified in Athrixia phylicoides extracts, and bioautography indicated a number of antibacterial and antifungal compounds. There were notable differences in chemical composition and bioactivity between the organic and aqueous extracts. Further research is necessary to fully characterize the active components of the extracts. PMID:24330447
Identification of Drugs Inducing Phospholipidosis by Novel in vitro Data
Muehlbacher, Markus; Tripal, Philipp; Roas, Florian; Kornhuber, Johannes
2012-01-01
Drug-induced phospholipidosis (PLD) is a lysosomal storage disorder characterized by the accumulation of phospholipids within the lysosome. This adverse drug effect can occur in various tissues and is suspected to impact cellular viability. Therefore, it is important to test chemical compounds for their potential to induce PLD during the drug design process. PLD has been reported to be a side effect of many commonly used drugs, especially those with cationic amphiphilic properties. To predict drug-induced PLD in silico, we established a high-throughput cell-culture-based method to quantitatively determine the induction of PLD by chemical compounds. Using this assay, we tested 297 drug-like compounds at two different concentrations (2.5 μm and 5.0 μm). We were able to identify 28 previously unknown PLD-inducing agents. Furthermore, our experimental results enabled the development of a binary classification model to predict PLD-inducing agents based on their molecular properties. This random forest prediction system yields a bootstrapped validated accuracy of 86 %. PLD-inducing agents overlap with those that target similar biological processes; a high degree of concordance with PLD-inducing agents was identified for cationic amphiphilic compounds, small molecules that inhibit acid sphingomyelinase, compounds that cross the blood–brain barrier, and compounds that violate Lipinski’s rule of five. Furthermore, we were able to show that PLD-inducing compounds applied in combination additively induce PLD. PMID:22945602
Cao, Gang; Cai, Hao; Cong, Xiaodong; Liu, Xiao; Ma, Xiaoqing; Lou, Yajing; Qin, Kunming; Cai, Baochang
2012-08-21
The sulfur-fumigation process can induce changes in the contents of volatile compounds and the chemical transformation of herbal medicines. Although literature has reported many methods for analyzing volatile target compounds from herbal medicine, all of them are largely limited to target compounds and sun-dried samples. This study provides a comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOF/MS) method based on a chemical profiling approach to identify non-target and target volatile compounds from sun-dried and sulfur-fumigated herbal medicine. Using Chrysanthemum morifolium as a model herbal medicine, the combined power of this approach is illustrated by the identification of 209 and 111 volatile compounds with match quality >80% from sun-dried and sulfur-fumigated Chrysanthemum morifolium, respectively. The study has also shown that sulfur-fumigated samples showed a significant loss of the main active compounds and a more destructive fingerprint profile compared to the sun-dried ones. 50 volatile compounds were lost in the sulfur-fumigated Chrysanthemum morifolium sample. The approach and methodology reported in this paper would be useful for identifying complicated target and non-target components from various complex mixtures such as herbal medicine and its preparations, biological and environmental samples. Furthermore, it can be applied for the intrinsic quality control of herbal medicine and its preparations.
Pereira, Carla; Barros, Lillian; Ferreira, Isabel C F R
2016-03-15
The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Fauzan, A.; Praseptiangga, D.; Hartanto, R.; Pujiasmanto, B.
2018-01-01
The purpose of this study was to characterize the chemical compounds of Adenostemma lavenia (L.) Kuntze (Al) and Adenostemma platyphyllum Cass (Ap) using Pyrolysis-gas chromatography/mass spectrometry (Py-GCMS) and proximate analysis. Two species of Adenostemma samples (roots, stem and leaves) about 1 mg was pyrolyzed directly at the optimum temperature of 600°C. Py-GCMS was relatively fast, easy to use and without samples preparation and identification of the chemical compounds was carried out by comparison of the mass spectra obtained with those stored in Wiley 7th libraries. The data of proximate analysis were statistically analysed using Friedman test followed and hierarchical cluster analysis (HCA) for data of Py-GCMS. The result of proximate analysis showed that A. lavenia (L.) Kuntze (Al) and A. platyphyllum Cass (Ap) contained 8.27% (Al) and 9.18% (Ap) of water, 11.52% (Al) and 17.84% (Ap) of protein, 5.67% (Al) and 6.33% (Ap) of fat, and 17.32% (Al) and 19.94 (Ap) of ash. Amines, aldehydes, fatty acids, terpenoids-steroids, alkaloids, aromatic and aliphatic hydrocarbons, phenolic, and oligopeptides as part of 125 chemical compounds of each species are identified by Py-GCMS analysis. Hierarchical cluster analysis of pyrolysis products indicate not similitary of major chemical compounds of two Adenostemma species.
Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus
2016-04-01
Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. © 2016 Society for Laboratory Automation and Screening.
Vera, Paula; Canellas, Elena; Nerín, Cristina
2013-05-01
The identification of unknown non-volatile migrant compounds from adhesives used in food contact materials is a very challenging task because of the number of possible compounds involved, given that adhesives are complex mixtures of chemicals. The use of ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-MS/QTOF) is shown to be a successful tool for identifying non-targeted migrant compounds from two hot melt adhesives used in food packaging laminates. Out of the seven migrants identified and quantified, five were amides and one was a compound classified in Class II of the Cramer toxicity. None of the migration values exceeded the recommended Cramer exposure values.
Wang, Xiaotong; Liu, Jing; Yang, Xiaomei; Zhang, Qian; Zhang, Yiwen; Li, Qing; Bi, Kaishun
2018-03-30
To rapidly identify and classify complicated components and metabolites for traditional Chinese medicines, a liquid chromatography with quadrupole time-of-flight mass spectrometry method combined with multiple data-processing approaches was established. In this process, Kai-Xin-San, a widely used classic traditional Chinese medicine preparation, was chosen as a model prescription. Initially, the fragmentation patterns, diagnostic product ions and neutral loss of each category of compounds were summarized by collision-induced dissociation analysis of representative standards. In vitro, the multiple product ions filtering technique was utilized to identify the chemical constituents for globally covering trace components. With this strategy, 108 constituents were identified, and compounds database was successfully established. In vivo, the prototype compounds were extracted based on the established database, and the neutral loss filtering technique combined with the drug metabolism reaction rules was employed to identify metabolites. Overall, 69 constituents including prototype and metabolites were characterized in rat plasma and nine constituents were firstly characterized in rat brain, which may be the potential active constituents resulting in curative effects by synergistic interaction. In conclusion, this study provides a generally applicable strategy to global metabolite identification for the complicated components in complex matrix and a chemical basis for further pharmacological research of Kai-Xin-San. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Valorisation of softwood bark through extraction of utilizable chemicals. A review.
Jablonsky, M; Nosalova, J; Sladkova, A; Haz, A; Kreps, F; Valka, J; Miertus, S; Frecer, V; Ondrejovic, M; Sima, J; Surina, I
2017-11-01
Softwood bark is an important source for producing chemicals and materials as well as bioenergy. Extraction is regarded as a key technology for obtaining chemicals in general, and valorizing bark as a source of such chemicals in particular. In this paper, properties of 237 compounds identified in various studies dealing with extraction of softwood bark were described. Finally, some challenges and perspectives on the production of chemicals from bark are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Sensing a Changing Chemical Mixture Using an Electronic Nose
NASA Technical Reports Server (NTRS)
Duong, Tuan; Ryan, Margaret
2008-01-01
A method of using an electronic nose to detect an airborne mixture of known chemical compounds and measure the temporally varying concentrations of the individual compounds is undergoing development. In a typical intended application, the method would be used to monitor the air in an inhabited space (e.g., the interior of a building) for the release of solvents, toxic fumes, and other compounds that are regarded as contaminants. At the present state of development, the method affords a capability for identifying and quantitating one or two compounds that are members of a set of some number (typically of the order of a dozen) known compounds. In principle, the method could be extended to enable monitoring of more than two compounds. An electronic nose consists of an array of sensors, typically made from polymer carbon composites, the electrical resistances of which change upon exposure to a variety of chemicals. By design, each sensor is unique in its responses to these chemicals: some or all of the sensitivities of a given sensor to the various vapors differ from the corresponding sensitivities of other sensors. In general, the responses of the sensors are nonlinear functions of the concentrations of the chemicals. Hence, mathematically, the monitoring problem is to solve the set of time-dependent nonlinear equations for the sensor responses to obtain the time dependent concentrations of individual compounds. In the present developmental method, successive approximations of the solution are generated by a learning algorithm based on independent-component analysis (ICA) an established information theoretic approach for transforming a vector of observed interdependent signals into a set of signals that are as nearly statistically independent as possible.
[Study on Chemical Constituents of Fermented Antrodia camphorata Powder].
Zhang, Feng-su; Chen, Fei; Liu, Xun-hong; Yang, Nian-yun; Ma, Yang; Hou, Ya; Luo, Yi-yuan
2015-02-01
To study the chemical constituents of fermented Antrodia camphorata powder. 15 compounds were isolated from Antrodia camphorata by Silica gel column chromatography, ODS column chromatography, gel column chromatography, preparative liquid phase chromatography separation technique, as well as recrystallization. On the basis of their physical and chemical properties and spectral data,their structures were identified as Ferulic acid (1), Inositol (2), β-Sitosterol (3),Vanillin (4),Vanillic acid (5), Butyric acid (6), Daucosterol (7), p-Hydroxycinnamic acid (8), Lauric acid (9), Inosine (10), Uridine (11), Adenine (12), D(+)-Sucrose (13), Arachidic acid (14) and Guanosine (15). Compounds 1, 5, 6 and 8-15 are isolated from fermented powder for the first time.
[Study on chemical constituents from roots of Saussurea lappa].
Zhang, Ting; Wang, Hongqing; Du, Guanhua; Chen, Ruoyun
2009-05-01
To study the chemical constituents in roots of Saussurea lappa. Isolation and purification were carried out by silica gel, Sephadex LH-20 and RP-18 column chromatography. The chemical structures of constituents were elucidated on the basis of spectral data. Eleven compounds were isolated and identified as: 5,7-dihydroxy-2-methylchromone (1), p-hydroxybenzaldehyde (2), 3,5-dimethoxy-4-hydroxy-benzaldehyde (3), 3,5-dimethoxy-4-hydroxy-acetophenone (4), ethyl 2-pyrrolidinone-5(s)-carboxylate (5), 5-hydroxymethyl-furaldehyde (6), palmitic acid (7), succinic acid (8), glucose (9), daucosterol (10), beta-sitosterol (11). Compounds 1, 2, 4, 5, 7, 9 were isolated from the genus Saussurea for the first time.
Biodegradation of brominated and organophosphorus flame retardants.
Waaijers, Susanne L; Parsons, John R
2016-04-01
Brominated flame retardants account for about 21% of the total production of flame retardants and many of these have been identified as persistent, bioaccumulative and toxic. Nevertheless, debromination of these chemicals under anaerobic conditions is well established, although this can increase their toxicity. Consequently, the production and use of these chemicals has been restricted and alternative products have been developed. Many of these are brominated compounds and share some of the disadvantages of the chemicals they are meant to replace. Therefore, other, nonbrominated, flame retardants such as organophosphorus compounds are also being used in increasing quantities, despite the fact that knowledge of their biodegradation and environmental fate is often lacking. Copyright © 2015 Elsevier Ltd. All rights reserved.
Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina
2010-04-01
The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.
A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials
NASA Astrophysics Data System (ADS)
Eleuteri, C.; Olla, S.; Veroni, C.; Umeton, R.; Mechelli, R.; Romano, S.; Buscarinu, Mc.; Ferrari, F.; Calò, G.; Ristori, G.; Salvetti, M.; Agresti, C.
2017-04-01
There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds’ activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan.
A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials
Eleuteri, C.; Olla, S.; Veroni, C.; Umeton, R.; Mechelli, R.; Romano, S.; Buscarinu, MC.; Ferrari, F.; Calò, G.; Ristori, G.; Salvetti, M.; Agresti, C.
2017-01-01
There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds’ activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan. PMID:28387380
Communication and re-use of chemical information in bioscience
Murray-Rust, Peter; Mitchell, John BO; Rzepa, Henry S
2005-01-01
The current methods of publishing chemical information in bioscience articles are analysed. Using 3 papers as use-cases, it is shown that conventional methods using human procedures, including cut-and-paste are time-consuming and introduce errors. The meaning of chemical terms and the identity of compounds is often ambiguous. valuable experimental data such as spectra and computational results are almost always omitted. We describe an Open XML architecture at proof-of-concept which addresses these concerns. Compounds are identified through explicit connection tables or links to persistent Open resources such as PubChem. It is argued that if publishers adopt these tools and protocols, then the quality and quantity of chemical information available to bioscientists will increase and the authors, publishers and readers will find the process cost-effective. PMID:16026614
Olson, Joelle F; Vers, Leonard M Ver; Moon, Roger D; Kells, Stephen A
2017-01-01
After feeding, bed bugs aggregate in cracks and crevices near a host. Aggregation and arrestment are mediated by tactile and chemical stimuli associated with the bugs' feces and exuviae. Volatiles derived from fecally stained filter papers were analyzed by solid-phase microextraction (SPME) and evaluated using a multichoice behavioral assay to determine their impact on bed bug aggregation. In addition, crude fecal extracts were collected in methanol, analyzed by gas chromatography coupled with electroantennogram detection (GC-EAD) and mass spectrometry (GC-MS) and evaluated in open-air multichoice behavioral assays. The SPME method was used to detect (E)-2-hexenal and (E)-2-octenal in heated bed bug feces. The presence of these two volatile components did not affect aggregation. Analysis of the crude fecal extracts revealed several semi-volatile nitrogenous compounds, a carboxylic acid and a sulfur-based compound. Adult antennae responded to compounds eluted from three regions of the crude extract using GC-EAD. A combination of two compounds, dimethyl trisulfide and methyldiethanolamine, resulted in aggregation responses equivalent to the original crude extract. Bed bug aggregation is mediated by semi-volatile compounds derived from fecal extracts, and two compounds are sufficient to elicit aggregation. The two compounds identified here could be used to enhance the effectiveness of insecticidal applications or improve monitoring techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
[Study on anti-tumor chemical constituents from pericarps of Juglans mandshurica].
Zhou, Yuan-yuan; Meng, Ying; Jiang, Yan-qiu; Liu, Zhao-xi; Yang, Bing-you
2014-11-01
To study the anti-tumor chemical components of the pericarps of Juglans mandshurica. The chemical constituents were isolated and purified by AB-8 macroporous adsorption resin, silica gel, Sephadex LH-20 columns and recrystallization. The structures were elucidated on the basis of physicochemical properties and NMR spectral data analysis. From the pericarps of Juglans mandshurica, twelve compounds were separated and identified as 3-methoxy juglone(1), 3-ethoxy juglone(2), 1,8-di-hydroxy anthraquinone (3), juglone (4), 2α, 3α, 19α-trihydroxy ursolic acid (5), 1α, 3β-dihydroxy-olean-18-ene (6), methyl gallate (7), pterocarine(8), quercetin(9), kaempferol(10), daucosterol(11), and β-sitosterol(12). Compounds 1 - 3 and 6 are isolated from the pericarps of Juglans mandshurica for the first time. Compounds 5 and 7 are isolated from Juglans genus for the first time.
Shi, Zixiao; Zhang, Juan; Chen, Shuangquan; Li, Yanxin; Lei, Xuepei; Qiao, Huimin; Zhu, Qianwen; Hu, Baoyang; Zhou, Qi; Jiao, Jianwei
2016-06-24
Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5-7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Yao, Shun; Liu, Renming; Huang, Xuefeng; Kong, Lingyi
2007-01-19
Preparative high-speed counter-current chromatography (HSCCC), as a continuous liquid-liquid partition chromatography with no solid support matrix, combined with evaporative light scattering detection (ELSD) was employed for systematic separation and purification of non-chromophoric chemical components from Chinese medicinal herb Adenophora tetraphlla (Thunb.), Fisch. Nine compounds, including alpha-spinasterol, beta-sitosterol, nonacosan-10-ol, 24-methylene cycloartanol, lupenone, 3-O-palmitoyl-beta-sitosterol, 3-O-beta-d-glucose-beta-sitosterol, eicosanoic acid and an unknown compound, were obtained. The compounds were all above 95% determined by high-performance liquid chromatography (HPLC)-ELSD, and their structures were identified by (1)H NMR and chemical ionization mass spectroscopy (CI-MS). The results demonstrate that HSCCC coupled with ELSD is a feasible and efficient technique for systematic isolation of non-chromophoric components from traditional medicinal herbs.
Environmental bacteria produce abundant and diverse antibiofilm compounds.
Farmer, J T; Shimkevitch, A V; Reilly, P S; Mlynek, K D; Jensen, K S; Callahan, M T; Bushaw-Newton, K L; Kaplan, J B
2014-12-01
The aim of this study was to isolate novel antibiofilm compounds produced by environmental bacteria. Cell-free extracts were prepared from lawns of bacteria cultured on agar. A total of 126 bacteria isolated from soil, cave and river habitats were employed. Extracts were tested for their ability to inhibit Staphylococcus aureus biofilm in a 96-well microtitre plate assay. A total of 55/126 extracts (44%) significantly inhibited Staph. aureus biofilm. Seven extracts were selected for further analysis. The antibiofilm activities in all seven extracts exhibited unique patterns of molecular mass, chemical polarity, heat stability and spectrum of activity against Staph. aureus, Staphylococcus epidermidis and Pseudomonas fluorescens, suggesting that these seven antibiofilm activities were mediated by unique chemical compounds with different mechanisms of action. Environmental bacteria produce abundant and diverse antibiofilm compounds. Screening cell-free extracts is a useful method for identifying secreted compounds that regulate biofilm formation. Such compounds may represent a novel source of antibiofilm agents for technological development. © 2014 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Huigens, Robert W., III; Morrison, Karen C.; Hicklin, Robert W.; Flood, Timothy A., Jr.; Richter, Michelle F.; Hergenrother, Paul J.
2013-03-01
High-throughput screening is the dominant method used to identify lead compounds in drug discovery. As such, the makeup of screening libraries largely dictates the biological targets that can be modulated and the therapeutics that can be developed. Unfortunately, most compound-screening collections consist principally of planar molecules with little structural or stereochemical complexity, compounds that do not offer the arrangement of chemical functionality necessary for the modulation of many drug targets. Here we describe a novel, general and facile strategy for the creation of diverse compounds with high structural and stereochemical complexity using readily available natural products as synthetic starting points. We show through the evaluation of chemical properties (which include fraction of sp3 carbons, ClogP and the number of stereogenic centres) that these compounds are significantly more complex and diverse than those in standard screening collections, and we give guidelines for the application of this strategy to any suitable natural product.
Liao, Chunyan; Gock, Andrew; Michie, Michelle; Morton, Bethany; Anderson, Alisha; Trowell, Stephen
2010-01-01
Background Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives. Methodology/Principal Findings We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor. Conclusions/Significance: The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles. PMID:20830309
Yoneda, Arata; Higaki, Takumi; Kutsuna, Natsumaro; Kondo, Yoichi; Osada, Hiroyuki; Hasezawa, Seiichiro; Matsui, Minami
2007-10-01
It is a well-known hypothesis that cortical microtubules control the direction of cellulose microfibril deposition, and that the parallel cellulose microfibrils determine anisotropic cell expansion and plant cell morphogenesis. However, the molecular mechanism by which cortical microtubules regulate the orientation of cellulose microfibrils is still unclear. To investigate this mechanism, chemical genetic screening was performed. From this screening, 'SS compounds' were identified that induced a spherical swelling phenotype in tobacco BY-2 cells. The SS compounds could be categorized into three classes: those that disrupted the cortical microtubules; those that reduced cellulose microfibril content; and thirdly those that had neither of these effects. In the last class, a chemical designated 'cobtorin' was found to induce the spherical swelling phenotype at the lowest concentration, suggesting strong binding activity to the putative target. Examining cellulose microfibril regeneration using taxol-treated protoplasts revealed that the cobtorin compound perturbed the parallel alignment of pre-existing cortical microtubules and nascent cellulose microfibrils. Thus, cobtorin could be a novel inhibitor and an attractive tool for further investigation of the mechanism that enables cortical microtubules to guide the parallel deposition of cellulose microfibrils.
Monge, Aurélien; Arrault, Alban; Marot, Christophe; Morin-Allory, Luc
2006-08-01
The data for 3.8 million compounds from structural databases of 32 providers were gathered and stored in a single chemical database. Duplicates are removed using the IUPAC International Chemical Identifier. After this, 2.6 million compounds remain. Each database and the final one were studied in term of uniqueness, diversity, frameworks, 'drug-like' and 'lead-like' properties. This study also shows that there are more than 87 000 frameworks in the database. It contains 2.1 million 'drug-like' molecules among which, more than one million are 'lead-like'. This study has been carried out using 'ScreeningAssistant', a software dedicated to chemical databases management and screening sets generation. Compounds are stored in a MySQL database and all the operations on this database are carried out by Java code. The druglikeness and leadlikeness are estimated with 'in-house' scores using functions to estimate convenience to properties; unicity using the InChI code and diversity using molecular frameworks and fingerprints. The software has been conceived in order to facilitate the update of the database. 'ScreeningAssistant' is freely available under the GPL license.
Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K
2015-05-28
Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.
Grant, Sarah Schmidt; Kawate, Tomohiko; Nag, Partha P.; Silvis, Melanie R.; Gordon, Katherine; Stanley, Sarah A.; Kazyanskaya, Ed; Nietupski, Ray; Golas, Aaron; Fitzgerald, Michael; Cho, Sanghyun; Franzblau, Scott G.; Hung, Deborah T.
2013-01-01
During Mycobacterium tuberculosis infection, a population of bacteria is thought to exist in a non-replicating state, refractory to antibiotics, which may contribute to the need for prolonged antibiotic therapy. The identification of inhibitors of the non-replicating state provides tools that can be used to probe this hypothesis and the physiology of this state. The development of such inhibitors also has the potential to shorten the duration of antibiotic therapy required. Here we describe the development of a novel non-replicating assay amenable to high-throughput chemical screening coupled with secondary assays that use carbon starvation as the in vitro model. Together these assays identify compounds with activity against replicating and non-replicating M. tuberculosis as well as compounds that inhibit the transition from non-replicating to replicating stages of growth. Using these assays we successfully screened over 300,000 compounds and identified 786 inhibitors of non-replicating M. tuberculosis. In order to understand the relationship among different non-replicating models, we teste 52 of these molecules in a hypoxia model and four different chemical scaffolds in a stochastic persist model and a streptomycin dependent model. We found that compounds display varying levels of activity in different models for the non-replicating state, suggesting important differences in bacterial physiology between models. Therefore, chemical tools identified in this assay may be useful for determining the relevance of different non-replicating in vitro models to in vivo M. tuberculosis infection. Given our current limited understanding, molecules that are active across multiple models may represent more promising candidates for further development. PMID:23898841
Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika
2011-08-24
The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.
[Chemical constituents from stems of Dysoxylum laxiracemosum].
