Sample records for identify conserved non-coding

  1. Conserved expression of transposon-derived non-coding transcripts in primate stem cells.

    PubMed

    Ramsay, LeeAnn; Marchetto, Maria C; Caron, Maxime; Chen, Shu-Huang; Busche, Stephan; Kwan, Tony; Pastinen, Tomi; Gage, Fred H; Bourque, Guillaume

    2017-02-28

    A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.

  2. Variation in conserved non-coding sequences on chromosome 5q andsusceptibility to asthma and atopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donfack, Joseph; Schneider, Daniel H.; Tan, Zheng

    2005-09-10

    Background: Evolutionarily conserved sequences likely havebiological function. Methods: To determine whether variation in conservedsequences in non-coding DNA contributes to risk for human disease, westudied six conserved non-coding elements in the Th2 cytokine cluster onhuman chromosome 5q31 in a large Hutterite pedigree and in samples ofoutbred European American and African American asthma cases and controls.Results: Among six conserved non-coding elements (>100 bp,>70percent identity; human-mouse comparison), we identified one singlenucleotide polymorphism (SNP) in each of two conserved elements and sixSNPs in the flanking regions of three conserved elements. We genotypedour samples for four of these SNPs and an additional three SNPs eachmore » inthe IL13 and IL4 genes. While there was only modest evidence forassociation with single SNPs in the Hutterite and European Americansamples (P<0.05), there were highly significant associations inEuropean Americans between asthma and haplotypes comprised of SNPs in theIL4 gene (P<0.001), including a SNP in a conserved non-codingelement. Furthermore, variation in the IL13 gene was strongly associatedwith total IgE (P = 0.00022) and allergic sensitization to mold allergens(P = 0.00076) in the Hutterites, and more modestly associated withsensitization to molds in the European Americans and African Americans (P<0.01). Conclusion: These results indicate that there is overalllittle variation in the conserved non-coding elements on 5q31, butvariation in IL4 and IL13, including possibly one SNP in a conservedelement, influence asthma and atopic phenotypes in diversepopulations.« less

  3. Genome-wide identification of conserved intronic non-coding sequences using a Bayesian segmentation approach.

    PubMed

    Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M

    2017-03-27

    Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome

  4. Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses

    PubMed Central

    Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael

    2013-01-01

    Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343

  5. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes.

    PubMed

    Hezroni, Hadas; Ben-Tov Perry, Rotem; Meir, Zohar; Housman, Gali; Lubelsky, Yoav; Ulitsky, Igor

    2017-08-30

    Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.

  6. Identification of a Conserved Non-Protein-Coding Genomic Element that Plays an Essential Role in Alphabaculovirus Pathogenesis

    PubMed Central

    Kikhno, Irina

    2014-01-01

    Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153

  7. Evolution of coding and non-coding genes in HOX clusters of a marsupial.

    PubMed

    Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B

    2012-06-18

    The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.

  8. Evolution of coding and non-coding genes in HOX clusters of a marsupial

    PubMed Central

    2012-01-01

    Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672

  9. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term.

    PubMed

    Romero, Roberto; Tarca, Adi L; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S; Kalita, Cynthia A; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-09-01

    To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.

  10. Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-Expressed Gene Modules

    PubMed Central

    Spangler, Jacob B.; Ficklin, Stephen P.; Luo, Feng; Freeling, Michael; Feltus, F. Alex

    2012-01-01

    Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome. PMID:23024789

  11. Conserved non-coding regulatory signatures in Arabidopsis co-expressed gene modules.

    PubMed

    Spangler, Jacob B; Ficklin, Stephen P; Luo, Feng; Freeling, Michael; Feltus, F Alex

    2012-01-01

    Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.

  12. Identification of coding and non-coding mutational hotspots in cancer genomes.

    PubMed

    Piraino, Scott W; Furney, Simon J

    2017-01-05

    The identification of mutations that play a causal role in tumour development, so called "driver" mutations, is of critical importance for understanding how cancers form and how they might be treated. Several large cancer sequencing projects have identified genes that are recurrently mutated in cancer patients, suggesting a role in tumourigenesis. While the landscape of coding drivers has been extensively studied and many of the most prominent driver genes are well characterised, comparatively less is known about the role of mutations in the non-coding regions of the genome in cancer development. The continuing fall in genome sequencing costs has resulted in a concomitant increase in the number of cancer whole genome sequences being produced, facilitating systematic interrogation of both the coding and non-coding regions of cancer genomes. To examine the mutational landscapes of tumour genomes we have developed a novel method to identify mutational hotspots in tumour genomes using both mutational data and information on evolutionary conservation. We have applied our methodology to over 1300 whole cancer genomes and show that it identifies prominent coding and non-coding regions that are known or highly suspected to play a role in cancer. Importantly, we applied our method to the entire genome, rather than relying on predefined annotations (e.g. promoter regions) and we highlight recurrently mutated regions that may have resulted from increased exposure to mutational processes rather than selection, some of which have been identified previously as targets of selection. Finally, we implicate several pan-cancer and cancer-specific candidate non-coding regions, which could be involved in tumourigenesis. We have developed a framework to identify mutational hotspots in cancer genomes, which is applicable to the entire genome. This framework identifies known and novel coding and non-coding mutional hotspots and can be used to differentiate candidate driver regions from

  13. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex.

    PubMed

    Jenkins, Adam M; Waterhouse, Robert M; Muskavitch, Marc A T

    2015-04-23

    Long non-coding RNAs (lncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with critical roles in epigenetic regulation. Various lncRNAs have been implicated in the modulation of chromatin structure, transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis elegans, and Drosophila melanogaster. The purpose of this study is to identify the lncRNA landscape in the malaria vector An. gambiae and assess the evolutionary conservation of lncRNAs and their secondary structures across the Anopheles genus. Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 lncRNAs and more than 300 previously unannotated putative protein-coding genes. The lncRNAs exhibit differential expression profiles across life stages and adult genders. We find that across the genus Anopheles, lncRNAs display much lower sequence conservation than protein-coding genes. Additionally, we find that lncRNA secondary structure is highly conserved within the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles. This study offers one of the first lncRNA secondary structure analyses in vector insects. Our description of lncRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into lncRNAs in this vector mosquito, and defines a set of potential targets for the development of vector-based interventions that may further curb the human malaria burden in disease-endemic countries.

  14. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term

    PubMed Central

    Romero, Roberto; Tarca, Adi; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S.; Kalita, Cynthia A.; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-01-01

    Objective The mechanisms responsible for normal and abnormal parturition are poorly understood. Myometrial activation leading to regular uterine contractions is a key component of labor. Dysfunctional labor (arrest of dilatation and/or descent) is a leading indication for cesarean delivery. Compelling evidence suggests that most of these disorders are functional in nature, and not the result of cephalopelvic disproportion. The methodology and the datasets afforded by the post-genomic era provide novel opportunities to understand and target gene functions in these disorders. In 2012, the ENCODE Consortium elucidated the extraordinary abundance and functional complexity of long non-coding RNA genes in the human genome. The purpose of the study was to identify differentially expressed long non-coding RNA genes in human myometrium in women in spontaneous labor at term. Materials and Methods Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n=19) and women in spontaneous labor at term (n=20). RNA was extracted and profiled using an Illumina® microarray platform. The analysis of the protein coding genes from this study has been previously reported. Here, we have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. Results Upon considering more than 18,498 distinct lncRNA genes compiled nonredundantly from public experimental data sources, and interrogating 2,634 that matched Illumina microarray probes, we identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an independent experimental method. Intriguingly, one of the two lnc

  15. Nucleotide sequence determination of guinea-pig casein B mRNA reveals homology with bovine and rat alpha s1 caseins and conservation of the non-coding regions of the mRNA.

    PubMed Central

    Hall, L; Laird, J E; Craig, R K

    1984-01-01

    Nucleotide sequence analysis of cloned guinea-pig casein B cDNA sequences has identified two casein B variants related to the bovine and rat alpha s1 caseins. Amino acid homology was largely confined to the known bovine or predicted rat phosphorylation sites and within the 'signal' precursor sequence. Comparison of the deduced nucleotide sequence of the guinea-pig and rat alpha s1 casein mRNA species showed greater sequence conservation in the non-coding than in the coding regions, suggesting a functional and possibly regulatory role for the non-coding regions of casein mRNA. The results provide insight into the evolution of the casein genes, and raise questions as to the role of conserved nucleotide sequences within the non-coding regions of mRNA species. Images Fig. 1. PMID:6548375

  16. Genetic evidence for conserved non-coding element function across species–the ears have it

    PubMed Central

    Turner, Eric E.; Cox, Timothy C.

    2014-01-01

    Comparison of genomic sequences from diverse vertebrate species has revealed numerous highly conserved regions that do not appear to encode proteins or functional RNAs. Often these “conserved non-coding elements,” or CNEs, can direct gene expression to specific tissues in transgenic models, demonstrating they have regulatory function. CNEs are frequently found near “developmental” genes, particularly transcription factors, implying that these elements have essential regulatory roles in development. However, actual examples demonstrating CNE regulatory functions across species have been few, and recent loss-of-function studies of several CNEs in mice have shown relatively minor effects. In this Perspectives article, we discuss new findings in “fancy” rats and Highland cattle demonstrating that function of a CNE near the Hmx1 gene is crucial for normal external ear development and when disrupted can mimic loss-of function Hmx1 coding mutations in mice and humans. These findings provide important support for conserved developmental roles of CNEs in divergent species, and reinforce the concept that CNEs should be examined systematically in the ongoing search for genetic causes of human developmental disorders in the era of genome-scale sequencing. PMID:24478720

  17. Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs

    PubMed Central

    2014-01-01

    Background The genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using tiling arrays. Results We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed. Conclusions It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events. PMID:24594072

  18. Molecular Evolution of the Non-Coding Eosinophil Granule Ontogeny Transcript

    PubMed Central

    Rose, Dominic; Stadler, Peter F.

    2011-01-01

    Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs). The evolutionary history of mlncRNAs is still largely uncharted territory. In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT), an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs). EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyze patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrate here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved, and thermodynamic stable secondary structures. Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element. PMID:22303364

  19. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals.

    PubMed

    Davies, Kalina T J; Tsagkogeorga, Georgia; Rossiter, Stephen J

    2014-12-19

    The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise

  20. Hundreds of conserved non-coding genomic regions are independently lost in mammals

    PubMed Central

    Hiller, Michael; Schaar, Bruce T.; Bejerano, Gill

    2012-01-01

    Conserved non-protein-coding DNA elements (CNEs) often encode cis-regulatory elements and are rarely lost during evolution. However, CNE losses that do occur can be associated with phenotypic changes, exemplified by pelvic spine loss in sticklebacks. Using a computational strategy to detect complete loss of CNEs in mammalian genomes while strictly controlling for artifacts, we find >600 CNEs that are independently lost in at least two mammalian lineages, including a spinal cord enhancer near GDF11. We observed several genomic regions where multiple independent CNE loss events happened; the most extreme is the DIAPH2 locus. We show that CNE losses often involve deletions and that CNE loss frequencies are non-uniform. Similar to less pleiotropic enhancers, we find that independently lost CNEs are shorter, slightly less constrained and evolutionarily younger than CNEs without detected losses. This suggests that independently lost CNEs are less pleiotropic and that pleiotropic constraints contribute to non-uniform CNE loss frequencies. We also detected 35 CNEs that are independently lost in the human lineage and in other mammals. Our study uncovers an interesting aspect of the evolution of functional DNA in mammalian genomes. Experiments are necessary to test if these independently lost CNEs are associated with parallel phenotype changes in mammals. PMID:23042682

  1. Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate

    PubMed Central

    Juul, Malene; Bertl, Johanna; Guo, Qianyun; Nielsen, Morten Muhlig; Świtnicki, Michał; Hornshøj, Henrik; Madsen, Tobias; Hobolth, Asger; Pedersen, Jakob Skou

    2017-01-01

    Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associates with altered expression or decreased patient survival across an independent pan-cancer sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5’UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance. DOI: http://dx.doi.org/10.7554/eLife.21778.001 PMID:28362259

  2. Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis.

    PubMed

    Spangler, Jacob B; Feltus, Frank Alex

    2013-01-01

    Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression.

  3. Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis

    PubMed Central

    Spangler, Jacob B.; Feltus, Frank Alex

    2013-01-01

    Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression. PMID:23675377

  4. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci.

    PubMed

    Amaral, Paulo P; Leonardi, Tommaso; Han, Namshik; Viré, Emmanuelle; Gascoigne, Dennis K; Arias-Carrasco, Raúl; Büscher, Magdalena; Pandolfini, Luca; Zhang, Anda; Pluchino, Stefano; Maracaja-Coutinho, Vinicius; Nakaya, Helder I; Hemberg, Martin; Shiekhattar, Ramin; Enright, Anton J; Kouzarides, Tony

    2018-03-15

    The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.

  5. Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout.

    PubMed

    Al-Tobasei, Rafet; Paneru, Bam; Salem, Mohamed

    2016-01-01

    The ENCODE project revealed that ~70% of the human genome is transcribed. While only 1-2% of the RNAs encode for proteins, the rest are non-coding RNAs. Long non-coding RNAs (lncRNAs) form a diverse class of non-coding RNAs that are longer than 200 nt. Emerging evidence indicates that lncRNAs play critical roles in various cellular processes including regulation of gene expression. LncRNAs show low levels of gene expression and sequence conservation, which make their computational identification in genomes difficult. In this study, more than two billion Illumina sequence reads were mapped to the genome reference using the TopHat and Cufflinks software. Transcripts shorter than 200 nt, with more than 83-100 amino acids ORF, or with significant homologies to the NCBI nr-protein database were removed. In addition, a computational pipeline was used to filter the remaining transcripts based on a protein-coding-score test. Depending on the filtering stringency conditions, between 31,195 and 54,503 lncRNAs were identified, with only 421 matching known lncRNAs in other species. A digital gene expression atlas revealed 2,935 tissue-specific and 3,269 ubiquitously-expressed lncRNAs. This study annotates the lncRNA rainbow trout genome and provides a valuable resource for functional genomics research in salmonids.

  6. Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development

    PubMed Central

    Sanges, Remo; Hadzhiev, Yavor; Gueroult-Bellone, Marion; Roure, Agnes; Ferg, Marco; Meola, Nicola; Amore, Gabriele; Basu, Swaraj; Brown, Euan R.; De Simone, Marco; Petrera, Francesca; Licastro, Danilo; Strähle, Uwe; Banfi, Sandro; Lemaire, Patrick; Birney, Ewan; Müller, Ferenc; Stupka, Elia

    2013-01-01

    Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as ‘Olfactores conserved non-coding elements’. PMID:23393190

  7. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  8. Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain.

    PubMed

    Woolley, Sarah M N; Portfors, Christine V

    2013-11-01

    The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Building Standards and Codes for Energy Conservation

    ERIC Educational Resources Information Center

    Gross, James G.; Pierlert, James H.

    1977-01-01

    Current activity intended to lead to energy conservation measures in building codes and standards is reviewed by members of the Office of Building Standards and Codes Services of the National Bureau of Standards. For journal availability see HE 508 931. (LBH)

  10. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish.

    PubMed

    Chen, Wen; Zhang, Xuan; Li, Jing; Huang, Shulan; Xiang, Shuanglin; Hu, Xiang; Liu, Changning

    2018-05-09

    Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs' function and conservation is really intriguing. We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human.

  11. A Very Fast and Angular Momentum Conserving Tree Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcello, Dominic C., E-mail: dmarce504@gmail.com

    There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.

  12. Transcriptator: An Automated Computational Pipeline to Annotate Assembled Reads and Identify Non Coding RNA.

    PubMed

    Tripathi, Kumar Parijat; Evangelista, Daniela; Zuccaro, Antonio; Guarracino, Mario Rosario

    2015-01-01

    RNA-seq is a new tool to measure RNA transcript counts, using high-throughput sequencing at an extraordinary accuracy. It provides quantitative means to explore the transcriptome of an organism of interest. However, interpreting this extremely large data into biological knowledge is a problem, and biologist-friendly tools are lacking. In our lab, we developed Transcriptator, a web application based on a computational Python pipeline with a user-friendly Java interface. This pipeline uses the web services available for BLAST (Basis Local Search Alignment Tool), QuickGO and DAVID (Database for Annotation, Visualization and Integrated Discovery) tools. It offers a report on statistical analysis of functional and Gene Ontology (GO) annotation's enrichment. It helps users to identify enriched biological themes, particularly GO terms, pathways, domains, gene/proteins features and protein-protein interactions related informations. It clusters the transcripts based on functional annotations and generates a tabular report for functional and gene ontology annotations for each submitted transcript to the web server. The implementation of QuickGo web-services in our pipeline enable the users to carry out GO-Slim analysis, whereas the integration of PORTRAIT (Prediction of transcriptomic non coding RNA (ncRNA) by ab initio methods) helps to identify the non coding RNAs and their regulatory role in transcriptome. In summary, Transcriptator is a useful software for both NGS and array data. It helps the users to characterize the de-novo assembled reads, obtained from NGS experiments for non-referenced organisms, while it also performs the functional enrichment analysis of differentially expressed transcripts/genes for both RNA-seq and micro-array experiments. It generates easy to read tables and interactive charts for better understanding of the data. The pipeline is modular in nature, and provides an opportunity to add new plugins in the future. Web application is freely

  13. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria.

    PubMed

    Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R; Voß, Björn

    2015-04-22

    In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5'UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5'UTR. Such an sRNA/mRNA structure, which we name 'actuaton', represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation.

  14. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria

    PubMed Central

    Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R.; Voß, Björn

    2015-01-01

    In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5′UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5′UTR. Such an sRNA/mRNA structure, which we name ‘actuaton’, represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation. PMID:25902393

  15. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.

    PubMed

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Calixto, Edmundo P da R; Motta, Mariana R; Ballesteros, Helkin G F; Peixoto, Barbara; de Lima, Berenice N S; Vieira, Lucas M; Walter, Maria Emilia; de Armas, Elvismary M; Entenza, Júlio O P; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2017-12-20

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  16. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    PubMed Central

    Grativol, Clícia; Motta, Mariana R.; Ballesteros, Helkin G. F.; Peixoto, Barbara; Vieira, Lucas M.; Walter, Maria Emilia; de Armas, Elvismary M.; Entenza, Júlio O. P.; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S.

    2017-01-01

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly. PMID:29657296

  17. Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats

    PubMed Central

    2010-01-01

    Background Adenosine to inosine (A-to-I) RNA-editing is an essential post-transcriptional mechanism that occurs in numerous sites in the human transcriptome, mainly within Alu repeats. It has been shown to have consistent levels of editing across individuals in a few targets in the human brain and altered in several human pathologies. However, the variability across human individuals of editing levels in other tissues has not been studied so far. Results Here, we analyzed 32 skin samples, looking at A-to-I editing level in three genes within coding sequences and in the Alu repeats of six different genes. We observed highly consistent editing levels across different individuals as well as across tissues, not only in coding targets but, surprisingly, also in the non evolutionary conserved Alu repeats. Conclusions Our findings suggest that A-to-I RNA-editing of Alu elements is a tightly regulated process and, as such, might have been recruited in the course of primate evolution for post-transcriptional regulatory mechanisms. PMID:21029430

  18. Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis

    PubMed Central

    El Khodiry, Aya; Afify, Menna; El Tayebi, Hend M

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs (lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren’t as high as that of mRNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future. PMID:29434445

  19. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3' UTRs and coding sequences.

    PubMed

    Šulc, Miroslav; Marín, Ray M; Robins, Harlan S; Vaníček, Jiří

    2015-07-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3' untranslated regions (3' UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3' UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA-mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA-mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. CSTminer: a web tool for the identification of coding and noncoding conserved sequence tags through cross-species genome comparison

    PubMed Central

    Castrignanò, Tiziana; Canali, Alessandro; Grillo, Giorgio; Liuni, Sabino; Mignone, Flavio; Pesole, Graziano

    2004-01-01

    The identification and characterization of genome tracts that are highly conserved across species during evolution may contribute significantly to the functional annotation of whole-genome sequences. Indeed, such sequences are likely to correspond to known or unknown coding exons or regulatory motifs. Here, we present a web server implementing a previously developed algorithm that, by comparing user-submitted genome sequences, is able to identify statistically significant conserved blocks and assess their coding or noncoding nature through the measure of a coding potential score. The web tool, available at http://www.caspur.it/CSTminer/, is dynamically interconnected with the Ensembl genome resources and produces a graphical output showing a map of detected conserved sequences and annotated gene features. PMID:15215464

  1. The non-coding RNA landscape of human hematopoiesis and leukemia.

    PubMed

    Schwarzer, Adrian; Emmrich, Stephan; Schmidt, Franziska; Beck, Dominik; Ng, Michelle; Reimer, Christina; Adams, Felix Ferdinand; Grasedieck, Sarah; Witte, Damian; Käbler, Sebastian; Wong, Jason W H; Shah, Anushi; Huang, Yizhou; Jammal, Razan; Maroz, Aliaksandra; Jongen-Lavrencic, Mojca; Schambach, Axel; Kuchenbauer, Florian; Pimanda, John E; Reinhardt, Dirk; Heckl, Dirk; Klusmann, Jan-Henning

    2017-08-09

    Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.

  2. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3′ UTRs and coding sequences

    PubMed Central

    Šulc, Miroslav; Marín, Ray M.; Robins, Harlan S.; Vaníček, Jiří

    2015-01-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3′ untranslated regions (3′ UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3′ UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA–mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA–mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. PMID:25948580

  3. Temperate non-breeding surveys - a key to shorebird conservation

    Treesearch

    Sue Thomas

    2005-01-01

    Completion of the United States and Canadian shorebird conservation plans recently identified and prioritized shorebird monitoring, management, and conservation needs in the Western Hemisphere. We present an emerging approach to monitor shorebird use of temperate non-breeding areas under the Program for Regional and International Shorebird Monitoring (PRISM). This...

  4. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    PubMed Central

    Saqib, Hafiz Sohaib Ahmed; You, Minsheng

    2017-01-01

    Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H)—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies. PMID:29085741

  5. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts

    PubMed Central

    Paraskevopoulou, Maria D.; Vlachos, Ioannis S.; Karagkouni, Dimitra; Georgakilas, Georgios; Kanellos, Ilias; Vergoulis, Thanasis; Zagganas, Konstantinos; Tsanakas, Panayiotis; Floros, Evangelos; Dalamagas, Theodore; Hatzigeorgiou, Artemis G.

    2016-01-01

    microRNAs (miRNAs) are short non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of coding gene expression. Long non-coding RNAs (lncRNAs) have been recently reported to interact with miRNAs. The sponge-like function of lncRNAs introduces an extra layer of complexity in the miRNA interactome. DIANA-LncBase v1 provided a database of experimentally supported and in silico predicted miRNA Recognition Elements (MREs) on lncRNAs. The second version of LncBase (www.microrna.gr/LncBase) presents an extensive collection of miRNA:lncRNA interactions. The significantly enhanced database includes more than 70 000 low and high-throughput, (in)direct miRNA:lncRNA experimentally supported interactions, derived from manually curated publications and the analysis of 153 AGO CLIP-Seq libraries. The new experimental module presents a 14-fold increase compared to the previous release. LncBase v2 hosts in silico predicted miRNA targets on lncRNAs, identified with the DIANA-microT algorithm. The relevant module provides millions of predicted miRNA binding sites, accompanied with detailed metadata and MRE conservation metrics. LncBase v2 caters information regarding cell type specific miRNA:lncRNA regulation and enables users to easily identify interactions in 66 different cell types, spanning 36 tissues for human and mouse. Database entries are also supported by accurate lncRNA expression information, derived from the analysis of more than 6 billion RNA-Seq reads. PMID:26612864

  6. The Hippo pathway in hepatocellular carcinoma: Non-coding RNAs in action.

    PubMed

    Shi, Xuan; Zhu, Hai-Rong; Liu, Tao-Tao; Shen, Xi-Zhong; Zhu, Ji-Min

    2017-08-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide. However, current strategies curing HCC are far from satisfaction. The Hippo pathway is an evolutionarily conserved tumor suppressive pathway that plays crucial roles in organ size control and tissue homeostasis. Its dysregulation is commonly observed in various types of cancer including HCC. Recently, the prominent role of non-coding RNAs in the Hippo pathway during normal development and neoplastic progression is also emerging in liver. Thus, further investigation into the regulatory network between non-coding RNAs and the Hippo pathway and their connections with HCC may provide new therapeutic avenues towards developing an effective preventative or perhaps curative treatment for HCC. Herein we summarize the role of non-coding RNAs in the Hippo pathway, with an emphasis on their contribution to carcinogenesis, diagnosis, treatment and prognosis of HCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Diversity of Antisense and Other Non-Coding RNAs in Archaea Revealed by Comparative Small RNA Sequencing in Four Pyrobaculum Species

    PubMed Central

    Bernick, David L.; Dennis, Patrick P.; Lui, Lauren M.; Lowe, Todd M.

    2012-01-01

    A great diversity of small, non-coding RNA (ncRNA) molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs (sRNA) in archaea is limited. We employed RNA-seq to identify novel sRNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense sRNAs encoded opposite to key regulatory (ferric uptake regulator), metabolic (triose-phosphate isomerase), and core transcriptional apparatus genes (transcription factor B). We also found a large increase in the number of conserved C/D box sRNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these sRNAs indicates they are relatively recent, stable adaptations. PMID:22783241

  8. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome.

    PubMed

    Bush, Stephen J; Muriuki, Charity; McCulloch, Mary E B; Farquhar, Iseabail L; Clark, Emily L; Hume, David A

    2018-04-24

    mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species.

  9. Long Non-Coding RNAs Regulating Immunity in Insects

    PubMed Central

    Satyavathi, Valluri; Ghosh, Rupam; Subramanian, Srividya

    2017-01-01

    Recent advances in modern technology have led to the understanding that not all genetic information is coded into protein and that the genomes of each and every organism including insects produce non-coding RNAs that can control different biological processes. Among RNAs identified in the last decade, long non-coding RNAs (lncRNAs) represent a repertoire of a hidden layer of internal signals that can regulate gene expression in physiological, pathological, and immunological processes. Evidence shows the importance of lncRNAs in the regulation of host–pathogen interactions. In this review, an attempt has been made to view the role of lncRNAs regulating immune responses in insects. PMID:29657286

  10. Long Non-Coding RNAs Differentially Expressed between Normal versus Primary Breast Tumor Tissues Disclose Converse Changes to Breast Cancer-Related Protein-Coding Genes

    PubMed Central

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the

  11. Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes.

    PubMed

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the

  12. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts.

    PubMed

    Paraskevopoulou, Maria D; Vlachos, Ioannis S; Karagkouni, Dimitra; Georgakilas, Georgios; Kanellos, Ilias; Vergoulis, Thanasis; Zagganas, Konstantinos; Tsanakas, Panayiotis; Floros, Evangelos; Dalamagas, Theodore; Hatzigeorgiou, Artemis G

    2016-01-04

    microRNAs (miRNAs) are short non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of coding gene expression. Long non-coding RNAs (lncRNAs) have been recently reported to interact with miRNAs. The sponge-like function of lncRNAs introduces an extra layer of complexity in the miRNA interactome. DIANA-LncBase v1 provided a database of experimentally supported and in silico predicted miRNA Recognition Elements (MREs) on lncRNAs. The second version of LncBase (www.microrna.gr/LncBase) presents an extensive collection of miRNA:lncRNA interactions. The significantly enhanced database includes more than 70 000 low and high-throughput, (in)direct miRNA:lncRNA experimentally supported interactions, derived from manually curated publications and the analysis of 153 AGO CLIP-Seq libraries. The new experimental module presents a 14-fold increase compared to the previous release. LncBase v2 hosts in silico predicted miRNA targets on lncRNAs, identified with the DIANA-microT algorithm. The relevant module provides millions of predicted miRNA binding sites, accompanied with detailed metadata and MRE conservation metrics. LncBase v2 caters information regarding cell type specific miRNA:lncRNA regulation and enables users to easily identify interactions in 66 different cell types, spanning 36 tissues for human and mouse. Database entries are also supported by accurate lncRNA expression information, derived from the analysis of more than 6 billion RNA-Seq reads. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. DNA rearrangements directed by non-coding RNAs in ciliates

    PubMed Central

    Mochizuki, Kazufumi

    2013-01-01

    Extensive programmed rearrangement of DNA, including DNA elimination, chromosome fragmentation, and DNA descrambling, takes place in the newly developed macronucleus during the sexual reproduction of ciliated protozoa. Recent studies have revealed that two distant classes of ciliates use distinct types of non-coding RNAs to regulate such DNA rearrangement events. DNA elimination in Tetrahymena is regulated by small non-coding RNAs that are produced and utilized in an RNAi-related process. It has been proposed that the small RNAs produced from the micronuclear genome are used to identify eliminated DNA sequences by whole-genome comparison between the parental macronucleus and the micronucleus. In contrast, DNA descrambling in Oxytricha is guided by long non-coding RNAs that are produced from the parental macronuclear genome. These long RNAs are proposed to act as templates for the direct descrambling events that occur in the developing macronucleus. Both cases provide useful examples to study epigenetic chromatin regulation by non-coding RNAs. PMID:21956937

  15. Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates

    PubMed Central

    McEwen, Gayle K.; Goode, Debbie K.; Parker, Hugo J.; Woolfe, Adam; Callaway, Heather; Elgar, Greg

    2009-01-01

    Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. PMID:20011110

  16. Functionally conserved cis-regulatory elements of COL18A1 identified through zebrafish transgenesis.

    PubMed

    Kague, Erika; Bessling, Seneca L; Lee, Josephine; Hu, Gui; Passos-Bueno, Maria Rita; Fisher, Shannon

    2010-01-15

    Type XVIII collagen is a component of basement membranes, and expressed prominently in the eye, blood vessels, liver, and the central nervous system. Homozygous mutations in COL18A1 lead to Knobloch Syndrome, characterized by ocular defects and occipital encephalocele. However, relatively little has been described on the role of type XVIII collagen in development, and nothing is known about the regulation of its tissue-specific expression pattern. We have used zebrafish transgenesis to identify and characterize cis-regulatory sequences controlling expression of the human gene. Candidate enhancers were selected from non-coding sequence associated with COL18A1 based on sequence conservation among mammals. Although these displayed no overt conservation with orthologous zebrafish sequences, four regions nonetheless acted as tissue-specific transcriptional enhancers in the zebrafish embryo, and together recapitulated the major aspects of col18a1 expression. Additional post-hoc computational analysis on positive enhancer sequences revealed alignments between mammalian and teleost sequences, which we hypothesize predict the corresponding zebrafish enhancers; for one of these, we demonstrate functional overlap with the orthologous human enhancer sequence. Our results provide important insight into the biological function and regulation of COL18A1, and point to additional sequences that may contribute to complex diseases involving COL18A1. More generally, we show that combining functional data with targeted analyses for phylogenetic conservation can reveal conserved cis-regulatory elements in the large number of cases where computational alignment alone falls short. Copyright 2009 Elsevier Inc. All rights reserved.

  17. Energy Cost Impact of Non-Residential Energy Code Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian; Hart, Philip R.; Rosenberg, Michael I.

    2016-08-22

    The 2012 International Energy Conservation Code contains 396 separate requirements applicable to non-residential buildings; however, there is no systematic analysis of the energy cost impact of each requirement. Consequently, limited code department budgets for plan review, inspection, and training cannot be focused on the most impactful items. An inventory and ranking of code requirements based on their potential energy cost impact is under development. The initial phase focuses on office buildings with simple HVAC systems in climate zone 4C. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance. A preliminary estimate of themore » probability of occurrence of each level of non-compliance was combined with the estimated lost savings for each level to rank the requirements according to expected savings impact. The methodology to develop and refine further energy cost impacts, specific to building type, system type, and climate location is demonstrated. As results are developed, an innovative alternative method for compliance verification can focus efforts so only the most impactful requirements from an energy cost perspective are verified for every building and a subset of the less impactful requirements are verified on a random basis across a building population. The results can be further applied in prioritizing training material development and specific areas of building official training.« less

  18. Identifying personal microbiomes using metagenomic codes

    PubMed Central

    Franzosa, Eric A.; Huang, Katherine; Meadow, James F.; Gevers, Dirk; Lemon, Katherine P.; Bohannan, Brendan J. M.; Huttenhower, Curtis

    2015-01-01

    Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30–300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability—a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability. PMID:25964341

  19. Long non-coding RNA expression profile in cervical cancer tissues

    PubMed Central

    Zhu, Hua; Chen, Xiangjian; Hu, Yan; Shi, Zhengzheng; Zhou, Qing; Zheng, Jingjie; Wang, Yifeng

    2017-01-01

    Cervical cancer (CC), one of the most common types of cancer of the female population, presents an enormous challenge in diagnosis and treatment. Long non-coding (lnc)RNAs, non-coding (nc)RNAs with length >200 nucleotides, have been identified to be associated with multiple types of cancer, including CC. This class of nc transcripts serves an important role in tumor suppression and oncogenic signaling pathways. In the present study, the microarray method was used to obtain the expression profile of lncRNAs and protein-coding mRNAs and to compare the expression of lncRNAs between CC tissues and corresponding adjacent non-cancerous tissues in order to screen potential lncRNAs for associations with CC. Overall, 3356 lncRNAs with significantly different expression pattern in CC tissues compared with adjacent non-cancerous tissues were identified, while 1,857 of them were upregulated. These differentially expressed lncRNAs were additionally classified into 5 subgroups. Reverse transcription quantitative polymerase chain reactions were performed to validate the expression pattern of 5 random selected lncRNAs, and 2lncRNAs were identified to have significantly different expression in CC samples compared with adjacent non-cancerous tissues. This finding suggests that those lncRNAs with different expression may serve important roles in the development of CC, and the expression data may provide information for additional study on the involvement of lncRNAs in CC. PMID:28789353

  20. Dysregulation of non-coding RNAs in gastric cancer

    PubMed Central

    Yang, Qing; Zhang, Ren-Wen; Sui, Peng-Cheng; He, Hai-Tao; Ding, Lei

    2015-01-01

    Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC. PMID:26494954

  1. Transcription Factor Binding Profiles Reveal Cyclic Expression of Human Protein-coding Genes and Non-coding RNAs

    PubMed Central

    Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.

    2013-01-01

    Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175

  2. [Long non-coding RNAs in the pathophysiology of atherosclerosis].

    PubMed

    Novak, Jan; Vašků, Julie Bienertová; Souček, Miroslav

    2018-01-01

    The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2-3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as "non-coding RNAs". Earlier the non-coding RNA was considered "the dark matter of genome", or "the junk", whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body - they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.Key words

  3. R-charge conservation and more in factorizable and non-factorizable orbifolds

    NASA Astrophysics Data System (ADS)

    Bizet, Nana G. Cabo; Kobayashi, Tatsuo; Peña, Damián K. Mayorga; Parameswaran, Susha L.; Schmitz, Matthias; Zavala, Ivonne

    2013-05-01

    We consider the string theory origin of R-charge conservation laws in heterotic orbifold compactifications, deriving the corresponding string coupling selection rule for factorizable and non-factorizable orbifolds, with prime ordered and non-prime ordered point groups. R-charge conservation arises due to symmetries among the worldsheet instantons that can mediate the couplings. Among our results is a previously missed non-trivial contribution to the conserved R-charges from the γ-phases in non-prime orbifolds, which weakens the R-charge selection rule. Symmetries among the worldsheet instantons can also lead to additional selection rules for some couplings. We make a similar analysis for Rule 4 or the "torus lattice selection rule". Moreover, we identify a new string selection rule, that we call Rule 6 or the "coset vector selection rule".

  4. Current Research on Non-Coding Ribonucleic Acid (RNA).

    PubMed

    Wang, Jing; Samuels, David C; Zhao, Shilin; Xiang, Yu; Zhao, Ying-Yong; Guo, Yan

    2017-12-05

    Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.

  5. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene

    PubMed Central

    Seim, Inge; Carter, Shea L; Herington, Adrian C; Chopin, Lisa K

    2008-01-01

    Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also

  6. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene.

    PubMed

    Seim, Inge; Carter, Shea L; Herington, Adrian C; Chopin, Lisa K

    2008-10-28

    The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential

  7. 76 FR 53912 - FDA's Public Database of Products With Orphan-Drug Designation: Replacing Non-Informative Code...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ...] FDA's Public Database of Products With Orphan-Drug Designation: Replacing Non-Informative Code Names... replaced non- informative code names with descriptive identifiers on its public database of products that... on our public database with non-informative code names. After careful consideration of this matter...

  8. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites.

    PubMed

    Betel, Doron; Koppal, Anjali; Agius, Phaedra; Sander, Chris; Leslie, Christina

    2010-01-01

    mirSVR is a new machine learning method for ranking microRNA target sites by a down-regulation score. The algorithm trains a regression model on sequence and contextual features extracted from miRanda-predicted target sites. In a large-scale evaluation, miRanda-mirSVR is competitive with other target prediction methods in identifying target genes and predicting the extent of their downregulation at the mRNA or protein levels. Importantly, the method identifies a significant number of experimentally determined non-canonical and non-conserved sites.

  9. Non-coding variants contribute to the clinical heterogeneity of TTR amyloidosis.

    PubMed

    Iorio, Andrea; De Lillo, Antonella; De Angelis, Flavio; Di Girolamo, Marco; Luigetti, Marco; Sabatelli, Mario; Pradotto, Luca; Mauro, Alessandro; Mazzeo, Anna; Stancanelli, Claudia; Perfetto, Federico; Frusconi, Sabrina; My, Filomena; Manfellotto, Dario; Fuciarelli, Maria; Polimanti, Renato

    2017-09-01

    Coding mutations in TTR gene cause a rare hereditary form of systemic amyloidosis, which has a complex genotype-phenotype correlation. We investigated the role of non-coding variants in regulating TTR gene expression and consequently amyloidosis symptoms. We evaluated the genotype-phenotype correlation considering the clinical information of 129 Italian patients with TTR amyloidosis. Then, we conducted a re-sequencing of TTR gene to investigate how non-coding variants affect TTR expression and, consequently, phenotypic presentation in carriers of amyloidogenic mutations. Polygenic scores for genetically determined TTR expression were constructed using data from our re-sequencing analysis and the GTEx (Genotype-Tissue Expression) project. We confirmed a strong phenotypic heterogeneity across coding mutations causing TTR amyloidosis. Considering the effects of non-coding variants on TTR expression, we identified three patient clusters with specific expression patterns associated with certain phenotypic presentations, including late onset, autonomic neurological involvement, and gastrointestinal symptoms. This study provides novel data regarding the role of non-coding variation and the gene expression profiles in patients affected by TTR amyloidosis, also putting forth an approach that could be used to investigate the mechanisms at the basis of the genotype-phenotype correlation of the disease.

  10. The origins and evolutionary history of human non-coding RNA regulatory networks.

    PubMed

    Sherafatian, Masih; Mowla, Seyed Javad

    2017-04-01

    The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.

  11. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics

    PubMed Central

    del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I

    2007-01-01

    Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts. PMID:17971083

  12. Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs.

    PubMed

    Sethuraman, Sunantha; Thomas, Merin; Gay, Lauren A; Renne, Rolf

    2018-05-29

    Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi's Sarcoma-associated herpes virus (KSHV) and Epstein-Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA-miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA-lncRNA interactions broadly contribute to the regulation of gene expression.

  13. Improvements to Busquet's Non LTE algorithm in NRL's Hydro code

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.

    1996-11-01

    Implementation of the Non LTE model RADIOM (M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form was reported previously(M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995)).While the results were satisfactory, the algorithm was slow and not always converging. We describe here modifications that address the latter two shortcomings. This method is quicker and more stable than the original. It also gives information about the validity of the fitting. It turns out that the number and distribution of groups in the multigroup diffusion opacity tables - a basis for the computation of radiation effects in the ionization balance in RADIOM- has a large influence on the robustness of the algorithm. These modifications give insight about the algorithm, and allow to check that the obtained average charge state is the true average. In addition, code optimization resulted in greatly reduced computing time: The ratio of Non LTE to LTE computing times being now between 1.5 and 2.

  14. Identifying all moiety conservation laws in genome-scale metabolic networks.

    PubMed

    De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea

    2014-01-01

    The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  15. Evolutionarily conserved coding properties of auditory neurons across grasshopper species

    PubMed Central

    Neuhofer, Daniela; Wohlgemuth, Sandra; Stumpner, Andreas; Ronacher, Bernhard

    2008-01-01

    We investigated encoding properties of identified auditory interneurons in two not closely related grasshopper species (Acrididae). The neurons can be homologized on the basis of their similar morphologies and physiologies. As test stimuli, we used the species-specific stridulation signals of Chorthippus biguttulus, which evidently are not relevant for the other species, Locusta migratoria. We recorded spike trains produced in response to these signals from several neuron types at the first levels of the auditory pathway in both species. Using a spike train metric to quantify differences between neuronal responses, we found a high similarity in the responses of homologous neurons: interspecific differences between the responses of homologous neurons in the two species were not significantly larger than intraspecific differences (between several specimens of a neuron in one species). These results suggest that the elements of the thoracic auditory pathway have been strongly conserved during the evolutionary divergence of these species. According to the ‘efficient coding’ hypothesis, an adaptation of the thoracic auditory pathway to the specific needs of acoustic communication could be expected. We conclude that there must have been stabilizing selective forces at work that conserved coding characteristics and prevented such an adaptation. PMID:18505715

  16. Clinical coding of prospectively identified paediatric adverse drug reactions--a retrospective review of patient records.

    PubMed

    Bellis, Jennifer R; Kirkham, Jamie J; Nunn, Anthony J; Pirmohamed, Munir

    2014-12-17

    National Health Service (NHS) hospitals in the UK use a system of coding for patient episodes. The coding system used is the International Classification of Disease (ICD-10). There are ICD-10 codes which may be associated with adverse drug reactions (ADRs) and there is a possibility of using these codes for ADR surveillance. This study aimed to determine whether ADRs prospectively identified in children admitted to a paediatric hospital were coded appropriately using ICD-10. The electronic admission abstract for each patient with at least one ADR was reviewed. A record was made of whether the ADR(s) had been coded using ICD-10. Of 241 ADRs, 76 (31.5%) were coded using at least one ICD-10 ADR code. Of the oncology ADRs, 70/115 (61%) were coded using an ICD-10 ADR code compared with 6/126 (4.8%) non-oncology ADRs (difference in proportions 56%, 95% CI 46.2% to 65.8%; p < 0.001). The majority of ADRs detected in a prospective study at a paediatric centre would not have been identified if the study had relied on ICD-10 codes as a single means of detection. Data derived from administrative healthcare databases are not reliable for identifying ADRs by themselves, but may complement other methods of detection.

  17. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1997-01-01

    In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.

  18. Role of non-coding RNAs in non-aging-related neurological disorders.

    PubMed

    Vieira, A S; Dogini, D B; Lopes-Cendes, I

    2018-06-11

    Protein coding sequences represent only 2% of the human genome. Recent advances have demonstrated that a significant portion of the genome is actively transcribed as non-coding RNA molecules. These non-coding RNAs are emerging as key players in the regulation of biological processes, and act as "fine-tuners" of gene expression. Neurological disorders are caused by a wide range of genetic mutations, epigenetic and environmental factors, and the exact pathophysiology of many of these conditions is still unknown. It is currently recognized that dysregulations in the expression of non-coding RNAs are present in many neurological disorders and may be relevant in the mechanisms leading to disease. In addition, circulating non-coding RNAs are emerging as potential biomarkers with great potential impact in clinical practice. In this review, we discuss mainly the role of microRNAs and long non-coding RNAs in several neurological disorders, such as epilepsy, Huntington disease, fragile X-associated ataxia, spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), and pain. In addition, we give information about the conditions where microRNAs have demonstrated to be potential biomarkers such as in epilepsy, pain, and ALS.

  19. Quantitative Profiling of Peptides from RNAs classified as non-coding

    PubMed Central

    Prabakaran, Sudhakaran; Hemberg, Martin; Chauhan, Ruchi; Winter, Dominic; Tweedie-Cullen, Ry Y.; Dittrich, Christian; Hong, Elizabeth; Gunawardena, Jeremy; Steen, Hanno; Kreiman, Gabriel; Steen, Judith A.

    2014-01-01

    Only a small fraction of the mammalian genome codes for messenger RNAs destined to be translated into proteins, and it is generally assumed that a large portion of transcribed sequences - including introns and several classes of non-coding RNAs (ncRNAs) do not give rise to peptide products. A systematic examination of translation and physiological regulation of ncRNAs has not been conducted. Here, we use computational methods to identify the products of non-canonical translation in mouse neurons by analyzing unannotated transcripts in combination with proteomic data. This study supports the existence of non-canonical translation products from both intragenic and extragenic genomic regions, including peptides derived from anti-sense transcripts and introns. Moreover, the studied novel translation products exhibit temporal regulation similar to that of proteins known to be involved in neuronal activity processes. These observations highlight a potentially large and complex set of biologically regulated translational events from transcripts formerly thought to lack coding potential. PMID:25403355

  20. lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine.

    PubMed

    Sun, Lei; Liu, Hui; Zhang, Lin; Meng, Jia

    2015-01-01

    Functional long non-coding RNAs (lncRNAs) have been bringing novel insight into biological study, however it is still not trivial to accurately distinguish the lncRNA transcripts (LNCTs) from the protein coding ones (PCTs). As various information and data about lncRNAs are preserved by previous studies, it is appealing to develop novel methods to identify the lncRNAs more accurately. Our method lncRScan-SVM aims at classifying PCTs and LNCTs using support vector machine (SVM). The gold-standard datasets for lncRScan-SVM model training, lncRNA prediction and method comparison were constructed according to the GENCODE gene annotations of human and mouse respectively. By integrating features derived from gene structure, transcript sequence, potential codon sequence and conservation, lncRScan-SVM outperforms other approaches, which is evaluated by several criteria such as sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC) and area under curve (AUC). In addition, several known human lncRNA datasets were assessed using lncRScan-SVM. LncRScan-SVM is an efficient tool for predicting the lncRNAs, and it is quite useful for current lncRNA study.

  1. A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation

    PubMed Central

    Fan, Zenghua; Zhao, Meng; Joshi, Parth D.; Li, Ping; Zhang, Yan; Guo, Weimin; Xu, Yichi; Wang, Haifang; Zhao, Zhihu

    2017-01-01

    Abstract Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expression at various levels. Here we systematically explored circadian long non-coding RNAs (lncRNAs) in mouse liver and examined their circadian regulation. We found that a significant proportion of circadian lncRNAs are expressed at enhancer regions, mostly bound by two key circadian transcription factors, BMAL1 and REV-ERBα. These circadian lncRNAs showed similar circadian phases with their nearby genes. The extent of their nuclear localization is higher than protein coding genes but less than enhancer RNAs. The association between enhancer and circadian lncRNAs is also observed in tissues other than liver. Comparative analysis between mouse and rat circadian liver transcriptomes showed that circadian transcription at lncRNA loci tends to be conserved despite of low sequence conservation of lncRNAs. One such circadian lncRNA termed lnc-Crot led us to identify a super-enhancer region interacting with a cluster of genes involved in circadian regulation of metabolism through long-range interactions. Further experiments showed that lnc-Crot locus has enhancer function independent of lnc-Crot's transcription. Our results suggest that the enhancer-associated circadian lncRNAs mark the genomic loci modulating long-range circadian gene regulation and shed new lights on the evolutionary origin of lncRNAs. PMID:28335007

  2. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... WEST COAST STATES West Coast Salmon Fisheries Pt. 660, Subpt. H, Table 1 Table 1 to Subpart H of Part...

  3. Conserved quantities in non-Abelian monopole fields

    NASA Astrophysics Data System (ADS)

    Horváthy, P. A.; Ngome, J.-P.

    2009-06-01

    Van Holten’s covariant Hamiltonian framework is used to find conserved quantities for an isospin-carrying particle in a non-Abelian monopolelike field. For a Wu-Yang monopole we find the most general scalar potential such that the combined system admits a conserved Runge-Lenz vector. In the effective non-Abelian field for nuclear motion in a diatomic molecule due to Moody, Shapere, and Wilczek, a conserved angular momentum is constructed, despite the nonconservation of the electric charge. No Runge-Lenz vector has been found.

  4. Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening

    PubMed Central

    Dostie, Josée; Lemire, Edmond; Bouchard, Philippe; Field, Michael; Jones, Kristie; Lorenz, Birgit; Menten, Björn; Buysse, Karen; Pattyn, Filip; Friedli, Marc; Ucla, Catherine; Rossier, Colette; Wyss, Carine; Speleman, Frank; De Paepe, Anne; Dekker, Job; Antonarakis, Stylianos E.; De Baere, Elfride

    2009-01-01

    To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular. PMID:19543368

  5. Recommendations on Implementing the Energy Conservation Building Code in Rajasthan, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Makela, Eric J.; Evans, Meredydd

    India launched the Energy Conservation Building Code (ECBC) in 2007 and Indian Bureau of Energy Efficiency (BEE) recently indicated that it would move to mandatory implementation in the 12th Five-Year Plan. The State of Rajasthan adopted ECBC with minor modifications; the new regulation is known as the Energy Conservation Building Directives – Rajasthan 2011 (ECBD-R). It became mandatory in Rajasthan on September 28, 2011. This report provides recommendations on an ECBD-R enforcement roadmap for the State of Rajasthan.

