Science.gov

Sample records for identify eggshell proteins

  1. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness

    PubMed Central

    Wu, Guiqin; Shi, Fengying; Liu, Aiqiao; Yang, Ning

    2016-01-01

    Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57) would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 (SLC25A5) and down-regulated translocator protein (TSPO) would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF). In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation. PMID:28006025

  2. Differential label-free quantitative proteomic analysis of avian eggshell matrix and uterine fluid proteins associated with eggshell mechanical property.

    PubMed

    Sun, Congjiao; Xu, Guiyun; Yang, Ning

    2013-12-01

    Eggshell strength is a crucial economic trait for table egg production. During the process of eggshell formation, uncalcified eggs are bathed in uterine fluid that plays regulatory roles in eggshell calcification. In this study, a label-free MS-based protein quantification technology was used to detect differences in protein abundance between eggshell matrix from strong and weak eggs (shell matrix protein from strong eggshells and shell matrix protein from weak eggshells) and between the corresponding uterine fluids bathing strong and weak eggs (uterine fluid bathing strong eggs and uterine fluid bathing weak eggs) in a chicken population. Here, we reported the first global proteomic analysis of uterine fluid. A total of 577 and 466 proteins were identified in uterine fluid and eggshell matrix, respectively. Of 447 identified proteins in uterine fluid bathing strong eggs, up to 357 (80%) proteins were in common with proteins in uterine fluid bathing weak eggs. Similarly, up to 83% (328/396) of the proteins in shell matrix protein from strong eggshells were in common with the proteins in shell matrix protein from weak eggshells. The large amount of common proteins indicated that the difference in protein abundance should play essential roles in influencing eggshell strength. Ultimately, 15 proteins mainly relating to eggshell matrix specific proteins, calcium binding and transportation, protein folding and sorting, bone development or diseases, and thyroid hormone activity were considered to have closer association with the formation of strong eggshell.

  3. Unique Immunogenic Proteins in Heterodera glycines Eggshells

    PubMed Central

    Kennedy, M. J.; Schoelz, J. E.; Donald, P. A.; Niblack, T. L.

    1997-01-01

    Polyclonal antibodies were raised against Heterodera glycines eggshells to determine the feasibility of developing an immunoassay for H. glycines eggs. An indirect enzyme-linked immunosorbent assay (ELISA) was developed from anfisera collected 10 weeks after the initial injection. From serial dilutions of sonicated eggshells or whole eggs, a sensitivity of detection to 5 ng/ml sonicated eggshells or 1 egg of H. glycines was determined. The method of eggshell preparation had no effect on the antibodies produced; however, the antibodies cross-reacted with sonicated J2 of H. glycines and eggs of Meloidogyne incognita and H. schachtii. Most of the proteins in both life stages of H. glycines and eggs of M. incognita and H. schachtii had similar migration properties when separated on SDS-PAGE gels and stained with Coomassie blue. Western blot analysis, with antisera adsorbed with homogenized J2 of H. glycines, showed proteins that were specifically localized to eggshells of H. glycines. Monoclonal antibodies might provide a useful immunoassay where polyclonal antibodies lack sufficient specificity. PMID:19274159

  4. Possible eggshell protein gene from Schistosoma mansoni.

    PubMed

    Johnson, K S; Taylor, D W; Cordingley, J S

    1987-01-02

    We have identified and sequenced a cDNA clone of a mRNA found only in mature female schistosomes. This mRNA is not detectably synthesized by female worms from single sex infections (unisexual females), by males or by the developing miracidia in the eggs. The clone hybridises to a highly abundant polyadenylated mRNA of approximately 1500 nucleotides. The nucleotide sequence of the clone predicts a polypeptide comprising two repetitive regions. A pentapeptide repeat with the consensus sequence Gly-Tyr-Asp-Lys-Tyr, and a region rich in histidine residues. Hybrid selected mRNA translated in vitro with [3H]tyrosine as labelled amino acid yields a polypeptide of 48 kDa (p48) that corresponds to the major [3H]tyrosine labelled translation product of female worm total mRNA. p48 does not label with [35S]methionine and is absent from the translation products of male and unisexual female mRNAs. The amino acid sequence of p48 has significant homologies to silk moth chorion proteins and we suggest that it is one of the major components of the schistosome eggshell probably accounting for the high level of [3H]tyrosine incorporation into the vitellaria of Schistosoma mansoni. The tyrosine content of the polypeptide suggests that it may play a role in phenol oxidase mediated cross-linking of the schistosome eggshell and in support of this we find that mushroom phenol oxidase will cause the specific cross-linking of p48 in in vitro translation products.

  5. Presclerotized eggshell protein from the liver fluke Fasciola hepatica.

    PubMed

    Waite, J H; Rice-Ficht, A C

    1987-12-01

    Trematode parasites protect their eggs with a tough tanned eggshell. Eggshell precursor proteins are synthesized and stockpiled within the extensive vitellaria of the animal. A major eggshell precursor protein with an apparent molecular weight of 31,000 and pI of 7.4 was isolated from the vitellaria of Fasciola hepatica. This protein, which represents 6-7% of the total protein in mature Fasciola, is unique in containing rather high levels of the amino acid 3,4-dihydroxyphenylalanine (DOPA), i.e., 110 residues per 1000. Other prominent amino acids are glycine, aspartic acid, and lysine. A prominent DOPA-containing tryptic peptide derived from eggshell precursor protein has the sequence Gly-Gly-Gly-DOPA-Gly-Gly-DOPA-Gly-Lys. DOPA residues disappear during the maturation of the eggshell and by treatment in vitro with mushroom polyphenol oxidase. This disappearance may be related to the formation of cross-links in the eggshell protein.

  6. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins.

    PubMed

    Kim, GeunHyung; Min, Taijin; Park, Su A; Kim, Wan Doo; Koh, Young Ho

    2007-12-01

    Soluble eggshell proteins were used as a reinforcing material of electrospun micro/nanofibers for tissue engineering. A biocomposite composed of poly(epsilon-caprolactone) (PCL) micro/nanofibers and soluble eggshell protein was fabricated with a two-step fabrication method, which is an electrospinning process followed by an air-spraying process. To achieve a stable electrospinning process, we used an auxiliary cylindrical electrode connected with a spinning nozzle. PCL biocomposite was characterized in water contact angle and mechanical properties as well as cell proliferation for its application as a tissue engineering material. It showed an improved hydrophilic characteristic compared with that of a micro/nanofiber web generated from a pure PCL solution using a typical electrospinning process. Moreover, the fabricated biocomposite had good mechanical properties compared to a typical electrospun micro/nanofiber mat. The fabricated biocomposite made human dermal fibroblasts grow better than pure PCL. From the results, the reinforced polymeric micro/nanofiber scaffold can be easily achieved with these modified processes.

  7. Structure of struthiocalcin-1, an intramineral protein from Struthio camelus eggshell, in two crystal forms.

    PubMed

    Ruiz-Arellano, Rayana R; Medrano, Francisco J; Moreno, Abel; Romero, Antonio

    2015-04-01

    Biomineralization is the process by which living organisms produce minerals. One remarkable example is the formation of eggshells in birds. Struthiocalcins present in the ostrich (Struthio camellus) eggshell matrix act as biosensors of calcite growth during eggshell formation. Here, the crystal structure of struthiocalcin-1 (SCA-1) is reported in two different crystal forms. The structure is a compact single domain with an α/β fold characteristic of the C-type lectin family. In contrast to the related avian ovocleidin OC17, the electrostatic potential on the molecular surface is dominated by an acidic patch. Scanning electron microscopy combined with Raman spectroscopy indicates that these intramineral proteins (SCA-1 and SCA-2) induce calcium carbonate precipitation, leading to the formation of a stable form of calcite in the mature eggshell. Finally, the implications of these two intramineral proteins SCA-1 and SCA-2 in the nucleation of calcite during the formation of eggshells in ratite birds are discussed.

  8. Quantitative expression of candidate genes affecting eggshell color.

    PubMed

    Zheng, Chuanwei; Li, Zesheng; Yang, Ning; Ning, Zhonghua

    2014-05-01

    There are three pigments that affect the color of an eggshell: protoporphyrin, biliverdin and biliverdin-zinc chelate. Protoporphyrin is the main pigment in brown and light-brown eggshells, whereas very little protoporphyrin is found in white eggshells. Eggshell protoporphyrin is derived from the heme formation in birds. Coproporphyrinogen III oxidase (CPOX) and ferrochelatase (FECH) represent rate-limiting enzymes for the heme-biosynthetic pathway. Breast cancer resistance protein (BCRP), feline leukemia virus receptor (FLVCR), and heme-responsive gene-1 (HRG1) serve as primary transporters for both protoporphyrinogen and heme. Finally, four organic anion transporting polypeptide family members (including solute carrier organic anion transporter family, SLCO1C1, SLCO1A2, SLCO1B3 and LOC418189) may affect pigment transport within eggshells. Here we measured gene expression levels in key tissues of egg-producing hens. We analyzed three different types of hens that generated distinct eggshell colors: white, pink or brown. Our data revealed three ways in which eggshell color was genetically influenced. First, high-level expression of CPOX generated more protoporphyrinogen and a brown eggshell color. In contrast, high expression of FECH likely converted more protoporphyrinogen into heme, reduced protoporphyrinogen levels within the eggshell and generated a light color. Second, heme transporters also affected eggshell color. High-level expression of BCRP, HRG1 and FLVCR were associated with brown, white and generally lighter eggshell colors, respectively. Finally, protoporphyrin precipitation also affected eggshell color, as high expression of both SLCO1A2 and SLCO1C1 were associated with brown eggshell color. As such, we have identified seven genes in which expression levels in different tissues were associated with eggshell color.

  9. Ovocalyxin-36 is a pattern recognition protein in chicken eggshell membranes.

    PubMed

    Cordeiro, Cristianne M M; Esmaili, Hamed; Ansah, George; Hincke, Maxwell T

    2013-01-01

    The avian eggshell membranes are essential elements in the fabrication of the calcified shell as a defense against bacterial penetration. Ovocalyxin-36 (OCX-36) is an abundant avian eggshell membrane protein, which shares protein sequence homology to bactericidal permeability-increasing protein (BPI), lipopolysaccharide-binding protein (LBP) and palate, lung and nasal epithelium clone (PLUNC) proteins. We have developed an efficient method to extract OCX-36 from chicken eggshell membranes for purification with cation and anion exchange chromatographies. Purified OCX-36 protein exhibited lipopolysaccharide (LPS) binding activity and bound lipopolysaccharide (LPS) from Escherichia coli O111:B4 in a dose-dependent manner. OCX-36 showed inhibitory activity against growth of Staphylococcus aureus ATCC 6538. OCX-36 single nucleotide polymorphisms (SNPs) were verified at cDNA 211 position and the corresponding proteins proline-71 (Pro-71) or serine-71 (Ser-71) were purified from eggs collected from genotyped hens. A significant difference between Pro-71 and Ser-71 OCX-36 for S. aureus lipoteichoic acid (LTA) binding activity was detected. The current study is a starting point to understand the innate immune role that OCX-36 may play in protection against bacterial invasion of both embryonated eggs (relevant to avian reproductive success) and unfertilized table eggs (relevant to food safety).

  10. Enhanced protein delivery by multi-ion containing eggshell derived apatitic-alginate composite nanocarriers.

    PubMed

    Sampath Kumar, T S; Madhumathi, K; Rajkamal, B; Zaheatha, S; Rajathi Malar, A; Alamelu Bai, S

    2014-11-01

    Eggshell is an attractive natural source of calcium for the synthesis of hydroxyapatite (HA) as it contains minor amounts of biologically relevant elements such as Mg, Sr, and Si. The mineral phase of the human bone is essentially a calcium deficient hydroxyapatite (CDHA) which shows more bioactivities and absorbance than stoichiometric HA does. Hence, we have attempted to develop a protein delivery system based on eggshell derived CDHA (ECDHA) nanoparticles for bone tissue engineering. Nanoparticles with Ca/P molar ratio of 1.67, 1.61 and 1.51 to form CDHAs with compositions covering the properties of stable HA phase (Ca/P=1.67) to degradable tricalcium phosphate (TCP) phase (Ca/P=1.5) were synthesized by microwave-accelerated wet chemical synthesis using eggshell as well as synthetic calcium hydroxide as calcium precursors. The delivery profiles of bovine serum albumin (BSA), a model protein by the nanocarriers, were studied. Both eggshells derived and synthetic CDHA samples showed maximum amount of loading of 57% and 37%, respectively at a Ca/P ratio of 1.51, comparing to stoichiometric HA. ECDHA also showed a much more BSA release (25%) than synthetically derived CDHA (6.5%) did. To further improve the release profile, alginate coating was carried out on CDHA nanoparticles and the BSA release profiles were evaluated. A maximum release of 65% was observed for alginate coated ECDHA at a Ca/P ratio of 1.51 for a period of 2 days. The ECDHA nanoparticle with a Ca/P ratio similar to degradable TCP and with alginate coating seems to be an ideal protein delivery agent.

  11. Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni

    SciTech Connect

    Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.

    1988-08-01

    The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end of the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.

  12. Accumulation of the Drosophila Torso-like protein at the blastoderm plasma membrane suggests that it translocates from the eggshell.

    PubMed

    Mineo, Alessandro; Furriols, Marc; Casanova, Jordi

    2015-04-01

    The eggshell serves as a depository for proteins that play an important role in early embryonic development. In particular, the Drosophila eggshell is responsible for transferring asymmetries from the egg chamber to specify the regions at both ends of the embryo through the uneven activation of the Torso (Tor) receptor in its membrane. This process relies on the restricted expression of the gene torso-like (tsl) in subpopulations of follicle cells during oogenesis and its protein accumulation at both poles of the eggshell, but it is not known how this signal is transmitted to the embryo. Here, we show that Tsl accumulates at the embryonic plasma membrane, even in the absence of the Tor receptor. However, during oogenesis, we detected Tsl accumulation only at the eggshell. These results suggest that there is a two-step mechanism to transfer the asymmetric positional cues from the egg chamber into the early embryo: initial anchoring of Tsl at the eggshell as it is secreted, followed by its later translocation to the egg plasma membrane, where it enables Tor receptor activation. Translocation of anchored determinants from the eggshell might then regulate the spatial and temporal control of early embryonic developmental processes.

  13. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process

    PubMed Central

    2014-01-01

    Background The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. Results Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). Conclusions Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality. PMID:24649854

  14. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell

    PubMed Central

    2014-01-01

    Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

  15. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification

    PubMed Central

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B.; Nys, Yves; Gautron, Joël

    2015-01-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed. PMID:26306314

  16. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification.

    PubMed

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël

    2015-09-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

  17. Synthesis of Stable Microcapsules from Trematode Eggshell Components

    DTIC Science & Technology

    1990-06-30

    NO Arlington, VA 22217-5000 61153N RR4106 11 TITLE (Include Security Classification) (u) Synthesis of Stable Microcapsules from Trematode Eggshell...Continue on reverse if necessary and identify by block number) The trematode Fasciola hepatica produces a unique protein eggshell or microcapsule the...proteins to produce a hard quinone tanned microcapsule with unusual properties. The focus of this project is to i) characterize the protein components

  18. Outer eggshell membrane as delivery vehicle for polysaccharide/protein microcapsules incorporated with vitamin E.

    PubMed

    Chai, Zhi; Li, Yuanyuan; Liu, Fei; Du, Bingjian; Jiao, Tong; Zhang, Chunyue; Leng, Xiaojing

    2013-01-23

    This study investigates the features of a new type of delivery system prepared by combining a natural outer eggshell membrane (OESM) with emulsified microcapsules. The loading efficiency, controlled release properties, and forming mechanisms of the prepared system were studied. The polysaccharide/protein microcapsules incorporated with vitamin E can be attached to highly cross-linked protein fiber networks of OESM. This attachment could be reinforced more than 2-fold using glutaraldehyde as a cross-linking agent. The combined OESM/microcapsule delivery system significantly exhibited better controlled release properties than the microcapsules alone because of the steric blocking effect. Moreover, the OESM delivery system incorporated with microcapsules formed by pectin/protein as wall material showed more resistance against enzymatic attacks because of the formation of compact aggregates promoted by electrostatic effects.

  19. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers.

    PubMed

    Xiong, Xi; Li, Qiang; Lu, Jian-Wei; Guo, Zhao-Xia; Sun, Zhao-Hui; Yu, Jian

    2012-01-01

    Soluble eggshell membrane protein (SEP), isolated from natural eggshell membrane, was co-electrospun with biodegradable synthetic polymers poly(propylene carbonate) (PPC) and poly(lactic acid) (PLA) in various proportions from 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solutions in order to prepare fibrous scaffolds having simultaneously good mechanical properties and biocompatibility. The fiber morphology was observed by field emission scanning electron microscopy, showing uniform fibers with diameter of 1.2-1.0 and 1.3-0.7 um for PPC/SEP and PLA/SEP blend fibers, respectively. Transmission electron microscopy observation shows that the blend fibers have domain-matrix phase morphology with fiber-like SEP domains in the PPC or PLA matrix, indicating the occurrence of phase separation, although interaction exists between PPC (or PLA) and SEP, as revealed by attenuated total reflectance Fourier transform infrared spectroscopy. The mechanical properties were evaluated by uniaxial tensile tests and showed that both the tensile strength and elongation at break increase with increasing incorporation of PPC (or PLA). The surface composition was investigated by X-ray photoelectron spectroscopy and SEP was found on the fiber surfaces, and as a result the surfaces of the fibrous scaffolds are superhydrophilic. NIH3T3 cell culture tests demonstrate that the PPC/SEP and PLA/SEP blend fibrous scaffolds have a much improved biocompatibility compared to pure PPC or PLA fibrous scaffolds.

  20. Synthesis of Stable Microcapsules from Trematode Eggshell Components.

    DTIC Science & Technology

    1988-04-29

    8217 Arlington, VA 22217-5000 61153N RR4106 71,E ’Include Security Classification) (u) Synthesis of Stable Microcapsules from Trematode Eggshell Components 12...necessary and Identify by block number) 3RO~P SUB-P~iA Microcapsule , Dopa-proteins, trematode, crosslinks, eggshell 79 ABSTRAC7 ,Continue an reverse If...All other editions are obsolete. S ,.O 0 V po r t -A’X I T!L~-r ....7 KIT X - ~.W.:,iili Synthesis of Stable Microcapsules from Trematode Eggshell

  1. Structure of synthetic peptide analogues of an eggshell protein of Schistosoma mansoni.

    PubMed Central

    Middaugh, C. R.; Thomson, J. A.; Burke, C. J.; Mach, H.; Naylor, A. M.; Bogusky, M. J.; Ryan, J. A.; Pitzenberger, S. M.; Ji, H.; Cordingley, J. S.

    1993-01-01

    The peptide (Gly-L-Tyr-L-Asp-L-Lys-L-Tyr)6, referred to as F4-6, was synthesized as a model for a schistosome eggshell protein in which the Gly-Tyr-Asp-Lys-Tyr consensus sequence is repeated over 40 times. Analysis by CD, Fourier transform infrared spectroscopy, potentiometric and spectrophotomertric titrations, NMR, and molecular modeling suggests that F4-6 forms some type of left-handed structure. A likely possibility appears to be a left-handed alpha-helix stabilized by Lysi-Aspi +4 salt bridges and possibly Aspi-Tyri +4 hydrogen bonding and Tyr-Tyr interactions. Spectroscopic studies of a number of F4-6 analogues support this conclusion. For example, substitution of D-Ala for Gly produces a peptide with enhanced left-handed helical spectral characteristics, whereas an L-Ala substitution results in a peptide with minimal structure. These studies suggest that the F4 protein from Schistosoma mansoni may be the first example of a naturally occurring protein devoid of proline and carbohydrate that forms a left-handed helix composed of L-amino acids, although alternative forms of other left-handed structures have yet to be rigorously excluded. PMID:8318895

  2. Correlation between hammerhead ribozyme-mediated eggshell protein gene cleavage and reproduction inhibition of Schistosoma japonicum

    PubMed Central

    LIANG, YU; ZHOU, YUELAN; YIN, WEIGUO; LI, YINGJU; YANG, QIULIN; GAO, YUAN; ZHANG, YUKUAI; YANG, YAOFEI; PENG, LI; XIAO, JIANHUA

    2012-01-01

    Schistosoma japonicum (S. japonicum) is an extremely harmful pathogen, which infects humans and causes severe public health problems. To date, no effective therapeutic drugs for this pathogen are available. In this study, we designed and constructed three hammerhead ribozymes targeting the eggshell protein gene of S. japonicum (SjESG). The cleavage activities of these three ribozymes were determined using cleavage experiments. The in vitro cleavage results showed that among the three synthesized ribozymes (Rz1, Rz2 and Rz3), Rz1 and Rz3 cleaved their target RNAs effectively. However, Rz2 did not cleave its target RNA detectably. The putative therapeutic roles of these three ribozymes to inhibit the reproduction of S. japonicum in mice were studied in vivo. Compared with the negative controls, Rz1 and Rz3 treatments resulted in increased levels of IFN-γ but decreased levels of IL-4 in mice. Rz2 affected levels of IFN-γ and IL-4 to degrees similar with those caused by the vector controls. In addition, Rz1 and Rz3 reduced the amounts of adult worms and eggs in the livers of mice more extensively than Rz2 and the vector controls. Altogether, these results suggest a correlation between the in vitro cleavage abilities of Rz1 and Rz3 and their roles in reproduction inhibition of S. japonicum. PMID:22246067

  3. Transfer of Dorsoventral and Terminal Information from the Ovary to the Embryo by a Common Group of Eggshell Proteins in Drosophila.

    PubMed

    Mineo, Alessandro; Furriols, Marc; Casanova, Jordi

    2017-04-01

    The Drosophila eggshell is an extracellular matrix that confers protection to the egg and also plays a role in transferring positional information from the ovary to pattern the embryo. Among the constituents of the Drosophila eggshell, Nasrat, Polehole, and Closca form a group of proteins related by sequence, secreted by the oocyte, and mutually required for their incorporation into the eggshell. Besides their role in eggshell integrity, Nasrat, Polehole, and Closca are also required for embryonic terminal patterning by anchoring or stabilizing Torso-like at the eggshell. Here, we show that they are also required for dorsoventral patterning, thereby unveiling that the dorsoventral and terminal systems, hitherto considered independent, share a common extracellular step. Furthermore, we show that Nasrat, Polehole, and Closca are required for proper Nudel activity, a protease acting both in embryonic dorsoventral patterning and eggshell integrity, thus providing a means to account for the role of Nasrat, Polehole, and Closca. We propose that a Nasrat/Polehole/Closca complex acts as a multifunctional hub to anchor various proteins synthesized at oogenesis, ensuring their spatial and temporal restricted function.

  4. An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36

    PubMed Central

    2016-01-01

    In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient. PMID:28115888

  5. closca, a new gene required for both Torso RTK activation and vitelline membrane integrity. Germline proteins contribute to Drosophila eggshell composition.

    PubMed

    Ventura, Gemma; Furriols, Marc; Martín, Nicolás; Barbosa, Vitor; Casanova, Jordi

    2010-08-01

    The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.

  6. Influence of eggshell matrix proteins on the precipitation of calcium carbonate (CaCO 3)

    NASA Astrophysics Data System (ADS)

    Hernández-Hernández, A.; Vidal, M. L.; Gómez-Morales, J.; Rodríguez-Navarro, A. B.; Labas, V.; Gautron, J.; Nys, Y.; García Ruiz, J. M.

    2008-04-01

    To understand the role of eggshell organic matrix on the biomineralization process, we have tested the influence of different purified fractions of the eggshell organic matrix on calcium carbonate (CaCO 3) precipitation. Purification was carried out after successive anion-exchange chromatography, hydrophobic interaction chromatography and gel filtration chromatography of two different prepurified eggshell extracts (A) and (B); the purified fractions (named g, h, n and r) and ( c', g', i', k') respectively were diluted to 50 μg/ml before being tested in vitro and analysed by the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) procedure and mass spectrometry. The precipitation experiments were carried out by the method of vapour diffusion on crystallization mushrooms. Each purified fraction showed a different effect on CaCO 3 precipitation. Some of them exhibited a strong inhibitory effect on nucleation, thus suppressing the precipitation of CaCO 3 almost totally while the others did not produce any notable effect. However, all fractions favoured the precipitation of calcite over the other CaCO 3 polymorphs. Additionally, all fractions modified in a different manner the size and morphology of the precipitated calcite crystals.

  7. Soluble eggshell membrane: A natural protein to improve the properties of biomaterials used for tissue engineering applications.

    PubMed

    Sah, Mahesh Kumar; Rath, Subha Narayan

    2016-10-01

    Extracellular matrix (ECM) acts as an instructing template for the cells contained in tissues. It plays a vital role in regulating cellular behavior by holding and interacting with various growth factors and signaling molecules. The ECM materials are either directly derived from a natural origin, or synthesized mimicking the natural ECM. In this review, we have addressed the ECM derived from eggshell membrane (ESM). The development of porous structures from natural biopolymers, such as ESM holds a number of advantages for tissue engineering applications. By using ESM in tissue engineering application, the cells attach and function to make a required tissue. Thereafter, the scaffold provides mechanical support as well as a platform for cellular interaction, hence, forming a fully functional tissue. The present review summarizes the structure-function relationship of ESM and advancement in its processing methods; the contribution of its soluble form (soluble eggshell membrane protein, SEP) in the development of promising hybrid biomaterials; and the recent advancement of their applications. In addition, this comprehensive review highlights the use of ESM for guided tissue regeneration; promising future applications of SEP in tissue engineering and regenerative medicine.

  8. Pleistocene geochronology and palaeothermometry from protein diagenesis in ostrich eggshells: implications for the evolution of modern humans.

    PubMed

    Miller, G H; Beaumont, P B; Jull, A J; Johnson, B

    1992-08-29

    Proteinaceous residues incorporated within the crystal structure of ostrich eggshells (OES) are retained without loss over geological time exceeding 10 million years. Degradation of the polypeptides, including hydrolysis to smaller peptide fragments and eventual release of free amino acids, decomposition, and racemization and epimerization occur at regular, predictable rates dependent on ambient temperature. The extent of isoleucine epimerization (aIle/Ile ratio) in OES follows linear first-order reversible kinetics in controlled-temperature laboratory simulations of time up to an aIle/Ile ratio in excess of 1.0. The hydrolysis of leucine also follows a predictable pattern, but deviates from first-order kinetics. A nonlinear mathematical model has been developed that adequately describes the pattern of leucine hydrolysis through a wide temperature range. Arrhenius parameters were derived from laboratory experiments combined with rate constant values found for 14C-dated OES from stratified caves in southern Africa. These parameters for isoleucine epimerization and leucine hydrolysis differ by ca. 10%, allowing the simultaneous solution of the two equations for temperature, independent of sample age. Although the uncertainty of the simultaneous temperature is relatively high (+/- 10 degrees C), it provides an effective means of identifying burned samples. If sample age is known, palaeotemperatures (the integrated thermal history experienced by an eggshell as opposed to an 'instantaneous' temperature) can be calculated with a precision of better than +/- 1 degrees C. The ages of levels at Border Cave, South Africa, from which anatomically modern human skeletal remains have been recovered, are dated by the extent of isoleucine epimerization in associated OES.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Eggshells as an index of aedine mosquito production. 2: Relationship of Aedes taeniorhynchus eggshell density to larval production.

    PubMed

    Addison, D S; Ritchie, S A; Webber, L A; Van Essen, F

    1992-03-01

    To test if eggshell density could be used as an index of aedine mosquito production, we compared eggshell density with the larval production of Aedes taeniorhynchus in Florida mangrove basin forests. Quantitative (n = 7) and categorical (n = 34) estimates of annual larval production were regressed against the number of eggshells per cc of soil. Significant regressions were obtained in both instances. Larval production was concentrated in zones with the highest eggshell density. We suggest that eggshell density and distribution can be used to identify oviposition sites and the sequence of larval appearance.