Tang, Ting; Zuo, Laifu; Na, Zhi; Xu, Youkai
2012-05-01
Twelve compounds were separated from stems of Dysoxylum laxiracemosum and their structures were identified by spectrum analysis as shoreic acid (1), cabraleahydroxylactone (2), cabralealactone (3), cinchonain (5), catechin (6), scopoletin (7), vanillic acid (8), p-hydroxybenzoic acid (9), docosanol (10), beta-sitosterol (11), daucosterol (12). Of them, compounds 1-6,8-12 were separated from this plant for the first time, and compounds 4-6 were reported from this plant genus for the first time.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethanol, 2,2â²2â³-nitrilotris... Substances § 721.5356 Ethanol, 2,2′2″-nitrilotris-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl... subject to reporting. (1) The chemical substance identified as ethanol, 2,2′2″-nitrilotris-, compound with...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethanol, 2,2â²2â³-nitrilotris... Substances § 721.5356 Ethanol, 2,2′2″-nitrilotris-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl... subject to reporting. (1) The chemical substance identified as ethanol, 2,2′2″-nitrilotris-, compound with...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethanol, 2,2â²2â³-nitrilotris... Substances § 721.5356 Ethanol, 2,2′2″-nitrilotris-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl... subject to reporting. (1) The chemical substance identified as ethanol, 2,2′2″-nitrilotris-, compound with...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethanol, 2,2â²2â³-nitrilotris... Substances § 721.5356 Ethanol, 2,2′2″-nitrilotris-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl... subject to reporting. (1) The chemical substance identified as ethanol, 2,2′2″-nitrilotris-, compound with...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethanol, 2,2â²2â³-nitrilotris... Substances § 721.5356 Ethanol, 2,2′2″-nitrilotris-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl... subject to reporting. (1) The chemical substance identified as ethanol, 2,2′2″-nitrilotris-, compound with...
NASA Technical Reports Server (NTRS)
1992-01-01
NETS (A Neural Network Development Tool) is a software system for mimicking the human brain. It is used in a University of Arkansas project in pattern matching of chemical systems. If successful, chemists would be able to identify mixtures of compounds without long and costly separation procedures. Using NETS, the group has trained the computer to recognize pattern relationships in a known compound and associate the results to an unknown compound. The research appears to be promising.
Adams, Julie; Bornstein, Jason M; Munno, Keenan; Hollebone, Bruce; King, Thomas; Brown, R Stephen; Hodson, Peter V
2014-04-01
The present study isolated and identified compounds in heavy fuel oil 7102 (HFO 7102) that are bioavailable and chronically toxic to rainbow trout embryos (Oncorhynchus mykiss). An effects-driven chemical fractionation combined the chemical separation of oil with toxicity testing and chemical analyses of each fraction to identify the major classes of compounds associated with embryo toxicity. Toxicity was assessed with 2 exposure methods, a high-energy chemical dispersion of oil in water, which included oil droplets in test solutions, and water accommodated fractions which were produced by oiled gravel desorption columns, and which did not contain visible oil droplets. Fractions of HFO with high concentrations of naphthalenes, alkanes, asphaltenes, and resins were nontoxic to embryos over the range of concentrations tested. In contrast, fractions enriched with 3- to 4-ringed alkyl polycyclic aromatic hydrocarbons (PAHs) were embryotoxic, consistent with published studies of crude oils and individual alkyl PAHs. The rank order of fraction toxicity did not vary between the exposure methods and was consistent with their PAH content; fractions with higher-molecular weight alkyl PAHs were the most toxic. Exposure of juvenile trout to most fractions of HFO induced higher activities of cytochrome P450 enzymes, with a rank order of potency that varied with exposure method and differed somewhat from that of embryotoxicity. Induction reflected the bioavailability of PAHs but did not accurately predict embryotoxicity. © 2013 SETAC.
Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library.
Chen, Shiuan; Hsieh, Jui-Hua; Huang, Ruili; Sakamuru, Srilatha; Hsin, Li-Yu; Xia, Menghang; Shockley, Keith R; Auerbach, Scott; Kanaya, Noriko; Lu, Hannah; Svoboda, Daniel; Witt, Kristine L; Merrick, B Alex; Teng, Christina T; Tice, Raymond R
2015-10-01
Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library
Chen, Shiuan; Hsieh, Jui-Hua; Huang, Ruili; Sakamuru, Srilatha; Hsin, Li-Yu; Xia, Menghang; Shockley, Keith R.; Auerbach, Scott; Kanaya, Noriko; Lu, Hannah; Svoboda, Daniel; Witt, Kristine L.; Merrick, B. Alex; Teng, Christina T.; Tice, Raymond R.
2015-01-01
Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase. PMID:26141389
Wagner, Martin; Schlüsener, Michael P.; Ternes, Thomas A.; Oehlmann, Jörg
2013-01-01
Endocrine disrupting chemicals (EDCs) are man-made compounds interfering with hormone signaling and thereby adversely affecting human health. Recent reports provide evidence for the presence of EDCs in commercially available bottled water, including steroid receptor agonists and antagonists. However, since these findings are based on biological data the causative chemicals remain unidentified and, therefore, inaccessible for toxicological evaluation. Thus, the aim of this study is to assess the antiestrogenic and antiandrogenic activity of bottled water and to identify the causative steroid receptor antagonists. We evaluated the antiestrogenic and antiandrogenic activity of 18 bottled water products in reporter gene assays for human estrogen receptor alpha and androgen receptor. Using nontarget high-resolution mass spectrometry (LTQ-Orbitrap Velos), we acquired corresponding analytical data. We combined the biological and chemical information to determine the exact mass of the tentative steroid receptor antagonist. Further MSn experiments elucidated the molecule’s structure and enabled its identification. We detected significant antiestrogenicity in 13 of 18 products. 16 samples were antiandrogenic inhibiting the androgen receptor by up to 90%. Nontarget chemical analysis revealed that out of 24520 candidates present in bottled water one was consistently correlated with the antagonistic activity. By combining experimental and in silico MSn data we identified this compound as di(2-ethylhexyl) fumarate (DEHF). We confirmed the identity and biological activity of DEHF and additional isomers of dioctyl fumarate and maleate using authentic standards. Since DEHF is antiestrogenic but not antiandrogenic we conclude that additional, yet unidentified EDCs must contribute to the antagonistic effect of bottled water. Applying a novel approach to combine biological and chemical analysis this is the first study to identify so far unknown EDCs in bottled water. Notably, dioctyl fumarates and maleates have been overlooked by science and regulation to date. This illustrates the need to identify novel toxicologically relevant compounds to establish a more holistic picture of the human exposome. PMID:24015248
[Chemical components from essential oil of Pandanus amaryllifolius leaves].
Chen, Xiao-Kai; Ge, Fa-Huan
2014-04-01
To analyze the chemical compositions of Pandanus amaryllifolius leaves essential oil extracted by steam distillation. The essential oil of Pandanus amaryllifolius leaves was analyzed by gas chromatography-mass spectrum, and the relative content of each component was determined by area normalization method. 128 peaks were separated and 95 compounds were identified, which weighed 97.75%. The main chemical components of the essential oil were phytol (42.15%), squalene (16.81%), what's more pentadecanal (6.17%), pentadecanoic acid (4.49%), 3, 7, 11, 15-tetramethyl-2-hexadecen-1-ol (3.83%), phytone (2.05%) and the other 74 chemical compositions were firstly identified from the essential oil of Pandanus amaryllifolius leaves. The chemical compositions of Pandanu samaryllifolius leaves essential oil was systematically, deeply isolated and identified for the first time. This experiment has provided scientific foundation for further utilization of Pandanus amaryllifolius leaves.
Disney, Matthew D.; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L.
2012-01-01
The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is a lack of knowledge of the chemical and RNA motif spaces that interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)exp , that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5’CGG/3’GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp -protein complex in vitro. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition to r(CGG)exp . Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)exp -protein aggregates. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)exp promotes toxicity. PMID:22948243
Disney, Matthew D; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L
2012-10-19
The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is defining which chemical and RNA motif spaces interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)(exp), that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium binds the 5'CGG/3'GGC motifs in r(CGG)(exp) and disrupts a toxic r(CGG)(exp)-protein complex in vitro. Structure-activity relationship studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG)(exp). Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)(exp)-containing nuclear foci. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)(exp) promotes toxicity.
Rational design of new electrolyte materials for electrochemical double layer capacitors
NASA Astrophysics Data System (ADS)
Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin
2016-09-01
The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.
[Studies on flavone constituents of Erigeron breviscapus (Vant.) Hand.-Mazz].
Zhang, W D; Chen, W S; Wang, Y H; Liu, W Y; Kong, D Y; Li, H T
2000-09-01
To study the chemical constituents of Erigeron breviscapus. The constituents were separated and purified by column chromatography with silica gel, and identified by IR, MS, NMR and physical data. Five compounds were isolated and identified as 3, 5, 6, 4'-tetrahydroxy-7-methoxy flavonoid(I); 5, 7, 4'-trihydroxy flavonoid(II); 3, 5, 6, 7, 4'-pentahydroxy flavonoid(III); scutellarein (IV) and 5, 7, 4'-trihydroxy flavanone(V). Compounds I, III and V were isolated from this plant for the first time.
Albrekt, Ann-Sofie; Borrebaeck, Carl A. K.; Lindstedt, Malin
2015-01-01
Background Repeated exposure to certain low molecular weight (LMW) chemical compounds may result in development of allergic reactions in the skin or in the respiratory tract. In most cases, a certain LMW compound selectively sensitize the skin, giving rise to allergic contact dermatitis (ACD), or the respiratory tract, giving rise to occupational asthma (OA). To limit occurrence of allergic diseases, efforts are currently being made to develop predictive assays that accurately identify chemicals capable of inducing such reactions. However, while a few promising methods for prediction of skin sensitization have been described, to date no validated method, in vitro or in vivo, exists that is able to accurately classify chemicals as respiratory sensitizers. Results Recently, we presented the in vitro based Genomic Allergen Rapid Detection (GARD) assay as a novel testing strategy for classification of skin sensitizing chemicals based on measurement of a genomic biomarker signature. We have expanded the applicability domain of the GARD assay to classify also respiratory sensitizers by identifying a separate biomarker signature containing 389 differentially regulated genes for respiratory sensitizers in comparison to non-respiratory sensitizers. By using an independent data set in combination with supervised machine learning, we validated the assay, showing that the identified genomic biomarker is able to accurately classify respiratory sensitizers. Conclusions We have identified a genomic biomarker signature for classification of respiratory sensitizers. Combining this newly identified biomarker signature with our previously identified biomarker signature for classification of skin sensitizers, we have developed a novel in vitro testing strategy with a potent ability to predict both skin and respiratory sensitization in the same sample. PMID:25760038
Arnau, E G; Andersen, K E; Bruze, M; Frosch, P J; Johansen, J D; Menné, T; Rastogi, S C; White, I R; Lepoittevin, J P
2000-12-01
Fragrance materials are among the most common causes of allergic contact dermatitis. The aim of this study was to identify in a perfume fragrance allergens not included in the fragrance mix, by use of bioassay-guided chemical fractionation and chemical analysis/structure-activity relationships (SARs). The basis for the investigation was a 45-year-old woman allergic to her own perfume. She had a negative patch test to the fragrance mix and agreed to participate in the study. Chemical fractionation of the perfume concentrate was used for repeated patch testing and/or repeated open application test on the pre-sensitized patient. The chemical composition of the fractions giving a positive patch-test response and repeated open application test reactions was obtained by gas chromatography-mass spectrometry. From the compounds identified, those that contained a "structural alert" in their chemical structure, indicating an ability to modify skin proteins and thus behave as a skin sensitizer, were tested on the patient. The patient reacted positively to the synthetic fragrance p-t-butyl-alpha-methylhydrocinnamic aldehyde (Lilial), a widely used fragrance compound not present in the fragrance mix. The combination of bioassay-guided chemical fractionation and chemical analysis/structure-activity relationships seems to be a valuable tool for the investigation of contact allergy to fragrance materials.
40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...
40 CFR 129.4 - Toxic pollutants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-5,8-exo...—Endrin means the compound endrin as identified by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1...
40 CFR 129.4 - Toxic pollutants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-5,8-exo...—Endrin means the compound endrin as identified by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1...
40 CFR 129.4 - Toxic pollutants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-5,8-exo...—Endrin means the compound endrin as identified by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1...
40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...
40 CFR 63.11950 - What emissions calculations must I use for an emission profile?
Code of Federal Regulations, 2012 CFR
2012-07-01
... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...
40 CFR 63.11950 - What emissions calculations must I use for an emission profile?
Code of Federal Regulations, 2013 CFR
2013-07-01
... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...
40 CFR 63.11950 - What emissions calculations must I use for an emission profile?
Code of Federal Regulations, 2014 CFR
2014-07-01
... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...
40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...
40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...
40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...
USDA-ARS?s Scientific Manuscript database
The essential oil obtained from the aerial parts of Cladanthus arabicus (L.) Cass was studied for its chemical composition, antioxidant, antimicrobial and insecticidal activities. The essential oil (EO) was analyzed by GC-MS. Sixty seven compounds representing 94.2% of the oil were identified. The m...
ERIC Educational Resources Information Center
Calabro, Karen S.; Le, Thuan A.; Marani, Salma K.; Tamí-Maury, Irene; Czerniak, Katarzyna; Khalil, Georges E.; Prokhorov, Alexander V.
2016-01-01
Secondhand smoke (SHS) is caused by burning tobacco products that emit up to 7000 chemicals and over 70 carcinogenic compounds. Thirdhand smoke (THS) is solid residue remaining on furniture and carpets, including suspended particles derived from a burned tobacco product. Exposure to these compounds occurs through inhalation, oral ingestion, or…
40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of a substituted sulfonated aryl... New Uses for Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo... substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094) is...
40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of a substituted sulfonated aryl... New Uses for Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo... substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094) is...
Chemical composition of the essential oil of Erechtites valerianaefolia from Mérida, Venezuela.
Hernández, Johanna; Bracho, Ismer; Rojas-Fermin, Luis B; Usubillaga, Alfredo; Carmona, Juan
2013-10-01
The volatile components from the leaves of Erechtites valerianaefolia (Wolf) DC. were obtained by hydrodistillation and analyzed by GC/MS. A total of 12 compounds, representing 99.8% of the oil, were identified. The dominant compounds were limonene (56.7%), myrcene (12.7%), trans-beta-farnesene (10.2%) and l-phellandrene (8.7%).
Shan, Lanlan; Wu, Yuanyuan; Yuan, Lei; Zhang, Yani
2017-01-01
Rhizoma Anemarrhenae, a famous traditional Chinese medicine (TCM), is the dried rhizome of Anemarrhena asphodeloides Bge. (Anemarrhena Bunge of Liliaceae). The medicine presents anti-inflammatory, antipyretic, sedative, and diuretic effects. The chemical constituents of Rhizoma Anemarrhenae are complex and diverse, mainly including steroidal saponins, flavonoids, phenylpropanoids, benzophenones, and alkaloids. In this study, UPLC-Q-TOF/MS was used in combination with data postprocessing techniques, including characteristic fragments filter and neutral loss filter, to rapidly classify and identify the five types of substances in Rhizoma Anemarrhenae. On the basis of numerous literature reviews and according to the corresponding characteristic fragments produced by different types of compounds in combination with neutral loss filtering, we summarized the fragmentation patterns of the main five types of compounds and successfully screened and identified 32 chemical constituents in Rhizoma Anemarrhenae. The components included 18 steroidal saponins, 6 flavonoids, 4 phenylpropanoids, 2 alkaloids, and 2 benzophenones. The method established in this study provided necessary data for the study on the pharmacological effects of Rhizoma Anemarrhenae and also provided the basis for the chemical analysis and quality control of TCMs to promote the development of a method for chemical research on TCMs. PMID:29234389
Shan, Lanlan; Wu, Yuanyuan; Yuan, Lei; Zhang, Yani; Xu, Yanyan; Li, Yubo
2017-01-01
Rhizoma Anemarrhenae , a famous traditional Chinese medicine (TCM), is the dried rhizome of Anemarrhena asphodeloides Bge. ( Anemarrhena Bunge of Liliaceae). The medicine presents anti-inflammatory, antipyretic, sedative, and diuretic effects. The chemical constituents of Rhizoma Anemarrhenae are complex and diverse, mainly including steroidal saponins, flavonoids, phenylpropanoids, benzophenones, and alkaloids. In this study, UPLC-Q-TOF/MS was used in combination with data postprocessing techniques, including characteristic fragments filter and neutral loss filter, to rapidly classify and identify the five types of substances in Rhizoma Anemarrhenae . On the basis of numerous literature reviews and according to the corresponding characteristic fragments produced by different types of compounds in combination with neutral loss filtering, we summarized the fragmentation patterns of the main five types of compounds and successfully screened and identified 32 chemical constituents in Rhizoma Anemarrhenae . The components included 18 steroidal saponins, 6 flavonoids, 4 phenylpropanoids, 2 alkaloids, and 2 benzophenones. The method established in this study provided necessary data for the study on the pharmacological effects of Rhizoma Anemarrhenae and also provided the basis for the chemical analysis and quality control of TCMs to promote the development of a method for chemical research on TCMs.
Organochlorine pesticides, HCB, and PCBs in human milk in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czaja, K.; Ludwicki, J.K.; Goralczyk, K.
1997-05-01
Persistent organochlorine compounds were used in agriculture and industry for years. Their ability to accumulate in organisms constituting links of the food chain and a unique chemical stability made them a hazardous environmental contaminants. The metabolism and excretion of chlorinated hydrocarbons is a very slow process. One of the most important means of elimination such compounds from the woman`s body is lactation. Consequently, human milk has occasionally a significant concentration of organochlorine compounds. Such compounds are identified in women`s milk all over the world. The objective of this study was to identify organochlorine pesticides, HCB, and PCBs concentrations in humanmore » milk in Poland by comparing more and less industrialized regions. 15 refs., 3 tabs.« less
Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.
Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D
2016-06-01
RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.
[Studies on chemical constituents from roots of Mirabilis jalapa].
Lai, Guo-Fang; Luo, Shi-De; Cao, Jian-Xin; Wang, Yi-Fen
2008-01-01
To investigate the anti-HIV constituents from the root of Mirabilis jalapa. The compounds were isolated by column chromatography on silica gel, Sephadex LH - 20, MCI-gel CHP-20P and RP-18. The structure were identified by means of NMR and MS analyses (1H-NMR, 13C-NMR, MS). Eleven compounds were isolated and identified as astragaloside II (1), astragaloside II (2), astragaloside IV (3), astragaloside VI (4), flazin (5), 4'-hydroxy-2, 3-dihydroflavone 7-beta-D-glucopyranoside (6), gingerglycolipid A (7), 3, 4-dihydroxybenzaldehyd (8), p-hydroxybenzaldehyde (9), beta-sitosterol (10) and daucosterol (11). Compounds 1-9 were obtained from this genus for the first time.
Zhu, Hao; Rusyn, Ivan; Richard, Ann; Tropsha, Alexander
2008-01-01
Background To develop efficient approaches for rapid evaluation of chemical toxicity and human health risk of environmental compounds, the National Toxicology Program (NTP) in collaboration with the National Center for Chemical Genomics has initiated a project on high-throughput screening (HTS) of environmental chemicals. The first HTS results for a set of 1,408 compounds tested for their effects on cell viability in six different cell lines have recently become available via PubChem. Objectives We have explored these data in terms of their utility for predicting adverse health effects of the environmental agents. Methods and results Initially, the classification k nearest neighbor (kNN) quantitative structure–activity relationship (QSAR) modeling method was applied to the HTS data only, for a curated data set of 384 compounds. The resulting models had prediction accuracies for training, test (containing 275 compounds together), and external validation (109 compounds) sets as high as 89%, 71%, and 74%, respectively. We then asked if HTS results could be of value in predicting rodent carcinogenicity. We identified 383 compounds for which data were available from both the Berkeley Carcinogenic Potency Database and NTP–HTS studies. We found that compounds classified by HTS as “actives” in at least one cell line were likely to be rodent carcinogens (sensitivity 77%); however, HTS “inactives” were far less informative (specificity 46%). Using chemical descriptors only, kNN QSAR modeling resulted in 62.3% prediction accuracy for rodent carcinogenicity applied to this data set. Importantly, the prediction accuracy of the model was significantly improved (72.7%) when chemical descriptors were augmented by HTS data, which were regarded as biological descriptors. Conclusions Our studies suggest that combining NTP–HTS profiles with conventional chemical descriptors could considerably improve the predictive power of computational approaches in toxicology. PMID:18414635
Chemical Composition Variability of Essential Oils of Daucus gracilis Steinh. from Algeria.
Benyelles, Batoul; Allali, Hocine; Dib, Mohamed El Amine; Djabou, Nassim; Paolini, Julien; Costa, Jean
2017-06-01
The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC-FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90 - 99% of the total oil compositions. The main components were linalool (18; 12.5 - 22.6%), 2-methylbutyl 2-methylbutyrate (20; 9.2 - 20.2%), 2-methylbutyl isobutyrate (10; 4.2 - 12.2%), ammimajane (47; 2.6 - 37.1%), (E)-β-ocimene (15; 0.2 - 12.8%) and 3-methylbutyl isovalerate (19; 3.3 - 9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2-methylbutyl 2-methylbutyrate (18.9%), 2-methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3-methylbutyl isovalerate (10.3%), (E)-β-ocimene (8.4%) and isopentyl 2-methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
[Study on the chemical constituents of aerial part of Ligusticum jeholense].
Sun, Jia-ming; Zhang, Bo; Chang, Ren-long; Ye, Dou-dan; Zhang, Hui
2011-07-01
To study the chemical constituents of the aerial part of Ligusticum jeholense. The constituents were isolated by sillica gel column chromatography, Sephadex LH-20 column chromatography and their structures were elucidated by spectral analysis. Seven compounds were separated from the EtOH extracts. Their structures were identified as psoralen (1), beta-sitosterol (2), daucosterol (3), kaempferol-3-O-(2",4"-di-E-p-coumaroyl)-alpha-L-rhamnoside (4), kaempferol-3-O-beta-D-galactoside (5), quercetin-3-O-beta-D-galactoside (6), sucrose (7). Compounds 1, 4, 5 and 6 are isolated from the genus for the first time. Compounds 2, 3 and 7 are isolated from the aerial part of the plant for the first time.
Breaking free from chemical spreadsheets.
Segall, Matthew; Champness, Ed; Leeding, Chris; Chisholm, James; Hunt, Peter; Elliott, Alex; Garcia-Martinez, Hector; Foster, Nick; Dowling, Samuel
2015-09-01
Drug discovery scientists often consider compounds and data in terms of groups, such as chemical series, and relationships, representing similarity or structural transformations, to aid compound optimisation. This is often supported by chemoinformatics algorithms, for example clustering and matched molecular pair analysis. However, chemistry software packages commonly present these data as spreadsheets or form views that make it hard to find relevant patterns or compare related compounds conveniently. Here, we review common data visualisation and analysis methods used to extract information from chemistry data. We introduce a new framework that enables scientists to work flexibly with drug discovery data to reflect their thought processes and interact with the output of algorithms to identify key structure-activity relationships and guide further optimisation intuitively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hu, Yuming; Callebert, Pieter; Vandemoortel, Ilse; Nguyen, Long; Audenaert, Dominique; Verschraegen, Luc; Vandenbussche, Filip; Van Der Straeten, Dominique
2014-02-01
Small molecules which act as hormone agonists or antagonists represent useful tools in fundamental research and are widely applied in agriculture to control hormone effects. High-throughput screening of large chemical compound libraries has yielded new findings in plant biology, with possible future applications in agriculture and horticulture. To further understand ethylene biosynthesis/signaling and its crosstalk with other hormones, we screened a 12,000 compound chemical library based on an ethylene-related bioassay of dark-grown Arabidopsis thaliana (L.) Heynh. seedlings. From the initial screening, 1313 (∼11%) biologically active small molecules altering the phenotype triggered by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), were identified. Selection and sorting in classes were based on the angle of curvature of the apical hook, the length and width of the hypocotyl and the root. A MySQL-database was constructed (https://chaos.ugent.be/WE15/) including basic chemical information on the compounds, images illustrating the phenotypes, phenotype descriptions and classification. The research perspectives for different classes of hit compounds will be evaluated, and some general screening tips for customized high-throughput screening and pitfalls will be discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Computational methods in metabolic engineering for strain design.
Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L
2015-08-01
Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miron, Y.; Perlee, H. E.
1974-01-01
An investigation was conducted to determine the cause of starting problems in the hypergolic rocket engines of the Apollo reaction control (RCS) engines. The scope of the investigation was as follows: (1) to establish that chemical reactions occurred during the preignition and post combustion periods, (2) to identify the chemical species of the products of preignition and post combustion reaction, and (3) to determine the explosive nature of the identified species. The methods used in identifying the chemical products are described species. The infrared spectra, X-ray spectra, and other signatures of the compounds are presented. The physical and explosion characteristics of various hypergolic agents are reported.
A workflow to investigate exposure and pharmacokinetic ...
Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption, distribution, metabolism, excretion (ADME) properties of chemicals. We developed a conceptual workflow to consider exposure and ADME properties in relationship to an MIE and demonstrated the utility of this workflow using a previously established AOP, acetylcholinesterase (AChE) inhibition. Thirty active chemicals found to inhibit AChE in the ToxCastTM assay were examined with respect to their exposure and absorption potentials, and their ability to cross the blood-brain barrier. Structural similarities of active compounds were compared against structures of inactive compounds to detect possible non-active parents that might have active metabolites. Fifty-two of the 1,029 inactive compounds exhibited a similarity threshold above 75% with their nearest active neighbors. Excluding compounds that may not be absorbed, 22 could be potentially toxic following metabolism. The incorporation of exposure and ADME properties into the conceptual workflow resulted in prioritization of 20 out of 30 active compounds identified in an AChE inhibition assay for further analysis, along with identification of several inactive parent compounds of active metabolites. This qualitative approach can minimize co
Structure and Chemical Synthesis of a Biologically Active Form of Renilla (Sea Pansy) Luciferin*
Hori, Kazuo; Cormier, Milton J.
1973-01-01
The structure of a biologically active form of Renilla (sea pansy) luciferin has been elucidated; this structure, confirmed by total chemical synthesis, is 3,7-dihydro-2-methyl-6-(p-hydroxyphenyl)-8-benzylimidazo [1,2-a] pyrazin-3-one. In the natural compound the methyl group at the 2 position is replaced by an unknown, more complex group. For this reason the synthetic compound is 10% as active as the natural compound in producing light with Renilla luciferase. However, the spectral properties of the two compounds are identical. In addition the rates of the luminescent reaction with both compounds are similar, and the color of the light produced is identical in each case. A compound isolated from the calcium-triggered photoprotein aequorin has been identified by Shimomura and Johnson [(1972) Biochemistry 11, 1602] to be 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine. This compound forms an integral part of the structure of Renilla luciferin. This, and other evidence, suggests that the structure elucidated for Renilla luciferin is a more general one associated with the luciferins of most, if not all, bioluminescent coelenterates. PMID:16592045
Trace organic compounds in wet atmospheric deposition: an overview
Steinheimer, T.R.; Johnson, S.M.
1987-01-01
An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.
Component Selection for Sterile Compounding.
Dilzer, Richard H
2017-01-01
This article describes the factors to consider, as well as the process of proper component selection, for use in preparing compounded sterile preparations. Special emphasis is placed on individual chemical factors that may impact a preparation's accuracy and potency. Values reported in a typical certificate of analysis are discussed, including methods of identifying any required adjustments to a master formulation or compounding record during the compounding of sterile preparations. Proper screening of the certificate of analysis, the Safety Data Sheet, procedural documentation, and the filing of all certificates of conformance are crucial to the operation of a sterile compounding facility. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Identification of candidate reference chemicals for in vitro steroidogenesis assays.
Pinto, Caroline Lucia; Markey, Kristan; Dix, David; Browne, Patience
2018-03-01
The Endocrine Disruptor Screening Program (EDSP) is transitioning from traditional testing methods to integrating ToxCast/Tox21 in vitro high-throughput screening assays for identifying chemicals with endocrine bioactivity. The ToxCast high-throughput H295R steroidogenesis assay may potentially replace the low-throughput assays currently used in the EDSP Tier 1 battery to detect chemicals that alter the synthesis of androgens and estrogens. Herein, we describe an approach for identifying in vitro candidate reference chemicals that affect the production of androgens and estrogens in models of steroidogenesis. Candidate reference chemicals were identified from a review of H295R and gonad-derived in vitro assays used in methods validation and published in the scientific literature. A total of 29 chemicals affecting androgen and estrogen levels satisfied all criteria for positive reference chemicals, while an additional set of 21 and 15 chemicals partially fulfilled criteria for positive reference chemicals for androgens and estrogens, respectively. The identified chemicals included pesticides, pharmaceuticals, industrial and naturally-occurring chemicals with the capability to increase or decrease the levels of the sex hormones in vitro. Additionally, 14 and 15 compounds were identified as potential negative reference chemicals for effects on androgens and estrogens, respectively. These candidate reference chemicals will be informative for performance-based validation of in vitro steroidogenesis models. Copyright © 2017. Published by Elsevier Ltd.
Application of bicyclic and cage compounds
NASA Technical Reports Server (NTRS)
Clark, R. D.; Archuleta, B. S.
1976-01-01
The results of a literature survey of the field of bicyclic and cage compounds were presented, with the objective of identifying those types of compounds with unusual physical and chemical stability, and determining what practical applications have been found for these compounds. Major applications have been as polymers, polymer additives, medicinals, and pesticides. Lesser applications have included fuels, fuel additives, lubricants, lubricant additives, and perfumes. Several areas where further work might be useful were also outlined; these are primarily in the areas of polymers, polymer additives, medicinals, and synthetic lubricants.
Fourches, Denis; Barnes, Julie C; Day, Nicola C; Bradley, Paul; Reed, Jane Z; Tropsha, Alexander
2010-01-01
Drug-induced liver injury is one of the main causes of drug attrition. The ability to predict the liver effects of drug candidates from their chemical structures is critical to help guide experimental drug discovery projects toward safer medicines. In this study, we have compiled a data set of 951 compounds reported to produce a wide range of effects in the liver in different species, comprising humans, rodents, and nonrodents. The liver effects for this data set were obtained as assertional metadata, generated from MEDLINE abstracts using a unique combination of lexical and linguistic methods and ontological rules. We have analyzed this data set using conventional cheminformatics approaches and addressed several questions pertaining to cross-species concordance of liver effects, chemical determinants of liver effects in humans, and the prediction of whether a given compound is likely to cause a liver effect in humans. We found that the concordance of liver effects was relatively low (ca. 39-44%) between different species, raising the possibility that species specificity could depend on specific features of chemical structure. Compounds were clustered by their chemical similarity, and similar compounds were examined for the expected similarity of their species-dependent liver effect profiles. In most cases, similar profiles were observed for members of the same cluster, but some compounds appeared as outliers. The outliers were the subject of focused assertion regeneration from MEDLINE as well as other data sources. In some cases, additional biological assertions were identified, which were in line with expectations based on compounds' chemical similarities. The assertions were further converted to binary annotations of underlying chemicals (i.e., liver effect vs no liver effect), and binary quantitative structure-activity relationship (QSAR) models were generated to predict whether a compound would be expected to produce liver effects in humans. Despite the apparent heterogeneity of data, models have shown good predictive power assessed by external 5-fold cross-validation procedures. The external predictive power of binary QSAR models was further confirmed by their application to compounds that were retrieved or studied after the model was developed. To the best of our knowledge, this is the first study for chemical toxicity prediction that applied QSAR modeling and other cheminformatics techniques to observational data generated by the means of automated text mining with limited manual curation, opening up new opportunities for generating and modeling chemical toxicology data.
Jarvis, J; Seed, M; Elton, R; Sawyer, L; Agius, R
2005-01-01
Aims: To investigate quantitatively, relationships between chemical structure and reported occupational asthma hazard for low molecular weight (LMW) organic compounds; to develop and validate a model linking asthma hazard with chemical substructure; and to generate mechanistic hypotheses that might explain the relationships. Methods: A learning dataset used 78 LMW chemical asthmagens reported in the literature before 1995, and 301 control compounds with recognised occupational exposures and hazards other than respiratory sensitisation. The chemical structures of the asthmagens and control compounds were characterised by the presence of chemical substructure fragments. Odds ratios were calculated for these fragments to determine which were associated with a likelihood of being reported as an occupational asthmagen. Logistic regression modelling was used to identify the independent contribution of these substructures. A post-1995 set of 21 asthmagens and 77 controls were selected to externally validate the model. Results: Nitrogen or oxygen containing functional groups such as isocyanate, amine, acid anhydride, and carbonyl were associated with an occupational asthma hazard, particularly when the functional group was present twice or more in the same molecule. A logistic regression model using only statistically significant independent variables for occupational asthma hazard correctly assigned 90% of the model development set. The external validation showed a sensitivity of 86% and specificity of 99%. Conclusions: Although a wide variety of chemical structures are associated with occupational asthma, bifunctional reactivity is strongly associated with occupational asthma hazard across a range of chemical substructures. This suggests that chemical cross-linking is an important molecular mechanism leading to the development of occupational asthma. The logistic regression model is freely available on the internet and may offer a useful but inexpensive adjunct to the prediction of occupational asthma hazard. PMID:15778257
[Studies on ethyl acetate soluble constituents of Huanglian Jiedutang].
Ma, Zhao-Tang; Yang, Xiu-Wei
2008-09-01
To study the ethyl acetate soluble constituents from the water extractive of Huanglian Jiedutang decoction, which are composed of Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gardeniae, and provide substances foundation for its pharmacokinetic and pharmacodynamic investigation. The chemical constituents were isolated by various column chromatographic methods and structurally elucidated by NMR and MS techniques. Thirty-five compounds were isolated, among which twenty compounds have been identified as beta-sitosterol (1), oroxylin A (2), wogonin (3), ursolic acid (4), skullcapflavone I (5), tenaxin I (6), skullcapflavone II (7), limonin (8), 5, 2'-dihydroxy-6, 7, 8, 3'-tetramethoxyflavone (9), chrysin (12), baicalein (17), tenaxin II (19), 5, 7, 2'-trihydroxy-6, 8-dimethoxyflavone (21), shihulimonin A (22), 6, 2'-dihydroxy-5, 7, 8, 6'-tetramethoxyflavone (26), viscidulin II (28), 5, 7, 4'-trihydroxy-8-methoxyflavone (29), 5, 7, 2', 6'-tetrahydroxyflavone (30), wogonin-7-O-beta-D-glucuronide methyl ester (31) and daucosterol (34). On the basis of reported results of the chemical constituents of Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gardeniae, it was estimated that all flavonoid compounds rised from the Radix Scutellariae, and compounds 8 and 22 rised from Cortex Phellodendri. Compound 22 was identified in the Cortex Phellodendri for the first time.
Explosives signatures and analysis
NASA Astrophysics Data System (ADS)
Fountain, Augustus Way, III; Oyler, Jonathan M.; Ostazeski, Stanley A.
2008-04-01
The challenge of sampling explosive materials for various high threat military and civilian operational scenarios requires the community to identify and exploit other chemical compounds within the mixtures that may be available to support stand-off detection techniques. While limited surface and vapor phase characterization of IEDs exist, they are insufficient to guide the future development and evaluation of field deployable explosives detection (proximity and standoff) capabilities. ECBC has conducted a limited investigation of three artillery ammunition types to determine what chemical vapors, if any, are available for sensing; the relative composition of the vapors which includes the more volatile compounds in munitions, i.e., plastersizers and binders; and the sensitivity needed detect these vapors at stand-off. Also in partnership with MIT-Lincoln Laboratory, we performed a background measurement campaign at the National Training Center to determine the baseline ambient amounts and variability of nitrates and nitro-ester compounds as vapors, particulates, and on surfaces; as well as other chemical compounds related to non-energetic explosive additives. Environmental persistence studies in contexts relevant to counter-IED sensing operations, such as surface residues, are still necessary.
[Chemical constituents from aerial part of Aconitum brachypodum].
Wang, Hong-Yun; Zuo, Ai-Xue; Sun, Yun; Rao, Gao-Xiong
2014-08-01
To study the chemical constituents from the aerial part of Aconitum brachypodum. The constituents were isolated and purified by silica gel, activated alumina and Sephadex LH-20 column chromatography. their structures were elucidated on the basis of spectral data and physiochemical evidence. Eleven compounds were isolated from 80% ethanol extract and identified as secokaraconitine (1), brachyaconitines A (2), C (3), talatisamine (4), hypaconitine (5), songrine (6), bullatine A (7), 7-carbony sitosterone (8), lupeol (9), β-sitosterol (10) and daucosterol (11). All compounds are isolated from the aerial part of Aconitum brachypodum for the first time.
[Chemical constituents from roots of Platycodon grandiflorum].
Li, Ling-Jun; Liu, Zhen-Hua; Chen, Yun; Tian, Jing-Kui
2006-09-01
To study the chemical constituents from roots of Platycodon grandiflorum. Column chromatography (silica gel, macroporous resin, sephadex LH - 20 and the preparative RP - HPLC were used to isolate the constituents. Their structures were elucidated by physical and spectral data. Eight compounds were isolated and identified as tangeritin (1), 3-O-beta-D-glucopyranosylplatycodigenin methyl ester (2), 3-O-beta-D-glucopyranosylplaticogenic acid A lactone (3), 3-O-beta-D-glucopyranosylplatycodigenin (4), deapio-platyconic acid A lactone (5), deapio-platycodin-D (6), platycoside-G1 (7) and platycoside-E (8). Compounds 1,3 and 5 were isolated from this plant for the first time.
Chemical characterization of some aerobic liquids in CELSS
NASA Technical Reports Server (NTRS)
Madsen, Brooks C.
1993-01-01
Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.
Organics, Isotopes, and Volatiles in Gale Crater Sedimentary Rocks
NASA Astrophysics Data System (ADS)
Mahaffy, P. R.
2016-12-01
Solid samples analyzed by the Curiosity rover on the long traverse from the Gale crater floor to the flanks of Mt. Sharp spread a range of environments from fluvial to lacustrine to eolian, and span 100 m of stratigraphic thickness. The diverse chemical and isotopic composition of organic compounds and inorganic volatiles revealed in these samples analyzed over a period of more than 2 Mars years is described with an emphasis on the search for organics, the chemical environments and physical-chemical processes that respectively preserve or destroy organics, and unexpectedly large variations in H, S, and Cl isotopes. In addition to a set of aromatic and aliphatic chorine containing organic compounds thermally released from the Cumberland mudstone drilled early in the mission compounds [Freissinet et al., 2015], additional S-containing organics have been identified in the Mojave drill sample in the Pahrump Hills section that was characterized in detail over a 5 month period. This set of S and Cl containing compounds is definitively identified by gas chromatograph mass spectrometer (GCMS) analyses. In addition, fragments of other organic compounds are evident in the evolved gas analysis (EGA) experiments implemented by the Sample Analysis at Mars (SAM) instrument and utilization of SAM's derivatization agent has revealed the presence of high molecular weight compounds. Two factors complicate the search for organic compounds preserved from ancient Mars. First the nearly ubiquitous oxychlorine compounds such as perchlorates decompose on heating in the SAM ovens in the EGA experiments and there is evidence that the hot O2 released combusts organic compounds to produce CO2. Secondly, the cosmic radiation that penetrates through the thin Mars atmosphere meters into the surface transforms near surface organic compounds over time. Fortunately, the SAM mass spectrometer can measure spallogenic (3He and 21Ne) and neutron-capture (36Ar) noble gases to secure an estimate of the duration of radiation exposure. Measurement protocols developed to work around both of these limitations will be discussed. C. Freissinet et al, JGR (2015) 120(3), 495-514.
Peakall, Rod; Ebert, Daniel; Poldy, Jacqueline; Barrow, Russell A; Francke, Wittko; Bower, Colin C; Schiestl, Florian P
2010-10-01
• Sexually deceptive orchids are predicted to represent a special case of plant speciation where strong reproductive isolation may be achieved by differences in floral scent. • In this study of Australian sexually deceptive Chiloglottis orchids, we performed choice experiments to test for wasp pollinator specificity in the field; identified the compounds involved in pollinator attraction by gas chromatography with electroantennographic detection (GC-EAD), gas chromatography with mass selective detection (GC-MS), chemical synthesis and behavioural bioassays; and mapped our chemical findings on to a phylogeny of the orchids. • Field experiments confirmed pollination is a highly specific interaction, but also revealed a pool of nonpollinating 'minor responder' wasps. Six novel compounds, all 2,5-dialkylcyclohexan-1,3-diones, called 'chiloglottones', were discovered to be involved in pollinator attraction. Bioassays confirmed that pollinator specificity has a strong chemical basis, with specificity among sympatric orchids maintained by either different single compounds or a variation in a blend of two compounds. The phylogenetic overlay confirmed that speciation is always associated with pollinator switching and usually underpinned by chemical change. • If the chemical differences that control reproductive isolation in Chiloglottis have a strong genetic basis, and given the confirmed pool of potential pollinators, we conclude that pollinator-driven speciation appears highly plausible in this system. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Hoenerhoff, Mark J.; Hong, Hue Hua; Ton, Tai-Vu; Lahousse, Stephanie A.; Sills, Robert C.
2012-01-01
Tumor response in the B6C3F1 mouse, F344 rat, and other animal models following exposure to various compounds provides evidence that people exposed to these or similar compounds may be at risk for developing cancer. Although tumors in rodents and humans are often morphologically similar, underlying mechanisms of tumorigenesis are often unknown and may be different between the species. Therefore, the relevance of an animal tumor response to human health would be better determined if the molecular pathogenesis were understood. The underlying molecular mechanisms leading to carcinogenesis are complex and involve multiple genetic and epigenetic events and other factors. To address the molecular pathogenesis of environmental carcinogens, we examine rodent tumors (e.g., lung, colon, mammary gland, skin, brain, mesothelioma) for alterations in cancer genes and epigenetic events that are associated with human cancer. Our NTP studies have identified several genetic alterations in chemically induced rodent neoplasms that are important in human cancer. Identification of such alterations in rodent models of chemical carcinogenesis caused by exposure to environmental contaminants, occupational chemicals, and other compounds lends further support that they are of potential human health risk. These studies also emphasize the importance of molecular evaluation of chemically induced rodent tumors for providing greater public health significance for NTP evaluated compounds. PMID:19846892
Boiret, Mathieu; de Juan, Anna; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel
2015-09-10
Raman chemical imaging provides chemical and spatial information about pharmaceutical drug product. By using resolution methods on acquired spectra, the objective is to calculate pure spectra and distribution maps of image compounds. With multivariate curve resolution-alternating least squares, constraints are used to improve the performance of the resolution and to decrease the ambiguity linked to the final solution. Non negativity and spatial local rank constraints have been identified as the most powerful constraints to be used. In this work, an alternative method to set local rank constraints is proposed. The method is based on orthogonal projections pretreatment. For each drug product compound, raw Raman spectra are orthogonally projected to a basis including all the variability from the formulation compounds other than the product of interest. Presence or absence of the compound of interest is obtained by observing the correlations between the orthogonal projected spectra and a pure spectrum orthogonally projected to the same basis. By selecting an appropriate threshold, maps of presence/absence of compounds can be set up for all the product compounds. This method appears as a powerful approach to identify a low dose compound within a pharmaceutical drug product. The maps of presence/absence of compounds can be used as local rank constraints in resolution methods, such as multivariate curve resolution-alternating least squares process in order to improve the resolution of the system. The method proposed is particularly suited for pharmaceutical systems, where the identity of all compounds in the formulations is known and, therefore, the space of interferences can be well defined. Copyright © 2015 Elsevier B.V. All rights reserved.
Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J; Childs-Disney, Jessica L; Sobczak, Krzysztof; Disney, Matthew D
2012-03-16
Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)(exp)) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5'CAG/3'GAC motif found in r(CAG)(exp) hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)(exp). The compound was identified by first studying the binding of RNA 1 × 1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5'CAG/3'GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate, a small molecule that improves pre-mRNA splicing defects associated with the r(CAG)(exp)-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)(exp) and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)(exp) toxicity. The approach used in these studies, defining the small RNA motifs that bind small molecules with known affinity for nucleic acids and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in the human genomic sequence.
Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J.; Childs-Disney, Jessica; Sobczak, Krzysztof; Disney, Matthew D.
2012-01-01
Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)exp) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5’CAG/3’GAC motif found in r(CAG)exp hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)exp. The compound was identified by first studying the binding of RNA 1×1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5’CAG/3’GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate as small molecule capable of improving pre-mRNA splicing defects associated with the r(CAG)exp-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)exp and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)exp toxicity. The approach used in these studies, defining the small RNA motifs that bind known nucleic acid binders and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in human genomic sequence. PMID:22252896
Gokulakrishnan, J; Kuppusamy, Elumalai; Shanmugam, Dhanasekaran; Appavu, Anandan; Kaliyamoorthi, Krishnappa
2013-01-01
Objective To determine the repellent and pupicidal activities of Pogostemon cablin (P. cablin) chemical compositions were assayed for their toxicity against selected important vector mosquitoes, viz., Aedes aegypti (Ae. aegypti), Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus) (Diptera: Culicidae). Methods The plants dry aerial parts were subjected to hydrodistillation using a modified Clevenger-type apparatus. The composition of the essential oil was analyzed by Gas Chromatography (GC) and GC mass spectrophotometry. Evaluation was carried out in a net cage (45 cm×30 cm×45 cm) containing 100 blood starved female mosquitoes and were assayed in the laboratory condition by using the protocol of WHO 2010. The repellent activity of P. cablin chemical compositions at concentration of 2mg/cm2were applied on skin of fore arm in man and exposed against adult female mosquitoes. The pupicidal activity was determined against selected important vector mosquitoes to concentration of 100 mg/L and mortality of each pupa was recorded after 24 h of exposure to the compounds. Results Chemical constituents of 15 compounds were identified in the oil of P.cablin compounds representing to 98.96%. The major components in essential oil were â-patchoulene, á-guaiene, ã-patchoulene, á-bulnesene and patchouli alcohol. The repellent activity of patchouli alcohol compound was found to be most effective for repellent activity and 2 mg/cm2 concentration provided 100% protection up to 280 min against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, respectively. Similarly, pupae exposed to 100 mg/L concentrations of P. cablin chemical compositions. Among five compounds tested patchouli alcoholwas found to be most effective for pupicidal activity provided 28.44, 26.28 and 25.36 against Ae.aegypti, An.stephensi and Cx. quinquefasciatus, respectively. The percent adult emergence was inversely proportional to the concentration of compounds and directly proportional to the pupal mortality. Conclusion These results suggest that the P. cablin chemical compositions have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito repellent and pupicidal activities of the reported P. cablin chemical compositions.