  6. Characterization of Non-coding DNA Satellites Associated with Sweepoviruses (Genus Begomovirus, Geminiviridae) – Definition of a Distinct Class of Begomovirus-Associated Satellites

    PubMed Central

    Lozano, Gloria; Trenado, Helena P.; Fiallo-Olivé, Elvira; Chirinos, Dorys; Geraud-Pouey, Francis; Briddon, Rob W.; Navas-Castillo, Jesús

    2016-01-01

    Begomoviruses (family Geminiviridae) are whitefly-transmitted, plant-infecting single-stranded DNA viruses that cause crop losses throughout the warmer parts of the World. Sweepoviruses are a phylogenetically distinct group of begomoviruses that infect plants of the family Convolvulaceae, including sweet potato (Ipomoea batatas). Two classes of subviral molecules are often associated with begomoviruses, particularly in the Old World; the betasatellites and the alphasatellites. An analysis of sweet potato and Ipomoea indica samples from Spain and Merremia dissecta samples from Venezuela identified small non-coding subviral molecules in association with several distinct sweepoviruses. The sequences of 18 clones were obtained and found to be structurally similar to tomato leaf curl virus-satellite (ToLCV-sat, the first DNA satellite identified in association with a begomovirus), with a region with significant sequence identity to the conserved region of betasatellites, an A-rich sequence, a predicted stem–loop structure containing the nonanucleotide TAATATTAC, and a second predicted stem–loop. These sweepovirus-associated satellites join an increasing number of ToLCV-sat-like non-coding satellites identified recently. Although sharing some features with betasatellites, evidence is provided to suggest that the ToLCV-sat-like satellites are distinct from betasatellites and should be considered a separate class of satellites, for which the collective name deltasatellites is proposed. PMID:26925037

  7. No3CoGP: non-conserved and conserved coexpressed gene pairs.

    PubMed

    Mal, Chittabrata; Aftabuddin, Md; Kundu, Sudip

    2014-12-08

    Analyzing the microarray data of different conditions, one can identify the conserved and condition-specific genes and gene modules, and thus can infer the underlying cellular activities. All the available tools based on Bioconductor and R packages differ in how they extract differential coexpression and at what level they study. There is a need for a user-friendly, flexible tool which can start analysis using raw or preprocessed microarray data and can report different levels of useful information. We present a GUI software, No3CoGP: Non-Conserved and Conserved Coexpressed Gene Pairs which takes Affymetrix microarray data (.CEL files or log2 normalized.txt files) along with annotation file (.csv file), Chip Definition File (CDF file) and probe file as inputs, utilizes the concept of network density cut-off and Fisher's z-test to extract biologically relevant information. It can identify four possible types of gene pairs based on their coexpression relationships. These are (i) gene pair showing coexpression in one condition but not in the other, (ii) gene pair which is positively coexpressed in one condition but negatively coexpressed in the other condition, (iii) positively and (iv) negatively coexpressed in both the conditions. Further, it can generate modules of coexpressed genes. Easy-to-use GUI interface enables researchers without knowledge in R language to use No3CoGP. Utilization of one or more CPU cores, depending on the availability, speeds up the program. The output files stored in the respective directories under the user-defined project offer the researchers to unravel condition-specific functionalities of gene, gene sets or modules.

  8. Non-coding RNAs in lung cancer

    PubMed Central

    Ricciuti, Biagio; Mecca, Carmen; Crinò, Lucio; Baglivo, Sara; Cenci, Matteo; Metro, Giulio

    2014-01-01

    The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers. PMID:25593996

  9. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator

    PubMed Central

    Novikova, Irina V.; Hennelly, Scott P.; Sanbonmatsu, Karissa Y.

    2012-01-01

    While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product. We perform similar experiments on alternatively spliced SRA isoforms to assess their structural features. PMID:22362738

  10. Non-coding RNAs in cancer brain metastasis

    PubMed Central

    Wu, Kerui; Sharma, Sambad; Venkat, Suresh; Liu, Keqin; Zhou, Xiaobo; Watabe, Kounosuke

    2017-01-01

    More than 90% of cancer death is attributed to metastatic disease, and the brain is one of the major metastatic sites of melanoma, colon, renal, lung and breast cancers. Despite the recent advancement of targeted therapy for cancer, the incidence of brain metastasis is increasing. One reason is that most therapeutic drugs can’t penetrate blood-brain-barrier and tumor cells find the brain as sanctuary site. In this review, we describe the pathophysiology of brain metastases to introduce the latest understandings of metastatic brain malignancies. This review also particularly focuses on non-coding RNAs and their roles in cancer brain metastasis. Furthermore, we discuss the roles of the extracellular vesicles as they are known to transport information between cells to initiate cancer cell-microenvironment communication. The potential clinical translation of non-coding RNAs as a tool for diagnosis and for treatment is also discussed in this review. At the end, the computational aspects of non-coding RNA detection, the sequence and structure calculation and epigenetic regulation of non-coding RNA in brain metastasis are discussed. PMID:26709907

  11. ChIP-seq Identification of Weakly Conserved Heart Enhancers

    PubMed Central

    Blow, Matthew J.; McCulley, David J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Bristow, James; Ren, Bing; Black, Brian L.; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

    2011-01-01

    Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme non-coding sequence conservation successfully predicts enhancers active in many tissues, but fails to identify substantial numbers of heart enhancers. Here we used ChIP-seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over three thousand candidate heart enhancers genome-wide. Compared to other tissues studied at this time-point, most candidate heart enhancers are less deeply conserved in vertebrate evolution. Nevertheless, the testing of 130 candidate regions in a transgenic mouse assay revealed that most of them reproducibly function as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary constraint of embryonic enhancers can vary depending on tissue type. PMID:20729851

  12. [Relevance of long non-coding RNAs in tumour biology].

    PubMed

    Nagy, Zoltán; Szabó, Diána Rita; Zsippai, Adrienn; Falus, András; Rácz, Károly; Igaz, Péter

    2012-09-23

    The discovery of the biological relevance of non-coding RNA molecules represents one of the most significant advances in contemporary molecular biology. It has turned out that a major fraction of the non-coding part of the genome is transcribed. Beside small RNAs (including microRNAs) more and more data are disclosed concerning long non-coding RNAs of 200 nucleotides to 100 kb length that are implicated in the regulation of several basic molecular processes (cell proliferation, chromatin functioning, microRNA-mediated effects, etc.). Some of these long non-coding RNAs have been associated with human tumours, including H19, HOTAIR, MALAT1, etc., the different expression of which has been noted in various neoplasms relative to healthy tissues. Long non-coding RNAs may represent novel markers of molecular diagnostics and they might even turn out to be targets of therapeutic intervention.

  13. Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data

    PubMed Central

    He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong

    2013-01-01

    Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161

  14. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR library

    PubMed Central

    Zhu, Shiyou; Li, Wei; Liu, Jingze; Chen, Chen-Hao; Liao, Qi; Xu, Ping; Xu, Han; Xiao, Tengfei; Cao, Zhongzheng; Peng, Jingyu; Yuan, Pengfei; Brown, Myles; Liu, Xiaole Shirley; Wei, Wensheng

    2017-01-01

    CRISPR/Cas9 screens have been widely adopted to analyse coding gene functions, but high throughput screening of non-coding elements using this method is more challenging, because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. Herein, we report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (lncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 lncRNAs that can positively or negatively regulate human cancer cell growth. We individually validated 9 lncRNAs using CRISPR/Cas9-mediated genomic deletion and functional rescue, CRISPR activation or inhibition, and gene expression profiling. Our high-throughput pgRNA genome deletion method should enable rapid identification of functional mammalian non-coding elements. PMID:27798563

  15. Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert.

    PubMed

    Huanca-Mamani, Wilson; Arias-Carrasco, Raúl; Cárdenas-Ninasivincha, Steffany; Rojas-Herrera, Marcelo; Sepúlveda-Hermosilla, Gonzalo; Caris-Maldonado, José Carlos; Bastías, Elizabeth; Maracaja-Coutinho, Vinicius

    2018-03-20

    Long non-coding RNAs (lncRNAs) have been defined as transcripts longer than 200 nucleotides, which lack significant protein coding potential and possess critical roles in diverse cellular processes. Long non-coding RNAs have recently been functionally characterized in plant stress-response mechanisms. In the present study, we perform a comprehensive identification of lncRNAs in response to combined stress induced by salinity and excess of boron in the Lluteño maize, a tolerant maize landrace from Atacama Desert, Chile. We use deep RNA sequencing to identify a set of 48,345 different lncRNAs, of which 28,012 (58.1%) are conserved with other maize (B73, Mo17 or Palomero), with the remaining 41.9% belonging to potentially Lluteño exclusive lncRNA transcripts. According to B73 maize reference genome sequence, most Lluteño lncRNAs correspond to intergenic transcripts. Interestingly, Lluteño lncRNAs presents an unusual overall higher expression compared to protein coding genes under exposure to stressed conditions. In total, we identified 1710 putatively responsive to the combined stressed conditions of salt and boron exposure. We also identified a set of 848 stress responsive potential trans natural antisense transcripts ( trans -NAT) lncRNAs, which seems to be regulating genes associated with regulation of transcription, response to stress, response to abiotic stimulus and participating of the nicotianamine metabolic process. Reverse transcription-quantitative PCR (RT-qPCR) experiments were performed in a subset of lncRNAs, validating their existence and expression patterns. Our results suggest that a diverse set of maize lncRNAs from leaves and roots is responsive to combined salt and boron stress, being the first effort to identify lncRNAs from a maize landrace adapted to extreme conditions such as the Atacama Desert. The information generated is a starting point to understand the genomic adaptabilities suffered by this maize to surpass this extremely stressed

  16. Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert

    PubMed Central

    Huanca-Mamani, Wilson; Arias-Carrasco, Raúl; Cárdenas-Ninasivincha, Steffany; Rojas-Herrera, Marcelo; Sepúlveda-Hermosilla, Gonzalo; Caris-Maldonado, José Carlos; Bastías, Elizabeth; Maracaja-Coutinho, Vinicius

    2018-01-01

    Long non-coding RNAs (lncRNAs) have been defined as transcripts longer than 200 nucleotides, which lack significant protein coding potential and possess critical roles in diverse cellular processes. Long non-coding RNAs have recently been functionally characterized in plant stress–response mechanisms. In the present study, we perform a comprehensive identification of lncRNAs in response to combined stress induced by salinity and excess of boron in the Lluteño maize, a tolerant maize landrace from Atacama Desert, Chile. We use deep RNA sequencing to identify a set of 48,345 different lncRNAs, of which 28,012 (58.1%) are conserved with other maize (B73, Mo17 or Palomero), with the remaining 41.9% belonging to potentially Lluteño exclusive lncRNA transcripts. According to B73 maize reference genome sequence, most Lluteño lncRNAs correspond to intergenic transcripts. Interestingly, Lluteño lncRNAs presents an unusual overall higher expression compared to protein coding genes under exposure to stressed conditions. In total, we identified 1710 putatively responsive to the combined stressed conditions of salt and boron exposure. We also identified a set of 848 stress responsive potential trans natural antisense transcripts (trans-NAT) lncRNAs, which seems to be regulating genes associated with regulation of transcription, response to stress, response to abiotic stimulus and participating of the nicotianamine metabolic process. Reverse transcription-quantitative PCR (RT-qPCR) experiments were performed in a subset of lncRNAs, validating their existence and expression patterns. Our results suggest that a diverse set of maize lncRNAs from leaves and roots is responsive to combined salt and boron stress, being the first effort to identify lncRNAs from a maize landrace adapted to extreme conditions such as the Atacama Desert. The information generated is a starting point to understand the genomic adaptabilities suffered by this maize to surpass this extremely stressed

  17. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin

    PubMed Central

    Böhmdorfer, Gudrun; Sethuraman, Shriya; Rowley, M Jordan; Krzyszton, Michal; Rothi, M Hafiz; Bouzit, Lilia; Wierzbicki, Andrzej T

    2016-01-01

    RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI: http://dx.doi.org/10.7554/eLife.19092.001 PMID:27779094

  18. Identification of long non-coding RNAs in two anthozoan species and their possible implications for coral bleaching.

    PubMed

    Huang, Chen; Morlighem, Jean-Étienne R L; Cai, Jing; Liao, Qiwen; Perez, Carlos Daniel; Gomes, Paula Braga; Guo, Min; Rádis-Baptista, Gandhi; Lee, Simon Ming-Yuen

    2017-07-13

    Long non-coding RNAs (lncRNAs) have been shown to play regulatory roles in a diverse range of biological processes and are associated with the outcomes of various diseases. The majority of studies about lncRNAs focus on model organisms, with lessened investigation in non-model organisms to date. Herein, we have undertaken an investigation on lncRNA in two zoanthids (cnidarian): Protolpalythoa varibilis and Palythoa caribaeorum. A total of 11,206 and 13,240 lncRNAs were detected in P. variabilis and P. caribaeorum transcriptome, respectively. Comparison using NONCODE database indicated that the majority of these lncRNAs is taxonomically species-restricted with no identifiable orthologs. Even so, we found cases in which short regions of P. caribaeorum's lncRNAs were similar to vertebrate species' lncRNAs, and could be associated with lncRNA conserved regulatory functions. Consequently, some high-confidence lncRNA-mRNA interactions were predicted based on such conserved regions, therefore revealing possible involvement of lncRNAs in posttranscriptional processing and regulation in anthozoans. Moreover, investigation of differentially expressed lncRNAs, in healthy colonies and colonial individuals undergoing natural bleaching, indicated that some up-regulated lncRNAs in P. caribaeorum could posttranscriptionally regulate the mRNAs encoding proteins of Ras-mediated signal transduction pathway and components of innate immune-system, which could contribute to the molecular response of coral bleaching.

  19. Conservative algorithms for non-Maxwellian plasma kinetics

    DOE PAGES

    Le, Hai P.; Cambier, Jean -Luc

    2017-12-08

    Here, we present a numerical model and a set of conservative algorithms for Non-Maxwellian plasma kinetics with inelastic collisions. These algorithms self-consistently solve for the time evolution of an isotropic electron energy distribution function interacting with an atomic state distribution function of an arbitrary number of levels through collisional excitation, deexcitation, as well as ionization and recombination. Electron-electron collisions, responsible for thermalization of the electron distribution, are also included in the model. The proposed algorithms guarantee mass/charge and energy conservation in a single step, and is applied to the case of non-uniform gridding of the energy axis in the phasemore » space of the electron distribution function. Numerical test cases are shown to demonstrate the accuracy of the method and its conservation properties.« less

  20. Billing code algorithms to identify cases of peripheral artery disease from administrative data

    PubMed Central

    Fan, Jin; Arruda-Olson, Adelaide M; Leibson, Cynthia L; Smith, Carin; Liu, Guanghui; Bailey, Kent R; Kullo, Iftikhar J

    2013-01-01

    Objective To construct and validate billing code algorithms for identifying patients with peripheral arterial disease (PAD). Methods We extracted all encounters and line item details including PAD-related billing codes at Mayo Clinic Rochester, Minnesota, between July 1, 1997 and June 30, 2008; 22 712 patients evaluated in the vascular laboratory were divided into training and validation sets. Multiple logistic regression analysis was used to create an integer code score from the training dataset, and this was tested in the validation set. We applied a model-based code algorithm to patients evaluated in the vascular laboratory and compared this with a simpler algorithm (presence of at least one of the ICD-9 PAD codes 440.20–440.29). We also applied both algorithms to a community-based sample (n=4420), followed by a manual review. Results The logistic regression model performed well in both training and validation datasets (c statistic=0.91). In patients evaluated in the vascular laboratory, the model-based code algorithm provided better negative predictive value. The simpler algorithm was reasonably accurate for identification of PAD status, with lesser sensitivity and greater specificity. In the community-based sample, the sensitivity (38.7% vs 68.0%) of the simpler algorithm was much lower, whereas the specificity (92.0% vs 87.6%) was higher than the model-based algorithm. Conclusions A model-based billing code algorithm had reasonable accuracy in identifying PAD cases from the community, and in patients referred to the non-invasive vascular laboratory. The simpler algorithm had reasonable accuracy for identification of PAD in patients referred to the vascular laboratory but was significantly less sensitive in a community-based sample. PMID:24166724

  1. Identifying Important Atlantic Areas for the conservation of Balearic shearwaters: Spatial overlap with conservation areas

    NASA Astrophysics Data System (ADS)

    Pérez-Roda, Amparo; Delord, Karine; Boué, Amélie; Arcos, José Manuel; García, David; Micol, Thierry; Weimerskirch, Henri; Pinaud, David; Louzao, Maite

    2017-07-01

    Marine protected areas (MPAs) are considered one of the main tools in both fisheries and conservation management to protect threatened species and their habitats around the globe. However, MPAs are underrepresented in marine environments compared to terrestrial environments. Within this context, we studied the Atlantic non-breeding distribution of the southern population of Balearic shearwaters (Puffinus mauretanicus) breeding in Eivissa during the 2011-2012 period based on global location sensing (GLS) devices. Our objectives were (1) to identify overall Important Atlantic Areas (IAAs) from a southern population, (2) to describe spatio-temporal patterns of oceanographic habitat use, and (3) to assess whether existing conservation areas (Natura 2000 sites and marine Important Bird Areas (IBAs)) cover the main IAAs of Balearic shearwaters. Our results highlighted that the Atlantic staging (from June to October in 2011) dynamic of the southern population was driven by individual segregation at both spatial and temporal scales. Individuals ranged in the North-East Atlantic over four main IAAs (Bay of Biscay: BoB, Western Iberian shelf: WIS, Gulf of Cadiz: GoC, West of Morocco: WoM). While most individuals spent more time on the WIS or in the GoC, a small number of birds visited IAAs at the extremes of their Atlantic distribution range (i.e., BoB and WoM). The chronology of the arrivals to the IAAs showed a latitudinal gradient with northern areas reached earlier during the Atlantic staging. The IAAs coincided with the most productive areas (higher chlorophyll a values) in the NE Atlantic between July and October. The spatial overlap between IAAs and conservation areas was higher for Natura 2000 sites than marine IBAs (areas with and without legal protection, respectively). Concerning the use of these areas, a slightly higher proportion of estimated positions fell within marine IBAs compared to designated Natura 2000 sites, with Spanish and Portuguese conservation

  2. Long Non-Coding RNA and Alternative Splicing Modulations in Parkinson's Leukocytes Identified by RNA Sequencing

    PubMed Central

    Soreq, Lilach; Guffanti, Alessandro; Salomonis, Nathan; Simchovitz, Alon; Israel, Zvi; Bergman, Hagai; Soreq, Hermona

    2014-01-01

    The continuously prolonged human lifespan is accompanied by increase in neurodegenerative diseases incidence, calling for the development of inexpensive blood-based diagnostics. Analyzing blood cell transcripts by RNA-Seq is a robust means to identify novel biomarkers that rapidly becomes a commonplace. However, there is lack of tools to discover novel exons, junctions and splicing events and to precisely and sensitively assess differential splicing through RNA-Seq data analysis and across RNA-Seq platforms. Here, we present a new and comprehensive computational workflow for whole-transcriptome RNA-Seq analysis, using an updated version of the software AltAnalyze, to identify both known and novel high-confidence alternative splicing events, and to integrate them with both protein-domains and microRNA binding annotations. We applied the novel workflow on RNA-Seq data from Parkinson's disease (PD) patients' leukocytes pre- and post- Deep Brain Stimulation (DBS) treatment and compared to healthy controls. Disease-mediated changes included decreased usage of alternative promoters and N-termini, 5′-end variations and mutually-exclusive exons. The PD regulated FUS and HNRNP A/B included prion-like domains regulated regions. We also present here a workflow to identify and analyze long non-coding RNAs (lncRNAs) via RNA-Seq data. We identified reduced lncRNA expression and selective PD-induced changes in 13 of over 6,000 detected leukocyte lncRNAs, four of which were inversely altered post-DBS. These included the U1 spliceosomal lncRNA and RP11-462G22.1, each entailing sequence complementarity to numerous microRNAs. Analysis of RNA-Seq from PD and unaffected controls brains revealed over 7,000 brain-expressed lncRNAs, of which 3,495 were co-expressed in the leukocytes including U1, which showed both leukocyte and brain increases. Furthermore, qRT-PCR validations confirmed these co-increases in PD leukocytes and two brain regions, the amygdala and substantia

  3. The Big Entity of New RNA World: Long Non-Coding RNAs in Microvascular Complications of Diabetes.

    PubMed

    Raut, Satish K; Khullar, Madhu

    2018-01-01

    A major part of the genome is known to be transcribed into non-protein coding RNAs (ncRNAs), such as microRNA and long non-coding RNA (lncRNA). The importance of ncRNAs is being increasingly recognized in physiological and pathological processes. lncRNAs are a novel class of ncRNAs that do not code for proteins and are important regulators of gene expression. In the past, these molecules were thought to be transcriptional "noise" with low levels of evolutionary conservation. However, recent studies provide strong evidence indicating that lncRNAs are (i) regulated during various cellular processes, (ii) exhibit cell type-specific expression, (iii) localize to specific organelles, and (iv) associated with human diseases. Emerging evidence indicates an aberrant expression of lncRNAs in diabetes and diabetes-related microvascular complications. In the present review, we discuss the current state of knowledge of lncRNAs, their genesis from genome, and the mechanism of action of individual lncRNAs in the pathogenesis of microvascular complications of diabetes and therapeutic approaches.

  4. Non-coding RNAs—Novel targets in neurotoxicity

    PubMed Central

    Tal, Tamara L.; Tanguay, Robert L.

    2012-01-01

    Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity. PMID:22394481

  5. The PRC2-binding long non-coding RNAs in human and mouse genomes are associated with predictive sequence features

    NASA Astrophysics Data System (ADS)

    Tu, Shiqi; Yuan, Guo-Cheng; Shao, Zhen

    2017-01-01

    Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved in many cellular processes. One of their primary functions is to shape epigenetic landscape through interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that were experimentally determined to have physical interactions with Polycomb repressive complex 2 (PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new computational pipeline for sequences composition analysis, in which each sequence is considered as a series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be utilized to distinguish them from the others with considerable accuracy. We further identified fragments of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong PRC2-binding signals and are more highly conserved across species than the other parts, implying their functional importance.

  6. Tracking channel-floodplain sediment exchange with conservative and non-conservative geochemical tracers

    NASA Astrophysics Data System (ADS)

    Belmont, Patrick; Stout, Justin

    2013-04-01

    Fine sediment is routed through landscapes and channel networks in a highly unsteady and non-uniform manner, potentially experiencing deposition and re-suspension many times during transport from source to sink. Developing a better understanding of sediment routing at the landscape scale is an intriguing challenge from a modeling perspective because it requires consideration of a multitude of processes that interact and vary in space and time. From an applied perspective, an improved understanding of sediment routing is essential for predicting how conservation and restoration practices within a watershed will influence water quality, to support land and water management decisions. Two key uncertainties in predicting sediment routing at the landscape scale are 1) determining the proportion of suspended sediment that is derived from terrestrial (soil) erosion versus channel (bank) erosion, and 2) constraining the proportion of sediment that is temporarily stored and re-suspended within the channel-floodplain complex. Sediment fingerprinting that utilizes a suite of conservative and non-conservative geochemical tracers associated with suspended sediment can provide insight regarding both of these key uncertainties. Here we present a model that tracks suspended sediment with associated conservative and non-conservative geochemical tracers. The model assumes that particle residence times are described by a bimodal distribution wherein some fraction of sediment is transported through the system in a relatively short time (< 1 year) and the remainder experiences temporary storage (of variable duration) within the channel-floodplain complex. We use the model to explore the downstream evolution of non-conservative tracers under equilibrium conditions (i.e., exchange between the channel and floodplain is allowed, but no net change in channel-floodplain storage can occur) to illustrate how the process of channel-floodplain storage and re-suspension can potentially bias

  7. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less

  8. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures

    DOE PAGES

    Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.; ...

    2016-09-20

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less

  9. Non-coding RNA networks in cancer.

    PubMed

    Anastasiadou, Eleni; Jacob, Leni S; Slack, Frank J

    2018-01-01

    Thousands of unique non-coding RNA (ncRNA) sequences exist within cells. Work from the past decade has altered our perception of ncRNAs from 'junk' transcriptional products to functional regulatory molecules that mediate cellular processes including chromatin remodelling, transcription, post-transcriptional modifications and signal transduction. The networks in which ncRNAs engage can influence numerous molecular targets to drive specific cell biological responses and fates. Consequently, ncRNAs act as key regulators of physiological programmes in developmental and disease contexts. Particularly relevant in cancer, ncRNAs have been identified as oncogenic drivers and tumour suppressors in every major cancer type. Thus, a deeper understanding of the complex networks of interactions that ncRNAs coordinate would provide a unique opportunity to design better therapeutic interventions.

  10. Braneworld gravity within non-conservative gravitational theory

    NASA Astrophysics Data System (ADS)

    Fabris, J. C.; Caramês, Thiago R. P.; da Silva, J. M. Hoff

    2018-05-01

    We investigate the braneworld gravity starting from the non-conservative gravitational field equations in a five-dimensional bulk. The approach is based on the Gauss-Codazzi formalism along with the study of the braneworld consistency conditions. The effective gravitational equations on the brane are obtained and the constraint leading to a brane energy-momentum conservation is analyzed.

  11. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain.

    PubMed

    Leighton, Laura J; Bredy, Timothy W

    2018-06-07

    Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.

  12. Identifying Pediatric Severe Sepsis and Septic Shock: Accuracy of Diagnosis Codes.

    PubMed

    Balamuth, Fran; Weiss, Scott L; Hall, Matt; Neuman, Mark I; Scott, Halden; Brady, Patrick W; Paul, Raina; Farris, Reid W D; McClead, Richard; Centkowski, Sierra; Baumer-Mouradian, Shannon; Weiser, Jason; Hayes, Katie; Shah, Samir S; Alpern, Elizabeth R

    2015-12-01

    To evaluate accuracy of 2 established administrative methods of identifying children with sepsis using a medical record review reference standard. Multicenter retrospective study at 6 US children's hospitals. Subjects were children >60 days to <19 years of age and identified in 4 groups based on International Classification of Diseases, Ninth Revision, Clinical Modification codes: (1) severe sepsis/septic shock (sepsis codes); (2) infection plus organ dysfunction (combination codes); (3) subjects without codes for infection, organ dysfunction, or severe sepsis; and (4) infection but not severe sepsis or organ dysfunction. Combination codes were allowed, but not required within the sepsis codes group. We determined the presence of reference standard severe sepsis according to consensus criteria. Logistic regression was performed to determine whether addition of codes for sepsis therapies improved case identification. A total of 130 out of 432 subjects met reference SD of severe sepsis. Sepsis codes had sensitivity 73% (95% CI 70-86), specificity 92% (95% CI 87-95), and positive predictive value 79% (95% CI 70-86). Combination codes had sensitivity 15% (95% CI 9-22), specificity 71% (95% CI 65-76), and positive predictive value 18% (95% CI 11-27). Slight improvements in model characteristics were observed when codes for vasoactive medications and endotracheal intubation were added to sepsis codes (c-statistic 0.83 vs 0.87, P = .008). Sepsis specific International Classification of Diseases, Ninth Revision, Clinical Modification codes identify pediatric patients with severe sepsis in administrative data more accurately than a combination of codes for infection plus organ dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. ICAM-1-related long non-coding RNA: promoter analysis and expression in human retinal endothelial cells.

    PubMed

    Lumsden, Amanda L; Ma, Yuefang; Ashander, Liam M; Stempel, Andrew J; Keating, Damien J; Smith, Justine R; Appukuttan, Binoy

    2018-05-09

    Regulation of intercellular adhesion molecule (ICAM)-1 in retinal endothelial cells is a promising druggable target for retinal vascular diseases. The ICAM-1-related (ICR) long non-coding RNA stabilizes ICAM-1 transcript, increasing protein expression. However, studies of ICR involvement in disease have been limited as the promoter is uncharacterized. To address this issue, we undertook a comprehensive in silico analysis of the human ICR gene promoter region. We used genomic evolutionary rate profiling to identify a 115 base pair (bp) sequence within 500 bp upstream of the transcription start site of the annotated human ICR gene that was conserved across 25 eutherian genomes. A second constrained sequence upstream of the orthologous mouse gene (68 bp; conserved across 27 Eutherian genomes including human) was also discovered. Searching these elements identified 33 matrices predictive of binding sites for transcription factors known to be responsive to a broad range of pathological stimuli, including hypoxia, and metabolic and inflammatory proteins. Five phenotype-associated single nucleotide polymorphisms (SNPs) in the immediate vicinity of these elements included four SNPs (i.e. rs2569693, rs281439, rs281440 and rs11575074) predicted to impact binding motifs of transcription factors, and thus the expression of ICR and ICAM-1 genes, with potential to influence disease susceptibility. We verified that human retinal endothelial cells expressed ICR, and observed induction of expression by tumor necrosis factor-α.

  14. Facts and updates about cardiovascular non-coding RNAs in heart failure.

    PubMed

    Thum, Thomas

    2015-09-01

    About 11% of all deaths include heart failure as a contributing cause. The annual cost of heart failure amounts to US $34,000,000,000 in the United States alone. With the exception of heart transplantation, there is no curative therapy available. Only occasionally there are new areas in science that develop into completely new research fields. The topic on non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, is such a field. In this short review, we will discuss the latest developments about non-coding RNAs in cardiovascular disease. MicroRNAs are short regulatory non-coding endogenous RNA species that are involved in virtually all cellular processes. Long non-coding RNAs also regulate gene and protein levels; however, by much more complicated and diverse mechanisms. In general, non-coding RNAs have been shown to be of great value as therapeutic targets in adverse cardiac remodelling and also as diagnostic and prognostic biomarkers for heart failure. In the future, non-coding RNA-based therapeutics are likely to enter the clinical reality offering a new treatment approach of heart failure.

  15. Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events

    PubMed Central

    Ashouri, Arghavan; Sayin, Volkan I.; Van den Eynden, Jimmy; Singh, Simranjit X.; Papagiannakopoulos, Thales; Larsson, Erik

    2016-01-01

    Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers. PMID:28959951

  16. Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA.

    PubMed

    Tani, Hidenori

    2017-03-22

    Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t 1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t 1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.

  17. Regulation of mammalian cell differentiation by long non-coding RNAs

    PubMed Central

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-01-01

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development. PMID:23070366

  18. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    PubMed Central

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  19. Using a distribution and conservation status weighted hotspot approach to identify areas in need of conservation action to benefit Idaho bird species

    USGS Publications Warehouse

    Haines, Aaron M.; Leu, Matthias; Svancara, Leona K.; Wilson, Gina; Scott, J. Michael

    2010-01-01

    Identification of biodiversity hotspots (hereafter, hotspots) has become a common strategy to delineate important areas for wildlife conservation. However, the use of hotspots has not often incorporated important habitat types, ecosystem services, anthropogenic activity, or consistency in identifying important conservation areas. The purpose of this study was to identify hotspots to improve avian conservation efforts for Species of Greatest Conservation Need (SGCN) in the state of Idaho, United States. We evaluated multiple approaches to define hotspots and used a unique approach based on weighting species by their distribution size and conservation status to identify hotspot areas. All hotspot approaches identified bodies of water (Bear Lake, Grays Lake, and American Falls Reservoir) as important hotspots for Idaho avian SGCN, but we found that the weighted approach produced more congruent hotspot areas when compared to other hotspot approaches. To incorporate anthropogenic activity into hotspot analysis, we grouped species based on their sensitivity to specific human threats (i.e., urban development, agriculture, fire suppression, grazing, roads, and logging) and identified ecological sections within Idaho that may require specific conservation actions to address these human threats using the weighted approach. The Snake River Basalts and Overthrust Mountains ecological sections were important areas for potential implementation of conservation actions to conserve biodiversity. Our approach to identifying hotspots may be useful as part of a larger conservation strategy to aid land managers or local governments in applying conservation actions on the ground.

  20. Parallel evolution of chordate cis-regulatory code for development.

    PubMed

    Doglio, Laura; Goode, Debbie K; Pelleri, Maria C; Pauls, Stefan; Frabetti, Flavia; Shimeld, Sebastian M; Vavouri, Tanya; Elgar, Greg

    2013-11-01

    Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations.

  1. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions.

    PubMed

    Vito, Davide; Smales, C Mark

    2018-05-21

    The role of non-coding RNAs in determining growth, productivity and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). We have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. We report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. We demonstrate that the mouse microarray was suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. We then further analysed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. We discuss the implications for the publication of this rich dataset and how this may be used by the community. This article is protected by copyright. All rights reserved.

  2. Correlation approach to identify coding regions in DNA sequences

    NASA Technical Reports Server (NTRS)

    Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1994-01-01

    Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.

  3. Tetrapods on the EDGE: Overcoming data limitations to identify phylogenetic conservation priorities

    PubMed Central

    Gray, Claudia L.; Wearn, Oliver R.; Owen, Nisha R.

    2018-01-01

    The scale of the ongoing biodiversity crisis requires both effective conservation prioritisation and urgent action. As extinction is non-random across the tree of life, it is important to prioritise threatened species which represent large amounts of evolutionary history. The EDGE metric prioritises species based on their Evolutionary Distinctiveness (ED), which measures the relative contribution of a species to the total evolutionary history of their taxonomic group, and Global Endangerment (GE), or extinction risk. EDGE prioritisations rely on adequate phylogenetic and extinction risk data to generate meaningful priorities for conservation. However, comprehensive phylogenetic trees of large taxonomic groups are extremely rare and, even when available, become quickly out-of-date due to the rapid rate of species descriptions and taxonomic revisions. Thus, it is important that conservationists can use the available data to incorporate evolutionary history into conservation prioritisation. We compared published and new methods to estimate missing ED scores for species absent from a phylogenetic tree whilst simultaneously correcting the ED scores of their close taxonomic relatives. We found that following artificial removal of species from a phylogenetic tree, the new method provided the closest estimates of their “true” ED score, differing from the true ED score by an average of less than 1%, compared to the 31% and 38% difference of the previous methods. The previous methods also substantially under- and over-estimated scores as more species were artificially removed from a phylogenetic tree. We therefore used the new method to estimate ED scores for all tetrapods. From these scores we updated EDGE prioritisation rankings for all tetrapod species with IUCN Red List assessments, including the first EDGE prioritisation for reptiles. Further, we identified criteria to identify robust priority species in an effort to further inform conservation action whilst

  4. The development of non-coding RNA ontology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data.

  5. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays

    PubMed Central

    2010-01-01

    Background The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. Results Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. Conclusions In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence. PMID:20525227

  6. Whole-genome sequencing reveals a coding non-pathogenic variant tagging a non-coding pathogenic hexanucleotide repeat expansion in C9orf72 as cause of amyotrophic lateral sclerosis.

    PubMed

    Herdewyn, Sarah; Zhao, Hui; Moisse, Matthieu; Race, Valérie; Matthijs, Gert; Reumers, Joke; Kusters, Benno; Schelhaas, Helenius J; van den Berg, Leonard H; Goris, An; Robberecht, Wim; Lambrechts, Diether; Van Damme, Philip

    2012-06-01

    Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) has a familial cause in 10% of patients. Despite significant advances in the genetics of the disease, many families remain unexplained. We performed whole-genome sequencing in five family members from a pedigree with autosomal-dominant classical ALS. A family-based elimination approach was used to identify novel coding variants segregating with the disease. This list of variants was effectively shortened by genotyping these variants in 2 additional unaffected family members and 1500 unrelated population-specific controls. A novel rare coding variant in SPAG8 on chromosome 9p13.3 segregated with the disease and was not observed in controls. Mutations in SPAG8 were not encountered in 34 other unexplained ALS pedigrees, including 1 with linkage to chromosome 9p13.2-23.3. The shared haplotype containing the SPAG8 variant in this small pedigree was 22.7 Mb and overlapped with the core 9p21 linkage locus for ALS and frontotemporal dementia. Based on differences in coverage depth of known variable tandem repeat regions between affected and non-affected family members, the shared haplotype was found to contain an expanded hexanucleotide (GGGGCC)(n) repeat in C9orf72 in the affected members. Our results demonstrate that rare coding variants identified by whole-genome sequencing can tag a shared haplotype containing a non-coding pathogenic mutation and that changes in coverage depth can be used to reveal tandem repeat expansions. It also confirms (GGGGCC)n repeat expansions in C9orf72 as a cause of familial ALS.

  7. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach

    PubMed Central

    Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-01-01

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  8. MicroRNAs and other non-coding RNAs as targets for anticancer drug development

    PubMed Central

    Ling, Hui; Fabbri, Muller; Calin, George A.

    2015-01-01

    With the first cancer-targeted microRNA drug, MRX34, a liposome-based miR-34 mimic, entering phase I clinical trial in patients with advanced hepatocellular carcinoma in April 2013, miRNA therapeutics are attracting special attention from both academia and biotechnology companies. Although to date the most studied non-coding RNAs (ncRNAs) are miRNAs, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognized. Here we summarize the roles of miRNAs and lncRNAs in cancer, with a focus on the recently identified novel mechanisms of action, and discuss the current strategies in designing ncRNA-targeting therapeutics, as well as the associated challenges. PMID:24172333

  9. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites.

    PubMed

    Fang, Chun; Noguchi, Tamotsu; Yamana, Hayato

    2014-10-01

    Evolutionary conservation information included in position-specific scoring matrix (PSSM) has been widely adopted by sequence-based methods for identifying protein functional sites, because all functional sites, whether in ordered or disordered proteins, are found to be conserved at some extent. However, different functional sites have different conservation patterns, some of them are linear contextual, some of them are mingled with highly variable residues, and some others seem to be conserved independently. Every value in PSSMs is calculated independently of each other, without carrying the contextual information of residues in the sequence. Therefore, adopting the direct output of PSSM for prediction fails to consider the relationship between conservation patterns of residues and the distribution of conservation scores in PSSMs. In order to demonstrate the importance of combining PSSMs with the specific conservation patterns of functional sites for prediction, three different PSSM-based methods for identifying three kinds of functional sites have been analyzed. Results suggest that, different PSSM-based methods differ in their capability to identify different patterns of functional sites, and better combining PSSMs with the specific conservation patterns of residues would largely facilitate the prediction.

  10. Biological significance of long non-coding RNA FTX expression in human colorectal cancer

    PubMed Central

    Guo, Xiao-Bo; Hua, Zhu; Li, Chen; Peng, Li-Pan; Wang, Jing-Shen; Wang, Bo; Zhi, Qiao-Ming

    2015-01-01

    The purpose of this study was to determine the expression of long non-coding RNA (lncRNA) FTX and analyze its prognostic and biological significance in colorectal cancer (CRC). A quantitative reverse transcription PCR was performed to detect the expression of long non-coding RNA FTX in 35 pairs of colorectal cancer and corresponding noncancerous tissues. The expression of long non-coding RNA FTX was detected in 187 colorectal cancer tissues and its correlations with clinicopathological factors of patients were examined. Univariate and multivariate analyses were performed to analyze the prognostic significance of Long Non-coding RNA FTX expression. The effects of long non-coding RNA FTX expression on malignant phenotypes of colorectal cancer cells and its possible biological significances were further determined. Long non-coding RNA FTX was significantly upregulated in colorectal cancer tissues, and low long non-coding RNA FTX expression was significantly correlated with differentiation grade, lymph vascular invasion, and clinical stage. Patients with high long non-coding RNA FTX showed poorer overall survival than those with low long non-coding RNA FTX. Multivariate analyses indicated that status of long non-coding RNA FTX was an independent prognostic factor for patients. Functional analyses showed that upregulation of long non-coding RNA FTX significantly promoted growth, migration, invasion, and increased colony formation in colorectal cancer cells. Therefore, long non-coding RNA FTX may be a potential biomarker for predicting the survival of colorectal cancer patients and might be a molecular target for treatment of human colorectal cancer. PMID:26629053

  11. Biological significance of long non-coding RNA FTX expression in human colorectal cancer.

    PubMed

    Guo, Xiao-Bo; Hua, Zhu; Li, Chen; Peng, Li-Pan; Wang, Jing-Shen; Wang, Bo; Zhi, Qiao-Ming

    2015-01-01

    The purpose of this study was to determine the expression of long non-coding RNA (lncRNA) FTX and analyze its prognostic and biological significance in colorectal cancer (CRC). A quantitative reverse transcription PCR was performed to detect the expression of long non-coding RNA FTX in 35 pairs of colorectal cancer and corresponding noncancerous tissues. The expression of long non-coding RNA FTX was detected in 187 colorectal cancer tissues and its correlations with clinicopathological factors of patients were examined. Univariate and multivariate analyses were performed to analyze the prognostic significance of Long Non-coding RNA FTX expression. The effects of long non-coding RNA FTX expression on malignant phenotypes of colorectal cancer cells and its possible biological significances were further determined. Long non-coding RNA FTX was significantly upregulated in colorectal cancer tissues, and low long non-coding RNA FTX expression was significantly correlated with differentiation grade, lymph vascular invasion, and clinical stage. Patients with high long non-coding RNA FTX showed poorer overall survival than those with low long non-coding RNA FTX. Multivariate analyses indicated that status of long non-coding RNA FTX was an independent prognostic factor for patients. Functional analyses showed that upregulation of long non-coding RNA FTX significantly promoted growth, migration, invasion, and increased colony formation in colorectal cancer cells. Therefore, long non-coding RNA FTX may be a potential biomarker for predicting the survival of colorectal cancer patients and might be a molecular target for treatment of human colorectal cancer.

  12. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear

    PubMed Central

    Corneveaux, Jason J.; Ohmen, Jeffrey; White, Cory; Allen, April N.; Lusis, Aldons J.; Van Camp, Guy; Huentelman, Matthew J.; Friedman, Rick A.

    2015-01-01

    The mammalian inner ear consists of the cochlea and the vestibular labyrinth (utricle, saccule, and semicircular canals), which participate in both hearing and balance. Proper development and life-long function of these structures involves a highly complex coordinated system of spatial and temporal gene expression. The characterization of the inner ear transcriptome is likely important for the functional study of auditory and vestibular components, yet, primarily due to tissue unavailability, detailed expression catalogues of the human inner ear remain largely incomplete. We report here, for the first time, comprehensive transcriptome characterization of the adult human cochlea, ampulla, saccule and utricle of the vestibule obtained from patients without hearing abnormalities. Using RNA-Seq, we measured the expression of >50,000 predicted genes corresponding to approximately 200,000 transcripts, in the adult inner ear and compared it to 32 other human tissues. First, we identified genes preferentially expressed in the inner ear, and unique either to the vestibule or cochlea. Next, we examined expression levels of specific groups of potentially interesting RNAs, such as genes implicated in hearing loss, long non-coding RNAs, pseudogenes and transcripts subject to nonsense mediated decay (NMD). We uncover the spatial specificity of expression of these RNAs in the hearing/balance system, and reveal evidence of tissue specific NMD. Lastly, we investigated the non-syndromic deafness loci to which no gene has been mapped, and narrow the list of potential candidates for each locus. These data represent the first high-resolution transcriptome catalogue of the adult human inner ear. A comprehensive identification of coding and non-coding RNAs in the inner ear will enable pathways of auditory and vestibular function to be further defined in the study of hearing and balance. Expression data are freely accessible at https

  13. Integrating non-coding RNAs in JAK-STAT regulatory networks

    PubMed Central

    Witte, Steven; Muljo, Stefan A

    2014-01-01

    Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925

  14. NetCoffee: a fast and accurate global alignment approach to identify functionally conserved proteins in multiple networks.

    PubMed

    Hu, Jialu; Kehr, Birte; Reinert, Knut

    2014-02-15

    Owing to recent advancements in high-throughput technologies, protein-protein interaction networks of more and more species become available in public databases. The question of how to identify functionally conserved proteins across species attracts a lot of attention in computational biology. Network alignments provide a systematic way to solve this problem. However, most existing alignment tools encounter limitations in tackling this problem. Therefore, the demand for faster and more efficient alignment tools is growing. We present a fast and accurate algorithm, NetCoffee, which allows to find a global alignment of multiple protein-protein interaction networks. NetCoffee searches for a global alignment by maximizing a target function using simulated annealing on a set of weighted bipartite graphs that are constructed using a triplet approach similar to T-Coffee. To assess its performance, NetCoffee was applied to four real datasets. Our results suggest that NetCoffee remedies several limitations of previous algorithms, outperforms all existing alignment tools in terms of speed and nevertheless identifies biologically meaningful alignments. The source code and data are freely available for download under the GNU GPL v3 license at https://code.google.com/p/netcoffee/.

  15. Shannon Entropy of the Canonical Genetic Code

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis

    The probability that a non-synonymous point mutation in DNA will adversely affect the functionality of the resultant protein is greatly reduced if the substitution is conservative. In that case, the amino acid coded by the mutated codon has similar physico-chemical properties to the original. Many simplified alphabets, which group the 20 common amino acids into families, have been proposed. To evaluate these schema objectively, we introduce a novel, quantitative method based on the inherent redundancy in the canonical genetic code. By calculating the Shannon information entropy carried by 1- or 2-bit messages, groupings that best leverage the robustness of the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. In addition, this approach allows us to quantify the average information value of nucleotide codon positions, and explore the physiological basis for distinguishing between transition and transversion mutations. Supported by NSU PFRDG Grant #335347.

  16. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    PubMed

    St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The Landscape of long non-coding RNA classification

    PubMed Central

    St Laurent, Georges; Wahlestedt, Claes; Kapranov, Philipp

    2015-01-01

    Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long non-coding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the non-coding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual un-ambiguous classification framework results in a number of challenges in the annotation and interpretation of non-coding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets. PMID:25869999

  18. Do Farmers Using Conventional and Non-Conventional Systems of Agriculture Have Different Perceptions of the Diversity of Wild Birds? Implications for Conservation.

    PubMed

    Silva-Andrade, Horasa Lima; de Andrade, Luciano Pires; Muniz, Lauana Souza; Telino-Júnior, Wallace Rodrigues; Albuquerque, Ulysses Paulino; Lyra-Neves, Rachel Maria

    2016-01-01

    Farmers' perceptions of birds' interactions with agricultural production systems are fundamental to species conservation efforts. In the present study, we evaluated the perceptions of birds held by farmers who engage in conventional and non-conventional agricultural production processes and the implications of potential differences in these perceptions on species conservation. To accomplish this, data were collected using questionnaires, semi-structured interviews, and other complementary sources of information gathered from 191 farmers in northeastern Brazil. Although some similarities were identified among the farmers in their perceptions and local ecological knowledge (LEK) of birds, differences existed between the conventional and non-conventional farmers in their attitudes toward, conflicts with, and usage of bird species. Compared to the conventional farmers, the non-conventional farmers could identify more bird species, possessed more favorable attitudes toward birds, and engaged in practices more beneficial to the conservation of avifauna. The perceptions that were identified were related to the type of agriculture practiced, and such perceptions may affect the conservation of bird species. Therefore, the adoption of certain agricultural practices has important implications for conservation. Our results indicate the need for investment in public policies, programs and actions that account for farmers' knowledge and perceptions. Such investments will contribute to the development and adoption of practices supporting wild bird conservation in agricultural areas.

  19. Do Farmers Using Conventional and Non-Conventional Systems of Agriculture Have Different Perceptions of the Diversity of Wild Birds? Implications for Conservation

    PubMed Central

    de Andrade, Luciano Pires; Muniz, Lauana Souza; Telino-Júnior, Wallace Rodrigues; Albuquerque, Ulysses Paulino; Lyra-Neves, Rachel Maria

    2016-01-01

    Farmers’ perceptions of birds’ interactions with agricultural production systems are fundamental to species conservation efforts. In the present study, we evaluated the perceptions of birds held by farmers who engage in conventional and non-conventional agricultural production processes and the implications of potential differences in these perceptions on species conservation. To accomplish this, data were collected using questionnaires, semi-structured interviews, and other complementary sources of information gathered from 191 farmers in northeastern Brazil. Although some similarities were identified among the farmers in their perceptions and local ecological knowledge (LEK) of birds, differences existed between the conventional and non-conventional farmers in their attitudes toward, conflicts with, and usage of bird species. Compared to the conventional farmers, the non-conventional farmers could identify more bird species, possessed more favorable attitudes toward birds, and engaged in practices more beneficial to the conservation of avifauna. The perceptions that were identified were related to the type of agriculture practiced, and such perceptions may affect the conservation of bird species. Therefore, the adoption of certain agricultural practices has important implications for conservation. Our results indicate the need for investment in public policies, programs and actions that account for farmers’ knowledge and perceptions. Such investments will contribute to the development and adoption of practices supporting wild bird conservation in agricultural areas. PMID:27243222

  20. Social Network Analysis Identifies Key Participants in Conservation Development.

    PubMed

    Farr, Cooper M; Reed, Sarah E; Pejchar, Liba

    2018-05-01

    Understanding patterns of participation in private lands conservation, which is often implemented voluntarily by individual citizens and private organizations, could improve its effectiveness at combating biodiversity loss. We used social network analysis (SNA) to examine participation in conservation development (CD), a private land conservation strategy that clusters houses in a small portion of a property while preserving the remaining land as protected open space. Using data from public records for six counties in Colorado, USA, we compared CD participation patterns among counties and identified actors that most often work with others to implement CDs. We found that social network characteristics differed among counties. The network density, or proportion of connections in the network, varied from fewer than 2 to nearly 15%, and was higher in counties with smaller populations and fewer CDs. Centralization, or the degree to which connections are held disproportionately by a few key actors, was not correlated strongly with any county characteristics. Network characteristics were not correlated with the prevalence of wildlife-friendly design features in CDs. The most highly connected actors were biological and geological consultants, surveyors, and engineers. Our work demonstrates a new application of SNA to land-use planning, in which CD network patterns are examined and key actors are identified. For better conservation outcomes of CD, we recommend using network patterns to guide strategies for outreach and information dissemination, and engaging with highly connected actor types to encourage widespread adoption of best practices for CD design and stewardship.