  10. Eggshells as an index of aedine mosquito production. 1: Distribution, movement and sampling of Aedes taeniorhynchus eggshells.

    PubMed

    Ritchie, S A; Addison, D S; van Essen, F

    1992-03-01

    The distribution of Aedes taeniorhynchus eggshells in Florida mangrove basin forests was determined and used to design a sampling plan. Eggshells were found in 10/11 sites (91%), with a mean +/- SE density of 1.45 +/- 0.75/cc; density did not change significantly year to year. Highest densities were located on the sloping banks of hummocks, ponds and potholes. Eggshells were less clumped in distribution than eggs and larvae and thus required a smaller sample size for a given precision level. While eggshells were flushed from compact soil that was subject to runoff during heavy rain, mangrove peat, the dominant soil of eggshell-bearing sites, was less dense and had little runoff or eggshell flushing. We suggest that eggshell surveys could be used to identify Ae. taeniorhynchus oviposition sites and oviposition patterns.

  11. Antimicrobial activity of the Anseriform outer eggshell and cuticle.

    PubMed

    Wellman-Labadie, Olivier; Picman, Jaroslav; Hincke, Maxwell T

    2008-04-01

    The avian eggshell is a complex, multifunctional biomineral composed of a calcium carbonate mineral phase and an organic phase of lipids and proteins. The outermost layer of the eggshell, the eggshell cuticle, is an organic layer of variable thickness composed of polysaccharides, hydroxyapatite crystals, lipids and glycoprotein. In addition to regulating gas exchanges, the eggshell cuticle may contain antimicrobial elements. In this study, we investigated the antimicrobial activity of eggshell cuticle and outer eggshell protein extracts from four Anseriform species: wood duck (Aix sponsa), hooded merganser (Lophodytes cucullatus), Canada goose (Branta canadensis) and mute swan (Cygnus olor). Cuticle and outer eggshell protein was extracted by urea or HCl treatment of eggs. C-type lysozyme, ovotransferrin and an ovocalyxin-32-like protein were detected in all extracts. Cuticle and outer eggshell protein extracts inhibited the growth of Staphylococcus aureus, Escherichia coli D31, Pseudomonas aeruginosa and Bacillus subtilis. The presence of active antimicrobial proteins within the avian cuticle and outer eggshell suggests a role in antimicrobial defense. Protein extracts from the cavity nesting hooded merganser were especially potent. The unique environmental pressures exerted on cavity-nesting species may have led to the evolution of potent antimicrobial defenses.

  12. The eggshell: structure, composition and mineralization.

    PubMed

    Hincke, Maxwell T; Nys, Yves; Gautron, Joel; Mann, Karlheinz; Rodriguez-Navarro, Alejandro B; McKee, Marc D

    2012-01-01

    The calcareous egg is produced by all birds and most reptiles. Current understanding of eggshell formation and mineralization is mainly based on intensive studies of one species - the domesticated chicken Gallus gallus. The majority of constituents of the chicken eggshell have been identified. In this article we review eggshell microstructure and ultrastructure, and the results of recent genomic, transcriptomic and proteomic analyses of the chicken eggshell matrix to draw attention to areas of current uncertainty such as the potential role of amorphous calcium carbonate and the specific nature of the molecules that initiate (nucleate) mammillary cone formation and terminate palisade layer calcification. Comparative avian genomics and proteomics have only recently become possible with the publication of the Taeniopygia guttata (zebra finch) genome. Further rapid progress is highly anticipated with the soon-to-be-released genomes of turkey (Meleagris gallopavo) and duck (Anas platyrhynchos). These resources will allow rapid advances in comparative studies of the organic constituents of avian eggshell and their functional implications.

  13. Quantitative proteomics provides new insights into chicken eggshell matrix protein functions during the primary events of mineralisation and the active calcification phase.

    PubMed

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël

    2015-08-03

    Eggshell is a bioceramic composed of 95% calcium carbonate mineral and 3.5% organic matrix. Its structural organisation is controlled by its organic matrix. We have used quantitative proteomics to study four key stages of shell mineralisation: 1) widespread deposition of amorphous calcium carbonate (ACC), 2) ACC transformation into crystalline calcite aggregates, 3) formation of larger calcite crystal units and 4) development of a columnar structure with preferential calcite crystal orientation. This approach explored the distribution of 216 shell matrix proteins found at the four stages. Variations in abundance according to these calcification events were observed for 175 proteins. A putative function related to the mineralisation process was predicted by bioinformatics for 77 of them and was further characterised. We confirmed the important role of lysozyme, ovotransferrin, ovocleidin-17 and ovocleidin-116 for shell calcification process, characterised major calcium binding proteins (EDIL3, ALB, MFGE8, NUCB2), and described novel proteoglycans core proteins (GPC4, HAPLN3). We suggest that OVAL and OC-17 play a role in the stabilisation of ACC. Finally, we report proteins involved in the regulation of proteins driving the mineralisation. They correspond to numerous molecular chaperones including CLU, PPIB and OCX21, protease and protease inhibitors including OVM and CST3, and regulators of phosphorylation.

  14. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.

    PubMed

    Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel

    2015-06-01

    Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates.

  15. Purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 from ostrich (Struthio camelus) eggshell

    SciTech Connect

    Reyes-Grajeda, Juan Pablo; Marín-García, Liliana; Stojanoff, Vivian; Moreno, Abel

    2007-11-01

    The purification, crystallization and preliminary X-ray diffraction data of the protein struthiocalcin 1 isolated from ostrich eggshell are reported. The purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 (SCA-1), a protein obtained from the intramineral part of ostrich (Struthio camelus) eggshell, is reported.

  16. BMP-dependent gene repression cascade in Drosophila eggshell patterning

    PubMed Central

    Charbonnier, Enrica; Fuchs, Alisa; Cheung, Lily S.; Chayengia, Mrinal; Veikkolainen, Ville; Seyfferth, Janine; Shvartsman, Stanislav Y.; Pyrowolakis, George

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) signal by activating Smad transcription factors to control a number of decisions during animal development. In Drosophila, signaling by the BMP ligand Decapentaplegic (Dpp) involves the activity of brinker (brk) which, in most contexts, is repressed by Dpp. Brk encodes a transcription factor which represses BMP signaling output by antagonizing Smad-dependent target gene activation. Here, we study BMP-dependent gene regulation during Drosophila oogenesis by following the signal transmission from Dpp to its target broad (br), a gene with a crucial function in eggshell patterning. We identify regulatory sequences that account for expression of both brk and br, and connect these to the transcription factors of the pathway. We show that Dpp directly regulates brk transcription through Smad- and Schnurri (Shn)-dependent repression. Brk is epistatic to Dpp in br expression and activates br indirectly, through removal of a repressor, which is yet to be identified. Our work provides first cis-regulatory insights into transcriptional interpretation of BMP signaling in eggshell morphogenesis and defines a transcriptional cascade that connects Dpp to target gene regulation. PMID:25704512

  17. A long-term increase in eggshell thickness of Greenlandic Peregrine Falcons Falco peregrinus tundrius.

    PubMed

    Falk, Knud; Møller, Søren; Mattox, William G

    2006-02-15

    Thickness of eggshell fragments and whole eggs from the Peregrine Falcon Falco peregrinus collected in South and West Greenland between 1972 and 2003 was measured and compared to shell thickness of pre-DDT eggs, also collected in Greenland. Linear regression yields a significant increase in the average thickness of eggshells over the period of 0.19% per year, corresponding to a change in eggshell thinning from 13.9% in 1972 to 7.8% in 2003. Backwards extrapolation of the data, suggests that the Greenlandic Peregrine population probably was never critically affected by DDT-induced eggshell thinning. By sampling eggshell fragments in many nests the spatial and temporal sample distribution was enlarged, allowing the detection of a significant long-term decrease in pollutant-induced eggshell thinning--a trend that could not have been identified if only the rarer whole, addled eggs had been sampled.

  18. Engineering Tough Materials: Biomimetic Eggshell

    DTIC Science & Technology

    2016-08-29

    formation, including a polymer -induced liquid precursor (PILP) mineral- ization. The second examines the interesting role of the eggshell membrane in shell...presence of amorphous calcium carbonate in the calcite matrix. Thermal analysis was used to establish the presence of organic materials within calcium...eggshell were compared across species. Second the entrapment of organic molecules in inorganic calcite was explored. The kinetics of calcite growth in the

  19. Eggshell Types and Their Evolutionary Correlation with Life-History Strategies in Squamates

    PubMed Central

    Hallmann, Konstantin; Griebeler, Eva Maria

    2015-01-01

    The eggshell is an important physiological structure for the embryo. It enables gas exchange, physical protection and is a calcium reserve. Most squamates (lizards, snakes, worm lizards) lay parchment-shelled eggs, whereas only some gekkotan species, a subgroup of lizards, have strongly calcified eggshells. In viviparous (live-bearing) squamates the eggshell is reduced or completely missing (hereafter “shell-less”). Recent studies showed that life-history strategies of gekkotan species differ between species with parchment- and rigid-shelled eggshells. Here we test if the three different eggshell types found in the squamates are also associated with different life-history strategies. We first investigated the influence of the phylogeny on the trait “eggshell type” and on six life-history traits of 32 squamate species. Phylogenetic principal component analysis (pPCA) was then conducted to identify an association between life-history strategies and eggshell types. Finally, we also considered adult weight in the pPCA to examine its potential effect on this association. Eggshell types in squamates show a strong phylogenetic signal at a low taxonomical level. Four out of the six life-history traits showed also a phylogenetic signal (birth size, clutch size, clutches per year and age at female maturity), while two had none (incubation time, maximum longevity). The pPCA suggested an association of life-history strategies and eggshell types, which disappeared when adult weight was included in the analysis. We conclude that the variability seen in eggshell types of squamates is weakly influenced by phylogeny. Eggshell types correlate with different life-history strategies, and mainly reflect differences in adult weights of species. PMID:26393343

  20. Chemical Proteomic Platform To Identify Citrullinated Proteins

    PubMed Central

    2015-01-01

    Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA) and are routinely used for disease diagnosis. Protein citrullination is also increased in cancer and other autoimmune disorders, suggesting that citrullinated proteins may serve as biomarkers for diseases beyond RA. To identify these citrullinated proteins, we developed biotin-conjugated phenylglyoxal (biotin-PG). Using this probe and our platform technology, we identified >50 intracellular citrullinated proteins. More than 20 of these are involved in RNA splicing, suggesting, for the first time, that citrullination modulates RNA biology. Overall, this chemical proteomic platform will play a key role in furthering our understanding of protein citrullination in rheumatoid arthritis and potentially a wider spectrum of inflammatory diseases. PMID:26360112

  1. Identifying Protein-Calorie Malnutrition Workshop.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Barker, Ellen M.

    Instructional materials are provided for a workshop to enable participants to assist in identifying patients at risk with protein-calorie malnutrition and in corrrecting this nutritional deficiency. Representative topics are nutrients; protein, mineral, and vitamin sources, functions, and deficiency symptoms; malnutrition; nutritional deficiency…

  2. The thin eggshell problem

    USGS Publications Warehouse

    Stickel, L.F.; Rhodes, L.I.; Gillett, J.W.

    1970-01-01

    It has long been known that DDT and related chemicals can impair the reproduction of birds. In early years of organochlorine pesticide use, widespread mortality occurred immediately following heavy applications of these chemicals, and survivors contained substantial amounts of toxicant in their tissues. Repopulation from untreated areas tended to conceal the extent of the effects. DDT and dieldrin have become ubiquitous and the original source of the chemicals producing bird deaths often cannot be traced. The extent of sublethal effects cannot be fully appraised, although laboratory experiments continually reveal new and potentially deleterious physiological reactions. Thin eggshells have become prevalent among certain declining species of predatory birds. Shell thinning and associated reproductive effects have been produced experimentally in mallard ducks and in sparrow hawks. Coturnix quail fed dietary dosages of p,p'-DDT produced fewer eggs than did untreated birds and the eggs had thinner shells. Hatchability was not significantly altered. Comparisons between these results and those obtained in other studies indicate significant species differences.

  3. Engineering Tough Materials: Biomimetic Eggshell

    DTIC Science & Technology

    2015-01-30

    larger-­‐scale  production  of  eggshell-­‐like  organic-­‐ inorganic   composite  materials.       Report Documentation Page Form...production of eggshell-?????like organic-????? inorganic composite materials. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...mineral  compounds  in  nature.    Biomaterials  are  almost  always  the   outcome  of  an  organic-­‐ inorganic

  4. Embryonic sex steroid hormones accumulate in the eggshell of loggerhead sea turtle (Caretta caretta).

    PubMed

    Kobayashi, Shohei; Saito, Yoshimichi; Osawa, Akihisa; Katsumata, Etsuko; Karaki, Isuke; Nagaoka, Kentaro; Taya, Kazuyoshi; Watanabe, Gen

    2015-12-01

    Steroids hormones such as estradiol-17β (E2) and testosterone (T) are involved in gonadal differentiation of oviparous animals with temperature-dependent sex determination (TSD), and are greatly distributed. This hypothesizes that these embryonic steroid hormones probably accumulate in the eggshell throughout blood or/and chorioallantoic fluid in sea turtle species with TSD, producing females at higher temperature. To demonstrate this hypothesis, concentrations of E2 and T in the blood plasma from the hatchling loggerhead sea turtle (Caretta caretta) and in their eggshells were measured by radioimmunoassay. In the present study we propose that both concentrations of E2 and T in the blood plasma are correlated with amounts of these sex steroids in the eggshell. Moreover, contents of E2 in the eggshell showed a significant positive correlation with mean incubation temperatures during a thermosensitive period in the experimental nests, whereas T contents in the eggshell did not. Taken together, these findings indicated that embryonic E2 and T that accumulated in the eggshell can be extracted and measured. Furthermore, the present study suggested that contents of E2 in the eggshell may differ between male and female, and monitoring of these steroids is a useful method to identify the sex of loggerhead sea turtle hatchling.

  5. Immobilization of the urease on eggshell membrane and its application in biosensor.

    PubMed

    D'Souza, S F; Kumar, Jitendra; Jha, Sandeep Kumar; Kubal, B S

    2013-03-01

    Eggshell membrane is a natural material, essentially made up of protein fibers having flexibility in the aqueous solution and possessing gas and water permeability. It is used as a biomembrane for immobilization of urease for the development of a potentiometric urea biosensor. Eggshell membrane was treated with polyethyleneimine (PEI) to impart polycation characteristics. Urease was immobilized on the PEI treated eggshell membrane through adsorption. SEM study was carried out to observe the changes in surface morphology after immobilization. FTIR study of membrane was carried out to observe the changes in IR spectra after immobilization of enzyme. Immobilized membrane was associated with ammonium ion selective electrode. Biosensor exhibited sigmoidal responses for the urea concentration range from 0.5 to 10mM. The response time of the biosensor was 120 s. A single membrane was reused for 270 reactions without loss of activity. The urease-eggshell membranes were stable for 2 months when stored in buffer even at room temperature.

  6. Fossil avian eggshell preserves ancient DNA.

    PubMed

    Oskam, Charlotte L; Haile, James; McLay, Emma; Rigby, Paul; Allentoft, Morten E; Olsen, Maia E; Bengtsson, Camilla; Miller, Gifford H; Schwenninger, Jean-Luc; Jacomb, Chris; Walter, Richard; Baynes, Alexander; Dortch, Joe; Parker-Pearson, Michael; Gilbert, M Thomas P; Holdaway, Richard N; Willerslev, Eske; Bunce, Michael

    2010-07-07

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.

  7. The functions of the multiproduct and rapidly evolving dec-1 eggshell gene are conserved between evolutionarily distant species of Drosophila.

    PubMed Central

    Badciong, J C; Otto, J M; Waring, G L

    2001-01-01

    The Drosophila dec-1 gene encodes multiple proteins that are required for female fertility and proper eggshell morphogenesis. Genetic and immunolocalization data suggest that the different DEC-1 proteins are functionally distinct. To identify regions within the proteins with potential biological significance, we cloned and sequenced the D. yakuba and D. virilis dec-1 homologs. Interspecies comparisons of the predicted translation products revealed rapidly evolving sequences punctuated by blocks of conserved amino acids. Despite extensive amino acid variability, the proteins produced by the different dec-1 homologs were functionally interchangeable. The introduction of transgenes containing either the D. yakuba or the D. virilis dec-1 open reading frames into a D. melanogaster DEC-1 protein null mutant was sufficient to restore female fertility and wild-type eggshell morphology. Normal expression and extracellular processing of the DEC-1 proteins was correlated with the phenotypic rescue. The nature of the conserved features highlighted by the evolutionary comparison and the molecular resemblance of some of these features to those found in other extracellular proteins suggests functional correlates for some of the multiple DEC-1 derivatives. PMID:11729155

  8. Association between ovocalyxin-32 gene haplotypes and eggshell quality traits in an F2 intercross between two chicken lines divergently selected for eggshell strength.

    PubMed

    Takahashi, H; Sasaki, O; Nirasawa, K; Furukawa, T

    2010-10-01

    Broken and cracked eggshells contribute significantly to economic losses in the egg production industry. We previously identified ovocalyxin-32 as a potential gene influencing eggshell traits, by analysing an intercross between two parent lines developed from the same founder population by a two-way selection for eggshell strength with non-destructive deformation (DEF) conducted over 14 generations. We determined the nucleotide sequences of six ovocalyxin-32 exons in the parent individuals and analysed the association between ovocalyxin-32 and eggshell traits in the F2 individuals. We identified three haplotypes (W, M and S) of ovocalyxin-32 in the parent individuals. A mismatch amplification mutation assay was performed to distinguish six diplotype individuals (WW, MM, SS, WM, MS and WS) inthe F2 population. The egg weight (EW) of SS-diplotype individuals was significantly higher than that of WW-, WM- and WS-diplotypes. Short length of the egg (SLE) of SS-diplotype individuals was significantly higher than that of WW-, WM- and MS-diplotypes. Long length of the egg (LLE) of SS-diplotype individuals was significantly higher than that of WM and WS-diplotypes. DEF of WW-diplotype individuals was significantly higher than that ofSS-, WM, MS and WM-diplotypes. Haplotypic effect analyses showed significant differences between the W-haplotype and the S-haplotypes in the EW, SLE, LLE and DEF. The DEF of M-haplotype was significantly lower than that of W- and S-haplotypes. These results suggest that S- and M-haplotypes are critical for high quality of eggshells in the F2 population. In conclusion, ovocalyxin-32 is a useful marker of eggshell traits and can be used to develop strategies for improving eggshell traits in commercial layer houses.

  9. Eggshell composition of squamate reptiles: relationship between eggshell permeability and amino acid distribution.

    PubMed

    Sexton, Owen J; Bramble, Judith E; Heisler, I Lorraine; Phillips, Christopher A; Cox, David L

    2005-10-01

    Most snakes and lizards produce eggs with flexible shells that interact with the environment to maintain water balance. Geckos produce rigid eggshells that are independent of an external source of water and can be oviposited in more open, dryer locations. In this study, we analyzed and compared the amino acid composition of 24 lizard species, six snake species, and four outgroups (including avian and reptilian elastin and chicken eggshell). Rigid Gecko eggshells had significantly lower levels of seven of the 17 amino acids evaluated. Multivariate analysis showed that proline was the most important amino acid in distinguishing between these two groups of eggshells, occurring at significantly higher levels in flexible eggshells. High levels of proline have also been observed in the eggshells of other species. Proline and other amino acids are associated with the alleviation of water and salt stress in plants.

  10. Subtleties of biomineralisation revealed by manipulation of the eggshell membrane

    PubMed Central

    Li, Nan; Niu, Li-na; Qi, Yi-pin; Yiu, Cynthia K.Y.; Ryou, Heonjune; Arola, Dwayne D.; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Biocalcification of collagen matrices with calcium phosphate and biosilicification of diatom frustules with amorphous silica are two discrete processes that have intrigued biologists and materials scientists for decades. Recent advancements in the understanding of the mechanisms involved in these two biomineralisation processes have resulted in the use of biomimetic strategies to replicate these processes separately using polyanionic, polycationic or zwitterionic analogues of extracellular matrix proteins to stabilise amorphous mineral precursor phases. To date, there is a lack of a universal model that enables the subtleties of these two apparently dissimilar biomineralisation processes to be studied together. Here, we utilise the eggshell membrane as a universal model for differential biomimetic calcification and silicification. By manipulating the eggshell membrane to render it permeable to stabilised mineral precursors, it is possible to introduce nanostructured calcium phosphate or silica into eggshell membrane fibre cores or mantles. We provide a model for infiltrating the two compartmental niches of a biopolymer membrane with different intrafibre minerals to obtain materials with potentially improved structure-property relationships. PMID:21864897

  11. Subtleties of biomineralisation revealed by manipulation of the eggshell membrane.

    PubMed

    Li, Nan; Niu, Li-na; Qi, Yi-pin; Yiu, Cynthia K Y; Ryou, Heonjune; Arola, Dwayne D; Chen, Ji-hua; Pashley, David H; Tay, Franklin R

    2011-12-01

    Biocalcification of collagen matrices with calcium phosphate and biosilicification of diatom frustules with amorphous silica are two discrete processes that have intrigued biologists and materials scientists for decades. Recent advancements in the understanding of the mechanisms involved in these two biomineralisation processes have resulted in the use of biomimetic strategies to replicate these processes separately using polyanionic, polycationic or zwitterionic analogues of extracellular matrix proteins to stabilise amorphous mineral precursor phases. To date, there is a lack of a universal model that enables the subtleties of these two apparently dissimilar biomineralisation processes to be studied together. Here, we utilise the eggshell membrane as a universal model for differential biomimetic calcification and silicification. By manipulating the eggshell membrane to render it permeable to stabilised mineral precursors, it is possible to introduce nanostructured calcium phosphate or silica into eggshell membrane fibre cores or mantles. We provide a model for infiltrating the two compartmental niches of a biopolymer membrane with different intrafibre minerals to obtain materials with potentially improved structure-property relationships.

  12. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals.

    PubMed

    Stefanello, C; Santos, T C; Murakami, A E; Martins, E N; Carneiro, T C

    2014-01-01

    This study was carried out with the purpose of evaluating the effect of supplementing hens' diets with trace minerals from inorganic or organic sources on the productive performance, eggshell quality, and eggshell ultrastructure of laying hens. Three hundred sixty Hy-Line W36 laying hens between 47 to 62 wk of age were used and distributed in a completely randomized experimental design with 9 treatments, 5 replicates, and 8 birds for each experimental unit. The treatments consisted of a control diet without supplementation of the trace minerals Mn, Zn, and Cu; 4 supplementation levels of these trace minerals from an inorganic source; and the same levels of supplementation from an organic source (proteinates). The supplementation levels in milligrams per kilogram for Mn, Zn, and Cu, were, respectively, 35-30-05, 65-60-10, 95-90-15, and 125-120-20. There was no effect of supplementation of trace minerals on the rate of posture, feed intake, feed conversion, specific weight, and Haugh unit of eggs. However, there was a quadratic effect (P < 0.05) of the levels of trace mineral supplementation on average egg weight and egg mass; the results did not differ regarding the source used. The increase in the levels of supplementation of Mn, Zn, and Cu provided a linear increase (P < 0.05) in the breaking strength and the percentage of eggshell. There was a linear decrease (P < 0.05) in the egg loss and the number of mammillary buttons in the shell. The best results were obtained using diets supplemented with trace minerals from an organic source because these diets provided lower egg loss, higher thickness, and increased strength of the shell. Structurally, organic Mn, Zn, and Cu provided higher thickness of the palisade layer and lower mammillary density. The trace mineral supplementation improved the structural characteristics and the quality of the eggshells.

  13. Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt

    PubMed Central

    Tootle, Tina L.; Williams, Dianne; Hubb, Alexander; Frederick, Rebecca; Spradling, Allan

    2011-01-01

    Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals. PMID:21637834

  14. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  15. Nutritional supplement of hatchery eggshell membrane improves poultry performance and provides resistance against endotoxin stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants including microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confe...

  16. Dietary supplementation with sodium bicarbonate improves calcium absorption and eggshell quality of laying hens during peak production.

    PubMed

    Jiang, M J; Zhao, J P; Jiao, H C; Wang, X J; Zhang, Q; Lin, H

    2015-01-01

    The advantage of supplemental sodium bicarbonate (NaHCO3) on eggshell quality in laying hens changes with age. Besides increasing calcium (Ca) secretion in the eggshell gland, it may improve Ca absorption in the intestine or kidney. Hy-Line Brown layers (n = 384), 25 weeks of age, were allocated to two treatment groups in two experiments, each of which included 4 replicates of 24 hens. Hens were fed a basal diet (control) or the basal diet containing 3 g NaHCO3 g/kg for 50 or 20 weeks in Experiment 1 or 2, respectively. A 24-h continuous lighting regimen was used to allow hens to consume the dietary supplements during the period of active eggshell formation. In Experiment 1, particularly from 25 to 50 weeks of age, and in Experiment 2, NaHCO3 supplementation favoured hen-d egg production at the expense of lower egg weight. The increased eggshell thickness should have nothing to do with the additional eggshell formation, because of the unchanged egg mass and daily eggshell calcification. At 35 weeks of age in both experiments, NaHCO3 supplementation increased duodenal expression of calbindin-d28k (CaBP-D28k) protein, contributing to higher Ca retention and balance. From 50 to 75 weeks of age in Experiment 1, the hens had little response to NaHCO3 supplementation and showed a negative trend on eggshell thickness and strength. It is concluded that dietary supplementation with 3 g NaHCO3 g/kg improves Ca absorption and eggshell quality of laying hens during the peak but not late production period, with the introduction of continuous lighting.

  17. Utilizing protein structure to identify non-random somatic mutations

    PubMed Central

    2013-01-01

    Background Human cancer is caused by the accumulation of somatic mutations in tumor suppressors and oncogenes within the genome. In the case of oncogenes, recent theory suggests that there are only a few key “driver” mutations responsible for tumorigenesis. As there have been significant pharmacological successes in developing drugs that treat cancers that carry these driver mutations, several methods that rely on mutational clustering have been developed to identify them. However, these methods consider proteins as a single strand without taking their spatial structures into account. We propose an extension to current methodology that incorporates protein tertiary structure in order to increase our power when identifying mutation clustering. Results We have developed iPAC (identification of Protein Amino acid Clustering), an algorithm that identifies non-random somatic mutations in proteins while taking into account the three dimensional protein structure. By using the tertiary information, we are able to detect both novel clusters in proteins that are known to exhibit mutation clustering as well as identify clusters in proteins without evidence of clustering based on existing methods. For example, by combining the data in the Protein Data Bank (PDB) and the Catalogue of Somatic Mutations in Cancer, our algorithm identifies new mutational clusters in well known cancer proteins such as KRAS and PI3KC α. Further, by utilizing the tertiary structure, our algorithm also identifies clusters in EGFR, EIF2AK2, and other proteins that are not identified by current methodology. The R package is available at: http://www.bioconductor.org/packages/2.12/bioc/html/iPAC.html. Conclusion Our algorithm extends the current methodology to identify oncogenic activating driver mutations by utilizing tertiary protein structure when identifying nonrandom somatic residue mutation clusters. PMID:23758891

  18. Biodegradation of thermoplastic starch/eggshell powder composites.

    PubMed

    Bootklad, Munlika; Kaewtatip, Kaewta

    2013-09-12

    Thermoplastic starch (TPS) was prepared using compression molding and chicken eggshell was used as a filler. The effect of the eggshell powder (EP) on the properties of TPS was compared with the effect of commercial calcium carbonate (CC). The organic compound on the surface of the eggshell powder acted as a coupling agent that resulted in a strong adhesion between the eggshell powder and the TPS matrix, as confirmed by SEM micrographs. The biodegradation was determined by the soil burial test. The TPS/EP composites were more rapidly degraded than the TPS/CC composites. In addition, the eggshell powder improved the water resistance and thermal stability of the TPS.