Mass Spectral Library Quality Assurance by Inter-Library Comparison
NASA Astrophysics Data System (ADS)
Wallace, William E.; Ji, Weihua; Tchekhovskoi, Dmitrii V.; Phinney, Karen W.; Stein, Stephen E.
2017-04-01
A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared, the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided.
Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.
Chakravorty, Subhas J; Chan, James; Greenwood, Marie Nicole; Popa-Burke, Ioana; Remlinger, Katja S; Pickett, Stephen D; Green, Darren V S; Fillmore, Martin C; Dean, Tony W; Luengo, Juan I; Macarrón, Ricardo
2018-07-01
High-throughput screening (HTS) hits include compounds with undesirable properties. Many filters have been described to identify such hits. Notably, pan-assay interference compounds (PAINS) has been adopted by the community as the standard term to refer to such filters, and very useful guidelines have been adopted by the American Chemical Society (ACS) and subsequently triggered a healthy scientific debate about the pitfalls of draconian use of filters. Using an inhibitory frequency index, we have analyzed in detail the promiscuity profile of the whole GlaxoSmithKline (GSK) HTS collection comprising more than 2 million unique compounds that have been tested in hundreds of screening assays. We provide a comprehensive analysis of many previously published filters and newly described classes of nuisance structures that may serve as a useful source of empirical information to guide the design or growth of HTS collections and hit triaging strategies.
Mass Spectral Library Quality Assurance by Inter-Library Comparison
Wallace, W.E.; Ji, W.; Tchekhovskoi, D.V.; Phinney, K.W.; Stein, S.E.
2017-01-01
A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided. PMID:28127680
Essential oil from leaves of Lippia dulcis grown in Colombia.
Moreno-Murillo, Bárbara; Quijano-Célis, Clara; Romero, Arturo R; Pino, Jorge A
2010-04-01
The chemical composition of the volatile compounds from the leaves of Lippia dulcis Trev. (Verbenaceae) from Colombia was studied by GC and GC/MS. Forty volatile compounds were identified, of which the major ones were alpha-copaene (18.0%), beta-caryophyllene (17.8%), and delta-cadinene (14.7%). The sweet bisabolane sesquiterpenoid, hernandulcin, formed only 1.1% of the leaf oil.
Vorberg, Susann
2013-01-01
Abstract Biodegradability describes the capacity of substances to be mineralized by free‐living bacteria. It is a crucial property in estimating a compound’s long‐term impact on the environment. The ability to reliably predict biodegradability would reduce the need for laborious experimental testing. However, this endpoint is difficult to model due to unavailability or inconsistency of experimental data. Our approach makes use of the Online Chemical Modeling Environment (OCHEM) and its rich supply of machine learning methods and descriptor sets to build classification models for ready biodegradability. These models were analyzed to determine the relationship between characteristic structural properties and biodegradation activity. The distinguishing feature of the developed models is their ability to estimate the accuracy of prediction for each individual compound. The models developed using seven individual descriptor sets were combined in a consensus model, which provided the highest accuracy. The identified overrepresented structural fragments can be used by chemists to improve the biodegradability of new chemical compounds. The consensus model, the datasets used, and the calculated structural fragments are publicly available at http://ochem.eu/article/31660. PMID:27485201
NASA Astrophysics Data System (ADS)
Rodríguez-Rodríguez, Cristina; Rimola, Albert; Alí-Torres, Jorge; Sodupe, Mariona; González-Duarte, Pilar
2011-01-01
The development of new strategies to find commercial molecules with promising biochemical features is a main target in the field of biomedicine chemistry. In this work we present an in silico-based protocol that allows identifying commercial compounds with suitable metal coordinating and pharmacokinetic properties to act as metal-ion chelators in metal-promoted neurodegenerative diseases (MpND). Selection of the chelating ligands is done by combining quantum chemical calculations with the search of commercial compounds on different databases via virtual screening. Starting from different designed molecular frameworks, which mainly constitute the binding site, the virtual screening on databases facilitates the identification of different commercial molecules that enclose such scaffolds and, by imposing a set of chemical and pharmacokinetic filters, obey some drug-like requirements mandatory to deal with MpND. The quantum mechanical calculations are useful to gauge the chelating properties of the selected candidate molecules by determining the structure of metal complexes and evaluating their stability constants. With the proposed strategy, commercial compounds containing N and S donor atoms in the binding sites and capable to cross the BBB have been identified and their chelating properties analyzed.
Tripathi, Arpita Mani; Tiwary, Bhupendra N
2013-08-01
A wild strain of Schizophyllum commune (MTCC 9670) isolated from Achanakmar-Amarkantak Biosphere Reserve of Central India was evaluated for the production of bioactive compounds. The chemical constituents of wild and in vitro grown cultures were compared. Under optimized conditions, different organic and aqueous extracts from mycelia and fruiting bodies were used to extract chemical components from the cultures grown in vitro. The gas chromatography combined wih mass spectrometry analysis of extracts identified two phenolic compounds, namely Phenyl benzoate (C13H10O2) and 4-(phenyl methoxy) phenol (C13H12O2) in the ethanolic extract of in vitro grown fruiting bodies and one antibacterial compound Pyrrolo (1, 2-a) piperazine-3, 6-dione (C7H10O2N2) in the methanolic extract of mycelia. High-performance liquid chromatography analysis revealed that the gallic acid and L-ascorbic acid were identifiable antioxidant components in the extracts possessing high free radical scavenging activity. The findings suggest that the wild strain of S. commune may serve as the source of novel bioactive compounds with effective antimicrobial and antioxidant activities.
Chemical composition of French mimosa absolute oil.
Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas
2010-02-10
Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.
Mendiola, Jose A; Marín, Francisco R; Hernández, S Francisco; Arredondo, Bertha O; Señoráns, F Javier; Ibañez, Elena; Reglero, Guillermo
2005-06-01
Spirulina platensis microalga has been extracted on a pilot scale plant using supercritical fluid extraction (SFE) under various extraction conditions. The extraction yield and the antioxidant activity of the extracts were evaluated in order to select those extracts with both the highest antioxidant capacity and a good extraction yield. These extracts were characterized using LC coupled to diode array detection (DAD) and LC coupled to mass spectrometry (MS) with two different interfaces, atmospheric pressure chemical ionization (APCI) and electrospray (ESI) which allowed us to perform tandem MS by using an ion trap analyzer. The best extraction conditions were as follows: CO2 with 10% of modifier (ethanol) as extraction solvent, 55 degrees C (extraction temperature) and 220 bar (extraction pressure). Fractionation was achieved by cascade depressurization providing two extracts with different activity and chemical composition. Several compounds have been identified in the extracts, corresponding to different carotenoids previously identified in Spirulina platensis microalga along with chlorophyll a and some degradation products. Also, the structure of some phenolic compounds could be tentatively identified. The antioxidant activity of the extracts could be attributed to some of the above mentioned compounds.
2017-10-01
metabolic stability, membrane permeability and compound solubility). From this extensive work, we now have six chemotypes that we have prioritized for...18th month. We successfully completed this work, and identified a set of six novel chemical series with dual blood and liver stage activity that merit...In the second year, we revised our work plan to devote more resources to pursuing medicinal chemistry to optimize our six prioritized series. This
Identification of matrix metalloproteinase inhibitors by chemical arrays.
Kawatani, Makoto; Fukushima, Yukako; Kondoh, Yasumitsu; Honda, Kaori; Sekine, Tomomi; Yamaguchi, Yoshiki; Taniguchi, Naoyuki; Osada, Hiroyuki
2015-01-01
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade many extracellular matrix components and that have been implicated in the pathogenesis of various human diseases including cancer metastasis. Here, we screened MMP-9 inhibitors using photo-cross-linked chemical arrays, which can detect small-molecule ligand-protein interactions on a chip in a high-throughput manner. The array slides were probed sequentially with His-MMP-9, anti-His antibody, and a Cy5-labeled secondary antibody and then scanned with a microarray scanner. We obtained 27 hits among 24,275 compounds from the NPDepo library; 2 of the identified compounds (isoxazole compound 1 and naphthofluorescein) inhibited MMP-9 enzyme activity in vitro. We further explored 17 analogs of 1 and found that compound 18 had the strongest inhibitory activity. Compound 18 also inhibited other MMPs, including MMP-2, MMP-12, and MMP-13 and significantly inhibited cell migration in human fibrosarcoma HT1080 cells. These results suggest that 18 is a broad-spectrum MMP inhibitor.
Suspect Screening Analysis of Chemicals in Consumer Products.
Phillips, Katherine A; Yau, Alice; Favela, Kristin A; Isaacs, Kristin K; McEachran, Andrew; Grulke, Christopher; Richard, Ann M; Williams, Antony J; Sobus, Jon R; Thomas, Russell S; Wambaugh, John F
2018-03-06
A two-dimensional gas chromatography-time-of-flight/mass spectrometry (GC×GC-TOF/MS) suspect screening analysis method was used to rapidly characterize chemicals in 100 consumer products-which included formulations (e.g., shampoos, paints), articles (e.g., upholsteries, shower curtains), and foods (cereals)-and therefore supports broader efforts to prioritize chemicals based on potential human health risks. Analyses yielded 4270 unique chemical signatures across the products, with 1602 signatures tentatively identified using the National Institute of Standards and Technology 2008 spectral database. Chemical standards confirmed the presence of 119 compounds. Of the 1602 tentatively identified chemicals, 1404 were not present in a public database of known consumer product chemicals. Reported data and model predictions of chemical functional use were applied to evaluate the tentative chemical identifications. Estimated chemical concentrations were compared to manufacturer-reported values and other measured data. Chemical presence and concentration data can now be used to improve estimates of chemical exposure, and refine estimates of risk posed to human health and the environment.
Klevorn, Claire M; Dean, Lisa L
2018-02-01
Raw peanuts in the USA are subjected to thermal processing, such as dry-roasting, prior to consumption. A multi-instrument metabolomics-based platform along with targeted analyses was used to determine changes in the low-molecular-weight compound composition of peanuts due to dry-roasting. Runner and virginia-type peanut seeds were characterized using several analytical platforms including (RP)/UPLC-MS/MS (positive and negative ion mode ESI) and HILIC/UPLC-MS/MS with negative ion mode ESI. Of the 383 compounds identified, 16 compounds were unique to the roasted peanuts. Using pathway analysis, compounds associated with arginine and proline metabolism were found to be the most changed. Products of chemical degradation and compounds contained within the vesicular bodies of the peanut increased after roasting. Dry-roasting had a significant impact on the levels and types of low-molecular-weight compounds present. These findings provide useful information about composition changes due to roasting. Published by Elsevier Ltd.
Qu, Peng; Liu, Peipei; Fu, Peng; Wang, Yi; Zhu, Weiming
2012-09-04
To search for structurally novel and biologically active compounds from the secondary metabolites of halotolerant fungi from the Yellow River Delta area. We screened halotolerant fungi with rich chemical diversity and antitumor or antimicrobial activity by means of integrated chemical and biological method. We cultured halotolerant fungi under different conditions at first. Then we investigated the chemical diversity and the bioactivity of the EtOAc extracts of the fermentation broth by HPLC and TLC, and cytotoxic assay or antimicrobial assay. We selected Penicillium chrysogenum HK14-01 to further study for the large yield, producing alkaloids and cytotoxicity on P388 cells in YMDP culture medium containing 10% NaCl. We fermented P. chrysogenum HK14-01 on a large scale; we isolated and purified the compounds by column chromatography over silica gel, Sephadex LH-20, and semipreparative HPLC; and we identified the structures by spectroscopic analysis, X-ray diffraction (Mo-Kalpha), CD spectra and the time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculation. We isolated and identified a halotolerant fungal strain, P. chrysogenum HK14-01, from the sediments collected in the Yellow River Delta area. From the fermentation broth of P. chrysogenum HK14-01, we isolated and identified eight compounds, i.e. (2S,3R)-oxaline (1, a major product), (3R, 4R)-3,4,8-trihydroxy-3,4-dihydronaphthalen-1 (2H)-one (2), (Z)-N-(4-hydroxy styryl) formamide (3), (E)-N-(4-hydroxystyryl) formamide (4), emodin (5), 4-(2-hydroxyethyl) benzene-1,2-diol (6), methyl 2-(4-hydroxyphenyl) acetate (7), and 2-(4-hydroxyphenyl) acetonitrile (8). Bioactive compounds can be obtained from the secondary metabolites of halotolerant microorganisms from the Yellow River Delta area.
Martin, Heather L.; Adams, Matthew; Higgins, Julie; Bond, Jacquelyn; Morrison, Ewan E.; Bell, Sandra M.; Warriner, Stuart; Nelson, Adam; Tomlinson, Darren C.
2014-01-01
Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays. PMID:24505478
Using Weighted Entropy to Rank Chemicals in Quantitative High Throughput Screening Experiments
Shockley, Keith R.
2014-01-01
Quantitative high throughput screening (qHTS) experiments can simultaneously produce concentration-response profiles for thousands of chemicals. In a typical qHTS study, a large chemical library is subjected to a primary screen in order to identify candidate hits for secondary screening, validation studies or prediction modeling. Different algorithms, usually based on the Hill equation logistic model, have been used to classify compounds as active or inactive (or inconclusive). However, observed concentration-response activity relationships may not adequately fit a sigmoidal curve. Furthermore, it is unclear how to prioritize chemicals for follow-up studies given the large uncertainties that often accompany parameter estimates from nonlinear models. Weighted Shannon entropy can address these concerns by ranking compounds according to profile-specific statistics derived from estimates of the probability mass distribution of response at the tested concentration levels. This strategy can be used to rank all tested chemicals in the absence of a pre-specified model structure or the approach can complement existing activity call algorithms by ranking the returned candidate hits. The weighted entropy approach was evaluated here using data simulated from the Hill equation model. The procedure was then applied to a chemical genomics profiling data set interrogating compounds for androgen receptor agonist activity. PMID:24056003
Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan
2017-09-29
Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.
[One new chroman glycoside derivative from unmatured fruits of Citrus aurantium].
Peng, Wen-Wen; Yan, He; Tan, Ning-Hua
2013-01-01
To study the chemical constituents of the unmatured fruits of Citrus aurantium. The AcOEt fraction of the methanol extracts of the unmatured fruits of C. aurantium were subjected on column chromatographies including silica gel, RP-18 and HPLC. Compound structures isolated were determined on the basis of spectroscopic data. Three compounds were isolated from the unmatured fruits of C. aurantium, which were identified as citrauranoside (1), limonexin (2) and limonin (3). Compound 1 is a new chroman glycoside derivative, named as citrauranoside.
OliveNet™: a comprehensive library of compounds from Olea europaea
Bonvino, Natalie P; Liang, Julia; McCord, Elizabeth D; Zafiris, Elena; Benetti, Natalia; Ray, Nancy B; Hung, Andrew; Boskou, Dimitrios
2018-01-01
Abstract Accumulated epidemiological, clinical and experimental evidence has indicated the beneficial health effects of the Mediterranean diet, which is typified by the consumption of virgin olive oil (VOO) as a main source of dietary fat. At the cellular level, compounds derived from various olive (Olea europaea), matrices, have demonstrated potent antioxidant and anti-inflammatory effects, which are thought to account, at least in part, for their biological effects. Research efforts are expanding into the characterization of compounds derived from Olea europaea, however, the considerable diversity and complexity of the vast array of chemical compounds have made their precise identification and quantification challenging. As such, only a relatively small subset of olive-derived compounds has been explored for their biological activity and potential health effects to date. Although there is adequate information describing the identification or isolation of olive-derived compounds, these are not easily searchable, especially when attempting to acquire chemical or biological properties. Therefore, we have created the OliveNet™ database containing a comprehensive catalogue of compounds identified from matrices of the olive, including the fruit, leaf and VOO, as well as in the wastewater and pomace accrued during oil production. From a total of 752 compounds, chemical analysis was sufficient for 676 individual compounds, which have been included in the database. The database is curated and comprehensively referenced containing information for the 676 compounds, which are divided into 13 main classes and 47 subclasses. Importantly, with respect to current research trends, the database includes 222 olive phenolics, which are divided into 13 subclasses. To our knowledge, OliveNet™ is currently the only curated open access database with a comprehensive collection of compounds associated with Olea europaea. Database URL: https://www.mccordresearch.com.au PMID:29688352
Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing
2016-01-01
The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722
Hwang, Ki Seon; Kim, Young Kook; Park, Kee Woong; Kim, Young Tae
2017-08-01
There is growing demand for the development of alternative pest control agents that are effective as well as non-toxic to human health and the environment. Plant protection products derived from plant extracts are an eco-friendly alternative to synthetic pesticides. The aim of this study was to identify larvicidal compounds isolated from a natural source against Plutella xylostella L. In a larvicidal activity assay, several solvent fractions from the methanol extract of Piper nigrum L. fruit showed larvicidal effects against P. xylostella. Screening results indicated that chloroform extract was the most effective against P. xylostella larvae. Two compounds with insecticidal activity in the chloroform fraction were identified as piperolein B and piperchabamide D by spectroscopic analyses, including mass spectrometry and NMR, and by comparison to published data. At applications of 0.1 mg mL -1 concentration, piperolein B and piperchabamide D, respectively, induced 96.7 ± 5.8% and 79.2 ± 16.6% mortality rates of P. xylostella larvae 4 days post-application. Our results demonstrate that piperolein B and piperchabamide D isolated from P. nigrum are the major constituents of the extract demonstrating insecticidal properties for the control of P. xylostella larvae. These plant-derived compounds should become useful alternatives to synthetic chemicals after studying their insecticidal mechanisms. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shoujie; Ye, X. Philip; Borole, Abhijeet P.
To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, our study investigated the physico-chemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compoundsmore » into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels were extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. Ultimately, a better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations.« less
Ren, Shoujie; Ye, X. Philip; Borole, Abhijeet P.; ...
2016-03-30
To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, our study investigated the physico-chemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compoundsmore » into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels were extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. Ultimately, a better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations.« less
Charting, navigating, and populating natural product chemical space for drug discovery.
Lachance, Hugo; Wetzel, Stefan; Kumar, Kamal; Waldmann, Herbert
2012-07-12
Natural products are a heterogeneous group of compounds with diverse, yet particular molecular properties compared to synthetic compounds and drugs. All relevant analyses show that natural products indeed occupy parts of chemical space not explored by available screening collections while at the same time largely adhering to the rule-of-five. This renders them a valuable, unique, and necessary component of screening libraries used in drug discovery. With ChemGPS-NP on the Web and Scaffold Hunter two tools are available to the scientific community to guide exploration of biologically relevant NP chemical space in a focused and targeted fashion with a view to guide novel synthesis approaches. Several of the examples given illustrate the possibility of bridging the gap between computational methods and compound library synthesis and the possibility of integrating cheminformatics and chemical space analyses with synthetic chemistry and biochemistry to successfully explore chemical space for the identification of novel small molecule modulators of protein function.The examples also illustrate the synergistic potential of the chemical space concept and modern chemical synthesis for biomedical research and drug discovery. Chemical space analysis can map under explored biologically relevant parts of chemical space and identify the structure types occupying these parts. Modern synthetic methodology can then be applied to efficiently fill this “virtual space” with real compounds.From a cheminformatics perspective, there is a clear demand for open-source and easy to use tools that can be readily applied by educated nonspecialist chemists and biologists in their daily research. This will include further development of Scaffold Hunter, ChemGPS-NP, and related approaches on the Web. Such a “cheminformatics toolbox” would enable chemists and biologists to mine their own data in an intuitive and highly interactive process and without the need for specialized computer science and cheminformatics expertise. We anticipate that it may be a viable, if not necessary, step for research initiatives based on large high-throughput screening campaigns,in particular in the pharmaceutical industry, to make the most out of the recent advances in computational tools in order to leverage and take full advantage of the large data sets generated and available in house. There are “holes” in these data sets that can and should be identified and explored by chemistry and biology.
[Chemical constituents from Exochorda racemosa].
Zhang, Jiajia; Li, Xiangmei; Ren, Lihua; Fang, Chengwu; Wang, Fei
2011-05-01
To study the chemical constituents of Exochorda racemosa. Compounds were isolated and purified by silica gel, Sephadex LH-20, MCI gel and RP-18 column chromatography, and their structures were determined by spectroscopic analysis. Twenty compounds were isolated and identified as N-p-coumaroyl-N'-caffeoylputrescine (1), sutherlandin trans-p-coumarate (2), apigenin 7-O-methylglucuronide (3), astragalin (4), nicotiflorin (5), kaempferol 3-neohesperidoside (6), rutin (7), apigenin (8), luteolin (9), linalool-1-oic acid (10), betulalbuside A (11), ursolic acid (12) , corosolic acid (13), gynuramide II (14), beta-sitosterol (15), daucosterol (16), uridine (17), adenosine (18), syringin (19), and trans4-hydroxycinnamic acid (20), respectively. All compounds were obtained from this plant for the first time, moreover, 1 was reported as a new natural product, and 2 is a naturally rare cyanogenic glycoside.
[Studies on the chemical constituents of the stems of Piper betle].
Yin, Yan; Huang, Xiang-Zhong; Wang, Jiong; Dai, Jian-Hui; Liang, Hui; Dai, Yun
2009-06-01
To study the chemical constituents from the stems of Piper betle. Various chromatographic techniques were used to isolate and purify the constituents. The structures of these compounds were elucidated on the basis of spectral analysis. Nine compounds were isolated from the petroleum ester and ethyl acetate soluble fractions of the 70% acetone extract and their structures were identified as 6beta-hydroxystigmast-4-en-3-one (1), beta-sitosterol (2), stigmasterol (3), oleanolic acid (4), 23-hydroxyursan-12-en-28-oic acid (5), beta-sitosterol-3-O-beta-D-glucoside-6'-O-palmitate (6), beta-daucosterol (7), (2S) -4'-hydroxy- 2,3-dihydroflavonone-7-O-beta-D-glucoside (8) and alpha-ethyl glucoside (9). Among these compounds, 1, 3 -9 are isolated from this plant for the first time.
[Chemical constituents of Swertia macrosperma].
Wang, Hongling; Geng, Changan; Zhang, Xuemei; Ma, Yunbao; Jiang, Zhiyong; Chen, Jijun
2010-12-01
To study the chemical constituents of Swertia macrosperma. The air-dried whole plants of Swertia macrosperma were extracted with boiling water. The extract was concentrated to a small amount of volume and extracted with petroleum ether, EtOAc and n-BuOH, successively. The compounds were isolated and purified by column chromatography from the EtOAc fraction, and identified based on spectral analyses (MS, 1H-NMR, 13C-NMR). Thirteen compounds were isolated from S. macrosperma, and were characterized as norbellidifolin (1), 1-hydroxy-3,7, 8-trimethoxy-xanthone (2), norswertianolin (3), swertianolin (4), 1,3,7,8-tetrahydroxyxanthone-8-O-beta-D-glucopyranoside (5), swertiamatin (6), decentapicrin (7), coniferl aldehyde (8), sinapaldehyde (9), balanophonin (10), together with beta-sitosterol, daucosterol, and oleanolic acid . Compounds 2, 4-10 were obtained from Swertia macrosperma for the first time.
[Chemical constituents of Halenia elliptica].