  1. Long Non-coding RNAs and Their Biological Roles in Plants

    PubMed Central

    Liu, Xue; Hao, Lili; Li, Dayong; Zhu, Lihuang; Hu, Songnian

    2015-01-01

    With the development of genomics and bioinformatics, especially the extensive applications of high-throughput sequencing technology, more transcriptional units with little or no protein-coding potential have been discovered. Such RNA molecules are called non-protein-coding RNAs (npcRNAs or ncRNAs). Among them, long npcRNAs or ncRNAs (lnpcRNAs or lncRNAs) represent diverse classes of transcripts longer than 200 nucleotides. In recent years, the lncRNAs have been considered as important regulators in many essential biological processes. In plants, although a large number of lncRNA transcripts have been predicted and identified in few species, our current knowledge of their biological functions is still limited. Here, we have summarized recent studies on their identification, characteristics, classification, bioinformatics, resources, and current exploration of their biological functions in plants. PMID:25936895

  2. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    PubMed Central

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  3. Dissecting non-coding RNA mechanisms in cellulo by single-molecule high-resolution localization and counting

    PubMed Central

    Pitchiaya, Sethuramasundaram; Krishnan, Vishalakshi; Custer, Thomas C.; Walter, Nils G.

    2013-01-01

    Non-coding RNAs (ncRNAs) recently were discovered to outnumber their protein-coding counterparts, yet their diverse functions are still poorly understood. Here we report on a method for the intracellular Single-molecule High Resolution Localization and Counting (iSHiRLoC) of microRNAs (miRNAs), a conserved, ubiquitous class of regulatory ncRNAs that controls the expression of over 60% of all mammalian protein coding genes post-transcriptionally, by a mechanism shrouded by seemingly contradictory observations. We present protocols to execute single particle tracking (SPT) and single-molecule counting of functional microinjected, fluorophore-labeled miRNAs and thereby extract diffusion coefficients and molecular stoichiometries of micro-ribonucleoprotein (miRNP) complexes from living and fixed cells, respectively. This probing of miRNAs at the single molecule level sheds new light on the intracellular assembly/disassembly of miRNPs, thus beginning to unravel the dynamic nature of this important gene regulatory pathway and facilitating the development of a parsimonious model for their obscured mechanism of action. PMID:23820309

  4. Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans

    PubMed Central

    Kowalski, Madzia P.; Baylis, Howard A.; Krude, Torsten

    2015-01-01

    ABSTRACT Stem bulge RNAs (sbRNAs) are a family of small non-coding stem-loop RNAs present in Caenorhabditis elegans and other nematodes, the function of which is unknown. Here, we report the first functional characterisation of nematode sbRNAs. We demonstrate that sbRNAs from a range of nematode species are able to reconstitute the initiation of chromosomal DNA replication in the presence of replication proteins in vitro, and that conserved nucleotide sequence motifs are essential for this function. By functionally inactivating sbRNAs with antisense morpholino oligonucleotides, we show that sbRNAs are required for S phase progression, early embryonic development and the viability of C. elegans in vivo. Thus, we demonstrate a new and essential role for sbRNAs during the early development of C. elegans. sbRNAs show limited nucleotide sequence similarity to vertebrate Y RNAs, which are also essential for the initiation of DNA replication. Our results therefore establish that the essential function of small non-coding stem-loop RNAs during DNA replication extends beyond vertebrates. PMID:25908866

  5. The long non-coding RNA LSINCT5 promotes malignancy in non-small cell lung cancer by stabilizing HMGA2.

    PubMed

    Tian, Yuheng; Zhang, Lina; Chen, Shuwen; Ma, Yuan; Liu, Yanyan

    2018-06-08

    Long non-coding RNAs (lncRNAs) can actively participate in tumorigenesis in various cancers. However, the involvement of lncRNA long stress induced non-coding transcripts 5 (LSINCT5) in non-small cell lung cancer (NSCLC) remains largely unknown. Here we showed a novel lncRNA signature in NSCLC through lncRNA profiling. Increased LSINCT5 expression positively correlates with malignant clinicopathological features and poor survival. LSINCT5 can promote migration and viability of various NSCLC cells in vitro and also enhance lung cancer progression in vivo. RNA immunoprecipitation followed by mass spectrometry has identified that LSINCT5 interacts with HMGA2. This physical interaction can increase the stability of HMGA2 by inhibiting proteasome-mediated degradation. Therefore, LSINCT5 may possibly contribute to NSCLC tumorigenesis by stabilizing the oncogenic factor of HMGA2. This novel LSINCT5/HMGA2 axis can modulate lung cancer progression and might be a promising target for pharmacological intervention.

  6. Functional interrogation of non-coding DNA through CRISPR genome editing.

    PubMed

    Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H

    2017-05-15

    Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Functional interrogation of non-coding DNA through CRISPR genome editing

    PubMed Central

    Canver, Matthew C.; Bauer, Daniel E.; Orkin, Stuart H.

    2017-01-01

    Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. PMID:28288828

  8. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury.

    PubMed

    Arthur-Farraj, Peter J; Morgan, Claire C; Adamowicz, Martyna; Gomez-Sanchez, Jose A; Fazal, Shaline V; Beucher, Anthony; Razzaghi, Bonnie; Mirsky, Rhona; Jessen, Kristjan R; Aitman, Timothy J

    2017-09-12

    Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Conserved syntenic clusters of protein coding genes are missing in birds.

    PubMed

    Lovell, Peter V; Wirthlin, Morgan; Wilhelm, Larry; Minx, Patrick; Lazar, Nathan H; Carbone, Lucia; Warren, Wesley C; Mello, Claudio V

    2014-01-01

    Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.

  10. Identifying taxonomic and functional surrogates for spring biodiversity conservation.

    PubMed

    Jyväsjärvi, Jussi; Virtanen, Risto; Ilmonen, Jari; Paasivirta, Lauri; Muotka, Timo

    2018-02-27

    Surrogate approaches are widely used to estimate overall taxonomic diversity for conservation planning. Surrogate taxa are frequently selected based on rarity or charisma, whereas selection through statistical modeling has been applied rarely. We used boosted-regression-tree models (BRT) fitted to biological data from 165 springs to identify bryophyte and invertebrate surrogates for taxonomic and functional diversity of boreal springs. We focused on these 2 groups because they are well known and abundant in most boreal springs. The best indicators of taxonomic versus functional diversity differed. The bryophyte Bryum weigelii and the chironomid larva Paratrichocladius skirwithensis best indicated taxonomic diversity, whereas the isopod Asellus aquaticus and the chironomid Macropelopia spp. were the best surrogates of functional diversity. In a scoring algorithm for priority-site selection, taxonomic surrogates performed only slightly better than random selection for all spring-dwelling taxa, but they were very effective in representing spring specialists, providing a distinct improvement over random solutions. However, the surrogates for taxonomic diversity represented functional diversity poorly and vice versa. When combined with cross-taxon complementarity analyses, surrogate selection based on statistical modeling provides a promising approach for identifying groundwater-dependent ecosystems of special conservation value, a key requirement of the EU Water Framework Directive. © 2018 Society for Conservation Biology.

  11. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data.

    PubMed

    Raju, Hemalatha B; Tsinoremas, Nicholas F; Capobianco, Enrico

    2016-01-01

    Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein

  12. Long non-coding RNAs are associated with spatiotemporal gene expression profiles in the marine gastropod Tegula atra.

    PubMed

    Détrée, Camille; Núñez-Acuña, Gustavo; Tapia, Fabian; Gallardo-Escárate, Cristian

    2017-06-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) play diverse roles in cellular processes, including in the regulation of embryogenesis and growth. However, little is known about the role of lncRNAs in marine invertebrates inhabiting changing environments. Therefore, the aim of this study was to present the first characterization of lncRNAs in an intertidal marine gastropod. Specifically, Tegula atra individuals were sampled in four sites of the central-northern Chilean coastline (28-31°) during summer and winter. A pipeline was constructed, and 3524 putative lncRNAs were identified from transcriptome databases specific to T. atra. These lncRNAs exhibited characteristics common to known lncRNAs, including a length shorter than coding sequences, low GC-content, and low sequence conservation. Expression analyses revealed that lncRNAs varied more in the summer. Furthermore, a majority of the differentially expressed lncRNAs were found in the southernmost population, the seasonal temperatures of which varied the greatest among all groups. Additionally, co-expression analysis found some lncRNAs strongly correlated with coding genes involved in the environmental stress response, such as heat shock proteins and metalloproteins. In contrast, other lncRNA expressions were strongly uncorrelated with genes involved in lipid/carbohydrates metabolism and cell-cell communication. This study provides the first large-scale characterization of lncRNAs in a marine gastropod, with results suggesting a putative role of lncRNAs in thermal tolerance, as well as an association with molecular mechanisms involved in the local adaptations of marine invertebrate populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Long non-coding RNAs in cancer metabolism.

    PubMed

    Xiao, Zhen-Dong; Zhuang, Li; Gan, Boyi

    2016-10-01

    Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism. © 2016 WILEY Periodicals, Inc.

  14. Flexible risk metrics for identifying and monitoring conservation-priority species

    USGS Publications Warehouse

    Stanton, Jessica C.; Semmens, Brice X.; McKann, Patrick C.; Will, Tom; Thogmartin, Wayne E.

    2016-01-01

    Region-specific conservation programs should have objective, reliable metrics for species prioritization and progress evaluation that are customizable to the goals of a program, easy to comprehend and communicate, and standardized across time. Regional programs may have vastly different goals, spatial coverage, or management agendas, and one-size-fits-all schemes may not always be the best approach. We propose a quantitative and objective framework for generating metrics for prioritizing species that is straightforward to implement and update, customizable to different spatial resolutions, and based on readily available time-series data. This framework is also well-suited to handling missing-data and observer error. We demonstrate this approach using North American Breeding Bird Survey (NABBS) data to identify conservation priority species from a list of over 300 landbirds across 33 bird conservation regions (BCRs). To highlight the flexibility of the framework for different management goals and timeframes we calculate two different metrics. The first identifies species that may be inadequately monitored by NABBS protocols in the near future (TMT, time to monitoring threshold), and the other identifies species likely to decline significantly in the near future based on recent trends (TPD, time to percent decline). Within the individual BCRs we found up to 45% (mean 28%) of the species analyzed had overall declining population trajectories, which could result in up to 37 species declining below a minimum NABBS monitoring threshold in at least one currently occupied BCR within the next 50 years. Additionally, up to 26% (mean 8%) of the species analyzed within the individual BCRs may decline by 30% within the next decade. Conservation workers interested in conserving avian diversity and abundance within these BCRs can use these metrics to plan alternative monitoring schemes or highlight the urgency of those populations experiencing the fastest declines. However, this

  15. Decoding the function of nuclear long non-coding RNAs.

    PubMed

    Chen, Ling-Ling; Carmichael, Gordon G

    2010-06-01

    Long non-coding RNAs (lncRNAs) are mRNA-like, non-protein-coding RNAs that are pervasively transcribed throughout eukaryotic genomes. Rather than silently accumulating in the nucleus, many of these are now known or suspected to play important roles in nuclear architecture or in the regulation of gene expression. In this review, we highlight some recent progress in how lncRNAs regulate these important nuclear processes at the molecular level. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    PubMed

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  17. LncRNApred: Classification of Long Non-Coding RNAs and Protein-Coding Transcripts by the Ensemble Algorithm with a New Hybrid Feature.

    PubMed

    Pian, Cong; Zhang, Guangle; Chen, Zhi; Chen, Yuanyuan; Zhang, Jin; Yang, Tao; Zhang, Liangyun

    2016-01-01

    As a novel class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been verified to be associated with various diseases. As large scale transcripts are generated every year, it is significant to accurately and quickly identify lncRNAs from thousands of assembled transcripts. To accurately discover new lncRNAs, we develop a classification tool of random forest (RF) named LncRNApred based on a new hybrid feature. This hybrid feature set includes three new proposed features, which are MaxORF, RMaxORF and SNR. LncRNApred is effective for classifying lncRNAs and protein coding transcripts accurately and quickly. Moreover,our RF model only requests the training using data on human coding and non-coding transcripts. Other species can also be predicted by using LncRNApred. The result shows that our method is more effective compared with the Coding Potential Calculate (CPC). The web server of LncRNApred is available for free at http://mm20132014.wicp.net:57203/LncRNApred/home.jsp.

  18. A-to-I editing of coding and non-coding RNAs by ADARs

    PubMed Central

    Nishikura, Kazuko

    2016-01-01

    Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264

  19. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    PubMed Central

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  20. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region

    PubMed Central

    Kress, W. John; Erickson, David L.

    2007-01-01

    Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination. PMID:17551588

  1. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region.

    PubMed

    Kress, W John; Erickson, David L

    2007-06-06

    A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.

  2. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis

    PubMed Central

    Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233

  3. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.

    PubMed

    Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.

  4. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species.

    PubMed

    Van Lent, Sarah; Creasy, Heather Huot; Myers, Garry S A; Vanrompay, Daisy

    2016-01-01

    Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of pmp coding sequences differs between Chlamydia species, but it is unknown whether the number of pmp coding sequences is constant within a Chlamydia species. The level of conservation of the Pmp proteins has previously only been determined for Chlamydia trachomatis. As different Pmp proteins might be indispensible for the pathogenesis of different Chlamydia species, this study investigated the conservation of Pmp proteins both within and across C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci. The pmp coding sequences were annotated in 16 C. trachomatis, 6 C. pneumoniae, 2 C. abortus, and 16 C. psittaci genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed Chlamydia species. The length of coding sequences of pmpA,pmpB, and pmpH was conserved among all analyzed genomes, while the length of pmpE/F and pmpG, and remarkably also of the subtype pmpD, differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci, respectively. PmpB was the most conserved Pmp across the 4 analyzed Chlamydia species. © 2016 S. Karger AG, Basel.

  5. Long non-coding RNAs and their biological roles in plants.

    PubMed

    Liu, Xue; Hao, Lili; Li, Dayong; Zhu, Lihuang; Hu, Songnian

    2015-06-01

    With the development of genomics and bioinformatics, especially the extensive applications of high-throughput sequencing technology, more transcriptional units with little or no protein-coding potential have been discovered. Such RNA molecules are called non-protein-coding RNAs (npcRNAs or ncRNAs). Among them, long npcRNAs or ncRNAs (lnpcRNAs or lncRNAs) represent diverse classes of transcripts longer than 200 nucleotides. In recent years, the lncRNAs have been considered as important regulators in many essential biological processes. In plants, although a large number of lncRNA transcripts have been predicted and identified in few species, our current knowledge of their biological functions is still limited. Here, we have summarized recent studies on their identification, characteristics, classification, bioinformatics, resources, and current exploration of their biological functions in plants. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  6. Non-coding, mRNA-like RNAs database Y2K.

    PubMed

    Erdmann, V A; Szymanski, M; Hochberg, A; Groot, N; Barciszewski, J

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www. man.poznan.pl/5SData/ncRNA/index.html

  7. The Non-Coding RNA Ncr0700/PmgR1 is Required for Photomixotrophic Growth and the Regulation of Glycogen Accumulation in the Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    de Porcellinis, Alice J; Klähn, Stephan; Rosgaard, Lisa; Kirsch, Rebekka; Gutekunst, Kirstin; Georg, Jens; Hess, Wolfgang R; Sakuragi, Yumiko

    2016-10-01

    Carbohydrate metabolism is a tightly regulated process in photosynthetic organisms. In the cyanobacterium Synechocystis sp. PCC 6803, the photomixotrophic growth protein A (PmgA) is involved in the regulation of glucose and storage carbohydrate (i.e. glycogen) metabolism, while its biochemical activity and possible factors acting downstream of PmgA are unknown. Here, a genome-wide microarray analysis of a ΔpmgA strain identified the expression of 36 protein-coding genes and 42 non-coding transcripts as significantly altered. From these, the non-coding RNA Ncr0700 was identified as the transcript most strongly reduced in abundance. Ncr0700 is widely conserved among cyanobacteria. In Synechocystis its expression is inversely correlated with light intensity. Similarly to a ΔpmgA mutant, a Δncr0700 deletion strain showed an approximately 2-fold increase in glycogen content under photoautotrophic conditions and wild-type-like growth. Moreover, its growth was arrested by 38 h after a shift to photomixotrophic conditions. Ectopic expression of Ncr0700 in Δncr0700 and ΔpmgA restored the glycogen content and photomixotrophic growth to wild-type levels. These results indicate that Ncr0700 is required for photomixotrophic growth and the regulation of glycogen accumulation, and acts downstream of PmgA. Hence Ncr0700 is renamed here as PmgR1 for photomixotrophic growth RNA 1. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Non-conservative perturbations of homoclinic snaking scenarios

    NASA Astrophysics Data System (ADS)

    Knobloch, Jürgen; Vielitz, Martin

    2016-01-01

    Homoclinic snaking refers to the continuation of homoclinic orbits to an equilibrium E near a heteroclinic cycle connecting E and a periodic orbit P. Typically homoclinic snaking appears in one-parameter families of reversible, conservative systems. Here we discuss perturbations of this scenario which are both non-reversible and non-conservative. We treat this problem analytically in the spirit of the work [3]. The continuation of homoclinic orbits happens with respect to both the original continuation parameter μ and the perturbation parameter λ. The continuation curves are parametrised by the dwelling time L of the homoclinic orbit near P. It turns out that λ (L) tends to zero while the μ vs. L diagram displays isolas or criss-cross snaking curves in a neighbourhood of the original snakes-and-ladder structure. In the course of our studies we adapt both Fenichel coordinates near P and the analysis of Shilnikov problems near P to the present situation.

  9. Identifying species conservation strategies to reduce disease-associated declines

    USGS Publications Warehouse

    Gerber, Brian D.; Converse, Sarah J.; Muths, Erin L.; Crockett, Harry J.; Mosher, Brittany A.; Bailey, Larissa L.

    2018-01-01

    Emerging infectious diseases (EIDs) are a salient threat to many animal taxa, causing local and global extinctions, altering communities and ecosystem function. The EID chytridiomycosis is a prominent driver of amphibian declines, which is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). To guide conservation policy, we developed a predictive decision-analytic model that combines empirical knowledge of host-pathogen metapopulation dynamics with expert judgment regarding effects of management actions, to select from potential conservation strategies. We apply our approach to a boreal toad (Anaxyrus boreas boreas) and Bd system, identifying optimal strategies that balance tradeoffs in maximizing toad population persistence and landscape-level distribution, while considering costs. The most robust strategy is expected to reduce the decline of toad breeding sites from 53% to 21% over 50 years. Our findings are incorporated into management policy to guide conservation planning. Our online modeling application provides a template for managers of other systems challenged by EIDs.

  10. Identifying non-elliptical entity mentions in a coordinated NP with ellipses.

    PubMed

    Chae, Jeongmin; Jung, Younghee; Lee, Taemin; Jung, Soonyoung; Huh, Chan; Kim, Gilhan; Kim, Hyeoncheol; Oh, Heungbum

    2014-02-01

    Named entities in the biomedical domain are often written using a Noun Phrase (NP) along with a coordinating conjunction such as 'and' and 'or'. In addition, repeated words among named entity mentions are frequently omitted. It is often difficult to identify named entities. Although various Named Entity Recognition (NER) methods have tried to solve this problem, these methods can only deal with relatively simple elliptical patterns in coordinated NPs. We propose a new NER method for identifying non-elliptical entity mentions with simple or complex ellipses using linguistic rules and an entity mention dictionary. The GENIA and CRAFT corpora were used to evaluate the performance of the proposed system. The GENIA corpus was used to evaluate the performance of the system according to the quality of the dictionary. The GENIA corpus comprises 3434 non-elliptical entity mentions in 1585 coordinated NPs with ellipses. The system achieves 92.11% precision, 95.20% recall, and 93.63% F-score in identification of non-elliptical entity mentions in coordinated NPs. The accuracy of the system in resolving simple and complex ellipses is 94.54% and 91.95%, respectively. The CRAFT corpus was used to evaluate the performance of the system under realistic conditions. The system achieved 78.47% precision, 67.10% recall, and 72.34% F-score in coordinated NPs. The performance evaluations of the system show that it efficiently solves the problem caused by ellipses, and improves NER performance. The algorithm is implemented in PHP and the code can be downloaded from https://code.google.com/p/medtextmining/. Copyright © 2013. Published by Elsevier Inc.

  11. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants contributing to lipid levels and coronary artery disease

    PubMed Central

    Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J.; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N.; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H.-H.; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B.; Adair, Linda S.; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; da Chen, Yii-Der I; Shu, XiaoOu; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K.; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars; Nielsen, Jonas Bille; Tse, Hung-fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y. Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Consortium, GLGC; Kathiresan, Sekar; Mohlke, Karen L.; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J

    2017-01-01

    Most genome-wide association studies have been conducted in European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we examined protein-coding genetic variants in 47,532 East Asian individuals using an exome array. We identified 255 variants at 41 loci reaching chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After meta-analysis with > 300,000 European samples, we identified an additional 9 novel loci. The same 16 genes were identified by the protein-altering variants in both East Asians and Europeans, likely pointing to the functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population-specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci. PMID:29083407

  12. A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods.

    PubMed

    Zhang, Ai-bing; Feng, Jie; Ward, Robert D; Wan, Ping; Gao, Qiang; Wu, Jun; Zhao, Wei-zhong

    2012-01-01

    Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.

  13. Non-coding, mRNA-like RNAs database Y2K

    PubMed Central

    Erdmann, Volker A.; Szymanski, Maciej; Hochberg, Abraham; Groot, Nathan de; Barciszewski, Jan

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www.man.poznan.pl/5SData/ncRNA/index.html PMID:10592224

  14. Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination

    PubMed Central

    Dong, Xiaomin; Chen, Kenian; Cuevas-Diaz Duran, Raquel; You, Yanan; Sloan, Steven A.; Zhang, Ye; Zong, Shan; Cao, Qilin; Barres, Ben A.; Wu, Jia Qian

    2015-01-01

    Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results

  15. Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination.

    PubMed

    Dong, Xiaomin; Chen, Kenian; Cuevas-Diaz Duran, Raquel; You, Yanan; Sloan, Steven A; Zhang, Ye; Zong, Shan; Cao, Qilin; Barres, Ben A; Wu, Jia Qian

    2015-12-01

    Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results

  16. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers

    PubMed Central

    Pan, Yangyang; Mao, Yuyan; Jin, Rong; Jiang, Lei

    2018-01-01

    The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells. PMID:29285185

  17. Non-coding landscapes of colorectal cancer

    PubMed Central

    Ragusa, Marco; Barbagallo, Cristina; Statello, Luisa; Condorelli, Angelo Giuseppe; Battaglia, Rosalia; Tamburello, Lucia; Barbagallo, Davide; Di Pietro, Cinzia; Purrello, Michele

    2015-01-01

    For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy. PMID:26556998

  18. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer

    PubMed Central

    Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Chira, Sergiu; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana

    2017-01-01

    Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer. PMID:28587155

  19. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer.

    PubMed

    Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Sergiu, Chira; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana

    2017-06-01

    Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.

  20. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data

    PubMed Central

    Raju, Hemalatha B.; Tsinoremas, Nicholas F.; Capobianco, Enrico

    2016-01-01

    Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein

  1. Validity of administrative coding in identifying patients with upper urinary tract calculi.

    PubMed

    Semins, Michelle J; Trock, Bruce J; Matlaga, Brian R

    2010-07-01

    Administrative databases are increasingly used for epidemiological investigations. We performed a study to assess the validity of ICD-9 codes for upper urinary tract stone disease in an administrative database. We retrieved the records of all inpatients and outpatients at Johns Hopkins Hospital between November 2007 and October 2008 with an ICD-9 code of 592, 592.0, 592.1 or 592.9 as one of the first 3 diagnosis codes. A random number generator selected 100 encounters for further review. We considered a patient to have a true diagnosis of an upper tract stone if the medical records specifically referenced a kidney stone event, or included current or past treatment for a kidney stone. Descriptive and comparative analyses were performed. A total of 8,245 encounters coded as upper tract calculus were identified and 100 were randomly selected for review. Two patients could not be identified within the electronic medical record and were excluded from the study. The positive predictive value of using all ICD-9 codes for an upper tract calculus (592, 592.0, 592.1) to identify subjects with renal or ureteral stones was 95.9%. For 592.0 only the positive predictive value was 85%. However, although the positive predictive value for 592.1 only was 100%, 26 subjects (76%) with a ureteral stone were not appropriately billed with this code. ICD-9 coding for urinary calculi is likely to be sufficiently valid to be useful in studies using administrative data to analyze stone disease. However, ICD-9 coding is not a reliable means to distinguish between subjects with renal and ureteral calculi. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. RNAcentral: A comprehensive database of non-coding RNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kelly Porter; Lau, Britney Yan

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similaritymore » searches as well as genome browsing functionality.« less

  3. RNAcentral: A comprehensive database of non-coding RNA sequences

    DOE PAGES

    Williams, Kelly Porter; Lau, Britney Yan

    2016-10-28

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similaritymore » searches as well as genome browsing functionality.« less

  4. Identification and characterization of moonlighting long non-coding RNAs based on RNA and protein interactome.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-05-16

    Moonlighting proteins are a class of proteins having multiple distinct functions, which play essential roles in a variety of cellular and enzymatic functioning systems. Although there have long been calls for computational algorithms for the identification of moonlighting proteins, research on approaches to identify moonlighting long non-coding RNAs (lncRNAs) has never been undertaken. Here, we introduce a novel methodology, MoonFinder, for the identification of moonlighting lncRNAs. MoonFinder is a statistical algorithm identifying moonlighting lncRNAs without a priori knowledge through the integration of protein interactome, RNA-protein interactions, and functional annotation of proteins. We identify 155 moonlighting lncRNA candidates and uncover that they are a distinct class of lncRNAs characterized by specific sequence and cellular localization features. The non-coding genes that transcript moonlighting lncRNAs tend to have shorter but more exons and the moonlighting lncRNAs have a variable localization pattern with a high chance of residing in the cytoplasmic compartment in comparison to the other lncRNAs. Moreover, moonlighting lncRNAs and moonlighting proteins are rather mutually exclusive in terms of both their direct interactions and interacting partners. Our results also shed light on how the moonlighting candidates and their interacting proteins implicated in the formation and development of cancers and other diseases. The code implementing MoonFinder is supplied as an R package in the supplementary material. lxcheng@cse.cuhk.edu.hk or ksleung@cse.cuhk.edu.hk. Supplementary data are available at Bioinformatics online.

  5. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins.

    PubMed

    Singh, Abhishek K; Aryal, Binod; Zhang, Xinbo; Fan, Yuhua; Price, Nathan L; Suárez, Yajaira; Fernández-Hernando, Carlos

    2017-11-29

    Alterations in lipoprotein metabolism enhance the risk of cardiometabolic disorders including type-2 diabetes and atherosclerosis, the leading cause of death in Western societies. While the transcriptional regulation of lipid metabolism has been well characterized, recent studies have uncovered the importance of microRNAs (miRNAs), long-non-coding RNAs (lncRNAs) and RNA binding proteins (RBP) in regulating the expression of lipid-related genes at the posttranscriptional level. Work from several groups has identified a number of miRNAs, including miR-33, miR-122 and miR-148a, that play a prominent role in controlling cholesterol homeostasis and lipoprotein metabolism. Importantly, dysregulation of miRNA expression has been associated with dyslipidemia, suggesting that manipulating the expression of these miRNAs could be a useful therapeutic approach to ameliorate cardiovascular disease (CVD). The role of lncRNAs in regulating lipid metabolism has recently emerged and several groups have demonstrated their regulation of lipoprotein metabolism. However, given the high abundance of lncRNAs and the poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in controlling lipoprotein metabolism. In this review article, we summarize recent findings in the field and highlight the specific contribution of lncRNAs and RBPs in regulating lipid metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Non-coding RNAs and Berberine: A new mechanism of its anti-diabetic activities.

    PubMed

    Chang, Wenguang

    2017-01-15

    Type 2 Diabetes (T2D) is a metabolic disease with high mortality and morbidity. Non-coding RNAs, including small and long non-coding RNAs, are a novel class of functional RNA molecules that regulate multiple biological functions through diverse mechanisms. Studies in the last decade have demonstrated that non-coding RNAs may represent compelling therapeutic targets and play important roles in regulating the course of insulin resistance and T2D. Berberine, a plant-based alkaloid, has shown promise as an anti-hyperglycaemic, anti-hyperlipidaemic agent against T2D. Previous studies have primarily focused on a diverse array of efficacy end points of berberine in the pathogenesis of metabolic syndromes and inflammation or oxidative stress. Currently, an increasing number of studies have revealed the importance of non-coding RNAs as regulators of the anti-diabetic effects of berberine. The regulation of non-coding RNAs has been associated with several therapeutic actions of berberine in T2D progression. Thus, this review summarizes the anti-diabetic mechanisms of berberine by focusing on its role in regulating non-coding RNA, thus demonstrating that berberine exerts global anti-diabetic effects by targeting non-coding RNAs and that these effects involve several miRNAs, lncRNAs and multiple signal pathways, which may enhance the current understanding of the anti-diabetic mechanism actions of berberine and provide new pathological targets for the development of berberine-related drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Progressive changes in non-coding RNA profile in leucocytes with age

    PubMed Central

    Muñoz-Culla, Maider; Irizar, Haritz; Gorostidi, Ana; Alberro, Ainhoa; Osorio-Querejeta, Iñaki; Ruiz-Martínez, Javier; Olascoaga, Javier; de Munain, Adolfo López; Otaegui, David

    2017-01-01

    It has been observed that immune cell deterioration occurs in the elderly, as well as a chronic low-grade inflammation called inflammaging. These cellular changes must be driven by numerous changes in gene expression and in fact, both protein-coding and non-coding RNA expression alterations have been observed in peripheral blood mononuclear cells from elder people. In the present work we have studied the expression of small non-coding RNA (microRNA and small nucleolar RNA -snoRNA-) from healthy individuals from 24 to 79 years old. We have observed that the expression of 69 non-coding RNAs (56 microRNAs and 13 snoRNAs) changes progressively with chronological age. According to our results, the age range from 47 to 54 is critical given that it is the period when the expression trend (increasing or decreasing) of age-related small non-coding RNAs is more pronounced. Furthermore, age-related miRNAs regulate genes that are involved in immune, cell cycle and cancer-related processes, which had already been associated to human aging. Therefore, human aging could be studied as a result of progressive molecular changes, and different age ranges should be analysed to cover the whole aging process. PMID:28448962

  8. Non-coding recurrent mutations in chronic lymphocytic leukaemia.

    PubMed

    Puente, Xose S; Beà, Silvia; Valdés-Mas, Rafael; Villamor, Neus; Gutiérrez-Abril, Jesús; Martín-Subero, José I; Munar, Marta; Rubio-Pérez, Carlota; Jares, Pedro; Aymerich, Marta; Baumann, Tycho; Beekman, Renée; Belver, Laura; Carrio, Anna; Castellano, Giancarlo; Clot, Guillem; Colado, Enrique; Colomer, Dolors; Costa, Dolors; Delgado, Julio; Enjuanes, Anna; Estivill, Xavier; Ferrando, Adolfo A; Gelpí, Josep L; González, Blanca; González, Santiago; González, Marcos; Gut, Marta; Hernández-Rivas, Jesús M; López-Guerra, Mónica; Martín-García, David; Navarro, Alba; Nicolás, Pilar; Orozco, Modesto; Payer, Ángel R; Pinyol, Magda; Pisano, David G; Puente, Diana A; Queirós, Ana C; Quesada, Víctor; Romeo-Casabona, Carlos M; Royo, Cristina; Royo, Romina; Rozman, María; Russiñol, Nuria; Salaverría, Itziar; Stamatopoulos, Kostas; Stunnenberg, Hendrik G; Tamborero, David; Terol, María J; Valencia, Alfonso; López-Bigas, Nuria; Torrents, David; Gut, Ivo; López-Guillermo, Armando; López-Otín, Carlos; Campo, Elías

    2015-10-22

    Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.

  9. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease.

    PubMed

    Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-Man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H-H; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B; Adair, Linda S; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; Chen, Yii-Der Ida; Shu, Xiao-Ou; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars G; Nielsen, Jonas Bille; Tse, Hung-Fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Kathiresan, Sekar; Mohlke, Karen L; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J

    2017-12-01

    Most genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we used an exome array to examine protein-coding genetic variants in 47,532 East Asian individuals. We identified 255 variants at 41 loci that reached chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After a meta-analysis including >300,000 European samples, we identified an additional nine novel loci. Sixteen genes were identified by protein-altering variants in both East Asians and Europeans, and thus are likely to be functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci.

  10. A benchmark study of scoring methods for non-coding mutations.

    PubMed

    Drubay, Damien; Gautheret, Daniel; Michiels, Stefan

    2018-05-15

    Detailed knowledge of coding sequences has led to different candidate models for pathogenic variant prioritization. Several deleteriousness scores have been proposed for the non-coding part of the genome, but no large-scale comparison has been realized to date to assess their performance. We compared the leading scoring tools (CADD, FATHMM-MKL, Funseq2 and GWAVA) and some recent competitors (DANN, SNP and SOM scores) for their ability to discriminate assumed pathogenic variants from assumed benign variants (using the ClinVar, COSMIC and 1000 genomes project databases). Using the ClinVar benchmark, CADD was the best tool for detecting the pathogenic variants that are mainly located in protein coding gene regions. Using the COSMIC benchmark, FATHMM-MKL, GWAVA and SOMliver outperformed the other tools for pathogenic variants that are typically located in lincRNAs, pseudogenes and other parts of the non-coding genome. However, all tools had low precision, which could potentially be improved by future non-coding genome feature discoveries. These results may have been influenced by the presence of potential benign variants in the COSMIC database. The development of a gold standard as consistent as ClinVar for these regions will be necessary to confirm our tool ranking. The Snakemake, C++ and R codes are freely available from https://github.com/Oncostat/BenchmarkNCVTools and supported on Linux. damien.drubay@gustaveroussy.fr or stefan.michiels@gustaveroussy.fr. Supplementary data are available at Bioinformatics online.

  11. Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci†

    PubMed Central

    Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus

    2015-01-01

    Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. PMID:26019233

  12. Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci†.

    PubMed

    Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus

    2015-08-15

    Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. © The Author 2015. Published by Oxford University Press.

  13. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans

    PubMed Central

    Holdt, Lesca M.; Stahringer, Anika; Sass, Kristina; Pichler, Garwin; Kulak, Nils A.; Wilfert, Wolfgang; Kohlmaier, Alexander; Herbst, Andreas; Northoff, Bernd H.; Nicolaou, Alexandros; Gäbel, Gabor; Beutner, Frank; Scholz, Markus; Thiery, Joachim; Musunuru, Kiran; Krohn, Knut; Mann, Matthias; Teupser, Daniel

    2016-01-01

    Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease. PMID:27539542

  14. Conservation and divergence of microRNAs in Populus

    PubMed Central

    Barakat, Abdelali; Wall, Phillip K; DiLoreto, Scott; dePamphilis, Claude W; Carlson, John E

    2007-01-01

    Background MicroRNAs (miRNAs) are small RNAs (sRNA) ~21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing. Results Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis. Conclusion Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may

  15. Long Non-Coding RNAs (lncRNAs) of Sea Cucumber: Large-Scale Prediction, Expression Profiling, Non-Coding Network Construction, and lncRNA-microRNA-Gene Interaction Analysis of lncRNAs in Apostichopus japonicus and Holothuria glaberrima During LPS Challenge and Radial Organ Complex Regeneration.

    PubMed

    Mu, Chuang; Wang, Ruijia; Li, Tianqi; Li, Yuqiang; Tian, Meilin; Jiao, Wenqian; Huang, Xiaoting; Zhang, Lingling; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2016-08-01

    Long non-coding RNA (lncRNA) structurally resembles mRNA but cannot be translated into protein. Although the systematic identification and characterization of lncRNAs have been increasingly reported in model species, information concerning non-model species is still lacking. Here, we report the first systematic identification and characterization of lncRNAs in two sea cucumber species: (1) Apostichopus japonicus during lipopolysaccharide (LPS) challenge and in heathy tissues and (2) Holothuria glaberrima during radial organ complex regeneration, using RNA-seq datasets and bioinformatics analysis. We identified A. japonicus and H. glaberrima lncRNAs that were differentially expressed during LPS challenge and radial organ complex regeneration, respectively. Notably, the predicted lncRNA-microRNA-gene trinities revealed that, in addition to targeting protein-coding transcripts, miRNAs might also target lncRNAs, thereby participating in a potential novel layer of regulatory interactions among non-coding RNA classes in echinoderms. Furthermore, the constructed coding-non-coding network implied the potential involvement of lncRNA-gene interactions during the regulation of several important genes (e.g., Toll-like receptor 1 [TLR1] and transglutaminase-1 [TGM1]) in response to LPS challenge and radial organ complex regeneration in sea cucumbers. Overall, this pioneer systematic identification, annotation, and characterization of lncRNAs in echinoderm pave the way for similar studies and future genetic, genomic, and evolutionary research in non-model species.

  16. A Catalogue of Putative cis-Regulatory Interactions Between Long Non-coding RNAs and Proximal Coding Genes Based on Correlative Analysis Across Diverse Human Tumors.

    PubMed

    Basu, Swaraj; Larsson, Erik

    2018-05-31

    Antisense transcripts and other long non-coding RNAs are pervasive in mammalian cells, and some of these molecules have been proposed to regulate proximal protein-coding genes in cis For example, non-coding transcription can contribute to inactivation of tumor suppressor genes in cancer, and antisense transcripts have been implicated in the epigenetic inactivation of imprinted genes. However, our knowledge is still limited and more such regulatory interactions likely await discovery. Here, we make use of available gene expression data from a large compendium of human tumors to generate hypotheses regarding non-coding-to-coding cis -regulatory relationships with emphasis on negative associations, as these are less likely to arise for reasons other than cis -regulation. We document a large number of possible regulatory interactions, including 193 coding/non-coding pairs that show expression patterns compatible with negative cis -regulation. Importantly, by this approach we capture several known cases, and many of the involved coding genes have known roles in cancer. Our study provides a large catalog of putative non-coding/coding cis -regulatory pairs that may serve as a basis for further experimental validation and characterization. Copyright © 2018 Basu and Larsson.

  17. Junk DNA and the long non-coding RNA twist in cancer genetics

    PubMed Central

    Ling, Hui; Vincent, Kimberly; Pichler, Martin; Fodde, Riccardo; Berindan-Neagoe, Ioana; Slack, Frank J.; Calin, George A

    2015-01-01

    The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions, and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function, and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual’s susceptibility to cancer. PMID:25619839

  18. Determination of non-market values to inform conservation strategies for the threatened Alistana-Sanabresa cattle breed.

    PubMed

    Martin-Collado, D; Diaz, C; Drucker, A G; Carabaño, M J; Zander, K K

    2014-08-01

    Livestock breed-related public good functions are often used to justify support for endangered breed conservation despite the fact that little is known about such non-market values. We show how stated preference techniques can be used to assess the non-market values that people place on livestock breeds. Through the application of a case study choice experiment survey in Zamora province, Spain, the total economic value (TEV) of the threatened Alistana-Sanabresa (AS) cattle breed was investigated. An analysis of the relative importance of the non-market components of its TEV and an assessment of the socio-economic variables that influence people's valuation of such components is used to inform conservation strategy design. Overall, the findings reveal that the AS breed had significant non-market values associated with it and that the value that respondents placed on each specific public good function also varied significantly. Functions related with indirect use cultural and existence values were much more highly valued than landscape maintenance values. These high cultural and existence values (totalling over 80% of TEV) suggest that an AS in situ conservation strategy will be required to secure such values. As part of such a strategy, incentive mechanisms will be needed to permit farmers to capture some of these public good values and thus be able to afford to maintain breed population numbers at socially desirable levels. One such mechanism could be related to the development of breed-related agritourism initiatives, with a view to enhancing private good values and providing an important addition to continued direct support. Where linked with cultural dimensions, niche product market development, including through improving AS breed-related product quality and brand recognition may also have a role to play as part of such an overall conservation and use strategy. We conclude that livestock breed conservation strategies with the highest potential to maximise

  19. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates

    PubMed Central

    Long, Hannah K; Sims, David; Heger, Andreas; Blackledge, Neil P; Kutter, Claudia; Wright, Megan L; Grützner, Frank; Odom, Duncan T; Patient, Roger; Ponting, Chris P; Klose, Robert J

    2013-01-01

    Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI: http://dx.doi.org/10.7554/eLife.00348.001 PMID:23467541

  20. Differential expression of small non-coding RNAs in serum from cattle challenged with viruses causing bovine respiratory disease

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs and tRNA-derived RNA fragments (tRFs) are the two most abundant groups of small non-coding RNAs. The potential for microRNAs and tRFs to be used as pathogen exposure indicators is yet to be fully explored. Our objective was to identify microRNAs and tRFs in cattle challenged with a non-cy...

  1. Identifying conservation priorities and management strategies based on ecosystem services to improve urban sustainability in Harbin, China.

    PubMed

    Qu, Yi; Lu, Ming

    2018-01-01

    Rapid urbanization and agricultural development has resulted in the degradation of ecosystems, while also negatively impacting ecosystem services (ES) and urban sustainability. Identifying conservation priorities for ES and applying reasonable management strategies have been found to be effective methods for mitigating this phenomenon. The purpose of this study is to propose a comprehensive framework for identifying ES conservation priorities and associated management strategies for these planning areas. First, we incorporated 10 ES indicators within a systematic conservation planning (SCP) methodology in order to identify ES conservation priorities with high irreplaceability values based on conservation target goals associated with the potential distribution of ES indicators. Next, we assessed the efficiency of the ES conservation priorities for meeting the designated conservation target goals. Finally, ES conservation priorities were clustered into groups using a K-means clustering analysis in an effort to identify the dominant ES per location before formulating management strategies. We effectively identified 12 ES priorities to best represent conservation target goals for the ES indicators. These 12 priorities had a total areal coverage of 13,364 km 2 representing 25.16% of the study area. The 12 priorities were further clustered into five significantly different groups ( p -values between groups < 0.05), which helped to refine management strategies formulated to best enhance ES across the study area. The proposed method allows conservation and management plans to easily adapt to a wide variety of quantitative ES target goals within urban and agricultural areas, thereby preventing urban and agriculture sprawl and guiding sustainable urban development.

  2. Identifying conservation priorities and management strategies based on ecosystem services to improve urban sustainability in Harbin, China

    PubMed Central

    2018-01-01

    Rapid urbanization and agricultural development has resulted in the degradation of ecosystems, while also negatively impacting ecosystem services (ES) and urban sustainability. Identifying conservation priorities for ES and applying reasonable management strategies have been found to be effective methods for mitigating this phenomenon. The purpose of this study is to propose a comprehensive framework for identifying ES conservation priorities and associated management strategies for these planning areas. First, we incorporated 10 ES indicators within a systematic conservation planning (SCP) methodology in order to identify ES conservation priorities with high irreplaceability values based on conservation target goals associated with the potential distribution of ES indicators. Next, we assessed the efficiency of the ES conservation priorities for meeting the designated conservation target goals. Finally, ES conservation priorities were clustered into groups using a K-means clustering analysis in an effort to identify the dominant ES per location before formulating management strategies. We effectively identified 12 ES priorities to best represent conservation target goals for the ES indicators. These 12 priorities had a total areal coverage of 13,364 km2 representing 25.16% of the study area. The 12 priorities were further clustered into five significantly different groups (p-values between groups < 0.05), which helped to refine management strategies formulated to best enhance ES across the study area. The proposed method allows conservation and management plans to easily adapt to a wide variety of quantitative ES target goals within urban and agricultural areas, thereby preventing urban and agriculture sprawl and guiding sustainable urban development. PMID:29682412

  3. A freshwater biodiversity hotspot under pressure - assessing threats and identifying conservation needs for ancient Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Kostoski, G.; Albrecht, C.; Trajanovski, S.; Wilke, T.

    2010-07-01

    Freshwater habitats and species living in freshwater are generally more prone to extinction than terrestrial or marine ones. Immediate conservation measures for world-wide freshwater resources are thus of eminent importance. This is particularly true for so called ancient lakes. While these lakes are famous for being evolutionary theatres, often displaying an extraordinarily high degree of biodiversity and endemism, in many cases these biota are also experiencing extreme anthropogenic impact. Lake Ohrid, the European biodiversity hotspot, is a prime example for a lake with a magnitude of narrow range endemic taxa that are under increasing anthropogenic pressure. Unfortunately, evidence for a "creeping biodiversity crisis" has accumulated over the last decades, and major socio-political changes have gone along with human-mediated environmental changes. Based on field surveys, monitoring data, published records, and expert interviews, we aimed to (1) assess threats to Lake Ohrids' (endemic) biodiversity, (2) summarize existing conservation activities and strategies, and (3) outline future conservation needs for Lake Ohrid. We compiled threats to both specific taxa (and in cases to particular species) as well as to the lake ecosystems itself. Major conservation concerns identified for Lake Ohrid are: (1) watershed impacts, (2) agriculture and forestry, (3) tourism and population growth, (4) non-indigenous species, (5) habitat alteration or loss, (6) unsustainable exploitation of fisheries, and (7) global climate change. Of the 11 IUCN (International Union for Conservation of Nature and Natural Resources) threat classes scored, seven have moderate and three severe impacts. These latter threat classes are energy production and mining, biological resource use, and pollution. We review and discuss institutional responsibilities, environmental monitoring and ecosystem management, existing parks and reserves, biodiversity and species measures, international conservation

  4. A freshwater biodiversity hotspot under pressure - assessing threats and identifying conservation needs for ancient Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Kostoski, G.; Albrecht, C.; Trajanovski, S.; Wilke, T.

    2010-12-01

    Immediate conservation measures for world-wide freshwater resources are of eminent importance. This is particularly true for so-called ancient lakes. While these lakes are famous for being evolutionary theatres, often displaying an extraordinarily high degree of biodiversity and endemism, in many cases these biota are also experiencing extreme anthropogenic impact. Lake Ohrid, a major European biodiversity hotspot situated in a trans-frontier setting on the Balkans, is a prime example for a lake with a magnitude of narrow range endemic taxa that are under increasing anthropogenic pressure. Unfortunately, evidence for a "creeping biodiversity crisis" has accumulated over the last decades, and major socio-political changes have gone along with human-mediated environmental changes. Based on field surveys, monitoring data, published records, and expert interviews, we aimed to (1) assess threats to Lake Ohrids' (endemic) biodiversity, (2) summarize existing conservation activities and strategies, and (3) outline future conservation needs for Lake Ohrid. We compiled threats to both specific taxa (and in cases to particular species) as well as to the lake ecosystems itself. Major conservation concerns identified for Lake Ohrid are: (1) watershed impacts, (2) agriculture and forestry, (3) tourism and population growth, (4) non-indigenous species, (5) habitat alteration or loss, (6) unsustainable exploitation of fisheries, and (7) global climate change. Among the major (well-known) threats with high impact are nutrient input (particularly of phosphorus), habitat conversion and silt load. Other threats are potentially of high impact but less well known. Such threats include pollution with hazardous substances (from sources such as mines, former industries, agriculture) or climate change. We review and discuss institutional responsibilities, environmental monitoring and ecosystem management, existing parks and reserves, biodiversity and species measures, international

  5. Non-binary LDPC-coded modulation for high-speed optical metro networks with backpropagation

    NASA Astrophysics Data System (ADS)

    Arabaci, Murat; Djordjevic, Ivan B.; Saunders, Ross; Marcoccia, Roberto M.

    2010-01-01

    To simultaneously mitigate the linear and nonlinear channel impairments in high-speed optical communications, we propose the use of non-binary low-density-parity-check-coded modulation in combination with a coarse backpropagation method. By employing backpropagation, we reduce the memory in the channel and in return obtain significant reductions in the complexity of the channel equalizer which is exponentially proportional to the channel memory. We then compensate for the remaining channel distortions using forward error correction based on non-binary LDPC codes. We propose non-binary-LDPC-coded modulation scheme because, compared to bit-interleaved binary-LDPC-coded modulation scheme employing turbo equalization, the proposed scheme lowers the computational complexity and latency of the overall system while providing impressively larger coding gains.

  6. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture

    PubMed Central

    Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C.P.G.M.; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R.; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce BJ; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia MT; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent

    2016-01-01

    SUMMARY The extent to which low-frequency (minor allele frequency [MAF] between 1–5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is largely unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic fractures and has been previously associated with common genetic variants1–8, and rare, population-specific, coding variants9. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n=2,882 from UK10K), whole-exome sequencing (n= 3,549), deep imputation of genotyped samples using a combined UK10K/1000Genomes reference panel (n=26,534), and de-novo replication genotyping (n= 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size 4-fold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20 standard deviations [SD], Pmeta = 2×10−14), which was also associated with a decreased risk of fracture (OR = 0.85; P = 2×10−11; ncases = 98,742 and ncontrols = 409,511). Using an En1Cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, likely as a consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817[T], MAF = 1.1%, replication effect size = +0.39 SD, Pmeta = 1×10−11). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of

  7. Impact evaluation to communicate and improve conservation non-governmental organization performance: the case of Conservation International.