  19. Thermal emissivity of avian eggshells.

    PubMed

    Björn, Lars Olof; Bengtson, Sven-Axel; Li, Shaoshan; Hecker, Christoph; Ullah, Saleem; Roos, Arne; Nilsson, Annica M

    2016-04-01

    The hypothesis has been tested that evolution has resulted in lower thermal emissivity of eggs of birds breeding openly in cold climates than of eggs of birds that nest under protective covering or in warmer climates. Directional thermal emissivity has been estimated from directional-hemispherical reflectance spectra. Due to several methodological difficulties the absolute emissivity is not accurately determined, but differences between species are obvious. Most notably, small waders of the genus Calidris, breeding in cold climates on the tundra, and in most cases with uniparental nest attendance, have low directional emissivity of their eggshells, about 0.92 when integration is carried out for wavelengths up to 16μm. Species belonging to Galloanserinae have the highest directional emissivity, about 0.96, of their eggs. No differences due to climate or breeding conditions were found within this group. Eggs of most other birds tested possess intermediate emissivity, but the values for Pica pica and Corvus corone cornix are as low as for Calidris. Large species-dependent differences in spectral reflectance were found at specific wavelengths. For instance, at 4.259μm the directional-hemispherical reflectance for galliforms range from 0.05 to 0.09, while for Fratercula arctica and Fulmarus glacialis it is about 0.3. The reflection peaks at 6.5 and 11.3μm due to calcite are differentially attenuated in different species. In conclusion, the hypothesis that evolution has resulted in lower thermal emissivity of bird eggs being exposed in cold climates is not supported by our results. The emissivity is not clearly related to nesting habits or climate, and it is unlikely that the small differences observed are ecologically important. The spectral differences between eggs that nevertheless exist should be taken into account when using infrared thermometers for estimating the surface temperature of avian eggs.

  20. The cuticle modulates ultraviolet reflectance of avian eggshells.

    PubMed

    Fecheyr-Lippens, Daphne C; Igic, Branislav; D'Alba, Liliana; Hanley, Daniel; Verdes, Aida; Holford, Mande; Waterhouse, Geoffrey I N; Grim, Tomas; Hauber, Mark E; Shawkey, Matthew D

    2015-05-11

    Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

  1. Crystallization studies on avian eggshell membranes: implications for the molecular factors controlling eggshell formation.

    PubMed

    Wu, T M; Rodriguez, J P; Fink, D J; Carrino, D A; Blackwell, J; Caplan, A I; Heuer, A H

    1995-02-01

    The avian eggshell is a natural biopolymer and mineral composite. It is a very useful model for biomimetic mineralization, since it is among the fastest forming hard tissues known. Isolated eggshell membranes, which were demineralized in vitro, were used to investigate the in vitro modulation of CaCO3 crystal deposition by organic matrix materials. Crystallization on the demineralized eggshell membrane occurred almost exclusively at the peripheries of residual calcium reserve assemblies, which contain a high concentration of sulfur. Similar structures are observed for eggshell membranes after natural demineralization. The characteristic rhombohedral crystal morphologies of the calcite crystals grown in this in vitro system are much less regular when grown in the presence of organic matrix or partially purified dermatan sulfate proteoglycans obtained from the eggshell. The effect of these macromolecules on the morphology and size of CaCO3 crystals is concentration-dependent. These studies indicate the complexity of the molecular and ionic interactions involved in the initiation and formation of the eggshell, with the focus on the role of the organic matrix.

  2. Fossil struthionid eggshells from Laetoli, Tanzania: Taxonomic and biostratigraphic significance

    NASA Astrophysics Data System (ADS)

    Harrison, Terry; Msuya, Charles P.

    2005-04-01

    Recent paleontological investigations at Laetoli and neighboring localities in northern Tanzania have produced a large collection of fossil ostrich eggshells from the Pliocene-aged Laetolil Beds (˜3.5-4.5 Ma) and Ndolanya Beds (˜2.6-2.7 Ma). A detailed analysis of the morphology of the eggshells and their taxonomic affinities indicates that two different species of Struthio are represented. In the Lower Laetolil Beds and in the Upper Laetolil Beds below Tuff 3 a new species is recognized— Struthio kakesiensis. This is replaced in the Upper Laetolil Beds by Struthio camelus, the modern species of ostrich. Since radiometric age determinations are available for the stratigraphic sequence at Laetoli, it is possible to precisely date the first appearance of S. camelus at ˜3.6-3.8 Ma. Comparisons of the Laetoli material with specimens from the well-dated sequences at Lothagam and Kanapoi in northern Kenya, allow the taxonomic and biochronological analysis to be extended back in time to the late Miocene. At about 6.5 Ma, Diamantornis and elephant birds were replaced in East Africa by ostriches belonging to the genus Struthio. Three time-successive species of ostriches are identified in the fossil record of East Africa, beginning with Struthio. cf. karingarabensis (˜6.5-4.2 Ma), followed by S. kakesiensis (˜4.5-3.6 Ma) and then S. camelus (˜3.8 Ma onwards). A similar sequence of taxa has previously been recorded from localities in Namibia, but at these sites there is no possibility to precisely calibrate the ages of the different species using radiometric dating. Nevertheless, the broadly similar evolutionary sequence and the close correspondence in inferred ages for the succession of species in East Africa and Namibia suggest that ostrich eggshells are a very useful tool for biochronological correlation of paleontological sites in sub-Saharan Africa.

  3. A critical evaluation of the utility of eggshells for estimating mercury concentrations in avian eggs

    USGS Publications Warehouse

    Peterson, Sarah; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Hartman, C. Alex; Herzog, Mark P.

    2017-01-01

    Eggshells are a potential tool for non-lethally sampling contaminant concentrations in bird eggs, yet few studies have examined their utility to represent mercury exposure. We assessed mercury concentrations in eggshell components for 23 bird species and determined whether they correlated with total mercury (THg) in egg contents. We designed a multi-experiment analysis to examine how THg is partitioned into eggshell components, specifically hardened eggshells, material adhered to the eggshell, and inner eggshell membranes. THg concentrations in eggshells were much lower than in egg contents, and almost all of the THg within the eggshell was contained within material adhered to eggshells and inner eggshell membranes, and specifically not within calcium-rich hardened eggshells. Despite having very little mercury, THg concentrations in hardened eggshells had the strongest correlation with egg contents among all eggshell components. However, species with the same THg concentrations in eggshells had different THg concentrations in egg contents, indicating that there is no global predictive equation among species for the relationship between eggshell and egg content THg concentrations. Further, for all species, THg concentrations in eggshells decreased with relative embryo age. Although the majority of mercury in eggshells was contained within other eggshell components and not within hardened eggshells, THg in hardened eggshells can be used to estimate THg concentrations in egg contents, if embryo age and species are addressed.

  4. Shotgun Proteomics Identifies Proteins Specific for Acute Renal Transplant Rejection

    SciTech Connect

    Sigdel, Tara K.; Kaushal, Amit; Gritsenko, Marina A.; Norbeck, Angela D.; Qian, Weijun; Xiao, Wenzhong; Camp, David G.; Smith, Richard D.; Sarwal, Minnie M.

    2010-01-04

    Acute rejection (AR) remains the primary risk factor for renal transplant outcome; development of non-invasive diagnostic biomarkers for AR is an unmet need. We used shotgun proteomics using LC-MS/MS and ELISA to analyze a set of 92 urine samples, from patients with AR, stable grafts (STA), proteinuria (NS), and healthy controls (HC). A total of 1446 urinary proteins were identified along with a number of NS specific, renal transplantation specific and AR specific proteins. Relative abundance of identified urinary proteins was measured by protein-level spectral counts adopting a weighted fold-change statistic, assigning increased weight for more frequently observed proteins. We have identified alterations in a number of specific urinary proteins in AR, primarily relating to MHC antigens, the complement cascade and extra-cellular matrix proteins. A subset of proteins (UMOD, SERPINF1 and CD44), have been further cross-validated by ELISA in an independent set of urine samples, for significant differences in the abundance of these urinary proteins in AR. This label-free, semi-quantitative approach for sampling the urinary proteome in normal and disease states provides a robust and sensitive method for detection of urinary proteins for serial, non-invasive clinical monitoring for graft rejection after

  5. Effects of reducing dietary protein, methionine, choline, folic acid, and vitamin B12 during the late stages of the egg production cycle on performance and eggshell quality.

    PubMed

    Keshavarz, K

    2003-09-01

    A series of four experiments was conducted to determine whether-shell quality during the late stages of egg production can be improved by using diets that are effective in reducing egg size. The experiments involved dietary manipulation of protein, methionine, choline, folic acid, and vitamin B12. In experiment 1, reducing dietary protein in combination of reducing the dietary methionine and choline or this diet without supplemental folic acid and vitamin B12 resulted in reduced egg weight and improved shell quality. However, egg production also was drastically reduced. In experiment 2, reducing the dietary level of methionine, without adding supplemental choline, folic acid, and vitamin B12 reduced egg size and improved shell quality, but egg production was reduced as well. In this experiment reducing the dietary methionine without supplemental folic acid and vitamin B12 reduced egg size and improved shell quality with no adverse effect on egg production. In experiment 3, reducing the dietary level of methionine and choline or reducing the dietary level of choline, folic acid, and vitamin B12 reduced egg size and improved shell quality without adverse effects on egg production. On the other hand, reducing dietary methionine, folic acid, vitamin B12, and supplemental choline reduced egg weight and improved shell quality but lowered egg production. In experiment 4, reducing dietary methionine together with reducing choline and vitamin B12 reduced egg size and improved shell quality with no adverse effect on egg production. The results of this series of experiments generally indicate that certain manipulations of the combination of methionine, choline, folic acid, and vitamin B12 have the potential to reduce egg weight and improve shell quality without affecting egg production during the latter stages of the egg production cycle.

  6. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces.

  7. A multidimensional proteomic approach to identify hypertrophy-associated proteins.

    PubMed

    Lindsey, Merry L; Goshorn, Danielle K; Comte-Walters, Susana; Hendrick, Jennifer W; Hapke, Elizabeth; Zile, Michael R; Schey, Kevin

    2006-04-01

    Left ventricular hypertrophy (LVH) is a leading cause of congestive heart failure. The exact mechanisms that control cardiac growth and regulate the transition to failure are not fully understood, in part due to the lack of a complete inventory of proteins associated with LVH. We investigated the proteomic basis of LVH using the transverse aortic constriction model of pressure overload in mice coupled with a multidimensional approach to identify known and novel proteins that may be relevant to the development and maintenance of LVH. We identified 123 proteins that were differentially expressed during LVH, including LIM proteins, thioredoxin, myoglobin, fatty acid binding protein 3, the abnormal spindle-like microcephaly protein (ASPM), and cytoskeletal proteins such as actin and myosin. In addition, proteins with unknown functions were identified, providing new directions for future research in this area. We also discuss common pitfalls and strategies to overcome the limitations of current proteomic technologies. Together, the multidimensional approach provides insight into the proteomic changes that occur in the LV during hypertrophy.

  8. Irregularly calcified eggs and eggshells of Caiman latirostris (Alligatoridae: Crocodylia)

    NASA Astrophysics Data System (ADS)

    Fernández, Mariela Soledad; Simoncini, Melina Soledad; Dyke, Gareth

    2013-05-01

    We describe irregularly calcified egg and eggshell morphologies for the first time in nests of the broad-snouted caiman, Caiman latirostris. Research is based on detailed descriptions of 270 eggs from a total sample of 46,800 collected between 2005 and 2011 in Santa Fe Province, Argentina, and encompasses animals from both natural habitats and held in captivity. We discuss possible reasons for the occurrence of eggs with different mineralisation patterns in our extensive C. latirostris field sample and its conservation significance; the chemistry of egg laying in amniotes is sensitive to environmental contamination which, in turn, has biological implications. Based on our egg sample, we identify two caiman eggshell abnormalities: (1) regularly calcified eggs with either calcitic nodules or superficial wrinkles at one egg end and (2) irregularly calcified eggs with structural gaps that weaken the shell. Some recently laid clutches we examined included eggs with most of the shell broken and detached from the flexible membrane. Most type 1 regularly calcified eggs lost their initial calcified nodules during incubation, suggesting that these deposits do not affect embryo survival rates. In contrast, irregularly calcified caiman eggs have a mean hatching success rate of 8.9 % (range 0-38 %) across our sample compared to a mean normal success of 75 %. Most irregularly calcified caiman eggs probably die because of infections caused by fungi and bacteria in the organic nest material, although another possible explanation that merits further investigation could be an increase in permeability, leading to embryo dehydration.

  9. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  10. S-linked protein homocysteinylation: identifying targets based on structural, physicochemical and protein-protein interactions of homocysteinylated proteins.

    PubMed

    Silla, Yumnam; Sundaramoorthy, Elayanambi; Talwar, Puneet; Sengupta, Shantanu

    2013-05-01

    An elevated level of homocysteine, a thiol-containing amino acid is associated with a wide spectrum of disease conditions. A majority (>80 %) of the circulating homocysteine exist in protein-bound form. Homocysteine can bind to free cysteine residues in the protein or could cleave accessible cysteine disulfide bonds via thiol disulfide exchange reaction. Binding of homocysteine to proteins could potentially alter the structure and/or function of the protein. To date only 21 proteins have been experimentally shown to bind homocysteine. In this study we attempted to identify other proteins that could potentially bind to homocysteine based on the criteria that such proteins will have significant 3D structural homology with the proteins that have been experimentally validated and have solvent accessible cysteine residues either with high dihedral strain energy (for cysteine-cysteine disulfide bonds) or low pKa (for free cysteine residues). This analysis led us to the identification of 78 such proteins of which 68 proteins had 154 solvent accessible disulfide cysteine pairs with high dihedral strain energy and 10 proteins had free cysteine residues with low pKa that could potentially bind to homocysteine. Further, protein-protein interaction network was built to identify the interacting partners of these putative homocysteine binding proteins. We found that the 21 experimentally validated proteins had 174 interacting partners while the 78 proteins identified in our analysis had 445 first interacting partners. These proteins are mainly involved in biological activities such as complement and coagulation pathway, focal adhesion, ECM-receptor, ErbB signalling and cancer pathways, etc. paralleling the disease-specific attributes associated with hyperhomocysteinemia.

  11. Collection and separation of Aedes taeniorhynchus eggshells from mangrove soil.

    PubMed

    Ritchie, S A; Addison, D S

    1991-03-01

    Two methods to separate eggshells of Aedes taeniorhynchus from mangrove soil were compared. Selective sieving, using nested sieves with 0.185 and 0.170-mm screen openings, and water flotation both removed over 99% of the soil. However, water flotation recovered a significantly greater percentage of eggshells (62% vs. 34%). There was no significant difference in the recovery rate of viable eggs and new and old eggshells using water flotation.

  12. Eggshell waste as catalyst: A review.

    PubMed

    Laca, Amanda; Laca, Adriana; Díaz, Mario

    2017-04-10

    Agricultural wastes are some of the most emerging problems in food industries because of their disposal cost. However, it is also an opportunity for the bioeconomy society if new uses for these residual materials can be found. Eggshells, considered a hazardous waste by UE regulations, are discarded, amounting hundreds of thousands of tonnes worldwide. This egg processing waste is a valuable source material, which can be used in different fields such as fodder or fertilizer production. Additionally, this residue offers interesting characteristics to be used in other applications, like its employment as an environment-friendly catalyst. In the present review we provide a global view of eggshell waste uses as catalyst in different processes. According to reviewed researching works, a huge variety of added value products can be obtained by using this catalyst which emphasised the interest of further investigations in order to widen the possible uses of this cheap green catalyst.

  13. SitesIdentify: a protein functional site prediction tool

    PubMed Central

    2009-01-01

    Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify), based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/ PMID:19922660

  14. The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C. elegans embryo

    PubMed Central

    Johnston, Wendy L; Krizus, Aldis; Dennis, James W

    2006-01-01

    Background Fertilization restores the diploid state and begins the process by which the single-cell oocyte is converted into a polarized, multicellular organism. In the nematode, Caenorhabditis elegans, two of the earliest events following fertilization are secretion of the chitinous eggshell and completion of meiosis, and in this report we demonstrate that the eggshell is essential for multiple developmental events at the one-cell stage. Results We show that the GLD (Germline differentiation abnormal)-1-regulated hexosamine pathway enzyme, glucosamine-6-phosphate N-acetyltransferase (GNA)-2, is required for synthesis of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), the substrate for eggshell chitin synthesis by chitin synthase-1 (CHS-1). Furthermore, while chs-1(RNAi) or combined RNAi with the chitin-binding proteins, CEJ-1 and B0280.5, does not interfere with normal meiotic timing, lagging chromosomes are observed at meiosis, and polar-body extrusion fails. We also demonstrate that chitin, and either CEJ-1 or B0280.5, are essential for the osmotic/permeability barrier and for movement of the sperm pronucleus/centrosome complex to the cortex, which is associated with the initiation of polarization. Conclusion Our results indicate that the eggshell is required in single-cell C. elegans development, playing an essential role in multiple actin-dependent early events. Furthermore, the earliest meiotic roles precede osmotic barrier formation, indicating that the role of the eggshell is not limited to generation of the osmotic barrier. PMID:17042944

  15. Identifying protein complexes in protein-protein interaction networks by using clique seeds and graph entropy.

    PubMed

    Chen, Bolin; Shi, Jinhong; Zhang, Shenggui; Wu, Fang-Xiang

    2013-01-01

    The identification of protein complexes plays a key role in understanding major cellular processes and biological functions. Various computational algorithms have been proposed to identify protein complexes from protein-protein interaction (PPI) networks. In this paper, we first introduce a new seed-selection strategy for seed-growth style algorithms. Cliques rather than individual vertices are employed as initial seeds. After that, a result-modification approach is proposed based on this seed-selection strategy. Predictions generated by higher order clique seeds are employed to modify results that are generated by lower order ones. The performance of this seed-selection strategy and the result-modification approach are tested by using the entropy-based algorithm, which is currently the best seed-growth style algorithm to detect protein complexes from PPI networks. In addition, we investigate four pairs of strategies for this algorithm in order to improve its accuracy. The numerical experiments are conducted on a Saccharomyces cerevisiae PPI network. The group of best predictions consists of 1711 clusters, with the average f-score at 0.68 after removing all similar and redundant clusters. We conclude that higher order clique seeds can generate predictions with higher accuracy and that our improved entropy-based algorithm outputs more reasonable predictions than the original one.

  16. Eggshell Spottiness Reflects Maternally Transferred Antibodies in Blue Tits

    PubMed Central

    Holveck, Marie-Jeanne; Grégoire, Arnaud; Staszewski, Vincent; Guerreiro, Romain; Perret, Philippe; Boulinier, Thierry; Doutrelant, Claire

    2012-01-01

    Blue-green and brown-spotted eggshells in birds have been proposed as sexual signals of female physiological condition and egg quality, reflecting maternal investment in the egg. Testing this hypothesis requires linking eggshell coloration to egg content, which is lacking for brown protoporphyrin-based pigmentation. As protoporphyrins can induce oxidative stress, and a large amount in eggshells should indicate either high female and egg quality if it reflects the female's high oxidative tolerance, or conversely poor quality if it reflects female physiological stress. Different studies supported either predictions but are difficult to compare given the methodological differences in eggshell-spottiness measurements. Using the blue tit Cyanistes caeruleus as a model species, we aimed at disentangling both predictions in testing if brown-spotted eggshell could reflect the quality of maternal investment in antibodies and carotenoids in the egg, and at improving between-study comparisons in correlating several common measurements of eggshell coloration (spectral and digital measures, spotted surface, pigmentation indices). We found that these color variables were weakly correlated highlighting the need for comparable quantitative measurements between studies and for multivariate regressions incorporating several eggshell-color characteristics. When evaluating the potential signaling function of brown-spotted eggshells, we thus searched for the brown eggshell-color variables that best predicted the maternal transfer of antibodies and carotenoids to egg yolks. We also tested the effects of several parental traits and breeding parameters potentially affecting this transfer. While eggshell coloration did not relate to yolk carotenoids, the eggs with larger and less evenly-distributed spots had higher antibody concentrations, suggesting that both the quantity and distribution of brown pigments reflected the transfer of maternal immune compounds in egg yolks. As yolk antibody

  17. Identifying the singleplex and multiplex proteins based on transductive learning for protein subcellular localization prediction.

    PubMed

    Cao, Junzhe; Liu, Wenqi; He, Jianjun; Gu, Hong

    2013-07-01

    A new method is proposed to identify whether a query protein is singleplex or multiplex for improving the quality of protein subcellular localization prediction. Based on the transductive learning technique, this approach utilizes the information from the both query proteins and known proteins to estimate the subcellular location number of every query protein so that the singleplex and multiplex proteins can be recognized and distinguished. Each query protein is then dealt with by a targeted single-label or multi-label predictor to achieve a high-accuracy prediction result. We assess the performance of the proposed approach by applying it to three groups of protein sequences datasets. Simulation experiments show that the proposed approach can effectively identify the singleplex and multiplex proteins. Through a comparison, the reliably of this method for enhancing the power of predicting protein subcellular localization can also be verified.

  18. Identifying Antioxidant Proteins by Using Optimal Dipeptide Compositions.

    PubMed

    Feng, Pengmian; Chen, Wei; Lin, Hao

    2016-06-01

    Antioxidant proteins are a kind of molecules that can terminate cellular and DNA damages caused by free radical intermediates. The use of antioxidant proteins for prevention of diseases has been intensively studied in recent years. Thus, accurate identification of antioxidant proteins is essential for understanding their roles in pharmacology. In this study, a support vector machine-based predictor called AodPred was developed for identifying antioxidant proteins. In this predictor, the sequence was formulated by using the optimal 3-gap dipeptides obtained by using feature selection method. It was observed by jackknife cross-validation test that AodPred can achieve an overall accuracy of 74.79 % in identifying antioxidant proteins. As a user-friendly tool, AodPred is freely accessible at http://lin.uestc.edu.cn/server/AntioxiPred . To maximize the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web server to obtain the desired results.

  19. Effects of DDT on eggshell quality and calcium adenosine triphosphatase.

    PubMed

    Kolaja, G J; Hinton, D E

    1977-11-01

    Adult mallard ducks were fed a diet containing 50 ppm DDT for 6 months. Eggs laid during this period were collected and eggshell weight, thickness, and calcium were determined. Chronic ingestion of DDT resulted in production of eggshells that were significantly thinner and lighter than those of controls. Total calcium of thinned eggshells was also reduced; however, calcium per gram of eggshell was not altered, indicating that other eggshell constituents were not incorporated as well. Calcium adenosine triphosphatase activity in the microsomal fraction of eggshell gland epithelium was assayed in control and DDT-fed ducks. Enzyme activity in DDT-fed ducks was reduced to 65% of control values. Since Ca-ATPase has been shown to be associated with calcium transport, enzyme inhibition may be responsible for decreased eggshell weight and thickness. Electron microscopic evaluation of microsomal fractions showed elements of the plasma membrane, including cilia and microvilli, as well as rough and smooth endoplasmic reticulum. Inhibition of calcium transport at the plasma membrane of mucosal epithelium is proposed as a possible mechanism of DDT-induced eggshell thinning.

  20. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  1. Characteristics of glycosaminoglycans in chicken eggshells and the influence of disaccharide composition on eggshell properties.

    PubMed

    Liu, Z; Sun, X; Cai, C; He, W; Zhang, F; Linhardt, R J

    2016-12-01

    Glycosaminoglycans (GAG) are linear, highly negatively charged polysaccharides that may perform an important role in biomineralization. GAG were isolated from chicken eggshell membranes and calcified shells. Disaccharide compositional analysis was performed using liquid chromatography-mass spectrometry. All 4 groups of GAG - hyaluronan (HA), keratan sulfate (KS), chondroitin sulfate (CS), and heparan sulfate (HS) - were detected in shell membranes and in calcified shells. HA was the most plentiful GAG in shell membranes, and CS was the most abundant in calcified shells. The CS present, in both membranes and calcified shells, consisted primarily of 6SCS-C, 4SCS-A, and 0SCS-0 disaccharides. Neither 4S6SCS-E nor 2SCS was detectable in shell components. Small amounts of 2S4SCS-B were detected in membranes and TriSCS, and 2S4SCS-B and 2S6SCS-D were detected in calcified shells. HS in calcified shells contained all disaccharides except for 2S6S. In shell membranes, HS contained primarily NS and 0S as well as small amounts of TriS, NS2S, NS6SHS, and 6S, but neither 2S6S nor 2S was detectable. The disaccharide composition of membrane CS, as well as membrane and calcified shell HS, were very similar in all eggshells. In contrast, the composition of calcified shell CS disaccharides was highly variable. In membranes, both HA and KS content showed a correlation with egg shape index. The 4SCS-A content correlated with eggshell strength, and 0SCS-0 correlated with eggshell strength and calcified shell thickness. HS content and its disaccharide composition showed no apparent correlation to properties of calcified shells. In calcified shells, only HS 6S correlated with egg shape index. This study suggests that GAG content and disaccharide composition of shell membranes might impact the quality of chicken eggshells.

  2. An in vivo platform for identifying inhibitors of protein aggregation

    PubMed Central

    Mahood, Rachel A.; Jackson, Matthew P.; Revill, Charlotte H.; Foster, Richard J.; Smith, D. Alastair; Ashcroft, Alison E.; Brockwell, David J.; Radford, Sheena E.

    2015-01-01

    Protein aggregation underlies an array of human diseases, yet only one small molecule therapeutic has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of IAPP aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation. PMID:26656088

  3. Ovarian dual oxidase (Duox) activity is essential for insect eggshell hardening and waterproofing.

    PubMed

    Dias, Felipe A; Gandara, Ana Caroline P; Queiroz-Barros, Fernanda G; Oliveira, Raquel L L; Sorgine, Marcos H F; Braz, Glória R C; Oliveira, Pedro L

    2013-12-06

    In insects, eggshell hardening involves cross-linking of chorion proteins via their tyrosine residues. This process is catalyzed by peroxidases at the expense of H2O2 and confers physical and biological protection to the developing embryo. Here, working with Rhodnius prolixus, the insect vector of Chagas disease, we show that an ovary dual oxidase (Duox), a NADPH oxidase, is the source of the H2O2 that supports dityrosine-mediated protein cross-linking and eggshell hardening. RNAi silencing of Duox activity decreased H2O2 generation followed by a failure in embryo development caused by a reduced resistance to water loss, which, in turn, caused embryos to dry out following oviposition. Phenotypes of Duox-silenced eggs were reversed by incubation in a water-saturated atmosphere, simultaneous silencing of the Duox and catalase genes, or H2O2 injection into the female hemocoel. Taken together, our results show that Duox-generated H2O2 fuels egg chorion hardening and that this process plays an essential role during eggshell waterproofing.

  4. Antimicrobial Characteristics of Heated Eggshell Powder.

    PubMed

    Ohshima, Yuki; Takada, Daisuke; Namai, Satoe; Sawai, Jun; Kikuchi, Mikio; Hotta, Mikinori

    2015-01-01

    Eggshells have high bioavailability and can be used as a source of calcium. The main component is CaCO3, which, when heated, is converted to CaO. Seashells are also mainly composed of CaCO3 and were previously found to exhibit antimicrobial activity after being heated. In this study, heated eggshell powder (HESP) was found to have antimicrobial activity against bacterial vegetative cells, fungi and bacterial spores. Parameters, such as the minimum inhibitory concentration, were determined with kinetic analysis using an indirect conductimetric assay. Moreover, HESP was able to kill the Bacillus subtilis spores. There were no significant differences in the activity between HESP, heated scallop-shell powder and pure CaO. The MIC values for HESP against bacteria and fungi were 0.29-0.43 and 1.3-1.5 mg/mL, respectively. Against B. subtilis spores, a reduction of two orders of magnitude of viability was confirmed following 20 min of treatment at 10 mg/mL at 60 ℃. The active oxygen generated from the HESP slurry was examined with chemiluminescence. The intensity of this increased with increasing concentrations of the HESP slurry. This suggests that HESP could be used as a natural antimicrobial agent. Although a high pH is the main contributor to this antimicrobial activity, active oxygen species generated from HESP are likely to be the main antimicrobial agents..