Wang, Hongling; Chen, Hao; Geng, Chang'an; Zhang, Xuemei; Ma, Yunbao; Jiang, Zhiyong; Chen, Jijun
2011-06-01
To study the chemical constituents of Halenia elliptica. The air-dried whole plants of Halenia elliptica were extracted with 90% EtOH. The EtOH extract was condensed to a small amount of volume and extracted with petroleum ether, EtOAc and n-BuOH, successively. The compounds were isolated and purified by column chromatography from the EtOAc fraction, and identified based on spectral analyses (MS, 1H-NMR, 13C-NMR). 12 compounds were isolated from H. elliptica, and characterized as 8-hydroxy-2-methylchromone (1), 5-methoxy-2-methylchromone (2), 7-epi-vogeloside (3), coniferl aldehyde (4), sinapaldehyde (5), norbellidifolin (6), 1-hydroxyl-2,3,4,6-tetramethoxyxanthone (7), 1-hydroxyl-2,3,4,7-tetramethoxyxanthone (8), 1-hydroxyl-2,3,5-trimethoxyxanthone (9), together with azelaic acid, beta-sitosterol, and oleanolic acid. Compounds 1, 2 were new natural compounds and compounds 3-6, 10 were obtained from H. elliptica for the first time and compound 6 showed inhibitory activities against HBsAg and HBeAg secretion with IC50 value of 0.77 and < 0.62 mmol x L(-1), respectively.
... contemplated is the use of high-throughput screening technology to identify chemical compounds that might reverse nuclear membrane abnormalities of the type seen in the cells of children with progeria. Current NHGRI Clinical Studies Search ClinicalTrials. ...
He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H
2015-06-01
The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Silici, Sibel; Kutluca, Semiramis
2005-05-13
The chemical analysis and antibacterial activity of three types of propolis collected three different races of Apis mellifera bee in the same apiary were investigated. Propolis samples were investigated by GC/MS, 48 compounds were identified 32 being new for propolis. The compounds identified indicated that the main plant sources of propolis were Populus alba, Populus tremuloides and Salix alba. The antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans was evaluated. Ethanolic extracts of propolis samples showed high antibacterial activity against Gram-positive cocci (Staphylococcus aureus), but had a weak activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and yeast (Candida albicans). Propolis sample collected by Apis mellifera caucasica showed a higher antibacterial activity than collected by Apis mellifera anatolica and Apis mellifera carnica.
Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae)
Bagiu, Radu Vasile; Vlaicu, Brigitha; Butnariu, Monica
2012-01-01
The objective of the study was to summarize the methods for isolating and identifying natural sulfur compounds from Allium ursinum (ramson) and to discuss the active constituents with regard to antifungal action. Using chromatographic techniques, the active constituents were isolated and subsequently identified. Analyses by high-performance liquid chromatography (HPLC) suggested that these compounds were sulfur constituents, with a characteristic absorbance at 250 nm. Gas chromatography-mass spectrometry (GC-MS) analyses allowed the chemical structures of the isolated constituents to be postulated. We adopted the same methods to identify the health-giving profiling of ramsons and the effects are thought to be primarily derived from the presence and breakdown of the alk(en)ylcysteine sulphoxide, alliin and its subsequent breakdown to allicin (sulfur-compounds of ramson) in connection with antifungal action. The aim of the study was the characterization of the chemical composition of ramsons and the testing of the action of the in vitro extracts, on different strains of Candida albicans. The main goal was to highlight the most efficient extracts of Allium ursinum that can provide long-term antifungal activity without remissions. The extracts from Allium ursinum plants, inhibited growth of Candida spp. cells at concentrations ranging from 0.5 to 4.0 mg/mL, while that of adherent cells at concentrations ranging from 1.0 to > 4.0 mg/mL, depending on the yeast and plant species. PMID:22408399
Two new compounds from the flowers of Rhododendron molle.
Chen, Shao-Nong; Bao, Guan-Hu; Wang, Li-Quan; Qin, Guo-Wei
2013-09-01
To study the chemical constituents of the flowers of Rhododendron molle. Compounds were isolated by repeated chromatography over silica gel and Sephadex LH-20. Structures were elucidated based on spectral techniques, mainly 1D- and 2D-NMR and mass spectrometric analyses. Two compounds (1 and 2) were isolated. Compounds 1 and 2 were identified as two new compounds: 2α, 10α-epoxy-3β, 5β, 6β, 14β, 16α-hexahydroxy-grayanane and benzyl 2, 6-dihydroxybenzoate-6-O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranoside, respectively. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Chen, Luxiao; Chen, Xiangyang; Su, Lei; Jiang, Yanyan; Liu, Bin
2018-04-01
Saposhnikoviae Radix (SR), the dried root of Saposhnikovia divaricata (Turcz.) Schischk. (Umbelliferae), is commonly used as a traditional Chinese medicine. In this study, a rapid and accurate method was firstly, developed for the qualitative analysis of SR by high-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS/MS). A total of 45 compounds were identified or tentatively characterised, including 13 chromones, 28 coumarins and four others. Among them, 16 compounds were identified from SR for the first time. In addition, six chromones reference standards, including two isolated compounds of 3'-O-angeloylhamaudol and norcimifugin from the extraction of SR, were used to study the fragmentation pathways of chromones. The developed method was effective for characterising the compounds of SR, and the results of the study enriched the understanding of the chemical connotation.
Neuroprotective Compound from an Endophytic Fungus, Colletotrichum sp. JS-0367.
Song, Ji Hoon; Lee, Changyeol; Lee, Dahae; Kim, Soonok; Bang, Sunghee; Shin, Myoung-Sook; Lee, Jun; Kang, Ki Sung; Shim, Sang Hee
2018-05-23
Colletotrichum sp. JS-0367 was isolated from Morus alba (mulberry), identified, and cultured on a large scale for chemical investigation. One new anthraquinone (1) and three known anthraquinones (2-4) were isolated and identified using spectroscopic methods including 1D/2D-NMR and HRESIMS. Although the neuroprotective effects of some anthraquinones have been reported, the biological activities of the four anthraquinones isolated in this study have not been reported. Therefore, the neuroprotective effects of these compounds were determined against murine hippocampal HT22 cell death induced by glutamate. Compound 4, evariquinone, showed strong protective effects against HT22 cell death induced by glutamate by the inhibition of intracellular ROS accumulation and Ca 2+ influx triggered by glutamate. Immunoblot analysis revealed that compound 4 reduced the phosphorylation of MAPKs (JNK, ERK1/2, and p38) induced by glutamate. Furthermore, compound 4 strongly attenuated glutamate-mediated apoptotic cell death.
General Platform for Systematic Quantitative Evaluation of Small-Molecule Permeability in Bacteria
2015-01-01
The chemical features that impact small-molecule permeability across bacterial membranes are poorly understood, and the resulting lack of tools to predict permeability presents a major obstacle to the discovery and development of novel antibiotics. Antibacterials are known to have vastly different structural and physicochemical properties compared to nonantiinfective drugs, as illustrated herein by principal component analysis (PCA). To understand how these properties influence bacterial permeability, we have developed a systematic approach to evaluate the penetration of diverse compounds into bacteria with distinct cellular envelopes. Intracellular compound accumulation is quantitated using LC-MS/MS, then PCA and Pearson pairwise correlations are used to identify structural and physicochemical parameters that correlate with accumulation. An initial study using 10 sulfonyladenosines in Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis has identified nonobvious correlations between chemical structure and permeability that differ among the various bacteria. Effects of cotreatment with efflux pump inhibitors were also investigated. This sets the stage for use of this platform in larger prospective analyses of diverse chemotypes to identify global relationships between chemical structure and bacterial permeability that would enable the development of predictive tools to accelerate antibiotic drug discovery. PMID:25198656
Ng, Clara; Hauptman, Ruth; Zhang, Yinliang; Bourne, Philip E; Xie, Lei
2014-01-01
The emergence of multi-drug and extensive drug resistance of microbes to antibiotics poses a great threat to human health. Although drug repurposing is a promising solution for accelerating the drug development process, its application to anti-infectious drug discovery is limited by the scope of existing phenotype-, ligand-, or target-based methods. In this paper we introduce a new computational strategy to determine the genome-wide molecular targets of bioactive compounds in both human and bacterial genomes. Our method is based on the use of a novel algorithm, ligand Enrichment of Network Topological Similarity (ligENTS), to map the chemical universe to its global pharmacological space. ligENTS outperforms the state-of-the-art algorithms in identifying novel drug-target relationships. Furthermore, we integrate ligENTS with our structural systems biology platform to identify drug repurposing opportunities via target similarity profiling. Using this integrated strategy, we have identified novel P. falciparum targets of drug-like active compounds from the Malaria Box, and suggest that a number of approved drugs may be active against malaria. This study demonstrates the potential of an integrative chemical genomics and structural systems biology approach to drug repurposing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vass, Arpad Alexander
2012-01-01
This study, the third of a series on the odor signature of human decomposition, reports on the intermittent nature of chemical evolution from decomposing human remains, and focuses primarily on headspace analysis from soil associated with older human remains (10-60+ years) from different environments around the globe. Fifty grams of soil were collected in 40mL glass vials with polypropylene sealed lids from soil above known or suspected graves and from subsurface chemical plumes associated with human decompositional events. One hundred eighty six separate samples were analyzed using gas chromatography-mass spectrometry (GC-MS). After comparison to relevant soil controls, approximately fifty volatilemore » chemical compounds were identified as being associated with human remains. This manuscript reports these findings and identifies when and where they are most likely to be detected showing an overall decrease in cyclic and halogenated compounds and an increase in aldehydes and alkanes as time progresses. This research identifies the 'odor signatures' unique to the decomposition of human remains with projected ramifications on cadaver dog training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.« less
Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A; Poda, Gennadiy; Tetko, Igor V
2012-08-27
The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly growing.
2012-01-01
The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly growing. PMID:22876798
Environmental Impact on Vascular Development Predicted by High-Throughput Screening
Judson, Richard S.; Reif, David M.; Sipes, Nisha S.; Singh, Amar V.; Chandler, Kelly J.; DeWoskin, Rob; Dix, David J.; Kavlock, Robert J.; Knudsen, Thomas B.
2011-01-01
Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease. Objective: We mined the ToxCast phase I data set to identify signatures for potential chemical disruption of blood vessel formation and remodeling. Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay technology platforms. The assays measured direct interactions between chemicals and molecular targets (receptors, enzymes), as well as downstream effects on reporter gene activity or cellular consequences. We ranked the chemicals according to individual vascular bioactivity score and visualized the ranking using ToxPi (Toxicological Priority Index) profiles. Results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we found positive correlations with developmental effects from the U.S. EPA ToxRefDB (Toxicological Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, implying conservation but potentially differential contributions of developmental pathways among species. Follow-up analysis with antiangiogenic thalidomide analogs and additional in vitro vascular targets showed in vitro activity consistent with the most active environmental chemicals tested here. Conclusions: We predicted that blood vessel development is a target for environmental chemicals acting as putative vascular disruptor compounds (pVDCs) and identified potential species differences in sensitive vascular developmental pathways. PMID:21788198
Kuenemann, Mélaine A; Labbé, Céline M; Cerdan, Adrien H; Sperandio, Olivier
2016-04-01
Protein-protein interactions (PPIs) play vital roles in life and provide new opportunities for therapeutic interventions. In this large data analysis, 3,300 inhibitors of PPIs (iPPIs) were compared to 17 reference datasets of collectively ~566,000 compounds (including natural compounds, existing drugs, active compounds on conventional targets, etc.) using a chemoinformatics approach. Using this procedure, we showed that comparable classes of PPI targets can be formed using either the similarity of their ligands or the shared properties of their binding cavities, constituting a proof-of-concept that not only can binding pockets be used to group PPI targets, but that these pockets certainly condition the properties of their corresponding ligands. These results demonstrate that matching regions in both chemical space and target space can be found. Such identified classes of targets could lead to the design of PPI-class-specific chemical libraries and therefore facilitate the development of iPPIs to the stage of drug candidates.
Automated compound classification using a chemical ontology.
Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz
2012-12-29
Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated.
Automated compound classification using a chemical ontology
2012-01-01
Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated. PMID:23273256
Olfactory specialization for perfume collection in male orchid bees.
Mitko, Lukasz; Weber, Marjorie G; Ramirez, Santiago R; Hedenström, Erik; Wcislo, William T; Eltz, Thomas
2016-05-15
Insects rely on the olfactory system to detect a vast diversity of airborne molecules in their environment. Highly sensitive olfactory tuning is expected to evolve when detection of a particular chemical with great precision is required in the context of foraging and/or finding mates. Male neotropical orchid bees (Euglossini) collect odoriferous substances from multiple sources, store them in specialized tibial pouches and later expose them at display sites, presumably as mating signals to females. Previous analysis of tibial compounds among sympatric species revealed substantial chemical disparity in chemical composition among lineages with outstanding divergence between closely related species. Here, we tested whether specific perfume phenotypes coevolve with matching olfactory adaptations in male orchid bees to facilitate the location and harvest of species-specific perfume compounds. We conducted electroantennographic (EAG) measurements on males of 15 sympatric species in the genus Euglossa that were stimulated with 18 compounds present in variable proportions in male hind tibiae. Antennal response profiles were species-specific across all 15 species, but there was no conspicuous differentiation between closely related species. Instead, we found that the observed variation in EAG activity follows a Brownian motion model of trait evolution, where the probability of differentiation increases proportionally with lineage divergence time. However, we identified strong antennal responses for some chemicals that are present as major compounds in the perfume of the same species, thus suggesting that sensory specialization has occurred within multiple lineages. This sensory specialization was particularly apparent for semi-volatile molecules ('base note' compounds), thus supporting the idea that such compounds play an important role in chemical signaling of euglossine bees. Overall, our study found no close correspondence between antennal responses and behavioral preferences/tibial contents, but confirms the utility of EAG profiling for discovering certain behaviorally active compounds. © 2016. Published by The Company of Biologists Ltd.
Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław
2013-01-01
Industrial biotechnology has been defined as the use and application of biotechnology for the sustainable processing and production of chemicals, materials and fuels. It makes use of biocatalysts such as microbial communities, whole-cell microorganisms or purified enzymes. In the review these processes are described. Drug design is an iterative process which begins when a chemist identifies a compound that displays an interesting biological profile and ends when both the activity profile and the chemical synthesis of the new chemical entity are optimized. Traditional approaches to drug discovery rely on a stepwise synthesis and screening program for large numbers of compounds to optimize activity profiles. Over the past ten to twenty years, scientists have used computer models of new chemical entities to help define activity profiles, geometries and relativities. This article introduces inter alia the concepts of molecular modelling and contains references for further reading.
Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng
2015-01-01
The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorsteinson, Nels; Ban, Fuqiang; Santos-Filho, Osvaldo
2009-01-01
Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We alsomore » screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [{sup 3}H]5{alpha}-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 {mu}M concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.« less
[A new secoiridoid from the flowers of Jasminum officinale L. var. grandiflorum].
Zhao, Gui-Qin; Yin, Zhi-Feng; Dong, Jun-Xing
2008-05-01
To study the chemical constituents of the flowers of Jasminum officinale L. var. grandiflorum, the compounds were isolated and purified by HPLC, recrystallization and chromatography on silica gel and Sephadex LH-20 column. Their structures were elucidated on the basis of physicochemical properties and spectral analysis. Six secoiridoids were identified as jasgranoside (I), jaspolyoside (II), 8-epi-kingiside (III), 10-hydroxy-oleuropein (IV), 10-hydroxy-ligstroside (V), oleoside-7, 11-dimethyl ester (VI). Compound I is a new compound. Compounds II, III, IV, V and VI were isolated from Jasminum officinale L. var. grandiflorum for the first time.
Selenium and arsenic in biology: their chemical forms and biological functions.
Shibata, Y; Morita, M; Fuwa, K
1992-01-01
Based on the recent development of analytical methods, sensitive systems for the analysis and speciation of selenium and arsenic have been established. A palladium addition technique was developed for the accurate determination of selenium in biological samples using graphite furnace atomic absorption analysis. For the speciation of the elements, combined methods of HPLC either with ICP-AES or with ICP-MS were found to work well. These systems were applied to the elucidation of the chemical form of the elements in natural samples. Some chemical properties of the selenium-mercury complex in dolphin liver were elucidated: i.e., it was a cationic, water-soluble, low molecular weight compound containing selenium and mercury in a 1:1 molar ratio, and was shown to be different from a known selenium-mercury complex, bis(methylmercuric)selenide. The major selenium compound excreted in human urine was revealed to be other than any of those previously identified (TMSe, selenate, and selenite). TMSe, a suspected major metabolite in urine, was found, if at all, in low levels. The major water-soluble, and lipid-soluble arsenic compounds in a brown seaweed, U. pinnatifida (WAKAME), were rigorously identified, and the results were compared with other data on marine algae and animals. The major organic arsenic compounds (termed "arseno-sugars") in marine algae commonly contain 5-deoxy-5-dimethylarsinyl-ribofuranoside moiety. There are various kinds of arseno-sugar derivatives containing different side-chains attached to the anomeric position of the sugar, and the distribution of each arsenic species seems to be related to algal species. The arseno-sugar (A-XI) is present in every alga so far examined, is metabolized to lipids, and possibly may play some specific role in the algal cells. On the other hand, the major arsenic compound in fish, crustacea and molluscs has been identified as arsenobetaine, which is an arseno-analog of glycinebetaine, a very common osmo-regulator in living organisms. Arsenobetaine is not detected in marine algae while arseno-sugars are not present in marine animals except for some molluscs which contain both compounds in considerable amounts. Arsenobetaine is present in the urine of human beings who have eaten foods derived from marine animals.
An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...
Here we use a hamster animal model to identify early pregnancy loss due to an acute chemical exposure to the female during the perifertilization interval. The fungicide carbendazim (methyl 1H-benzimidazole-2-carbamate), a microtubule poison with antimitotic activity, was selected...
Di, Yanqiang; Liu, Jiemin; Liu, Jianguo; Liui, Siyuan; Yan, Luchun
2013-10-01
Gas chromatography-mass spectrometry, olfactometry, and other related methods were applied for the qualitative and quantitative analysis of the characteristics of odorous gases in the pretreatment workshop. The composition of odorous gases emitted from municipal food waste was also investigated in this study. The results showed that the tested gases are mainly composed of aromatic gases, which account for 49% of the total volatile organic compounds (VOC) concentrations. The nitrogenous compounds comprise 15% of the total concentration and the other gases comprise the remaining 36%. The level of odor concentration ranged from 2523 odor units (OU) m(-3) to 3577 OU m(-3). The variation of the total chemical composition ranged from 19,725 microg m(-3) to 24,184 microg m(-3). Among the selected four sampling points, the discharge outlet was detected to have the highest concentration in terms of odor, total chemical, sulfur compounds, and aromatics. The correlation analysis showed that the odor concentrations were evidently related to the total chemical composition, sulfur compounds, and aromatics (P < 0.05, n = 5). The odor activity value analysis identified the top three compounds, hydrogen sulfide (91.8), ethyl sulfide (35.8), and trimethylamine (70.6), which contribute to air pollution complaint of waste materials.
Device for collecting chemical compounds and related methods
Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine
2013-01-01
A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.
Devices for collecting chemical compounds
Scott, Jill R; Groenewold, Gary S
2013-12-24
A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.
Indexing molecules with chemical graph identifiers.
Gregori-Puigjané, Elisabet; Garriga-Sust, Rut; Mestres, Jordi
2011-09-01
Fast and robust algorithms for indexing molecules have been historically considered strategic tools for the management and storage of large chemical libraries. This work introduces a modified and further extended version of the molecular equivalence number naming adaptation of the Morgan algorithm (J Chem Inf Comput Sci 2001, 41, 181-185) for the generation of a chemical graph identifier (CGI). This new version corrects for the collisions recognized in the original adaptation and includes the ability to deal with graph canonicalization, ensembles (salts), and isomerism (tautomerism, regioisomerism, optical isomerism, and geometrical isomerism) in a flexible manner. Validation of the current CGI implementation was performed on the open NCI database and the drug-like subset of the ZINC database containing 260,071 and 5,348,089 structures, respectively. The results were compared with those obtained with some of the most widely used indexing codes, such as the CACTVS hash code and the new InChIKey. The analyses emphasize the fact that compound management activities, like duplicate analysis of chemical libraries, are sensitive to the exact definition of compound uniqueness and thus still depend, to a minor extent, on the type and flexibility of the molecular index being used. Copyright © 2011 Wiley Periodicals, Inc.
Elshafie, Hazem S; Sakr, Shimaa; Mang, Stefania M; Belviso, Sandra; De Feo, Vincenzo; Camele, Ippolito
2016-11-01
There is a growing interest in essential oils (EOs) as possible alternatives for traditional chemical pesticides. This study was carried out to characterize the chemical composition of the three EOs extracted from Verbena officinalis, Majorana hortensis, and Salvia officinalis using gas chromatography (GC) and GC-mass spectrometry (GC-MS) and to evaluate in vitro their efficacy against some phyto or human pathogens. The antifungal activity was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with Azoxystrobin as a large spectrum fungicide. Antibacterial activity was evaluated against Bacillus megaterium, Bacillus mojavensis, and Clavibacter michiganensis (G+ve) and Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and P. syringae pv. phaseolicola (G-ve) compared to a synthetic antibiotic tetracycline. Minimum inhibitory concentration was evaluated against the above tested fungi using 96-well microplate method. Results showed that the chemical structure of the three studied EOs was mainly composed of monoterpene compounds and all oils belong to the chemotype carvacrol/thymol. Results of GC analysis identified 64 compounds, which were identified based on their mass to charge ratio. Furthermore, the different concentrations of studied EOs inhibited the growth of tested microorganism in a dose-dependent manner.
Phenolic composition and antioxidant potential of grain legume seeds: A review.
Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder
2017-11-01
Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhan, Zhi-Lai; Deng, Ai-Ping; Kang, Li-Ping; Tang, Jin-Fu; Nan, Tie-Gui; Chen, Tong; He, Ya-Li; Guo, Lan-Ping; Huang, Lu-Qi
2018-05-01
As a traditional processing method, sulfuring has been used in the processing of many traditional Chinese medicines (TCMs). Desulfuring, which has emerged in recent years, is a new method applied to sulfured herbs so they can comply with regulations regarding residual SO 2 . Due to the chemical transformations and the residual SO 2 in the herbs, both sulfuring and desulfuring have negative effects on the safety and therapeutic effects of TCMs, and Moutan Cortex is one of the TCMs most susceptible to these effects. Here, a new strategy was developed to differentiate normal, sulfured and desulfured Moutan Cortex, and the transformations of compounds in sulfuring and desulfuring processes were analyzed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MSE) method based on metabolomic analysis. Our findings were as follows: (1) a total of 119 compounds were identified or tentatively identified, including 9 compounds that are being reported for the first time as natural products; (2) 15 sulfocompounds were generated during the sulfuring process; (3) these sulfocompounds could not be converted back into their corresponding glycosides by the desulfuring process, and the desulfuring decreased the residual SO 2 ,while also removing some soluble compounds in the sulfured Moutan Cortex; and (4) 28 compounds were screened and tentatively identified as markers for distinguishing normal, sulfured and desulfured Moutan Cortex. Our findings provide a new practical strategy for evaluating how sulfuring and desulfuring affect the quality of TCMs. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Hua; Gao, Wen; Liu, Lei; Liu, Ke; Liu, E-Hu; Qi, Lian-Wen; Li, Ping
2015-11-10
Most Aconitum species, also known as aconite, are extremely poisonous, so it must be identified carefully. Differentiation of Aconitum species is challenging because of their similar appearance and chemical components. In this study, a universal strategy to discover chemical markers was developed for effective authentication of three commonly used aconite roots. The major procedures include: (1) chemical profiling and structural assignment of herbs by liquid chromatography with mass spectrometry (LC-MS), (2) quantification of major components by LC-MS, (3) probabilistic neural network (PNN) model to calculate contributions of components toward species classification, (4) discovery of minimized number of chemical markers for quality control. The MS fragmentation pathways of diester-, monoester-, and alkyloyamine-diterpenoid alkaloids were compared. Using these rules, 42 aconite alkaloids were identified in aconite roots. Subsequently, 11 characteristic compounds were quantified. A component-species modeling by PNN was then established combining the 11 analytes and 26-batch samples from three aconite species. The contribution of each analyte to species classification was calculated. Selection of fuziline, benzoylhypaconine, and talatizamine, or a combination of more compounds based on a contribution order, can be used for successful categorization of the three aconite species. Collectively, the proposed strategy is beneficial to selection of rational chemical markers for the species classification and quality control of herbal medicines. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Martinsson, Johan; Monteil, Guillaume; Sporre, Moa K.; Kaldal Hansen, Anne Maria; Kristensson, Adam; Eriksson Stenström, Kristina; Swietlicki, Erik; Glasius, Marianne
2017-09-01
Molecular tracers in secondary organic aerosols (SOAs) can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs) and 2 nitrooxy organosulfates (NOSs) were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs). Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m-3, respectively). The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean
was dominating the air mass exposure (56 %) but contributed to low mass concentration of observed chemical compounds. A principal component (PC) analysis identified four components, where the one with highest explanatory power (49 %) displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.