    PubMed

    McKinnon, Madeleine C; Mascia, Michael B; Yang, Wu; Turner, Will R; Bonham, Curan

    2015-11-05

    The rising prominence of more rigorous approaches to measuring conservation outcomes has included greater adoption of impact evaluation by conservation non-governmental organizations (CNGOs). Within the scientific literature, however, little consideration has been given to the unique and specific roles of CNGOs in advancing impact evaluation. We explore these issues in the context of one CNGO-Conservation International (CI)-and its experiences producing, using and funding impact evaluations over the past decade. We examine the contributions of impact evaluation to CI's mission at three different stages of CI's strategy: innovation, demonstration and amplification. Furthermore, we review incentives and barriers encountered by CI in its 10+ years' experience in impact evaluation. More coordinated and strategic use of impact evaluation by CNGOs would facilitate learning and promote accountability across the conservation community. © 2015 The Author(s).

  8. Impact evaluation to communicate and improve conservation non-governmental organization performance: the case of Conservation International

    PubMed Central

    McKinnon, Madeleine C.; Mascia, Michael B.; Yang, Wu; Turner, Will R.; Bonham, Curan

    2015-01-01

    The rising prominence of more rigorous approaches to measuring conservation outcomes has included greater adoption of impact evaluation by conservation non-governmental organizations (CNGOs). Within the scientific literature, however, little consideration has been given to the unique and specific roles of CNGOs in advancing impact evaluation. We explore these issues in the context of one CNGO—Conservation International (CI)—and its experiences producing, using and funding impact evaluations over the past decade. We examine the contributions of impact evaluation to CI's mission at three different stages of CI's strategy: innovation, demonstration and amplification. Furthermore, we review incentives and barriers encountered by CI in its 10+ years' experience in impact evaluation. More coordinated and strategic use of impact evaluation by CNGOs would facilitate learning and promote accountability across the conservation community. PMID:26460134

  9. Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer

    PubMed Central

    Hansji, Herah; Leung, Euphemia Y.; Baguley, Bruce C.; Finlay, Graeme J.; Askarian-Amiri, Marjan E.

    2014-01-01

    The majority of the human genome is transcribed, even though only 2% of transcripts encode proteins. Non-coding transcripts were originally dismissed as evolutionary junk or transcriptional noise, but with the development of whole genome technologies, these non-coding RNAs (ncRNAs) are emerging as molecules with vital roles in regulating gene expression. While shorter ncRNAs have been extensively studied, the functional roles of long ncRNAs (lncRNAs) are still being elucidated. Studies over the last decade show that lncRNAs are emerging as new players in a number of diseases including cancer. Potential roles in both oncogenic and tumor suppressive pathways in cancer have been elucidated, but the biological functions of the majority of lncRNAs remain to be identified. Accumulated data are identifying the molecular mechanisms by which lncRNA mediates both structural and functional roles. LncRNA can regulate gene expression at both transcriptional and post-transcriptional levels, including splicing and regulating mRNA processing, transport, and translation. Much current research is aimed at elucidating the function of lncRNAs in breast cancer and mammary gland development, and at identifying the cellular processes influenced by lncRNAs. In this paper we review current knowledge of lncRNAs contributing to these processes and present lncRNA as a new paradigm in breast cancer development. PMID:25400658

  10. Perspectives on the mechanism of transcriptional regulation by long non-coding RNAs.

    PubMed

    Roberts, Thomas C; Morris, Kevin V; Weinberg, Marc S

    2014-01-01

    Long non-coding RNAs (lncRNAs) are increasingly being recognized as epigenetic regulators of gene transcription. The diversity and complexity of lncRNA genes means that they exert their regulatory effects by a variety of mechanisms. Although there is still much to be learned about the mechanism of lncRNA function, general principles are starting to emerge. In particular, the application of high throughput (deep) sequencing methodologies has greatly advanced our understanding of lncRNA gene function. lncRNAs function as adaptors that link specific chromatin loci with chromatin-remodeling complexes and transcription factors. lncRNAs can act in cis or trans to guide epigenetic-modifier complexes to distinct genomic sites, or act as scaffolds which recruit multiple proteins simultaneously, thereby coordinating their activities. In this review we discuss the genomic organization of lncRNAs, the importance of RNA secondary structure to lncRNA functionality, the multitude of ways in which they interact with the genome, and what evolutionary conservation tells us about their function.

  11. Integrative analysis of long non-coding RNA acting as ceRNAs involved in chilling injury in tomato fruit.

    PubMed

    Wang, Yunxiang; Gao, Lipu; Zhu, Benzhong; Zhu, Hongliang; Luo, Yunbo; Wang, Qing; Zuo, Jinhua

    2018-08-15

    Long-non-coding RNA (LncRNA) is a kind of non-coding endogenous RNA that plays essential roles in diverse biological processes and various stress responses. To identify and elucidate the intricate regulatory roles of lncRNAs in chilling injury in tomato fruit, deep sequencing and bioinformatics methods were performed here. After strict screening, a total of 1411 lncRNAs were identified. Among these lncRNAs, 239 of them were significantly differentially expressed. A large amount of target genes were identified and many of them were found to code chilling stress related proteins, including redox reaction related enzyme, important enzymes about cell wall degradation, membrane lipid peroxidation related enzymes, heat and cold shock protein, energy metabolism related enzymes, salicylic acid and abscisic acid metabolism related genes. Interestingly, 41 lncRNAs were found to be the precursor of 33 miRNAs, and 186 lncRNAs were targets of 45 miRNAs. These lncRNAs targeted by miRNAs might be potential ceRNAs. Particularly, a sophisticated regulatory model including miRNAs, lncRNAs and their targets was set up. This model revealed that some miRNAs and lncRNAs may be involved in chilling injury, which provided a new perspective of lncRNAs role. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Structural Code Considerations for Solar Rooftop Installations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

    2014-12-01

    Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on amore » rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.« less

  13. Characterization and Analysis of Whole Transcriptome of Giant Panda Spleens: Implying Critical Roles of Long Non-Coding RNAs in Immunity.

    PubMed

    Peng, Rui; Liu, Yuliang; Cai, Zhigang; Shen, Fujun; Chen, Jiasong; Hou, Rong; Zou, Fangdong

    2018-01-01

    Giant pandas, an endangered species, are a powerful symbol of species conservation. Giant pandas may suffer from a variety of diseases. Owing to their highly specialized diet of bamboo, giant pandas are thought to have a relatively weak ability to resist diseases. The spleen is the largest organ in the lymphatic system. However, there is little known about giant panda spleen at a molecular level. Thus, clarifying the regulatory mechanisms of spleen could help us further understand the immune system of the giant panda as well as its conservation. The two giant panda spleens were from two male individuals, one newborn and one an adult, in a non-pathological condition. The whole transcriptomes of mRNA, lncRNA, miRNA, and circRNA in the two spleens were sequenced using the Illumina HiSeq platform. EBseq and IDEG6 were used to observe the differentially expressed genes (DEGs) between these two spleens. Gene Ontology and KEGG analyses were used to annotate the function of DEGs. Furthermore, networks between non-coding RNAs and protein-coding genes were constructed to investigate the relationship between non-coding RNAs and immune-associated genes. By comparative analysis of the whole transcriptomes of these two spleens, we found that one of the major roles of lncRNAs could be involved in the regulation of immune responses of giant panda spleens. In addition, our results also revealed that microRNAs and circRNAs may have evolved to regulate a large set of biological processes of giant panda spleens, and circRNAs may function as miRNA sponges. To our knowledge, this is the first report of lncRNAs and circRNAs in giant panda, which could be a useful resource for further giant panda research. Our study reveals the potential functional roles of miRNAs, lncRNAs, and circRNAs in giant panda spleen. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. 50 CFR Table 14b to Part 679 - Port of Landing Codes: Non-Alaska

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Port of Landing Codes: Non-Alaska 14b... ALASKA Pt. 679, Table 14b Table 14b to Part 679—Port of Landing Codes: Non-Alaska (California, Canada... report a landing at a location not currently assigned a location code number, use the code for “Other...

  15. 50 CFR Table 14b to Part 679 - Port of Landing Codes: Non-Alaska

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Port of Landing Codes: Non-Alaska 14b... ALASKA Pt. 679, Table 14b Table 14b to Part 679—Port of Landing Codes: Non-Alaska (California, Canada... report a landing at a location not currently assigned a location code number, use the code for “Other...

  16. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  17. Detecting the borders between coding and non-coding DNA regions in prokaryotes based on recursive segmentation and nucleotide doublets statistics

    PubMed Central

    2012-01-01

    Background Detecting the borders between coding and non-coding regions is an essential step in the genome annotation. And information entropy measures are useful for describing the signals in genome sequence. However, the accuracies of previous methods of finding borders based on entropy segmentation method still need to be improved. Methods In this study, we first applied a new recursive entropic segmentation method on DNA sequences to get preliminary significant cuts. A 22-symbol alphabet is used to capture the differential composition of nucleotide doublets and stop codon patterns along three phases in both DNA strands. This process requires no prior training datasets. Results Comparing with the previous segmentation methods, the experimental results on three bacteria genomes, Rickettsia prowazekii, Borrelia burgdorferi and E.coli, show that our approach improves the accuracy for finding the borders between coding and non-coding regions in DNA sequences. Conclusions This paper presents a new segmentation method in prokaryotes based on Jensen-Rényi divergence with a 22-symbol alphabet. For three bacteria genomes, comparing to A12_JR method, our method raised the accuracy of finding the borders between protein coding and non-coding regions in DNA sequences. PMID:23282225

  18. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  19. Non-contact assessment of melanin distribution via multispectral temporal illumination coding

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Melanin is a pigment that is highly absorptive in the UV and visible electromagnetic spectra. It is responsible for perceived skin tone, and protects against harmful UV effects. Abnormal melanin distribution is often an indicator for melanoma. We propose a novel approach for non-contact melanin distribution via multispectral temporal illumination coding to estimate the two-dimensional melanin distribution based on its absorptive characteristics. In the proposed system, a novel multispectral, cross-polarized, temporally-coded illumination sequence is synchronized with a camera to measure reflectance under both multispectral and ambient illumination. This allows us to eliminate the ambient illumination contribution from the acquired reflectance measurements, and also to determine the melanin distribution in an observed region based on the spectral properties of melanin using the Beer-Lambert law. Using this information, melanin distribution maps can be generated for objective, quantitative assessment of skin type of individuals. We show that the melanin distribution map correctly identifies areas with high melanin densities (e.g., nevi).

  20. An expanding universe of the non-coding genome in cancer biology.

    PubMed

    Xue, Bin; He, Lin

    2014-06-01

    Neoplastic transformation is caused by accumulation of genetic and epigenetic alterations that ultimately convert normal cells into tumor cells with uncontrolled proliferation and survival, unlimited replicative potential and invasive growth [Hanahan,D. et al. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674]. Although the majority of the cancer studies have focused on the functions of protein-coding genes, emerging evidence has started to reveal the importance of the vast non-coding genome, which constitutes more than 98% of the human genome. A number of non-coding RNAs (ncRNAs) derived from the 'dark matter' of the human genome exhibit cancer-specific differential expression and/or genomic alterations, and it is increasingly clear that ncRNAs, including small ncRNAs and long ncRNAs (lncRNAs), play an important role in cancer development by regulating protein-coding gene expression through diverse mechanisms. In addition to ncRNAs, nearly half of the mammalian genomes consist of transposable elements, particularly retrotransposons. Once depicted as selfish genomic parasites that propagate at the expense of host fitness, retrotransposon elements could also confer regulatory complexity to the host genomes during development and disease. Reactivation of retrotransposons in cancer, while capable of causing insertional mutagenesis and genome rearrangements to promote oncogenesis, could also alter host gene expression networks to favor tumor development. Taken together, the functional significance of non-coding genome in tumorigenesis has been previously underestimated, and diverse transcripts derived from the non-coding genome could act as integral functional components of the oncogene and tumor suppressor network. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The CASC15 long intergenic non-coding RNA locus is involved in melanoma progression and phenotype-switching

    PubMed Central

    Lessard, Laurent; Liu, Michelle; Marzese, Diego M.; Wang, Hongwei; Chong, Kelly; Kawas, Neal; Donovan, Nicholas C; Kiyohara, Eiji; Hsu, Sandy; Nelson, Nellie; Izraely, Sivan; Sagi-Assif, Orit; Witz, Isaac P; Ma, Xiao-Jun; Luo, Yuling; Hoon, Dave SB

    2015-01-01

    In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long non-coding RNAs in melanoma progression. We hypothesized that copy number alterations of intergenic non-protein coding domains could help identify long intergenic non-coding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and up-regulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC stage III lymph node metastasis. Moreover, siRNA knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma. PMID:26016895

  2. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome.

    PubMed

    Hsiao, J; Yuan, T Y; Tsai, M S; Lu, C Y; Lin, Y C; Lee, M L; Lin, S W; Chang, F C; Liu Pimentel, H; Olive, C; Coito, C; Shen, G; Young, M; Thorne, T; Lawrence, M; Magistri, M; Faghihi, M A; Khorkova, O; Wahlestedt, C

    2016-07-01

    Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT). Using oligonucleotide-based compounds (AntagoNATs) targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    PubMed

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-08

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

  4. Design of ACM system based on non-greedy punctured LDPC codes

    NASA Astrophysics Data System (ADS)

    Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng

    2017-08-01

    In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.

  5. Vulnerability of freshwater native biodiversity to non-native ...

    EPA Pesticide Factsheets

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analyses, we investigate the potential threat of non-native species to threatened and endangered aquatic animal taxa inhabiting unprotected areas across the continental US. We compiled distribution information from existing publicly available databases at the watershed scale (12-digit hydrologic unit code). We mapped non-native aquatic plant and animal species richness, and an index of cumulative invasion pressure, which weights non-native richness by the time since invasion of each species. These distributions were compared to the distributions of native aquatic taxa (fish, amphibians, mollusks, and decapods) from the International Union for the Conservation of Nature (IUCN) database. We mapped the proportion of species listed by IUCN as threatened and endangered, and a species rarity index per watershed. An overlay analysis identified watersheds experiencing high pressure from non-native species and also containing high proportions of threatened and endangered species or exhibiting high species rarity. Conservation priorities were identified by generating priority indices from these overlays and mapping them relative to the distribution of protected areas across the US. Results/Conclusion

  6. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing.

    PubMed

    Zhang, Rui; Deng, Patricia; Jacobson, Dionna; Li, Jin Billy

    2017-02-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.

  7. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing

    PubMed Central

    Jacobson, Dionna

    2017-01-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3’UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3’UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions. PMID:28166241

  8. Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs

    PubMed Central

    Charley, Phillida A.; Wilusz, Jeffrey

    2015-01-01

    Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052

  9. The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs.

    PubMed

    Shi, Lihua; Zhang, Zhe; Yu, Angela M; Wang, Wei; Wei, Zhi; Akhter, Ehtisham; Maurer, Kelly; Costa Reis, Patrícia; Song, Li; Petri, Michelle; Sullivan, Kathleen E

    2014-01-01

    Gene expression studies of peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE) have demonstrated a type I interferon signature and increased expression of inflammatory cytokine genes. Studies of patients with Aicardi Goutières syndrome, commonly cited as a single gene model for SLE, have suggested that accumulation of non-coding RNAs may drive some of the pathologic gene expression, however, no RNA sequencing studies of SLE patients have been performed. This study was designed to define altered expression of coding and non-coding RNAs and to detect globally altered RNA processing in SLE. Purified monocytes from eight healthy age/gender matched controls and nine SLE patients (with low-moderate disease activity and lack of biologic drug use or immune suppressive treatment) were studied using RNA-seq. Quantitative RT-PCR was used to validate findings. Serum levels of endotoxin were measured by ELISA. We found that SLE patients had diminished expression of most endogenous retroviruses and small nucleolar RNAs, but exhibited increased expression of pri-miRNAs. Splicing patterns and polyadenylation were significantly altered. In addition, SLE monocytes expressed novel transcripts, an effect that was replicated by LPS treatment of control monocytes. We further identified increased circulating endotoxin in SLE patients. Monocytes from SLE patients exhibit globally dysregulated gene expression. The transcriptome is not simply altered by the transcriptional activation of a set of genes, but is qualitatively different in SLE. The identification of novel loci, inducible by LPS, suggests that chronic microbial translocation could contribute to the immunologic dysregulation in SLE, a new potential disease mechanism.

  10. A cross-species bi-clustering approach to identifying conserved co-regulated genes.

    PubMed

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-06-15

    A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on synthetic data and compared

  11. u-Constacyclic codes over F_p+u{F}_p and their applications of constructing new non-binary quantum codes

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Wang, Yongkang

    2018-01-01

    Structural properties of u-constacyclic codes over the ring F_p+u{F}_p are given, where p is an odd prime and u^2=1. Under a special Gray map from F_p+u{F}_p to F_p^2, some new non-binary quantum codes are obtained by this class of constacyclic codes.

  12. ICD-10 codes used to identify adverse drug events in administrative data: a systematic review.

    PubMed

    Hohl, Corinne M; Karpov, Andrei; Reddekopp, Lisa; Doyle-Waters, Mimi; Stausberg, Jürgen

    2014-01-01

    Adverse drug events, the unintended and harmful effects of medications, are important outcome measures in health services research. Yet no universally accepted set of International Classification of Diseases (ICD) revision 10 codes or coding algorithms exists to ensure their consistent identification in administrative data. Our objective was to synthesize a comprehensive set of ICD-10 codes used to identify adverse drug events. We developed a systematic search strategy and applied it to five electronic reference databases. We searched relevant medical journals, conference proceedings, electronic grey literature and bibliographies of relevant studies, and contacted content experts for unpublished studies. One author reviewed the titles and abstracts for inclusion and exclusion criteria. Two authors reviewed eligible full-text articles and abstracted data in duplicate. Data were synthesized in a qualitative manner. Of 4241 titles identified, 41 were included. We found a total of 827 ICD-10 codes that have been used in the medical literature to identify adverse drug events. The median number of codes used to search for adverse drug events was 190 (IQR 156-289) with a large degree of variability between studies in the numbers and types of codes used. Authors commonly used external injury (Y40.0-59.9) and disease manifestation codes. Only two papers reported on the sensitivity of their code set. Substantial variability exists in the methods used to identify adverse drug events in administrative data. Our work may serve as a point of reference for future research and consensus building in this area.

  13. ICD-10 codes used to identify adverse drug events in administrative data: a systematic review

    PubMed Central

    Hohl, Corinne M; Karpov, Andrei; Reddekopp, Lisa; Stausberg, Jürgen

    2014-01-01

    Background Adverse drug events, the unintended and harmful effects of medications, are important outcome measures in health services research. Yet no universally accepted set of International Classification of Diseases (ICD) revision 10 codes or coding algorithms exists to ensure their consistent identification in administrative data. Our objective was to synthesize a comprehensive set of ICD-10 codes used to identify adverse drug events. Methods We developed a systematic search strategy and applied it to five electronic reference databases. We searched relevant medical journals, conference proceedings, electronic grey literature and bibliographies of relevant studies, and contacted content experts for unpublished studies. One author reviewed the titles and abstracts for inclusion and exclusion criteria. Two authors reviewed eligible full-text articles and abstracted data in duplicate. Data were synthesized in a qualitative manner. Results Of 4241 titles identified, 41 were included. We found a total of 827 ICD-10 codes that have been used in the medical literature to identify adverse drug events. The median number of codes used to search for adverse drug events was 190 (IQR 156–289) with a large degree of variability between studies in the numbers and types of codes used. Authors commonly used external injury (Y40.0–59.9) and disease manifestation codes. Only two papers reported on the sensitivity of their code set. Conclusions Substantial variability exists in the methods used to identify adverse drug events in administrative data. Our work may serve as a point of reference for future research and consensus building in this area. PMID:24222671

  14. A Bioinformatics-Based Alternative mRNA Splicing Code that May Explain Some Disease Mutations Is Conserved in Animals.

    PubMed

    Qu, Wen; Cingolani, Pablo; Zeeberg, Barry R; Ruden, Douglas M

    2017-01-01

    Deep sequencing of cDNAs made from spliced mRNAs indicates that most coding genes in many animals and plants have pre-mRNA transcripts that are alternatively spliced. In pre-mRNAs, in addition to invariant exons that are present in almost all mature mRNA products, there are at least 6 additional types of exons, such as exons from alternative promoters or with alternative polyA sites, mutually exclusive exons, skipped exons, or exons with alternative 5' or 3' splice sites. Our bioinformatics-based hypothesis is that, in analogy to the genetic code, there is an "alternative-splicing code" in introns and flanking exon sequences, analogous to the genetic code, that directs alternative splicing of many of the 36 types of introns. In humans, we identified 42 different consensus sequences that are each present in at least 100 human introns. 37 of the 42 top consensus sequences are significantly enriched or depleted in at least one of the 36 types of introns. We further supported our hypothesis by showing that 96 out of 96 analyzed human disease mutations that affect RNA splicing, and change alternative splicing from one class to another, can be partially explained by a mutation altering a consensus sequence from one type of intron to that of another type of intron. Some of the alternative splicing consensus sequences, and presumably their small-RNA or protein targets, are evolutionarily conserved from 50 plant to animal species. We also noticed the set of introns within a gene usually share the same splicing codes, thus arguing that one sub-type of splicesosome might process all (or most) of the introns in a given gene. Our work sheds new light on a possible mechanism for generating the tremendous diversity in protein structure by alternative splicing of pre-mRNAs.

  15. Ontological function annotation of long non-coding RNAs through hierarchical multi-label classification.

    PubMed

    Zhang, Jingpu; Zhang, Zuping; Wang, Zixiang; Liu, Yuting; Deng, Lei

    2018-05-15

    Long non-coding RNAs (lncRNAs) are an enormous collection of functional non-coding RNAs. Over the past decades, a large number of novel lncRNA genes have been identified. However, most of the lncRNAs remain function uncharacterized at present. Computational approaches provide a new insight to understand the potential functional implications of lncRNAs. Considering that each lncRNA may have multiple functions and a function may be further specialized into sub-functions, here we describe NeuraNetL2GO, a computational ontological function prediction approach for lncRNAs using hierarchical multi-label classification strategy based on multiple neural networks. The neural networks are incrementally trained level by level, each performing the prediction of gene ontology (GO) terms belonging to a given level. In NeuraNetL2GO, we use topological features of the lncRNA similarity network as the input of the neural networks and employ the output results to annotate the lncRNAs. We show that NeuraNetL2GO achieves the best performance and the overall advantage in maximum F-measure and coverage on the manually annotated lncRNA2GO-55 dataset compared to other state-of-the-art methods. The source code and data are available at http://denglab.org/NeuraNetL2GO/. leideng@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  16. Evolutionary Conservation of a Coding Function for D4Z4, the Tandem DNA Repeat Mutated in Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Clapp, Jannine ; Mitchell, Laura M. ; Bolland, Daniel J. ; Fantes, Judy ; Corcoran, Anne E. ; Scotting, Paul J. ; Armour, John A. L. ; Hewitt, Jane E. 

    2007-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is caused by deletions within the polymorphic DNA tandem array D4Z4. Each D4Z4 repeat unit has an open reading frame (ORF), termed “DUX4,” containing two homeobox sequences. Because there has been no evidence of a transcript from the array, these deletions are thought to cause FSHD by a position effect on other genes. Here, we identify D4Z4 homologues in the genomes of rodents, Afrotheria (superorder of elephants and related species), and other species and show that the DUX4 ORF is conserved. Phylogenetic analysis suggests that primate and Afrotherian D4Z4 arrays are orthologous and originated from a retrotransposed copy of an intron-containing DUX gene, DUXC. Reverse-transcriptase polymerase chain reaction and RNA fluorescence and tissue in situ hybridization data indicate transcription of the mouse array. Together with the conservation of the DUX4 ORF for >100 million years, this strongly supports a coding function for D4Z4 and necessitates re-examination of current models of the FSHD disease mechanism. PMID:17668377

  17. Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core

    PubMed Central

    Mann, Rachel A.; Smits, Theo H. M.; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E.; Plummer, Kim M.; Beer, Steven V.; Luck, Joanne; Duffy, Brion; Rodoni, Brendan

    2013-01-01

    The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains. PMID:23409014

  18. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    PubMed

    Mann, Rachel A; Smits, Theo H M; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Plummer, Kim M; Beer, Steven V; Luck, Joanne; Duffy, Brion; Rodoni, Brendan

    2013-01-01

    The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea) and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  19. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence.

    PubMed

    Benko, Sabina; Fantes, Judy A; Amiel, Jeanne; Kleinjan, Dirk-Jan; Thomas, Sophie; Ramsay, Jacqueline; Jamshidi, Negar; Essafi, Abdelkader; Heaney, Simon; Gordon, Christopher T; McBride, David; Golzio, Christelle; Fisher, Malcolm; Perry, Paul; Abadie, Véronique; Ayuso, Carmen; Holder-Espinasse, Muriel; Kilpatrick, Nicky; Lees, Melissa M; Picard, Arnaud; Temple, I Karen; Thomas, Paul; Vazquez, Marie-Paule; Vekemans, Michel; Roest Crollius, Hugues; Hastie, Nicholas D; Munnich, Arnold; Etchevers, Heather C; Pelet, Anna; Farlie, Peter G; Fitzpatrick, David R; Lyonnet, Stanislas

    2009-03-01

    Pierre Robin sequence (PRS) is an important subgroup of cleft palate. We report several lines of evidence for the existence of a 17q24 locus underlying PRS, including linkage analysis results, a clustering of translocation breakpoints 1.06-1.23 Mb upstream of SOX9, and microdeletions both approximately 1.5 Mb centromeric and approximately 1.5 Mb telomeric of SOX9. We have also identified a heterozygous point mutation in an evolutionarily conserved region of DNA with in vitro and in vivo features of a developmental enhancer. This enhancer is centromeric to the breakpoint cluster and maps within one of the microdeletion regions. The mutation abrogates the in vitro enhancer function and alters binding of the transcription factor MSX1 as compared to the wild-type sequence. In the developing mouse mandible, the 3-Mb region bounded by the microdeletions shows a regionally specific chromatin decompaction in cells expressing Sox9. Some cases of PRS may thus result from developmental misexpression of SOX9 due to disruption of very-long-range cis-regulatory elements.

  20. G-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-Hairpin-Duplex switch.

    PubMed

    Kaplan, Oktay I; Berber, Burak; Hekim, Nezih; Doluca, Osman

    2016-11-02

    Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonical nucleic acid topologies with little established biological roles, are increasingly considered for conserved regulatory element discovery. Since the tertiary structure of G-quadruplexes is strongly dependent on the loop sequence which is disregarded by the generally accepted algorithm, we hypothesized that G-quadruplexes with similar topology and, indirectly, similar interaction patterns, can be determined using phylogenetic clustering based on differences in the loop sequences. Phylogenetic analysis of 52 G-quadruplex forming sequences in the Escherichia coli genome revealed two conserved G-quadruplex motifs with a potential regulatory role. Further analysis revealed that both motifs tend to form hairpins and G quadruplexes, as supported by circular dichroism studies. The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Dengue Non-coding RNA: TRIMmed for Transmission.

    PubMed

    Göertz, Giel P; Pijlman, Gorben P

    2015-08-12

    Dengue virus RNA is trimmed by the 5'→3' exoribonuclease XRN1 to produce an abundant, non-coding subgenomic flavivirus RNA (sfRNA) in infected cells. In a recent paper in Science, Manokaran et al. (2015) report that sfRNA binds TRIM25 to evade innate immune sensing of viral RNA by RIG-I. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  3. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China

    PubMed Central

    Yang, Feiling; Hu, Jinming; Wu, Ruidong

    2016-01-01

    Suitable surrogates are critical for identifying optimal priority conservation areas (PCAs) to protect regional biodiversity. This study explored the efficiency of using endangered plants and animals as surrogates for identifying PCAs at the county level in Yunnan, southwest China. We ran the Dobson algorithm under three surrogate scenarios at 75% and 100% conservation levels and identified four types of PCAs. Assessment of the protection efficiencies of the four types of PCAs showed that endangered plants had higher surrogacy values than endangered animals but that the two were not substitutable; coupled endangered plants and animals as surrogates yielded a higher surrogacy value than endangered plants or animals as surrogates; the plant-animal priority areas (PAPAs) was the optimal among the four types of PCAs for conserving both endangered plants and animals in Yunnan. PAPAs could well represent overall species diversity distribution patterns and overlap with critical biogeographical regions in Yunnan. Fourteen priority units in PAPAs should be urgently considered as optimizing Yunnan’s protected area system. The spatial pattern of PAPAs at the 100% conservation level could be conceptualized into three connected conservation belts, providing a valuable reference for optimizing the layout of the in situ protected area system in Yunnan. PMID:27538537

  4. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Yang, Feiling; Hu, Jinming; Wu, Ruidong

    2016-08-01

    Suitable surrogates are critical for identifying optimal priority conservation areas (PCAs) to protect regional biodiversity. This study explored the efficiency of using endangered plants and animals as surrogates for identifying PCAs at the county level in Yunnan, southwest China. We ran the Dobson algorithm under three surrogate scenarios at 75% and 100% conservation levels and identified four types of PCAs. Assessment of the protection efficiencies of the four types of PCAs showed that endangered plants had higher surrogacy values than endangered animals but that the two were not substitutable; coupled endangered plants and animals as surrogates yielded a higher surrogacy value than endangered plants or animals as surrogates; the plant-animal priority areas (PAPAs) was the optimal among the four types of PCAs for conserving both endangered plants and animals in Yunnan. PAPAs could well represent overall species diversity distribution patterns and overlap with critical biogeographical regions in Yunnan. Fourteen priority units in PAPAs should be urgently considered as optimizing Yunnan’s protected area system. The spatial pattern of PAPAs at the 100% conservation level could be conceptualized into three connected conservation belts, providing a valuable reference for optimizing the layout of the in situ protected area system in Yunnan.

  5. Differential expression and emerging functions of non-coding RNAs in cold adaptation.

    PubMed

    Frigault, Jacques J; Morin, Mathieu D; Morin, Pier Jr

    2017-01-01

    Several species undergo substantial physiological and biochemical changes to confront the harsh conditions associated with winter. Small mammalian hibernators and cold-hardy insects are examples of natural models of cold adaptation that have been amply explored. While the molecular picture associated with cold adaptation has started to become clearer in recent years, notably through the use of high-throughput experimental approaches, the underlying cold-associated functions attributed to several non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), remain to be better characterized. Nevertheless, key pioneering work has provided clues on the likely relevance of these molecules in cold adaptation. With an emphasis on mammalian hibernation and insect cold hardiness, this work first reviews various molecular changes documented so far in these processes. The cascades leading to miRNA and lncRNA production as well as the mechanisms of action of these non-coding RNAs are subsequently described. Finally, we present examples of differentially expressed non-coding RNAs in models of cold adaptation and elaborate on the potential significance of this modulation with respect to low-temperature adaptation.

  6. The fast non-LTE code DEDALE

    NASA Astrophysics Data System (ADS)

    Gilleron, Franck; Piron, Robin

    2015-12-01

    We present Dédale, a fast code implementing a simplified non-local-thermodynamic-equilibrium (NLTE) plasma model. In this approach, the stationary collisional-radiative rates equations are solved for a set of well-chosen Layzer complexes in order to determine the ion state populations. The electronic structure is approximated using the screened hydrogenic model (SHM) of More with relativistic corrections. The radiative and collisional cross-sections are based on Kramers and Van Regemorter formula, respectively, which are extrapolated to derive analytical expressions for all the rates. The latter are improved thereafter using Gaunt factors or more accurate tabulated data. Special care is taken for dielectronic rates which are compared and rescaled with quantum calculations from the Averroès code. The emissivity and opacity spectra are calculated under the same assumptions as for the radiative rates, either in a detailed manner by summing the transitions between each pair of complexes, or in a coarser statistical way by summing the one-electron transitions averaged over the complexes. Optionally, nℓ-splitting can be accounted for using a WKB approach in an approximate potential reconstructed analytically from the screened charges. It is also possible to improve the spectra by replacing some transition arrays with more accurate data tabulated using the SCO-RCG or FAC codes. This latter option is particularly useful for K-shell emission spectroscopy. The Dédale code was used to submit neon and tungsten cases in the last NLTE-8 workshop (Santa Fe, November 4-8, 2013). Some of these results are presented, as well as comparisons with Averroès calculations.

  7. Small non-coding RNAs in streptomycetes.

    PubMed

    Heueis, Nona; Vockenhuber, Michael-Paul; Suess, Beatrix

    2014-01-01

    Streptomycetes are Gram-positive, GC-rich, soil dwelling bacteria, occurring ubiquitary throughout nature. They undergo extensive morphological changes from spores to filamentous mycelia and produce a plethora of secondary metabolites. Owing to their complex life cycle, streptomycetes require efficient regulatory machinery for the control of gene expression. Therefore, they possess a large diversity of regulators. Within this review we summarize the current knowledge about the importance of small non-coding RNA for the control of gene expression in these organisms.

  8. Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robling, Alexander G.; Kang, Kyung Shin; Bullock, Whitney A.

    Here, sclerostin ( Sost) is a negative regulator of bone formation that acts upon the Wnt signaling pathway. Sost is mechanically regulated at both mRNA and protein level such that loading represses and unloading enhances Sost expression, in osteocytes and in circulation. The non-coding evolutionarily conserved enhancer ECR5 has been previously reported as a transcriptional regulatory element required for modulating Sost expression in osteocytes. Here we explored the mechanisms by which ECR5, or several other putative transcriptional enhancers regulate Sost expression, in response to mechanical stimulation. We found that in vivo ulna loading is equally osteoanabolic in wildtype and Sostmore » –/– mice, although Sost is required for proper distribution of load-induced bone formation to regions of high strain. Using Luciferase reporters carrying the ECR5 non-coding enhancer and heterologous or homologous h SOST promoters, we found that ECR5 is mechanosensitive in vitro and that ECR5-driven Luciferase activity decreases in osteoblasts exposed to oscillatory fluid flow. Yet, ECR5–/– mice showed similar magnitude of load-induced bone formation and similar periosteal distribution of bone formation to high-strain regions compared to wildtype mice. Further, we found that in contrast to Sost–/– mice, which are resistant to disuse-induced bone loss, ECR5–/– mice lose bone upon unloading to a degree similar to wildtype control mice. ECR5 deletion did not abrogate positive effects of unloading on Sost, suggesting that additional transcriptional regulators and regulatory elements contribute to load-induced regulation of Sost.« less

  9. Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation

    DOE PAGES

    Robling, Alexander G.; Kang, Kyung Shin; Bullock, Whitney A.; ...

    2016-09-04

    Here, sclerostin ( Sost) is a negative regulator of bone formation that acts upon the Wnt signaling pathway. Sost is mechanically regulated at both mRNA and protein level such that loading represses and unloading enhances Sost expression, in osteocytes and in circulation. The non-coding evolutionarily conserved enhancer ECR5 has been previously reported as a transcriptional regulatory element required for modulating Sost expression in osteocytes. Here we explored the mechanisms by which ECR5, or several other putative transcriptional enhancers regulate Sost expression, in response to mechanical stimulation. We found that in vivo ulna loading is equally osteoanabolic in wildtype and Sostmore » –/– mice, although Sost is required for proper distribution of load-induced bone formation to regions of high strain. Using Luciferase reporters carrying the ECR5 non-coding enhancer and heterologous or homologous h SOST promoters, we found that ECR5 is mechanosensitive in vitro and that ECR5-driven Luciferase activity decreases in osteoblasts exposed to oscillatory fluid flow. Yet, ECR5–/– mice showed similar magnitude of load-induced bone formation and similar periosteal distribution of bone formation to high-strain regions compared to wildtype mice. Further, we found that in contrast to Sost–/– mice, which are resistant to disuse-induced bone loss, ECR5–/– mice lose bone upon unloading to a degree similar to wildtype control mice. ECR5 deletion did not abrogate positive effects of unloading on Sost, suggesting that additional transcriptional regulators and regulatory elements contribute to load-induced regulation of Sost.« less

  10. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements

    PubMed Central

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K.

    2015-01-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  11. Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes

    PubMed Central

    Matala, Andrew P; Ackerman, Michael W; Campbell, Matthew R; Narum, Shawn R

    2014-01-01

    Mounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection (non-neutral) using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation (e.g., potential rapid evolution) of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species. PMID:25067950

  12. Determining coding CpG islands by identifying regions significant for pattern statistics on Markov chains.

    PubMed

    Singer, Meromit; Engström, Alexander; Schönhuth, Alexander; Pachter, Lior

    2011-09-23

    Recent experimental and computational work confirms that CpGs can be unmethylated inside coding exons, thereby showing that codons may be subjected to both genomic and epigenomic constraint. It is therefore of interest to identify coding CpG islands (CCGIs) that are regions inside exons enriched for CpGs. The difficulty in identifying such islands is that coding exons exhibit sequence biases determined by codon usage and constraints that must be taken into account. We present a method for finding CCGIs that showcases a novel approach we have developed for identifying regions of interest that are significant (with respect to a Markov chain) for the counts of any pattern. Our method begins with the exact computation of tail probabilities for the number of CpGs in all regions contained in coding exons, and then applies a greedy algorithm for selecting islands from among the regions. We show that the greedy algorithm provably optimizes a biologically motivated criterion for selecting islands while controlling the false discovery rate. We applied this approach to the human genome (hg18) and annotated CpG islands in coding exons. The statistical criterion we apply to evaluating islands reduces the number of false positives in existing annotations, while our approach to defining islands reveals significant numbers of undiscovered CCGIs in coding exons. Many of these appear to be examples of functional epigenetic specialization in coding exons.

  13. nRC: non-coding RNA Classifier based on structural features.

    PubMed

    Fiannaca, Antonino; La Rosa, Massimo; La Paglia, Laura; Rizzo, Riccardo; Urso, Alfonso

    2017-01-01

    Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes. Moreover, the lack of knowledge about the complete mechanisms in regulative processes, together with the development of high-throughput technologies, has required the help of bioinformatics tools in addressing biologists and clinicians with a deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based on features extraction from the ncRNA secondary structure together with a supervised classification algorithm implementing a deep learning architecture based on convolutional neural networks. We tested our approach for the classification of 13 different ncRNA classes. We obtained classification scores, using the most common statistical measures. In particular, we reach an accuracy and sensitivity score of about 74%. The proposed method outperforms other similar classification methods based on secondary structure features and machine learning algorithms, including the RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is also available at https://github.com/IcarPA-TBlab/nrc.

  14. Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation.

    PubMed

    Mikhailov, Alexander T; Torrado, Mario

    2018-05-12

    There is growing evidence that putative gene regulatory networks including cardio-enriched transcription factors, such as PITX2, TBX5, ZFHX3, and SHOX2, and their effector/target genes along with downstream non-coding RNAs can play a potentially important role in the process of adaptive and maladaptive atrial rhythm remodeling. In turn, expression of atrial fibrillation-associated transcription factors is under the control of upstream regulatory non-coding RNAs. This review broadly explores gene regulatory mechanisms associated with susceptibility to atrial fibrillation-with key examples from both animal models and patients-within the context of both cardiac transcription factors and non-coding RNAs. These two systems appear to have multiple levels of cross-regulation and act coordinately to achieve effective control of atrial rhythm effector gene expression. Perturbations of a dynamic expression balance between transcription factors and corresponding non-coding RNAs can provoke the development or promote the progression of atrial fibrillation. We also outline deficiencies in current models and discuss ongoing studies to clarify remaining mechanistic questions. An understanding of the function of transcription factors and non-coding RNAs in gene regulatory networks associated with atrial fibrillation risk will enable the development of innovative therapeutic strategies.

  15. Cheap and Nasty? The Potential Perils of Using Management Costs to Identify Global Conservation Priorities

    PubMed Central

    McCreless, Erin; Visconti, Piero; Carwardine, Josie; Wilcox, Chris; Smith, Robert J.

    2013-01-01

    The financial cost of biodiversity conservation varies widely around the world and such costs should be considered when identifying countries to best focus conservation investments. Previous global prioritizations have been based on global models for protected area management costs, but this metric may be related to other factors that negatively influence the effectiveness and social impacts of conservation. Here we investigate such relationships and first show that countries with low predicted costs are less politically stable. Local support and capacity can mitigate the impacts of such instability, but we also found that these countries have less civil society involvement in conservation. Therefore, externally funded projects in these countries must rely on government agencies for implementation. This can be problematic, as our analyses show that governments in countries with low predicted costs score poorly on indices of corruption, bureaucratic quality and human rights. Taken together, our results demonstrate that using national-level estimates for protected area management costs to set global conservation priorities is simplistic, as projects in apparently low-cost countries are less likely to succeed and more likely to have negative impacts on people. We identify the need for an improved approach to develop global conservation cost metrics that better capture the true costs of avoiding or overcoming such problems. Critically, conservation scientists must engage with practitioners to better understand and implement context-specific solutions. This approach assumes that measures of conservation costs, like measures of conservation value, are organization specific, and would bring a much-needed focus on reducing the negative impacts of conservation to develop projects that benefit people and biodiversity. PMID:24260502

  16. Challenges of Avian Conservation on Non-Federal Forests in the Pacific Northwest

    Treesearch

    Joseph B. Buchanan

    2005-01-01

    Conservation of species associated with mature forest habitats remains an important objective for non-federal lands in the Pacific Northwest. With few exceptions, state forest practices rules, a Washington state pilot landscape planning program, and federal Habitat Conservation Plans provide little functional habitat for species, like the Pileated Woodpecker (Dryocopus...

  17. Identifying and prioritizing ungulate migration routes for landscape-level conservation

    USGS Publications Warehouse

    Sawyer, H.; Kauffman, M.J.; Nielson, R.M.; Horne, J.S.

    2009-01-01

    As habitat loss and fragmentation increase across ungulate ranges, identifying and prioritizing migration routes for conservation has taken on new urgency. Here we present a general framework using the Brownian bridge movement model (BBMM) that: (1) provides a probabilistic estimate of the migration routes of a sampled population, (2) distinguishes between route segments that function as stopover sites vs. those used primarily as movement corridors, and (3) prioritizes routes for conservation based upon the proportion of the sampled population that uses them. We applied this approach to a migratory mule deer (Odocoileus hemionus) population in a pristine area of southwest Wyoming, USA, where 2000 gas wells and 1609 km of pipelines and roads have been proposed for development. Our analysis clearly delineated where migration routes occurred relative to proposed development and provided guidance for on-the-ground conservation efforts. Mule deer migration routes were characterized by a series of stopover sites where deer spent most of their time, connected by movement corridors through which deer moved quickly. Our findings suggest management strategies that differentiate between stopover sites and movement corridors may be warranted. Because some migration routes were used by more mule deer than others, proportional level of use may provide a reasonable metric by which routes can be prioritized for conservation. The methods we outline should be applicable to a wide range of species that inhabit regions where migration routes are threatened or poorly understood. ?? 2009 by the Ecological Society of America.

  18. Identifying and prioritizing ungulate migration routes for landscape-level conservation

    USGS Publications Warehouse

    Sawyer, Hall; Kauffman, Matthew J.; Nielson, Ryan M.; Horne, Jon S.

    2009-01-01

    As habitat loss and fragmentation increase across ungulate ranges, identifying and prioritizing migration routes for conservation has taken on new urgency. Here we present a general framework using the Brownian bridge movement model (BBMM) that: (1) provides a probabilistic estimate of the migration routes of a sampled population, (2) distinguishes between route segments that function as stopover sites vs. those used primarily as movement corridors, and (3) prioritizes routes for conservation based upon the proportion of the sampled population that uses them. We applied this approach to a migratory mule deer (Odocoileus hemionus) population in a pristine area of southwest Wyoming, USA, where 2000 gas wells and 1609 km of pipelines and roads have been proposed for development. Our analysis clearly delineated where migration routes occurred relative to proposed development and provided guidance for on-the-ground conservation efforts. Mule deer migration routes were characterized by a series of stopover sites where deer spent most of their time, connected by movement corridors through which deer moved quickly. Our findings suggest management strategies that differentiate between stopover sites and movement corridors may be warranted. Because some migration routes were used by more mule deer than others, proportional level of use may provide a reasonable metric by which routes can be prioritized for conservation. The methods we outline should be applicable to a wide range of species that inhabit regions where migration routes are threatened or poorly understood.

  19. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  20. Characterization and Evolution of Conserved MicroRNA through Duplication Events in Date Palm (Phoenix dactylifera)

    PubMed Central

    Yang, Yaodong; Mason, Annaliese S.; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events. PMID:23951162

  1. Characterization and evolution of conserved MicroRNA through duplication events in date palm (Phoenix dactylifera).

    PubMed

    Xiao, Yong; Xia, Wei; Yang, Yaodong; Mason, Annaliese S; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events.

  2. Non-coding RNA in cystic fibrosis.

    PubMed

    Glasgow, Arlene M A; De Santi, Chiara; Greene, Catherine M

    2018-05-09

    Non-coding RNAs (ncRNAs) are an abundant class of RNAs that include small ncRNAs, long non-coding RNAs (lncRNA) and pseudogenes. The human ncRNA atlas includes thousands of these specialised RNA molecules that are further subcategorised based on their size or function. Two of the more well-known and widely studied ncRNA species are microRNAs (miRNAs) and lncRNAs. These are regulatory RNAs and their altered expression has been implicated in the pathogenesis of a variety of human diseases. Failure to express a functional cystic fibrosis (CF) transmembrane receptor (CFTR) chloride ion channel in epithelial cells underpins CF. Secondary to the CFTR defect, it is known that other pathways can be altered and these may contribute to the pathophysiology of CF lung disease in particular. For example, quantitative alterations in expression of some ncRNAs are associated with CF. In recent years, there has been a series of published studies exploring ncRNA expression and function in CF. The majority have focussed principally on miRNAs, with just a handful of reports to date on lncRNAs. The present study reviews what is currently known about ncRNA expression and function in CF, and discusses the possibility of applying this knowledge to the clinical management of CF in the near future. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome.

    PubMed

    Wucher, Valentin; Legeai, Fabrice; Hédan, Benoît; Rizk, Guillaume; Lagoutte, Lætitia; Leeb, Tosso; Jagannathan, Vidhya; Cadieu, Edouard; David, Audrey; Lohi, Hannes; Cirera, Susanna; Fredholm, Merete; Botherel, Nadine; Leegwater, Peter A J; Le Béguec, Céline; Fieten, Hille; Johnson, Jeremy; Alföldi, Jessica; André, Catherine; Lindblad-Toh, Kerstin; Hitte, Christophe; Derrien, Thomas

    2017-05-05

    Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates.

    PubMed

    Debiais-Thibaud, Mélanie; Metcalfe, Cushla J; Pollack, Jacob; Germon, Isabelle; Ekker, Marc; Depew, Michael; Laurenti, Patrick; Borday-Birraux, Véronique; Casane, Didier

    2013-01-01

    The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high

  5. Evaluation of non-coding variation in GLUT1 deficiency.

    PubMed

    Liu, Yu-Chi; Lee, Jia Wei Audrey; Bellows, Susannah T; Damiano, John A; Mullen, Saul A; Berkovic, Samuel F; Bahlo, Melanie; Scheffer, Ingrid E; Hildebrand, Michael S

    2016-12-01

    Loss-of-function mutations in SLC2A1, encoding glucose transporter-1 (GLUT-1), lead to dysfunction of glucose transport across the blood-brain barrier. Ten percent of cases with hypoglycorrhachia (fasting cerebrospinal fluid [CSF] glucose <2.2mmol/L) do not have mutations. We hypothesized that GLUT1 deficiency could be due to non-coding SLC2A1 variants. We performed whole exome sequencing of one proband with a GLUT1 phenotype and hypoglycorrhachia negative for SLC2A1 sequencing and copy number variants. We studied a further 55 patients with different epilepsies and low CSF glucose who did not have exonic mutations or copy number variants. We sequenced non-coding promoter and intronic regions. We performed mRNA studies for the recurrent intronic variant. The proband had a de novo splice site mutation five base pairs from the intron-exon boundary. Three of 55 patients had deep intronic SLC2A1 variants, including a recurrent variant in two. The recurrent variant produced less SLC2A1 mRNA transcript. Fasting CSF glucose levels show an age-dependent correlation, which makes the definition of hypoglycorrhachia challenging. Low CSF glucose levels may be associated with pathogenic SLC2A1 mutations including deep intronic SLC2A1 variants. Extending genetic screening to non-coding regions will enable diagnosis of more patients with GLUT1 deficiency, allowing implementation of the ketogenic diet to improve outcomes. © 2016 Mac Keith Press.

  6. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer

    PubMed Central

    Ren, Zhipeng; Zhang, Guoliang

    2017-01-01

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer. PMID:28388588

  7. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer.

    PubMed

    Hou, Xiaobin; Wen, Jiaxin; Ren, Zhipeng; Zhang, Guoliang

    2017-06-27

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.