  5. Identifying subcellular protein localization with fluorescent protein fusions after transient expression in onion epidermal cells.

    PubMed

    Nebenführ, Andreas

    2014-01-01

    Most biochemical functions of plant cells are carried out by proteins which act at very specific places within these cells, for example, within different organelles. Identifying the subcellular localization of proteins is therefore a useful tool to narrow down the possible functions that a novel or unknown protein may carry out. The discovery of genetically encoded fluorescent markers has made it possible to tag specific proteins and visualize them in vivo under a variety of conditions. This chapter describes a simple method to use transient expression of such fluorescently tagged proteins in onion epidermal cells to determine their subcellular localization relative to known markers.

  6. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry1Ab... Tolerance Exemptions § 174.529 Bacillus thuringiensis modified Cry1Ab protein as identified under OECD... Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN-IR67B-1...

  7. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells

    PubMed Central

    Kim, Dae In; Raida, Manfred; Burke, Brian

    2012-01-01

    We have developed a new technique for proximity-dependent labeling of proteins in eukaryotic cells. Named BioID for proximity-dependent biotin identification, this approach is based on fusion of a promiscuous Escherichia coli biotin protein ligase to a targeting protein. BioID features proximity-dependent biotinylation of proteins that are near-neighbors of the fusion protein. Biotinylated proteins may be isolated by affinity capture and identified by mass spectrometry. We apply BioID to lamin-A (LaA), a well-characterized intermediate filament protein that is a constituent of the nuclear lamina, an important structural element of the nuclear envelope (NE). We identify multiple proteins that associate with and/or are proximate to LaA in vivo. The most abundant of these include known interactors of LaA that are localized to the NE, as well as a new NE-associated protein named SLAP75. Our results suggest BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment. PMID:22412018

  8. Ultrastructure of eggs of Ascaris lumbricoides Linnaeus, 1758. I. Egg-shells.

    PubMed

    Lýsek, H; Malínský, J; Janisch, R

    1985-01-01

    Under the light microscope the chitin-protein layer of egg-shells in ascarids appears to be a regular, hyaline and nonstructural layer of 1.5 to 2.00 microns in thickness. The outer uterine layer is usually removed during the preparation. The lipid (ascaroside) layer covers the inner surface of the chitinous layer and seems to be irregularly undulated and regularly thick over the whole surface, with the thickness up to 1 micron. In electron micrographs the fibrous structure of the lipid layer is not evident as a rule. This is probably due to washing the lipids away from this layer during the dehydration of deeper layers of egg-shells that are imperfectly fixed with glutaraldehyde. A very low permeability of the egg-shells is typical of geohelminth eggs. The layer lipid shows a distinct lamellate structure only after a prolonged fixation with osmium at higher temperature. This is supported by the studies using the method of freeze-fracturing.

  9. A new scheme to characterize and identify protein ubiquitination sites.

    PubMed

    Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Lai, K Robert; Lee, Tzong-Yi

    2016-02-08

    Protein ubiquitination, involving the conjugation of ubiquitin on lysine residue, serves as an important modulator of many cellular functions in eukaryotes. Recent advancements in proteomic technology have stimulated increasing interest in identifying ubiquitination sites. However, most computational tools for predicting ubiquitination sites are focused on small-scale data. With an increasing number of experimentally verified ubiquitination sites, we were motivated to design a predictive model for identifying lysine ubiquitination sites for large-scale proteome dataset. This work assessed not only single features, such as amino acid composition (AAC), amino acid pair composition (AAPC) and evolutionary information, but also the effectiveness of incorporating two or more features into a hybrid approach to model construction. The support vector machine (SVM) was applied to generate the prediction models for ubiquitination site identification. Evaluation by five-fold cross-validation showed that the SVM models learned from the combination of hybrid features delivered a better prediction performance. Additionally, a motif discovery tool, MDDLogo, was adopted to characterize the potential substrate motifs of ubiquitination sites. The SVM models integrating the MDDLogo-identified substrate motifs could yield an average accuracy of 68.70%. Furthermore, the independent testing result showed that the MDDLogo-clustered SVM models could provide a promising accuracy (78.50%) and perform better than other prediction tools. Two cases have demonstrated the effective prediction of ubiquitination sites with corresponding substrate motifs.

  10. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    PubMed

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  11. Mutational analysis of the major coat protein of M13 identifies residues that control protein display.

    PubMed Central

    Weiss, G. A.; Wells, J. A.; Sidhu, S. S.

    2000-01-01

    We have reported variants of the M13 bacteriophage major coat protein (P8) that enable high copy display of monomeric and oligomeric proteins, such as human growth hormone and steptavidin, on the surface of phage particles (Sidhu SS, Weiss GA, Wells JA. 2000. High copy display of large proteins on phage for functional selections. J Mol Biol 296:487-495). Here, we explore how an optimized P8 variant (opti-P8) could evolve the ability to efficiently display a protein fused to its N-terminus. Reversion of individual opti-P8 residues back to the wild-type P8 residue identifies a limited set of hydrophobic residues responsible for the high copy protein display. These hydrophobic amino acids bracket a conserved hydrophobic face on the P8 alpha helix thought to be in contact with the phage coat. Mutations additively combine to promote high copy protein display, which was further enhanced by optimization of the linker between the phage coat and the fusion protein. These data are consistent with a model in which protein display-enhancing mutations allow for better packing of the fusion protein into the phage coat. The high tolerance for phage coat protein mutations observed here suggests that filamentous phage coat proteins could readily evolve new capabilities. PMID:10794407

  12. 15. April 1963 SPIRAL STAIRS AND EGGSHELL DORMER Shaker ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. April 1963 SPIRAL STAIRS AND EGG-SHELL DORMER - Shaker Centre Family Trustees' Office, South side of Village Road, North of U.S. Route 68 & State Route 33 intersection, Shakertown, Mercer County, KY

  13. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  14. FunMod: a Cytoscape plugin for identifying functional modules in undirected protein-protein networks.

    PubMed

    Natale, Massimo; Benso, Alfredo; Di Carlo, Stefano; Ficarra, Elisa

    2014-08-01

    The characterization of the interacting behaviors of complex biological systems is a primary objective in protein-protein network analysis and computational biology. In this paper we present FunMod, an innovative Cytoscape version 2.8 plugin that is able to mine undirected protein-protein networks and to infer sub-networks of interacting proteins intimately correlated with relevant biological pathways. This plugin may enable the discovery of new pathways involved in diseases. In order to describe the role of each protein within the relevant biological pathways, FunMod computes and scores three topological features of the identified sub-networks. By integrating the results from biological pathway clustering and topological network analysis, FunMod proved to be useful for the data interpretation and the generation of new hypotheses in two case studies.

  15. Eggshell thickness and DDE residue levels in vlulture eggs

    USGS Publications Warehouse

    Kiff, L.F.; Peakall, D.B.; Morrison, M.L.; Wilbur, S.R.; Wilbur, Sanford R.; Jackson, Jerome A.

    1983-01-01

    Post-DDT (post-1947) eggshell thickness was examined in samples of Turkey Vulture, Black Vulture, and Crested Caracara eggs from several parts of the United States. Highly significant post-DDT decreases in eggshell thickness indices of at least 10 percent were found in Turkey Vulture eggs from California, Florida, and Texas and in Black Vulture eggs from Texas and Florida. Over one-third of the Black VUlture eggs and about 30 percent of the Turkey Vulture eggs from Texas showed thinning exceeding 20 percent, a level associated with reproductive failure and population decline in other species. A strong negative correlation was found between eggshell thickness indices and DDE residues extracted from eggshell membranes in California and Texas samples of Turkey Vulture eggs and in Texas Black Vulture eggs. Crested Caracara eggs from Texas and Florida showed mean changes in eggshell thickness indices of only -5.6 and -8.2 percent, respectively, although thinning in a few eggs from both states exceeded 20 percent. Most of the post-DDT Old World vulture eggs examined appeared to be of normal thickness, with low DDE residue levels in eggshell membranes; but single eggs of Egyptian Vulture from India, Cinereous Vulture from Spain, and White-headed Vulture from Zambia showed apparent thinning. Further monitoring of vulture populations in tropical regions, where DDT use is still increasing, is recommended.

  16. Application of waste eggshell as low-cost solid catalyst for biodiesel production.

    PubMed

    Wei, Ziku; Xu, Chunli; Li, Baoxin

    2009-06-01

    Waste eggshell was investigated in triglyceride transesterification with a view to determine its viability as a solid catalyst for use in biodiesel synthesis. Effect of calcination temperature on structure and activity of eggshell catalysts was investigated. Reusability of eggshell catalysts was also examined. It was found that high active, reusable solid catalyst was obtained by just calcining eggshell. Utilization of eggshell as a catalyst for biodiesel production not only provides a cost-effective and environmental friendly way of recycling this solid eggshell waste, significantly reducing its environmental effects, but also reduces the price of biodiesel to make biodiesel competitive with petroleum diesel.

  17. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    SciTech Connect

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; Yang, Lee Lisheng; Choi, Megan; Singer, Mary; Geller, Jil; Fisher, Susan; Hall, Steven; Hazen, Terry C.; Brenner, Steven; Butland, Gareth; Jin, Jian; Witkowska, H. Ewa; Chandonia, John-Marc; Biggin, Mark D.

    2016-04-20

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification of endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.

  18. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions*

    PubMed Central

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; Yang, Lee Lisheng; Choi, Megan; Singer, Mary E.; Geller, Jil T.; Fisher, Susan J.; Hall, Steven C.; Hazen, Terry C.; Brenner, Steven E.; Butland, Gareth; Jin, Jian; Witkowska, H. Ewa; Chandonia, John-Marc; Biggin, Mark D.

    2016-01-01

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification of endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR. PMID:27099342

  19. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE PAGES

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; ...

    2016-04-20

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  20. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton;...

  1. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton;...

  2. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton;...

  3. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton;...

  4. DDE-induced eggshell thinning in birds: effects of p,p'-DDE on the calcium and prostaglandin metabolism of the eggshell gland.

    PubMed

    Lundholm, C D

    1997-10-01

    1. The focus of this review is the effects and mechanism of action of p,p'-DDE on eggshell formation in birds. Inhibition of prostaglandin synthesis in the eggshell gland mucosa is a probable mechanism for p,p'-DDE-induced eggshell thinning. 2. The duck is sensitive to p,p'-DDE-induced eggshell thinning but the domestic fowl is not, and studies comparing the two species in regard to the calcium and prostaglandin metabolism of the eggshell gland have shown that eggshell thinning induced by p,p'-DDE in ducks is accompanied by reduced activity of prostaglandin synthetase, reduced levels of prostaglandin E2, and reduced uptake of 45Ca by the eggshell gland mucosa. The content of calcium, bicarbonate, chloride, sodium, and potassium are also reduced in the eggshell gland lumen in ducks exhibiting eggshell thinning. None of these effects are seen in the domestic fowl. 3. Inhibition of prostaglandin synthesis is a specific effect of p,p'-DDE. The detrimental effects of p,p'-DDE on the eggshell gland seem to be unique when comparing the compound with structurally related substances, i.e., similar treatment regimens with o,p'-DDE, p,p'-DDT, o,p'-DDT, and p,p'-DDD do not cause eggshell thinning in ducks. Neither do they inhibit prostaglandin synthesis in the eggshell gland mucosa. 4. Administration of other compounds that do inhibit prostaglandin synthesis, e.g., indomethacin, does cause the same effects as those seen with p,p'-DDE, i.e., eggshell thinning and the described effects on the calcium and prostaglandin metabolism of the eggshell gland.

  5. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    PubMed Central

    Doktycz, M. J.; Qi, H.; Morrell-Falvey, J. L.

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction. Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors. PMID:23165043

  6. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGES

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; ...

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  7. A new scoring function for protein-protein docking that identifies native structures with unprecedented accuracy.

    PubMed

    Moreira, Irina S; Martins, João M; Coimbra, João T S; Ramos, Maria J; Fernandes, Pedro A

    2015-01-28

    Protein-protein (P-P) 3D structures are fundamental to structural biology and drug discovery. However, most of them have never been determined. Many docking algorithms were developed for that purpose, but they have a very limited accuracy in generating native-like structures and identifying the most correct one, in particular when a single answer is asked for. With such a low success rate it is difficult to point out one docked structure as being native-like. Here we present a new, high accuracy, scoring method to identify the 3D structure of P-P complexes among a set of trial poses. It incorporates alanine scanning mutagenesis experimental data that need to be obtained a priori. The scoring scheme works by matching the computational and the experimental alanine scanning mutagenesis results. The size of the trial P-P interface area is also taken into account. We show that the method ranks the trial structures and identifies the native-like structures with unprecedented accuracy (∼94%), providing the correct P-P 3D structures that biochemists and molecular biologists need to pursue their studies. With such a success rate, the bottleneck of protein-protein docking moves from the scoring to searching algorithms.

  8. U-Th Burial Dates on Ostrich Eggshell

    NASA Astrophysics Data System (ADS)

    Sharp, W. D.; Fylstra, N. D.; Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2015-12-01

    Obtaining precise and accurate dates at archaeological sites beyond the range of radiocarbon dating is challenging but essential for understanding human origins. Eggshells of ratites (large flightless birds including ostrich, emu and others) are common in many archaeological sequences in Africa, Australia and elsewhere. Ancient eggshells are geochemically suitable for the U-Th technique (1), which has about ten times the range of radiocarbon dating (>500 rather than 50 ka), making eggshells attractive dating targets. Moreover, C and N isotopic studies of eggshell provide insights into paleovegetation and paleoprecipitation central to assessing past human-environment interactions (2,3). But until now, U-Th dates on ratite eggshell have not accounted for the secondary origin of essentially all of their U. We report a novel approach to U-Th dating of eggshell that explicitly accounts for secondary U uptake that begins with burial. Using ostrich eggshell (OES) from Pleistocene-Holocene east African sites, we have measured U and 232Th concentration profiles across OES by laser ablation ICP-MS. U commonly peaks at 10s to 100s of ppb and varies 10-fold or more across the ~2 mm thickness of OES, with gradients modulated by the layered structure of the eggshell. Common Th is high near the shell surfaces, but low in the middle "pallisade" layer of OES, making it optimal for U-Th dating. We determine U-Th ages along the U concentration gradient by solution ICP-MS analyses of two or more fractions of the pallisade layer. We then estimate OES burial dates using a simple model for diffusive uptake of uranium. Comparing such "U-Th burial dates" with radiocarbon dates for OES calcite from the same shells, we find good agreement in 7 out of 9 cases, consistent with rapid burial and confirming the accuracy of the approach. The remaining 2 eggshells have anomalous patterns of apparent ages that reveal they are unsuitable for U-Th dating, thereby providing reliability criteria innate

  9. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    PubMed

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O2), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10(1)-10(6)CFU/cm(2)). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10(4)CFU/cm(2) inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO2 mixtures.

  10. Nature's technical ceramic: the avian eggshell.

    PubMed

    Hahn, Eric N; Sherman, Vincent R; Pissarenko, Andrei; Rohrbach, Samuel D; Fernandes, Daniel J; Meyers, Marc A

    2017-01-01

    Avian eggshells may break easily when impacted at a localized point; however, they exhibit impressive resistance when subjected to a well-distributed compressive load. For example, a common demonstration of material strength is firmly squeezing a chicken egg along its major axis between one's hands without breaking it. This research provides insight into the underlying mechanics by evaluating both macroscopic and microstructural features. Eggs of different size, varying from quail (30 mm) to ostrich (150 mm), are investigated. Compression experiments were conducted along the major axis of the egg using force-distributing rubber cushions between steel plates and the egg. The force at failure increases with egg size, reaching loads upwards of 5000 N for ostrich eggs. The corresponding strength, however, decreases with increasing shell thickness (intimately related to egg size); this is rationalized by a micro-defects model. Failure occurs by axial splitting parallel to the loading direction-the result of hoop tensile stresses due to the applied compressive load. Finite-element analysis is successfully employed to correlate the applied compressive force to tensile breaking strength for the eggs, and the influence of geometric ratio and microstructural heterogeneities on the shell's strength and fracture toughness is established.

  11. Development of a Capillary Electrophoresis Platform for Identifying Inhibitors of Protein-Protein Interactions

    PubMed Central

    Rauch, Jennifer N.; Nie, Jing; Buchholz, Tonia J.; Gestwicki, Jason E.; Kennedy, Robert T.

    2013-01-01

    Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound to free ratio. The method was used to screen a library of 3,443 compounds and results compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that reconfirmed in subsequent testing suggesting greater specificity. This finding was attributed to use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens but at the current stage of development it is attractive as a secondary screen to test hits found by higher throughput methods. PMID:24060167

  12. Development of a capillary electrophoresis platform for identifying inhibitors of protein-protein interactions.

    PubMed

    Rauch, Jennifer N; Nie, Jing; Buchholz, Tonia J; Gestwicki, Jason E; Kennedy, Robert T

    2013-10-15

    Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 are separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound-to-free ratio. The method was used to screen a library of 3443 compounds, and the results were compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that were reconfirmed in subsequent testing, suggesting greater specificity. This finding was attributed to the use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens, but at the current stage of development it is attractive as a secondary screen to test hits found by higher-throughput methods.

  13. Informatics View on the Challenges of Identifying Missing Proteins from Shotgun Proteomics.

    PubMed

    Choong, Wai-Kok; Chang, Hui-Yin; Chen, Ching-Tai; Tsai, Chia-Feng; Hsu, Wen-Lian; Chen, Yu-Ju; Sung, Ting-Yi

    2015-12-04

    Protein experiment evidence at protein level from mass spectrometry and antibody experiments are essential to characterize the human proteome. neXtProt (2014-09 release) reported 20 055 human proteins, including 16 491 proteins identified at protein level and 3564 proteins unidentified. Excluding 616 proteins at uncertain level, 2948 proteins were regarded as missing proteins. Missing proteins were unidentified partially due to MS limitations and intrinsic properties of proteins, for example, only appearing in specific diseases or tissues. Despite such reasons, it is desirable to explore issues affecting validation of missing proteins from an "ideal" shotgun analysis of human proteome. We thus performed in silico digestions on the human proteins to generate all in silico fully digested peptides. With these presumed peptides, we investigated the identification of proteins without any unique peptide, the effect of sequence variants on protein identification, difficulties in identifying olfactory receptors, and highly similar proteins. Among all proteins with evidence at transcript level, G protein-coupled receptors and olfactory receptors, based on InterPro classification, were the largest families of proteins and exhibited more frequent variants. To identify missing proteins, the above analyses suggested including sequence variants in protein FASTA for database searching. Furthermore, evidence of unique peptides identified from MS experiments would be crucial for experimentally validating missing proteins.

  14. Biological activities of peptide concentrates obtained from hydrolysed eggshell membrane byproduct by optimisation with response surface methodology.

    PubMed

    Santana, Ana; Melo, Armindo; Tavares, Tânia; Ferreira, Isabel M P L V O

    2016-11-09

    The increase of hen egg consumption demands profitable applications for eggshells, including their membranes, in order to minimize environmental and public health problems that could result from their accumulation. This work presents an innovative application for eggshell membranes to obtain an added-value food ingredient that combines maximized ACE-inhibitory and antioxidant activities. Firstly, the use of acetic acid 5% (v/v); and 3-mercaptopropionic acid 1.25 M enabled 63% recovery of eggshell membrane proteins. Secondly, the extracted proteins were hydrolysed by alcalase from Bacillus licheniformis, viscozyme L and protease from Bacillus amyloliquefaciens. Hydrolysis conditions were optimized using response surface methodology experimental design. The ACE-inhibitory activity (IC50) was 34.5 ± 2.1 μg mL(-1), 63.0 ± 4.2 μg mL(-1) and 43.0 ± 8.5 μg mL(-1) for each enzyme, respectively, and the antioxidant activity was ca. 4.0 μmoltrolox equivalent mg(-1)hydrolysed protein. The combination of both bioactive properties is of potential interest to control cardiovascular diseases.

  15. Traits of eggshells and shell membranes of translucent eggs.

    PubMed

    Wang, De-He; Li, Ya-Jie; Liu, Long; Liu, Jing-Shou; Bao, Man; Yang, Ning; Zhuo-Cheng, Hou; Ning, Zhong-Hua

    2017-02-01

    Translucent eggshells negatively affect the appearance of eggs and decrease their economic value. Translocation and accumulation of water from the contents to the shells of eggs are frequent occurrences. Causes of translucent eggshell formation have been investigated, but the primary reason is uncertain. In previous studies, scientists have found that the thickness of the eggshell membrane was significantly different between translucent and opaque eggs. However, there are some conflicts among studies. We performed 2 experiments with 3 breeding flocks of chickens to target the reasons for egg translucence. In experiment 1, eggs of 1,024 Brown-Egg Dwarf Layers (DWL) were used. Approximately 1,600 eggs were collected over 2 consecutive days. They were stored for 3 days, and then 120 translucent and 120 opaque eggs were selected for measurement of egg quality traits and weight loss over several weeks. In experiment 2, we used DWL and White Leghorn pure line (WLL) for assessment of eggshell ultrastructure and membrane traits. We chose 120 translucent and 120 opaque eggs from 3,500 DWL eggs and 125 translucent and 125 opaque eggs from 5,028 WLL eggs. The results are as follows: (1) translucent eggs had greater eggshell strength and lower ultimate failure stress of shell membrane than opaque eggs in both DWL and WLL groups, (2) translucent eggs had thicker shells and thinner shell membranes than opaque eggs in DWL, (3) no significant differences were found in either gas pore or bubble pore traits between translucent and opaque eggs in either line, and (4) no significant differences were detected in internal egg quality or weight loss between translucent and opaque eggs in either line. In summary, the present study suggests that variations in both eggshells and shell membrane structures are implicated in the formation of translucent eggs.

  16. Identifying Protein Stabilizing Ligands Using GroEL

    PubMed Central

    Naik, Subhashchandra; Haque, Inamul; Degner, Nick; Kornilayev, Boris; Bomhoff, Gregory; Hodges, Jacob; Khorassani, Ara-Azad; Katayama, Hiroo; Morris, Jill; Kelly, Jeffery; Seed, John; Fisher, Mark T.

    2010-01-01

    Over the past five years, it has become increasingly apparent to researchers that the initial promise and excitement of using gene replacement therapies to ameliorate folding diseases are still far from being broadly or easily applicable. Because a large number of human diseases are protein folding diseases (~30 to 50%), many researchers now realize that more directed approaches to target and reverse the fundamental misfolding reactions preceding disease are highly feasible and offer the potential of developing more targeted drug therapies. This is also true with a large number of so called “orphan protein folding diseases”. The development of a broad-based general screening array method using the chaperonin as a detection platform will enable us to screen large chemical combinatorial libraries for specific ligands against the elusive transient, primary reactions that often lead to protein misfolding. This development will provide a highly desirable tool for the pharmaceutical, academic and medical professions. PMID:19802819

  17. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers.

    PubMed

    Linhoff, Michael W; Laurén, Juha; Cassidy, Robert M; Dobie, Frederick A; Takahashi, Hideto; Nygaard, Haakon B; Airaksinen, Matti S; Strittmatter, Stephen M; Craig, Ann Marie

    2009-03-12

    Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.

  18. Dating lacustrine episodes in the eastern Sahara by the epimerization of isoleucine in ostrich eggshells

    USGS Publications Warehouse

    Miller, G.H.; Wendorf, F.; Ernst, R.; Schild, R.; Close, A.E.; Friedman, I.; Schwarcz, H.P.

    1991-01-01

    The eggshell of the African ostrich, Struthio camelus, closely approximates a closed system for the retention of indigenous proteinaceous residues. Epimerization of the protein amino acid isoleucine follows linear first-order kinetics in laboratory simulations nearly to racemic equilibrium, and the variation in D/L ratio within a single fragment, or between fragments of the same age, is significantly less than in other carbonate systems. These observations suggest that the extent of isoleucine epimerization (aIle/Ile ratio) in ostrich eggshell offers the potential for high-resolution geochronology of Quaternary deposits. From the simulation experiments, and dated early Holocene samples for which we have in situ mean annual sediment temperature measurements, Arrhenius parameters have been calculated; the activation energy is 30.33 kcal mol-1, similar to that of other carbonate systems. We have measured the aIle/Ile ratio in ostrich eggshell associated with lacustrine episodes at Bir Tarfawi and Bir Sahara East, two depressions in what is currently the hyperarid eastern Sahara. The ratios can be used directly to indicate qualitatively the time represented by each series of lake sediment, and to correlate disjunct lacustrine deposits within and between the basins. Uranium-series disequilibrium dating of algal mats contained within some of the lake beds indicate that a major wet interval occurred about 130 ka ago. Using the U-series date for calibration, the amino acid ratios are used to date the most recent lacustrine interval to about 100 ka B.P., and two older intervals, one about 200 ?? 25 ka B.P., and an older interval that occurred prior to 250 ka ago. ?? 1991.

  19. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    PubMed Central

    Wang, Baoman; Yuan, Fei; Kong, Xiangyin; Hu, Lan-Dian; Cai, Yu-Dong

    2015-01-01

    Apoptosis is the process of programmed cell death (PCD) that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature. PMID:26543496

  20. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  1. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis

    PubMed Central

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-01-01

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the “recycling” of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  2. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.

    PubMed

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-03-29

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance.

  3. Which Came First, the Eggshell or the Egg? Answering Biomineralization Riddles (442nd Brookhaven Lecture)

    SciTech Connect

    DiMasi, Elaine

    2008-11-12

    Some of the hardest and sturdiest materials are not made in the factory; they are made inside the bodies of animals through a process called biomineralization. Look no further than your refrigerator for one of the simplest products of this natural construction company: a chicken's eggshell. Made out of just about a half-millimeter of layered calcium carbonate and protein, eggshells might be thought of as fragile, but they also provide vital protection for the chick forming inside. Biomineralization, the process by which organisms form materials such as bones, mollusk shells, and other structures, has captured the attention of scientists for years. The cells in an animal's body have special ways of controlling the sizes and shapes of these mineral compounds and incorporating organic materials into the mix, making many materials that are stronger, harder, and more wear-resistant than rocks. Finding a way to mimic the properties of these sturdy and naturally made materials could lead to the medical engineering of replacement bone, teeth, and cartilage, as well as the development of new electronic and industrial materials. With collaborators at Stony Brook University, physicist Elaine DiMasi develops different biomineralization models, including a protein network that resembles real tissue. Then, the researchers use x-rays at the NSLS and a technique called shear modulation force microscopy to determine what biominerals look like and how they grow. In particular, DiMasi is interested in studying some of the earliest stages of biomineralization to find out what sets the process in motion.

  4. Evaluation of Muscodor cinnamomi as an egg biofumigant for the reduction of microorganisms on eggshell surfaces and its effect on egg quality.

    PubMed

    Suwannarach, Nakarin; Kaewyana, Chariya; Yodmeeklin, Arpaporn; Kumla, Jaturong; Matsui, Kenji; Lumyong, Saisamorn

    2017-03-06

    The presence of microorganisms on the eggshell surface is a factor of consideration in determining egg quality. These microorganisms can contribute to egg spoilage and can infect the egg. In this study, 18 morphotypes of microorganisms were isolated from eggshells. Morphological, biochemical, physiological and molecular analyses were used to identify these morphotypes into 7 species; Bacillus drentensis, Staphylococcus arlettae, Stap. cohnii, Stap. kloosii, Stap. saprophyticus, Stap. sciuri and Stap. xylosus. The potential of Muscodor cinnamomi to reduce the presence of microorganisms on eggshells by biological fumigation was investigated. The result showed that 16 strains of the tested microorganisms were inactivated after the exposure of the fungal volatile organic compounds. The most abundant compound was 2-methylpropanoic acid, followed by 3-methylbutan-1-ol. Our results indicated that a 24-h period of fumigation of 100g rye grain culture of M. cinnamomi was the minimum dose that could significantly reduce the number of microorganisms on the eggshell surface. Fumigated eggs from both box and cabinet fumigation trials showed significantly lower microbial numbers on the eggshell than non-fumigated eggs during the storage period of 14days. It was found that the values of the yolk index, albumen index and the Haugh unit of the eggs decreased during this storage time. However, those values of the fumigated eggs from both fumigation trials were found to be significantly higher than the non-fumigated eggs after the 24-h fumigation period and following storage for 5, 7 and 14days. However, the values of the albumen index were not found to have significantly increased over 5days of the box trial. This study is the first to report on mycofumigation activity for the purposes of reducing the presence of microorganisms on the surface of eggshells.