[Chemical Constituents from Processed Products of Aconitum Vilmoriniani Radix].
Guo, Zhi-jun; Yang, Zhu-ya; Tan, Wen-hong; Zhou, Zhi-hong; Ma, Xiao-xia
2015-05-01
To investigate the chemical constituents of the processed products of Aconitum Vilmorinian Radix. The constituents were isolated by repeated column chromatography over silica gel, alumina and RP-C18 as well as recrystallization. The structures were elucidated on the basis of spectral analysis and physicochemical properties. Ten compounds were obtained from the methanol extract, and they were identified as yunaconitine (1), 8-deacetyl-yunaconitine (2), geniculatine C (3), vilmorrianine B (4), vilmorrianine C(5), vilmorrianine D (6), talatisamine (7), β-sitosterol (8), β-daucosterol (9) and β-sitosterol acetate (10). All compounds are obtained from the processed products of Aconitum Vilmoriniani Radix for the first time.
BitterDB: a database of bitter compounds
Wiener, Ayana; Shudler, Marina; Levit, Anat; Niv, Masha Y.
2012-01-01
Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste receptors are expressed not only in the mouth but also in extraoral tissues, such as the gastrointestinal tract, indicating that they may play a role in digestive and metabolic processes. BitterDB database, available at http://bitterdb.agri.huji.ac.il/bitterdb/, includes over 550 compounds that were reported to taste bitter to humans. The compounds can be searched by name, chemical structure, similarity to other bitter compounds, association with a particular human bitter taste receptor, and so on. The database also contains information on mutations in bitter taste receptors that were shown to influence receptor activation by bitter compounds. The aim of BitterDB is to facilitate studying the chemical features associated with bitterness. These studies may contribute to predicting bitterness of unknown compounds, predicting ligands for bitter receptors from different species and rational design of bitterness modulators. PMID:21940398
Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae)
Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Alecjev; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K.; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B
2010-01-01
Ethnopharmacological relevance Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q’eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. Aim of the study To investigate the estrogenic and serotonergic activities of P. hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. Materials and methods The effects of the P. hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Results Three butenolides including one new compound (1) were isolated from the leaves of P. hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT7 with IC50 values of 16.1 and 8.3 μM, respectively, and using GTP shift assays, compound 1 was found to be a partial agonist of the 5-HT7 receptor. The P. hispidum leaf extracts, as well as compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Conclusions Extracts of P. hispidum act as agonists of the ER and 5-HT7 receptors. Compound 1, a new natural product, identified as 9, 10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT7 agonist. Compounds 2 and 3 are reported for the first time in P. hispidum, and identified as the estrogen agonists. No inhibition of CYP450 was observed for any of these compounds in concentrations up to 1 μM. These activities are consistent with the Q’eqchi traditional use of the plant for the treatment of disorders associated with the female reproductive cycle. PMID:20304039
Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae).
Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Aleksej; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B
2010-05-27
Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q'eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. To investigate the estrogenic and serotonergic activities of Piper hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. The effects of the Piper hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Three butenolides including one new compound (1) were isolated from the leaves of Piper hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT(7) with IC(50) values of 16.1 and 8.3 microM, respectively, and using GTP shift assays, Compound 1 was found to be a partial agonist of the 5-HT(7) receptor. The Piper hispidum leaf extracts, as well as Compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Extracts of Piper hispidum act as agonists of the ER and 5-HT(7) receptors. Compound 1, a new natural product, identified as 9,10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT(7) agonist. Compounds 2 and 3 are reported for the first time in Piper hispidum, and identified as the estrogen agonists. No inhibition of CYP450 was observed for any of these compounds in concentrations up to 1 microM. These activities are consistent with the Q'eqchi traditional use of the plant for the treatment of disorders associated with the female reproductive cycle. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Enhanced HTS hit selection via a local hit rate analysis.
Posner, Bruce A; Xi, Hualin; Mills, James E J
2009-10-01
The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was approximately 2.3-fold and approximately 1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.
Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback.
Luek, Jenna L; Harir, Mourad; Schmitt-Kopplin, Philippe; Mouser, Paula J; Gonsior, Michael
2018-06-01
The chemistry of hydraulic fracturing fluids and wastewaters is complex and is known to vary by operator, geologic formation, and fluid age. A time series of hydraulic fracturing fluids, flowback fluids, and produced waters was collected from two adjacent Marcellus Shale gas wells for organic chemical composition analyses using ultrahigh resolution mass spectrometry. Hierarchical clustering was used to compare and extract ions related to different fluid ages and many halogenated organic molecular ions were identified in flowback fluids and early produced waters based on exact mass. Iodinated organic compounds were the dominant halogen class in these clusters and were nearly undetectable in hydraulic fracturing fluid prior to injection. The iodinated ions increased in flowback and remained elevated after ten months of well production. We suggest that these trends are mainly driven by dissolved organic matter reacting with reactive halogen species formed abiotically through oxidizing chemical additives applied to the well and biotically via iodide-oxidizing bacteria. Understanding the implications of these identified halogenated organic compounds will require future investigation in to their structures and environmental fate. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata
2017-03-17
An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.
Oltra, O R; Farmer, L J; Gordon, A W; Moss, B W; Birnie, J; Devlin, D J; Tolland, E L C; Tollerton, I J; Beattie, A M; Kennedy, J T; Farrell, D
2015-02-01
In this study, important eating quality attributes that influence consumer liking for grilled lamb loin have been identified using preference mapping techniques. The eating quality attributes identified as driving the consumer liking of lamb loin steaks were “tenderness”, “sweet flavour”, “meaty aftertaste”, “roast lamb flavour” and “roast lamb aftertaste”. In contrast, the texture attribute “rubbery” and the flavour attributes “bitter flavour” and "bitter aftertaste" had a negative influence on consumer perceptions. Associations were observed between eating quality and a number of instrumental and chemical measurements. Warner Bratzler Shear Force showed an association with “rubbery” texture and a negative association with “tenderness” and consumer liking scores. The compounds, glucose, glucose-6-phosphate, inosine, inosine monophosphate and adenosine monophosphate were associated with the attributes, “sweet flavour”,“meaty aftertaste”, “roast lamb flavour”, “roast lamb aftertaste” and with consumer scores for liking of lamb which is probably caused by the role some of these compounds play as precursors of flavour and as taste compounds.
Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain.
Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; van Drooge, Barend L; Reche, Cristina; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Centelles, Sonia; Querol, Xavier
2016-01-01
The present work assesses indoor air quality in stations of the Barcelona subway system. PM2.5 concentrations on the platforms of 4 subway stations were measured during two different seasons and the chemical composition was determined. A Positive Matrix Factorization analysis was performed to identify and quantify the contributions of major PM2.5 sources in the subway stations. Mean PM2.5 concentrations varied according to the stations design and seasonal periods. PM2.5 was composed of haematite, carbonaceous aerosol, crustal matter, secondary inorganic compounds, trace elements, insoluble sulphate and halite. Organic compounds such as PAHs, nicotine, levoglucosan and aromatic musk compounds were also identified. Subway PM2.5 source comprised emissions from rails, wheels, catenaries, brake pads and pantographs. The subway source showed different chemical profiles for each station, but was always dominated by Fe. Control actions on the source are important for the achievement of better air quality in the subway environment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ben Brahim, Samia; Amanpour, Asghar; Chtourou, Fatma; Kelebek, Hasim; Selli, Serkan; Bouaziz, Mohamed
2018-03-21
Gas chromatography-mass spectrometry-olfactometry was used for the analysis of volatile compounds and key odorants of three less studied Tunisian olive oil cultivars for the first time. A total of 42 aroma compounds were identified and quantified in extra virgin olive oils. The present study revealed that the most dominant volatiles in olive oil samples qualitatively and quantitatively were aldehydes and alcohols, followed by terpenes and esters. Indeed, chemometric analysis has shown a correlation between chemical compounds and sensory properties. The determination of aroma-active compounds of olive oil samples was carried out using aroma extract dilution analysis. A total of 15 aroma-active compounds were detected in the aromatic extract of extra virgin olive oil, of which 14 were identified. On the basis of the flavor dilution (FD) factor, the most potent aromatic active compound was hexanal (FD = 512) in Fakhari olive oil, (FD = 256) in Touffehi oils, and (FD = 128) in Jemri olive oil.
Role of drosophila in chemical mutagenesis testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, C.E.; Brewen, B.
1978-01-01
An important question facing our society is the impact of numerous chemical insults on the health of man and his environment. Faced with a staggering array of chemicals and enormous testing costs, only a few chemicals can be tested for possible carcinogenic effects. Recent results with the Salmonella/mammalian microsome mutagenesis bioassay system demonstrate a striking correlation between carcinogenicity and mutagenicity of many chemical compounds and offer the possibility that mutagenesis assay systems can provide a quick identification of potential carcinogens. Results from microbial assays can serve as a guideline for further mutagenesis testing as well as identify those compounds requiringmore » more extensive analysis in mammalian systems. Reliance on the results from a single mutagenic assay system is rather risky. It would be preferable to use a battery of tests (the tier approach) which would include the rapid microbial assays as well as mammalian systems. Also the use of Drosophila as a bridge between the microbial and mammalian assays has many desirable features which are discussed.« less
Identifying chemicals of concern in hydraulic fracturing fluids used for oil production.
Stringfellow, William T; Camarillo, Mary Kay; Domen, Jeremy K; Sandelin, Whitney L; Varadharajan, Charuleka; Jordan, Preston D; Reagan, Matthew T; Cooley, Heather; Heberger, Matthew G; Birkholzer, Jens T
2017-01-01
Chemical additives used for hydraulic fracturing and matrix acidizing of oil reservoirs were reviewed and priority chemicals of concern needing further environmental risk assessment, treatment demonstration, or evaluation of occupational hazards were identified. We evaluated chemical additives used for well stimulation in California, the third largest oil producing state in the USA, by the mass and frequency of use, as well as toxicity. The most frequently used chemical additives in oil development were gelling agents, cross-linkers, breakers, clay control agents, iron and scale control agents, corrosion inhibitors, biocides, and various impurities and product stabilizers used as part of commercial mixtures. Hydrochloric and hydrofluoric acids, used for matrix acidizing and other purposes, were reported infrequently. A large number and mass of solvents and surface active agents were used, including quaternary ammonia compounds (QACs) and nonionic surfactants. Acute toxicity was evaluated and many chemicals with low hazard to mammals were identified as potentially hazardous to aquatic environments. Based on an analysis of quantities used, toxicity, and lack of adequate hazard evaluation, QACs, biocides, and corrosion inhibitors were identified as priority chemicals of concern that deserve further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drosophila Cuticular Hydrocarbons Revisited: Mating Status Alters Cuticular Profiles
Cobb, Matthew; Ferveur, Jean-François
2010-01-01
Most living organisms use pheromones for inter-individual communication. In Drosophila melanogaster flies, several pheromones perceived either by contact/at a short distance (cuticular hydrocarbons, CHs), or at a longer distance (cis-vaccenyl acetate, cVA), affect courtship and mating behaviours. However, it has not previously been possible to precisely identify all potential pheromonal compounds and simultaneously monitor their variation on a time scale. To overcome this limitation, we combined Solid Phase Micro-Extraction with gas-chromatography coupled with mass-spectrometry. This allowed us (i) to identify 59 cuticular compounds, including 17 new CHs; (ii) to precisely quantify the amount of each compound that could be detected by another fly, and (iii) to measure the variation of these substances as a function of aging and mating. Sex-specific variation appeared with age, while mating affected cuticular compounds in both sexes with three possible patterns: variation was (i) reciprocal in the two sexes, suggesting a passive mechanical transfer during mating, (ii) parallel in both sexes, such as for cVA which strikingly appeared during mating, or (iii) unilateral, presumably as a result of sexual interaction. We provide a complete reassessment of all Drosophila CHs and suggest that the chemical conversation between male and female flies is far more complex than is generally accepted. We conclude that focusing on individual compounds will not provide a satisfactory understanding of the evolution and function of chemical communication in Drosophila. PMID:20231905
Identification of Key Odorants in Used Disposable Absorbent Incontinence Products
Hall, Gunnar; Forsgren-Brusk, Ulla
2017-01-01
PURPOSE: The purpose of this study was to identify key odorants in used disposable absorbent incontinence products. DESIGN: Descriptive in vitro study SUBJECTS AND SETTING: Samples of used incontinence products were collected from 8 residents with urinary incontinence living in geriatric nursing homes in the Gothenburg area of Sweden. Products were chosen from a larger set of products that had previously been characterized by descriptive odor analysis. METHODS: Pieces of the used incontinence products were cut from the wet area, placed in glass bottles, and kept frozen until dynamic headspace sampling of volatile compounds was completed. Gas chromatography–olfactometry was used to identify which compounds contributed most to the odors in the samples. Compounds were identified by gas chromatography–mass spectrometry. RESULTS: Twenty-eight volatiles were found to be key odorants in the used incontinence products. Twenty-six were successfully identified. They belonged to the following classes of chemical compounds: aldehydes (6); amines (1); aromatics (3); isothiocyanates (1); heterocyclics (2); ketones (6); sulfur compounds (6); and terpenes (1). CONCLUSION: Nine of the 28 key odorants were considered to be of particular importance to the odor of the used incontinence products: 3-methylbutanal, trimethylamine, cresol, guaiacol, 4,5-dimethylthiazole-S-oxide, diacetyl, dimethyl trisulfide, 5-methylthio-4-penten-2-ol, and an unidentified compound. PMID:28328644
Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.
Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana
2016-09-01
The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016
The Proximal Lilly Collection: Mapping, Exploring and Exploiting Feasible Chemical Space.
Nicolaou, Christos A; Watson, Ian A; Hu, Hong; Wang, Jibo
2016-07-25
Venturing into the immensity of the small molecule universe to identify novel chemical structure is a much discussed objective of many methods proposed by the chemoinformatics community. To this end, numerous approaches using techniques from the fields of computational de novo design, virtual screening and reaction informatics, among others, have been proposed. Although in principle this objective is commendable, in practice there are several obstacles to useful exploitation of the chemical space. Prime among them are the sheer number of theoretically feasible compounds and the practical concern regarding the synthesizability of the chemical structures conceived using in silico methods. We present the Proximal Lilly Collection initiative implemented at Eli Lilly and Co. with the aims to (i) define the chemical space of small, drug-like compounds that could be synthesized using in-house resources and (ii) facilitate access to compounds in this large space for the purposes of ongoing drug discovery efforts. The implementation of PLC relies on coupling access to available synthetic knowledge and resources with chemo/reaction informatics techniques and tools developed for this purpose. We describe in detail the computational framework supporting this initiative and elaborate on the characteristics of the PLC virtual collection of compounds. As an example of the opportunities provided to drug discovery researchers by easy access to a large, realistically feasible virtual collection such as the PLC, we describe a recent application of the technology that led to the discovery of selective kinase inhibitors.
Building an R&D chemical registration system.
Martin, Elyette; Monge, Aurélien; Duret, Jacques-Antoine; Gualandi, Federico; Peitsch, Manuel C; Pospisil, Pavel
2012-05-31
Small molecule chemistry is of central importance to a number of R&D companies in diverse areas such as the pharmaceutical, nutraceutical, food flavoring, and cosmeceutical industries. In order to store and manage thousands of chemical compounds in such an environment, we have built a state-of-the-art master chemical database with unique structure identifiers. Here, we present the concept and methodology we used to build the system that we call the Unique Compound Database (UCD). In the UCD, each molecule is registered only once (uniqueness), structures with alternative representations are entered in a uniform way (normalization), and the chemical structure drawings are recognizable to chemists and to a cartridge. In brief, structural molecules are entered as neutral entities which can be associated with a salt. The salts are listed in a dictionary and bound to the molecule with the appropriate stoichiometric coefficient in an entity called "substance". The substances are associated with batches. Once a molecule is registered, some properties (e.g., ADMET prediction, IUPAC name, chemical properties) are calculated automatically. The UCD has both automated and manual data controls. Moreover, the UCD concept enables the management of user errors in the structure entry by reassigning or archiving the batches. It also allows updating of the records to include newly discovered properties of individual structures. As our research spans a wide variety of scientific fields, the database enables registration of mixtures of compounds, enantiomers, tautomers, and compounds with unknown stereochemistries.
Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan
2016-03-16
Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.
NASA Astrophysics Data System (ADS)
Altieri, K. E.; Turpin, B. J.; Seitzinger, S. P.
2008-09-01
Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50% of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Elemental compositions of 552 unique molecular species were determined in the mass range 50 500 Da in the rainwater. Three main groups of organic compounds were identified: compounds containing carbon, hydrogen, and oxygen (CHO) only, sulfur (S) containing CHOS compounds, and S- and nitrogen containing CHONS compounds. Organic acids commonly identified in precipitation were detected, as well as linear alkylbenzene sulfonates, which are persistent pollutants commonly measured in river water, seawater, and sediments, but to our knowledge, not previously documented in atmospheric samples. Within the three main groups of compounds detected in the rainwater, oligomers, organosulfates, and nitroxy-organosulfates were identified. The majority of the compounds identified are products of atmospheric reactions and are known contributors to secondary organic aerosol (SOA) formed from gas phase, aerosol phase, and in-cloud reactions in the atmosphere. It is suggested that the large uncharacterized component of SOA is the main contributor to the large uncharacterized component of rainwater organic matter.
You, Rong-Rong; Chen, Xue-Qing; He, Dan-Dan; Huang, Chang-Gao; Jin, Yang; Qian, Shi-Hui; Ju, Jian-Ming; Fan, Jun-Ting
2017-10-01
The present work is to study the chemical constituents from petroleum ether fraction of Tibetan medicine Swertia chirayita by column chromatography and recrystallization. The structures were identified by physical and chemical properties and spectral data as swerchirin (1), decussatin (2), 1,8-dihydroxy-3,5,7-trimethoxyxanthone (3), 1-hydroxy-3,5,7,8-tetramethoxyxanthone (4), bellidifolin (5), 1-hydroxy-3, 7-dimethoxyxanthone (6), methylswertianin (7), 1-hydroxy-3,5-dimethoxyxanthone (8), erythrodiol (9), oleanolic acid (10), gnetiolactone (11), scopoletin (12), sinapaldehyde (13), syringaldehyde (14), and β-sitosterol (15). Compounds 3, 4, 9, 11-14 were isolated from S. chirayita for the first time. Compounds 9 and 12 were firstly isolated from the genus Swertia. The cytotoxic activities of compounds 1, 2, 5, 7 and 8 against human pancreatic cancer cell lines SW1990 and BxPC-3,and the protective effects of these compounds against hydrogen peroxide (H2O2)-induced oxidative stress in human endothelium-derived EA.hy926 were investigated in vitro. The results showed no obvious effect at the high concentration of 50 μmol•L⁻¹. Copyright© by the Chinese Pharmaceutical Association.
Gu, Dongyu; Fang, Chen; Yang, Jiao; Li, Minjing; Liu, Hengming; Yang, Yi
2018-03-01
Sabina chinensis cv. Kaizuca (SCK) is a variant of S. chinensis L. The essential oil from its leaves exhibited α-amylase inhibitory activity in vitro and the IC 50 value was 187.08 ± 0.56 μg/mL. Nineteen compounds were identified from this essential oil by gas chromatography-mass spectrometry (GC-MS) analysis. The major compounds identified were bornyl acetate (42.6%), elemol (20.5%), β-myrcene (13.7%) and β-linalool (4.0%). In order to study the reason of the α-amylase inhibitory activity of this essential oil, the identified compounds were docked with α-amylase by molecular docking individually. Among these compounds, γ-eudesmol exhibited the lowest binding energy (-6.73 kcal/mol), followed by α-copaen-11-ol (-6.66 kcal/mol), cubedol (-6.39 kcal/mol) and α-acorenol (-6.12 kcal/mol). The results indicated that these compounds were the active ingredients responsible for the α-amylase inhibitory activity of essential oil from SCK.
The E-screen assay as a tool to identify estrogens: An update on estrogenic environmental pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, A.M.; Sonnenschein, C.; Chung, K.L.
1995-10-01
Estrogens are defined by their ability to induce the proliferation of cells of the female genital tract. The wide chemical diversity of estrogenic compounds precludes an accurate prediction of estrogenic activity on the basis of chemical structure. Rodent bioassays are not suited for the large-scale screening of chemicals before their release into the environment because of their cost, complexity, and ethical concerns. The E-SCREEN assay was developed to assess the estrogenicity of environmental chemicals using the proliferative effect of estrogens on their target cells as an end point. This quantitative assay compares the cell number achieved by similar inocula ofmore » MCF-7 cells in the absence of estrogens (negative control) and in the presence of 17{beta}-estradiol (positive control) and a range of concentrations of chemicals suspected to be estrogenic. Among the compounds tested, several {open_quotes}new{close_quotes} estrogens were found; alkylphenols, phthalates, some PCB congeners and hydroxylated PCBs, and the insecticides dieldrin, endosulfan, and toxaphene were estrogenic by the E-SCREEN assay. In addition, these compounds competed with estradiol for binding to the estrogen receptor and increased the levels of progesterone receptor and pS2 in MCF-7 cells, as expected from estrogen mimics. Recombinant human growth factors (bFGF, EGF, IGF-1) and insulin did not increase cell yields. The aims of the work summarized in this paper were (a) to validate the E-SCREEN assay; (b) to screen a variety of chemicals present in the environment to identify those that may be causing reproductive effects in wildlife and humans; (c) to assess whether environmental estrogens may act cumulatively; and finally (d) to discuss the reliability of this and other assays to screen chemicals for their estrogenicity before they are released into the environment. 57 refs., 3 figs., 9 tabs.« less
Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening.