  8. Theory of Metastable State Relaxation for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.

  9. Coding algorithms for identifying patients with cirrhosis and hepatitis B or C virus using administrative data.

    PubMed

    Niu, Bolin; Forde, Kimberly A; Goldberg, David S

    2015-01-01

    Despite the use of administrative data to perform epidemiological and cost-effectiveness research on patients with hepatitis B or C virus (HBV, HCV), there are no data outside of the Veterans Health Administration validating whether International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) codes can accurately identify cirrhotic patients with HBV or HCV. The validation of such algorithms is necessary for future epidemiological studies. We evaluated the positive predictive value (PPV) of ICD-9-CM codes for identifying chronic HBV or HCV among cirrhotic patients within the University of Pennsylvania Health System, a large network that includes a tertiary care referral center, a community-based hospital, and multiple outpatient practices across southeastern Pennsylvania and southern New Jersey. We reviewed a random sample of 200 cirrhotic patients with ICD-9-CM codes for HCV and 150 cirrhotic patients with ICD-9-CM codes for HBV. The PPV of 1 inpatient or 2 outpatient HCV codes was 88.0% (168/191, 95% CI: 82.5-92.2%), while the PPV of 1 inpatient or 2 outpatient HBV codes was 81.3% (113/139, 95% CI: 73.8-87.4%). Several variations of the primary coding algorithm were evaluated to determine if different combinations of inpatient and/or outpatient ICD-9-CM codes could increase the PPV of the coding algorithm. ICD-9-CM codes can identify chronic HBV or HCV in cirrhotic patients with a high PPV and can be used in future epidemiologic studies to examine disease burden and the proper allocation of resources. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Discovery of functional non-coding conserved regions in the α-synuclein gene locus

    PubMed Central

    Sterling, Lori; Walter, Michael; Ting, Dennis; Schüle, Birgitt

    2014-01-01

    Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein ( SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the SNCA genomic region regulate expression of SNCA, and that SNPs in these regions could be functionally modulating the expression of SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays.  We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process. PMID:25566351

  11. Python Radiative Transfer Emission code (PyRaTE): non-LTE spectral lines simulations

    NASA Astrophysics Data System (ADS)

    Tritsis, A.; Yorke, H.; Tassis, K.

    2018-05-01

    We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When computing the escape probability, the optical depth is calculated towards all directions with density, molecular abundance, temperature and velocity variations all taken into account. A very easy-to-use interface, capable of importing data from simulations outputs performed with all major astrophysical codes, is also developed. The code is written in PYTHON using an "embarrassingly parallel" strategy and can handle all geometries and projection angles. We benchmark the code by comparing our results with those from RADEX (van der Tak et al. 2007) and against analytical solutions and present case studies using hydrochemical simulations. The code will be released for public use.

  12. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less

  13. Understanding the Threats Posed by Non-Native Species: Public vs. Conservation Managers

    PubMed Central

    Gozlan, Rodolphe E.; Burnard, Dean; Andreou, Demetra; Britton, J. Robert

    2013-01-01

    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone. PMID:23341931

  14. Computer-based coding of free-text job descriptions to efficiently identify occupations in epidemiological studies

    PubMed Central

    Russ, Daniel E.; Ho, Kwan-Yuet; Colt, Joanne S.; Armenti, Karla R.; Baris, Dalsu; Chow, Wong-Ho; Davis, Faith; Johnson, Alison; Purdue, Mark P.; Karagas, Margaret R.; Schwartz, Kendra; Schwenn, Molly; Silverman, Debra T.; Johnson, Calvin A.; Friesen, Melissa C.

    2016-01-01

    Background Mapping job titles to standardized occupation classification (SOC) codes is an important step in identifying occupational risk factors in epidemiologic studies. Because manual coding is time-consuming and has moderate reliability, we developed an algorithm called SOCcer (Standardized Occupation Coding for Computer-assisted Epidemiologic Research) to assign SOC-2010 codes based on free-text job description components. Methods Job title and task-based classifiers were developed by comparing job descriptions to multiple sources linking job and task descriptions to SOC codes. An industry-based classifier was developed based on the SOC prevalence within an industry. These classifiers were used in a logistic model trained using 14,983 jobs with expert-assigned SOC codes to obtain empirical weights for an algorithm that scored each SOC/job description. We assigned the highest scoring SOC code to each job. SOCcer was validated in two occupational data sources by comparing SOC codes obtained from SOCcer to expert assigned SOC codes and lead exposure estimates obtained by linking SOC codes to a job-exposure matrix. Results For 11,991 case-control study jobs, SOCcer-assigned codes agreed with 44.5% and 76.3% of manually assigned codes at the 6- and 2-digit level, respectively. Agreement increased with the score, providing a mechanism to identify assignments needing review. Good agreement was observed between lead estimates based on SOCcer and manual SOC assignments (kappa: 0.6–0.8). Poorer performance was observed for inspection job descriptions, which included abbreviations and worksite-specific terminology. Conclusions Although some manual coding will remain necessary, using SOCcer may improve the efficiency of incorporating occupation into large-scale epidemiologic studies. PMID:27102331

  15. Short non-coding RNAs as bacteria species identifiers detected by surface plasmon resonance enhanced common path interferometry

    NASA Astrophysics Data System (ADS)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Khattatov, Boris; Plam, Mikhail; Gardner, Patrick; Hall, John

    2008-04-01

    Small non-coding RNA sequences have recently been discovered as unique identifiers of certain bacterial species, raising the possibility that they can be used as highly specific Biowarfare Agent detection markers in automated field deployable integrated detection systems. Because they are present in high abundance they could allow genomic based bacterial species identification without the need for pre-assay amplification. Further, a direct detection method would obviate the need for chemical labeling, enabling a rapid, efficient, high sensitivity mechanism for bacterial detection. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a potentially market disruptive, high sensitivity dual technology that allows real-time direct multiplex measurement of biomolecule interactions, including small molecules, nucleic acids, proteins, and microbes. SPR-CPI measures differences in phase shift of reflected S and P polarized light under Total Internal Reflection (TIR) conditions at a surface, caused by changes in refractive index induced by biomolecular interactions within the evanescent field at the TIR interface. The measurement is performed on a microarray of discrete 2-dimensional areas functionalized with biomolecule capture reagents, allowing simultaneous measurement of up to 100 separate analytes. The optical beam encompasses the entire microarray, allowing a solid state detector system with no scanning requirement. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes from each microarray feature, and is automatically processed and displayed graphically or delivered to a decision making algorithm, enabling a fully automatic detection system capable of rapid detection and quantification of small nucleic acids at extremely sensitive levels. Proof-of-concept experiments on model systems and cell culture samples have demonstrated utility of the system, and efforts are in

  16. Multilevel Concatenated Block Modulation Codes for the Frequency Non-selective Rayleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Rhee, Dojun

    1996-01-01

    This paper is concerned with construction of multilevel concatenated block modulation codes using a multi-level concatenation scheme for the frequency non-selective Rayleigh fading channel. In the construction of multilevel concatenated modulation code, block modulation codes are used as the inner codes. Various types of codes (block or convolutional, binary or nonbinary) are being considered as the outer codes. In particular, we focus on the special case for which Reed-Solomon (RS) codes are used as the outer codes. For this special case, a systematic algebraic technique for constructing q-level concatenated block modulation codes is proposed. Codes have been constructed for certain specific values of q and compared with the single-level concatenated block modulation codes using the same inner codes. A multilevel closest coset decoding scheme for these codes is proposed.

  17. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis.

    PubMed

    Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim

    2015-10-01

    Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Small Open Reading Frames, Non-Coding RNAs and Repetitive Elements in Bradyrhizobium japonicum USDA 110

    PubMed Central

    Hahn, Julia; Tsoy, Olga V.; Thalmann, Sebastian; Čuklina, Jelena; Gelfand, Mikhail S.

    2016-01-01

    Small open reading frames (sORFs) and genes for non-coding RNAs are poorly investigated components of most genomes. Our analysis of 1391 ORFs recently annotated in the soybean symbiont Bradyrhizobium japonicum USDA 110 revealed that 78% of them contain less than 80 codons. Twenty-one of these sORFs are conserved in or outside Alphaproteobacteria and most of them are similar to genes found in transposable elements, in line with their broad distribution. Stabilizing selection was demonstrated for sORFs with proteomic evidence and bll1319_ISGA which is conserved at the nucleotide level in 16 alphaproteobacterial species, 79 species from other taxa and 49 other Proteobacteria. Further we used Northern blot hybridization to validate ten small RNAs (BjsR1 to BjsR10) belonging to new RNA families. We found that BjsR1 and BjsR3 have homologs outside the genus Bradyrhizobium, and BjsR5, BjsR6, BjsR7, and BjsR10 have up to four imperfect copies in Bradyrhizobium genomes. BjsR8, BjsR9, and BjsR10 are present exclusively in nodules, while the other sRNAs are also expressed in liquid cultures. We also found that the level of BjsR4 decreases after exposure to tellurite and iron, and this down-regulation contributes to survival under high iron conditions. Analysis of additional small RNAs overlapping with 3’-UTRs revealed two new repetitive elements named Br-REP1 and Br-REP2. These REP elements may play roles in the genomic plasticity and gene regulation and could be useful for strain identification by PCR-fingerprinting. Furthermore, we studied two potential toxin genes in the symbiotic island and confirmed toxicity of the yhaV homolog bll1687 but not of the newly annotated higB homolog blr0229_ISGA in E. coli. Finally, we revealed transcription interference resulting in an antisense RNA complementary to blr1853, a gene induced in symbiosis. The presented results expand our knowledge on sORFs, non-coding RNAs and repetitive elements in B. japonicum and related bacteria. PMID

  19. Identifying Conservation and Restoration Priorities for Saproxylic and Old-Growth Forest Species: A Case Study in Switzerland

    NASA Astrophysics Data System (ADS)

    Lachat, Thibault; Bütler, Rita

    2009-07-01

    Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species’ hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on “richness hotspots” may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence.

  20. Identifying conservation and restoration priorities for saproxylic and old-growth forest species: a case study in Switzerland.

    PubMed

    Lachat, Thibault; Bütler, Rita

    2009-07-01

    Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species' hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on "richness hotspots" may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence.

  1. Coding algorithms for identifying patients with cirrhosis and hepatitis B or C virus using administrative data

    PubMed Central

    Niu, Bolin; Forde, Kimberly A; Goldberg, David S.

    2014-01-01

    Background & Aims Despite the use of administrative data to perform epidemiological and cost-effectiveness research on patients with hepatitis B or C virus (HBV, HCV), there are no data outside of the Veterans Health Administration validating whether International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) codes can accurately identify cirrhotic patients with HBV or HCV. The validation of such algorithms is necessary for future epidemiological studies. Methods We evaluated the positive predictive value (PPV) of ICD-9-CM codes for identifying chronic HBV or HCV among cirrhotic patients within the University of Pennsylvania Health System, a large network that includes a tertiary care referral center, a community-based hospital, and multiple outpatient practices across southeastern Pennsylvania and southern New Jersey. We reviewed a random sample of 200 cirrhotic patients with ICD-9-CM codes for HCV and 150 cirrhotic patients with ICD-9-CM codes for HBV. Results The PPV of 1 inpatient or 2 outpatient HCV codes was 88.0% (168/191, 95% CI: 82.5–92.2%), while the PPV of 1 inpatient or 2 outpatient HBV codes was 81.3% (113/139, 95% CI: 73.8–87.4%). Several variations of the primary coding algorithm were evaluated to determine if different combinations of inpatient and/or outpatient ICD-9-CM codes could increase the PPV of the coding algorithm. Conclusions ICD-9-CM codes can identify chronic HBV or HCV in cirrhotic patients with a high PPV, and can be used in future epidemiologic studies to examine disease burden and the proper allocation of resources. PMID:25335773

  2. NCAD, a database integrating the intrinsic conformational preferences of non-coded amino acids

    PubMed Central

    Revilla-López, Guillem; Torras, Juan; Curcó, David; Casanovas, Jordi; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Grodzinski, Piotr; Alemán, Carlos

    2010-01-01

    Peptides and proteins find an ever-increasing number of applications in the biomedical and materials engineering fields. The use of non-proteinogenic amino acids endowed with diverse physicochemical and structural features opens the possibility to design proteins and peptides with novel properties and functions. Moreover, non-proteinogenic residues are particularly useful to control the three-dimensional arrangement of peptidic chains, which is a crucial issue for most applications. However, information regarding such amino acids –also called non-coded, non-canonical or non-standard– is usually scattered among publications specialized in quite diverse fields as well as in patents. Making all these data useful to the scientific community requires new tools and a framework for their assembly and coherent organization. We have successfully compiled, organized and built a database (NCAD, Non-Coded Amino acids Database) containing information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, conformational propensities established experimentally, and applications. The architecture of the database is presented in this work together with the first family of non-coded residues included, namely, α-tetrasubstituted α-amino acids. Furthermore, the NCAD usefulness is demonstrated through a test-case application example. PMID:20455555

  3. [Long non-coding RNAs in plants].

    PubMed

    Xiaoqing, Huang; Dandan, Li; Juan, Wu

    2015-04-01

    Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length, widely exist in organisms and function in a variety of biological processes. Currently, most of lncRNAs found in plants are transcribed by RNA polymerase Ⅱ and mediate gene expression through multiple mechanisms, such as target mimicry, transcription interference, histone methylation and DNA methylation, and play important roles in flowering, male sterility, nutrition metabolism, biotic and abiotic stress and other biological processes as regulators in plants. In this review, we summarize the databases, prediction methods, and possible functions of plant lncRNAs discovered in recent years.

  4. Identifying Falls Risk Screenings Not Documented with Administrative Codes Using Natural Language Processing

    PubMed Central

    Zhu, Vivienne J; Walker, Tina D; Warren, Robert W; Jenny, Peggy B; Meystre, Stephane; Lenert, Leslie A

    2017-01-01

    Quality reporting that relies on coded administrative data alone may not completely and accurately depict providers’ performance. To assess this concern with a test case, we developed and evaluated a natural language processing (NLP) approach to identify falls risk screenings documented in clinical notes of patients without coded falls risk screening data. Extracting information from 1,558 clinical notes (mainly progress notes) from 144 eligible patients, we generated a lexicon of 38 keywords relevant to falls risk screening, 26 terms for pre-negation, and 35 terms for post-negation. The NLP algorithm identified 62 (out of the 144) patients who falls risk screening documented only in clinical notes and not coded. Manual review confirmed 59 patients as true positives and 77 patients as true negatives. Our NLP approach scored 0.92 for precision, 0.95 for recall, and 0.93 for F-measure. These results support the concept of utilizing NLP to enhance healthcare quality reporting. PMID:29854264

  5. Computer-based coding of free-text job descriptions to efficiently identify occupations in epidemiological studies.

    PubMed

    Russ, Daniel E; Ho, Kwan-Yuet; Colt, Joanne S; Armenti, Karla R; Baris, Dalsu; Chow, Wong-Ho; Davis, Faith; Johnson, Alison; Purdue, Mark P; Karagas, Margaret R; Schwartz, Kendra; Schwenn, Molly; Silverman, Debra T; Johnson, Calvin A; Friesen, Melissa C

    2016-06-01

    Mapping job titles to standardised occupation classification (SOC) codes is an important step in identifying occupational risk factors in epidemiological studies. Because manual coding is time-consuming and has moderate reliability, we developed an algorithm called SOCcer (Standardized Occupation Coding for Computer-assisted Epidemiologic Research) to assign SOC-2010 codes based on free-text job description components. Job title and task-based classifiers were developed by comparing job descriptions to multiple sources linking job and task descriptions to SOC codes. An industry-based classifier was developed based on the SOC prevalence within an industry. These classifiers were used in a logistic model trained using 14 983 jobs with expert-assigned SOC codes to obtain empirical weights for an algorithm that scored each SOC/job description. We assigned the highest scoring SOC code to each job. SOCcer was validated in 2 occupational data sources by comparing SOC codes obtained from SOCcer to expert assigned SOC codes and lead exposure estimates obtained by linking SOC codes to a job-exposure matrix. For 11 991 case-control study jobs, SOCcer-assigned codes agreed with 44.5% and 76.3% of manually assigned codes at the 6-digit and 2-digit level, respectively. Agreement increased with the score, providing a mechanism to identify assignments needing review. Good agreement was observed between lead estimates based on SOCcer and manual SOC assignments (κ 0.6-0.8). Poorer performance was observed for inspection job descriptions, which included abbreviations and worksite-specific terminology. Although some manual coding will remain necessary, using SOCcer may improve the efficiency of incorporating occupation into large-scale epidemiological studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.

  7. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation.

    PubMed

    Gong, Chenguang; Li, Zhizhong; Ramanujan, Krishnan; Clay, Ieuan; Zhang, Yunyu; Lemire-Brachat, Sophie; Glass, David J

    2015-07-27

    Increasing evidence suggests that long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation, largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well conserved between human and mouse, its locus, gene structure, and function are preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Non-compliance with the International Code of Marketing of Breast Milk Substitutes is not confined to the infant formula industry.

    PubMed

    Forsyth, Stewart

    2013-06-01

    Infant feeding policy and practice continues to be a contentious area of global health care. The infant formula industry is widely considered to be the bête noire with frequent claims that they adopt marketing and sales practices that are not compliant with the WHO Code. However, failure to resolve these issues over three decades suggests that there may be wider systemic failings. Review of published papers, commentaries and reports relating to the implementation and governance of the WHO Code with specific reference to issues of non-compliance. The analysis set out in this paper indicates that there are systemic failings at all levels of the implementation and monitoring process including the failure of WHO to successfully 'urge' governments to implement the Code in its entirety; a lack of political will by Member States to implement and monitor the Code and a lack of formal and transparent governance structures. Non-compliance with the WHO Code is not confined to the infant formula industry and several actions are identified, including the need to address issues of partnership working and the establishment of governance systems that are robust, independent and transparent.

  9. Medical image classification based on multi-scale non-negative sparse coding.

    PubMed

    Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar

    2017-11-01

    With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of an Implicit, Charge and Energy Conserving 2D Electromagnetic PIC Code on Advanced Architectures

    NASA Astrophysics Data System (ADS)

    Payne, Joshua; Taitano, William; Knoll, Dana; Liebs, Chris; Murthy, Karthik; Feltman, Nicolas; Wang, Yijie; McCarthy, Colleen; Cieren, Emanuel

    2012-10-01

    In order to solve problems such as the ion coalescence and slow MHD shocks fully kinetically we developed a fully implicit 2D energy and charge conserving electromagnetic PIC code, PlasmaApp2D. PlasmaApp2D differs from previous implicit PIC implementations in that it will utilize advanced architectures such as GPUs and shared memory CPU systems, with problems too large to fit into cache. PlasmaApp2D will be a hybrid CPU-GPU code developed primarily to run on the DARWIN cluster at LANL utilizing four 12-core AMD Opteron CPUs and two NVIDIA Tesla GPUs per node. MPI will be used for cross-node communication, OpenMP will be used for on-node parallelism, and CUDA will be used for the GPUs. Development progress and initial results will be presented.

  11. Constacyclic codes over the ring F_q+v{F}_q+v2F_q and their applications of constructing new non-binary quantum codes

    NASA Astrophysics Data System (ADS)

    Ma, Fanghui; Gao, Jian; Fu, Fang-Wei

    2018-06-01

    Let R={F}_q+v{F}_q+v2{F}_q be a finite non-chain ring, where q is an odd prime power and v^3=v. In this paper, we propose two methods of constructing quantum codes from (α +β v+γ v2)-constacyclic codes over R. The first one is obtained via the Gray map and the Calderbank-Shor-Steane construction from Euclidean dual-containing (α +β v+γ v2)-constacyclic codes over R. The second one is obtained via the Gray map and the Hermitian construction from Hermitian dual-containing (α +β v+γ v2)-constacyclic codes over R. As an application, some new non-binary quantum codes are obtained.

  12. Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma

    PubMed Central

    Seles, Maximilian; Hutterer, Georg C.; Kiesslich, Tobias; Pummer, Karl; Berindan-Neagoe, Ioana; Perakis, Samantha; Schwarzenbacher, Daniela; Stotz, Michael; Gerger, Armin; Pichler, Martin

    2016-01-01

    Renal cell carcinoma (RCC) represents a deadly disease with rising mortality despite intensive therapeutic efforts. It comprises several subtypes in terms of distinct histopathological features and different clinical presentations. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the genome which vary in expression levels and length and perform diverse functions. They are involved in the inititation, evolution and progression of primary cancer, as well as in the development and spread of metastases. Recently, several lncRNAs were described in RCC. This review emphasises the rising importance of lncRNAs in RCC. Moreover, it provides an outlook on their therapeutic potential in the future. PMID:27092491

  13. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests

    NASA Astrophysics Data System (ADS)

    Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2000-04-01

    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.

  14. Identifying conserved gene clusters in the presence of homology families.

    PubMed

    He, Xin; Goldwasser, Michael H

    2005-01-01

    The study of conserved gene clusters is important for understanding the forces behind genome organization and evolution, as well as the function of individual genes or gene groups. In this paper, we present a new model and algorithm for identifying conserved gene clusters from pairwise genome comparison. This generalizes a recent model called "gene teams." A gene team is a set of genes that appear homologously in two or more species, possibly in a different order yet with the distance of adjacent genes in the team for each chromosome always no more than a certain threshold. We remove the constraint in the original model that each gene must have a unique occurrence in each chromosome and thus allow the analysis on complex prokaryotic or eukaryotic genomes with extensive paralogs. Our algorithm analyzes a pair of chromosomes in O(mn) time and uses O(m+n) space, where m and n are the number of genes in the respective chromosomes. We demonstrate the utility of our methods by studying two bacterial genomes, E. coli K-12 and B. subtilis. Many of the teams identified by our algorithm correlate with documented E. coli operons, while several others match predicted operons, previously suggested by computational techniques. Our implementation and data are publicly available at euler.slu.edu/ approximately goldwasser/homologyteams/.

  15. Origin and evolution of the long non-coding genes in the X-inactivation center.

    PubMed

    Romito, Antonio; Rougeulle, Claire

    2011-11-01

    Random X chromosome inactivation (XCI), the eutherian mechanism of X-linked gene dosage compensation, is controlled by a cis-acting locus termed the X-inactivation center (Xic). One of the striking features that characterize the Xic landscape is the abundance of loci transcribing non-coding RNAs (ncRNAs), including Xist, the master regulator of the inactivation process. Recent comparative genomic analyses have depicted the evolutionary scenario behind the origin of the X-inactivation center, revealing that this locus evolved from a region harboring protein-coding genes. During mammalian radiation, this ancestral protein-coding region was disrupted in the marsupial group, whilst it provided in eutherian lineage the starting material for the non-translated RNAs of the X-inactivation center. The emergence of non-coding genes occurred by a dual mechanism involving loss of protein-coding function of the pre-existing genes and integration of different classes of mobile elements, some of which modeled the structure and sequence of the non-coding genes in a species-specific manner. The rising genes started to produce transcripts that acquired function in regulating the epigenetic status of the X chromosome, as shown for Xist, its antisense Tsix, Jpx, and recently suggested for Ftx. Thus, the appearance of the Xic, which occurred after the divergence between eutherians and marsupials, was the basis for the evolution of random X inactivation as a strategy to achieve dosage compensation. Copyright © 2011. Published by Elsevier Masson SAS.

  16. Identification of aberrantly expressed long non-coding RNAs in stomach adenocarcinoma.

    PubMed

    Gu, Jianbin; Li, Yong; Fan, Liqiao; Zhao, Qun; Tan, Bibo; Hua, Kelei; Wu, Guobin

    2017-07-25

    Stomach adenocarcinoma (STAD) is a common malignancy worldwide. This study aimed to identify the aberrantly expressed long non-coding RNAs (lncRNAs) in STAD. Total of 74 DElncRNAs and 449 DEmRNAs were identified in STAD compared with paired non-tumor tissues. The DElncRNA/DEmRNA co-expression network was constructed, which covered 519 nodes and 2993 edges. The qRT-PCR validation results of DElncRNAs were consistent with our bioinformatics analysis based on RNA-sequencing. The DEmRNAs co-expressed with DElncRNAs were significantly enriched in gastric acid secretion, complement and coagulation cascades, pancreatic secretion, cytokine-cytokine receptor interaction and Jak-STAT signaling pathway. The expression levels of the nine candidate DElncRNAs in TCGA database were compatible with our RNA-sequencing. FEZF1-AS1, HOTAIR and LINC01234 had the potential diagnosis value for STAD. The lncRNA and mRNA expression profile of 3 STAD tissues and 3 matched adjacent non-tumor tissues was obtained through high-throughput RNA-sequencing. Differentially expressed lncRNAs/mRNAs (DElncRNAs/DEmRNAs) were identified in STAD. DElncRNA/DEmRNA co-expression network construction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predict the biological functions of DElncRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was subjected to validate the expression levels of DEmRNAs and DElncRNAs. Moreover, the expression of DElncRNAs was validated through The Cancer Genome Atlas (TCGA) database. The diagnosis value of candidate DElncRNAs was accessed by receiver operating characteristic (ROC) analysis. Our work might provide useful information for exploring the tumorigenesis mechanism of STAD and pave the road for identification of diagnostic biomarkers in STAD.

  17. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  18. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  19. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  20. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  1. Identifying complications of interventional procedures from UK routine healthcare databases: a systematic search for methods using clinical codes.

    PubMed

    Keltie, Kim; Cole, Helen; Arber, Mick; Patrick, Hannah; Powell, John; Campbell, Bruce; Sims, Andrew

    2014-11-28

    Several authors have developed and applied methods to routine data sets to identify the nature and rate of complications following interventional procedures. But, to date, there has been no systematic search for such methods. The objective of this article was to find, classify and appraise published methods, based on analysis of clinical codes, which used routine healthcare databases in a United Kingdom setting to identify complications resulting from interventional procedures. A literature search strategy was developed to identify published studies that referred, in the title or abstract, to the name or acronym of a known routine healthcare database and to complications from procedures or devices. The following data sources were searched in February and March 2013: Cochrane Methods Register, Conference Proceedings Citation Index - Science, Econlit, EMBASE, Health Management Information Consortium, Health Technology Assessment database, MathSciNet, MEDLINE, MEDLINE in-process, OAIster, OpenGrey, Science Citation Index Expanded and ScienceDirect. Of the eligible papers, those which reported methods using clinical coding were classified and summarised in tabular form using the following headings: routine healthcare database; medical speciality; method for identifying complications; length of follow-up; method of recording comorbidity. The benefits and limitations of each approach were assessed. From 3688 papers identified from the literature search, 44 reported the use of clinical codes to identify complications, from which four distinct methods were identified: 1) searching the index admission for specified clinical codes, 2) searching a sequence of admissions for specified clinical codes, 3) searching for specified clinical codes for complications from procedures and devices within the International Classification of Diseases 10th revision (ICD-10) coding scheme which is the methodology recommended by NHS Classification Service, and 4) conducting manual clinical

  2. Non-conservative evolution in Algols: where is the matter?

    NASA Astrophysics Data System (ADS)

    Deschamps, R.; Braun, K.; Jorissen, A.; Siess, L.; Baes, M.; Camps, P.

    2015-05-01

    Context. There is indirect evidence of non-conservative evolutions in Algols. However, the systemic mass-loss rate is poorly constrained by observations and generally set as a free parameter in binary-star evolution simulations. Moreover, systemic mass loss may lead to observational signatures that still need to be found. Aims: Within the "hotspot" ejection mechanism, some of the material that is initially transferred from the companion star via an accretion stream is expelled from the system due to the radiative energy released on the gainer's surface by the impacting material. The objective of this paper is to retrieve observable quantities from this process and to compare them with observations. Methods: We investigate the impact of the outflowing gas and the possible presence of dust grains on the spectral energy distribution (SED). We used the 1D plasma code Cloudy and compared the results with the 3D Monte-Carlo radiative transfer code Skirt for dusty simulations. The circumbinary mass-distribution and binary parameters were computed with state-of-the-art binary calculations done with the Binstar evolution code. Results: The outflowing material reduces the continuum flux level of the stellar SED in the optical and UV. Because of the time-dependence of this effect, it may help to distinguish between different ejection mechanisms. If present, dust leads to observable infrared excesses, even with low dust-to-gas ratios, and traces the cold material at large distances from the star. By searching for this dust emission in the WISE catalogue, we found a small number of Algols showing infrared excesses, among which the two rather surprising objects SX Aur and CZ Vel. We find that some binary B[e] stars show the same strong Balmer continuum as we predict with our models. However, direct evidence of systemic mass loss is probably not observable in genuine Algols, since these systems no longer eject mass through the hotspot mechanism. Furthermore, owing to its high

  3. Identifiability of conservative linear mechanical systems. [applied to large flexible spacecraft structures

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1985-01-01

    With a sufficiently great number of sensors and actuators, any finite dimensional dynamic system is identifiable on the basis of input-output data. It is presently indicated that, for conservative nongyroscopic linear mechanical systems, the number of sensors and actuators required for identifiability is very large, where 'identifiability' is understood as a unique determination of the mass and stiffness matrices. The required number of sensors and actuators drops by a factor of two, given a relaxation of the identifiability criterion so that identification can fail only if the system parameters being identified lie in a set of measure zero. When the mass matrix is known a priori, this additional information does not significantly affect the requirements for guaranteed identifiability, though the number of parameters to be determined is reduced by a factor of two.

  4. Residential energy consumption and conservation programs: A systematic approach to identify inefficient households, provide meaningful feedback, and prioritize homes for conservation intervention

    NASA Astrophysics Data System (ADS)

    Macsleyne, Amelia Chadbourne Carus

    There are three main objectives for residential energy conservation policies: to reduce the use of fossil fuels, reduce greenhouse gas emissions, and reduce the energy costs seen by the consumer (U.S. Department of Energy: Strategic Objectives, 2006). A prominent difficulty currently facing conservation policy makers and program managers is how to identify and communicate with households that would be good candidates for conservation intervention, in such a way that affects a change in consumption patterns and is cost-effective. This research addresses this issue by separating the problem into three components: how to identify houses that are significantly more inefficient than comparable households; how to find the maximum financially-feasible investment in energy efficiency for a household in order to reduce annual energy costs and/or improve indoor comfort; and how to prioritize low-income households for a subsidized weatherization program. Each component of the problem is presented as a paper prepared for publication. Household consumption related to physical house efficiency, thermostat settings, and daily appliance usage is studied in the first and second paper by analyzing natural gas utility meter readings associated with over 10,000 households from 2001-2006. A rich description of a house's architectural characteristics and household demographics is attained by integrating publicly available databases based on the house address. This combination of information allows for the largest number of individual households studied at this level of detail to date. The third paper uses conservation program data from two natural gas utilities that administer and sponsor the program; over 1,000 weatherized households are included in this sample. This research focuses on natural gas-related household conservation. However, the same principles and methods could be applied for electricity-related conservation programs. We find positive policy implications from each of

  5. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    PubMed

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A survey to identify the clinical coding and classification systems currently in use across Europe.

    PubMed

    de Lusignan, S; Minmagh, C; Kennedy, J; Zeimet, M; Bommezijn, H; Bryant, J

    2001-01-01

    This is a survey to identify what clinical coding systems are currently in use across the European Union, and the states seeking membership to it. We sought to identify what systems are currently used and to what extent they were subject to local adaptation. Clinical coding should facilitate identifying key medical events in a computerised medical record, and aggregating information across groups of records. The emerging new driver is as the enabler of the life-long computerised medical record. A prerequisite for this level of functionality is the transfer of information between different computer systems. This transfer can be facilitated either by working on the interoperability problems between disparate systems or by harmonising the underlying data. This paper examines the extent to which the latter has occurred across Europe. Literature and Internet search. Requests for information via electronic mail to pan-European mailing lists of health informatics professionals. Coding systems are now a de facto part of health information systems across Europe. There are relatively few coding systems in existence across Europe. ICD9 and ICD 10, ICPC and Read were the most established. However the local adaptation of these classification systems either on a by country or by computer software manufacturer basis; significantly reduces the ability for the meaning coded with patients computer records to be easily transferred from one medical record system to another. There is no longer any debate as to whether a coding or classification system should be used. Convergence of different classifications systems should be encouraged. Countries and computer manufacturers within the EU should be encouraged to stop making local modifications to coding and classification systems, as this practice risks significantly slowing progress towards easy transfer of records between computer systems.

  7. An evolutionary analysis identifies a conserved pentapeptide stretch containing the two essential lysine residues for rice L-myo-inositol 1-phosphate synthase catalytic activity

    PubMed Central

    Basak, Papri; Maitra-Majee, Susmita; Das, Jayanta Kumar; Mukherjee, Abhishek; Ghosh Dastidar, Shubhra; Pal Choudhury, Pabitra

    2017-01-01

    A molecular evolutionary analysis of a well conserved protein helps to determine the essential amino acids in the core catalytic region. Based on the chemical properties of amino acid residues, phylogenetic analysis of a total of 172 homologous sequences of a highly conserved enzyme, L-myo-inositol 1-phosphate synthase or MIPS from evolutionarily diverse organisms was performed. This study revealed the presence of six phylogenetically conserved blocks, out of which four embrace the catalytic core of the functional protein. Further, specific amino acid modifications targeting the lysine residues, known to be important for MIPS catalysis, were performed at the catalytic site of a MIPS from monocotyledonous model plant, Oryza sativa (OsMIPS1). Following this study, OsMIPS mutants with deletion or replacement of lysine residues in the conserved blocks were made. Based on the enzyme kinetics performed on the deletion/replacement mutants, phylogenetic and structural comparison with the already established crystal structures from non-plant sources, an evolutionarily conserved peptide stretch was identified at the active pocket which contains the two most important lysine residues essential for catalytic activity. PMID:28950028

  8. Long non-coding RNAs in hepatocellular carcinoma: Potential roles and clinical implications

    PubMed Central

    Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong

    2017-01-01

    Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNA transcripts greater than 200 nucleotides in length with little or no protein-coding potential. Emerging evidence indicates that lncRNAs may play important regulatory roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). Certain lncRNAs may be used as diagnostic or prognostic markers for HCC, a serious malignancy with increasing morbidity and high mortality rates worldwide. Therefore, elucidating the functional roles of lncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and may help in developing novel therapeutic targets. In this review, we summarize the recent progress regarding the functional roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC. PMID:28932078

  9. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting

    PubMed Central

    Firth, Andrew E; Atkins, John F

    2009-01-01

    Japanese encephalitis, West Nile, Usutu and Murray Valley encephalitis viruses form a tight subgroup within the larger Flavivirus genus. These viruses utilize a single-polyprotein expression strategy, resulting in ~10 mature proteins. Plotting the conservation at synonymous sites along the polyprotein coding sequence reveals strong conservation peaks at the very 5' end of the coding sequence, and also at the 5' end of the sequence encoding the NS2A protein. Such peaks are generally indicative of functionally important non-coding sequence elements. The second peak corresponds to a predicted stable pseudoknot structure whose biological importance is supported by compensatory mutations that preserve the structure. The pseudoknot is preceded by a conserved slippery heptanucleotide (Y CCU UUU), thus forming a classical stimulatory motif for -1 ribosomal frameshifting. We hypothesize, therefore, that the functional importance of the pseudoknot is to stimulate a portion of ribosomes to shift -1 nt into a short (45 codon), conserved, overlapping open reading frame, termed foo. Since cleavage at the NS1-NS2A boundary is known to require synthesis of NS2A in cis, the resulting transframe fusion protein is predicted to be NS1-NS2AN-term-FOO. We hypothesize that this may explain the origin of the previously identified NS1 'extension' protein in JEV-group flaviviruses, known as NS1'. PMID:19196463

  10. Comparing spatially explicit ecological and social values for natural areas to identify effective conservation strategies.

    PubMed

    Bryan, Brett Anthony; Raymond, Christopher Mark; Crossman, Neville David; King, Darran

    2011-02-01

    Consideration of the social values people assign to relatively undisturbed native ecosystems is critical for the success of science-based conservation plans. We used an interview process to identify and map social values assigned to 31 ecosystem services provided by natural areas in an agricultural landscape in southern Australia. We then modeled the spatial distribution of 12 components of ecological value commonly used in setting spatial conservation priorities. We used the analytical hierarchy process to weight these components and used multiattribute utility theory to combine them into a single spatial layer of ecological value. Social values assigned to natural areas were negatively correlated with ecological values overall, but were positively correlated with some components of ecological value. In terms of the spatial distribution of values, people valued protected areas, whereas those natural areas underrepresented in the reserve system were of higher ecological value. The habitats of threatened animal species were assigned both high ecological value and high social value. Only small areas were assigned both high ecological value and high social value in the study area, whereas large areas of high ecological value were of low social value, and vice versa. We used the assigned ecological and social values to identify different conservation strategies (e.g., information sharing, community engagement, incentive payments) that may be effective for specific areas. We suggest that consideration of both ecological and social values in selection of conservation strategies can enhance the success of science-based conservation planning. ©2010 Society for Conservation Biology.

  11. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century,more » driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after

  12. Identifying and acting on potentially inappropriate care? Inadequacy of current hospital coding for this task.

    PubMed

    Cooper, P David; Smart, David R

    2017-06-01

    Recent Australian attempts to facilitate disinvestment in healthcare, by identifying instances of 'inappropriate' care from large Government datasets, are subject to significant methodological flaws. Amongst other criticisms has been the fact that the Government datasets utilized for this purpose correlate poorly with datasets collected by relevant professional bodies. Government data derive from official hospital coding, collected retrospectively by clerical personnel, whilst professional body data derive from unit-specific databases, collected contemporaneously with care by clinical personnel. Assessment of accuracy of official hospital coding data for hyperbaric services in a tertiary referral hospital. All official hyperbaric-relevant coding data submitted to the relevant Australian Government agencies by the Royal Hobart Hospital, Tasmania, Australia for financial year 2010-2011 were reviewed and compared against actual hyperbaric unit activity as determined by reference to original source documents. Hospital coding data contained one or more errors in diagnoses and/or procedures in 70% of patients treated with hyperbaric oxygen that year. Multiple discrete error types were identified, including (but not limited to): missing patients; missing treatments; 'additional' treatments; 'additional' patients; incorrect procedure codes and incorrect diagnostic codes. Incidental observations of errors in surgical, anaesthetic and intensive care coding within this cohort suggest that the problems are not restricted to the specialty of hyperbaric medicine alone. Publications from other centres indicate that these problems are not unique to this institution or State. Current Government datasets are irretrievably compromised and not fit for purpose. Attempting to inform the healthcare policy debate by reference to these datasets is inappropriate. Urgent clinical engagement with hospital coding departments is warranted.

  13. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure.

    PubMed

    Xuan, Lina; Sun, Lihua; Zhang, Ying; Huang, Yuechao; Hou, Yan; Li, Qingqi; Guo, Ying; Feng, Bingbing; Cui, Lina; Wang, Xiaoxue; Wang, Zhiguo; Tian, Ye; Yu, Bo; Wang, Shu; Xu, Chaoqian; Zhang, Mingyu; Du, Zhimin; Lu, Yanjie; Yang, Bao Feng

    2017-09-01

    This study sought to evaluate the potential of circulating long non-coding RNAs (lncRNAs) as biomarkers for heart failure (HF). We measured the circulating levels of 13 individual lncRNAs which are known to be relevant to cardiovascular disease in the plasma samples from 72 HF patients and 60 non-HF control participants using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) methods. We found that out of the 13 lncRNAs tested, non-coding repressor of NFAT (NRON) and myosin heavy-chain-associated RNA transcripts (MHRT) had significantly higher plasma levels in HF than in non-HF subjects: 3.17 ± 0.30 versus 1.0 ± 0.07 for NRON (P < 0.0001) and 1.66 ± 0.14 versus 1.0 ± 0.12 for MHRT (P < 0.0001). The area under the ROC curve was 0.865 for NRON and 0.702 for MHRT. Univariate and multivariate analyses identified NRON and MHRT as independent predictors for HF. Spearman's rank correlation analysis showed that NRON was negatively correlated with HDL and positively correlated with LDH, whereas MHRT was positively correlated with AST and LDH. Hence, elevation of circulating NRON and MHRT predicts HF and may be considered as novel biomarkers of HF. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Long Non-Coding RNAs: A Novel Paradigm for Toxicology

    PubMed Central

    Dempsey, Joseph L.; Cui, Julia Yue

    2017-01-01

    Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer’s disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology. PMID:27864543

  15. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. Results To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. Conclusions This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to

  16. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni.

    PubMed

    Mandhan, Vibha; Kaur, Jagdeep; Singh, Kashmir

    2012-11-01

    MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to understand their roles in key

  17. Long non-coding RNAs in B-cell malignancies: a comprehensive overview

    PubMed Central

    Taiana, Elisa; Neri, Antonino

    2017-01-01

    B-cell malignancies constitute a large part of hematological neoplasias. They represent a heterogeneous group of diseases, including Hodgkin's lymphoma, most non-Hodgkin's lymphomas (NHL), some leukemias and myelomas. B-cell malignancies reflect defined stages of normal B-cell differentiation and this represents the major basis for their classification. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides, for which many recent studies have demonstrated a function in regulating gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including hematological malignancies. The involvement of lncRNAs in cancer initiation and progression and their attractive features both as biomarker and for therapeutic research are becoming increasingly evident. In this review, we summarize the recent literature to highlight the status of the knowledge of lncRNAs role in normal B-cell development and in the pathogenesis of B-cell tumors. PMID:28947998

  18. Identifying Psoriasis and Psoriatic Arthritis Patients in Retrospective Databases When Diagnosis Codes Are Not Available: A Validation Study Comparing Medication/Prescriber Visit-Based Algorithms with Diagnosis Codes.

    PubMed

    Dobson-Belaire, Wendy; Goodfield, Jason; Borrelli, Richard; Liu, Fei Fei; Khan, Zeba M

    2018-01-01

    Using diagnosis code-based algorithms is the primary method of identifying patient cohorts for retrospective studies; nevertheless, many databases lack reliable diagnosis code information. To develop precise algorithms based on medication claims/prescriber visits (MCs/PVs) to identify psoriasis (PsO) patients and psoriatic patients with arthritic conditions (PsO-AC), a proxy for psoriatic arthritis, in Canadian databases lacking diagnosis codes. Algorithms were developed using medications with narrow indication profiles in combination with prescriber specialty to define PsO and PsO-AC. For a 3-year study period from July 1, 2009, algorithms were validated using the PharMetrics Plus database, which contains both adjudicated medication claims and diagnosis codes. Positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of the developed algorithms were assessed using diagnosis code as the reference standard. Chosen algorithms were then applied to Canadian drug databases to profile the algorithm-identified PsO and PsO-AC cohorts. In the selected database, 183,328 patients were identified for validation. The highest PPVs for PsO (85%) and PsO-AC (65%) occurred when a predictive algorithm of two or more MCs/PVs was compared with the reference standard of one or more diagnosis codes. NPV and specificity were high (99%-100%), whereas sensitivity was low (≤30%). Reducing the number of MCs/PVs or increasing diagnosis claims decreased the algorithms' PPVs. We have developed an MC/PV-based algorithm to identify PsO patients with a high degree of accuracy, but accuracy for PsO-AC requires further investigation. Such methods allow researchers to conduct retrospective studies in databases in which diagnosis codes are absent. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  19. Long non-coding RNA and Polycomb: an intricate partnership in cancer biology.

    PubMed

    Achour, Cyrinne; Aguilo, Francesca

    2018-06-01

    High-throughput analyses have revealed that the vast majority of the transcriptome does not code for proteins. These non-translated transcripts, when larger than 200 nucleotides, are termed long non-coding RNAs (lncRNAs), and play fundamental roles in diverse cellular processes. LncRNAs are subject to dynamic chemical modification, adding another layer of complexity to our understanding of the potential roles that lncRNAs play in health and disease. Many lncRNAs regulate transcriptional programs by influencing the epigenetic state through direct interactions with chromatin-modifying proteins. Among these proteins, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been shown to be recruited by lncRNAs to silence target genes. Aberrant expression, deficiency or mutation of both lncRNA and Polycomb have been associated with numerous human diseases, including cancer. In this review, we have highlighted recent findings regarding the concerted mechanism of action of Polycomb group proteins (PcG), acting together with some classically defined lncRNAs including X-inactive specific transcript ( XIST ), antisense non-coding RNA in the INK4 locus ( ANRIL ), metastasis associated lung adenocarcinoma transcript 1 ( MALAT1 ), and HOX transcript antisense RNA ( HOTAIR ).

  20. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.).

    PubMed

    Lv, Yuanda; Liang, Zhikai; Ge, Min; Qi, Weicong; Zhang, Tifu; Lin, Feng; Peng, Zhaohua; Zhao, Han

    2016-05-11

    Nitrogen (N) is an essential and often limiting nutrient to plant growth and development. Previous studies have shown that the mRNA expressions of numerous genes are regulated by nitrogen supplies; however, little is known about the expressed non-coding elements, for example long non-coding RNAs (lncRNAs) that control the response of maize (Zea mays L.) to nitrogen. LncRNAs are a class of non-coding RNAs larger than 200 bp, which have emerged as key regulators in gene expression. In this study, we surveyed the intergenic/intronic lncRNAs in maize B73 leaves at the V7 stage under conditions of N-deficiency and N-sufficiency using ribosomal RNA depletion and ultra-deep total RNA sequencing approaches. By integration with mRNA expression profiles and physiological evaluations, 7245 lncRNAs and 637 nitrogen-responsive lncRNAs were identified that exhibited unique expression patterns. Co-expression network analysis showed that the nitrogen-responsive lncRNAs were enriched mainly in one of the three co-expressed modules. The genes in the enriched module are mainly involved in NADH dehydrogenase activity, oxidative phosphorylation and the nitrogen compounds metabolic process. We identified a large number of lncRNAs in maize and illustrated their potential regulatory roles in response to N stress. The results lay the foundation for further in-depth understanding of the molecular mechanisms of lncRNAs' role in response to nitrogen stresses.

  1. The Clawpack Community of Codes

    NASA Astrophysics Data System (ADS)

    Mandli, K. T.; LeVeque, R. J.; Ketcheson, D.; Ahmadia, A. J.

    2014-12-01

    Clawpack, the Conservation Laws Package, has long been one of the standards for solving hyperbolic conservation laws but over the years has extended well beyond this role. Today a community of open-source codes have been developed that address a multitude of different needs including non-conservative balance laws, high-order accurate methods, and parallelism while remaining extensible and easy to use, largely by the judicious use of Python and the original Fortran codes that it wraps. This talk will present some of the recent developments in projects under the Clawpack umbrella, notably the GeoClaw and PyClaw projects. GeoClaw was originally developed as a tool for simulating tsunamis using adaptive mesh refinement but has since encompassed a large number of other geophysically relevant flows including storm surge and debris-flows. PyClaw originated as a Python version of the original Clawpack algorithms but has since been both a testing ground for new algorithmic advances in the Clawpack framework but also an easily extensible framework for solving hyperbolic balance laws. Some of these extensions include the addition of WENO high-order methods, massively parallel capabilities, and adaptive mesh refinement technologies, made possible largely by the flexibility of the Python language and community libraries such as NumPy and PETSc. Because of the tight integration with Python tecnologies, both packages have benefited also from the focus on reproducibility in the Python community, notably IPython notebooks.

  2. Specific expression of novel long non-coding RNAs in high-hyperdiploid childhood acute lymphoblastic leukemia

    PubMed Central

    Drouin, Simon; Caron, Maxime; St-Onge, Pascal; Gioia, Romain; Richer, Chantal; Oualkacha, Karim; Droit, Arnaud; Sinnett, Daniel

    2017-01-01

    Pre-B cell childhood acute lymphoblastic leukemia (pre-B cALL) is a heterogeneous disease involving many subtypes typically stratified using a combination of cytogenetic and molecular-based assays. These methods, although widely used, rely on the presence of known chromosomal translocations, which is a limiting factor. There is therefore a need for robust, sensitive, and specific molecular biomarkers unaffected by such limitations that would allow better risk stratification and consequently better clinical outcome. In this study we performed a transcriptome analysis of 56 pre-B cALL patients to identify expression signatures in different subtypes. In both protein-coding and long non-coding RNAs (lncRNA), we identified subtype-specific gene signatures distinguishing pre-B cALL subtypes, particularly in t(12;21) and hyperdiploid cases. The genes up-regulated in pre-B cALL subtypes were enriched in bivalent chromatin marks in their promoters. LncRNAs is a new and under-studied class of transcripts. The subtype-specific nature of lncRNAs suggests they may be suitable clinical biomarkers to guide risk stratification and targeted therapies in pre-B cALL patients. PMID:28346506

  3. Comparative analysis of long non-coding RNAs in Atlantic and Coho salmon reveals divergent transcriptome responses associated with immunity and tissue repair during sea lice infestation.

    PubMed

    Valenzuela-Muñoz, Valentina; Valenzuela-Miranda, Diego; Gallardo-Escárate, Cristian

    2018-05-24

    The increasing capacity of transcriptomic analysis by high throughput sequencing has highlighted the presence of a large proportion of transcripts that do not encode proteins. In particular, long non-coding RNAs (lncRNAs) are sequences with low coding potential and conservation among species. Moreover, cumulative evidence has revealed important roles in post-transcriptional gene modulation in several taxa. In fish, the role of lncRNAs has been scarcely studied and even less so during the immune response against sea lice. In the present study we mined for lncRNAs in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynkus kisutch), which are affected by the sea louse Caligus rogercresseyi, evaluating the degree of sequence conservation between these two fish species and their putative roles during the infection process. Herein, Atlantic and Coho salmon were infected with 35 lice/fish and evaluated after 7 and 14 days post-infestation (dpi). For RNA sequencing, samples from skin and head kidney were collected. A total of 5658/4140 and 3678/2123 lncRNAs were identified in uninfected/infected Atlantic and Coho salmon transcriptomes, respectively. Species-specific transcription patterns were observed in exclusive lncRNAs according to the tissue analyzed. Furthermore, neighbor gene GO enrichment analysis of the top 100 highly regulated lncRNAs in Atlantic salmon showed that lncRNAs were localized near genes related to the immune response. On the other hand, in Coho salmon the highly regulated lncRNAs were localized near genes involved in tissue repair processes. This study revealed high regulation of lncRNAs closely localized to immune and tissue repair-related genes in Atlantic and Coho salmon, respectively, suggesting putative roles for lncRNAs in salmon against sea lice infestation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.