  5. Organochlorine residues and eggshell thinning in wood storks and anhingas

    USGS Publications Warehouse

    Ohlendorf, H.M.; Klaas, E.E.; Kaiser, T.E.

    1978-01-01

    All 10 Wood Stork eggs collected at Merritt Island National Wildlife Refuge in 1973 contained residues of DDE (geometric mean 4.0 ppm wet weight) and PCBs (1.2 ppm). Nine other organochlorines were found at lower frequencies in the eggs. Eggshells from the recent period were 8.9% thinner (P < 0.001) than pre-1947 samples; decrease in eggshell thickness was more closely correlated with DDE than other organochlorines and correlation of DDE and eggshell thickness approached significance (P = 0.115).....Anhinga eggs were collected at 7 localities; 45 of the 46 eggs analyzed contained DDE residues and 24 contained PCBs. Residues of other organochlorines were found less frequently. Shell thickness of recent eggs from Louisiana and Mississippi was significantly less (-7.5%; P < 0.05) than the mean for pre-1947 eggs, but there was no significant change in shell thickness of eggs from Florida. The change in clutch mean eggshell thickness was significantly negatively correlated (P < 0.05) with the concentration of DDE in the eggs.

  6. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    PubMed

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.

  7. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    PubMed

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  8. Change in the chicken eggshell cuticle with hen age and egg freshness.

    PubMed

    Rodríguez-Navarro, Alejandro B; Domínguez-Gasca, Nazaret; Muñoz, Arantxa; Ortega-Huertas, Miguel

    2013-11-01

    For a fuller understanding of the functionality of the eggshell cuticle, we conducted a detailed study using a wide array of analytical techniques (scanning and transmission microscopy), energy dispersive x-rays, and attenuated total reflection-Fourier transform infrared spectroscopy to analyze the structure, morphology, and chemical composition of this organic coating. This study shows that the cuticle has a compositional gradation with an outer part richer in proteins and an inner part richer in sulfated polysaccharides and phosphates. It also shown that the cuticle composition, thickness, and degree of coverage are highly dependent on hen age and egg freshness. During the course of the first laying year, the thickness and degree of glycosylation of the cuticle decreases with hen age, and at the end of the laying cycle, the cuticle is significantly depleted in lipids. There are also well-defined compositional changes in the cuticle of freshly laid eggs as time passes and there is a notable increase in the permeability of the eggshell after 24 h due to cuticle drying. We discuss how these changes in the cuticle can affect the food safety of eggs in relation to the risk of trans-shell contamination by bacteria (i.e., Salmonellosis).

  9. Protein polymorphism of human IL-18 identified by monoclonal antibodies.

    PubMed

    Seya, T; Matsumoto, M; Shiratori, I; Fukumori, Y; Toyoshima, K

    2001-11-01

    Six mAbs were raised against human "functionally inactive" recombinant IL-18, ELISA for determination of "functionally inactive" forms of IL-18 were established using two of these mAbs (#21 and #132), and inactive species of IL-18 protein were examined with human blood plasma and macrophages (Mp). In 6-day GM-CSF-treated monocytes, namely Mp, the mAb #21 recognized the IL-18 proform (24 kDa) and a 48 kDa dimer by immunoblotting. In contrast, only the 24 kDa species was detected as a relatively faint band with a commercial mAb against "active" IL-18. No IL-18 species was detected in premature monocytes. Thus, the dimeric IL-18 was produced in Mp and detectable with the mAb we established. In blood plasma of normal subjects and patients, the #21-recognizable IL-18 was also detected by ELISA, the levels of which were not consistent with those obtained with the commercially available kit for determination of "functionally active" IL-18. We designated the former as type 2 and the latter as type 1. Strikingly, IL-18 type 1 was detected in all volunteers while type 2 was detected in approximately 30% of healthy subjects, and the levels of type 2 were high (10-100 ng/ml) compared to those of type 1 (0.02-0.55 ng/ml) in their blood plasma. In patients with atopic dermatitis, the mean value of type 1 was high (200 ng/ml) compared to those of normal subjects (0.122 ng/ml) and patients with lung cancer (0.113 ng/ml). Production of high type 1 may be associated with an immunomodulatory state in atopic dermatitis. The levels and frequencies of IL-18 type 2 were not significantly changed among these populations. Hence, large amounts of type 2 species are produced in monocyte-Mp differentiation, and their levels and frequencies are unchanged in blood plasma irrespective of the levels of type 1.

  10. Contemporary techniques for detecting and identifying proteins susceptible to reversible thiol oxidation.

    PubMed

    Burgoyne, Joseph R; Eaton, Philip

    2011-10-01

    Elevated protein oxidation is a widely reported hallmark of most major diseases. Historically, this 'oxidative stress' has been considered causatively detrimental, as the protein oxidation events were interpreted simply as damage. However, recent advances have changed this antiquated view; sensitive methodology for detecting and identifying proteins susceptible to oxidation has revealed a fundamental role for this modification in physiological cell signalling during health. Reversible protein oxidation that is dynamically coupled with cellular reducing systems allows oxidative protein modifications to regulate protein function, analogous to phosphoregulation. However, the relatively labile nature of many reversible protein oxidation states hampers the reliable detection and identification of modified proteins. Consequently, specialized methods to stabilize protein oxidation in combination with techniques to detect specific types of modification have been developed. Here, these techniques are discussed, and their sensitivity, selectivity and ability to reliably identify reversibly oxidized proteins are critically assessed.

  11. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    DOEpatents

    Thompson, Vicki S; Lacey, Jeffrey A; Gentillon, Cynthia A; Apel, William A

    2015-03-03

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  12. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    DOEpatents

    Apel, William A.; Thompson, Vicki S; Lacey, Jeffrey A.; Gentillon, Cynthia A.

    2016-08-09

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  13. Effect of Egg Washing and Correlation between Eggshell Characteristics and Egg Penetration by Various Salmonella Typhimurium Strains

    PubMed Central

    Gole, Vaibhav C.; Chousalkar, Kapil K.; Roberts, Juliet R.; Sexton, Margaret; May, Damian; Tan, Jessica; Kiermeier, Andreas

    2014-01-01

    Salmonella is an important foodborne pathogen, causing an estimated 11,992 cases of infection in Australia per year. Egg or egg product related salmonellosis is a major concern for the egg industry. Worldwide, S. Typhimurium is one of the most common serovars identified in Salmonella food poisoning cases. The current study investigated the ability of five S. Typhimurium strains to penetrate washed and unwashed eggs using whole egg and agar egg penetration methods. All S. Typhimurium strains were able to penetrate eggshells and survive in egg albumen (at 20°C) according to whole egg penetration results. Polymerase Chain Reaction results demonstrated that S. Typhimurium strain 2 (103 and 105 CFU/mL), and strain 5 (103 and 105 CFU/mL) egg penetration was significantly higher (p<0.05) in washed eggs when compared to unwashed eggs. Statistical analysis of the agar penetration experiment indicated that S. Typhimurium was able to penetrate washed eggs at a significantly higher rate when compared to unwashed eggs (p<0.05). When compared to unwashed eggs, washed eggs also had significantly damaged cuticles. Statistical analysis also indicated that eggshell penetration by S. Typhimurium was related to various eggshell ultrastructural features such as cap quality, alignment, erosion, confluence, Type B bodies and cuticle cover. PMID:24621821

  14. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases

    PubMed Central

    Lin, Peng-Lin; Yu, Ya-Wen

    2016-01-01

    Pathway analysis has become popular as a secondary analysis strategy for genome-wide association studies (GWAS). Most of the current pathway analysis methods aggregate signals from the main effects of single nucleotide polymorphisms (SNPs) in genes within a pathway without considering the effects of gene-gene interactions. However, gene-gene interactions can also have critical effects on complex diseases. Protein-protein interaction (PPI) networks have been used to define gene pairs for the gene-gene interaction tests. Incorporating the PPI information to define gene pairs for interaction tests within pathways can increase the power for pathway-based association tests. We propose a pathway association test, which aggregates the interaction signals in PPI networks within a pathway, for GWAS with case-control samples. Gene size is properly considered in the test so that genes do not contribute more to the test statistic simply due to their size. Simulation studies were performed to verify that the method is a valid test and can have more power than other pathway association tests in the presence of gene-gene interactions within a pathway under different scenarios. We applied the test to the Wellcome Trust Case Control Consortium GWAS datasets for seven common diseases. The most significant pathway is the chaperones modulate interferon signaling pathway for Crohn’s disease (p-value = 0.0003). The pathway modulates interferon gamma, which induces the JAK/STAT pathway that is involved in Crohn’s disease. Several other pathways that have functional implications for the seven diseases were also identified. The proposed test based on gene-gene interaction signals in PPI networks can be used as a complementary tool to the current existing pathway analysis methods focusing on main effects of genes. An efficient software implementing the method is freely available at http://puppi.sourceforge.net. PMID:27622767

  15. Identifying the hierarchy of dynamic domains in proteins using the data of molecular dynamics simulations.

    PubMed

    Yesylevskyy, Semen O

    2010-04-01

    The Hierarchical Domain-Wise Alignment (HDWA) technique of domain identification in proteins is presented. HDWA is designed to identify hierarchically organized dynamic domains in proteins using the MD trajectories by eliminating systematic motions from MD trajectories recursively in a model-free manner. The method is tested on the proteins from different structural classes.

  16. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.

    PubMed

    Li, Min; Lu, Yu; Wang, Jianxin; Wu, Fang-Xiang; Pan, Yi

    2015-01-01

    Essential proteins are indispensable for cellular life. It is of great significance to identify essential proteins that can help us understand the minimal requirements for cellular life and is also very important for drug design. However, identification of essential proteins based on experimental approaches are typically time-consuming and expensive. With the development of high-throughput technology in the post-genomic era, more and more protein-protein interaction data can be obtained, which make it possible to study essential proteins from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. Most of these topology based essential protein discovery methods were to use network centralities. In this paper, we investigate the essential proteins' topological characters from a completely new perspective. To our knowledge it is the first time that topology potential is used to identify essential proteins from a protein-protein interaction (PPI) network. The basic idea is that each protein in the network can be viewed as a material particle which creates a potential field around itself and the interaction of all proteins forms a topological field over the network. By defining and computing the value of each protein's topology potential, we can obtain a more precise ranking which reflects the importance of proteins from the PPI network. The experimental results show that topology potential-based methods TP and TP-NC outperform traditional topology measures: degree centrality (DC), betweenness centrality (BC), closeness centrality (CC), subgraph centrality (SC), eigenvector centrality (EC), information centrality (IC), and network centrality (NC) for predicting essential proteins. In addition, these centrality measures are improved on their performance for identifying essential proteins in biological network when controlled by topology potential.

  17. Heart in An Eggshell Calcification: Idiopathic Calcific Constrictive Pericarditis

    PubMed Central

    Song, Bong Gun; Kang, Gu Hyun; Park, Yong Hwan; Chun, Woo Jung; Oh, Ju Hyeon

    2011-01-01

    Constrictive pericarditis is caused by fibrosis and calcification of the pericardium, which inhibits diastolic filling of the heart. Chest roentgenogram can show the calcification as a mass or sheet over the heart and computed tomography scan allows anatomic delineation of the pericardium and determines the extent of calcification. We reported a case of eggshell calcification of idiopathic chronic constrictive pericarditis diagnosed by echocardiography and multi-detector computed tomography.

  18. Preparation and properties of calcium oxide from eggshells via calcination

    NASA Astrophysics Data System (ADS)

    Tangboriboon, N.; Kunanuruksapong, R.; Sirivat, A.

    2012-12-01

    Duck eggs are one of the most versatile cooking ingredients in which residue eggshells are discarded. Raw duck eggshells were calcined at temperatures between 300 to 900 °C, for 1, 3, and 5 h. Both the raw and calcined duck eggshells were characterized by FTIR, STA, XRD, XRF, TEM, BET, a particle size analyzer, and an impedance analyzer. The proper calcination conditions are: 900 °C and 1 h, yielding calcium oxide with a purity of 99.06 % w/w. The calcium carbonate of the rhombohedral form (CaCO3) transforms completely into the calcium oxide or lime of the face centered cubic form (CaO) at 900 °C, as shown by XRD diffraction patterns. The transmission electron microscopy (TEM) images of the calcium oxide reveal a moderately good dispersion of nearly uniform particles. The calcium oxide has a white color, a spherical shape, high porosity, and narrow particles size distribution. The percentage of ceramic yield of the calcium oxide is 53.53, as measured by STA (TG-DTA-DTG). The calcium oxide has a N2 adsorption-desorption isotherm indicating the meso-porosity range. The dielectric constant and the electrical conductivity of the calcined calcium oxide are 35 and 1:0×10-6(Ω·m)-1, respectively, at the frequency of 500 Hz.

  19. Comparative influenza protein interactomes identify the role of plakophilin 2 in virus restriction

    PubMed Central

    Wang, Lingyan; Fu, Bishi; Li, Wenjun; Patil, Girish; Liu, Lin; Dorf, Martin E.; Li, Shitao

    2017-01-01

    Cellular protein interaction networks are integral to host defence and immune signalling pathways, which are often hijacked by viruses via protein interactions. However, the comparative virus–host protein interaction networks and how these networks control host immunity and viral infection remain to be elucidated. Here, we mapped protein interactomes between human host and several influenza A viruses (IAV). Comparative analyses of the interactomes identified common and unique interaction patterns regulating innate immunity and viral infection. Functional screening of the ‘core‘ interactome consisting of common interactions identified five novel host factors regulating viral infection. Plakophilin 2 (PKP2), an influenza PB1-interacting protein, restricts IAV replication and competes with PB2 for PB1 binding. The binding competition leads to perturbation of the IAV polymerase complex, thereby limiting polymerase activity and subsequent viral replication. Taken together, comparative analyses of the influenza–host protein interactomes identified PKP2 as a natural inhibitor of IAV polymerase complex. PMID:28169297

  20. Development of ‘Redox Arrays’ for identifying novel glutathionylated proteins in the secretome

    PubMed Central

    Mullen, Lisa; Seavill, Miles; Hammouz, Raneem; Bottazzi, Barbara; Chan, Philippe; Vaudry, David; Ghezzi, Pietro

    2015-01-01

    Proteomics techniques for analysing the redox status of individual proteins in complex mixtures tend to identify the same proteins due to their high abundance. We describe here an array-based technique to identify proteins undergoing glutathionylation and apply it to the secretome and the proteome of human monocytic cells. The method is based on incorporation of biotinylated glutathione (GSH) into proteins, which can then be identified following binding to a 1000-protein antibody array. We thus identify 38 secreted and 55 intracellular glutathionylated proteins, most of which are novel candidates for glutathionylation. Two of the proteins identified in these experiments, IL-1 sRII and Lyn, were then confirmed to be susceptible to glutathionylation. Comparison of the redox array with conventional proteomic methods confirmed that the redox array is much more sensitive, and can be performed using more than 100-fold less protein than is required for methods based on mass spectrometry. The identification of novel targets of glutathionylation, particularly in the secretome where the protein concentration is much lower, shows that redox arrays can overcome some of the limitations of established redox proteomics techniques. PMID:26416726

  1. Novel royal jelly proteins identified by gel-based and gel-free proteomics.

    PubMed

    Han, Bin; Li, Chenxi; Zhang, Lan; Fang, Yu; Feng, Mao; Li, Jianke

    2011-09-28

    Royal jelly (RJ) plays an important role in caste determination of the honeybee; the genetically same female egg develops into either a queen or worker bee depending on the time and amount of RJ fed to the larvae. RJ also has numerous health-promoting properties for humans. Gel-based and gel-free proteomics approaches and high-performance liquid chromatography-chip quadruple time-of-flight tandem mass spectrometry were applied to comprehensively investigate the protein components of RJ. Overall, 37 and 22 nonredundant proteins were identified by one-dimensional gel electrophoresis and gel-free analysis, respectively, and 19 new proteins were found by these two proteomics approaches. Major royal jelly proteins (MRJPs) were identified as the principal protein components of RJ, and proteins related to carbohydrate metabolism such as glucose oxidase, α-glucosidase precursor, and glucose dehydrogenase were also successfully identified. Importantly, the 19 newly identified proteins were mainly classified into three functional categories: oxidation-reduction (ergic53 CG6822-PA isoform A isoform 1, Sec61 CG9539-PA, and ADP/ATP translocase), protein binding (regucalcin and translationally controlled tumor protein CG4800-PA isoform 1), and lipid transport (apolipophorin-III-like protein). These new findings not only significantly increase the RJ proteome coverage but also help to provide new knowledge of RJ for honeybee biology and potential use for human health promotion.

  2. New proteins identified in epididymal fluid from the platypus (Ornithorhynchus anatinus).

    PubMed

    Dacheux, Jean-Louis; Dacheux, Francoise; Labas, Valerie; Ecroyd, Heath; Nixon, Brett; Jones, Russell C

    2009-01-01

    The platypus epididymal proteome is being studied because epididymal proteins are essential for male fertility in mammals and it is considered that knowledge of the epididymal proteome in an early mammal would be informative in assessing the convergence and divergence of proteins that are important in the function of the mammalian epididymis. Few of the epididymal proteins that have been identified in eutherian mammals were found in platypus caudal epididymal fluid, and the major epididymal proteins in the platypus (PXN-FBPL, SPARC and E-OR20) have never been identified in the epididymis of any other mammal.

  3. Salmonella penetration through eggshells of chickens of different genetic backgrounds.

    PubMed

    Rathgeber, Bruce M; McCarron, Paige; Budgell, Krista L

    2013-09-01

    Eggs have been identified as a source of salmonellosis, making the transmission of Salmonella to eggs of great concern to the poultry industry. The goal of this experiment was to determine the ability of Salmonella to penetrate the eggshell of 5 different breeds of noncommercial chicken, Barred Plymouth Rock, White Leghorn, Brown Leghorn, Fayoumi, and Light Sussex, and 1 commercial Lohmann LSL-Lite. Egg weight, breaking force, shell weight, and shell thickness measurements were taken for 30 eggs per breed. A 1 cm in diameter hole was cut out from the narrow end of 30 additional eggs per breed. The shells were filled with plate count agar containing tetracycline and 0.1% 2,3,5-triphenyl terazolium chloride and sealed with paraffin wax. Agar-filled eggs were submerged for 1 min in an overnight culture of tetracycline-resistant Salmonella Heidelberg and incubated at 37°C for 40 h. Eggs were candled and visual colonies were counted and reported as cfu per egg and cfu per gram of shell. The SAS mixed model was used to evaluate differences between breeds for egg quality characteristics and the number of cfu per egg and per gram of shell. Commercial layers (62.6 g) and Barred Plymouth Rock (61.5 g) produced the largest eggs, whereas Fayoumi (47.1 g) produced the smallest (P < 0.05). Force to break the shell was lowest (P < 0.05) for Barred Plymouth Rock (3.6 kg) and greatest for the commercial (4.4 kg), White Leghorn (4.4 kg), and Fayoumi (4.2 kg). Bacteria penetrating the shell was lowest (P < 0.05) for Barred Plymouth Rock (10.7 cfu/g) and highest for Light Sussex (27.7 cfu/g) and Brown Leghorn (27.2 cfu/g), with other breeds intermediate. These results indicate that there are breed-specific influences on the ability of an egg to resist Salmonella, which cannot be explained by shell quality measurements. Further investigations are warranted to determine the contributing factors to shell penetration by bacteria. This study highlights the value in maintaining heritage

  4. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    PubMed Central

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-01-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases. PMID:26608097

  5. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  6. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach

    PubMed Central

    Tirupula, Kalyan C.; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S.

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor. PMID

  7. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small

  8. Identifying subcellular localizations of mammalian protein complexes based on graph theory with a random forest algorithm.

    PubMed

    Li, Zhan-Chao; Lai, Yan-Hua; Chen, Li-Li; Chen, Chao; Xie, Yun; Dai, Zong; Zou, Xiao-Yong

    2013-04-05

    In the post-genome era, one of the most important and challenging tasks is to identify the subcellular localizations of protein complexes, and further elucidate their functions in human health with applications to understand disease mechanisms, diagnosis and therapy. Although various experimental approaches have been developed and employed to identify the subcellular localizations of protein complexes, the laboratory technologies fall far behind the rapid accumulation of protein complexes. Therefore, it is highly desirable to develop a computational method to rapidly and reliably identify the subcellular localizations of protein complexes. In this study, a novel method is proposed for predicting subcellular localizations of mammalian protein complexes based on graph theory with a random forest algorithm. Protein complexes are modeled as weighted graphs containing nodes and edges, where nodes represent proteins, edges represent protein-protein interactions and weights are descriptors of protein primary structures. Some topological structure features are proposed and adopted to characterize protein complexes based on graph theory. Random forest is employed to construct a model and predict subcellular localizations of protein complexes. Accuracies on a training set by a 10-fold cross-validation test for predicting plasma membrane/membrane attached, cytoplasm and nucleus are 84.78%, 71.30%, and 82.00%, respectively. And accuracies for the independent test set are 81.31%, 69.95% and 81.00%, respectively. These high prediction accuracies exhibit the state-of-the-art performance of the current method. It is anticipated that the proposed method may become a useful high-throughput tool and plays a complementary role to the existing experimental techniques in identifying subcellular localizations of mammalian protein complexes. The source code of Matlab and the dataset can be obtained freely on request from the authors.

  9. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga.

    PubMed

    Estrada-Gómez, Sebastian; Vargas-Muñoz, Leidy Johana; Saldarriaga-Córdoba, Mónica; Cifuentes, Yeimy; Perafan, Carlos

    2017-04-01

    Theraphosidae spider venoms are well known for possess a complex mixture of protein and non-protein compounds in their venom. The objective of this study was to report and identify different proteins translated from the venom gland DNA information of the recently described Theraphosidae spider Pamphobeteus verdolaga. Using a venom gland transcriptomic analysis, we reported a set of the first complete sequences of seven different proteins of the recenlty described Theraphosidae spider P. verdolaga. Protein analysis indicates the presence of different proteins on the venom composition of this new spider, some of them uncommon in the Theraphosidae family. MS/MS analysis of P. verdolaga showed different fragments matching sphingomyelinases (sicaritoxin), barytoxins, hexatoxins, latroinsectotoxins, and linear (zadotoxins) peptides. Only four of the MS/MS fragments showed 100% sequence similarity with one of the transcribed proteins. Transcriptomic analysis showed the presence of different groups of proteins like phospholipases, hyaluronidases, inhibitory cysteine knots (ICK) peptides among others. The three database of protein domains used in this study (Pfam, SMART and CDD) showed congruency in the search of unique conserved protein domain for only four of the translated proteins. Those proteins matched with EF-hand proteins, cysteine rich secretory proteins, jingzhaotoxins, theraphotoxins and hexatoxins, from different Mygalomorphae spiders belonging to the families Theraphosidae, Barychelidae and Hexathelidae. None of the analyzed sequences showed a complete 100% similarity.

  10. Nutritional Supplement of Hatchery Eggshell Membrane Improves Poultry Performance and Provides Resistance against Endotoxin Stress

    PubMed Central

    Makkar, S. K.; Rath, N. C.; Packialakshmi, B.; Zhou, Z. Y.; Huff, G. R.; Donoghue, A. M.

    2016-01-01

    Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants including microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confer better immunity to the chickens in the paradigm of mammalian milk that enhances immunity. Therefore, we investigated the effect of hatchery eggshell membranes (HESM) as a short term feed supplement on growth performance and immunity of chickens under bacterial lipopolysaccharide (LPS) challenged condition. Three studies were conducted to find the effect of HESM supplement on post hatch chickens. In the first study, the chickens were fed either a control diet or diets containing 0.5% whey protein or HESM as supplement and evaluated at 5 weeks of age using growth, hematology, clinical chemistry, plasma immunoglobulins, and corticosterone as variables. The second and third studies were done to compare the effects of LPS on control and HESM fed birds at 5 weeks of age following at 4 and 24 h of treatment where the HESM was also sterilized with ethanol to deplete bacterial factors. HESM supplement caused weight gain in 2 experiments and decreased blood corticosterone concentrations. While LPS caused a significant loss in body weight at 24 h following its administration, the HESM supplemented birds showed significantly less body weight loss compared with the control fed birds. The WBC, heterophil/lymphocyte ratio, and the levels of IgG were low in chickens fed diets with HESM supplement compared with control diet group. LPS challenge increased the expression of pro-inflammatory cytokine gene IL-6 but the HESM fed birds showed its effect curtailed, also, which also, favored the up-regulation of anti-inflammatory genes compared with control diet fed chickens. Post hatch supplementation of HESM appears to improve performance, modulate immunity, and increase resistance of

  11. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein.

    PubMed

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W; Shen, Rong-Fong; Daniels, Mathew P; Levine, Stewart J

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARgamma as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  12. Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation.

    PubMed

    Kolbach-Mandel, A M; Mandel, N S; Cohen, S R; Kleinman, J G; Ahmed, F; Mandel, I C; Wesson, J A

    2016-07-19

    Drug-related kidney stones are a diagnostic problem, since they contain a large matrix (protein) fraction and are frequently incorrectly identified as matrix stones. A urine proteomics study patient produced a guaifenesin stone during her participation, allowing us to both correctly diagnose her disease and identify proteins critical to this drug stone-forming process. The patient provided three random midday urine samples for proteomics studies; one of which contained stone-like sediment with two distinct fractions. These solids were characterized with optical microscopy and Fourier transform infrared spectroscopy. Immunoblotting and quantitative mass spectrometry were used to quantitatively identify the proteins in urine and stone matrix. Infrared spectroscopy showed that the sediment was 60 % protein and 40 % guaifenesin and its metabolite guaiacol. Of the 156 distinct proteins identified in the proteomic studies, 49 were identified in the two stone-components with approximately 50 % of those proteins also found in this patient's urine. Many proteins observed in this drug-related stone have also been reported in proteomic matrix studies of uric acid and calcium containing stones. More importantly, nine proteins were highly enriched and highly abundant in the stone matrix and 8 were reciprocally depleted in urine, suggesting a critical role for these proteins in guaifenesin stone formation. Accurate stone analysis is critical to proper diagnosis and treatment of kidney stones. Many matrix proteins were common to all stone types, but likely not related to disease mechanism. This protocol defined a small set of proteins that were likely critical to guaifenesin stone formation based on their high enrichment and high abundance in stone matrix, and it should be applied to all stone types.

  13. An Experimentally Based Computer Search Identifies Unstructured Membrane-binding Sites in Proteins

    PubMed Central

    Brzeska, Hanna; Guag, Jake; Remmert, Kirsten; Chacko, Susan; Korn, Edward D.