Pothineni, Venkata Raveendra; Wagh, Dhananjay; Babar, Mustafeez Mujtaba; Inayathullah, Mohammed; Solow-Cordero, David; Kim, Kwang-Min; Samineni, Aneesh V; Parekh, Mansi B; Tayebi, Lobat; Rajadas, Jayakumar
2016-01-01
Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%-20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as lead molecules for further advanced studies.
Venkatesan, Arjun K.; Halden, Rolf U.
2015-01-01
Traditionally, hazardous chemicals have been regulated in the U.S. on a one-by-one basis, an approach that is slow, expensive and can be inefficient, as illustrated by a decades-long succession of replacing one type of organohalogen flame retardants (OHFRs) with another one, without addressing the root cause of toxicity and associated public health threats posed. The present article expounds on the need for efficient monitoring strategies and pragmatic steps in reducing environmental pollution and adverse human health impacts. A promising approach is to combine specific bioassays with state-of-the-art chemical screening to identify chemicals and chemical mixtures sharing specific modes of action (MOAs) and pathways of toxicity (PoTs). This approach could be used to identify and regulate hazardous chemicals as classes or compound families, featuring similar biological end-points, such as endocrine disruption and mutagenicity. Opportunities and potential obstacles of implementing this approach are discussed. PMID:26343697
Yu, Xiao-Bo; Hao, Kai; Ling, Fei; Wang, Gao-Xue
2014-11-01
Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, fungi, bacteria and cell lines. Recently the main methods of controlling cyanobacteria are using chemicals, medicinal plants and microorganism but fewer involved the safety research in hydrophytic ecosystems. In search of an environmentally safe compound, 53 chemicals were screened against the developed heavy cyanobacteria bloom Microcystis aeruginosa using coexistence culture system assay. The results of the coexistence assay showed that 9 chemicals inhibited M. aeruginosa effectively at 20 mg L(-1) after 7 days of exposure. Among them dimethomorph, propineb, and paraquat were identified that they are safe for Chlorella vulgaris, Scenedesmus obliquus, Carassius auratus (Goldfish) and Bacillus subtilis within half maximal effective concentration (EC50) values 5.2, 4.2 and 0.06 mg L(-1) after 7 days, respectively. Paraquat as the positive control observed to be more efficient than the other compounds with the inhibitory rate (IR) of 92% at 0.5 mg L(-1). For the potential inhibition mechanism, the chemicals could destroy the cell ultrastructure in different speed. The safety assay proved dimethomorph, propineb and paraquat as harmless formulations or products having potential value in M. aeruginosa controlling, with the advantage of its cell morphology degrading ability.
Yang, Xiao-Huan; Cheng, Xiao-Lan; Qin, Bing; Cai, Zhuo-Ya; Cai, Xiong; Liu, Shao; Wang, Qi; Qin, Yong
2016-05-30
The Kang-Jing (KJ) formula is a compound preparation made from 12 kinds of herbs. So far, four different methods (M1-M4) have been documented for KJ preparation, but the influence of preparation methods on the holistic quality of KJ have remained unknown. In this study, a strategy was proposed to investigate the influence of different preparation methods on the holistic quality of KJ using ultra-high performance liquid chromatography coupled with quadrupole/time of flight mass spectrometry (UHPLC-QTOF-MS/MS) based chemical profiling. A total of 101 compounds mainly belonging to flavonoids, tanshinones, monoterpene glycosides, triterpenoid saponins, alkaloids, phenolic acids and volatile oils, were identified. Among these compounds, glaucine was detected only in M3/M4 samples, while two dehydrocorydaline isomers merely detected in M2/M3/M4 samples. Tetrahydrocolumbamine, ethylic lithospermic acid, salvianolic acid E and rosmarimic acid were only detected in M1/M3/M4 samples. In the subsequent quantitative analysis, 12 major compounds were determined by UHPLC-MS/MS. The proposed method was validated with respect to linearity, accuracy, precision and recovery. It was found that the contents of marker compounds varied significantly in samples prepared by different methods. These results demonstrated that preparation method does significantly affect the holistic quality of KJ. UHPLC-QTOF-MS/MS based chemical profiling approach is efficient and reliable for comprehensive quality evaluation of KJ. Collectively, this study provide the chemical evidence for revealing the material basis of KJ, and establish a simple and accurate chemical profiling method for its quality control. Copyright © 2016 Elsevier B.V. All rights reserved.
Immobilized phosphorylase for synthesis of polysaccharides from glucose
NASA Technical Reports Server (NTRS)
Marshall, D. L.
1972-01-01
Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.
Filone, Claire Marie; Hodges, Erin N.; Honeyman, Brian; Bushkin, G. Guy; Boyd, Karla; Platt, Andrew; Ni, Feng; Strom, Kyle; Hensley, Lisa; Snyder, John K.; Connor, John H.
2013-01-01
There are no approved therapeutics for the most deadly nonsegmented negative-strand (NNS) RNA viruses, including Ebola (EBOV). To identify new chemical scaffolds for development of broad-spectrum antivirals, we undertook a prototype-based lead identification screen. Using the prototype NNS virus, vesicular stomatitis virus (VSV), multiple inhibitory compounds were identified. Three compounds were investigated for broad-spectrum activity, and inhibited EBOV infection. The most potent, CMLDBU3402, was selected for further study. CMLDBU3402 did not show significant activity against segmented negative-strand RNA viruses suggesting proscribed broad-spectrum activity. Mechanistic analysis indicated that CMLDBU3402 blocked VSV viral RNA synthesis and inhibited EBOV RNA transcription, demonstrating a consistent mechanism of action against genetically distinct viruses. The identification of this chemical backbone as a broad-spectrum inhibitor of viral RNA synthesis offers significant potential for the development of new therapies for highly pathogenic viruses. PMID:23521799
Molecular locks and keys: the role of small molecules in phytohormone research
Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea
2014-01-01
Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds. PMID:25566283
Caballero-Gallardo, Karina; Olivero-Verbel, Jesus; Freeman, Jennifer L.
2016-01-01
The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed. PMID:28217008
Hosseini, Seyed Esmaeil; Saeidian, Hamid; Amozadeh, Ali; Naseri, Mohammad Taghi; Babri, Mehran
2016-12-30
For unambiguous identification of Chemical Weapons Convention (CWC)-related chemicals in environmental samples, the availability of mass spectra, interpretation skills and rapid microsynthesis of suspected chemicals are essential requirements. For the first time, the electron ionization single quadrupole and electrospray ionization tandem mass spectra of a series of O-alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates (Scheme 1, cpd 4) were studied for CWC verification purposes. O-Alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates were prepared through a microsynthetic method and were analyzed using electron ionization and electrospray ionization mass spectrometry with gas and liquid chromatography, respectively, as MS-inlet systems. General EI and ESI fragmentation pathways were proposed and discussed, and collision-induced dissociation studies of the protonated derivatives of these compounds were performed to confirm proposed fragment ion structures by analyzing mass spectra of deuterated analogs. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as McLafferty rearrangement, hydrogen rearrangement and a previously unknown intramolecular electrophilic aromatic substitution reaction. The EI and ESI fragmentation routes of the synthesized compounds 4 were investigated with the aim of detecting and identifying CWC-related chemicals during on-site inspection and/or off-site analysis and toxic chemical destruction monitoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
[Study on alkaloids of Corydalis ochotensis and their antitumor bioactivity].
Yu, Jia-jia; Cong, Deng-li; Jiang, Ying; Zhou, Yuan; Wang, Yan; Zhao, Chun-fang
2014-10-01
To investigate the chemical constituents of Corydalis ochotensis and their antitumor bioactivity. The compounds were isolated by silica gel column chromatography and recrystallization. Their structures were identified by spectroscopic analysis (NMR) and physicochemical properties. Their cytotoxic activity was studied by MTT. Six compounds were elucidated as protopine (1), ochotensimine (2), fumariline (3), sanguinarine (4), tetrahydroberberine (5) and berberine (6). Compound 1 had excellent inhibitory activity on HepG2, SW480 and A549 cells, and compound 4 had excellent inhibitory activity on Hep2, HepG2, SW480 and A549 cells. Compounds 3, 4 and 5 are isolated from this plant for the first time; In the MTT antitumor experiments,compounds 1 and 4 show an antitumor activity.
ZHENG, CHUN-SONG; FU, CHANG-LONG; PAN, CAI-BIN; BAO, HONG-JUAN; CHEN, XING-QIANG; YE, HONG-ZHI; YE, JIN-XIA; WU, GUANG-WEN; LI, XI-HAI; XU, HUI-FENG; XU, XIAO-JIE; LIU, XIAN-XIANG
2015-01-01
Diesun Miaofang (DSMF) is a traditional herbal formula, which has been reported to activate blood, remove stasis, promote qi circulation and relieve pain. DSMF holds a great promise for the treatment of traumatic injury in an integrative and holistic manner. However, its underlying mechanisms remain to be elucidated. In the present study, a systems pharmacology model, which integrated cluster ligands, human intestinal absorption and aqueous solution prediction, chemical space mapping, molecular docking and network pharmacology techniques were used. The compounds from DSMF were diverse in the clusters and chemical space. The majority of the compounds exhibited drug-like properties. A total of 59 compounds were identified to interact with 16 potential targets. In the herb-compound-target network, the majority of compounds acted on only one target; however, a small number of compounds acted on a large number of targets, up to a maximum of 12. The comparison of key topological properties in compound-target networks associated with the above efficacy intuitively demonstrated that potential active compounds possessed diverse functions. These results successfully explained the polypharmcological mechanism underlying the efficiency of DSMF for the treatment of traumatic injury as well as provided insight into potential novel therapeutic strategies for traumatic injury from herbal medicine. PMID:25891262
Xue, Xin; Zhao, Ning-Yi; Yu, Hai-Tao; Sun, Yuan; Kang, Chen; Huang, Qiong-Bin; Sun, Hao-Peng
2016-01-01
Major research efforts have been devoted to the discovery and development of new chemical entities that could inhibit the protein–protein interaction between HIF-1α and the von Hippel–Lindau protein (pVHL), which serves as the substrate recognition subunit of an E3 ligase and is regarded as a crucial drug target in cancer, chronic anemia, and ischemia. Currently there is only one class of compounds available to interdict the HIF-1α/pVHL interaction, urging the need to discover chemical inhibitors with more diversified structures. We report here a strategy combining shape-based virtual screening and cascade docking to identify new chemical scaffolds for the designing of novel inhibitors. Based on this strategy, nine active hits have been identified and the most active hit, 9 (ZINC13466751), showed comparable activity to pVHL with an IC50 of 2.0 ± 0.14 µM, showing the great potential of utilizing these compounds for further optimization and serving as drug candidates for the inhibition of HIF-1α/von Hippel–Lindau interaction. PMID:27994971
Turkmenoglu, Fatma Pinar; Agar, Osman Tuncay; Akaydin, Galip; Hayran, Mutlu; Demirci, Betul
2015-06-22
According to distribution of genus Achillea, two main centers of diversity occur in S.E. Europe and S.W. Asia. Diversified essential oil compositions from Balkan Peninsula have been numerously reported. However, report on essential oils of Achillea species growing in Turkey, which is one of the main centers of diversity, is very limited. This paper represents the chemical compositions of the essential oils obtained by hydrodistillation from the aerial parts of eleven Achillea species, identified simultaneously by gas chromatography and gas chromatography-mass spectrometry. The main components were found to be 1,8-cineole, p-cymene, viridiflorol, nonacosane, α-bisabolol, caryophyllene oxide, α-bisabolon oxide A, β-eudesmol, 15-hexadecanolide and camphor. The chemical principal component analysis based on thirty compounds identified three species groups and a subgroup, where each group constituted a chemotype. This is the first report on the chemical composition of A. hamzaoglui essential oil; as well as the antioxidant and antimicrobial evaluation of its essential oil and methanolic extract.
Essential oil of Galinsoga parviflora leaves from Colombia.
Pino, Jorge A; Gaviria, Mauricio; Quevedo-Vega, Juana; García-Lesmes, Laura; Quijano-Celis, Clara E
2010-11-01
The chemical composition of the volatile compounds from the leaves of Galinsoga parviflora Cav. (Asteraceae) from Colombia was studied by GC and GC/MS. Eighty-eight volatile compounds were identified, of which the major ones were (Z)-3-hexen-1-ol (21.7%), beta-caryophyllene (12.4%), and 6-demethoxy-ageratochrome (14%). The leaf oil presented antimicrobial activities against the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus.
Wills, Lauren P.; Beeson, Gyda C.; Hoover, Douglas B.; Schnellmann, Rick G.; Beeson, Craig C.
2015-01-01
Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents. PMID:25926417
Wakte, Kantilal; Zanan, Rahul; Hinge, Vidya; Khandagale, Kiran; Nadaf, Altafhusain; Henry, Robert
2017-01-01
Rice is the staple food of around 3 billion people, most of them in Asia which accounts for 90% of global rice consumption. Aromatic rices have been preferred over non-aromatic rice for hundreds of years. They have a premium value in national as well as international market owing to their unique aroma and quality. Many researchers were involved in identifying the compound responsible for the pleasant aroma in aromatic rice in the 20th century. However, due to its unstable nature, 2-acetyl-1-pyrroline (2AP) was discovered very late, in 1982. Buttery and co-workers found 2AP to be the principal compound imparting the pleasant aroma to basmati and other scented rice varieties. Since then, 2AP has been identified in all fragrant rice (Oryza sativa L.) varieties and a wide range of plants, animals, fungi, bacteria and various food products. The present article reviews in detail biochemical and genetic aspects of 2AP in living systems. The site of synthesis, site of storage and stability in plant systems in vivo is of interest. This compound requires more research on stability to facilitate use as a food additive. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Selli, Serkan; Kelebek, Hasim; Kesen, Songul; Sonmezdag, Ahmet Salih
2018-02-01
Olives are processed in different ways depending on consumption habits, which vary between countries. Different de-bittering methods affect the aroma and aroma-active compounds of table olives. This study focused on analyzing the aroma and aroma-active compounds of black dry-salted olives using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) techniques. Thirty-nine volatile compounds which they have a total concentration of 29 459 µg kg -1 , were determined. Aroma extract dilution analysis (AEDA) was used to determine key aroma compounds of table olives. Based on the flavor dilution (FD) factor, the most powerful aroma-active compounds in the sample were methyl-2-methyl butyrate (tropical, sweet; FD: 512) and (Z)-3-hexenol (green, flowery; FD: 256). Phenolic compounds in table olives were also analyzed by LC-DAD-ESI-MS/MS. A total of 20 main phenolic compounds were identified and the highest content of phenolic compound was luteolin-7-glucoside (306 mg kg -1 ), followed by verbascoside (271 mg kg -1 ), oleuropein (231 mg kg -1 ), and hydroxytyrosol (3,4-DHPEA) (221 mg kg -1 ). Alcohols, carboxylic acids, and lactones were qualitatively and quantitatively the dominant volatiles in black dry-salted olives. Results indicated that esters and alcohols were the major aroma-active compounds. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Chemical Composition Analysis of Extracts from Ficus Hirta Using Supercritical Fluid
NASA Astrophysics Data System (ADS)
Deng, S. B.; Chen, J. P.; Chen, Y. Z.; Yu, C. Q.; Yang, Y.; Wu, S. H.; Chen, C. Z.
2018-05-01
Ficus hirta was extracted by supercritical carbon dioxide. The volatile chemical components of extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The percentage of products extracted by Supercritical Fluid Extraction(SFE) was 2.5%. Nineteen volatile compounds were identified. The main volatile components were Elemicin, Psoralen, Palmitic acid, Bergapten, α-Linolenic acid, Medicarpin, Retinoic Acid, Maackiain, and Squalene. The method is simple and quick, and can be used for the preliminary analysis of chemical constituents of supercritical extracts of Ficus hirta.
Early Probe and Drug Discovery in Academia: A Minireview.
Roy, Anuradha
2018-02-09
Drug discovery encompasses processes ranging from target selection and validation to the selection of a development candidate. While comprehensive drug discovery work flows are implemented predominantly in the big pharma domain, early discovery focus in academia serves to identify probe molecules that can serve as tools to study targets or pathways. Despite differences in the ultimate goals of the private and academic sectors, the same basic principles define the best practices in early discovery research. A successful early discovery program is built on strong target definition and validation using a diverse set of biochemical and cell-based assays with functional relevance to the biological system being studied. The chemicals identified as hits undergo extensive scaffold optimization and are characterized for their target specificity and off-target effects in in vitro and in animal models. While the active compounds from screening campaigns pass through highly stringent chemical and Absorption, Distribution, Metabolism, and Excretion (ADME) filters for lead identification, the probe discovery involves limited medicinal chemistry optimization. The goal of probe discovery is identification of a compound with sub-µM activity and reasonable selectivity in the context of the target being studied. The compounds identified from probe discovery can also serve as starting scaffolds for lead optimization studies.
Howard, Philip H; Muir, Derek C G
2011-08-15
The goal of this study was to identify commercial pharmaceuticals that might be persistent and bioaccumulative (P&B) and that were not being considered in current wastewater and aquatic environmental measurement programs. We developed a database of 3193 pharmaceuticals from two U.S. Food and Drug Administration (FDA) databases and some lists of top ranked or selling drugs. Of the 3193 pharmaceuticals, 275 pharmaceuticals have been found in the environment and 399 pharmaceuticals were, based upon production volumes, designated as high production volume (HPV) pharmaceuticals. All pharmaceuticals that had reported chemical structures were evaluated for potential bioaccumulation (B) or persistence (P) using quantitative structure property relationships (QSPR) or scientific judgment. Of the 275 drugs detected in the environment, 92 were rated as potentially bioaccumulative, 121 were rated as potentially persistent, and 99 were HPV pharmaceuticals. After removing the 275 pharmaceuticals previously detected in the environment, 58 HPV compounds were identified that were both P&B and 48 were identified as P only. Of the non-HPV compounds, 364 pharmaceuticals were identified that were P&B. This study has yielded some interesting and probable P&B pharmaceuticals that should be considered for further study.
Global Analysis Reveals Families of Chemical Motifs Enriched for hERG Inhibitors
Du, Fang; Babcock, Joseph J.; Yu, Haibo; Zou, Beiyan; Li, Min
2015-01-01
Promiscuous inhibition of the human ether-à-go-go-related gene (hERG) potassium channel by drugs poses a major risk for life threatening arrhythmia and costly drug withdrawals. Current knowledge of this phenomenon is derived from a limited number of known drugs and tool compounds. However, in a diverse, naïve chemical library, it remains unclear which and to what degree chemical motifs or scaffolds might be enriched for hERG inhibition. Here we report electrophysiology measurements of hERG inhibition and computational analyses of >300,000 diverse small molecules. We identify chemical ‘communities’ with high hERG liability, containing both canonical scaffolds and structurally distinctive molecules. These data enable the development of more effective classifiers to computationally assess hERG risk. The resultant predictive models now accurately classify naïve compound libraries for tendency of hERG inhibition. Together these results provide a more complete reference map of characteristic chemical motifs for hERG liability and advance a systematic approach to rank chemical collections for cardiotoxicity risk. PMID:25700001
Potent Cytotoxic Peptides from the Australian Marine Sponge Pipestela candelabra
Tran, Trong D.; Pham, Ngoc B.; Fechner, Gregory A.; Hooper, John N. A.; Quinn, Ronald J.
2014-01-01
Two consecutive prefractionated fractions of the Australian marine sponge extract, Pipestela candelabra, were identified to be selectively active on the human prostate cancer cells (PC3) compared to the human neonatal foreskin fibroblast non-cancer cells (NFF). Twelve secondary metabolites were isolated in which four compounds are new small peptides. Their structures were characterized by spectroscopic and chemical analysis. These compounds inhibited selectively the growth of prostate cancer cells with IC50 values in the picomolar to sub-micromolar range. Structure-activity relationship of these compounds is discussed. PMID:24901701
Pinheiro, Eduardo A A; Carvalho, Josiwander M; Santos, Diellem C P dos; Feitosa, André O; Marinho, Patrícia S B; Guilhon, Giselle Maria S P; Santos, Lourivaldo S; Souza, Afonso L D de; Marinho, Andrey M R
2013-01-01
The present work reports the isolation of five compounds from Aspergillus sp EJC08 isolated as endophytic from Bauhinia guianensis, a tipical plant of the Amazon. The compounds ergosterol (1), ergosterol peroxide (2), mevalolactone (3), monomethylsulochrin (4) and trypacidin A (5) were isolated by chromatographic procedures and identified by spectral methods of 1D and 2D NMR and MS. Compounds 3, 4 and 5 were tested against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus and showed good activity.
Chemical cues identify gender and individuality in Giant pandas (Ailuropoda melanoleuca).
Hagey, Lee; MacDonald, Edith
2003-06-01
The Giant panda communicates with conspecifics by depositing a mixture of volatile compounds (called scent marks) on trees and rocks. Using mass spectrometry, we identified 951 chemical components from scent glands, urine, vaginal secretions, and scent marks made by pandas. The scent marks of the two genders contained a similar array of chemicals but varied in concentration; specifically, males possessed a significantly greater amount of short chain fatty acids (F(1, 29) = 18.4, P = 0.002). Using stepwise discriminate analysis on the relative proportions of a subset of these chemicals, it was possible to classify gender (94% for males and females) and individuality (81% for males and 91% for females) from scent marks. The power to identify individual males was reduced due to the relatedness of two subjects. By cracking the identity code of Giant panda communication, we show insights into how these animals can match individuals with unique chemical profiles. Since radiocollaring is currently banned in China, the techniques described in this paper give field biologists a new means to identify and track pandas in the wild.
Vorberg, Susann; Tetko, Igor V
2014-01-01
Biodegradability describes the capacity of substances to be mineralized by free-living bacteria. It is a crucial property in estimating a compound's long-term impact on the environment. The ability to reliably predict biodegradability would reduce the need for laborious experimental testing. However, this endpoint is difficult to model due to unavailability or inconsistency of experimental data. Our approach makes use of the Online Chemical Modeling Environment (OCHEM) and its rich supply of machine learning methods and descriptor sets to build classification models for ready biodegradability. These models were analyzed to determine the relationship between characteristic structural properties and biodegradation activity. The distinguishing feature of the developed models is their ability to estimate the accuracy of prediction for each individual compound. The models developed using seven individual descriptor sets were combined in a consensus model, which provided the highest accuracy. The identified overrepresented structural fragments can be used by chemists to improve the biodegradability of new chemical compounds. The consensus model, the datasets used, and the calculated structural fragments are publicly available at http://ochem.eu/article/31660. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Wang, Xiao H.; Yu, Yang; Huang, Tao; Qin, Wei C.; Su, Li M.; Zhao, Yuan H.
2016-01-01
Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR < –1) to both species indicate that the bioconcentration potential of a chemical plays a very important role in the identification of excess toxicity and MOAs. PMID:26901437
Identifying known unknowns using the US EPA's CompTox ...