    PubMed

    Zorc, Minja; Kunej, Tanja

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a

  5. Long Non-coding RNAs in the X-inactivation Center

    PubMed Central

    Kalantry, Sundeep

    2014-01-01

    The X-inactivation center is a hotbed of functional long non-coding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation over the last fifty years. In the last 25 years, the discovery and functional characterization has firmly established X-linked long non-coding RNAs as key players in choreographing X-chromosome inactivation. PMID:24297756

  6. Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.

    PubMed

    Liu, Tao; Lin, Changyu; Djordjevic, Ivan B

    2016-06-27

    In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.

  7. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    PubMed Central

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  8. Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.)

    PubMed Central

    Mee, Jonathan A; Bernatchez, Louis; Reist, Jim D; Rogers, Sean M; Taylor, Eric B

    2015-01-01

    The concept of the designatable unit (DU) affords a practical approach to identifying diversity below the species level for conservation prioritization. However, its suitability for defining conservation units in ecologically diverse, geographically widespread and taxonomically challenging species complexes has not been broadly evaluated. The lake whitefish species complex (Coregonus spp.) is geographically widespread in the Northern Hemisphere, and it contains a great deal of variability in ecology and evolutionary legacy within and among populations, as well as a great deal of taxonomic ambiguity. Here, we employ a set of hierarchical criteria to identify DUs within the Canadian distribution of the lake whitefish species complex. We identified 36 DUs based on (i) reproductive isolation, (ii) phylogeographic groupings, (iii) local adaptation and (iv) biogeographic regions. The identification of DUs is required for clear discussion regarding the conservation prioritization of lake whitefish populations. We suggest conservation priorities among lake whitefish DUs based on biological consequences of extinction, risk of extinction and distinctiveness. Our results exemplify the need for extensive genetic and biogeographic analyses for any species with broad geographic distributions and the need for detailed evaluation of evolutionary history and adaptive ecological divergence when defining intraspecific conservation units. PMID:26029257

  9. Validity of ICD-9-CM Coding for Identifying Incident Methicillin-Resistant Staphylococcus aureus (MRSA) Infections: Is MRSA Infection Coded as a Chronic Disease?

    PubMed Central

    Schweizer, Marin L.; Eber, Michael R.; Laxminarayan, Ramanan; Furuno, Jon P.; Popovich, Kyle J.; Hota, Bala; Rubin, Michael A.; Perencevich, Eli N.

    2013-01-01

    BACKGROUND AND OBJECTIVE Investigators and medical decision makers frequently rely on administrative databases to assess methicillin-resistant Staphylococcus aureus (MRSA) infection rates and outcomes. The validity of this approach remains unclear. We sought to assess the validity of the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) code for infection with drug-resistant microorganisms (V09) for identifying culture-proven MRSA infection. DESIGN Retrospective cohort study. METHODS All adults admitted to 3 geographically distinct hospitals between January 1, 2001, and December 31, 2007, were assessed for presence of incident MRSA infection, defined as an MRSA-positive clinical culture obtained during the index hospitalization, and presence of the V09 ICD-9-CM code. The k statistic was calculated to measure the agreement between presence of MRSA infection and assignment of the V09 code. Sensitivities, specificities, positive predictive values, and negative predictive values were calculated. RESULTS There were 466,819 patients discharged during the study period. Of the 4,506 discharged patients (1.0%) who had the V09 code assigned, 31% had an incident MRSA infection, 20% had prior history of MRSA colonization or infection but did not have an incident MRSA infection, and 49% had no record of MRSA infection during the index hospitalization or the previous hospitalization. The V09 code identified MRSA infection with a sensitivity of 24% (range, 21%–34%) and positive predictive value of 31% (range, 22%–53%). The agreement between assignment of the V09 code and presence of MRSA infection had a κ coefficient of 0.26 (95% confidence interval, 0.25–0.27). CONCLUSIONS In its current state, the ICD-9-CM code V09 is not an accurate predictor of MRSA infection and should not be used to measure rates of MRSA infection. PMID:21460469

  10. A long and abundant non-coding RNA in Lactobacillus salivarius.

    PubMed

    Cousin, Fabien J; Lynch, Denise B; Chuat, Victoria; Bourin, Maxence J B; Casey, Pat G; Dalmasso, Marion; Harris, Hugh M B; McCann, Angela; O'Toole, Paul W

    2017-09-01

    Lactobacillus salivarius , found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L . salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.

  11. Building code compliance and enforcement: The experience of San Francisco's residential energy conservation ordinance and California's building standards for new construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.

    1990-11-01

    As part of Lawrence Berkeley Laboratory's (LBL) technical assistance to the Sustainable City Project, compliance and enforcement activities related to local and state building codes for existing and new construction were evaluated in two case studies. The analysis of the City of San Francisco's Residential Energy Conservation Ordinance (RECO) showed that a limited, prescriptive energy conservation ordinance for existing residential construction can be enforced relatively easily with little administrative costs, and that compliance with such ordinances can be quite high. Compliance with the code was facilitated by extensive publicity, an informed public concerned with the cost of energy and knowledgeablemore » about energy efficiency, the threat of punishment (Order of Abatement), the use of private inspectors, and training workshops for City and private inspectors. The analysis of California's Title 24 Standards for new residential and commercial construction showed that enforcement of this type of code for many climate zones is more complex and requires extensive administrative support for education and training of inspectors, architects, engineers, and builders. Under this code, prescriptive and performance approaches for compliance are permitted, resulting in the demand for alternative methods of enforcement: technical assistance, plan review, field inspection, and computer analysis. In contrast to existing to construction, building design and new materials and construction practices are of critical importance in new construction, creating a need for extensive technical assistance and extensive interaction between enforcement personnel and the building community. Compliance problems associated with building design and installation did occur in both residential and nonresidential buildings. 12 refs., 5 tabs.« less

  12. Cis-encoded non-coding antisense RNAs in streptococci and other low GC Gram (+) bacterial pathogens

    PubMed Central

    Cho, Kyu Hong; Kim, Jeong-Ho

    2015-01-01

    Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory non-coding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small non-coding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded non-coding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+) bacteria to provide a guide for future studies. PMID:25859258

  13. Decoding the non-coding RNAs in Alzheimer's disease.

    PubMed

    Schonrock, Nicole; Götz, Jürgen

    2012-11-01

    Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.

  14. Noise induced aperiodic rotations of particles trapped by a non-conservative force

    NASA Astrophysics Data System (ADS)

    Ortega-Piwonka, Ignacio; Angstmann, Christopher N.; Henry, Bruce I.; Reece, Peter J.

    2018-04-01

    We describe a mechanism whereby random noise can play a constructive role in the manifestation of a pattern, aperiodic rotations, that would otherwise be damped by internal dynamics. The mechanism is described physically in a theoretical model of overdamped particle motion in two dimensions with symmetric damping and a non-conservative force field driven by noise. Cyclic motion only occurs as a result of stochastic noise in this system. However, the persistence of the cyclic motion is quantified by parameters associated with the non-conservative forcing. Unlike stochastic resonance or coherence resonance, where noise can play a constructive role in amplifying a signal that is otherwise below the threshold for detection, in the mechanism considered here, the signal that is detected does not exist without the noise. Moreover, the system described here is a linear system.

  15. Insertion of operation-and-indicate instructions for optimized SIMD code

    DOEpatents

    Eichenberger, Alexander E; Gara, Alan; Gschwind, Michael K

    2013-06-04

    Mechanisms are provided for inserting indicated instructions for tracking and indicating exceptions in the execution of vectorized code. A portion of first code is received for compilation. The portion of first code is analyzed to identify non-speculative instructions performing designated non-speculative operations in the first code that are candidates for replacement by replacement operation-and-indicate instructions that perform the designated non-speculative operations and further perform an indication operation for indicating any exception conditions corresponding to special exception values present in vector register inputs to the replacement operation-and-indicate instructions. The replacement is performed and second code is generated based on the replacement of the at least one non-speculative instruction. The data processing system executing the compiled code is configured to store special exception values in vector output registers, in response to a speculative instruction generating an exception condition, without initiating exception handling.

  16. Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods.

    PubMed

    Sato, Shigeru; Ikeda, Keiko; Shioi, Go; Nakao, Kazuki; Yajima, Hiroshi; Kawakami, Kiyoshi

    2012-08-01

    The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Identification of novel non-coding RNA-based negative feedback regulating the expression of the oncogenic transcription factor GLI1.

    PubMed

    Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G

    2014-07-01

    Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Long Non-Coding RNAs in Haematological Malignancies

    PubMed Central

    Garitano-Trojaola, Andoni; Agirre, Xabier; Prósper, Felipe; Fortes, Puri

    2013-01-01

    Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. LncRNAs are as diverse as mRNAs and they normally share the same biosynthetic machinery based on RNA polymerase II, splicing and polyadenylation. However, lncRNAs have low coding potential. Compared to mRNAs, lncRNAs are preferentially nuclear, more tissue specific and expressed at lower levels. Most of the lncRNAs described to date modulate the expression of specific genes by guiding chromatin remodelling factors; inducing chromosomal loopings; affecting transcription, splicing, translation or mRNA stability; or serving as scaffolds for the organization of cellular structures. They can function in cis, cotranscriptionally, or in trans, acting as decoys, scaffolds or guides. These functions seem essential to allow cell differentiation and growth. In fact, many lncRNAs have been shown to exert oncogenic or tumor suppressor properties in several cancers including haematological malignancies. In this review, we summarize what is known about lncRNAs, the mechanisms for their regulation in cancer and their role in leukemogenesis, lymphomagenesis and hematopoiesis. Furthermore, we discuss the potential of lncRNAs in diagnosis, prognosis and therapy in cancer, with special attention to haematological malignancies. PMID:23887658

  19. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE PAGES

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  20. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  1. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury.

    PubMed

    Kölling, Malte; Genschel, Celina; Kaucsar, Tamas; Hübner, Anika; Rong, Song; Schmitt, Roland; Sörensen-Zender, Inga; Haddad, George; Kistler, Andreas; Seeger, Harald; Kielstein, Jan T; Fliser, Danilo; Haller, Hermann; Wüthrich, Rudolf; Zörnig, Martin; Thum, Thomas; Lorenzen, Johan

    2018-02-21

    Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.

  2. Non-coding RNAs in virology: an RNA genomics approach.

    PubMed

    Isaac, Christopher; Patel, Trushar R; Zovoilis, Athanasios

    2018-04-01

    Advances in sequencing technologies and bioinformatic analysis techniques have greatly improved our understanding of various classes of RNAs and their functions. Despite not coding for proteins, non-coding RNAs (ncRNAs) are emerging as essential biomolecules fundamental for cellular functions and cell survival. Interestingly, ncRNAs produced by viruses not only control the expression of viral genes, but also influence host cell regulation and circumvent host innate immune response. Correspondingly, ncRNAs produced by the host genome can play a key role in host-virus interactions. In this article, we will first discuss a number of types of viral and mammalian ncRNAs associated with viral infections. Subsequently, we also describe the new possibilities and opportunities that RNA genomics and next-generation sequencing technologies provide for studying ncRNAs in virology.

  3. Molecular interplay of pro-inflammatory transcription factors and non-coding RNAs in esophageal squamous cell carcinoma.

    PubMed

    Sundaram, Gopinath M; Veera Bramhachari, Pallaval

    2017-06-01

    Esophageal squamous cell carcinoma is the sixth most common cancer in the developing world. The aggressive nature of esophageal squamous cell carcinoma, its tendency for relapse, and the poor survival prospects of patients diagnosed at advanced stages, represent a pressing need for the development of new therapies for this disease. Chronic inflammation is known to have a causal link to cancer pre-disposition. Nuclear factor kappa B and signal transducer and activator of transcription 3 are transcription factors which regulate immunity and inflammation and are emerging as key regulators of tumor initiation, progression, and metastasis. Although these pro-inflammatory factors in esophageal squamous cell carcinoma have been well-characterized with reference to protein-coding targets, their functional interactions with non-coding RNAs have only recently been gaining attention. Non-coding RNAs, especially microRNAs and long non-coding RNAs demonstrate potential as biomarkers and alternative therapeutic targets. In this review, we summarize the recent literature and concepts on non-coding RNAs that are regulated by/regulate nuclear factor kappa B and signal transducer and activator of transcription 3 in esophageal cancer progression. We also discuss how these recent discoveries can pave way for future therapeutic options to treat esophageal squamous cell carcinoma.

  4. Non-coding functions of alternative pre-mRNA splicing in development

    PubMed Central

    Mockenhaupt, Stefan; Makeyev, Eugene V.

    2015-01-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705

  5. Long non-coding RNAs involved in autophagy regulation

    PubMed Central

    Yang, Lixian; Wang, Hanying; Shen, Qi; Feng, Lifeng; Jin, Hongchuan

    2017-01-01

    Autophagy degrades non-functioning or damaged proteins and organelles to maintain cellular homeostasis in a physiological or pathological context. Autophagy can be protective or detrimental, depending on its activation status and other conditions. Therefore, autophagy has a crucial role in a myriad of pathophysiological processes. From the perspective of autophagy-related (ATG) genes, the molecular dissection of autophagy process and the regulation of its level have been largely unraveled. However, the discovery of long non-coding RNAs (lncRNAs) provides a new paradigm of gene regulation in almost all important biological processes, including autophagy. In this review, we highlight recent advances in autophagy-associated lncRNAs and their specific autophagic targets, as well as their relevance to human diseases such as cancer, cardiovascular disease, diabetes and cerebral ischemic stroke. PMID:28981093

  6. Building Code Compliance and Enforcement: The Experience of SanFrancisco's Residential Energy Conservation Ordinanace and California'sBuildign Standards for New Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.

    1990-11-01

    As part of Lawrence Berkeley Laboratory's (LBL) technical assistance to the Sustainable City Project, compliance and enforcement activities related to local and state building codes for existing and new construction were evaluated in two case studies. The analysis of the City of San Francisco's Residential Energy Conservation Ordinance (RECO) showed that a limited, prescriptive energy conservation ordinance for existing residential construction can be enforced relatively easily with little administrative costs, and that compliance with such ordinances can be quite high. Compliance with the code was facilitated by extensive publicity, an informed public concerned with the cost of energy and knowledgeablemore » about energy efficiency, the threat of punishment (Order of Abatement), the use of private inspectors, and training workshops for City and private inspectors. The analysis of California's Title 24 Standards for new residential and commercial construction showed that enforcement of this type of code for many climate zones is more complex and requires extensive administrative support for education and training of inspectors, architects, engineers, and builders. Under this code, prescriptive and performance approaches for compliance are permitted, resulting in the demand for alternative methods of enforcement: technical assistance, plan review, field inspection, and computer analysis. In contrast to existing construction, building design and new materials and construction practices are of critical importance in new construction, creating a need for extensive technical assistance and extensive interaction between enforcement personnel and the building community. Compliance problems associated with building design and installation did occur in both residential and nonresidential buildings. Because statewide codes are enforced by local officials, these problems may increase over time as energy standards change and become more complex and as other standards (eg

  7. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    PubMed Central

    Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes

    2013-01-01

    Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems. PMID:23904994

  8. BASiNET-BiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification.

    PubMed

    Ito, Eric Augusto; Katahira, Isaque; Vicente, Fábio Fernandes da Rocha; Pereira, Luiz Filipe Protasio; Lopes, Fabrício Martins

    2018-06-05

    With the emergence of Next Generation Sequencing (NGS) technologies, a large volume of sequence data in particular de novo sequencing was rapidly produced at relatively low costs. In this context, computational tools are increasingly important to assist in the identification of relevant information to understand the functioning of organisms. This work introduces BASiNET, an alignment-free tool for classifying biological sequences based on the feature extraction from complex network measurements. The method initially transform the sequences and represents them as complex networks. Then it extracts topological measures and constructs a feature vector that is used to classify the sequences. The method was evaluated in the classification of coding and non-coding RNAs of 13 species and compared to the CNCI, PLEK and CPC2 methods. BASiNET outperformed all compared methods in all adopted organisms and datasets. BASiNET have classified sequences in all organisms with high accuracy and low standard deviation, showing that the method is robust and non-biased by the organism. The proposed methodology is implemented in open source in R language and freely available for download at https://cran.r-project.org/package=BASiNET.

  9. Chromosome preference of disease genes and vectorization for the prediction of non-coding disease genes.

    PubMed

    Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan

    2017-10-03

    Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes.

  10. Chromosome preference of disease genes and vectorization for the prediction of non-coding disease genes

    PubMed Central

    Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan

    2017-01-01

    Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes. PMID:29108274

  11. Validity of administrative database code algorithms to identify vascular access placement, surgical revisions, and secondary patency.

    PubMed

    Al-Jaishi, Ahmed A; Moist, Louise M; Oliver, Matthew J; Nash, Danielle M; Fleet, Jamie L; Garg, Amit X; Lok, Charmaine E

    2018-03-01

    We assessed the validity of physician billing codes and hospital admission using International Classification of Diseases 10th revision codes to identify vascular access placement, secondary patency, and surgical revisions in administrative data. We included adults (≥18 years) with a vascular access placed between 1 April 2004 and 31 March 2013 at the University Health Network, Toronto. Our reference standard was a prospective vascular access database (VASPRO) that contains information on vascular access type and dates of placement, dates for failure, and any revisions. We used VASPRO to assess the validity of different administrative coding algorithms by calculating the sensitivity, specificity, and positive predictive values of vascular access events. The sensitivity (95% confidence interval) of the best performing algorithm to identify arteriovenous access placement was 86% (83%, 89%) and specificity was 92% (89%, 93%). The corresponding numbers to identify catheter insertion were 84% (82%, 86%) and 84% (80%, 87%), respectively. The sensitivity of the best performing coding algorithm to identify arteriovenous access surgical revisions was 81% (67%, 90%) and specificity was 89% (87%, 90%). The algorithm capturing arteriovenous access placement and catheter insertion had a positive predictive value greater than 90% and arteriovenous access surgical revisions had a positive predictive value of 20%. The duration of arteriovenous access secondary patency was on average 578 (553, 603) days in VASPRO and 555 (530, 580) days in administrative databases. Administrative data algorithms have fair to good operating characteristics to identify vascular access placement and arteriovenous access secondary patency. Low positive predictive values for surgical revisions algorithm suggest that administrative data should only be used to rule out the occurrence of an event.

  12. Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler equations)

    NASA Astrophysics Data System (ADS)

    Clamond, Didier; Dutykh, Denys

    2018-02-01

    A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and posses a variational structure; thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is that smoothed 'shocks' propagates at exactly the same speed as the original discontinuous ones. The performance of the new model is illustrated numerically on some dam-break test cases, which are classical in the hyperbolic realm.

  13. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology

    PubMed Central

    Narayan, E. J.

    2013-01-01

    for advancing amphibian conservation physiology. It also provides key technical considerations for future research that will increase the accuracy and reliability of the data and the value of non-invasive endocrinology within the conceptual framework of conservation physiology. PMID:27293595

  14. Extinction risks and the conservation of Madagascar's reptiles.

    PubMed

    Jenkins, Richard K B; Tognelli, Marcelo F; Bowles, Philip; Cox, Neil; Brown, Jason L; Chan, Lauren; Andreone, Franco; Andriamazava, Alain; Andriantsimanarilafy, Raphali R; Anjeriniaina, Mirana; Bora, Parfait; Brady, Lee D; Hantalalaina, Elisoa F; Glaw, Frank; Griffiths, Richard A; Hilton-Taylor, Craig; Hoffmann, Michael; Katariya, Vineet; Rabibisoa, Nirhy H; Rafanomezantsoa, Jeannot; Rakotomalala, Domoina; Rakotondravony, Hery; Rakotondrazafy, Ny A; Ralambonirainy, Johans; Ramanamanjato, Jean-Baptiste; Randriamahazo, Herilala; Randrianantoandro, J Christian; Randrianasolo, Harison H; Randrianirina, Jasmin E; Randrianizahana, Hiarinirina; Raselimanana, Achille P; Rasolohery, Andriambolantsoa; Ratsoavina, Fanomezana M; Raxworthy, Christopher J; Robsomanitrandrasana, Eric; Rollande, Finoana; van Dijk, Peter P; Yoder, Anne D; Vences, Miguel

    2014-01-01

    An understanding of the conservation status of Madagascar's endemic reptile species is needed to underpin conservation planning and priority setting in this global biodiversity hotspot, and to complement existing information on the island's mammals, birds and amphibians. We report here on the first systematic assessment of the extinction risk of endemic and native non-marine Malagasy snakes, lizards, turtles and tortoises. Species range maps from The IUCN Red List of Threatened Species were analysed to determine patterns in the distribution of threatened reptile species. These data, in addition to information on threats, were used to identify priority areas and actions for conservation. Thirty-nine percent of the data-sufficient Malagasy reptiles in our analyses are threatened with extinction. Areas in the north, west and south-east were identified as having more threatened species than expected and are therefore conservation priorities. Habitat degradation caused by wood harvesting and non-timber crops was the most pervasive threat. The direct removal of reptiles for international trade and human consumption threatened relatively few species, but were the primary threats for tortoises. Nine threatened reptile species are endemic to recently created protected areas. With a few alarming exceptions, the threatened endemic reptiles of Madagascar occur within the national network of protected areas, including some taxa that are only found in new protected areas. Threats to these species, however, operate inside and outside protected area boundaries. This analysis has identified priority sites for reptile conservation and completes the conservation assessment of terrestrial vertebrates in Madagascar which will facilitate conservation planning, monitoring and wise-decision making. In sharp contrast with the amphibians, there is significant reptile diversity and regional endemism in the southern and western regions of Madagascar and this study highlights the importance of

  15. Extinction Risks and the Conservation of Madagascar's Reptiles

    PubMed Central

    Jenkins, Richard K. B.; Tognelli, Marcelo F.; Bowles, Philip; Cox, Neil; Brown, Jason L.; Chan, Lauren; Andreone, Franco; Andriamazava, Alain; Andriantsimanarilafy, Raphali R.; Anjeriniaina, Mirana; Bora, Parfait; Brady, Lee D.; Hantalalaina, Elisoa F.; Glaw, Frank; Griffiths, Richard A.; Hilton-Taylor, Craig; Hoffmann, Michael; Katariya, Vineet; Rabibisoa, Nirhy H.; Rafanomezantsoa, Jeannot; Rakotomalala, Domoina; Rakotondravony, Hery; Rakotondrazafy, Ny A.; Ralambonirainy, Johans; Ramanamanjato, Jean-Baptiste; Randriamahazo, Herilala; Randrianantoandro, J. Christian; Randrianasolo, Harison H.; Randrianirina, Jasmin E.; Randrianizahana, Hiarinirina; Raselimanana, Achille P.; Rasolohery, Andriambolantsoa; Ratsoavina, Fanomezana M.; Raxworthy, Christopher J.; Robsomanitrandrasana, Eric; Rollande, Finoana; van Dijk, Peter P.; Yoder, Anne D.; Vences, Miguel

    2014-01-01

    Background An understanding of the conservation status of Madagascar's endemic reptile species is needed to underpin conservation planning and priority setting in this global biodiversity hotspot, and to complement existing information on the island's mammals, birds and amphibians. We report here on the first systematic assessment of the extinction risk of endemic and native non-marine Malagasy snakes, lizards, turtles and tortoises. Methodology/Principal Findings Species range maps from The IUCN Red List of Threatened Species were analysed to determine patterns in the distribution of threatened reptile species. These data, in addition to information on threats, were used to identify priority areas and actions for conservation. Thirty-nine percent of the data-sufficient Malagasy reptiles in our analyses are threatened with extinction. Areas in the north, west and south-east were identified as having more threatened species than expected and are therefore conservation priorities. Habitat degradation caused by wood harvesting and non-timber crops was the most pervasive threat. The direct removal of reptiles for international trade and human consumption threatened relatively few species, but were the primary threats for tortoises. Nine threatened reptile species are endemic to recently created protected areas. Conclusions/Significance With a few alarming exceptions, the threatened endemic reptiles of Madagascar occur within the national network of protected areas, including some taxa that are only found in new protected areas. Threats to these species, however, operate inside and outside protected area boundaries. This analysis has identified priority sites for reptile conservation and completes the conservation assessment of terrestrial vertebrates in Madagascar which will facilitate conservation planning, monitoring and wise-decision making. In sharp contrast with the amphibians, there is significant reptile diversity and regional endemism in the southern and

  16. Molecular forensics in avian conservation: a DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs.

    PubMed

    Hopken, Matthew W; Orning, Elizabeth K; Young, Julie K; Piaggio, Antoinette J

    2016-01-07

    The greater sage-grouse (Centrocercus urophasianus) is a ground-nesting bird from the Northern Rocky Mountains and a species at risk of extinction in in multiple U.S. states and Canada. Herein we report results from a proof of concept that mitochondrial and nuclear DNAs from mammalian predator saliva could be non-invasively collected from depredated greater sage-grouse eggshells and carcasses and used for predator species identification. Molecular forensic approaches have been applied to identify predators from depredated remains as one strategy to better understand predator-prey dynamics and guide management strategies. This can aid conservation efforts by correctly identifying predators most likely to impact threatened and endangered species. DNA isolated from non-invasive samples around nesting sites (e.g. fecal or hair samples) is one method that can increase the success and accuracy of predator species identification when compared to relying on nest remains alone. Predator saliva DNA was collected from depredated eggshells and carcasses using swabs. We sequenced two partial fragments of two mitochondrial genes and obtained microsatellite genotypes using canid specific primers for species and individual identification, respectively. Using this multilocus approach we were able to identify predators, at least down to family, from 11 out of 14 nests (79%) and three out of seven carcasses (47%). Predators detected most frequently were canids (86%), while other taxa included rodents, a striped skunk, and cattle. We attempted to match the genotypes of individual coyotes obtained from eggshells and carcasses with those obtained from fecal samples and coyotes collected in the areas, but no genotype matches were found. Predation is a main cause of nest failure in ground-nesting birds and can impact reproduction and recruitment. To inform predator management for ground-nesting bird conservation, accurate identification of predator species is necessary. Considering

  17. Present Scenario of Long Non-Coding RNAs in Plants

    PubMed Central

    Bhatia, Garima; Goyal, Neetu; Sharma, Shailesh; Upadhyay, Santosh Kumar; Singh, Kashmir

    2017-01-01

    Small non-coding RNAs have been extensively studied in plants over the last decade. In contrast, genome-wide identification of plant long non-coding RNAs (lncRNAs) has recently gained momentum. LncRNAs are now being recognized as important players in gene regulation, and their potent regulatory roles are being studied comprehensively in eukaryotes. LncRNAs were first reported in humans in 1992. Since then, research in animals, particularly in humans, has rapidly progressed, and a vast amount of data has been generated, collected, and organized using computational approaches. Additionally, numerous studies have been conducted to understand the roles of these long RNA species in several diseases. However, the status of lncRNA investigation in plants lags behind that in animals (especially humans). Efforts are being made in this direction using computational tools and high-throughput sequencing technologies, such as the lncRNA microarray technique, RNA-sequencing (RNA-seq), RNA capture sequencing, (RNA CaptureSeq), etc. Given the current scenario, significant amounts of data have been produced regarding plant lncRNAs, and this amount is likely to increase in the subsequent years. In this review we have documented brief information about lncRNAs and their status of research in plants, along with the plant-specific resources/databases for information retrieval on lncRNAs. PMID:29657289

  18. A finite element code for modelling tracer transport in a non-isothermal two-phase flow system for CO2 geological storage characterization

    NASA Astrophysics Data System (ADS)

    Tong, F.; Niemi, A. P.; Yang, Z.; Fagerlund, F.; Licha, T.; Sauter, M.

    2011-12-01

    This paper presents a new finite element method (FEM) code for modeling tracer transport in a non-isothermal two-phase flow system. The main intended application is simulation of the movement of so-called novel tracers for the purpose of characterization of geologically stored CO2 and its phase partitioning and migration in deep saline formations. The governing equations are based on the conservation of mass and energy. Among the phenomena accounted for are liquid-phase flow, gas flow, heat transport and the movement of the novel tracers. The movement of tracers includes diffusion and the advection associated with the gas and liquid flow. The temperature, gas pressure, suction, concentration of tracer in liquid phase and concentration of tracer in gas phase are chosen as the five primary variables. Parameters such as the density, viscosity, thermal expansion coefficient are expressed in terms of the primary variables. The governing equations are discretized in space using the Galerkin finite element formulation, and are discretized in time by one-dimensional finite difference scheme. This leads to an ill-conditioned FEM equation that has many small entries along the diagonal of the non-symmetric coefficient matrix. In order to deal with the problem of non-symmetric ill-conditioned matrix equation, special techniques are introduced . Firstly, only nonzero elements of the matrix need to be stored. Secondly, it is avoided to directly solve the whole large matrix. Thirdly, a strategy has been used to keep the diversity of solution methods in the calculation process. Additionally, an efficient adaptive mesh technique is included in the code in order to track the wetting front. The code has been validated against several classical analytical solutions, and will be applied for simulating the CO2 injection experiment to be carried out at the Heletz site, Israel, as part of the EU FP7 project MUSTANG.

  19. LINC00152: A pivotal oncogenic long non-coding RNA in human cancers.

    PubMed

    Yu, Yang; Yang, Jian; Li, Quanpeng; Xu, Boming; Lian, Yifan; Miao, Lin

    2017-08-01

    In recent years, increasing evidence has shown the potential role of long non-coding RNAs (lncRNAs) in multiple cancers. Deregulation of lncRNAs was detected being closely associated with many kinds of tumours where they can act as a tumour suppressor or accelerator. LINC00152 was identified as an oncogene involved in many kinds of cancers, such as gastric cancer, hepatocellular carcinoma, colon cancer, gallbladder cancer and renal cell carcinoma. Moreover, inhibition of LINC00152 can suppress proliferation, migration and invasion of the cancer cells. Increasing evidence has showed that LINC00152 may act as a diagnostic and prognostic biomarker for the above-mentioned cancers. In our review, we summarize the recent research progress of the expression and role of LINC00152 in various kinds of cancers. © 2017 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd.

  20. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain

    PubMed Central

    Scheckel, Claudia; Drapeau, Elodie; Frias, Maria A; Park, Christopher Y; Fak, John; Zucker-Scharff, Ilana; Kou, Yan; Haroutunian, Vahram; Ma'ayan, Avi

    2016-01-01

    Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI: http://dx.doi.org/10.7554/eLife.10421.001 PMID:26894958

  1. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma.

    PubMed

    Cătană, Cristina- Sorina; Pichler, Martin; Giannelli, Gianluigi; Mader, Robert M; Berindan-Neagoe, Ioana

    2017-04-25

    In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.

  2. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma

    PubMed Central

    Cătană, Cristina- Sorina; Pichler, Martin; Giannelli, Gianluigi; Mader, Robert M.; Berindan-Neagoe, Ioana

    2017-01-01

    In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs. PMID:28392501

  3. A shifted Jacobi collocation algorithm for wave type equations with non-local conservation conditions

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.

    2014-09-01

    In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach

  4. Integrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of non-Hodgkin's lymphoma.

    PubMed

    Green, Michael R; Aya-Bonilla, Carlos; Gandhi, Maher K; Lea, Rod A; Wellwood, Jeremy; Wood, Peter; Marlton, Paula; Griffiths, Lyn R

    2011-05-01

    Recent developments in genomic technologies have resulted in increased understanding of pathogenic mechanisms and emphasized the importance of central survival pathways. Here, we use a novel bioinformatic based integrative genomic profiling approach to elucidate conserved mechanisms of lymphomagenesis in the three commonest non-Hodgkin's lymphoma (NHL) entities: diffuse large B-cell lymphoma, follicular lymphoma, and B-cell chronic lymphocytic leukemia. By integrating genome-wide DNA copy number analysis and transcriptome profiling of tumor cohorts, we identified genetic lesions present in each entity and highlighted their likely target genes. This revealed a significant enrichment of components of both the apoptosis pathway and the mitogen activated protein kinase pathway, including amplification of the MAP3K12 locus in all three entities, within the set of genes targeted by genetic alterations in these diseases. Furthermore, amplification of 12p13.33 was identified in all three entities and found to target the FOXM1 oncogene. Amplification of FOXM1 was subsequently found to be associated with an increased MYC oncogenic signaling signature, and siRNA-mediated knock-down of FOXM1 resulted in decreased MYC expression and induced G2 arrest. Together, these findings underscore genetic alteration of the MAPK and apoptosis pathways, and genetic amplification of FOXM1 as conserved mechanisms of lymphomagenesis in common NHL entities. Integrative genomic profiling identifies common central survival mechanisms and highlights them as attractive targets for directed therapy. 2011 Wiley-Liss, Inc.

  5. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation

    PubMed Central

    Bazzini, Ariel A; Johnstone, Timothy G; Christiano, Romain; Mackowiak, Sebastian D; Obermayer, Benedikt; Fleming, Elizabeth S; Vejnar, Charles E; Lee, Miler T; Rajewsky, Nikolaus; Walther, Tobias C; Giraldez, Antonio J

    2014-01-01

    Identification of the coding elements in the genome is a fundamental step to understanding the building blocks of living systems. Short peptides (< 100 aa) have emerged as important regulators of development and physiology, but their identification has been limited by their size. We have leveraged the periodicity of ribosome movement on the mRNA to define actively translated ORFs by ribosome footprinting. This approach identifies several hundred translated small ORFs in zebrafish and human. Computational prediction of small ORFs from codon conservation patterns corroborates and extends these findings and identifies conserved sequences in zebrafish and human, suggesting functional peptide products (micropeptides). These results identify micropeptide-encoding genes in vertebrates, providing an entry point to define their function in vivo. PMID:24705786

  6. Cerulean Warbler Technical Group: Coordinating international research and conservation

    USGS Publications Warehouse

    Dawson, D.K.; Wigley, T.B.; Keyser, P.D.

    2012-01-01

    Effective conservation for species of concern requires interchange and collaboration among conservationists and stakeholders. The Cerulean Warbler Technical Group (CWTG) is a consortium of biologists and managers from government agencies, non-governmental organizations, academia, and industry, who are dedicated to finding pro-active, science-based solutions for conservation of the Cerulean Warbler (Setophaga cerulea). Formed in the United States in 2001, CWTG’s scope soon broadened to address the species’ ecology and conservation on both the breeding and non-breeding ranges, in partnership with biologists from South and Central America. In 2004, CWTG launched the Cerulean Warbler Conservation Initiative, a set of activities aimed at addressing information and conservation needs for the species. These include (1) studies in the core breeding range to assess Cerulean Warbler response to forest management practices and to identify mined lands that could be reforested to benefit the species, (2) ecological and demographic studies on the winter range, and (3) surveys of Cerulean Warbler distribution on the breeding and winter ranges and during migration. A rangewide conservation action plan has been completed, along with a more detailed conservation plan for the non-breeding range. CWTG and partners now move forward with on-the-ground conservation, while still addressing unmet information needs.

  7. Long Non-Coding RNAs: A Novel Paradigm for Toxicology.

    PubMed

    Dempsey, Joseph L; Cui, Julia Yue

    2017-01-01

    Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer's disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e

  8. Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human

    PubMed Central

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777

  9. A method of non-contact reading code based on computer vision

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan

    2018-03-01

    With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.

  10. Comprehensive reconstruction and visualization of non-coding regulatory networks in human.

    PubMed

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  11. A Non Local Electron Heat Transport Model for Multi-Dimensional Fluid Codes

    NASA Astrophysics Data System (ADS)

    Schurtz, Guy

    2000-10-01

    Apparent inhibition of thermal heat flow is one of the most ancient problems in computational Inertial Fusion and flux-limited Spitzer-Harm conduction has been a mainstay in multi-dimensional hydrodynamic codes for more than 25 years. Theoretical investigation of the problem indicates that heat transport in laser produced plasmas has to be considered as a non local process. Various authors contributed to the non local theory and proposed convolution formulas designed for practical implementation in one-dimensional fluid codes. Though the theory, confirmed by kinetic calculations, actually predicts a reduced heat flux, it fails to explain the very small limiters required in two-dimensional simulations. Fokker-Planck simulations by Epperlein, Rickard and Bell [PRL 61, 2453 (1988)] demonstrated that non local effects could lead to a strong reduction of heat flow in two dimensions, even in situations where a one-dimensional analysis suggests that the heat flow is nearly classical. We developed at CEA/DAM a non local electron heat transport model suitable for implementation in our two-dimensional radiation hydrodynamic code FCI2. This model may be envisionned as the first step of an iterative solution of the Fokker-Planck equations; it takes the mathematical form of multigroup diffusion equations, the solution of which yields both the heat flux and the departure of the electron distribution function to the Maxwellian. Although direct implementation of the model is straightforward, formal solutions of it can be expressed in convolution form, exhibiting a three-dimensional tensor propagator. Reduction to one dimension retrieves the original formula of Luciani, Mora and Virmont [PRL 51, 1664 (1983)]. Intense magnetic fields may be generated by thermal effects in laser targets; these fields, as well as non local effects, will inhibit electron conduction. We present simulations where both effects are taken into account and shortly discuss the coupling strategy between them.

  12. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids

    PubMed Central

    Fernandez-Mercado, Marta; Manterola, Lorea; Larrea, Erika; Goicoechea, Ibai; Arestin, María; Armesto, María; Otaegui, David; Lawrie, Charles H

    2015-01-01

    The gold standard for cancer diagnosis remains the histological examination of affected tissue, obtained either by surgical excision, or radiologically guided biopsy. Such procedures however are expensive, not without risk to the patient, and require consistent evaluation by expert pathologists. Consequently, the search for non-invasive tools for the diagnosis and management of cancer has led to great interest in the field of circulating nucleic acids in plasma and serum. An additional benefit of blood-based testing is the ability to carry out screening and repeat sampling on patients undergoing therapy, or monitoring disease progression allowing for the development of a personalized approach to cancer patient management. Despite having been discovered over 60 years ago, the clear clinical potential of circulating nucleic acids, with the notable exception of prenatal diagnostic testing, has yet to translate into the clinic. The recent discovery of non-coding (nc) RNA (in particular micro(mi)RNAs) in the blood has provided fresh impetuous for the field. In this review, we discuss the potential of the circulating transcriptome (coding and ncRNA), as novel cancer biomarkers, the controversy surrounding their origin and biology, and most importantly the hurdles that remain to be overcome if they are really to become part of future clinical practice. PMID:26119132

  13. Non-coding functions of alternative pre-mRNA splicing in development.

    PubMed

    Mockenhaupt, Stefan; Makeyev, Eugene V

    2015-12-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism.

    PubMed

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-12-04

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.

  15. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism

    PubMed Central

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-01-01

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed. PMID:26690121

  16. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawls, G.; Newhouse, N.; Rana, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPamore » (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.« less

  17. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally

  18. Identification and role of regulatory non-coding RNAs in Listeria monocytogenes.

    PubMed

    Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten

    2011-01-01

    Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.

  19. Validation of an International Classification of Diseases, Ninth Revision Code Algorithm for Identifying Chiari Malformation Type 1 Surgery in Adults.

    PubMed

    Greenberg, Jacob K; Ladner, Travis R; Olsen, Margaret A; Shannon, Chevis N; Liu, Jingxia; Yarbrough, Chester K; Piccirillo, Jay F; Wellons, John C; Smyth, Matthew D; Park, Tae Sung; Limbrick, David D

    2015-08-01

    The use of administrative billing data may enable large-scale assessments of treatment outcomes for Chiari Malformation type I (CM-1). However, to utilize such data sets, validated International Classification of Diseases, Ninth Revision (ICD-9-CM) code algorithms for identifying CM-1 surgery are needed. To validate 2 ICD-9-CM code algorithms identifying patients undergoing CM-1 decompression surgery. We retrospectively analyzed the validity of 2 ICD-9-CM code algorithms for identifying adult CM-1 decompression surgery performed at 2 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-1), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression, or laminectomy). Algorithm 2 restricted this group to patients with a primary diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated. Among 340 first-time admissions identified by Algorithm 1, the overall PPV for CM-1 decompression was 65%. Among the 214 admissions identified by Algorithm 2, the overall PPV was 99.5%. The PPV for Algorithm 1 was lower in the Vanderbilt (59%) cohort, males (40%), and patients treated between 2009 and 2013 (57%), whereas the PPV of Algorithm 2 remained high (≥99%) across subgroups. The sensitivity of Algorithms 1 (86%) and 2 (83%) were above 75% in all subgroups. ICD-9-CM code Algorithm 2 has excellent PPV and good sensitivity to identify adult CM-1 decompression surgery. These results lay the foundation for studying CM-1 treatment outcomes by using large administrative databases.

  20. FPGA implementation of concatenated non-binary QC-LDPC codes for high-speed optical transport.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2015-06-01

    In this paper, we propose a soft-decision-based FEC scheme that is the concatenation of a non-binary LDPC code and hard-decision FEC code. The proposed NB-LDPC + RS with overhead of 27.06% provides a superior NCG of 11.9dB at a post-FEC BER of 10-15. As a result, the proposed NB-LDPC codes represent the strong FEC candidate of soft-decision FEC for beyond 100Gb/s optical transmission systems.

  1. One-dimensional thermohydraulic code THESEUS and its application to chilldown process simulation in two-phase hydrogen flows

    NASA Astrophysics Data System (ADS)

    Papadimitriou, P.; Skorek, T.

    THESUS is a thermohydraulic code for the calculation of steady state and transient processes of two-phase cryogenic flows. The physical model is based on four conservation equations with separate liquid and gas phase mass conservation equations. The thermohydraulic non-equilibrium is calculated by means of evaporation and condensation models. The mechanical non-equilibrium is modeled by a full-range drift-flux model. Also heat conduction in solid structures and heat exchange for the full spectrum of heat transfer regimes can be simulated. Test analyses of two-channel chilldown experiments and comparisons with the measured data have been performed.

  2. LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers.

    PubMed

    Thin, Khaing Zar; Liu, Xuefang; Feng, Xiaobo; Raveendran, Sudheesh; Tu, Jian Cheng

    2018-06-01

    Long noncoding RNAs (lncRNA) are a type of noncoding RNA that comprise of longer than 200 nucleotides sequences. They can regulate chromosome structure, gene expression and play an essential role in the pathophysiology of human diseases, especially in tumorigenesis and progression. Nowadays, they are being targeted as potential biomarkers for various cancer types. And many research studies have proven that lncRNAs might bring a new era to cancer diagnosis and support treatment management. The purpose of this review was to inspect the molecular mechanism and clinical significance of long non-coding RNA- differentiation antagonizing nonprotein coding RNA(DANCR) in various types of human cancers. In this review, we summarize and figure out recent research studies concerning the expression and biological mechanisms of lncRNA-DANCR in tumour development. The related studies were obtained through a systematic search of PubMed, Embase and Cochrane Library. Long non-coding RNAs-DANCR is a valuable cancer-related lncRNA that its dysregulated expression was found in a variety of malignancies, including hepatocellular carcinoma, breast cancer, glioma, colorectal cancer, gastric cancer, and lung cancer. The aberrant expressions of DANCR have been shown to contribute to proliferation, migration and invasion of cancer cells. Long non-coding RNAs-DANCR likely serves as a useful disease biomarker or therapeutic cancer target. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.

    PubMed

    Toffano-Nioche, Claire; Luo, Yufei; Kuchly, Claire; Wallon, Claire; Steinbach, Delphine; Zytnicki, Matthias; Jacq, Annick; Gautheret, Daniel

    2013-09-01

    RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Delineating slowly and rapidly evolving fractions of the Drosophila genome.

    PubMed

    Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S

    2008-05-01

    Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.

  5. Non-coding glucometers among pediatric patients with diabetes: looking for the target population and an accuracy evaluation of no-coding personal glucometer.

    PubMed

    Fendler, Wojciech; Hogendorf, Anna; Szadkowska, Agnieszka; Młynarski, Wojciech

    2011-01-01

    Self-monitoring of blood glucose (SMBG) is one of the cornerstones of diabetes management. To evaluate the potential for miscoding of a personal glucometer, to define a target population among pediatric patients with diabetes for a non-coding glucometer and the accuracy of the Contour TS non-coding system. Potential for miscoding during self-monitoring of blood glucose was evaluated by means of an anonymous questionnaire, with worst and best case scenarios evaluated depending on the responses pattern. Testing of the Contour TS system was performed according to guidelines set by the national committee for clinical laboratory standards. Estimated frequency of individuals prone to non-coding ranged from 68.21% (95% 60.70- 75.72%) to 7.95% (95%CI 3.86-12.31%) for the worse and best case scenarios respectively. Factors associated with increased likelihood of non-coding were: a smaller number of tests per day, a greater number of individuals involved in testing and self-testing by the patient with diabetes. The Contour TS device showed intra- and inter-assay accuracy -95%, linear association with laboratory measurements (R2=0.99, p <0.0001) and consistent, but small bias of -1.12% (95% Confidence Interval -3.27 to 1.02%). Clarke error grid analysis showed 4% of values within the benign error zone (B) with the other measurements yielding an acceptably accurate result (zone A). The Contour TS system showed sufficient accuracy to be safely used in monitoring of pediatric diabetic patients. Patients from families with a high throughput of test-strips or multiple individuals involved in SMBG using the same meter are candidates for clinical use of such devices due to an increased risk of calibration errors.

  6. A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants.

    PubMed

    Favre, Patrick; Bapaume, Laure; Bossolini, Eligio; Delorenzi, Mauro; Falquet, Laurent; Reinhardt, Didier

    2014-12-03

    Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic

  7. Extension of CE/SE method to non-equilibrium dissociating flows

    NASA Astrophysics Data System (ADS)

    Wen, C. Y.; Saldivar Massimi, H.; Shen, H.

    2018-03-01

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  8. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas.

    PubMed

    Veach, Victoria; Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  9. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas

    PubMed Central

    Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  10. COME: a robust coding potential calculation tool for lncRNA identification and characterization based on multiple features.

    PubMed

    Hu, Long; Xu, Zhiyu; Hu, Boqin; Lu, Zhi John

    2017-01-09

    Recent genomic studies suggest that novel long non-coding RNAs (lncRNAs) are specifically expressed and far outnumber annotated lncRNA sequences. To identify and characterize novel lncRNAs in RNA sequencing data from new samples, we have developed COME, a coding potential calculation tool based on multiple features. It integrates multiple sequence-derived and experiment-based features using a decompose-compose method, which makes it more accurate and robust than other well-known tools. We also showed that COME was able to substantially improve the consistency of predication results from other coding potential calculators. Moreover, COME annotates and characterizes each predicted lncRNA transcript with multiple lines of supporting evidence, which are not provided by other tools. Remarkably, we found that one subgroup of lncRNAs classified by such supporting features (i.e. conserved local RNA secondary structure) was highly enriched in a well-validated database (lncRNAdb). We further found that the conserved structural domains on lncRNAs had better chance than other RNA regions to interact with RNA binding proteins, based on the recent eCLIP-seq data in human, indicating their potential regulatory roles. Overall, we present COME as an accurate, robust and multiple-feature supported method for the identification and characterization of novel lncRNAs. The software implementation is available at https://github.com/lulab/COME. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Opuntia in México: Identifying Priority Areas for Conserving Biodiversity in a Multi-Use Landscape

    PubMed Central

    Illoldi-Rangel, Patricia; Ciarleglio, Michael; Sheinvar, Leia; Linaje, Miguel; Sánchez-Cordero, Victor; Sarkar, Sahotra

    2012-01-01

    Background México is one of the world's centers of species diversity (richness) for Opuntia cacti. Yet, in spite of their economic and ecological importance, Opuntia species remain poorly studied and protected in México. Many of the species are sparsely but widely distributed across the landscape and are subject to a variety of human uses, so devising implementable conservation plans for them presents formidable difficulties. Multi–criteria analysis can be used to design a spatially coherent conservation area network while permitting sustainable human usage. Methods and Findings Species distribution models were created for 60 Opuntia species using MaxEnt. Targets of representation within conservation area networks were assigned at 100% for the geographically rarest species and 10% for the most common ones. Three different conservation plans were developed to represent the species within these networks using total area, shape, and connectivity as relevant criteria. Multi–criteria analysis and a metaheuristic adaptive tabu search algorithm were used to search for optimal solutions. The plans were built on the existing protected areas of México and prioritized additional areas for management for the persistence of Opuntia species. All plans required around one–third of México's total area to be prioritized for attention for Opuntia conservation, underscoring the implausibility of Opuntia conservation through traditional land reservation. Tabu search turned out to be both computationally tractable and easily implementable for search problems of this kind. Conclusions Opuntia conservation in México require the management of large areas of land for multiple uses. The multi-criteria analyses identified priority areas and organized them in large contiguous blocks that can be effectively managed. A high level of connectivity was established among the prioritized areas resulting in the enhancement of possible modes of plant dispersal as well as only a small number

  12. Decoding the non-coding genome: elucidating genetic risk outside the coding genome.

    PubMed

    Barr, C L; Misener, V L

    2016-01-01

    Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Landowner and practitioner perspectives on private land conservation programs

    USGS Publications Warehouse

    Lute, Michelle L.; Gillespie, Caitlyn R.; Fontaine, Joseph J.; Martin, Dustin R.

    2018-01-01

    Efforts to reverse declines in native grasslands benefit from agricultural policies that encourage private land conservation. The U.S. Department of Agriculture’s Conservation Reserve Program (CRP) improved conservation across landscapes but enrollment has declined. We used sequential exploratory mixed methods to compare landowner and conservation practitioners’ perceptions, evaluate perceived benefits, and identify potential improvements to CRP. Focus groups of practitioners informed a quantitative survey of landowners who had properties >160 total acres in Nebraska. Results suggest potential misalignment in perceptions between practitioners and landowners. Practitioners were concerned that conservation, especially of wildlife, was secondary to profit. But the majority of landowners valued CRP-related ecosystem services, including native pollinators. Practitioners posited that younger landowners were primarily profit motivated, but CRP enrollment did not differ by demographics. Practitioners and landowners identified rule complexity as a major challenge and practitioner–landowner relationships as critical to success. Findings suggest that practitioners may underestimate non-economic motivations and illuminate opportunities to encourage private land conservation.