    2010-01-01

    Programs exist for searching protein sequences for potential membrane-penetrating segments (hydrophobic regions) and for lipid-binding sites with highly defined tertiary structures, such as PH, FERM, C2, ENTH, and other domains. However, a rapidly growing number of membrane-associated proteins (including cytoskeletal proteins, kinases, GTP-binding proteins, and their effectors) bind lipids through less structured regions. Here, we describe the development and testing of a simple computer search program that identifies unstructured potential membrane-binding sites. Initially, we found that both basic and hydrophobic amino acids, irrespective of sequence, contribute to the binding to acidic phospholipid vesicles of synthetic peptides that correspond to the putative membrane-binding domains of Acanthamoeba class I myosins. Based on these results, we modified a hydrophobicity scale giving Arg- and Lys-positive, rather than negative, values. Using this basic and hydrophobic scale with a standard search algorithm, we successfully identified previously determined unstructured membrane-binding sites in all 16 proteins tested. Importantly, basic and hydrophobic searches identified previously unknown potential membrane-binding sites in class I myosins, PAKs and CARMIL (capping protein, Arp2/3, myosin I linker; a membrane-associated cytoskeletal scaffold protein), and synthetic peptides and protein domains containing these newly identified sites bound to acidic phospholipids in vitro. PMID:20018884

  14. Mineralization of clapper rail eggshell from a contaminated salt marsh system.

    PubMed

    Rodriguez-Navarro, A B; Gaines, K F; Romanek, C S; Masson, G R

    2002-11-01

    The effect of contamination on eggshell mineralization has been studied for clapper rails (Rallus longirostris) inhabiting a contaminated salt marsh in coastal Georgia. To assess the impact of contaminants, the thickness, microstructure (crystal orientation), mineral composition, and chemistry of shell material were analyzed from a contaminated site and a nearby reference site using optical microscopy, X-ray diffraction, inductively coupled plasma mass spectrometry, and gas chromatography with electron capture detector. Eggshells from the contaminated site were generally thinner than those from the reference site. Also, eggshells from the contaminated site were abnormally brittle and contained anomalous microstructural attributes. The combination of reduced shell thickness and anomalous microstructure resulted in weaker eggshells, which in turn could pose a significant threat to the reproductive success of the affected population.PCB concentrations in eggshells were at background levels in both sites. Eggshells from the contaminated site had higher concentrations of heavy metals, specifically mercury, than the reference site. The structural changes observed in eggshells may be related to the concentration of specific metals ( e.g., Mg, Cu, Zn, Pb, and Hg) in shell, however, statistical analyses indicated that metals only explained a small portion of the observed variation in properties ( i.e., thickness, crystal orientation). Further analysis is required to better constrain the factors leading to unusually weak eggshells in the contaminated site.

  15. 9 CFR 147.13 - Procedure for bacteriological culturing of eggshells for colon bacilli organisms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... culturing of eggshells for colon bacilli organisms. 147.13 Section 147.13 Animals and Animal Products ANIMAL... bacteriological culturing of eggshells for colon bacilli organisms. Proper precautions to avoid environmental... conclusion of the presence of colon bacilli organisms. (Approved by the Office of Management and Budget...

  16. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    NASA Astrophysics Data System (ADS)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  17. Combined Use of Electron and Light Microscopy Techniques Reveals False Secondary Shell Units in Megaloolithidae Eggshells.

    PubMed

    Moreno-Azanza, Miguel; Bauluz, Blanca; Canudo, José Ignacio; Gasca, José Manuel; Torcida Fernández-Baldor, Fidel

    2016-01-01

    Abnormalities in the histo- and ultrastructure of the amniote eggshell are often related to diverse factors, such as ambient stress during egg formation, pathologies altering the physiology of the egg-laying females, or evolutionarily selected modifications of the eggshell structure that vary the physical properties of the egg, for example increasing its strength so as to avoid fracture during incubation. When dealing with fossil materials, all the above hypotheses are plausible, but a detailed taphonomical study has to be performed to rule out the possibility that secondary processes of recrystallization have occurred during fossilization. Traditional analyses, such as optical microscopy inspection and cathodoluminescence, have proven not to be enough to understand the taphonomic story of some eggshells. Recently, electron backscatter diffraction has been used, in combination with other techniques, to better understand the alteration of fossil eggshells. Here we present a combined study using scanning electron microscopy, optical microscopy, cathodoluminescence and electron backscatter diffraction of eggshell fragments assigned to Megaloolithus cf. siruguei from the Upper Cretaceous outcrops of the Cameros Basin. We focus our study on the presence of secondary shell units that mimic most aspects of the ultrastructure of the eggshell mammillae, but grow far from the inner surface of the eggshell. We call these structures extra-spherulites, describe their crystal structure and demonstrate their secondary origin. Our study has important implications for the interpretation of secondary shell units as biological or pathological structures. Thus, electron backscatter diffraction complements other microscope techniques as a useful tool for understanding taphonomical alterations in fossil eggshells.

  18. 9 CFR 147.13 - Procedure for bacteriological culturing of eggshells for colon bacilli organisms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... culturing of eggshells for colon bacilli organisms. 147.13 Section 147.13 Animals and Animal Products ANIMAL... bacteriological culturing of eggshells for colon bacilli organisms. Proper precautions to avoid environmental... conclusion of the presence of colon bacilli organisms. (Approved by the Office of Management and Budget...

  19. 9 CFR 147.13 - Procedure for bacteriological culturing of eggshells for colon bacilli organisms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... culturing of eggshells for colon bacilli organisms. 147.13 Section 147.13 Animals and Animal Products ANIMAL... bacteriological culturing of eggshells for colon bacilli organisms. Proper precautions to avoid environmental... conclusion of the presence of colon bacilli organisms. (Approved by the Office of Management and Budget...

  20. 9 CFR 147.13 - Procedure for bacteriological culturing of eggshells for colon bacilli organisms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... culturing of eggshells for colon bacilli organisms. 147.13 Section 147.13 Animals and Animal Products ANIMAL... bacteriological culturing of eggshells for colon bacilli organisms. Proper precautions to avoid environmental... conclusion of the presence of colon bacilli organisms. (Approved by the Office of Management and Budget...

  1. 9 CFR 147.13 - Procedure for bacteriological culturing of eggshells for colon bacilli organisms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... culturing of eggshells for colon bacilli organisms. 147.13 Section 147.13 Animals and Animal Products ANIMAL... bacteriological culturing of eggshells for colon bacilli organisms. Proper precautions to avoid environmental... conclusion of the presence of colon bacilli organisms. (Approved by the Office of Management and Budget...

  2. Trace-element interactions in Rook Corvus frugilegus eggshells along an urbanisation gradient.

    PubMed

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-11-01

    Concentrations of seven trace elements [arsenic (As), chromium (Cr), nickel (Ni), lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd)] in the eggshells of Rooks Corvus frugilegus, a focal bird species of Eurasian agricultural environments, are increased above background levels and exceed levels of toxicological concern. The concentrations of Cr, Ni, Pb, Cu, and Zn are greater in eggshells from urban rookeries (large cities) compared with rural areas (small towns and villages) suggesting an urbanisation gradient effect among eggs laid by females. In the present study, the investigators assessed whether the pattern of relationships among the seven trace elements in eggshells change along an urbanisation/pollution gradient. Surprisingly, we found that eggshells with the greatest contaminant burden, i.e., from urban rookeries, showed far fewer significant relationships (n = 4) than eggshells from villages (n = 10), small towns (n = 6), or rural areas (n = 8). In most cases, the relationships were positive. As was an exception: Its concentration was negatively correlated with Ni and Cd levels in eggshells from small town rookeries (where As levels were the highest), whereas eggshells from villages (with a lower As level) showed positive relationships between As and Cd. Our findings suggest that at low to intermediate levels, interactions between the trace elements in Rook eggshells are of a synergistic character and appear to operate as parallel coaccumulation. A habitat-specific excess of some elements (primarily Cr, Ni, Cu, As) suggests their more competitively selective sequestration.

  3. Long-term decline in the thickness of eggshells of thrushes, Turdus spp., in Britain

    PubMed Central

    Green, R. E.

    1998-01-01

    The thickness of eggshells of four species of thrush, Turdus spp., was estimated by an index based on the mass and linear dimensions of blown eggs in museum collections from Britain. Shell thickness was also measured directly for two species and was highly correlated with the index. Widespread declines in eggshell thickness since the nineteenth century were found in all species. There have been no previous reports of trends in eggshell thickness of this long duration and large spatial scale. The cause of the declines is unknown, but, for three of the four species, eggshell thinning began before the introduction of the organochlorine pesticide DDT, which caused eggshell thinning in predatory and fish-eating birds from 1947 onwards. The effect of acid deposition on the availability of calcium-rich prey is a plausible explanation.

  4. A 700-year record of mercury in avian eggshells of Guangjin Island, South China Sea.

    PubMed

    Xu, Li-Qiang; Liu, Xiao-Dong; Sun, Li-guang; Chen, Qian-Qian; Yan, Hong; Liu, Yi; Luo, Yu-Han; Huang, Jing

    2011-04-01

    Ancient eggshells over the past 700 years were extracted from an ornithogenic sediment profile on Guangjin Island, South China Sea. Based on SEM and nitrogen isotope analyses, we determined that neither post-depositional processes nor seabirds' dietary changes had a large influence on eggshell Hg levels. The historical change of Hg in these eggshells was reconstructed. Eggshell Hg was a marker for past Hg deposition in marine environment. The eggshell Hg showed three small peaks at around 1300AD, 1600 AD and 1700-1750AD and rapid increase since 1800 AD. Before 1970 AD the Hg deposition in the Xisha area had global distribution characteristics, with increased Hg emissions due to global anthropogenic activities in industrial times. However, after 1970 AD, a further sharp increase up to present day occurred, implying that the Hg production center had gradually shifted from Europe and America to Asia.

  5. The use of proteomics in identifying differentially expressed serum proteins in humans with type 2 diabetes

    PubMed Central

    Sundsten, Tea; Eberhardson, Michael; Göransson, Michael; Bergsten, Peter

    2006-01-01

    Background The aim of the study was to optimize protocols for finding and identifying serum proteins that are differentially expressed in persons with normal glucose tolerance (NGT) compared to individuals with type 2 diabetes mellitus (T2DM). Serum from persons with NGT and persons with T2DM was profiled using ProteinChip arrays and time-of-flight mass spectra were generated by surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). Results Mass spectra from NGT- and T2DM-groups were compared. Fifteen proteins ranging from 5 to 79 kDa were differentially expressed (p < 0.05). Five of these proteins showed decreased and ten showed increased serum levels in individuals with T2DM. To be able to identify the proteins, the complexity of the sample was reduced by fractionation approaches. Subsequently, the purified fractions containing biomarkers were separated by one-dimensional SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in two identical lanes. Protein bands of the first lane were excised and subjected to passive elution to recapture the biomarkers on ProteinChip arrays. The corresponding bands of the second lane were subjected to peptide-mass fingerprinting (PMF). Using this approach four of the differentially expressed proteins were identified as apolipoprotein C3 (9.4 kDa), transthyretin (13.9 kDa), albumin (66 kDa) and transferrin (79 kDa). Whereas apolipoprotein C3 and transthyretin were up-regulated, albumin and transferrin were down-regulated in T2DM. Conclusion Protocols for protein profiling by SELDI-TOF MS and protein identification by fractionation, SDS-PAGE and PMF were optimized for serum from humans with T2DM. With these protocols differentially expressed proteins were discovered and identified when serum from NGT- and T2DM-individuals was analyzed. PMID:17163994

  6. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  7. Novel proteins identified in the insoluble byssal matrix of the freshwater zebra mussel.

    PubMed

    Gantayet, Arpita; Rees, David J; Sone, Eli D

    2014-04-01

    The freshwater zebra mussel, Dreissena polymorpha, is an invasive, biofouling species that adheres to a variety of substrates underwater, using a proteinaceous anchor called the byssus. The byssus consists of a number of threads with adhesive plaques at the tips. It contains the unusual amino acid 3, 4-dihydroxyphenylalanine (DOPA), which is believed to play an important role in adhesion, in addition to providing structural integrity to the byssus through cross-linking. Extensive DOPA cross-linking, however, renders the zebra mussel byssus highly resistant to protein extraction, and therefore limits byssal protein identification. We report here on the identification of seven novel byssal proteins in the insoluble byssal matrix following protein extraction from induced, freshly secreted byssal threads with minimal cross-linking. These proteins were identified by LC-MS/MS analysis of tryptic digests of the matrix proteins by spectrum matching against a zebra mussel cDNA library of genes unique to the mussel foot, the organ that secretes the byssus. All seven proteins were present in both the plaque and thread. Comparisons of the protein sequences revealed common features of zebra mussel byssal proteins, and several recurring sequence motifs. Although their sequences are unique, many of the proteins display similarities to marine mussel byssal proteins, as well as to adhesive and structural proteins from other species. The large expansion of the byssal proteome reported here represents an important step towards understanding zebra mussel adhesion.

  8. A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes

    PubMed Central

    Qin, Chao; Sun, Yongqi; Dong, Yadong

    2016-01-01

    Essential proteins are indispensable to the viability and reproduction of an organism. The identification of essential proteins is necessary not only for understanding the molecular mechanisms of cellular life but also for disease diagnosis, medical treatments and drug design. Many computational methods have been proposed for discovering essential proteins, but the precision of the prediction of essential proteins remains to be improved. In this paper, we propose a new method, LBCC, which is based on the combination of local density, betweenness centrality (BC) and in-degree centrality of complex (IDC). First, we introduce the common centrality measures; second, we propose the densities Den1(v) and Den2(v) of a node v to describe its local properties in the network; and finally, the combined strategy of Den1, Den2, BC and IDC is developed to improve the prediction precision. The experimental results demonstrate that LBCC outperforms traditional topological measures for predicting essential proteins, including degree centrality (DC), BC, subgraph centrality (SC), eigenvector centrality (EC), network centrality (NC), and the local average connectivity-based method (LAC). LBCC also improves the prediction precision by approximately 10 percent on the YMIPS and YMBD datasets compared to the most recently developed method, LIDC. PMID:27529423

  9. HVint: A Strategy for Identifying Novel Protein-Protein Interactions in Herpes Simplex Virus Type 1*

    PubMed Central

    Hernandez, Anna; Buch, Anna; Sodeik, Beate; Cristea, Ileana Mihaela

    2016-01-01

    Human herpesviruses are widespread human pathogens with a remarkable impact on worldwide public health. Despite intense decades of research, the molecular details in many aspects of their function remain to be fully characterized. To unravel the details of how these viruses operate, a thorough understanding of the relationships between the involved components is key. Here, we present HVint, a novel protein-protein intraviral interaction resource for herpes simplex virus type 1 (HSV-1) integrating data from five external sources. To assess each interaction, we used a scoring scheme that takes into consideration aspects such as the type of detection method and the number of lines of evidence. The coverage of the initial interactome was further increased using evolutionary information, by importing interactions reported for other human herpesviruses. These latter interactions constitute, therefore, computational predictions for potential novel interactions in HSV-1. An independent experimental analysis was performed to confirm a subset of our predicted interactions. This subset covers proteins that contribute to nuclear egress and primary envelopment events, including VP26, pUL31, pUL40, and the recently characterized pUL32 and pUL21. Our findings support a coordinated crosstalk between VP26 and proteins such as pUL31, pUS9, and the CSVC complex, contributing to the development of a model describing the nuclear egress and primary envelopment pathways of newly synthesized HSV-1 capsids. The results are also consistent with recent findings on the involvement of pUL32 in capsid maturation and early tegumentation events. Further, they open the door to new hypotheses on virus-specific regulators of pUS9-dependent transport. To make this repository of interactions readily accessible for the scientific community, we also developed a user-friendly and interactive web interface. Our approach demonstrates the power of computational predictions to assist in the design of

  10. Method for early detection of infectious mononucleosis by identifying Inmono proteins

    DOEpatents

    Willard, Karen E.

    1984-01-01

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  11. Unique motifs identify PIG-A proteins from glycosyltransferases of the GT4 family

    PubMed Central

    2008-01-01

    Background The first step of GPI anchor biosynthesis is catalyzed by PIG-A, an enzyme that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol. This protein is present in all eukaryotic organisms ranging from protozoa to higher mammals, as part of a larger complex of five to six 'accessory' proteins whose individual roles in the glycosyltransferase reaction are as yet unclear. The PIG-A gene has been shown to be an essential gene in various eukaryotes. In humans, mutations in the protein have been associated with paroxysomal noctural hemoglobuinuria. The corresponding PIG-A gene has also been recently identified in the genome of many archaeabacteria although genes of the accessory proteins have not been discovered in them. The present study explores the evolution of PIG-A and the phylogenetic relationship between this protein and other glycosyltransferases. Results In this paper we show that out of the twelve conserved motifs identified by us eleven are exclusively present in PIG-A and, therefore, can be used as markers to identify PIG-A from newly sequenced genomes. Three of these motifs are absent in the primitive eukaryote, G. lamblia. Sequence analyses show that seven of these conserved motifs are present in prokaryote and archaeal counterparts in rudimentary forms and can be used to differentiate PIG-A proteins from glycosyltransferases. Using partial least square regression analysis and data involving presence or absence of motifs in a range of PIG-A and glycosyltransferases we show that (i) PIG-A may have evolved from prokaryotic glycosyltransferases and lipopolysaccharide synthases, members of the GT4 family of glycosyltransferases and (ii) it is possible to uniquely classify PIG-A proteins versus glycosyltransferases. Conclusion Besides identifying unique motifs and showing that PIG-A protein from G. lamblia and some putative PIG-A proteins from archaebacteria are evolutionarily closer to glycosyltransferases, these studies

  12. Sequestosome 1/p62, a scaffolding protein, is a newly identified partner of IRS-1 protein.

    PubMed

    Geetha, Thangiah; Zheng, Chen; Vishwaprakash, Nilmini; Broderick, Tom L; Babu, Jeganathan Ramesh

    2012-08-24

    Defects in the insulin-signaling pathway may lead to the development of skeletal muscle insulin resistance, which is one of the earliest abnormalities detected in individuals with the metabolic syndrome and predisposes them to develop type 2 diabetes. Previous studies have shown that deletion of the mouse sequestosome 1/p62 gene results in mature-onset obesity that progresses to insulin and leptin resistance and, ultimately, type 2 diabetes. Sequestosome 1/p62 is involved in receptor-mediated signal transduction and functions as an intracellular signal modulator or adaptor protein. Insulin receptor substrate-1 (IRS-1) plays a central role in transducing the insulin signal via phosphorylation, protein-protein interactions, and protein modifications. Mapping studies demonstrated that the SH(2) domain at the amino terminus of sequestosome 1/p62 interacts with IRS-1 upon insulin stimulation. Further, IRS-1 interacts with p62 through its YMXM motifs at Tyr-608, Tyr-628, and/or Tyr-658 in a manner similar to its interaction with p85 of phosphoinositol 3-kinase. Overexpression of p62 increased phosphorylation of Akt, GLUT4 translocation, and glucose uptake, providing evidence that p62 participates in the insulin-signaling pathway through its interactions with IRS-1.

  13. Sequestosome 1/p62, a Scaffolding Protein, Is a Newly Identified Partner of IRS-1 Protein*

    PubMed Central

    Geetha, Thangiah; Zheng, Chen; Vishwaprakash, Nilmini; Broderick, Tom L.; Babu, Jeganathan Ramesh

    2012-01-01

    Defects in the insulin-signaling pathway may lead to the development of skeletal muscle insulin resistance, which is one of the earliest abnormalities detected in individuals with the metabolic syndrome and predisposes them to develop type 2 diabetes. Previous studies have shown that deletion of the mouse sequestosome 1/p62 gene results in mature-onset obesity that progresses to insulin and leptin resistance and, ultimately, type 2 diabetes. Sequestosome 1/p62 is involved in receptor-mediated signal transduction and functions as an intracellular signal modulator or adaptor protein. Insulin receptor substrate-1 (IRS-1) plays a central role in transducing the insulin signal via phosphorylation, protein-protein interactions, and protein modifications. Mapping studies demonstrated that the SH2 domain at the amino terminus of sequestosome 1/p62 interacts with IRS-1 upon insulin stimulation. Further, IRS-1 interacts with p62 through its YMXM motifs at Tyr-608, Tyr-628, and/or Tyr-658 in a manner similar to its interaction with p85 of phosphoinositol 3-kinase. Overexpression of p62 increased phosphorylation of Akt, GLUT4 translocation, and glucose uptake, providing evidence that p62 participates in the insulin-signaling pathway through its interactions with IRS-1. PMID:22761437

  14. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    PubMed

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  15. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    SciTech Connect

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ({sup 3}H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of {sup 3}H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked {sup 3}H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked {sup 3}H-EFDA in toluene alone, and of the protein-linked {sup 3}H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) for binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III.

  16. Construction of a Comprehensive Protein-Protein Interaction Map for Vitiligo Disease to Identify Key Regulatory Elements: A Systemic Approach.

    PubMed

    Malhotra, Anvita Gupta; Jha, Mohit; Singh, Sudha; Pandey, Khushhali M

    2017-03-13

    Vitiligo is an idiopathic disorder characterized by depigmented patches on the skin due to progressive loss of melanocytes. Several genetic, immunological, and pathophysiological investigations have established vitiligo as a polygenetic disorder with multifactorial etiology. However, no definite model explaining the interplay between these causative factors has been established hitherto. Therefore, we studied the disorder at the system level to identify the key proteins involved by exploring their molecular connectivity in terms of topological parameters. The existing research data helped us in collating 215 proteins involved in vitiligo onset or progression. Interaction study of these proteins leads to a comprehensive vitiligo map with 4845 protein nodes linked with 107,416 edges. Based on centrality measures, a backbone network with 500 nodes has been derived. This has presented a clear overview of the proteins and processes involved and the crosstalk between them. Clustering backbone proteins revealed densely connected regions inferring major molecular interaction modules essential for vitiligo. Finally, a list of top order proteins that play a key role in the disease pathomechanism has been formulated. This includes SUMO2, ESR1, COPS5, MYC, SMAD3, and Cullin proteins. While this list is in fair agreement with the available literature, it also introduces new candidate proteins that can be further explored. A subnetwork of 64 vitiligo core proteins was built by analyzing the backbone and seed protein networks. Our finding suggests that the topology, along with functional clustering, provides a deep insight into the behavior of proteins. This in turn aids in the illustration of disease condition and discovery of significant proteins involved in vitiligo.

  17. Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein

    PubMed Central

    Woellhaf, Michael W.; Sommer, Frederik; Schroda, Michael; Herrmann, Johannes M.

    2016-01-01

    Whereas the structure and function of cytosolic ribosomes are well characterized, we only have a limited understanding of the mitochondrial translation apparatus. Using SILAC-based proteomic profiling, we identified 13 proteins that cofractionated with the mitochondrial ribosome, most of which play a role in translation or ribosomal biogenesis. One of these proteins is a homologue of the bacterial ribosome-silencing factor (Rsf). This protein is generated from the composite precursor protein Atp25 upon internal cleavage by the matrix processing peptidase MPP, and in this respect, it differs from all other characterized mitochondrial proteins of baker’s yeast. We observed that cytosolic expression of Rsf, but not of noncleaved Atp25 protein, is toxic. Our results suggest that eukaryotic cells face the challenge of avoiding negative interference from the biogenesis of their two distinct translation machineries. PMID:27582385

  18. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    NASA Astrophysics Data System (ADS)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  19. Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein.

    PubMed

    Woellhaf, Michael W; Sommer, Frederik; Schroda, Michael; Herrmann, Johannes M

    2016-10-15

    Whereas the structure and function of cytosolic ribosomes are well characterized, we only have a limited understanding of the mitochondrial translation apparatus. Using SILAC-based proteomic profiling, we identified 13 proteins that cofractionated with the mitochondrial ribosome, most of which play a role in translation or ribosomal biogenesis. One of these proteins is a homologue of the bacterial ribosome-silencing factor (Rsf). This protein is generated from the composite precursor protein Atp25 upon internal cleavage by the matrix processing peptidase MPP, and in this respect, it differs from all other characterized mitochondrial proteins of baker's yeast. We observed that cytosolic expression of Rsf, but not of noncleaved Atp25 protein, is toxic. Our results suggest that eukaryotic cells face the challenge of avoiding negative interference from the biogenesis of their two distinct translation machineries.

  20. A high-throughput method to examine protein-nucleotide interactions identifies targets of the bacterial transcriptional regulatory protein fur.

    PubMed

    Yu, Chunxiao; Lopez, Carlos A; Hu, Han; Xia, Yu; Freedman, David S; Reddington, Alexander P; Daaboul, George G; Unlü, M Selim; Genco, Caroline Attardo

    2014-01-01

    The Ferric uptake regulatory protein (Fur) is a transcriptional regulatory protein that functions to control gene transcription in response to iron in a number of pathogenic bacteria. In this study, we applied a label-free, quantitative and high-throughput analysis method, Interferometric Reflectance Imaging Sensor (IRIS), to rapidly characterize Fur-DNA interactions in vitro with predicted Fur binding sequences in the genome of Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea. IRIS can easily be applied to examine multiple protein-protein, protein-nucleotide and nucleotide-nucleotide complexes simultaneously and demonstrated here that seventy percent of the predicted Fur boxes in promoter regions of iron-induced genes bound to Fur in vitro with a range of affinities as observed using this microarray screening technology. Combining binding data with mRNA expression levels in a gonococcal fur mutant strain allowed us to identify five new gonococcal genes under Fur-mediated direct regulation.

  1. Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling

    PubMed Central

    Liu, Shiyong; Liu, Yi; Yang, Yixuan; Yang, Hui; Chen, Yangmei; Chen, Lifen

    2017-01-01

    Cortical dysplasia accounts for at least 14% of epilepsy cases, and is mostly seen in children. However, the understanding of molecular mechanisms and pathogenesis underlying cortical dysplasia is limited. The aim of this cross-sectional study is to identify potential key molecules in the mechanisms of cortical dysplasia by screening the proteins expressed in brain tissues of childhood cortical dysplasia patients with epilepsy using isobaric tags for relative and absolute quantitation-based tandem mass spectrometry compared to controls, and several differentially expressed proteins that are not reported to be associated with cortical dysplasia previously were selected for validation using real-time polymerase chain reaction, immunoblotting and immunohistochemistry. 153 out of 3340 proteins were identified differentially expressed between childhood cortical dysplasia patients and controls. And FSCN1, CRMP1, NDRG1, DPYSL5, MAP4, and FABP3 were selected for validation and identified to be increased in childhood cortical dysplasia patients, while PRDX6 and PSAP were identified decreased. This is the first report on differentially expressed proteins in childhood cortical dysplasia. We identified differential expression of FSCN1, CRMP1, NDRG1, DPYSL5, MAP4, FABP3, PRDX6 and PSAP in childhood cortical dysplasia patients, these proteins are involved in various processes and have various function. These results may provide new directions or targets for the research of childhood cortical dysplasia, and may be helpful in revealing molecular mechanisms and pathogenesis and/or pathophysiology of childhood cortical dysplasia if further investigated. PMID:28222113

  2. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    SciTech Connect

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.; Scoles, Glen A.; Purvine, Samuel O.; Nicora, Carrie D.; Clauss, Therese RW; Ueti, Massaro W.; Brown, Wendy C.; Brayton, Kelly A.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.

  3. Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach.

    PubMed

    Ahmad, Mahtab; Hashimoto, Yohey; Moon, Deok Hyun; Lee, Sang Soo; Ok, Yong Sik

    2012-03-30

    This study evaluated the effectiveness of eggshell and calcined eggshell on lead (Pb) immobilization in a shooting range soil. Destructive and non-destructive analytical techniques were employed to determine the mechanism of Pb immobilization. The 5% additions of eggshell and calcined eggshell significantly decreased the TCLP-Pb concentration by 68.8% due mainly to increasing soil pH. Eggshell and calcined-eggshell amendments decreased the exchangeable Pb fraction to ≈ 1% of the total Pb in the soil, while the carbonate-associated Pb fraction was increased to 40.0-47.1% at >15% application rates. The thermodynamic modeling on Pb speciation in the soil solution predicted the precipitation of Pb-hydroxide [Pb(OH)(2)] in soils amended with eggshell and calcined eggshell. The SEM-EDS, XAFS and elemental dot mapping revealed that Pb in soil amended with calcined eggshell was associated with Si and Ca, and may be immobilized by entrapping into calcium-silicate-hydrate. Comparatively, in the soil amended with eggshell, Pb was immobilized via formation of Pb-hydroxide or lanarkite [Pb(2)O(SO(4))]. Applications of amendments increased activities of alkaline phosphatase up to 3.7 times greater than in the control soil. The use of eggshell amendments may have potential as an integrated remediation strategy that enables Pb immobilization and soil biological restoration in shooting range soils.