Chemical features observed using high-resolution mass spectrometry can be tentatively identified using online chemical reference databases by searching molecular formulae and monoisotopic masses and then rank-ordering of the hits using appropriate relevance criteria. The most likely candidate “known unknowns,” which are those chemicals unknown to an investigator but contained within a reference database or literature source, rise to the top of a chemical list when rank-ordered by the number of associated data sources. The U.S. EPA’s CompTox Chemistry Dashboard is a curated and freely available resource for chemistry and computational toxicology research, containing more than 720,000 chemicals of relevance to environmental health science. In this research, the performance of the Dashboard for identifying “known unknowns” was evaluated against that of the online ChemSpider database, one of the primary resources used by mass spectrometrists, using multiple previously studied datasets reported in the peer-reviewed literature totaling 162 chemicals. These chemicals were examined using both applications via molecular formula and monoisotopic mass searches followed by rank-ordering of candidate compounds by associated references or data sources. A greater percentage of chemicals ranked in the top position when using the Dashboard, indicating an advantage of this application over ChemSpider for identifying known unknowns using data source ranking. Addition
Characterization of emissions composition for selected household products available in Korea.
Kwon, Ki-Dong; Jo, Wan-Kuen; Lim, Ho-Jin; Jeong, Woo-Sik
2007-09-05
The present study investigated the emission composition for 59 household products currently sold in Korea, using a headspace analysis. The chemical composition and concentrations of total volatile organic compounds (VOCs) broadly varied along with products, even within the same product category. Up to 1-17 organic compounds were detected in the headspace gas phase of any one of the products. The chemical composition of certain household products determined in the current study was different from that of other studies from other countries. Between 4 and 37 compounds were detected in the headspace gas phase of each product class. Several compounds were identified in more than one product class. Of the 59 household products analyzed, 58 emitted one or more of the 72 compounds at chromatographic peak areas above 10(4). There were 11 analytes which occurred with a frequency of more than 10%: limonene (44.2%), ethanol (30.5%), acetone (18.6%), alpha-pinene (18.6%), o,m,p-xylenes (18.6%), decane (17.0%), toluene (17.0%), beta-myrcene (11.9%), ammonia (10.2%), ethylbenzene (10.2%), and hexane (10.2%).
Zhao, Pengtao; Gao, Jinxin; Qian, Michael; Li, Hua
2017-06-24
The key aroma compounds and the organoleptic quality of two Chinese Syrah wines from the Yunnan Shangri-La region and Ningxia Helan mountain region were characterized. The most important eighty aroma-active compounds were identified by Gas Chromatography-Olfactometry. In both Syrah samples, ethyl 2-methylpropanoate, ethyl 3-methylbutanoate, 3-methylbutyl acetate, 2- and 3-methyl-1-butanol, ethyl hexanoate, ethyl octanoate, 2-phenethyl acetate, methional, 3-methylbutanoic acid, hexanoic acid, octanoic acid, β -damascenone, guaiacol, 2-phenylethanol, trans -whiskylactone, 4-ethylguaiacol, eugenol, 4-ethylphenol, and sotolon were detected to have the highest odor intensities. In the chemical analysis, 72 compounds were quantitated by Stir Bar Sorptive Extraction combined with Gas Chromatography Mass Spectrometry. Based on the Odor Activity Value (OAV), the aromas were reconstituted by combining aroma compounds in the synthetic wine, and sensory descriptive analysis was used to verify the chemical data. Fatty acid ethyl esters, acetate esters, and β -damascenone were found with higher OAVs in the more fruity-smelling sample of Helan Mountain rather than Shangri-La.
Testing chemical carcinogenicity by using a transcriptomics HepaRG-based model?
Doktorova, T. Y.; Yildirimman, Reha; Ceelen, Liesbeth; Vilardell, Mireia; Vanhaecke, Tamara; Vinken, Mathieu; Ates, Gamze; Heymans, Anja; Gmuender, Hans; Bort, Roque; Corvi, Raffaella; Phrakonkham, Pascal; Li, Ruoya; Mouchet, Nicolas; Chesne, Christophe; van Delft, Joost; Kleinjans, Jos; Castell, Jose; Herwig, Ralf; Rogiers, Vera
2014-01-01
The EU FP6 project carcinoGENOMICS explored the combination of toxicogenomics and in vitro cell culture models for identifying organotypical genotoxic- and non-genotoxic carcinogen-specific gene signatures. Here the performance of its gene classifier, derived from exposure of metabolically competent human HepaRG cells to prototypical non-carcinogens (10 compounds) and hepatocarcinogens (20 compounds), is reported. Analysis of the data at the gene and the pathway level by using independent biostatistical approaches showed a distinct separation of genotoxic from non-genotoxic hepatocarcinogens and non-carcinogens (up to 88 % correct prediction). The most characteristic pathway responding to genotoxic exposure was DNA damage. Interlaboratory reproducibility was assessed by blindly testing of three compounds, from the set of 30 compounds, by three independent laboratories. Subsequent classification of these compounds resulted in correct prediction of the genotoxicants. As expected, results on the non-genotoxic carcinogens and the non-carcinogens were less predictive. In conclusion, the combination of transcriptomics with the HepaRG in vitro cell model provides a potential weight of evidence approach for the evaluation of the genotoxic potential of chemical substances. PMID:26417288
Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization.
Sánchez-Palomo, E; Trujillo, M; García Ruiz, A; González Viñas, M A
2017-10-01
The aroma of La Mancha Malbec red wines over four consecutive vintages was characterized by chemical and sensory analysis. Solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) were used to isolate and analyze free volatile compounds. Quantitative Descriptive Sensory Analysis (QDA) was carried out to characterize the sensory aroma profile. A total of 79 free volatile compounds were identified and quantified in the wines over these four vintages. Volatile aroma compounds were classified into seven aromatic series and their odour activity values were calculated in order to determine the aroma impact compounds in these wines. The aroma sensory profile of these wines was characterized by red fruit, fresh, prune, liquorice, clove, caramel, leather, tobacco and coffee aromas. This study provides a complete aroma characterization of La Mancha Malbec red wines and it is proposed that these wines can be considered as an alternative to wines from traditional grape varieties of this region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Green coffee seed residue: A sustainable source of antioxidant compounds.
Castro, A C C M; Oda, F B; Almeida-Cincotto, M G J; Davanço, M G; Chiari-Andréo, B G; Cicarelli, R M B; Peccinini, R G; Zocolo, G J; Ribeiro, P R V; Corrêa, M A; Isaac, V L B; Santos, A G
2018-04-25
Oil extraction from green coffee seeds generates residual mass that is discarded by agribusiness and has not been previously studied. Bioactive secondary metabolites in coffee include antioxidant phenolic compounds, such as chlorogenic acids. Coffee seeds also contain caffeine, a pharmaceutically important methylxanthine. Here, we report the chemical profile, antioxidant activity, and cytotoxicity of hydroethanolic extracts of green Coffea arabica L. seed residue. The extracts of the green seeds and the residue have similar chemical profiles, containing the phenolic compounds chlorogenic acid and caffeine. Five monoacyl and three diacyl esters of trans-cinnamic acids and quinic acid were identified by ultra-performance liquid chromatography/electrospray ionization-quadruple time of flight mass spectrometry. The residue extract showed antioxidant potential in DPPH, ABTS, and pyranine assays and low cytotoxicity. Thus, coffee oil residue has great potential for use as a raw material in dietary supplements, cosmetic and pharmaceutical products, or as a source of bioactive compounds. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Hatch, Lindsay E.; Yokelson, Robert J.; Stockwell, Chelsea E.; Veres, Patrick R.; Simpson, Isobel J.; Blake, Donald R.; Orlando, John J.; Barsanti, Kelley C.
2017-01-01
Multiple trace-gas instruments were deployed during the fourth Fire Lab at Missoula Experiment (FLAME-4), including the first application of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) for laboratory biomass burning (BB) measurements. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was also deployed, as well as whole-air sampling (WAS) with one-dimensional gas chromatography-mass spectrometry (GC-MS) analysis. This combination of instruments provided an unprecedented level of detection and chemical speciation. The chemical composition and emission factors (EFs) determined by these four analytical techniques were compared for four representative fuels. The results demonstrate that the instruments are highly complementary, with each covering some unique and important ranges of compositional space, thus demonstrating the need for multi-instrument approaches to adequately characterize BB smoke emissions. Emission factors for overlapping compounds generally compared within experimental uncertainty, despite some outliers, including monoterpenes. Data from all measurements were synthesized into a single EF database that includes over 500 non-methane organic gases (NMOGs) to provide a comprehensive picture of speciated, gaseous BB emissions. The identified compounds were assessed as a function of volatility; 6-11 % of the total NMOG EF was associated with intermediate-volatility organic compounds (IVOCs). These atmospherically relevant compounds historically have been unresolved in BB smoke measurements and thus are largely missing from emission inventories. Additionally, the identified compounds were screened for published secondary organic aerosol (SOA) yields. Of the total reactive carbon (defined as EF scaled by the OH rate constant and carbon number of each compound) in the BB emissions, 55-77 % was associated with compounds for which SOA yields are unknown or understudied. The best candidates for future smog chamber experiments were identified based on the relative abundance and ubiquity of the understudied compounds, and they included furfural, 2-methyl furan, 2-furan methanol, and 1,3-cyclopentadiene. Laboratory study of these compounds will facilitate future modeling efforts.
Kipandula, Wakisa; Young, Simon A; MacNeill, Stuart A; Smith, Terry K
2018-06-01
Diseases caused by the pathogenic kinetoplastids continue to incapacitate and kill hundreds of thousands of people annually throughout the tropics and sub-tropics. Unfortunately, in the countries where these neglected diseases occur, financial obstacles to drug discovery and technical limitations associated with biochemical studies impede the development of new, safe, easy to administer and effective drugs. Here we report the development and optimisation of a Crithidia fasciculata resazurin viability assay, which is subsequently used for screening and identification of anti-crithidial compounds in the MMV and GSK open access chemical boxes. The screening assay had an average Z' factor of 0.7 and tolerated a maximum dimethyl sulfoxide concentration of up to 0.5%. We identified from multiple chemical boxes two compound series exhibiting nanomolar potency against C. fasciculata, one centred around a 5-nitrofuran-2-yl scaffold, a well-known moiety in several existing anti-infectives, and another involving a 2-(pyridin-2-yl) pyrimidin-4-amine scaffold which seems to have pan-kinetoplastid activity. This work facilitates the future use of C. fasciculata as a non-pathogenic and inexpensive biological resource to identify mode of action/protein target(s) of potentially pan-trypanocidal potent compounds. This knowledge will aid in the development of new treatments for African sleeping sickness, Chagas disease and leishmaniasis. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, G; Brecker, L; Felsinger, S; Cai, X-H; Kongkiatpaiboon, S; Schinnerl, J
2017-09-01
The occurrence of bioactive alkaloids and tocopherols was studied in 15 different provenances of Stemona tuberosa Lour. collected in southern China, to examine chemical variation of individuals that show notable differences in flower characteristics. Morphological variations stimulated examination of chemical characteristics of these individuals. Methanolic root extracts of 15 individuals of S. tuberosa were comparatively assessed with HPLC-UV-DAD/ELSD. Five of seven compounds were co-chromatographically identified. Two compounds were isolated and their structure elucidated using NMR and MS. Amounts of alkaloids and tocopherols were determined using HPLC-UV-DAD/ELSD with the external standard method. Five alkaloids, tuberostemonine (1), tuberostemonine A (2), neotuberostemonine (3), tuberostemonine N (4), stemoninine (5) and two 3,4-dehydrotocopherol derivatives were identified. Within S. tuberosa alkaloid accumulation tends either towards tuberostemonine (1) or stemoninine (5). All individuals show a notable co-occurrence of compounds 1 or 5 and 3,4-dehydro-δ-tocopherol (6). These results coincide with differences in flower morphology of S. tuberosa. Stemona tuberosa, as defined in the Flora of China, shows a remarkable variation in flower morphology and additionally in the accumulation of alkaloids. The obtained data show the need for future species delimitation to either species or subspecies level. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Li, Wei; Lee, Changyeol; Kim, Young Ho; Ma, Jin Yeul; Shim, Sang Hee
2017-10-01
A phytochemical investigation of Taraxacum mongolicum led to the isolation of 24 compounds, including six flavonoids (1-6), four sesquiterpenes (7-10), two sphingolipids (11 and 12), six glycerols (13-18) and six triterpenoids and sterols (19-24). The structures of these compounds were identified by spectroscopic methods, and their data compared with those reported in the literature. This is the first report of compounds 11-19 from T. mongolicum and the genus Taraxacum, and compounds 11, 12, 15, 16, 18 and 19 from the Asteraceae family. The chemotaxonomic relationship between T. mongolicum and other Taraxacum species is also discussed.
New Abietane and Kaurane Type Diterpenoids from the Stems of Tripterygium regelii
Fan, Dongsheng; Zhou, Shuangyan; Zheng, Zhiyuan; Zhu, Guo-Yuan; Yao, Xiaojun; Yang, Ming-Rong; Jiang, Zhi-Hong; Bai, Li-Ping
2017-01-01
Eleven new abietane type (1‒11), and one new kaurane (12), diterpenes, together with eleven known compounds (13–23), were isolated and identified from the stems of Tripterygium regelii, which has been used as a traditional folk Chinese medicine for the treatment of rheumatoid arthritis in China. The structures of new compounds were characterized by means of the interpretation of high-resolution electrospray ionization mass spectrometry (HRESIMS), extensive nuclear magnetic resonance (NMR) spectroscopic data and comparisons of their experimental CD spectra with calculated electronic circular dichroism (ECD) spectra. Compound 1 is the first abietane type diterpene with an 18→1 lactone ring. Compound 19 was isolated from the plants of the Tripterygium genus for the first time, and compounds 14–17 were isolated from T. regelii for the first time. Triregelin I (9) showed significant cytotoxicity against A2780 and HepG2 with IC50 values of 5.88 and 11.74 µM, respectively. It was found that this compound was inactive against MCF-7 cells. The discovery of these twelve new diterpenes not only provided information on chemical substances of T. regelii, but also contributed to the chemical diversity of natural terpenoids. PMID:28098763
Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products.
Machado, Nelson F L; Domínguez-Perles, Raúl
2017-02-14
Grape and wine phenolics display a noticeable structural diversity, encompassing distinct compounds ranging from simple molecules to oligomers, as well as polymers usually designated as tannins. Since these compounds contribute critically to the organoleptic properties of wines, their analysis and quantification are of primordial importance for winery industry operators. Besides, the occurrence of these compounds has been also extensively described in winery residues, which have been pointed as a valuable source of bioactive phytochemicals presenting potential for the development of new added value products that could fit the current market demands. Therefore, the cumulative knowledge generated during the last decades has allowed the identification of the most promising compounds displaying interesting biological functions, as well as the chemical features responsible for the observed bioactivities. In this regard, the present review explores the scope of the existing knowledge, concerning the compounds found in these winery by-products, as well as the chemical features presumably responsible for the biological functions already identified. Moreover, the present work will hopefully pave the way for further actions to develop new powerful applications to these materials, thus, contributing to more sustainable valorization procedures and the development of newly obtained compounds with enhanced biological properties.
[Analysis of chemical constituents of volatile components from Jia Ga Song Tang by GC-MS].
Tan, Qing-long; Xiong, Tian-qin; Liao, Jia-yi; Yang, Tao; Zhao, Yu-min; Lin, Xi; Zhang, Cui-xian
2014-10-01
To analyze the chemical components of volatile components from Jia Ga Song Tang. The volatile oils were extracted by water steam distillation. The chemical components of essential oil were analyzed by GC-MS and quantitatively determined by a normalization method. 103 components were separated and 87 components were identified in the volatile oil of Zingiberis Rhizoma. 58 components were separated and 38 components were identified in the volatile oil of Myristicae Semen. 49 components were separated and 38 components were identified in the volatile oil of Amomi Rotundus Fructus. 89 components were separated and 63 components were identified in the volatile oil of Jia Ga Song Tang. Eucalyptol, β-phellandrene and other terpenes were the main compounds in the volatile oil of Jia Ga Song Tang. Changes in the kinds and content of volatile components can provide evidences for scientific and rational compatibility for Jia Ga Song Tang.
Liao, Wenta; Draper, William M
2013-02-21
The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds.
Recognition of chemical entities: combining dictionary-based and grammar-based approaches.
Akhondi, Saber A; Hettne, Kristina M; van der Horst, Eelke; van Mulligen, Erik M; Kors, Jan A
2015-01-01
The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance.
Recognition of chemical entities: combining dictionary-based and grammar-based approaches
2015-01-01
Background The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. Results The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. Conclusions We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance. PMID:25810767
Identifying Chemical Groups for Biomonitoring
Krowech, Gail; Hoover, Sara; Plummer, Laurel; Sandy, Martha; Zeise, Lauren; Solomon, Gina
2016-01-01
Summary: Regulatory agencies face daunting challenges identifying emerging chemical hazards because of the large number of chemicals in commerce and limited data on exposure and toxicology. Evaluating one chemical at a time is inefficient and can lead to replacement with uncharacterized chemicals or chemicals with structural features already linked to toxicity. The Office of Environmental Health Hazard Assessment (OEHHA) has developed a process for constructing and assessing chemical groups for potential biomonitoring in California. We screen for chemicals with significant exposure potential and propose possible chemical groups, based on structure and function. To support formal consideration of these groups by Biomonitoring California’s Scientific Guidance Panel, we conduct a detailed review of exposure and toxicity data and examine the likelihood of detection in biological samples. To date, 12 chemical groups have been constructed and added to the pool of chemicals that can be selected for Biomonitoring California studies, including p,p´-bisphenols, brominated and chlorinated organic compounds used as flame retardants, non-halogenated aromatic phosphates, and synthetic polycyclic musks. Evaluating chemical groups, rather than individual chemicals, is an efficient way to respond to shifts in chemical use and the emergence of new chemicals. This strategy can enable earlier identification of important chemicals for monitoring and intervention. PMID:27905275
STATISTICAL DATA ON CHEMICAL COMPOUNDS.
DATA STORAGE SYSTEMS, FEASIBILITY STUDIES, COMPUTERS, STATISTICAL DATA , DOCUMENTS, ARMY...CHEMICAL COMPOUNDS, INFORMATION RETRIEVAL), (*INFORMATION RETRIEVAL, CHEMICAL COMPOUNDS), MOLECULAR STRUCTURE, BIBLIOGRAPHIES, DATA PROCESSING
Organic compounds in indoor air—their relevance for perceived indoor air quality?
NASA Astrophysics Data System (ADS)
Wolkoff, Peder; Nielsen, Gunnar D.
It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.
[Studies on the chemical constituents of Pharbitis purpurea].
Wang, Jin-Lan; Hua, Zhun; Zhao, Bao-Ying; Tang, Wan-Xia; Zhang, Shu-Jun
2010-10-01
To study the chemical constituents of Pharbitis purpurea. The constituents were isolated by silica gel column chromatography, HPLC and recrystallization and their structures were elucidated on the basis of spectral analysis. Fourteen compounds were isolated and identified as daucosterol (1), umbelliferone (2), ursolic acid (3), N-p-hydroxy-cis-coumaroyltyramine (4), N-p-hydroxy-trans-coumaroyltyramine (5), N-cis-feruloyltyramine (6), N-trans-feruloyltyramine (7), (3R, 5R, 6S, 7E, 9S)-megastigman-5,6-epoxy-7-ene-3,9-diol (8), (6S,9R)-vomifoliol (9), (+)-syringaresinol (10), isovitexin (11), syringopicroside( 12), uricil (13), (6S,9R)-roseoside (14). Compounds 3, 8-2,14 are isolated from the genus for the first time.
[Chemical Constituents of Paris polyphylla var. chinensis Aerial Parts].
Yin, Wei; Song, Zu-rong; Liu, Jin-qi; Zhang, Guo-sheng
2015-09-01
To study the chemical constituents of aerial parts of Paris polyphylla var. chinensis . Aerial parts of Paris polyphylla var. chinensis was extracted with 95% EtOH, and separated and purified by silica gel, RP 18 and Sephadex LH-20 col- umn chromatography. The structures were identified by spectroscopic analysis. A total of ten compounds were isolated and iden- tified as β-sitosterol (1) ergosta-7, 22-dien-3-one (2), β-ecdysone (3), kaempferol (4), daucosterol (5) luteolin (6) calonysterone (7), luteolin-7-O-glucoside (8), quercetin (9), and 3β, 5α, 9α-trihydroxyergosta-7, 22-dien-6-one (10). Compounds 2,6 and 10 are isolated from Paris polyphylla var. chinensis for the first time.
Chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits.
Bi, Shu-Feng; Zhu, Guang-Qi; Wu, Jie; Li, Zhong-Kang; Lv, Yong-Zhan; Fang, Ling
2016-01-01
The chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits were studied for the first time. Twenty-two compounds, representing 82.79% of the oil, were identified from the oil. The major compounds were 3-hexen-1-ol (12.9%), linalool (12.3%), 2-methoxy-4-vinylphenol (9.9%), oleic acid (8.0%), furfural (5.8%) and 2,6-di-tert-butyl-4-methylphenol (5.7%). The antioxidant activities of the oil were evaluated using reducing power, metal chelating ability and scavenging capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS) and superoxide anion free radical. The oil exhibited significant antioxidant activities.
Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania
Popa, Paula; Timofti, Mihaela; Voiculescu, Mirela; Dragan, Silvia; Trif, Catalin; Georgescu, Lucian P.
2012-01-01
This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds have been analyzed using potentiometric and spectrophotometric methods. Experimental results show that the quality of wastewater varies from site to site and it greatly depends on the origin of the wastewater. Correlation analysis was used in order to identify possible relationships between concentrations of various analyzed parameters, which could be used in selecting the appropriate method for wastewater treatment to be implemented at wastewater plants. PMID:22919336
Nitroaromatic carcinogens in diesel soot: a review of laboratory findings.
Wei, E T; Shu, H P
1983-01-01
The automobile industry plans to increase production of diesel-powered passenger cars because diesel engines provide better fuel economy than conventional gasoline engines. Diesel engines, however, produce more soot, and increased use of diesel cars will result in more discharge of diesel soot into the atmosphere. Recently, a new class of chemicals, called nitroaromatic compounds, have been identified in chemical extracts of diesel soot. Some of these nitroaromatic compounds produce mutations when tested in in vitro bacterial and mammalian cell assays, and cancer when tested in animals. Here, we review the relevance of these new laboratory findings to current deliberations over emission standards for particles from diesel cars. PMID:6192732
Zhou, Jian-Liang; Wu, Ye-Qing; Tan, Chun-Mei; Zhu, Ming; Ma, Lin-Ke
2016-10-01
A target cell extraction-chemical profiling method based on human alveolar adenocarcinoma cell line (A549 cells) and UHPLC/LTQ Orbitrap MS for screening the anti-lung cancer bioactive compounds from Curcuma longa has been developed in this paper. According to the hypothesis that when cells are incubated together with the extract of Curcuma longa, the potential bioactive compounds in the extract should selectively combine with the cells, then the cell-binding compounds could be separated and analyzed by LC-MS. The bioactive compounds in C. longa are lipophilic components. They intend to be absorbed on the inner wall of cell culture flask when they were incubated with A549 cells, which will produce interference in the blank solution. In this paper, by using cells digestion and multi-step centrifugation and transfer strategy, the interference problem has been solved. Finally, using the developed method, three cell-binding compounds were screened out and were identified as bisdemethoxycurcumin, demethoxycurcumin, and curcumin. These compounds are the main bioactive compounds with anti-lung cancer bioactivity in C. longa. The improved method developed in this paper could avoid the false positive results due to the absorption of lipophilic compounds on the inner wall of cell culture flask, which will to be an effective complementary method for current target cell extraction-chemical profiling technology. Copyright© by the Chinese Pharmaceutical Association.