  14. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    PubMed

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  15. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

    PubMed Central

    2011-01-01

    Background Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. Results In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. Conclusion Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future. PMID:21473757

  16. Long non-coding RNA XIST promotes cell growth by regulating miR-139-5p/PDK1/AKT axis in hepatocellular carcinoma.

    PubMed

    Mo, Yichao; Lu, Yaoyong; Wang, Peng; Huang, Simin; He, Longguang; Li, Dasheng; Li, Fuliang; Huang, Junwei; Lin, Xiaoxia; Li, Xueru; Che, Siyao; Chen, Qinshou

    2017-02-01

    Abnormal expression of long non-coding RNA often contributes to unrestricted growth of cancer cells. Long non-coding RNA XIST expression is upregulated in several cancers; however, its modulatory mechanisms have not been reported in hepatocellular carcinoma. In this study, we found that XIST expression was significantly increased in hepatocellular carcinoma tissues and cell lines. XIST promoted cell cycle progression from the G1 phase to the S phase and protected cells from apoptosis, which contributed to hepatocellular carcinoma cell growth. In addition, we revealed that there was reciprocal repression between XIST and miR-139-5p. PDK1 was identified as a direct target of miR-139-5p. We proposed that XIST was responsible for hepatocellular carcinoma cell proliferation, and XIST exerted its function through the miR-139-5p/PDK1 axis.

  17. Energy Codes at a Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Pamala C.; Richman, Eric E.

    2008-09-01

    Feeling dim from energy code confusion? Read on to give your inspections a charge. The U.S. Department of Energy’s Building Energy Codes Program addresses hundreds of inquiries from the energy codes community every year. This article offers clarification for topics of confusion submitted to BECP Technical Support of interest to electrical inspectors, focusing on the residential and commercial energy code requirements based on the most recently published 2006 International Energy Conservation Code® and ANSI/ASHRAE/IESNA1 Standard 90.1-2004.

  18. A methodological approach to identify agro-biodiversity hotspots for priority in situ conservation of plant genetic resources

    PubMed Central

    Pacicco, Luca; Bodesmo, Mara; Torricelli, Renzo

    2018-01-01

    Agro-biodiversity is seriously threatened worldwide and strategies to preserve it are dramatically required. We propose here a methodological approach aimed to identify areas with a high level of agro-biodiversity in which to set or enhance in situ conservation of plant genetic resources. These areas are identified using three criteria: Presence of Landrace diversity, Presence of wild species and Agro-ecosystem ecological diversity. A Restrictive and an Additive prioritization strategy has been applied on the entire Italian territory and has resulted in establishing nationwide 53 and 197 agro-biodiversity hotspots respectively. At present the strategies can easily be applied at a European level and can be helpful to develop conservation strategies everywhere. PMID:29856765

  19. The reliability of diagnostic coding and laboratory data to identify tuberculosis and nontuberculous mycobacterial disease among rheumatoid arthritis patients using anti-tumor necrosis factor therapy.

    PubMed

    Winthrop, Kevin L; Baxter, Roger; Liu, Liyan; McFarland, Bentson; Austin, Donald; Varley, Cara; Radcliffe, LeAnn; Suhler, Eric; Choi, Dongsoek; Herrinton, Lisa J

    2011-03-01

    Anti-tumor necrosis factor-alpha (anti-TNF) therapies are associated with severe mycobacterial infections in rheumatoid arthritis patients. We developed and validated electronic record search algorithms for these serious infections. The study used electronic clinical, microbiologic, and pharmacy records from Kaiser Permanente Northern California (KPNC) and the Portland Veterans Affairs Medical Center (PVAMC). We identified suspect tuberculosis and nontuberculous mycobacteria (NTM) cases using inpatient and outpatient diagnostic codes, culture results, and anti-tuberculous medication dispensing. We manually reviewed records to validate our case-finding algorithms. We identified 64 tuberculosis and 367 NTM potential cases, respectively. For tuberculosis, diagnostic code positive predictive value (PPV) was 54% at KPNC and 9% at PVAMC. Adding medication dispensings improved these to 87% and 46%, respectively. Positive tuberculosis cultures had a PPV of 100% with sensitivities of 79% (KPNC) and 55% (PVAMC). For NTM, the PPV of diagnostic codes was 91% (KPNC) and 76% (PVAMC). At KPNC, ≥ 1 positive NTM culture was sensitive (100%) and specific (PPV, 74%) if non-pathogenic species were excluded; at PVAMC, ≥1 positive NTM culture identified 76% of cases with PPV of 41%. Application of the American Thoracic Society NTM microbiology criteria yielded the highest PPV (100% KPNC, 78% PVAMC). The sensitivity and predictive value of electronic microbiologic data for tuberculosis and NTM infections is generally high, but varies with different facilities or models of care. Unlike NTM, tuberculosis diagnostic codes have poor PPV, and in the absence of laboratory data, should be combined with anti-tuberculous therapy dispensings for pharmacoepidemiologic research. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Integrating the nursing management minimum data set into the logical observation identifier names and codes system.

    PubMed

    Subramanian, Amarnath; Westra, Bonnie; Matney, Susan; Wilson, Patricia S; Delaney, Connie W; Huff, Stan; Huff, Stanley M; Huber, Diane

    2008-11-06

    This poster describes the process used to integrate the Nursing Management Minimum Data Set (NMMDS), an instrument to measure the nursing context of care, into the Logical Observation Identifier Names and Codes (LOINC) system to facilitate contextualization of quality measures. Integration of the first three of 18 elements resulted in 48 new codes including five panels. The LOINC Clinical Committee has approved the presented mapping for their next release.

  1. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutionsmore » of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.« less

  2. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.

    PubMed

    Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli

    2017-11-01

    As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at

  3. Non-conserved magnetization operator and 'fire-and-ice' ground states in the Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Torrico, Jordana; Ohanyan, Vadim; Rojas, Onofre

    2018-05-01

    We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped plaquette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain. We analyze the effects of non-conserving magnetization as well as the effects of the appearance of negative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromagnetic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize the "half-fire-half-ice" state introduced in reference Yin et al. (2015). The corresponding zero-temperature ground state phase diagrams are presented.

  4. Using Chief Complaint in Addition to Diagnosis Codes to Identify Falls in the Emergency Department.

    PubMed

    Patterson, Brian W; Smith, Maureen A; Repplinger, Michael D; Pulia, Michael S; Svenson, James E; Kim, Michael K; Shah, Manish N

    2017-09-01

    To compare incidence of falls in an emergency department (ED) cohort using a traditional International Classification of Diseases, Ninth Revision (ICD-9) code-based scheme and an expanded definition that included chief complaint information and to examine the clinical characteristics of visits "missed" in the ICD-9-based scheme. Retrospective electronic record review. Academic medical center ED. Individuals aged 65 and older seen in the ED between January 1, 2013, and September 30, 2015. Two fall definitions were applied (individually and together) to the cohort: an ICD-9-based definition and a chief complaint definition. Admission rates and 30-day mortality (per encounter) were measured for each definition. Twenty-three thousand eight hundred eighty older adult visits occurred during the study period. Using the most-inclusive definition (ICD-9 code or chief complaint indicating a fall), 4,363 visits (18%) were fall related. Of these visits, 3,506 (80%) met the ICD-9 definition for a fall-related visit, and 2,664 (61%) met the chief complaint definition. Of visits meeting the chief complaint definition, 857 (19.6%) were missed when applying the ICD-9 definition alone. Encounters missed using the ICD-9 definition were less likely to lead to an admission (42.9%, 95% confidence interval (CI) = 39.7-46.3%) than those identified (54.4%, 95% CI = 52.7-56.0%). Identifying individuals in the ED who have fallen based on diagnosis codes underestimates the true burden of falls. Individuals missed according to the code-based definition were less likely to have been admitted than those who were captured. These findings call attention to the value of using chief complaint information to identify individuals who have fallen in the ED-for research, clinical care, or policy reasons. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  5. [Non-identified antinuclear antibodies in systemic sclerosis].

    PubMed

    Margot, A; Smet, J; Soyfoo, S

    Systemic sclerosis is a rare auto immune disease characterized by a local or diffuse skin condition and a variable visceral impairment. Anti nuclear antibodies (ANA) can be found in 95 % of patients. The most frequent are the anti topoisomerase 1 or anti Scl 70 and the anti-centromeres. Other antibodies have been reported but they are not conventionally sought in clinical practice. They are referred to as " non identified " ANA. To seek the " non identified " antibodies in patients with scleroderma at Erasme Hospital, to assess their prevalence in this cohort and to correlate their presence with the clinical characteristics. 89 patients out of the cohort of Erasme hospital patients with scleroderma have been looked at. Their clinical and biological data have been identified and a detection of antibodies have been performed by first an immonudot technique and second an EliA technique. 17 out of the 89 patients of our cohort had " non identified " ANA. Among them, antibodies in 11 patients have been identified by the immunodot, among which 7 anti-PmScl 75 and/or 100,3 RNA polymerase III and 1 antifibrillarin. The EliA technique identif ied antibodies in 10 patients among which 5 anti- PmScl, 2 anti RNA polymerase, 2 anti-fibrillarin and 1 anti-centromere. Auto antibodies other than the antitopoisomerase and anti-centromere have been found in patients with scleroderma in our cohort. Certain links exist between the presence of a given antibody and clinical features. We still have to define whether there exist other auto antibodies of which we still are unaware since in some patient no antibodies were detected.

  6. Solving Mendelian Mysteries: The Non-coding Genome May Hold the Key.

    PubMed

    Valente, Enza Maria; Bhatia, Kailash P

    2018-02-22

    Despite revolutionary advances in sequencing approaches, many mendelian disorders have remained unexplained. In this issue of Cell, Aneichyk et al. combine genomic and cell-type-specific transcriptomic data to causally link a non-coding mutation in the ubiquitous TAF1 gene to X-linked dystonia-parkinsonism. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility.

    PubMed

    Song, Jiang-Hua; Cao, Jia-Shu; Wang, Cheng-Gang

    2013-01-01

    KEY MESSAGE : BcMF11 as a non-coding RNA gene has an essential role in pollen development, and might be useful for regulating the pollen fertility of crops by antisense RNA technology. We previously identified a 828-bp full-length cDNA of BcMF11, a novel pollen-specific non-coding mRNA-like gene from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). However, little information is known about the function of BcMF11 in pollen development. To investigate its exact biological roles in pollen development, the BcMF11 cDNA was antisense inhibited in transgenic Chinese cabbage under the control of a tapetum-specific promoter BcA9 and a constitutive promoter CaMV 35S. Antisense RNA transgenic plants displayed decreasing expression of BcMF11 and showed distinct morphological defects. Pollen germination test in vitro and in vivo of the transgenic plants suggested that inhibition of BcMF11 decreased pollen germination efficiency and delayed the pollen tubes' extension in the style. Under scanning electron microscopy, many shrunken and collapsed pollen grains were detected in the antisense BcMF11 transgenic Chinese cabbage. Further cytological observation revealed abnormal pollen development process in transgenic plants, including delayed degradation of tapetum, asynchronous separation of microspore, and aborted development of pollen grain. These results suggest that BcMF11, as a non-coding RNA, plays an essential role in pollen development and male fertility.

  8. Long Non-Coding RNA CASC2 Improves Diabetic Nephropathy by Inhibiting JNK Pathway.

    PubMed

    Yang, Huihui; Kan, Quan E; Su, Yong; Man, Hua

    2018-06-11

    It's known that long non-coding RNA CASC2 overexpression inhibit the JNK pathway in some disease models, while JNK pathway activation exacerbates diabetic nephropathy. Therefore we speculate that long non-coding RNA CASC2 can improve diabetic nephropathy by inhibiting JNK pathway. Thus, our study was carried out to investigate the involvement of CASC2 in diabetic nephropathy. We found that serum level of CASC2 was significantly lower in diabetic nephropathy patients than in normal people, and serum level of CASC2 showed no significant correlations with age, gender, alcohol consumption and smoking habits, but was correlated with course of disease. ROC curve analysis showed that serum level of CASC2 could be used to accurately predict diabetic nephropathy. Diabetes mellitus has many complications. This study also included a series of complications of diabetes, such as diabetic retinopathy, diabetic ketoacidosis, diabetic foot infections and diabetic cardiopathy, while serum level of CASC2 was specifically reduced in diabetic nephropathy. CASC2 expression level decreased, while JNK1 phosphorylation level increased in mouse podocyte cells treated with high glucose. CASC2 overexpression inhibited apoptosis of podocyte cells and reduced phosphorylation level of JNK1. We conclude that long non-coding RNA CASC2 may improve diabetic nephropathy by inhibiting JNK pathway. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Allele frequencies of variants in ultra conserved elements identify selective pressure on transcription factor binding.

    PubMed

    Silla, Toomas; Kepp, Katrin; Tai, E Shyong; Goh, Liang; Davila, Sonia; Catela Ivkovic, Tina; Calin, George A; Voorhoeve, P Mathijs

    2014-01-01

    Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAF<0.5%) of which 75% is not present in dbSNP137. UCEs association studies for complex human traits can use this information to model expected background variation and thus necessary power for association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that prevalent UCE variants (MAF>5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level.

  10. Conservation genetics and geographic patterns of genetic variation of the endangered officinal herb Fritillaria pallidiflora

    Treesearch

    Zhihao Su; Borong Pan; Stewart C. Sanderson; Xiaolong Jiang; Mingli Zhang

    2015-01-01

    Fritillaria pallidiflora is an endangered officinal herb distributed in the Tianshan Mountains of northwestern China. We examined its phylogeography to study evolutionary processes and suggest implications for conservation. Six haplotypes were detected based on three chloroplast non-coding spacers (psbA-trnH, rps16, and trnS-trnG); genetic variation mainly occurred...

  11. Stabilizing and destabilizing effects of damping in non-conservative systems: Some new results

    NASA Astrophysics Data System (ADS)

    Abdullatif, Mahmoud; Mukherjee, Ranjan; Hellum, Aren

    2018-01-01

    Previous work has amply demonstrated that non-conservative systems can be made unstable by the application of damping. Systems with two neutrally-stable damping levels, whereby the system initially gains stability but later loses stability as the level of damping is increased, have also been observed. The phenomenon of three damping-induced stability transitions has not been reported in the literature. Here we show that the addition of damping can cause non-conservative systems to become stable, then unstable, then stable again at the same value of the non-conservative forcing variable. This combination of stability transitions is found to exist for several example systems, including linkages with follower end forces and fluid-conveying pipes. Another interesting observation is that a given system can exhibit different forms of stability transitions in different regions of its parameter space. In a particular example, the neutral stability curves corresponding to two different modes are observed to intersect, such that the boundary separating the stable and unstable regions is piecewise continuous. This observation requires that the accepted definitions of "stabilizing" and "destabilizing" roles of damping be revised. All of these stability transition behaviors were found by applying the Routh-Hurwitz procedure, whereby the traditional procedure is first applied to the characteristic polynomial of the system, and then again to guarantee the existence of a second-order auxiliary polynomial in the Routh array. This procedure is developed in the context of examples, each of which concerns a classical apparatus who dynamics are more interesting than previously believed.

  12. Allelic expression mapping across cellular lineages to establish impact of non-coding SNPs

    PubMed Central

    Adoue, Veronique; Schiavi, Alicia; Light, Nicholas; Almlöf, Jonas Carlsson; Lundmark, Per; Ge, Bing; Kwan, Tony; Caron, Maxime; Rönnblom, Lars; Wang, Chuan; Chen, Shu-Huang; Goodall, Alison H; Cambien, Francois; Deloukas, Panos; Ouwehand, Willem H; Syvänen, Ann-Christine; Pastinen, Tomi

    2014-01-01

    Most complex disease-associated genetic variants are located in non-coding regions and are therefore thought to be regulatory in nature. Association mapping of differential allelic expression (AE) is a powerful method to identify SNPs with direct cis-regulatory impact (cis-rSNPs). We used AE mapping to identify cis-rSNPs regulating gene expression in 55 and 63 HapMap lymphoblastoid cell lines from a Caucasian and an African population, respectively, 70 fibroblast cell lines, and 188 purified monocyte samples and found 40–60% of these cis-rSNPs to be shared across cell types. We uncover a new class of cis-rSNPs, which disrupt footprint-derived de novo motifs that are predominantly bound by repressive factors and are implicated in disease susceptibility through overlaps with GWAS SNPs. Finally, we provide the proof-of-principle for a new approach for genome-wide functional validation of transcription factor–SNP interactions. By perturbing NFκB action in lymphoblasts, we identified 489 cis-regulated transcripts with altered AE after NFκB perturbation. Altogether, we perform a comprehensive analysis of cis-variation in four cell populations and provide new tools for the identification of functional variants associated to complex diseases. PMID:25326100

  13. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.

    PubMed

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-06-15

    Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available

  14. Identification of long non-coding RNA and mRNA expression in βΒ2-crystallin knockout mice.

    PubMed

    Jia, Yin; Xiong, Kang; Ren, Han-Xiao; Li, Wen-Jie

    2018-05-01

    βΒ2-crystallin (CRYBB2) is expressed at an increased level in the postnatal lens cortex and is associated with cataracts. Improved understanding of the underlying biology of cataracts is likely to be critical for the development of early detection strategies and new therapeutics. The present study aimed to identify long non-coding RNAs (lncRNAs) and mRNAs associated with CRYBB2 knockdown (KO)-induced cataracts. RNAs from 3 non-treated mice and 3 CRYBB2 KO mice were analyzed using the Affymetrix GeneChip Mouse Gene 2.0 ST array. A total of 149 lncRNAs and 803 mRNAs were identified to have upregulated expression, including Snora73b, Klk1b22 and Rnu3a, while the expression levels of 180 lncRNAs and 732 mRNAs were downregulated in CRYBB2 KO mice, including Snord82, Snhg9 and Foxn3. This lncRNA and mRNA expression profile of mice with CRYBB2 KO provides a basis for studying the genetic mechanisms of cataract progression.

  15. Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the PHANTOM SPH code

    NASA Astrophysics Data System (ADS)

    Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.

    2018-06-01

    We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.

  16. Flavivirus RNAi suppression: decoding non-coding RNA.

    PubMed

    Pijlman, Gorben P

    2014-08-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The expression profiling and ontology analysis of non-coding RNAs in dexamethasone induced steatosis in hepatoma cell.

    PubMed

    Liu, Fengqiong; Gong, Ruijie; Lv, Xiaofei; Li, Huangyuan

    2018-04-15

    Increasing amounts of evidence have indicated that non-coding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contribution of ncRNAs, especially long non-coding RNAs (lncRNAs) to drug induced steatosis remain largely unknown. The aim of this study is to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of drug induced steatosis. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in dexamethasone treated HepG2 cell as well as control cell. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in dexamethasone induced steatosis. Compared with control HepG2 cell, 652 lncRNAs (528 up-regulated and 124 down-regulated), 655 mRNAs (527 upregulated and 128 down-regulated) and 114 miRNAs (55 miRNAs up-regulated and 59 down-regulated) were differentially expressed in dexamethasone treated HepG2 cell. Pathway analysis showed that the fatty acid biosynthesis, insulin resistance, PPAR signaling pathway, regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, steroid hormone biosynthesis signaling pathways had a close relationship with dexamethasone induced steatosis. 10 highly dysregulated mRNAs and 20 miRNAs, which are closely related to lipid metabolism, were identified and validated by PCR, which followed by ceRNA analysis. CeRNA network analysis identified 5 lipid metabolism related genes, including CYP7A1, CYP11A1, PDK4, ABHD5, ACSL1. It also identified 12 miRNAs (miR-23a-3p, miR-519d-3p, miR-4328, miR-15b-5p etc.) and 177 lncRNAs (ENST00000508884, ENST00000608794, ENST00000568457 etc.). Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in dexamethasone induced steatosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effective use patterns for HPPD herbicides in non-transgenic conservation tillage sweet corn.

    USDA-ARS?s Scientific Manuscript database

    Weed control is still a challenge in non-transgenic sweet corn due to the suite of weeds present (including wild proso millet and triazine resistant species) and conservation tillage systems that are evolving to meet challenges of environmental stewardship and increasing input costs, mainly the risi...

  19. Non-conservation of global charges in the Brane Universe and baryogenesis

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gabadadze, Gregory

    1999-08-01

    We argue that global charges, such as baryon or lepton number, are not conserved in theories with the Standard Model fields localized on the brane which propagates in higher-dimensional space-time. The global-charge non-conservation is due to quantum fluctuations of the brane surface. These fluctuations create ``baby branes'' that can capture some global charges and carry them away into the bulk of higher-dimensional space. Such processes are exponentially suppressed at low-energies, but can be significant at high enough temperatures or energies. These effects can lead to a new, intrinsically high-dimensional mechanism of baryogenesis. Baryon asymmetry might be produced due either to ``evaporation'' into the baby branes, or creation of the baryon number excess in collisions of two Brane Universes. As an example we discuss a possible cosmological scenario within the recently proposed ``Brane Inflation'' framework. Inflation is driven by displaced branes which slowly fall on top of each other. When the branes collide inflation stops and the Brane Universe reheats. During this non-equilibrium collision baryon number can be transported from one brane to another one. This results in the baryon number excess in our Universe which exactly equals to the hidden ``baryon number'' deficit in the other Brane Universe. © 1999

  20. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome

    PubMed Central

    Ferlaino, Michael; Rogers, Mark F.; Shihab, Hashem A.; Mort, Matthew; Cooper, David N.; Gaunt, Tom R.; Campbell, Colin

    2018-01-01

    Background Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. Results We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. Conclusions FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome. PMID:28985712

  1. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.

    PubMed

    Ferlaino, Michael; Rogers, Mark F; Shihab, Hashem A; Mort, Matthew; Cooper, David N; Gaunt, Tom R; Campbell, Colin

    2017-10-06

    Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome.

  2. Use of a Drosophila Genome-Wide Conserved Sequence Database to Identify Functionally Related cis-Regulatory Enhancers

    PubMed Central

    Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F

    2012-01-01

    Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086

  3. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population.

    PubMed

    Rao, Shu-Quan; Hu, Hui-Ling; Ye, Ning; Shen, Yan; Xu, Qi

    2015-08-01

    The heritability of schizophrenia has been reported to be as high as ~80%, but the contribution of genetic variants identified to this heritability remains to be estimated. Long non-coding RNAs (LncRNAs) are involved in multiple processes critical to normal cellular function and dysfunction of lncRNA MIAT may contribute to the pathophysiology of schizophrenia. However, the genetic evidence of lncRNAs involved in schizophrenia has not been documented. Here, we conducted a two-stage association analysis on 8 tag SNPs that cover the whole MIAT locus in two independent Han Chinese schizophrenia case-control cohorts (discovery sample from Shanxi Province: 1093 patients with paranoid schizophrenia and 1180 control subjects; replication cohort from Jilin Province: 1255 cases and 1209 healthy controls). In discovery stage, significant genetic association with paranoid schizophrenia was observed for rs1894720 (χ(2)=74.20, P=7.1E-18), of which minor allele (T) had an OR of 1.70 (95% CI=1.50-1.91). This association was confirmed in the replication cohort (χ(2)=22.66, P=1.9E-06, OR=1.32, 95%CI 1.18-1.49). Besides, a weak genotypic association was detected for rs4274 (χ(2)=4.96, df=2, P=0.03); the AA carriers showed increased disease risk (OR=1.30, 95%CI=1.03-1.64). No significant association was found between any haplotype and paranoid schizophrenia. The present studies showed that lncRNA MIAT was a novel susceptibility gene for paranoid schizophrenia in the Chinese Han population. Considering that most lncRNAs locate in non-coding regions, our result may explain why most susceptibility loci for schizophrenia identified by genome wide association studies were out of coding regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets

    PubMed Central

    Pop-Bica, Cecilia; Gulei, Diana; Cojocneanu-Petric, Roxana; Braicu, Cornelia; Petrut, Bogdan; Berindan-Neagoe, Ioana

    2017-01-01

    The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are—for the time being—not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells. PMID:28703782

  5. Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets.

    PubMed

    Pop-Bica, Cecilia; Gulei, Diana; Cojocneanu-Petric, Roxana; Braicu, Cornelia; Petrut, Bogdan; Berindan-Neagoe, Ioana

    2017-07-13

    The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are-for the time being-not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells.

  6. Identification and characterization of long non-coding RNAs in rainbow trout eggs

    USDA-ARS?s Scientific Manuscript database

    Long non-coding RNAs (lncRNAs) are in general considered as a diverse class of transcripts longer than 200 nucleotides that structurally resemble mRNAs but do not encode proteins. Recent advances in RNA sequencing (RNA-Seq) and bioinformatics methods have provided an opportunity to indentify and ana...

  7. Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles

    PubMed Central

    Leloire, Audrey; Dhennin, Véronique; Coumoul, Xavier; Yengo, Loïc; Froguel, Philippe

    2017-01-01

    Bisphenol A (BPA) exposure has been suspected to be associated with deleterious effects on health including obesity and metabolically-linked diseases. Although bisphenols F (BPF) and S (BPS) are BPA structural analogs commonly used in many marketed products as a replacement for BPA, only sparse toxicological data are available yet. Our objective was to comprehensively characterize bisphenols gene targets in a human primary adipocyte model, in order to determine whether they may induce cellular dysfunction, using chronic exposure at two concentrations: a “low-dose” similar to the dose usually encountered in human biological fluids and a higher dose. Therefore, BPA, BPF and BPS have been added at 10 nM or 10 μM during the differentiation of human primary adipocytes from subcutaneous fat of three non-diabetic Caucasian female patients. Gene expression (mRNA/lncRNA) arrays and microRNA arrays, have been used to assess coding and non-coding RNA changes. We detected significantly deregulated mRNA/lncRNA and miRNA at low and high doses. Enrichment in “cancer” and “organismal injury and abnormalities” related pathways was found in response to the three products. Some long intergenic non-coding RNAs and small nucleolar RNAs were differentially expressed suggesting that bisphenols may also activate multiple cellular processes and epigenetic modifications. The analysis of upstream regulators of deregulated genes highlighted hormones or hormone-like chemicals suggesting that BPS and BPF can be suspected to interfere, just like BPA, with hormonal regulation and have to be considered as endocrine disruptors. All these results suggest that as BPA, its substitutes BPS and BPF should be used with the same restrictions. PMID:28628672

  8. Non coding RNAs in vascular disease - from basic science to clinical applications: Scientific update from the Working Group of Myocardial Function of the European Society of Cardiology

    PubMed

    Fiedler, Jan; Baker, Andrew H; Dimmeler, Stefanie; Heymans, Stephane; Mayr, Manuel; Thum, Thomas

    2018-05-23

    Non-coding RNAs are increasingly recognized not only as regulators of various biological functions but also as targets for a new generation of RNA therapeutics and biomarkers. We hereby review recent insights relating to non-coding RNAs including microRNAs (e.g. miR-126, miR-146a), long non-coding RNAs (e.g. MIR503HG, GATA6-AS, SMILR) and circular RNAs (e.g. cZNF292) and their role in vascular diseases. This includes identification and therapeutic use of hypoxia-regulated non-coding RNAs and endogenous non-coding RNAs that regulate intrinsic smooth muscle cell signalling, age-related non-coding RNAs and non-coding RNAs involved in the regulation of mitochondrial biology and metabolic control. Finally, we discuss non-coding RNA species with biomarker potential.

  9. Quantification of non-coding RNA target localization diversity and its application in cancers.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-04-01

    Subcellular localization is pivotal for RNAs and proteins to implement biological functions. The localization diversity of protein interactions has been studied as a crucial feature of proteins, considering that the protein-protein interactions take place in various subcellular locations. Nevertheless, the localization diversity of non-coding RNA (ncRNA) target proteins has not been systematically studied, especially its characteristics in cancers. In this study, we provide a new algorithm, non-coding RNA target localization coefficient (ncTALENT), to quantify the target localization diversity of ncRNAs based on the ncRNA-protein interaction and protein subcellular localization data. ncTALENT can be used to calculate the target localization coefficient of ncRNAs and measure how diversely their targets are distributed among the subcellular locations in various scenarios. We focus our study on long non-coding RNAs (lncRNAs), and our observations reveal that the target localization diversity is a primary characteristic of lncRNAs in different biotypes. Moreover, we found that lncRNAs in multiple cancers, differentially expressed cancer lncRNAs, and lncRNAs with multiple cancer target proteins are prone to have high target localization diversity. Furthermore, the analysis of gastric cancer helps us to obtain a better understanding that the target localization diversity of lncRNAs is an important feature closely related to clinical prognosis. Overall, we systematically studied the target localization diversity of the lncRNAs and uncovered its association with cancer.

  10. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia

    PubMed Central

    Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong

    2017-01-01

    Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses. PMID:28217082

  11. Mapping Department of Defense laboratory results to Logical Observation Identifiers Names and Codes (LOINC).

    PubMed

    Lau, Lee Min; Banning, Pam D; Monson, Kent; Knight, Elva; Wilson, Pat S; Shakib, Shaun C

    2005-01-01

    The Department of Defense (DoD) has used a common application, Composite Health Care System (CHCS), throughout all DoD facilities. However, the master files used to encode patient data in CHCS are not identical across DoD facilities. The encoded data is thus not interoperable from one DoD facility to another. To enable data interoperability in the next-generation system, CHCS II, and for the DoD to exchange laboratory results with external organizations such as the Veterans Administration (VA), the disparate master file codes for laboratory results are mapped to Logical Observation Identifier Names and Codes (LOINC) wherever possible. This paper presents some findings from our experience mapping DoD laboratory results to LOINC.

  12. Detection of hyper-conserved regions in hepatitis B virus X gene potentially useful for gene therapy.

    PubMed

    González, Carolina; Tabernero, David; Cortese, Maria Francesca; Gregori, Josep; Casillas, Rosario; Riveiro-Barciela, Mar; Godoy, Cristina; Sopena, Sara; Rando, Ariadna; Yll, Marçal; Lopez-Martinez, Rosa; Quer, Josep; Esteban, Rafael; Buti, Maria; Rodríguez-Frías, Francisco

    2018-05-21

    To detect hyper-conserved regions in the hepatitis B virus (HBV) X gene ( HBX ) 5' region that could be candidates for gene therapy. The study included 27 chronic hepatitis B treatment-naive patients in various clinical stages (from chronic infection to cirrhosis and hepatocellular carcinoma, both HBeAg-negative and HBeAg-positive), and infected with HBV genotypes A-F and H. In a serum sample from each patient with viremia > 3.5 log IU/mL, the HBX 5' end region [nucleotide (nt) 1255-1611] was PCR-amplified and submitted to next-generation sequencing (NGS). We assessed genotype variants by phylogenetic analysis, and evaluated conservation of this region by calculating the information content of each nucleotide position in a multiple alignment of all unique sequences (haplotypes) obtained by NGS. Conservation at the HBx protein amino acid (aa) level was also analyzed. NGS yielded 1333069 sequences from the 27 samples, with a median of 4578 sequences/sample (2487-9279, IQR 2817). In 14/27 patients (51.8%), phylogenetic analysis of viral nucleotide haplotypes showed a complex mixture of genotypic variants. Analysis of the information content in the haplotype multiple alignments detected 2 hyper-conserved nucleotide regions, one in the HBX upstream non-coding region (nt 1255-1286) and the other in the 5' end coding region (nt 1519-1603). This last region coded for a conserved amino acid region (aa 63-76) that partially overlaps a Kunitz-like domain. Two hyper-conserved regions detected in the HBX 5' end may be of value for targeted gene therapy, regardless of the patients' clinical stage or HBV genotype.

  13. Methylated glycans as conserved targets of animal and fungal innate defense

    PubMed Central

    Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S.; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M.; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus

    2014-01-01

    Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441

  14. Agreement between coding schemas used to identify bleeding-related hospitalizations in claims analyses of nonvalvular atrial fibrillation patients.

    PubMed

    Coleman, Craig I; Vaitsiakhovich, Tatsiana; Nguyen, Elaine; Weeda, Erin R; Sood, Nitesh A; Bunz, Thomas J; Schaefer, Bernhard; Meinecke, Anna-Katharina; Eriksson, Daniel

    2018-01-01

    Schemas to identify bleeding-related hospitalizations in claims data differ in billing codes used and coding positions allowed. We assessed agreement across bleeding-related hospitalization coding schemas for claims analyses of nonvalvular atrial fibrillation (NVAF) patients on oral anticoagulation (OAC). We hypothesized that prior coding schemas used to identify bleeding-related hospitalizations in claim database studies would provide varying levels of agreement in incidence rates. Within MarketScan data, we identified adults, newly started on OAC for NVAF from January 2012 to June 2015. Billing code schemas developed by Cunningham et al., the US Food and Drug Administration (FDA) Mini-Sentinel program, and Yao et al. were used to identify bleeding-related hospitalizations as a surrogate for major bleeding. Bleeds were subcategorized as intracranial hemorrhage (ICH), gastrointestinal (GI), or other. Schema agreement was assessed by comparing incidence, rates of events/100 person-years (PYs), and Cohen's kappa statistic. We identified 151 738 new-users of OAC with NVAF (CHA2DS2-VASc score = 3, [interquartile range = 2-4] and median HAS-BLED score = 3 [interquartile range = 2-3]). The Cunningham, FDA Mini-Sentinel, and Yao schemas identified any bleeding-related hospitalizations in 1.87% (95% confidence interval [CI]: 1.81-1.94), 2.65% (95% CI: 2.57-2.74), and 4.66% (95% CI: 4.55-4.76) of patients (corresponding rates = 3.45, 4.90, and 8.65 events/100 PYs). Kappa agreement across schemas was weak-to-moderate (κ = 0.47-0.66) for any bleeding hospitalization. Near-perfect agreement (κ = 0.99) was observed with the FDA Mini-Sentinel and Yao schemas for ICH-related hospitalizations, but agreement was weak when comparing Cunningham to FDA Mini-Sentinel or Yao (κ = 0.52-0.53). FDA Mini-Sentinel and Yao agreement was moderate (κ = 0.62) for GI bleeding, but agreement was weak when comparing Cunningham to FDA Mini-Sentinel or Yao (κ

  15. Towards a complete map of the human long non-coding RNA transcriptome.

    PubMed

    Uszczynska-Ratajczak, Barbara; Lagarde, Julien; Frankish, Adam; Guigó, Roderic; Johnson, Rory

    2018-05-23

    Gene maps, or annotations, enable us to navigate the functional landscape of our genome. They are a resource upon which virtually all studies depend, from single-gene to genome-wide scales and from basic molecular biology to medical genetics. Yet present-day annotations suffer from trade-offs between quality and size, with serious but often unappreciated consequences for downstream studies. This is particularly true for long non-coding RNAs (lncRNAs), which are poorly characterized compared to protein-coding genes. Long-read sequencing technologies promise to improve current annotations, paving the way towards a complete annotation of lncRNAs expressed throughout a human lifetime.

  16. Identification of mRNA-like non-coding RNAs and validation of a mighty one named MAR in Panax ginseng.

    PubMed

    Wang, Meizhen; Wu, Bin; Chen, Chao; Lu, Shanfa

    2015-03-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) play significant roles in plants. However, little is known about lncRNAs in Panax ginseng C. A. Meyer, an economically significant medicinal plant species. A total of 3,688 mRNA-like non-coding RNAs (mlncRNAs), a class of lncRNAs, were identified in P. ginseng. Approximately 40% of the identified mlncRNAs were processed into small RNAs, implying their regulatory roles via small RNA-mediated mechanisms. Eleven miRNA-generating mlncRNAs also produced siRNAs, suggesting the coordinated production of miRNAs and siRNAs in P. ginseng. The mlncRNA-derived small RNAs might be 21-, 22-, or 24-nt phased and could be generated from both or only one strand of mlncRNAs, or from super long hairpin structures. A full-length mlncRNA, termed MAR (multiple-function-associated mlncRNA), was cloned. It generated the most abundant siRNAs. The MAR siRNAs were predominantly 24-nt and some of them were distributed in a phased pattern. A total of 228 targets were predicted for 71 MAR siRNAs. Degradome sequencing validated 68 predicted targets involved in diverse metabolic pathways, suggesting the significance of MAR in P. ginseng. Consistently, MAR was detected in all tissues analyzed and responded to methyl jasmonate (MeJA) treatment. It sheds light on the function of mlncRNAs in plants. © 2014 Institute of Botany, Chinese Academy of Sciences.

  17. The role of the uncertainty in code development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barre, F.

    1997-07-01

    From a general point of view, all the results of a calculation should be given with their uncertainty. It is of most importance in nuclear safety where sizing of the safety systems, therefore protection of the population and the environment essentially depends on the calculation results. Until these last years, the safety analysis was performed with conservative tools. Two types of critics can be made. Firstly, conservative margins can be too large and it may be possible to reduce the cost of the plant or its operation with a best estimate approach. Secondly, some of the conservative hypotheses may notmore » really conservative in the full range of physical events which can occur during an accident. Simpson gives an interesting example: in some cases, the majoration of the residual power during a small break LOCA can lead to an overprediction of the swell level and thus of an overprediction of the core cooling, which is opposite to a conservative prediction. A last question is: does the accumulation of conservative hypotheses for a problem always give a conservative result? The two phase flow physics, mainly dealing with situation of mechanical and thermal non-equilibrium, is too much complicated to answer these questions with a simple engineer judgement. The objective of this paper is to make a review of the quantification of the uncertainties which can be made during code development and validation.« less

  18. Self-organized criticality occurs in non-conservative neuronal networks during Up states

    PubMed Central

    Millman, Daniel; Mihalas, Stefan; Kirkwood, Alfredo; Niebur, Ernst

    2010-01-01

    During sleep, under anesthesia and in vitro, cortical neurons in sensory, motor, association and executive areas fluctuate between Up and Down states (UDS) characterized by distinct membrane potentials and spike rates [1, 2, 3, 4, 5]. Another phenomenon observed in preparations similar to those that exhibit UDS, such as anesthetized rats [6], brain slices and cultures devoid of sensory input [7], as well as awake monkey cortex [8] is self-organized criticality (SOC). This is characterized by activity “avalanches” whose size distributions obey a power law with critical exponent of about −32 and branching parameter near unity. Recent work has demonstrated SOC in conservative neuronal network models [9, 10], however critical behavior breaks down when biologically realistic non-conservatism is introduced [9]. We here report robust SOC behavior in networks of non-conservative leaky integrate-and-fire neurons with short-term synaptic depression. We show analytically and numerically that these networks typically have 2 stable activity levels corresponding to Up and Down states, that the networks switch spontaneously between them, and that Up states are critical and Down states are subcritical. PMID:21804861

  19. Ambiguity of non-systematic chemical identifiers within and between small-molecule databases.

    PubMed

    Akhondi, Saber A; Muresan, Sorel; Williams, Antony J; Kors, Jan A

    2015-01-01

    A wide range of chemical compound databases are currently available for pharmaceutical research. To retrieve compound information, including structures, researchers can query these chemical databases using non-systematic identifiers. These are source-dependent identifiers (e.g., brand names, generic names), which are usually assigned to the compound at the point of registration. The correctness of non-systematic identifiers (i.e., whether an identifier matches the associated structure) can only be assessed manually, which is cumbersome, but it is possible to automatically check their ambiguity (i.e., whether an identifier matches more than one structure). In this study we have quantified the ambiguity of non-systematic identifiers within and between eight widely used chemical databases. We also studied the effect of chemical structure standardization on reducing the ambiguity of non-systematic identifiers. The ambiguity of non-systematic identifiers within databases varied from 0.1 to 15.2 % (median 2.5 %). Standardization reduced the ambiguity only to a small extent for most databases. A wide range of ambiguity existed for non-systematic identifiers that are shared between databases (17.7-60.2 %, median of 40.3 %). Removing stereochemistry information provided the largest reduction in ambiguity across databases (median reduction 13.7 percentage points). Ambiguity of non-systematic identifiers within chemical databases is generally low, but ambiguity of non-systematic identifiers that are shared between databases, is high. Chemical structure standardization reduces the ambiguity to a limited extent. Our findings can help to improve database integration, curation, and maintenance.

  20. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity.

    PubMed

    Hrdlickova, Barbara; Kumar, Vinod; Kanduri, Kartiek; Zhernakova, Daria V; Tripathi, Subhash; Karjalainen, Juha; Lund, Riikka J; Li, Yang; Ullah, Ubaid; Modderman, Rutger; Abdulahad, Wayel; Lähdesmäki, Harri; Franke, Lude; Lahesmaa, Riitta; Wijmenga, Cisca; Withoff, Sebo

    2014-01-01

    Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes. We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4(+) and naive CD8(+) T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells). We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (α <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (α <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8(+) T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS

  1. A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate.

    PubMed

    Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis

    2016-06-21

    The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  3. RRE: a tool for the extraction of non-coding regions surrounding annotated genes from genomic datasets.

    PubMed

    Lazzarato, F; Franceschinis, G; Botta, M; Cordero, F; Calogero, R A

    2004-11-01

    RRE allows the extraction of non-coding regions surrounding a coding sequence [i.e. gene upstream region, 5'-untranslated region (5'-UTR), introns, 3'-UTR, downstream region] from annotated genomic datasets available at NCBI. RRE parser and web-based interface are accessible at http://www.bioinformatica.unito.it/bioinformatics/rre/rre.html

  4. The Emerging Roles of Long Non-coding RNA in Cancer.

    PubMed

    Sanchez Calle, Anna; Kawamura, Yumi; Yamamoto, Yusuke; Takeshita, Fumitaka; Ochiya, Takahiro

    2018-05-17

    Since comprehensive analysis of the mammalian genome has revealed that the vast majority of genomic products are transcribed in long non-coding RNAs (lncRNAs), increasing attention has been paid towards these transcripts. The applied next-generation sequencing technologies have provided accumulating evidence of dysregulated lncRNAs in cancer. The implication of this finding may be seen in many forms and at multiple levels. With impacts ranging from integrating chromatin remodeling complexes to regulating transcription and post-transcriptional processes, aberrant expression of lncRNAs may have repercussions in cell proliferation, tumor progression or metastasis. lncRNAs may act as enhancers, scaffolds or decoys by physically interacting with other RNA species or proteins, resulting in a direct impact on cell signaling cascades. Even though their functional classification is well-established in the context of cancer, clearer characterization in terms of their phenotypic outputs is needed to optimize and identify suitable candidates that enable the development of new therapeutic strategies and the design of novel diagnostic approaches. The present article aims to outline different cancer-associated lncRNAs according to their contribution to tumor suppression or tumor promotion based on their most current functional annotations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Stakeholder-led science: engaging resource managers to identify science needs for long-term management of floodplain conservation lands

    USGS Publications Warehouse

    Bouska, Kristin L.; Lindner, Garth; Paukert, Craig P.; Jacobson, Robert B.

    2016-01-01

    Floodplains pose challenges to managers of conservation lands because of constantly changing interactions with their rivers. Although scientific knowledge and understanding of the dynamics and drivers of river-floodplain systems can provide guidance to floodplain managers, the scientific process often occurs in isolation from management. Further, communication barriers between scientists and managers can be obstacles to appropriate application of scientific knowledge. With the coproduction of science in mind, our objectives were the following: (1) to document management priorities of floodplain conservation lands, and (2) identify science needs required to better manage the identified management priorities under nonstationary conditions, i.e., climate change, through stakeholder queries and interactions. We conducted an online survey with 80 resource managers of floodplain conservation lands along the Upper and Middle Mississippi River and Lower Missouri River, USA, to evaluate management priority, management intensity, and available scientific information for management objectives and conservation targets. Management objectives with the least information available relative to priority included controlling invasive species, maintaining respectful relationships with neighbors, and managing native, nongame species. Conservation targets with the least information available to manage relative to management priority included pollinators, marsh birds, reptiles, and shore birds. A follow-up workshop and survey focused on clarifying science needs to achieve management objectives under nonstationary conditions. Managers agreed that metrics of inundation, including depth and extent of inundation, and frequency, duration, and timing of inundation would be the most useful metrics for management of floodplain conservation lands with multiple objectives. This assessment provides guidance for developing relevant and accessible science products to inform management of highly

  6. Coherent state coding approaches the capacity of non-Gaussian bosonic channels

    NASA Astrophysics Data System (ADS)

    Huber, Stefan; König, Robert

    2018-05-01

    The additivity problem asks if the use of entanglement can boost the information-carrying capacity of a given channel beyond what is achievable by coding with simple product states only. This has recently been shown not to be the case for phase-insensitive one-mode Gaussian channels, but remains unresolved in general. Here we consider two general classes of bosonic noise channels, which include phase-insensitive Gaussian channels as special cases: these are attenuators with general, potentially non-Gaussian environment states and classical noise channels with general probabilistic noise. We show that additivity violations, if existent, are rather minor for all these channels: the maximal gain in classical capacity is bounded by a constant independent of the input energy. Our proof shows that coding by simple classical modulation of coherent states is close to optimal.

  7. Biallelic insertion of a transcriptional terminator via the CRISPR/Cas9 system efficiently silences expression of protein-coding and non-coding RNA genes.

    PubMed

    Liu, Yangyang; Han, Xiao; Yuan, Junting; Geng, Tuoyu; Chen, Shihao; Hu, Xuming; Cui, Isabelle H; Cui, Hengmi

    2017-04-07

    The type II bacterial CRISPR/Cas9 system is a simple, convenient, and powerful tool for targeted gene editing. Here, we describe a CRISPR/Cas9-based approach for inserting a poly(A) transcriptional terminator into both alleles of a targeted gene to silence protein-coding and non-protein-coding genes, which often play key roles in gene regulation but are difficult to silence via insertion or deletion of short DNA fragments. The integration of 225 bp of bovine growth hormone poly(A) signals into either the first intron or the first exon or behind the promoter of target genes caused efficient termination of expression of PPP1R12C , NSUN2 (protein-coding genes), and MALAT1 (non-protein-coding gene). Both NeoR and PuroR were used as markers in the selection of clonal cell lines with biallelic integration of a poly(A) signal. Genotyping analysis indicated that the cell lines displayed the desired biallelic silencing after a brief selection period. These combined results indicate that this CRISPR/Cas9-based approach offers an easy, convenient, and efficient novel technique for gene silencing in cell lines, especially for those in which gene integration is difficult because of a low efficiency of homology-directed repair. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Accuracy of ICD-10 Coding System for Identifying Comorbidities and Infectious Conditions Using Data from a Thai University Hospital Administrative Database.

    PubMed

    Rattanaumpawan, Pinyo; Wongkamhla, Thanyarak; Thamlikitkul, Visanu

    2016-04-01

    To determine the accuracy of International Statistical Classification of Disease and Related Health Problems, 10th Revision (ICD-10) coding system in identifying comorbidities and infectious conditions using data from a Thai university hospital administrative database. A retrospective cross-sectional study was conducted among patients hospitalized in six general medicine wards at Siriraj Hospital. ICD-10 code data was identified and retrieved directly from the hospital administrative database. Patient comorbidities were captured using the ICD-10 coding algorithm for the Charlson comorbidity index. Infectious conditions were captured using the groups of ICD-10 diagnostic codes that were carefully prepared by two independent infectious disease specialists. Accuracy of ICD-10 codes combined with microbiological dataf or diagnosis of urinary tract infection (UTI) and bloodstream infection (BSI) was evaluated. Clinical data gathered from chart review was considered the gold standard in this study. Between February 1 and May 31, 2013, a chart review of 546 hospitalization records was conducted. The mean age of hospitalized patients was 62.8 ± 17.8 years and 65.9% of patients were female. Median length of stay [range] was 10.0 [1.0-353.0] days and hospital mortality was 21.8%. Conditions with ICD-10 codes that had good sensitivity (90% or higher) were diabetes mellitus and HIV infection. Conditions with ICD-10 codes that had good specificity (90% or higher) were cerebrovascular disease, chronic lung disease, diabetes mellitus, cancer HIV infection, and all infectious conditions. By combining ICD-10 codes with microbiological results, sensitivity increased from 49.5 to 66%for UTI and from 78.3 to 92.8%for BS. The ICD-10 coding algorithm is reliable only in some selected conditions, including underlying diabetes mellitus and HIV infection. Combining microbiological results with ICD-10 codes increased sensitivity of ICD-10 codes for identifying BSI. Future research is

  9. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis

    PubMed Central

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L. M.; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT. PMID:28704421

  10. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis.

    PubMed

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L M; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana; Parati, Eugenio A; Gorio, Alfredo

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.

  11. DNA methylation of miRNA coding sequences putatively associated with childhood obesity.

    PubMed

    Mansego, M L; Garcia-Lacarte, M; Milagro, F I; Marti, A; Martinez, J A

    2017-02-01

    Epigenetic mechanisms may be involved in obesity onset and its consequences. The aim of the present study was to evaluate whether DNA methylation status in microRNA (miRNA) coding regions is associated with childhood obesity. DNA isolated from white blood cells of 24 children (identification sample: 12 obese and 12 non-obese) from the Grupo Navarro de Obesidad Infantil study was hybridized in a 450 K methylation microarray. Several CpGs whose DNA methylation levels were statistically different between obese and non-obese were validated by MassArray® in 95 children (validation sample) from the same study. Microarray analysis identified 16 differentially methylated CpGs between both groups (6 hypermethylated and 10 hypomethylated). DNA methylation levels in miR-1203, miR-412 and miR-216A coding regions significantly correlated with body mass index standard deviation score (BMI-SDS) and explained up to 40% of the variation of BMI-SDS. The network analysis identified 19 well-defined obesity-relevant biological pathways from the KEGG database. MassArray® validation identified three regions located in or near miR-1203, miR-412 and miR-216A coding regions differentially methylated between obese and non-obese children. The current work identified three CpG sites located in coding regions of three miRNAs (miR-1203, miR-412 and miR-216A) that were differentially methylated between obese and non-obese children, suggesting a role of miRNA epigenetic regulation in childhood obesity. © 2016 World Obesity Federation.