  4. Biocide Tolerance and Antibiotic Resistance in Salmonella Isolates from Hen Eggshells.

    PubMed

    Fernández Márquez, Maria Luisa; Burgos, María José Grande; Pulido, Rubén Pérez; Gálvez, Antonio; López, Rosario Lucas

    2017-02-01

    The aim of the present study was to determine biocide tolerance and antibiotic resistance in Salmonella isolates from hen eggshells. A total of 39 isolates from hen eggshells, identified as either Salmonella spp. or Salmonella enterica according to 16S rDNA sequencing, were selected for biocide tolerance. Isolates with minimum inhibitory concentrations (MICs) above the wild-type MICs were considered to be biocide tolerant: benzalkonium chloride (BC, 7.7%), cetrimide (CT, 7.7%), hexadecylpyridinium chloride (HDP, 10.3%), triclosan (TC, 17.9%), hexachlorophene (CF, 30.8%), and P3-oxonia (OX, 25.6%). The resulting 21 biocide-tolerant isolates were further characterized. Most isolates (95.2%) were resistant to ampicillin, but only 9.5% were resistant to cefotaxime as well as to ceftazidime. Resistance to chloramphenicol (61.9%), tetracycline (47.6%), streptomycin (19.0%), nalidixic acid (28.6%), ciprofloxacin (9.5%), netilmicin (14.3%), and trimethoprim-sulfamethoxazole (38.1%) was also detected. Considering only antibiotics, 66.7% of isolates were multiresistant; furthermore, 90.5% were multiresistant considering antibiotics and biocides combined. Efflux pump and biocide tolerance genetic determinants detected included acrB (95.2%), oqxA (14.3%), mdfA (9.5%), qacA/B (4.8%), and qacE (9.5%). Antibiotic resistance genes detected included blaTEM (14.3%), blaCTXM-2 (4.8%), blaPSE (4.8%), floR (19.05%), tet(A) (9.5%), tet(C) (4.8%), dfrA12 (0.05%), and dfrA15 (0.05%). Significant positive correlations were detected between phenotypic tolerance/resistance to biocides, biocides and antibiotics, and also between antibiotics, suggesting that a generalized use of biocides could co-select antibiotic resistance.

  5. Microstructure, crystallography and diagenetic alteration in fossil ostrich eggshells from Upper Palaeolithic sites of Indian peninsular region.

    PubMed

    Jain, Sonal; Bajpai, Sunil; Kumar, Giriraj; Pruthi, Vikas

    2016-05-01

    Biominerals studies are of importance as they provide an understanding of natural evolutionary processes. In this study we have investigated the fossil ostrich eggshells using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD). SEM studies demonstrated the ultrastructure of fossil eggshells and formation of calcified cuticular layer. The presence of calcified cuticle layer in eggshell is the basis for ancient DNA studies as it contains preserved biomolecules. EBSD accentuates the crystallographic structure of the ostrich eggshells with sub-micrometer resolution. It is a non-destructive tool for evaluating the extent of diagenesis in a biomineral. EBSD analysis revealed the presence of dolomite in the eggshells. This research resulted in the complete recognition of the structure of ostrich eggshells as well as the nature and extent of diagenesis in these eggshells which is vital for genetic and paleoenvironmental studies.

  6. Comparison of the total amount of eggshell pigments in Dongxiang brown-shelled eggs and Dongxiang blue-shelled eggs.

    PubMed

    Wang, X T; Zhao, C J; Li, J Y; Xu, G Y; Lian, L S; Wu, C X; Deng, X M

    2009-08-01

    Based on the knowledge of the heme bio-synthetic and metabolic pathway and the structures of biliverdin and protoporphyrin, experiments were carried out to compare the difference between the total quality of eggshell pigments in blue-shelled eggs and brown-shelled eggs from the same population (Dongxiang, China) and to analyze the correlation between the quantity of protoporphyrin and biliverdin in the 2 kinds of eggshells. It was found that there was no significant difference between the total quantity of eggshell pigments in Dongxiang blue-shelled eggs and Dongxiang brown-shelled eggs (P = 0.9006), and a highly significant positive correlation between the quantity of protoporphyrin and biliverdin in blue eggshells (P < 0.01) and a significant positive correlation between the quantity of protoporphyrin and biliverdin in brown eggshells (P < 0.05). These results suggested that eggshell protoporphyrin and eggshell biliverdin probably derived from common precursor material.

  7. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label

    PubMed Central

    Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Lin, Shixian; Meng, Rong; Wang, Chu; Chen, Peng R.

    2016-01-01

    Coupling photocrosslinking reagents with mass spectrometry has become a powerful tool for studying protein–protein interactions in living systems, but it still suffers from high rates of false-positive identifications as well as the lack of information on interaction interface due to the challenges in deciphering crosslinking peptides. Here we develop a genetically encoded photo-affinity unnatural amino acid that introduces a mass spectrometry-identifiable label (MS-label) to the captured prey proteins after photocrosslinking and prey–bait separation. This strategy, termed IMAPP (In-situ cleavage and MS-label transfer After Protein Photocrosslinking), enables direct identification of photo-captured substrate peptides that are difficult to uncover by conventional genetically encoded photocrosslinkers. Taking advantage of the MS-label, the IMAPP strategy significantly enhances the confidence for identifying protein–protein interactions and enables simultaneous mapping of the binding interface under living conditions. PMID:27460181

  8. Identifying proteins in zebrafish embryos using spectral libraries generated from dissected adult organs and tissues.

    PubMed

    van der Plas-Duivesteijn, Suzanne J; Mohammed, Yassene; Dalebout, Hans; Meijer, Annemarie; Botermans, Anouk; Hoogendijk, Jordy L; Henneman, Alex A; Deelder, André M; Spaink, Herman P; Palmblad, Magnus

    2014-03-07

    Spectral libraries provide a sensitive and accurate method for identifying peptides from tandem mass spectra, complementary to searching genome-derived databases or sequencing de novo. Their application requires comprehensive libraries including peptides from low-abundant proteins. Here we describe a method for constructing such libraries using biological differentiation to "fractionate" the proteome by harvesting adult organs and tissues and build comprehensive libraries for identifying proteins in zebrafish (Danio rerio) embryos and larvae (an important and widely used model system). Hierarchical clustering using direct comparison of spectra was used to prioritize organ selection. The resulting and publicly available library covers 14,164 proteins, significantly improved the number of peptide-spectrum matches in zebrafish developmental stages, and can be used on data from different instruments and laboratories. The library contains information on tissue and organ expression of these proteins and is also applicable for adult experiments. The approach itself is not limited to zebrafish but would work for any model system.

  9. SCMMTP: identifying and characterizing membrane transport proteins using propensity scores of dipeptides

    PubMed Central

    2015-01-01

    Background Identifying putative membrane transport proteins (MTPs) and understanding the transport mechanisms involved remain important challenges for the advancement of structural and functional genomics. However, the transporter characters are mainly acquired from MTP crystal structures which are hard to crystalize. Therefore, it is desirable to develop bioinformatics tools for the effective large-scale analysis of available sequences to identify novel transporters and characterize such transporters. Results This work proposes a novel method (SCMMTP) based on the scoring card method (SCM) using dipeptide composition to identify and characterize MTPs from an existing dataset containing 900 MTPs and 660 non-MTPs which are separated into a training dataset consisting 1,380 proteins and an independent dataset consisting 180 proteins. The SCMMTP produced estimating propensity scores for amino acids and dipeptides as MTPs. The SCMMTP training and test accuracy levels respectively reached 83.81% and 76.11%. The test accuracy of support vector machine (SVM) using a complicated classification method with a low possibility for biological interpretation and position-specific substitution matrix (PSSM) as a protein feature is 80.56%, thus SCMMTP is comparable to SVM-PSSM. To identify MTPs, SCMMTP is applied to three datasets including: 1) human transmembrane proteins, 2) a photosynthetic protein dataset, and 3) a human protein database. MTPs showing α-helix rich structure is agreed with previous studies. The MTPs used residues with low hydration energy. It is hypothesized that, after filtering substrates, the hydrated water molecules need to be released from the pore regions. Conclusions SCMMTP yields estimating propensity scores for amino acids and dipeptides as MTPs, which can be used to identify novel MTPs and characterize transport mechanisms for use in further experiments. Availability http://iclab.life.nctu.edu.tw/iclab_webtools/SCMMTP/ PMID:26677931

  10. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora.

    PubMed

    Torto, Trudy A; Li, Shuang; Styer, Allison; Huitema, Edgar; Testa, Antonino; Gow, Neil A R; van West, Pieter; Kamoun, Sophien

    2003-07-01

    Plant pathogenic microbes have the remarkable ability to manipulate biochemical, physiological, and morphological processes in their host plants. These manipulations are achieved through a diverse array of effector molecules that can either promote infection or trigger defense responses. We describe a general functional genomics approach aimed at identifying extracellular effector proteins from plant pathogenic microorganisms by combining data mining of expressed sequence tags (ESTs) with virus-based high-throughput functional expression assays in plants. PexFinder, an algorithm for automated identification of extracellular proteins from EST data sets, was developed and applied to 2147 ESTs from the oomycete plant pathogen Phytophthora infestans. The program identified 261 ESTs (12.2%) corresponding to a set of 142 nonredundant Pex (Phytophthora extracellular protein) cDNAs. Of these, 78 (55%) Pex cDNAs were novel with no significant matches in public databases. Validation of PexFinder was performed using proteomic analysis of secreted protein of P. infestans. To identify which of the Pex cDNAs encode effector proteins that manipulate plant processes, high-throughput functional expression assays in plants were performed on 63 of the identified cDNAs using an Agrobacterium tumefaciens binary vector carrying the potato virus X (PVX) genome. This led to the discovery of two novel necrosis-inducing cDNAs, crn1 and crn2, encoding extracellular proteins that belong to a large and complex protein family in Phytophthora. Further characterization of the crn genes indicated that they are both expressed in P. infestans during colonization of the host plant tomato and that crn2 induced defense-response genes in tomato. Our results indicate that combining data mining using PexFinder with PVX-based functional assays can facilitate the discovery of novel pathogen effector proteins. In principle, this strategy can be applied to a variety of eukaryotic plant pathogens, including

  11. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    PubMed Central

    2011-01-01

    Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs. PMID:21729286

  12. Endothelial cell palmitoylproteomics identifies novel lipid modified targets and potential substrates for protein acyl transferases

    PubMed Central

    Marin, Ethan P.; Derakhshan, Behrad; Lam, TuKiet T.; Davalos, Alberto; Sessa, William C.

    2012-01-01

    Rationale Protein S-palmitoylation is the post-translational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well understood, in part due to technological limits on palmitoylprotein detection. Objective To develop a method using acyl-biotinyl exchange (ABE) technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in EC. Methods and Results More than 150 putative palmitoyl proteins were identified in EC using ABE and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase 1 (SOD1), an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine 6 prevents palmitoylation, leads to reduction in SOD1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for SOD1 palmitoylation. Moreover, we used ABE to search for substrates of particular protein acyl transferases in EC. We found that palmitoylation of the cell adhesion protein PECAM1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of PECAM1 at the cell surface. Conclusions Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important post-translational lipid modification in EC biology. PMID:22496122

  13. A spatial simulation approach to account for protein structure when identifying non-random somatic mutations

    PubMed Central

    2014-01-01

    Background Current research suggests that a small set of “driver” mutations are responsible for tumorigenesis while a larger body of “passenger” mutations occur in the tumor but do not progress the disease. Due to recent pharmacological successes in treating cancers caused by driver mutations, a variety of methodologies that attempt to identify such mutations have been developed. Based on the hypothesis that driver mutations tend to cluster in key regions of the protein, the development of cluster identification algorithms has become critical. Results We have developed a novel methodology, SpacePAC (Spatial Protein Amino acid Clustering), that identifies mutational clustering by considering the protein tertiary structure directly in 3D space. By combining the mutational data in the Catalogue of Somatic Mutations in Cancer (COSMIC) and the spatial information in the Protein Data Bank (PDB), SpacePAC is able to identify novel mutation clusters in many proteins such as FGFR3 and CHRM2. In addition, SpacePAC is better able to localize the most significant mutational hotspots as demonstrated in the cases of BRAF and ALK. The R package is available on Bioconductor at: http://www.bioconductor.org/packages/release/bioc/html/SpacePAC.html. Conclusion SpacePAC adds a valuable tool to the identification of mutational clusters while considering protein tertiary structure. PMID:24990767

  14. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  15. Dicofol (Kelthane?)-induced eggshell thinning in captive American kestrels

    USGS Publications Warehouse

    Clark, D.R.; Spann, J.W.; Bunck, C.M.

    1990-01-01

    Reproductive parameters of American kestrels (Falco sparverius) were measured through two breeding seasons. Exposure to Kelthane? (containing no DDT-related compounds) at dietary concentrations of 0 (contro!), 1, 3, 10 and 30 ug/g (wet weight) began in late November before, and continued through, the second season. Kelthane thinned eggshells and lowered the thickness index at dietary concentrations >3 ?g/g and it reduced shell weight at >10 ?g/g when comparisons were to concurrent controls. Kelthane reduced the thickness index at >3 ug/g and it reduced shell thickness and weight at >10 ug/g when comparisons were to the same birds during the previous season. All changes were dose-related. It was not previously known that as little as 3 ug/g dicofol could cause these effects. Kestrels resembled previously studied eastern screech-owls (Otus asio) in that 10 ug/ g reduced hatchability of eggs. Both these raptors showed eggshell changes without serious effects on production of young. Available data show dicofol only equal to or less effective than DDE as a shell-thinning agent. Also, DDE may have more impact than dicofol on such critical aspects of reproduction as egg hatchability and survivability of hatchlings. Field studies of dicofol residues in food chains and of residue concentrations in eggs vs. nesting success from areas of heavy dicofol use are needed to judge this chemical's ecological impact.

  16. The first identified nucleocytoplasmic shuttling herpesviral capsid protein: herpes simplex virus type 1 VP19C.

    PubMed

    Zhao, Lei; Zheng, Chunfu

    2012-01-01

    VP19C is a structural protein of herpes simplex virus type 1 viral particle, which is essential for assembly of the capsid. In this study, a nuclear export signal (NES) of VP19C is for the first time identified and mapped to amino acid residues 342 to 351. Furthermore, VP19C is demonstrated to shuttle between the nucleus and the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis. This makes VP19C the first herpesviral capsid protein with nucleocytoplasmic shuttling property and adds it to the list of HSV-1 nucleocytoplasmic shuttling proteins.

  17. Proteomic approach to identify champagne wine proteins as modified by Botrytis cinerea infection.

    PubMed

    Cilindre, Clara; Jégou, Sandrine; Hovasse, Agnès; Schaeffer, Christine; Castro, Antonio J; Clément, Christophe; Van Dorsselaer, Alain; Jeandet, Philippe; Marchal, Richard

    2008-03-01

    The presence of the fungal pathogen, Botrytis cinerea, in the vineyard causes reductions in both quality and quantity of grapes and wine. Because proteins are involved in the foam stabilization of sparkling wines, we have undertaken, for the first time, a thorough proteomic analysis of two champagne base wines prepared with either healthy or botrytized Chardonnay grapes, using two-dimensional electrophoresis (2DE) coupled with immunodetection and tandem mass spectrometry. Most of the identified proteins were from grape origin: invertase and pathogenesis-related (PR) proteins. The disappearance of numerous grape proteins was observed in the botrytized wine, suggesting that they were probably degraded or even repressed or the result of a differential expression of grape proteins upon fungal infection. On the other hand, two pectinolytic enzymes secreted by B. cinerea were found in the botrytized wine.

  18. Outer membrane proteins can be simply identified using secondary structure element alignment

    PubMed Central

    2011-01-01

    Background Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery. Results Based on the observation that almost all OMPs consist of antiparallel β-strands in a barrel shape and that their secondary structure arrangements differ from those of other types of proteins, we propose a simple method called SSEA-OMP to identify OMPs using secondary structure element alignment. Through intensive benchmark experiments, the proposed SSEA-OMP method is better than some well-established OMP detection methods. Conclusions The major advantage of SSEA-OMP is its good prediction performance considering its simplicity. The web server implements the method is freely accessible at http://protein.cau.edu.cn/SSEA-OMP/index.html. PMID:21414186

  19. An Improved Method for Identifying Specific DNA-Protein-Binding Sites In Vitro.

    PubMed

    Wang, Liangyan; Lu, Huizhi; Wang, Yunguang; Yang, Su; Xu, Hong; Cheng, Kaiying; Zhao, Ye; Tian, Bing; Hua, Yuejin

    2017-03-01

    Binding of proteins to specific DNA sequences is essential for a variety of cellular processes such as DNA replication, transcription and responses to external stimuli. Chromatin immunoprecipitation is widely used for determining intracellular DNA fragments bound by a specific protein. However, the subsequent specific or accurate DNA-protein-binding sequence is usually determined by DNA footprinting. Here, we report an alternative method for identifying specific sites of DNA-protein-binding (designated SSDP) in vitro. This technique is mainly dependent on antibody-antigen immunity, simple and convenient, while radioactive isotope labeling and optimization of partial degradation by deoxyribonuclease (DNase) are avoided. As an example, the specific binding sequence of a target promoter by DdrO (a DNA damage response protein from Deinococcus radiodurans) in vitro was determined by the developed method. The central sequence of the binding site could be easily located using this technique.

  20. Incorporating hidden Markov models for identifying protein kinase-specific phosphorylation sites.

    PubMed

    Huang, Hsien-Da; Lee, Tzong-Yi; Tzeng, Shih-Wei; Wu, Li-Cheng; Horng, Jorng-Tzong; Tsou, Ann-Ping; Huang, Kuan-Tsae

    2005-07-30

    Protein phosphorylation, which is an important mechanism in posttranslational modification, affects essential cellular processes such as metabolism, cell signaling, differentiation, and membrane transportation. Proteins are phosphorylated by a variety of protein kinases. In this investigation, we develop a novel tool to computationally predict catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the concepts of profile Hidden Markov Models (HMM), computational models are trained from the kinase-specific groups of phosphorylation sites. After evaluating the trained models, we select the model with highest accuracy in each kinase-specific group and provide a Web-based prediction tool for identifying protein phosphorylation sites. The main contribution here is that we have developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity.

  1. Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistance

    PubMed Central

    González-Torralva, Fidel; Brown, Adrian P.; Chivasa, Stephen

    2017-01-01

    Emergence of glyphosate-resistant horseweed (Conyza canadensis) biotypes is an example of how unrelenting use of a single mode of action herbicide in agricultural weed control drives genetic adaptation in targeted species. While in other weeds glyphosate resistance arose from target site mutation or target gene amplification, the resistance mechanism in horseweed uses neither of these, being instead linked to reduced herbicide uptake and/or translocation. The molecular components underpinning horseweed glyphosate-resistance remain unknown. Here, we used an in vitro leaf disc system for comparative analysis of proteins extracted from control and glyphosate-treated tissues of glyphosate-resistant and glyphosate-susceptible biotypes. Analysis of shikimic acid accumulation, ABC-transporter gene expression, and cell death were used to select a suitable glyphosate concentration and sampling time for enriching proteins pivotal to glyphosate resistance. Protein gel analysis and mass spectrometry identified mainly chloroplast proteins differentially expressed between the biotypes before and after glyphosate treatment. Chloroplasts are the organelles in which the shikimate pathway, which is targeted by glyphosate, is located. Calvin cycle enzymes and proteins of unknown function were among the proteins identified. Our study provides candidate proteins that could be pivotal in engendering resistance and implicates chloroplasts as the primary sites driving glyphosate-resistance in horseweed. PMID:28198407

  2. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach.

    PubMed

    Solis, Nestor; Parker, Benjamin L; Kwong, Stephen M; Robinson, Gareth; Firth, Neville; Cordwell, Stuart J

    2014-06-06

    Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of sacol2302 in APT grown with oxacillin (>6-fold compared with COL). Overexpression of sacol2302 in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC-MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation.

  3. Altered protein profile in chronic myeloid leukemia chronic phase identified by a comparative proteomic study.

    PubMed

    Pizzatti, Luciana; Sá, Lílian Ayres; de Souza, Jamison Menezes; Bisch, Paulo Mascarello; Abdelhay, Eliana

    2006-05-01

    Chronic myeloid leukemia is a hematological disorder in which the Ph chromosome is a marker of the disease, detected virtually in all cases. The chimeric transcripts encode a 210-kDa chimeric protein with altered tyrosine kinase activity, responsible for the disease phenotype. In this work, we tried to identify which are the molecular changes common to chronic phase patients, those that represent the chronic phase molecular phenotype. To address this problem we analyzed through a comparative proteomic approach, several CML bone marrow cells protein profile from patients in chronic phase and healthy bone marrow donors. From these results, we identified 31 differentially expressed proteins. Among these proteins, we pointed out c-Myc binding protein 1, 53BP1, Mdm4, OSBP-related protein 3 and Mortalin as putative candidates to BCR-ABL targets in chronic phase. Moreover, we describe for the first time the cytoplasmic protein map from bone marrow cells that helped in the elucidation of the changes we were looking for.

  4. Early life stress shapes female reproductive strategy through eggshell pigmentation in Japanese quail.

    PubMed

    Duval, Camille; Zimmer, Cédric; Mikšík, Ivan; Cassey, Phillip; Spencer, Karen A

    2014-11-01

    Physiological constraints on colouration have been widely reported; especially in birds, which trade-off antioxidant responses against colourful costly signals. One female extended phenotypic trait, which might also highlight important physiological trade-offs, is the pigmentation of their eggshells. In ground-nesting species, producing eggs that are visually undetectable by predators is the best camouflage strategy. However, the condition-dependence of eggshell pigmentation, and the pigments role in oxidative stress, may constrain females to trade-off between their antioxidant capacity and maximising the camouflage of their eggs when they deposit eggshell pigments. Developmental stress is one factor that influences female antioxidant capacity, and could lead to variations in eggshell pigmentation that might have crucial consequences on individual fitness if egg crypsis is compromised especially under stressful conditions. We investigated the interaction between developmental and breeding conditions with respect to eggshell pigmentation in Japanese quail. We studied 30 females that bred under both control and stressful conditions, and were exposed to pre- and/or post-natal stress, or neither. Pre- and post-natal stress independently influenced eggshell pigmentation strategies under stressful breeding conditions. Under stressful reproduction, eggshell protoporphyrin concentration and maculation were affected by pre-natal stress, whereas eggshell reflectance and biliverdin concentration were influenced by post-natal stress. These changes may reflect potential adaptive strategies shaped by developmental stress, but additional data on the benefit of egg crypsis in quail, combined with studies on the role of both pigments on chick survival, will help to clarify whether early life stress can enhance fitness through eggshell pigmentation when developmental and reproductive environments match.

  5. Carboxylator: incorporating solvent-accessible surface area for identifying protein carboxylation sites

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Tsung; Chen, Shu-An; Bretaña, Neil Arvin; Cheng, Tzu-Hsiu; Lee, Tzong-Yi

    2011-10-01

    In proteins, glutamate (Glu) residues are transformed into γ-carboxyglutamate (Gla) residues in a process called carboxylation. The process of protein carboxylation catalyzed by γ-glutamyl carboxylase is deemed to be important due to its involvement in biological processes such as blood clotting cascade and bone growth. There is an increasing interest within the scientific community to identify protein carboxylation sites. However, experimental identification of carboxylation sites via mass spectrometry-based methods is observed to be expensive, time-consuming, and labor-intensive. Thus, we were motivated to design a computational method for identifying protein carboxylation sites. This work aims to investigate the protein carboxylation by considering the composition of amino acids that surround modification sites. With the implication of a modified residue prefers to be accessible on the surface of a protein, the solvent-accessible surface area (ASA) around carboxylation sites is also investigated. Radial basis function network is then employed to build a predictive model using various features for identifying carboxylation sites. Based on a five-fold cross-validation evaluation, a predictive model trained using the combined features of amino acid sequence (AA20D), amino acid composition, and ASA, yields the highest accuracy at 0.874. Furthermore, an independent test done involving data not included in the cross-validation process indicates that in silico identification is a feasible means of preliminary analysis. Additionally, the predictive method presented in this work is implemented as Carboxylator (http://csb.cse.yzu.edu.tw/Carboxylator/), a web-based tool for identifying carboxylated proteins with modification sites in order to help users in investigating γ-glutamyl carboxylation.

  6. vProtein: Identifying Optimal Amino Acid Complements from Plant-Based Foods

    PubMed Central

    Woolf, Peter J.; Fu, Leeann L.; Basu, Avik

    2011-01-01

    Background Indispensible amino acids (IAAs) are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. Methods vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. Results For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online at http

  7. Coevolutionary Analysis Identifies Protein–Protein Interaction Sites between HIV-1 Reverse Transcriptase and Integrase

    PubMed Central

    Hetti Arachchilage, Madara; Piontkivska, Helen

    2016-01-01

    The replication of human immunodeficiency virus-1 (HIV-1) requires reverse transcription of the viral RNA genome and integration of newly synthesized pro-viral DNA into the host genome. This is mediated by the viral proteins reverse transcriptase (RT) and integrase (IN). The formation and stabilization of the pre-integration complex (PIC), which is an essential step for reverse transcription, nuclear import, chromatin targeting, and subsequent integration, involves direct and indirect modes of interaction between RT and IN proteins. While epitope-based treatments targeting IN–viral DNA and IN–RT complexes appear to be a promising combination for an anti-HIV treatment, the mechanisms of IN-RT interactions within the PIC are not well understood due to the transient nature of the protein complex and the intrinsic flexibility of its components. Here, we identify potentially interacting regions between the IN and RT proteins within the PIC through the coevolutionary analysis of amino acid sequences of the two proteins. Our results show that specific regions in the two proteins have strong coevolutionary signatures, suggesting that these regions either experience direct and prolonged interactions between them that require high affinity and/or specificity or that the regions are involved in interactions mediated by dynamic conformational changes and, hence, may involve both direct and indirect interactions. Other regions were found to exhibit weak, but positive correlations, implying interactions that are likely transient and/or have low affinity. We identified a series of specific regions of potential interactions between the IN and RT proteins (e.g., specific peptide regions within the C-terminal domain of IN were identified as potentially interacting with the Connection domain of RT). Coevolutionary analysis can serve as an important step in predicting potential interactions, thus informing experimental studies. These studies can be integrated with structural data

  8. Acute and chronic eggshell temperature manipulations during hatching term influence hatchability, broiler performance, and ascites incidence.

    PubMed

    Sozcu, A; Ipek, A

    2015-02-01

    The aim of the current study was to determine how a control temperature and acute and chronic high eggshell temperatures during the last three days of incubation, can affect hatchability, chick quality, and organ development on day of hatch as well as broiler performance and ascites incidence in later life. The eggshell temperature manipulations were applied during hatching term (days 19 to 21) as follows: control EST (37.3 to 38.0°C), acute high eggshell temperature manipulations (38.4- to 39.0°C for three hours daily) and chronic high eggshell temperature manipulations (38.4 to 39.0°C). The lowest hatchability and the highest cull chick rate were in the chronic high eggshell temperature manipulations group. Lower chick quality parameters correlated with lower chick weights and heavier residual yolk sac weights that were in the chronic high eggshell temperature manipulations group depending on hatch time. The live weights on the 1(st) day of the growing period were higher in the control and acute high eggshell temperature manipulations groups than the chronic high eggshell temperature manipulations group. At 6 wk of age, live weights of broilers were the highest in the control than in the acute and chronic high eggshell temperature manipulations groups. The total mortality was 2.5, 9.2, and 13.3%, the mortality due to ascites was 2.1, 8.3, and 12.9% in the control, acute ,and chronic high eggshell temperature manipulations groups, respectively. The right ventricular/total ventricular ratios for the control, acute and chronic high eggshell temperature manipulations groups were 0.22, 0.28, and 0.30%, respectively. In conclusion, short-term and long-term higher temperatures during the hatching term affect embryo development, incubation results, broiler performance, and ascites incidence. Although the acute high eggshell temperature manipulations did not affect the chick quality parameters at hatch, it negatively affected incubation results and broiler performance

  9. Strontium-90 in Canada goose eggshells: Non-fatal monitoring for contamination in wildlife

    SciTech Connect

    Rickard, W.H.; Eberhardt, L.E. )

    1989-08-01

    Strontium-90 as measured in eggshells taken form newly hatched eggs in 42 Canada goose nests. Higher-than-background levels were present in eggshells from only a few nests. The origin of the enhanced strontium-90 levels appears to be Hanford Site facilities. However, the amounts measured are too low to expect to see any deleterious health or reproductive effects on the goose population. Eggshells provide an efficient way to obtain biological samples for environmental monitoring without inducing goose mortality. 10 refs., 2 figs.