  12. Identifying core habitat and connectivity for focal species in the interior cedar-hemlock forest of North America to complete a conservation area design

    Treesearch

    Lance Craighead; Baden Cross

    2007-01-01

    To identify the remaining areas of the Interior Cedar- Hemlock Forest of North America and prioritize them for conservation planning, the Craighead Environmental Research Institute has developed a 2-scale method for mapping critical habitat utilizing 1) a broad-scale model to identify important regional locations as the basis for a Conservation Area Design (CAD), and 2...

  13. Identification and Potential Regulatory Properties of Evolutionary Conserved Regions (ECRs) at the Schizophrenia-Associated MIR137 Locus.

    PubMed

    Gianfrancesco, Olympia; Griffiths, Daniel; Myers, Paul; Collier, David A; Bubb, Vivien J; Quinn, John P

    2016-10-01

    Genome-wide association studies (GWAS) have identified a region at chromosome 1p21.3, containing the microRNA MIR137, to be among the most significant associations for schizophrenia. However, the mechanism by which genetic variation at this locus increases risk of schizophrenia is unknown. Identifying key regulatory regions around MIR137 is crucial to understanding the potential role of this gene in the aetiology of psychiatric disorders. Through alignment of vertebrate genomes, we identified seven non-coding regions at the MIR137 locus with conservation comparable to exons (>70 %). Bioinformatic analysis using the Psychiatric Genomics Consortium GWAS dataset for schizophrenia showed five of the ECRs to have genome-wide significant SNPs in or adjacent to their sequence. Analysis of available datasets on chromatin marks and histone modification data showed that three of the ECRs were predicted to be functional in the human brain, and three in development. In vitro analysis of ECR activity using reporter gene assays showed that all seven of the selected ECRs displayed transcriptional regulatory activity in the SH-SY5Y neuroblastoma cell line. This data suggests a regulatory role in the developing and adult brain for these highly conserved regions at the MIR137 schizophrenia-associated locus and further that these domains could act individually or synergistically to regulate levels of MIR137 expression.

  14. RNA editing of non-coding RNA and its role in gene regulation.

    PubMed

    Daniel, Chammiran; Lagergren, Jens; Öhman, Marie

    2015-10-01

    It has for a long time been known that repetitive elements, particularly Alu sequences in human, are edited by the adenosine deaminases acting on RNA, ADAR, family. The functional interpretation of these events has been even more difficult than that of editing events in coding sequences, but today there is an emerging understanding of their downstream effects. A surprisingly large fraction of the human transcriptome contains inverted Alu repeats, often forming long double stranded structures in RNA transcripts, typically occurring in introns and UTRs of protein coding genes. Alu repeats are also common in other primates, and similar inverted repeats can frequently be found in non-primates, although the latter are less prone to duplex formation. In human, as many as 700,000 Alu elements have been identified as substrates for RNA editing, of which many are edited at several sites. In fact, recent advancements in transcriptome sequencing techniques and bioinformatics have revealed that the human editome comprises at least a hundred million adenosine to inosine (A-to-I) editing sites in Alu sequences. Although substantial additional efforts are required in order to map the editome, already present knowledge provides an excellent starting point for studying cis-regulation of editing. In this review, we will focus on editing of long stem loop structures in the human transcriptome and how it can effect gene expression. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. In silico identification of conserved microRNAs in large number of diverse plant species

    PubMed Central

    Sunkar, Ramanjulu; Jagadeeswaran, Guru

    2008-01-01

    Background MicroRNAs (miRNAs) are recently discovered small non-coding RNAs that play pivotal roles in gene expression, specifically at the post-transcriptional level in plants and animals. Identification of miRNAs in large number of diverse plant species is important to understand the evolution of miRNAs and miRNA-targeted gene regulations. Now-a-days, publicly available databases play a central role in the in-silico biology. Because, at least ~21 miRNA families are conserved in higher plants, a homology based search using these databases can help identify orthologs or paralogs in plants. Results We searched all publicly available nucleotide databases of genome survey sequences (GSS), high-throughput genomics sequences (HTGS), expressed sequenced tags (ESTs) and nonredundant (NR) nucleotides and identified 682 miRNAs in 155 diverse plant species. We found more than 15 conserved miRNA families in 11 plant species, 10 to14 families in 10 plant species and 5 to 9 families in 29 plant species. Nineteen conserved miRNA families were identified in important model legumes such as Medicago, Lotus and soybean. Five miRNA families – miR319, miR156/157, miR169, miR165/166 and miR394 – were found in 51, 45, 41, 40 and 40 diverse plant species, respectively. miR403 homologs were found in 16 dicots, whereas miR437 and miR444 homologs, as well as the miR396d/e variant of the miR396 family, were found only in monocots, thus providing large-scale authenticity for the dicot- and monocot-specific miRNAs. Furthermore, we provide computational and/or experimental evidence for the conservation of 6 newly found Arabidopsis miRNA homologs (miR158, miR391, miR824, miR825, miR827 and miR840) and 2 small RNAs (small-85 and small-87) in Brassica spp. Conclusion Using all publicly available nucleotide databases, 682 miRNAs were identified in 155 diverse plant species. By combining the expression analysis with the computational approach, we found that 6 miRNAs and 2 small RNAs that have

  16. Evaluating the validity of clinical codes to identify cataract and glaucoma in the UK Clinical Practice Research Datalink.

    PubMed

    Kang, Elizabeth M; Pinheiro, Simone P; Hammad, Tarek A; Abou-Ali, Adel

    2015-01-01

    The aim of this study is to determine (i) the positive predictive value (PPV) of an algorithm using clinical codes to identify incident glaucoma and cataract events in the Clinical Practice Research Datalink (CPRD) and (ii) the ability to capture the correct timing of these clinical events. A total of 21,339 and 5349 potential cataract and glaucoma cases, respectively, were identified in CPRD between 1 January 1990 and 31 December 2010. Questionnaires were sent to the general practitioners (GP) of 1169 (5.5%) cataract and 1163 (21.7%) glaucoma cases for validation. GPs were asked to verify the diagnosis and the timing of the diagnosis and to provide other supporting information. A total of 986 (84.3%) valid cataract questionnaires and 863 (74.2%) glaucoma questionnaires were completed. 92.1% and 92.4% of these used information beyond EMR to verify the diagnosis. Cataract and glaucoma diagnoses were confirmed in the large majority of the cases. The PPV (95% CI) of the cataract and glaucoma Read code algorithm were 92.0% (90.3-93.7%) and 84.1% (81.7-86.6%), respectively. However, timing of diagnosis was incorrect for a substantial proportion of the cases (20.3% and 32.8% of the cataract and glaucoma cases, respectively) among whom 30.4% and 49.2% had discrepancies in diagnosis timing greater than 1 year. High PPV suggests that the algorithms based on the clinical Read codes are sufficient to identify the cataract and glaucoma cases in CPRD. However, these codes alone may not be able to accurately identify the timing of the diagnosis of these eye disorders. Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Conservation Seeds Activities Book. An Early Childhood Conservation Education Program.

    ERIC Educational Resources Information Center

    Griffin, Sherri

    This activities book is used with an early childhood conservation education program. The activities are presented in four color-coded sections, each section representing one of the four seasons. Each activity includes a statement of purpose, list of materials needed, instructional strategies, and a list of supplementary activities. In addition to…

  18. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    PubMed

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  19. NPTFit: A Code Package for Non-Poissonian Template Fitting

    NASA Astrophysics Data System (ADS)

    Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2017-06-01

    We present NPTFit, an open-source code package, written in Python and Cython, for performing non-Poissonian template fits (NPTFs). The NPTF is a recently developed statistical procedure for characterizing the contribution of unresolved point sources (PSs) to astrophysical data sets. The NPTF was first applied to Fermi gamma-ray data to provide evidence that the excess of ˜GeV gamma-rays observed in the inner regions of the Milky Way likely arises from a population of sub-threshold point sources, and the NPTF has since found additional applications studying sub-threshold extragalactic sources at high Galactic latitudes. The NPTF generalizes traditional astrophysical template fits to allow for the ability to search for populations of unresolved PSs that may follow a given spatial distribution. NPTFit builds upon the framework of the fluctuation analyses developed in X-ray astronomy, thus it likely has applications beyond those demonstrated with gamma-ray data. The NPTFit package utilizes novel computational methods to perform the NPTF efficiently. The code is available at http://github.com/bsafdi/NPTFit and up-to-date and extensive documentation may be found at http://nptfit.readthedocs.io.

  20. NPTFit: A Code Package for Non-Poissonian Template Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R., E-mail: smsharma@princeton.edu, E-mail: nrodd@mit.edu, E-mail: bsafdi@mit.edu

    We present NPTFit, an open-source code package, written in Python and Cython, for performing non-Poissonian template fits (NPTFs). The NPTF is a recently developed statistical procedure for characterizing the contribution of unresolved point sources (PSs) to astrophysical data sets. The NPTF was first applied to Fermi gamma-ray data to provide evidence that the excess of ∼GeV gamma-rays observed in the inner regions of the Milky Way likely arises from a population of sub-threshold point sources, and the NPTF has since found additional applications studying sub-threshold extragalactic sources at high Galactic latitudes. The NPTF generalizes traditional astrophysical template fits to allowmore » for the ability to search for populations of unresolved PSs that may follow a given spatial distribution. NPTFit builds upon the framework of the fluctuation analyses developed in X-ray astronomy, thus it likely has applications beyond those demonstrated with gamma-ray data. The NPTFit package utilizes novel computational methods to perform the NPTF efficiently. The code is available at http://github.com/bsafdi/NPTFit and up-to-date and extensive documentation may be found at http://nptfit.readthedocs.io.« less

  1. Sequence-based heuristics for faster annotation of non-coding RNA families.

    PubMed

    Weinberg, Zasha; Ruzzo, Walter L

    2006-01-01

    Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Covariance Models (CMs) are a useful statistical tool to find new members of an ncRNA gene family in a large genome database, using both sequence and, importantly, RNA secondary structure information. Unfortunately, CM searches are extremely slow. Previously, we created rigorous filters, which provably sacrifice none of a CM's accuracy, while making searches significantly faster for virtually all ncRNA families. However, these rigorous filters make searches slower than heuristics could be. In this paper we introduce profile HMM-based heuristic filters. We show that their accuracy is usually superior to heuristics based on BLAST. Moreover, we compared our heuristics with those used in tRNAscan-SE, whose heuristics incorporate a significant amount of work specific to tRNAs, where our heuristics are generic to any ncRNA. Performance was roughly comparable, so we expect that our heuristics provide a high-quality solution that--unlike family-specific solutions--can scale to hundreds of ncRNA families. The source code is available under GNU Public License at the supplementary web site.

  2. Fragile X mental retardation protein participates in non-coding RNA pathways.

    PubMed

    Li, En-Hui; Zhao, Xin; Zhang, Ce; Liu, Wei

    2018-02-20

    Fragile X syndrome is one of the most common forms of inherited intellectual disability. It is caused by mutations of the Fragile X mental retardation 1(FMR1) gene, resulting in either the loss or abnormal expression of the Fragile X mental retardation protein (FMRP). Recent research showed that FMRP participates in non-coding RNA pathways and plays various important roles in physiology, thereby extending our knowledge of the pathogenesis of the Fragile X syndrome. Initial studies showed that the Drosophila FMRP participates in siRNA and miRNA pathways by interacting with Dicer, Ago1 and Ago2, involved in neural activity and the fate determination of the germline stem cells. Subsequent studies showed that the Drosophila FMRP participates in piRNA pathway by interacting with Aub, Ago1 and Piwi in the maintenance of normal chromatin structures and genomic stability. More recent studies showed that FMRP is associated with lncRNA pathway, suggesting a potential role for the involvement in the clinical manifestations. In this review, we summarize the novel findings and explore the relationship between FMRP and non-coding RNA pathways, particularly the piRNA pathway, thereby providing critical insights on the molecular pathogenesis of Fragile X syndrome, and potential translational applications in clinical management of the disease.

  3. Using fault tree analysis to identify causes of non-compliance: enhancing violation outcome data for the purposes of education and prevention.

    PubMed

    Emery, R J; Charlton, M A; Orders, A B; Hernandez, M

    2001-02-01

    An enhanced coding system for the characterization of notices of violation (NOV's) issued to radiation permit holders in the State of Texas was developed based on a series of fault tree analyses serving to identify a set of common causes. The coding system enhancement was retroactively applied to a representative sample (n = 185) of NOV's issued to specific licensees of radioactive materials in Texas during calendar year 1999. The results obtained were then compared to the currently available summary NOV information for the same year. In addition to identifying the most common NOV's, the enhanced coding system revealed that approximately 70% of the sampled NOV's were issued for non-compliance with a specific regulation as opposed to a permit condition. Furthermore, an underlying cause of 94% of the NOV's was the failure on the part of the licensee to execute a specific task. The findings suggest that opportunities exist to improve permit holder compliance through various means, including the creation of summaries which detail specific tasks to be completed, and revising training programs with more focus on the identification and scheduling of permit-related requirements. Broad application of these results is cautioned due to the bias associated with the restricted scope of the project.

  4. ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2005-01-01

    In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.

  5. On the Conservation of Cross Helicity and Wave Action in Solar-wind Models with Non-WKB Alfvén Wave Reflection

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin D. G.; Perez, Jean C.; Verscharen, Daniel; Klein, Kristopher G.; Mallet, Alfred

    2015-09-01

    The interaction between Alfvén-wave turbulence and the background solar wind affects the cross helicity (\\int {d}3x {\\boldsymbol{v}}\\cdot {\\boldsymbol{B}}) in two ways. Non-WKB reflection converts outward-propagating Alfvén waves into inward-propagating Alfvén waves and vice versa, and the turbulence transfers momentum to the background flow. When both effects are accounted for, the total cross helicity is conserved. In the special case that the background density and flow speed are independent of time, the equations of cross-helicity conservation and total-energy conservation can be combined to recover a well-known equation derived by Heinemann and Olbert that has been interpreted as a non-WKB generalization of wave-action conservation. This latter equation (in contrast to cross-helicity and energy conservation) does not hold when the background varies in time.

  6. A Comparison of Athletic Movement Among Talent-Identified Juniors From Different Football Codes in Australia: Implications for Talent Development.

    PubMed

    Woods, Carl T; Keller, Brad S; McKeown, Ian; Robertson, Sam

    2016-09-01

    Woods, CT, Keller, BS, McKeown, I, and Robertson, S. A comparison of athletic movement among talent-identified juniors from different football codes in Australia: implications for talent development. J Strength Cond Res 30(9): 2440-2445, 2016-This study aimed to compare the athletic movement skill of talent-identified (TID) junior Australian Rules football (ARF) and soccer players. The athletic movement skill of 17 TID junior ARF players (17.5-18.3 years) was compared against 17 TID junior soccer players (17.9-18.7 years). Players in both groups were members of an elite junior talent development program within their respective football codes. All players performed an athletic movement assessment that included an overhead squat, double lunge, single-leg Romanian deadlift (both movements performed on right and left legs), a push-up, and a chin-up. Each movement was scored across 3 essential assessment criteria using a 3-point scale. The total score for each movement (maximum of 9) and the overall total score (maximum of 63) were used as the criterion variables for analysis. A multivariate analysis of variance tested the main effect of football code (2 levels) on the criterion variables, whereas a 1-way analysis of variance identified where differences occurred. A significant effect was noted, with the TID junior ARF players outscoring their soccer counterparts when performing the overhead squat and push-up. No other criterions significantly differed according to the main effect. Practitioners should be aware that specific sporting requirements may incur slight differences in athletic movement skill among TID juniors from different football codes. However, given the low athletic movement skill noted in both football codes, developmental coaches should address the underlying movement skill capabilities of juniors when prescribing physical training in both codes.

  7. Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: description of the diverse and most represented species.

    PubMed

    Ferrero, Giulio; Cordero, Francesca; Tarallo, Sonia; Arigoni, Maddalena; Riccardo, Federica; Gallo, Gaetano; Ronco, Guglielmo; Allasia, Marco; Kulkarni, Neha; Matullo, Giuseppe; Vineis, Paolo; Calogero, Raffaele A; Pardini, Barbara; Naccarati, Alessio

    2018-01-09

    The role of non-coding RNAs in different biological processes and diseases is continuously expanding. Next-generation sequencing together with the parallel improvement of bioinformatics analyses allows the accurate detection and quantification of an increasing number of RNA species. With the aim of exploring new potential biomarkers for disease classification, a clear overview of the expression levels of common/unique small RNA species among different biospecimens is necessary. However, except for miRNAs in plasma, there are no substantial indications about the pattern of expression of various small RNAs in multiple specimens among healthy humans. By analysing small RNA-sequencing data from 243 samples, we have identified and compared the most abundantly and uniformly expressed miRNAs and non-miRNA species of comparable size with the library preparation in four different specimens (plasma exosomes, stool, urine, and cervical scrapes). Eleven miRNAs were commonly detected among all different specimens while 231 miRNAs were globally unique across them. Classification analysis using these miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and tRNAs were the most represented non-miRNA small RNAs detected in all specimen types that were analysed, particularly in urine samples. With the present data, the most uniformly expressed small RNAs in each sample type were also identified. A signature of small RNAs for each specimen could represent a reference gene set in validation studies by RT-qPCR. Overall, the data reported hereby provide an insight of the constitution of the human miRNome and of other small non-coding RNAs in various specimens of healthy individuals.

  8. Identifying Neck and Back Pain in Administrative Data: Defining the right cohort

    PubMed Central

    Siroka, Andrew M.; Shane, Andrea C.; Trafton, Jodie A.; Wagner, Todd H.

    2017-01-01

    Structured Abstract Study design We reviewed existing methods for identifying patients with neck and back pain in administrative data. We compared these methods using data from the Department of Veterans Affairs. Objective To answer the following questions: 1) what diagnosis codes should be used to identify patients with neck and back pain in administrative data; 2) because the majority of complaints are characterized as non-specific or mechanical, what diagnosis codes should be used to identify patients with non-specific or mechanical problems in administrative data; and 3) what procedure and surgical codes should be used to identify patients who have undergone a surgical procedure on the neck or back. Summary of background data Musculoskeletal neck and back pain are pervasive problems, associated with chronic pain, disability, and high rates of healthcare utilization. Administrative data have been widely used in formative research which has largely relied on the original work of Volinn, Cherkin, Deyo and Einstadter and the Back Pain Patient Outcomes Assessment Team first published in 1992. Significant variation in reports of incidence, prevalence, and morbidity associated with these problems may be due to non standard or conflicting methods to define study cohorts. Methods A literature review produced seven methods for identifying neck and back pain in administrative data. These code lists were used to search VA data for patients with back and neck problems, and to further categorize each case by spinal segment involved, as non- specific/mechanical and as surgical or not. Results There is considerable overlap in most algorithms. However, gaps remain. Conclusions Gaps are evident in existing methods and a new framework to identify patients with neck and back pain in administrative data is proposed. PMID:22127268

  9. CRNDE: An important oncogenic long non-coding RNA in human cancers.

    PubMed

    Zhang, Jiaming; Yin, Minuo; Peng, Gang; Zhao, Yingchao

    2018-06-01

    Aberrant overexpression of long non-coding RNA CRNDE (Colorectal Neoplasia Differentially Expressed) is confirmed in various human cancers, which is correlated with advanced clinicopathological features and poor prognosis. CRNDE promotes cancer cell proliferation, migration and invasion, and suppresses apoptosis in complicated mechanisms, which result in the initialization and development of human cancers. In this review, we provide an overview of the oncogenic role and potential clinical applications of CRNDE. © 2018 John Wiley & Sons Ltd.

  10. Cognitive Conflict, Peers, and Volume Conservation.

    ERIC Educational Resources Information Center

    Renshaw, Peter D.

    This study investigates the effects of a training procedure on children's conservation. Volume conservation was induced in twenty-one 8-year-old non-conserving children by a procedure that combined two sources of conflict. First, the competing schemes used in making decisions on volumes were aroused; second, the non-conserver was made aware of a…

  11. A planning approach for agricultural watersheds using precision conservation

    USDA-ARS?s Scientific Manuscript database

    This brief article, written for a non-technical audience, discusses a recently-developed approach for watershed planning and nutrient reduction. The approach can help local stakeholders identify conservation practices that are locally preferred and determine how those practices can be distributed ac...

  12. Non-fixation for Conservative Stochastic Dynamics on the Line

    NASA Astrophysics Data System (ADS)

    Basu, Riddhipratim; Ganguly, Shirshendu; Hoffman, Christopher

    2018-03-01

    We consider activated random walk (ARW), a model which generalizes the stochastic sandpile, one of the canonical examples of self organized criticality. Informally ARW is a particle system on Z with mass conservation. One starts with a mass density {μ > 0} of initially active particles, each of which performs a symmetric random walk at rate one and falls asleep at rate {λ > 0}. Sleepy particles become active on coming in contact with other active particles. We investigate the question of fixation/non-fixation of the process and show for small enough {λ} the critical mass density for fixation is strictly less than one. Moreover, the critical density goes to zero as {λ} tends to zero. This settles a long standing open question.

  13. Theory of Metastable State Relaxation in a Gravitational Field for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).

  14. Identifying Priority Areas for Conservation: A Global Assessment for Forest-Dependent Birds

    PubMed Central

    Buchanan, Graeme M.; Donald, Paul F.; Butchart, Stuart H. M.

    2011-01-01

    Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000–2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from

  15. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment.

    PubMed

    Mills, James D; Iyer, Anand M; van Scheppingen, Jackelien; Bongaarts, Anika; Anink, Jasper J; Janssen, Bart; Zimmer, Till S; Spliet, Wim G; van Rijen, Peter C; Jansen, Floor E; Feucht, Martha; Hainfellner, Johannes A; Krsek, Pavel; Zamecnik, Josef; Kotulska, Katarzyna; Jozwiak, Sergiusz; Jansen, Anna; Lagae, Lieven; Curatolo, Paolo; Kwiatkowski, David J; Pasterkamp, R Jeroen; Senthilkumar, Ketharini; von Oerthel, Lars; Hoekman, Marco F; Gorter, Jan A; Crino, Peter B; Mühlebner, Angelika; Scicluna, Brendon P; Aronica, Eleonora

    2017-08-14

    Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that results from a mutation in the TSC1 or TSC2 genes leading to constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1). TSC is associated with autism, intellectual disability and severe epilepsy. Cortical tubers are believed to represent the neuropathological substrates of these disabling manifestations in TSC. In the presented study we used high-throughput RNA sequencing in combination with systems-based computational approaches to investigate the complexity of the TSC molecular network. Overall we detected 438 differentially expressed genes and 991 differentially expressed small non-coding RNAs in cortical tubers compared to autopsy control brain tissue. We observed increased expression of genes associated with inflammatory, innate and adaptive immune responses. In contrast, we observed a down-regulation of genes associated with neurogenesis and glutamate receptor signaling. MicroRNAs represented the largest class of over-expressed small non-coding RNA species in tubers. In particular, our analysis revealed that the miR-34 family (including miR-34a, miR-34b and miR-34c) was significantly over-expressed. Functional studies demonstrated the ability of miR-34b to modulate neurite outgrowth in mouse primary hippocampal neuronal cultures. This study provides new insights into the TSC transcriptomic network along with the identification of potential new treatment targets.

  16. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection.

    PubMed

    Wang, Jinyan; Yang, Yuwen; Jin, Lamei; Ling, Xitie; Liu, Tingli; Chen, Tianzi; Ji, Yinghua; Yu, Wengui; Zhang, Baolong

    2018-06-04

    Long Noncoding-RNAs (LncRNAs) are known to be involved in some biological processes, but their roles in plant-virus interactions remain largely unexplored. While circular RNAs (circRNAs) have been studied in animals, there has yet to be extensive research on them in a plant system, especially in tomato-tomato yellow leaf curl virus (TYLCV) interaction. In this study, RNA transcripts from the susceptible tomato line JS-CT-9210 either infected with TYLCV or untreated, were sequenced in a pair-end strand-specific manner using ribo-zero rRNA removal library method. A total of 2056 lncRNAs including 1767 long intergenic non-coding RNA (lincRNAs) and 289 long non-coding natural antisense transcripts (lncNATs) were obtained. The expression patterns in lncRNAs were similar in susceptible tomato plants between control check (CK) and TYLCV infected samples. Our analysis suggested that lncRNAs likely played a role in a variety of functions, including plant hormone signaling, protein processing in the endoplasmic reticulum, RNA transport, ribosome function, photosynthesis, glulathione metabolism, and plant-pathogen interactions. Using virus-induced gene silencing (VIGS) analysis, we found that reduced expression of the lncRNA S-slylnc0957 resulted in enhanced resistance to TYLCV in susceptible tomato plants. Moreover, we identified 184 circRNAs candidates using the CircRNA Identifier (CIRI) software, of which 32 circRNAs were specifically expressed in untreated samples and 83 circRNAs in TYLCV samples. Approximately 62% of these circRNAs were derived from exons. We validated the circRNAs by both PCR and Sanger sequencing using divergent primers, and found that most of circRNAs were derived from the exons of protein coding genes. The silencing of these circRNAs parent genes resulted in decreased TYLCV virus accumulation. In this study, we identified novel lncRNAs and circRNAs using bioinformatic approaches and showed that these RNAs function as negative regulators of TYLCV

  17. NONCODE v2.0: decoding the non-coding.

    PubMed

    He, Shunmin; Liu, Changning; Skogerbø, Geir; Zhao, Haitao; Wang, Jie; Liu, Tao; Bai, Baoyan; Zhao, Yi; Chen, Runsheng

    2008-01-01

    The NONCODE database is an integrated knowledge database designed for the analysis of non-coding RNAs (ncRNAs). Since NONCODE was first released 3 years ago, the number of known ncRNAs has grown rapidly, and there is growing recognition that ncRNAs play important regulatory roles in most organisms. In the updated version of NONCODE (NONCODE v2.0), the number of collected ncRNAs has reached 206 226, including a wide range of microRNAs, Piwi-interacting RNAs and mRNA-like ncRNAs. The improvements brought to the database include not only new and updated ncRNA data sets, but also an incorporation of BLAST alignment search service and access through our custom UCSC Genome Browser. NONCODE can be found under http://www.noncode.org or http://noncode.bioinfo.org.cn.

  18. LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models

    NASA Astrophysics Data System (ADS)

    Gueuvoghlanian, E. P.

    2001-08-01

    A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

  19. Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans.

    PubMed

    Awan, Ali R; Manfredo, Amanda; Pleiss, Jeffrey A

    2013-07-30

    Alternative splicing is a potent regulator of gene expression that vastly increases proteomic diversity in multicellular eukaryotes and is associated with organismal complexity. Although alternative splicing is widespread in vertebrates, little is known about the evolutionary origins of this process, in part because of the absence of phylogenetically conserved events that cross major eukaryotic clades. Here we describe a lariat-sequencing approach, which offers high sensitivity for detecting splicing events, and its application to the unicellular fungus, Schizosaccharomyces pombe, an organism that shares many of the hallmarks of alternative splicing in mammalian systems but for which no previous examples of exon-skipping had been demonstrated. Over 200 previously unannotated splicing events were identified, including examples of regulated alternative splicing. Remarkably, an evolutionary analysis of four of the exons identified here as subject to skipping in S. pombe reveals high sequence conservation and perfect length conservation with their homologs in scores of plants, animals, and fungi. Moreover, alternative splicing of two of these exons have been documented in multiple vertebrate organisms, making these the first demonstrations of identical alternative-splicing patterns in species that are separated by over 1 billion y of evolution.

  20. Agricultural conservation planning framework: 1. Developing multipractice watershed planning scenarios and assessing nutrient reduction potential.

    PubMed

    Tomer, M D; Porter, S A; Boomer, K M B; James, D E; Kostel, J A; Helmers, M J; Isenhart, T M; McLellan, E

    2015-05-01

    Spatial data on soils, land use, and topography, combined with knowledge of conservation effectiveness, can be used to identify alternatives to reduce nutrient discharge from small (hydrologic unit code [HUC]12) watersheds. Databases comprising soil attributes, agricultural land use, and light detection and ranging-derived elevation models were developed for two glaciated midwestern HUC12 watersheds: Iowa's Beaver Creek watershed has an older dissected landscape, and Lime Creek in Illinois is young and less dissected. Subsurface drainage is common in both watersheds. We identified locations for conservation practices, including in-field practices (grassed waterways), edge-of-field practices (nutrient-removal wetlands, saturated buffers), and drainage-water management, by applying terrain analyses, geographic criteria, and cross-classifications to field- and watershed-scale geographic data. Cover crops were randomly distributed to fields without geographic prioritization. A set of alternative planning scenarios was developed to represent a variety of extents of implementation among these practices. The scenarios were assessed for nutrient reduction potential using a spreadsheet approach to calculate the average nutrient-removal efficiency required among the practices included in each scenario to achieve a 40% NO-N reduction. Results were evaluated in the context of the Iowa Nutrient Reduction Strategy, which reviewed nutrient-removal efficiencies of practices and established the 40% NO-N reduction as Iowa's target for Gulf of Mexico hypoxia mitigation by agriculture. In both test watersheds, planning scenarios that could potentially achieve the targeted NO-N reduction but remove <5% of cropland from production were identified. Cover crops and nutrient removal wetlands were common to these scenarios. This approach provides an interim technology to assist local watershed planning and could provide planning scenarios to evaluate using watershed simulation models. A set

  1. Effects of a Non-Conservative Sequence on the Properties of β-glucuronidase from Aspergillus terreus Li-20

    PubMed Central

    Liu, Yanli; Huangfu, Jie; Qi, Feng; Kaleem, Imdad; E, Wenwen; Li, Chun

    2012-01-01

    We cloned the β-glucuronidase gene (AtGUS) from Aspergillus terreus Li-20 encoding 657 amino acids (aa), which can transform glycyrrhizin into glycyrrhetinic acid monoglucuronide (GAMG) and glycyrrhetinic acid (GA). Based on sequence alignment, the C-terminal non-conservative sequence showed low identity with those of other species; thus, the partial sequence AtGUS(-3t) (1–592 aa) was amplified to determine the effects of the non-conservative sequence on the enzymatic properties. AtGUS and AtGUS(-3t) were expressed in E. coli BL21, producing AtGUS-E and AtGUS(-3t)-E, respectively. At the similar optimum temperature (55°C) and pH (AtGUS-E, 6.6; AtGUS(-3t)-E, 7.0) conditions, the thermal stability of AtGUS(-3t)-E was enhanced at 65°C, and the metal ions Co2+, Ca2+ and Ni2+ showed opposite effects on AtGUS-E and AtGUS(-3t)-E, respectively. Furthermore, Km of AtGUS(-3t)-E (1.95 mM) was just nearly one-seventh that of AtGUS-E (12.9 mM), whereas the catalytic efficiency of AtGUS(-3t)-E was 3.2 fold higher than that of AtGUS-E (7.16 vs. 2.24 mM s−1), revealing that the truncation of non-conservative sequence can significantly improve the catalytic efficiency of AtGUS. Conformational analysis illustrated significant difference in the secondary structure between AtGUS-E and AtGUS(-3t)-E by circular dichroism (CD). The results showed that the truncation of the non-conservative sequence could preferably alter and influence the stability and catalytic efficiency of enzyme. PMID:22347419

  2. Non-oscillatory central differencing for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Nessyahu, Haim; Tadmor, Eitan

    1988-01-01

    Many of the recently developed high resolution schemes for hyperbolic conservation laws are based on upwind differencing. The building block for these schemes is the averaging of an appropriate Godunov solver; its time consuming part involves the field-by-field decomposition which is required in order to identify the direction of the wind. Instead, the use of the more robust Lax-Friedrichs (LxF) solver is proposed. The main advantage is simplicity: no Riemann problems are solved and hence field-by-field decompositions are avoided. The main disadvantage is the excessive numerical viscosity typical to the LxF solver. This is compensated for by using high-resolution MUSCL-type interpolants. Numerical experiments show that the quality of results obtained by such convenient central differencing is comparable with those of the upwind schemes.

  3. Domestic water conservation potential in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdulrazzak, Mohammed J.; Khan, Muhammad Z. A.

    1990-03-01

    Domestic water conservation in arid climates can result in efficient utilization of existing water supplies. The impacts of conservation measures such as the installation of water-saving devices, water metering and pricing schemes, water rationing and public awareness programs, strict plumbing codes, penalties for wasting water, programs designed to reduce leakage from public water lines and within the home, water-efficient landscaping, economic and ethical incentives are addressed in detail. Cost savings in arid climates, with particular reference to Saudi Arabia, in relation to some conservation techniques, are presented. Water conservation technology and tentative demonstration and implementation of water conservation programs are discussed.

  4. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella.

    PubMed

    Liu, Feiling; Guo, Dianhao; Yuan, Zhuting; Chen, Chen; Xiao, Huamei

    2017-11-20

    Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identified from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and different developmental stages. The identified P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specific RT-PCR. In total, 54-172 lncRNAs were specifically expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63-135 lncRNAs were specifically expressed in different developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co-expressed with their overlapping or neighboring mRNA genes. In summary, we identified thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella.

  5. Identifying Adverse Events Using International Classification of Diseases, Tenth Revision Y Codes in Korea: A Cross-sectional Study.

    PubMed

    Ock, Minsu; Kim, Hwa Jung; Jeon, Bomin; Kim, Ye-Jee; Ryu, Hyun Mi; Lee, Moo-Song

    2018-01-01

    The use of administrative data is an affordable alternative to conducting a difficult large-scale medical-record review to estimate the scale of adverse events. We identified adverse events from 2002 to 2013 on the national level in Korea, using International Classification of Diseases, tenth revision (ICD-10) Y codes. We used data from the National Health Insurance Service-National Sample Cohort (NHIS-NSC). We relied on medical treatment databases to extract information on ICD-10 Y codes from each participant in the NHIS-NSC. We classified adverse events in the ICD-10 Y codes into 6 types: those related to drugs, transfusions, and fluids; those related to vaccines and immunoglobulin; those related to surgery and procedures; those related to infections; those related to devices; and others. Over 12 years, a total of 20 817 adverse events were identified using ICD-10 Y codes, and the estimated total adverse event rate was 0.20%. Between 2002 and 2013, the total number of such events increased by 131.3%, from 1366 in 2002 to 3159 in 2013. The total rate increased by 103.9%, from 0.17% in 2002 to 0.35% in 2013. Events related to drugs, transfusions, and fluids were the most common (19 446, 93.4%), followed by those related to surgery and procedures (1209, 5.8%) and those related to vaccines and immunoglobulin (72, 0.3%). Based on a comparison with the results of other studies, the total adverse event rate in this study was significantly underestimated. Improving coding practices for ICD-10 Y codes is necessary to precisely monitor the scale of adverse events in Korea.

  6. Conservative Management of Placenta Accreta/Increta after Vaginal Birth

    PubMed Central

    Peiffer, S.; Reinhard, J.; Reitter, A.; Louwen, F.

    2012-01-01

    Aim: Aim of the study was to show that conservative management with preservation of the uterus and of fertility is possible in patients with placenta accreta/increta after vaginal delivery. Method: A retrospective analysis of patients with placental attachment disorders after vaginal delivery was done in a perinatal centre between November 2009 and April 2011. The patient collective was identified using the ICD-10 codes for placenta accreta/increta/percreta, and patient records were analysed for risk factors, maternal morbidity, preservation of the uterus and of fertility, and neonatal outcome. Results: Three cases of placenta increta were identified in the last 1.5 years out of a total of 1457 vaginal deliveries, and all 3 cases were treated conservatively. Mean maternal age was 35.3 years; gestational age ranged from 39 to 41 weeks, and mean duration between delivery of the child and delivery of the placenta was 44.67 days (range: 14–100 days). Two patients developed symptoms of endomyometritis, including fever, leukocytosis and increased CRP levels. All 3 women were successfully managed with preservation of the uterus. Conclusion: In selected cases with placenta accreta/increta after vaginal delivery, it is possible to avoid surgical procedures, particularly hysterectomy procedures, and successfully manage these patients conservatively with preservation of the uterus. PMID:25308979

  7. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data.

    PubMed

    Yang, Jian-Hua; Li, Jun-Hao; Jiang, Shan; Zhou, Hui; Qu, Liang-Hu

    2013-01-01

    Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.

  8. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice.

    PubMed

    Schmouth, Jean-François; Castellarin, Mauro; Laprise, Stéphanie; Banks, Kathleen G; Bonaguro, Russell J; McInerny, Simone C; Borretta, Lisa; Amirabbasi, Mahsa; Korecki, Andrea J; Portales-Casamar, Elodie; Wilson, Gary; Dreolini, Lisa; Jones, Steven J M; Wasserman, Wyeth W; Goldowitz, Daniel; Holt, Robert A; Simpson, Elizabeth M

    2013-10-14

    The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.

  9. Long Non-Coding RNA as Potential Biomarker for Prostate Cancer: Is It Making a Difference?

    PubMed

    Deng, Junli; Tang, Jie; Wang, Guo; Zhu, Yuan-Shan

    2017-03-07

    Whole genome transcriptomic analyses have identified numerous long non-coding RNA (lncRNA) transcripts that are increasingly implicated in cancer biology. LncRNAs are found to promote essential cancer cell functions such as proliferation, invasion, and metastasis, with the potential to serve as novel biomarkers of various cancers and to further reveal uncharacterized aspects of tumor biology. However, the biological and molecular mechanisms as well as the clinical applications of lncRNAs in diverse diseases are not completely understood, and remain to be fully explored. LncRNAs may be critical players and regulators in prostate cancer carcinogenesis and progression, and could serve as potential biomarkers for prostate cancer. This review focuses on lncRNA biomarkers that are already available for clinical use and provides an overview of lncRNA biomarkers that are under investigation for clinical development in prostate cancer.

  10. Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage[W][OA

    PubMed Central

    Urzica, Eugen I.; Casero, David; Yamasaki, Hiroaki; Hsieh, Scott I.; Adler, Lital N.; Karpowicz, Steven J.; Blaby-Haas, Crysten E.; Clarke, Steven G.; Loo, Joseph A.; Pellegrini, Matteo; Merchant, Sabeeha S.

    2012-01-01

    We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron. PMID:23043051

  11. Long non-coding RNA CASC2 regulates cell biological behaviour through the MAPK signalling pathway in hepatocellular carcinoma.

    PubMed

    Gan, Yuanyuan; Han, Nana; He, Xiaoqin; Yu, Jiajun; Zhang, Meixia; Zhou, Yujie; Liang, Huiling; Deng, Junjian; Zheng, Yongfa; Ge, Wei; Long, Zhixiong; Xu, Ximing

    2017-06-01

    Long non-coding RNAs have previously been demonstrated to play important roles in regulating human diseases, especially cancer. However, the biological functions and molecular mechanisms of long non-coding RNAs in hepatocellular carcinoma have not been extensively studied. The long non-coding RNA CASC2 (cancer susceptibility candidate 2) has been characterised as a tumour suppressor in endometrial cancer and gliomas. However, the role and function of CASC2 in hepatocellular carcinoma remain unknown. In this study, using quantitative real-time polymerase chain reaction, we confirmed that CASC2 expression was downregulated in 50 hepatocellular carcinoma cases (62%) and in hepatocellular carcinoma cell lines compared with the paired adjacent tissues and normal liver cells. In vitro experiments further demonstrated that overexpressed CASC2 decreased hepatocellular carcinoma cell proliferation, migration and invasion as well as promoted apoptosis via inactivating the mitogen-activated protein kinase signalling pathway. Our findings demonstrate that CASC2 could be a useful tumour suppressor factor and a promising therapeutic target for hepatocellular carcinoma.

  12. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  13. Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps

    PubMed Central

    Smircich, Pablo; Duhagon, María Ana; Garat, Beatriz

    2015-01-01

    In trypanosomatids, the RNA polymerase I (RNAPI)-dependent promoters controlling the ribosomal RNA (rRNA) genes have been well identified. Although the RNAPI transcription machinery recognizes the DNA conformation instead of the DNA sequence of promoters, no conformational study has been reported for these promoters. Here we present the in silico analysis of the intrinsic DNA curvature of the rRNA gene core promoters in Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We found that, in spite of the absence of sequence conservation, these promoters hold conformational properties similar to other eukaryotic rRNA promoters. Our results also indicated that the intrinsic DNA curvature pattern is conserved within the Leishmania genus and also among strains of T. cruzi and T. brucei. Furthermore, we analyzed the impact of point mutations on the intrinsic curvature and their impact on the promoter activity. Furthermore, we found that the core promoters of protein-coding genes transcribed by RNAPI in T. brucei show the same conserved conformational characteristics. Overall, our results indicate that DNA intrinsic curvature of the rRNA gene core promoters is conserved in these ancient eukaryotes and such conserved curvature might be a requirement of RNAPI machinery for transcription of not only rRNA genes but also protein-coding genes. PMID:26718450

  14. T cells are influenced by a long non-coding RNA in the autoimmune associated PTPN2 locus.

    PubMed

    Houtman, Miranda; Shchetynsky, Klementy; Chemin, Karine; Hensvold, Aase Haj; Ramsköld, Daniel; Tandre, Karolina; Eloranta, Maija-Leena; Rönnblom, Lars; Uebe, Steffen; Catrina, Anca Irinel; Malmström, Vivianne; Padyukov, Leonid

    2018-06-01

    Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naïve CD4 + T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligonucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. MOIL-opt: Energy-Conserving Molecular Dynamics on a GPU/CPU system

    PubMed Central

    Ruymgaart, A. Peter; Cardenas, Alfredo E.; Elber, Ron

    2011-01-01

    We report an optimized version of the molecular dynamics program MOIL that runs on a shared memory system with OpenMP and exploits the power of a Graphics Processing Unit (GPU). The model is of heterogeneous computing system on a single node with several cores sharing the same memory and a GPU. This is a typical laboratory tool, which provides excellent performance at minimal cost. Besides performance, emphasis is made on accuracy and stability of the algorithm probed by energy conservation for explicit-solvent atomically-detailed-models. Especially for long simulations energy conservation is critical due to the phenomenon known as “energy drift” in which energy errors accumulate linearly as a function of simulation time. To achieve long time dynamics with acceptable accuracy the drift must be particularly small. We identify several means of controlling long-time numerical accuracy while maintaining excellent speedup. To maintain a high level of energy conservation SHAKE and the Ewald reciprocal summation are run in double precision. Double precision summation of real-space non-bonded interactions improves energy conservation. In our best option, the energy drift using 1fs for a time step while constraining the distances of all bonds, is undetectable in 10ns simulation of solvated DHFR (Dihydrofolate reductase). Faster options, shaking only bonds with hydrogen atoms, are also very well behaved and have drifts of less than 1kcal/mol per nanosecond of the same system. CPU/GPU implementations require changes in programming models. We consider the use of a list of neighbors and quadratic versus linear interpolation in lookup tables of different sizes. Quadratic interpolation with a smaller number of grid points is faster than linear lookup tables (with finer representation) without loss of accuracy. Atomic neighbor lists were found most efficient. Typical speedups are about a factor of 10 compared to a single-core single-precision code. PMID:22328867

  16. Identification of Developmentally Regulated PCP-Responsive Non-Coding RNA, prt6, in the Rat Thalamus

    PubMed Central

    Umino, Asami; Nishikawa, Toru

    2014-01-01

    Schizophrenia and similar psychoses induced by NMDA-type glutamate receptor antagonists, such as phencyclidine (PCP) and ketamine, usually develop after adolescence. Moreover, adult-type behavioral disturbance following NMDA receptor antagonist application in rodents is observed after a critical period at around 3 postnatal weeks. These observations suggest that the schizophrenic symptoms caused by and psychotomimetic effects of NMDA antagonists require the maturation of certain brain neuron circuits and molecular networks, which differentially respond to NMDA receptor antagonists across adolescence and the critical period. From this viewpoint, we have identified a novel developmentally regulated phencyclidine-responsive transcript from the rat thalamus, designated as prt6, as a candidate molecule involved in the above schizophrenia-related systems using a DNA microarray technique. The transcript is a non-coding RNA that includes sequences of at least two microRNAs, miR132 and miR212, and is expressed strongly in the brain and testis, with trace or non-detectable levels in the spleen, heart, liver, kidney, lung and skeletal muscle, as revealed by Northern blot analysis. The systemic administration of PCP (7.5 mg/kg, subcutaneously (s.c.)) significantly elevated the expression of prt6 mRNA in the thalamus at postnatal days (PD) 32 and 50, but not at PD 8, 13, 20, or 24 as compared to saline-treated controls. At PD 50, another NMDA receptor antagonist, dizocilpine (0.5 mg/kg, s.c.), and a schizophrenomimetic dopamine agonist, methamphetamine (4.8 mg/kg, s.c.), mimicked a significant increase in the levels of thalamic prt6 mRNAs, while a D2 dopmamine receptor antagonist, haloperidol, partly inhibited the increasing influence of PCP on thalamic prt6 expression without its own effects. These data indicate that prt6 may be involved in the pathophysiology of the onset of drug-induced schizophrenia-like symptoms and schizophrenia through the possible dysregulation of

  17. Using read codes to identify patients with irritable bowel syndrome in general practice: a database study

    PubMed Central

    2013-01-01

    Background Estimates of the prevalence of irritable bowel syndrome (IBS) vary widely, and a large proportion of patients report having consulted their general practitioner (GP). In patients with new onset gastrointestinal symptoms in primary care it might be possible to predict those at risk of persistent symptoms. However, one of the difficulties is identifying patients within primary care. GPs use a variety of Read Codes to describe patients presenting with IBS. Furthermore, in a qualitative study, exploring GPs’ attitudes and approaches to defining patients with IBS, GPs appeared reluctant to add the IBS Read Code to the patient record until more serious conditions were ruled out. Consequently, symptom codes such as 'abdominal pain’, 'diarrhoea’ or 'constipation’ are used. The aim of the current study was to investigate the prevalence of recorded consultations for IBS and to explore the symptom profile of patients with IBS using data from the Salford Integrated Record (SIR). Methods This was a database study using the SIR, a local patient sharing record system integrating primary, community and secondary care information. Records were obtained for a cohort of patients with gastrointestinal disorders from January 2002 to December 2011. Prevalence rates, symptom recording, medication prescribing and referral patterns were compared for three patient groups (IBS, abdominal pain (AP) and Inflammatory Bowel Disease (IBD)). Results The prevalence of IBS (age standardised rate: 616 per year per 100,000 population) was much lower than expected compared with that reported in the literature. The majority of patients (69%) had no gastrointestinal symptoms recorded in the year prior to their IBS. However a proportion of these (22%) were likely to have been prescribed NICE guideline recommended medications for IBS in that year. The findings for AP and IBD were similar. Conclusions Using Read Codes to identify patients with IBS may lead to a large underestimate of the

  18. Using read codes to identify patients with irritable bowel syndrome in general practice: a database study.

    PubMed

    Harkness, Elaine F; Grant, Laura; O'Brien, Sarah J; Chew-Graham, Carolyn A; Thompson, David G

    2013-12-02

    Estimates of the prevalence of irritable bowel syndrome (IBS) vary widely, and a large proportion of patients report having consulted their general practitioner (GP). In patients with new onset gastrointestinal symptoms in primary care it might be possible to predict those at risk of persistent symptoms. However, one of the difficulties is identifying patients within primary care. GPs use a variety of Read Codes to describe patients presenting with IBS. Furthermore, in a qualitative study, exploring GPs' attitudes and approaches to defining patients with IBS, GPs appeared reluctant to add the IBS Read Code to the patient record until more serious conditions were ruled out. Consequently, symptom codes such as 'abdominal pain', 'diarrhoea' or 'constipation' are used. The aim of the current study was to investigate the prevalence of recorded consultations for IBS and to explore the symptom profile of patients with IBS using data from the Salford Integrated Record (SIR). This was a database study using the SIR, a local patient sharing record system integrating primary, community and secondary care information. Records were obtained for a cohort of patients with gastrointestinal disorders from January 2002 to December 2011. Prevalence rates, symptom recording, medication prescribing and referral patterns were compared for three patient groups (IBS, abdominal pain (AP) and Inflammatory Bowel Disease (IBD)). The prevalence of IBS (age standardised rate: 616 per year per 100,000 population) was much lower than expected compared with that reported in the literature. The majority of patients (69%) had no gastrointestinal symptoms recorded in the year prior to their IBS. However a proportion of these (22%) were likely to have been prescribed NICE guideline recommended medications for IBS in that year. The findings for AP and IBD were similar. Using Read Codes to identify patients with IBS may lead to a large underestimate of the community prevalence. The IBS diagnostic Read

  19. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    PubMed

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Comparison of two computer codes for crack growth analysis: NASCRAC Versus NASA/FLAGRO

    NASA Technical Reports Server (NTRS)

    Stallworth, R.; Meyers, C. A.; Stinson, H. C.

    1989-01-01

    Results are presented from the comparison study of two computer codes for crack growth analysis - NASCRAC and NASA/FLAGRO. The two computer codes gave compatible conservative results when the part through crack analysis solutions were analyzed versus experimental test data. Results showed good correlation between the codes for the through crack at a lug solution. For the through crack at a lug solution, NASA/FLAGRO gave the most conservative results.