  10. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    PubMed

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts.

  11. Screening of cell cycle fusion proteins to identify kinase signaling networks.

    PubMed

    Trojanowsky, Michelle; Vidovic, Dusica; Simanski, Scott; Penas, Clara; Schurer, Stephan; Ayad, Nagi G

    2015-01-01

    Kinase signaling networks are well-established mediators of cell cycle transitions. However, how kinases interact with the ubiquitin proteasome system (UPS) to elicit protein turnover is not fully understood. We sought a means of identifying kinase-substrate interactions to better understand signaling pathways controlling protein degradation. Our prior studies used a luciferase fusion protein to uncover kinase networks controlling protein turnover. In this study, we utilized a similar approach to identify pathways controlling the cell cycle protein p27(Kip1). We generated a p27(Kip1)-luciferase fusion and expressed it in cells incubated with compounds from a library of pharmacologically active compounds. We then compared the relative effects of the compounds on p27(Kip1)-luciferase fusion stabilization. This was combined with in silico kinome profiling to identify potential kinases inhibited by each compound. This approach effectively uncovered known kinases regulating p27(Kip1) turnover. Collectively, our studies suggest that this parallel screening approach is robust and can be applied to fully understand kinase-ubiquitin pathway interactions.

  12. Functional characterization of candidate effector proteins identified from the wheat scab fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal pathogens often produce certain small secreted cysteine-rich proteins (SSCPs) during pathogenesis that may function in triggering resistance or susceptibility in specific host plants. We have recently identified a total of 190 SSCPs encoded in the genome of the wheat scab fungus Fusarium gra...

  13. Peptides identified in soybean protein increase plasma cholesterol in mice on hypercholesterolemic diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The in vitro micellar cholesterol displacement assay has been used to identify peptides that may potentially reduce cholesterol in vivo. We tested two of these peptides, LPYPR and WGAPSI, derived from soybean protein (SP) that have been reported to displace cholesterol from micelles by feeding them...

  14. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    SciTech Connect

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  15. A comprehensive analytical strategy to identify malondialdehyde-modified proteins and peptides.

    PubMed

    Weißer, Juliane; Ctortecka, Claudia; Busch, Clara J; Austin, Shane R; Nowikovsky, Karin; Uchida, Koji; Binder, Christoph J; Bennett, Keiryn L

    2017-03-01

    Mass spectrometric-based proteomics is a powerful tool to analyse post-translationally modified proteins. Carbonylation modifications that result from oxidative lipid breakdown are a class of post-translational modifications that are poorly charac-terised with respect to protein targets and function. This is partly due to the lack of dedicated mass spectrometry-based technologies to facilitate the analysis of these modifications. Here, we present a comprehensive approach to identify malondialdehyde-modified proteins and peptides. Malondialdehyde is amongst the most abundant of the lipid peroxidation products; and malondialdehyde-derived adducts on proteins have been implicated in cardiovascular diseases, neurodegenerative disorders and other clinical conditions. Our integrated approach targets three levels of the overall proteomic workflow: (i) sample preparation, by employing a targeted enrichment strategy; (ii) high-performance liquid chromatography, by using a gradient optimised for the separation of the modified peptides; and (iii) tandem mass spectrometry, by improving the spectral quality of very low-abundance peptides. By applying the optimised procedure to a whole cell lysate spiked with a low amount of malondialdehyde-modified proteins, we were able to identify up to 350 different modified peptides and localise the modification to a specific lysine residue. This methodology allows the comprehensive analysis of malondialdehyde-modified proteins.

  16. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases

    PubMed Central

    Jazurek, Magdalena; Ciesiolka, Adam; Starega-Roslan, Julia; Bilinska, Katarzyna; Krzyzosiak, Wlodzimierz J.

    2016-01-01

    RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases. PMID:27625393

  17. PCE-FR: A Novel Method for Identifying Overlapping Protein Complexes in Weighted Protein-Protein Interaction Networks Using Pseudo-Clique Extension Based on Fuzzy Relation.

    PubMed

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Ding, Pingjian

    2016-10-01

    Identifying overlapping protein complexes in protein-protein interaction (PPI) networks can provide insight into cellular functional organization and thus elucidate underlying cellular mechanisms. Recently, various algorithms for protein complexes detection have been developed for PPI networks. However, majority of algorithms primarily depend on network topological feature and/or gene expression profile, failing to consider the inherent biological meanings between protein pairs. In this paper, we propose a novel method to detect protein complexes using pseudo-clique extension based on fuzzy relation (PCE-FR). Our algorithm operates in three stages: it first forms the nonoverlapping protein substructure based on fuzzy relation and then expands each substructure by adding neighbor proteins to maximize the cohesive score. Finally, highly overlapped candidate protein complexes are merged to form the final protein complex set. Particularly, our algorithm employs the biological significance hidden in protein pairs to construct edge weight for protein interaction networks. The experiment results show that our method can not only outperform classical algorithms such as CFinder, ClusterONE, CMC, RRW, HC-PIN, and ProRank +, but also achieve ideal overall performance in most of the yeast PPI datasets in terms of composite score consisting of precision, accuracy, and separation. We further apply our method to a human PPI network from the HPRD dataset and demonstrate it is very effective in detecting protein complexes compared to other algorithms.

  18. Investigation of eggshell thickness and biochemical indicators of contaminant exposure in Great Blue Herons(Ardea herodias) from Mason Neck National Wildlife Refuge

    USGS Publications Warehouse

    Johnson, K.N.; Pinkney, A.E.; Melancon, M.J.; Hoffman, D.J.

    2001-01-01

    Mason Neck National Wildlife Refuge supports the largest great blue heron (Ardea herodias) rookery in the State of Virginia. The presence of bioaccumulative compounds such as polychlorinated biphenyls and DDT in fish collected from the Potomac River and tidal tributaries along the Refuge led to this study. The objective was to determine if there were any indications of pollutant-induced eggshell thinning or evidence of biochemical exposure to contaminants. We examined eggshell thickness and biomarkers of contaminant exposure in livers of embryos collected from the refuge and Coaches Island, a reference location in Chesapeake Bay. There was no evidence of eggshell thinning. Cytochrome P450 activity, measured as ethoxyresomfin-O-dealkylase (EROD) and benzyloxy-resorufin-O-dealkylase (BROD), was not significantly different in embryos from the two colonies. Biochemical indicators of oxidative stress can be reflected as changes in levels of reduced thiols, oxidized glutathione, and thiobarbituric reactive substances (TBARS). Although there were significant differences in the levels of reduced glutathione (GSH) and total thiol (TSH) activities in the embryo livers, there were no statistically significant differences in TBARS, protein-bound sulfhydryls (PBSH), oxidized glutathione (GSSG) and the ratio of GSSG to GSH. In fact, the concentrations of GSH and TSH were higher in the Mason Neck birds relative to Coaches Island. Under conditions of increased oxidative stress at least one or more of the following would be expected: decreased concentrations of reduced thiols (GSH and TSH), increased GSSG, and increased TBARS. In conclusion, we did not detect eggshell thinning or find evidence of a biochemical response to contaminant exposure in the Mason Neck great blue herons.

  19. An Ensemble Method with Hybrid Features to Identify Extracellular Matrix Proteins

    PubMed Central

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2015-01-01

    The extracellular matrix (ECM) is a dynamic composite of secreted proteins that play important roles in numerous biological processes such as tissue morphogenesis, differentiation and homeostasis. Furthermore, various diseases are caused by the dysfunction of ECM proteins. Therefore, identifying these important ECM proteins may assist in understanding related biological processes and drug development. In view of the serious imbalance in the training dataset, a Random Forest-based ensemble method with hybrid features is developed in this paper to identify ECM proteins. Hybrid features are employed by incorporating sequence composition, physicochemical properties, evolutionary and structural information. The Information Gain Ratio and Incremental Feature Selection (IGR-IFS) methods are adopted to select the optimal features. Finally, the resulting predictor termed IECMP (Identify ECM Proteins) achieves an balanced accuracy of 86.4% using the 10-fold cross-validation on the training dataset, which is much higher than results obtained by other methods (ECMPRED: 71.0%, ECMPP: 77.8%). Moreover, when tested on a common independent dataset, our method also achieves significantly improved performance over ECMPP and ECMPRED. These results indicate that IECMP is an effective method for ECM protein prediction, which has a more balanced prediction capability for positive and negative samples. It is anticipated that the proposed method will provide significant information to fully decipher the molecular mechanisms of ECM-related biological processes and discover candidate drug targets. For public access, we develop a user-friendly web server for ECM protein identification that is freely accessible at http://iecmp.weka.cc. PMID:25680094

  20. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses

    PubMed Central

    Eng, Christine L. P.; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak. PMID:26915079

  1. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  2. Identifying and quantitating conformational exchange in membrane proteins using site-directed spin labeling.

    PubMed

    Cafiso, David S

    2014-10-21

    Protein structures are not static but sample different conformations over a range of amplitudes and time scales. These fluctuations may involve relatively small changes in bond angles or quite large rearrangements in secondary structure and tertiary fold. The equilibrium between discrete structural substates on the microsecond to millisecond time scale is sometimes termed conformational exchange. Protein dynamics and conformational exchange are believed to provide the basis for many important activities, such as protein-protein and protein-ligand interactions, enzymatic activity and protein allostery; however, for many proteins, the dynamics and conformational exchange that lead to function are poorly defined. Spectroscopic methods, such as NMR, are among the most important methods to explore protein dynamics and conformational exchange; however, they are difficult to implement in some systems and with some types of exchange events. Site-directed spin labeling (SDSL) is an EPR based approach that is particularly well-suited to high molecular-weight systems such as membrane proteins. Because of the relatively fast time scale for EPR spectroscopy, it is an excellent method to examine exchange. Conformations that are in exchange are captured as distinct populations in the EPR spectrum, and this feature when combined with the use of methods that can shift the free energy of conformational substates allows one to identify regions of proteins that are in dynamic exchange. In addition, modern pulse EPR methods have the ability to examine conformational heterogeneity, resolve discrete protein states, and identify the substates in exchange. Protein crystallography has provided high-resolution models for a number of membrane proteins; but because of conformational exchange, these models do not always reflect the structures that are present when the protein is in a native bilayer environment. In the case of the Escherichia coli vitamin B12 transporter, BtuB, the energy

  3. Changes in pigment, spectral transmission and element content of pink chicken eggshells with different pigment intensity during incubation.

    PubMed

    Yu, Yue; Li, Zhanming; Pan, Jinming

    2016-01-01

    Objective. The objective of this study was to investigate changes in pigment, spectral transmission and element content of chicken eggshells with different intensities of pink pigment during the incubation period. We also investigated the effects of the region (small pole, equator and large pole) and pink pigment intensity of the chicken eggshell on the percent transmission of light passing through the chicken eggshells. Method. Eggs of comparable weight from a meat-type breeder (Meihuang) were used, and divided based on three levels of pink pigment (light, medium and dark) in the eggshells. During the incubation (0-21 d), the values of the eggshell pigment (ΔE, L (∗), a (∗), b (∗)) were measured. The percent transmission of light for different regions and intensities of eggshell pigmentation was measured by using the visible wavelength range of 380-780 nm. Result. Three measured indicators of eggshell color, ΔE, L (∗) and a (∗), did not change significantly during incubation. Compared with other regions and pigment intensities, eggshell at the small pole and with light pigmentation intensity showed the highest percent transmission of light. The transmission value varied significantly (P < 0.001) with incubation time. The element analysis of eggshells with different levels of pink pigment showed that the potassium content of the eggshells for all pigment levels decreased significantly during incubation. Conclusion. In summary, pigment intensity and the region of the eggshell influenced the percent transmission of light of eggshell. Differences in the spectral characteristics of different eggshells may influence the effects of photostimulation during the incubation of eggs. All of these results will be applicable for perfecting the design of light intensity for lighted incubation to improve productivity.

  4. A machine learning approach to identify hydrogenosomal proteins in Trichomonas vaginalis.

    PubMed

    Burstein, David; Gould, Sven B; Zimorski, Verena; Kloesges, Thorsten; Kiosse, Fuat; Major, Peter; Martin, William F; Pupko, Tal; Dagan, Tal

    2012-02-01

    The protozoan parasite Trichomonas vaginalis is the causative agent of trichomoniasis, the most widespread nonviral sexually transmitted disease in humans. It possesses hydrogenosomes-anaerobic mitochondria that generate H(2), CO(2), and acetate from pyruvate while converting ADP to ATP via substrate-level phosphorylation. T. vaginalis hydrogenosomes lack a genome and translation machinery; hence, they import all their proteins from the cytosol. To date, however, only 30 imported proteins have been shown to localize to the organelle. A total of 226 nuclear-encoded proteins inferred from the genome sequence harbor a characteristic short N-terminal presequence, reminiscent of mitochondrial targeting peptides, which is thought to mediate hydrogenosomal targeting. Recent studies suggest, however, that the presequences might be less important than previously thought. We sought to identify new hydrogenosomal proteins within the 59,672 annotated open reading frames (ORFs) of T. vaginalis, independent of the N-terminal targeting signal, using a machine learning approach. Our training set included 57 gene and protein features determined for all 30 known hydrogenosomal proteins and 576 nonhydrogenosomal proteins. Several classifiers were trained on this set to yield an import score for all proteins encoded by T. vaginalis ORFs, predicting the likelihood of hydrogenosomal localization. The machine learning results were tested through immunofluorescence assay and immunodetection in isolated cell fractions of 14 protein predictions using hemagglutinin constructs expressed under the homologous SCSα promoter in transiently transformed T. vaginalis cells. Localization of 6 of the 10 top predicted hydrogenosome-localized proteins was confirmed, and two of these were found to lack an obvious N-terminal targeting signal.

  5. A yeast-based genetic screening to identify human proteins that increase homologous recombination.

    PubMed

    Collavoli, Anita; Comelli, Laura; Rainaldi, Giuseppe; Galli, Alvaro

    2008-05-01

    To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.5-fold over the control. We found that deletion of the RAD52 gene, which has a key role in most HR events, abolished the increase of HR induced by the proteasome subunits and HRAS; by contrast, the RAD52 deletion did not affect the high level of HR due to BASP1 and RPL12. This suggests that the proteins stimulated yeast HR via different mechanisms. Overexpression of the complete beta 2 human proteasome subunit or the partially deleted alpha 3 and beta 8 subunits increased methyl methanesulphonate (MMS) resistance much more in the rad52 Delta mutant than in the wild-type. Overexpression of RPL12 and BASP1 did not affect MMS resistance in both the wild-type and the rad52 Delta mutant, whereas HRAS decreased MMS resistance in the rad52 Delta mutant. The results indicate that these proteins may interfere with the pathway(s) involved in the repair of MMS-induced DNA damage. Finally, we provide further evidence that yeast is a helpful tool to identify human proteins that may have a regulatory role in HR.

  6. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    PubMed

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  7. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs

    PubMed Central

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  8. High throughput atmospheric pressure plasma-induced graft polymerization for identifying protein-resistant surfaces.

    PubMed

    Gu, Minghao; Kilduff, James E; Belfort, Georges

    2012-02-01

    Three critical aspects of searching for and understanding how to find highly resistant surfaces to protein adhesion are addressed here with specific application to synthetic membrane filtration. They include the (i) discovery of a series of previously unreported monomers from a large library of monomers with high protein resistance and subsequent low fouling characteristics for membrane ultrafiltration of protein-containing fluids, (ii) development of a new approach to investigate protein-resistant mechanisms from structure-property relationships, and (iii) adaptation of a new surface modification method, called atmospheric pressure plasma-induced graft polymerization (APP), together with a high throughput platform (HTP), for low cost vacuum-free synthesis of anti-fouling membranes. Several new high-performing chemistries comprising two polyethylene glycol (PEG), two amines and one zwitterionic monomers were identified from a library (44 commercial monomers) of five different classes of monomers as strong protein-resistant monomers. Combining our analysis here, using the Hansen solubility parameters (HSP) approach, and data from the literature, we conclude that strong interactions with water (hydrogen bonding) and surface flexibility are necessary for producing the highest protein resistance. Superior protein-resistant surfaces and subsequent anti-fouling performance was obtained with the HTP-APP as compared with our earlier HTP-photo graft-induced polymerization (PGP).

  9. Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos from Portugal

    PubMed Central

    Araújo, Ricardo; Castanhinha, Rui; Martins, Rui M. S.; Mateus, Octávio; Hendrickx, Christophe; Beckmann, F.; Schell, N.; Alves, L. C.

    2013-01-01

    The non-avian saurischians that have associated eggshells and embryos are represented only by the sauropodomorph Massospondylus and Coelurosauria (derived theropods), thus missing the basal theropod representatives. We report a dinosaur clutch containing several crushed eggs and embryonic material ascribed to the megalosaurid theropod Torvosaurus. It represents the first associated eggshells and embryos of megalosauroids, thus filling an important phylogenetic gap between two distantly related groups of saurischians. These fossils represent the only unequivocal basal theropod embryos found to date. The assemblage was found in early Tithonian fluvial overbank deposits of the Lourinhã Formation in West Portugal. The morphological, microstructural and chemical characterization results of the eggshell fragments indicate very mild diagenesis. Furthermore, these fossils allow unambiguous association of basal theropod osteology with a specific and unique new eggshell morphology. PMID:23722524

  10. UV, VISIBLE AND NIR SPECTRAL ANALYSIS OF EGGSHELLS IN THE CHARADRIIDAE FAMILY OF BIRDS

    EPA Science Inventory

    We employed reflectance spectrophotometry to quantify color and mineral composition of eggshells from several species of the bird family Charadriidae to characterize species physiology and to distinguish nesting habitat preferences. We used a Shimadzu spectrophotometer to measur...

  11. A novel assay to identify the trafficking proteins that bind to specific vesicle populations

    PubMed Central

    Bentley, Marvin; Banker, Gary

    2016-01-01

    Here we describe a method capable of identifying interactions between candidate trafficking proteins and a defined vesicle population in intact cells. The assay involves the expression of an FKBP12-rapamycin–binding domain (FRB)–tagged candidate vesicle-binding protein that can be inducibly linked to an FKBP-tagged molecular motor. If the FRB-tagged candidate protein binds the labeled vesicles, then linking the FRB and FKBP domains recruits motors to the vesicles and causes a predictable, highly distinctive change in vesicle trafficking. We describe two versions of the assay: a general protocol for use in cells with a typical microtubule-organizing center and a specialized protocol designed to detect protein-vesicle interactions in cultured neurons. We have successfully used this assay to identify kinesins and Rabs that bind to a variety of different vesicle populations. In principle, this assay could be used to investigate interactions between any category of vesicle trafficking proteins and any vesicle population that can be specifically labeled. PMID:26621371

  12. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation.

    PubMed

    Kawamura, Yukio; Uemura, Matsuo

    2003-10-01

    Although enhancement of freezing tolerance in plants during cold acclimation is closely associated with an increase in the cryostability of plasma membrane, the molecular mechanism for the increased cryostability of plasma membrane is still to be elucidated. In Arabidopsis, enhanced freezing tolerance was detectable after cold acclimation at 2 degrees C for as short as 1 day, and maximum freezing tolerance was attained after 1 week. To identify the plasma membrane proteins that change in quantity in response to cold acclimation, a highly purified plasma membrane fraction was isolated from leaves before and during cold acclimation, and the proteins in the fraction were separated with gel electrophoresis. We found that there were substantial changes in the protein profiles after as short as 1 day of cold acclimation. Subsequently, using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS), we identified 38 proteins that changed in quantity during cold acclimation. The proteins that changed in quantity during the first day of cold acclimation include those that are associated with membrane repair by membrane fusion, protection of the membrane against osmotic stress, enhancement of CO2 fixation, and proteolysis.

  13. Identifying paths of allosteric communication in the protein BirA through simulations

    NASA Astrophysics Data System (ADS)

    Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina

    Biotin ligase/repressor (BirA) is a bifunctional enzyme which adenylates biotin and transfers the product, biotinyl-5'-AMP (bio-5'-AMP) to biotin carboxyl carrier protein (BCCP). In the absence of BCCP, bio-5'-AMP promotes the dimerization of BirA. In dimer form, the BirA.bio-5'-AMP complex is able to bind to the biotin operator and prevents further synthesis of biotin. The bio-5'-AMP binds away from the dimer interface, so it is acting as an allosteric activator. We perform all-atom molecular dynamics simulations with BirA to look at fluctuations within the protein at equilibrium. We simulate apoBirA, liganded BirA, as well as two mutants, M211A and V219A. In agreement with experimental observations, several loops of the protein become stabilized for the liganded BirA when compared to the apo protein. In addition, changes in the dimer interface are observed for the M211A and V219A mutations, which are located in the ligand binding region. Using inter-residue correlation coefficients and pair energies a communication network through the protein is constructed. With this network we have identified paths which have the potential to be important in allosteric activation of BirA. These paths and the methods we use to identify them will be presented.

  14. Identifying and Quantitating Conformational Exchange in Membrane Proteins Using Site-Directed Spin Labeling

    PubMed Central

    2015-01-01

    Conspectus Protein structures are not static but sample different conformations over a range of amplitudes and time scales. These fluctuations may involve relatively small changes in bond angles or quite large rearrangements in secondary structure and tertiary fold. The equilibrium between discrete structural substates on the microsecond to millisecond time scale is sometimes termed conformational exchange. Protein dynamics and conformational exchange are believed to provide the basis for many important activities, such as protein–protein and protein–ligand interactions, enzymatic activity and protein allostery; however, for many proteins, the dynamics and conformational exchange that lead to function are poorly defined. Spectroscopic methods, such as NMR, are among the most important methods to explore protein dynamics and conformational exchange; however, they are difficult to implement in some systems and with some types of exchange events. Site-directed spin labeling (SDSL) is an EPR based approach that is particularly well-suited to high molecular-weight systems such as membrane proteins. Because of the relatively fast time scale for EPR spectroscopy, it is an excellent method to examine exchange. Conformations that are in exchange are captured as distinct populations in the EPR spectrum, and this feature when combined with the use of methods that can shift the free energy of conformational substates allows one to identify regions of proteins that are in dynamic exchange. In addition, modern pulse EPR methods have the ability to examine conformational heterogeneity, resolve discrete protein states, and identify the substates in exchange. Protein crystallography has provided high-resolution models for a number of membrane proteins; but because of conformational exchange, these models do not always reflect the structures that are present when the protein is in a native bilayer environment. In the case of the Escherichia coli vitamin B12 transporter, Btu

  15. Ultrastructural features and elemental distribution in eggshell during pre and post hatching periods in the green turtle, Chelonia mydas at Ras Al-Hadd, Oman.

    PubMed

    Al-Bahry, S N; Mahmoud, I Y; Al-Amri, I S; Ba-Omar, T A; Melgheit, K O; Al-Kindi, A Y

    2009-06-01

    Eggshells were randomly collected from turtle nests immediately after oviposition and at the end of incubation to examine the ultrastructural features using scanning JSM-5600LV microscopy. Three layers were recognized; an outer calcareous, a middle multistrata and an inner membrane. The calcareous layer had loose nodular units varying in shape and size without interlocking attachments. In freshly laid eggs, each nodular unit had spicules arranged in folded stacks. The spicules became unfolded during incubation, to form radiating configurations. Elemental composition and mapping of the layers were analyzed using energy dispersive spectroscopy (EDS). The elements were unevenly distributed throughout the eggshell and Ca(2+) decreased significantly after hatching. X-ray diffraction was used to identify the crystals of the eggshells. It revealed that nodular units of the calcareous were made up of CaCO(3), as aragonite (91%), calcite (6%) and vaterite (3%). The middle layer consisted of organic amorphous material with aragonite (89%) and calcite (11%). The shell membrane consisted of reticular fibers with crystals predominantly of NaCl halite. Thermogravimetry analysis of the calcareous layer indicated a complete evaporation of bonded H(2)O at 480 degrees C and CO(2) at 830 degrees C. Using the differential thermal analysis (DTA), aragonite was transformed to stable calcite at 425 degrees C.

  16. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize

    PubMed Central

    Musungu, Bryan; Bhatnagar, Deepak; Brown, Robert L.; Fakhoury, Ahmad M.; Geisler, Matt

    2015-01-01

    Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM) is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs) that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize. PMID:26089837

  17. Interaction of Proteus mirabilis Urease Apoenzyme and Accessory Proteins Identified with Yeast Two-Hybrid Technology

    PubMed Central

    Heimer, Susan R.; Mobley, Harry L. T.

    2001-01-01

    Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)3. To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins. PMID:11157956

  18. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18.

    PubMed

    Yang, Zhaoshou; Hou, Yongheng; Hao, Taofang; Rho, Hee-Sool; Wan, Jun; Luan, Yizhao; Gao, Xin; Yao, Jianping; Pan, Aihua; Xie, Zhi; Qian, Jiang; Liao, Wanqin; Zhu, Heng; Zhou, Xingwang

    2017-03-01

    Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface.

  19. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  20. A Review of Methods Used for Identifying Structural Changes in a Large Protein Complex

    PubMed Central

    Nadeau, Owen W.; Carlson, Gerald M.

    2013-01-01

    This chapter explores the structural responses of a massive, hetero-oligomeric protein complex to a single allosteric activator as probed by a wide range of chemical, biochemical, and biophysical approaches. Some of the approaches used are amenable only to large protein targets, whereas others push the limits of their utility. Some of the techniques focus on individual subunits, or portions thereof, while others examine the complex as a whole. Despite the absence of crystallographic data for the complex, the diverse techniques identify and implicate a small region of its catalytic subunit as the master allosteric activation switch for the entire complex. PMID:22052488

  1. A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi

    PubMed Central

    2013-01-01

    Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. PMID:24252298

  2. Combined Use of Electron and Light Microscopy Techniques Reveals False Secondary Shell Units in Megaloolithidae Eggshells

    PubMed Central

    Bauluz, Blanca; Canudo, José Ignacio; Gasca, José Manuel; Torcida Fernández-Baldor, Fidel

    2016-01-01

    Abnormalities in the histo- and ultrastructure of the amniote eggshell are often related to diverse factors, such as ambient stress during egg formation, pathologies altering the physiology of the egg-laying females, or evolutionarily selected modifications of the eggshell structure that vary the physical properties of the egg, for example increasing its strength so as to avoid fracture during incubation. When dealing with fossil materials, all the above hypotheses are plausible, but a detailed taphonomical study has to be performed to rule out the possibility that secondary processes of recrystallization have occurred during fossilization. Traditional analyses, such as optical microscopy inspection and cathodoluminescence, have proven not to be enough to understand the taphonomic story of some eggshells. Recently, electron backscatter diffraction has been used, in combination with other techniques, to better understand the alteration of fossil eggshells. Here we present a combined study using scanning electron microscopy, optical microscopy, cathodoluminescence and electron backscatter diffraction of eggshell fragments assigned to Megaloolithus cf. siruguei from the Upper Cretaceous outcrops of the Cameros Basin. We focus our study on the presence of secondary shell units that mimic most aspects of the ultrastructure of the eggshell mammillae, but grow far from the inner surface of the eggshell. We call these structures extra-spherulites, describe their crystal structure and demonstrate their secondary origin. Our study has important implications for the interpretation of secondary shell units as biological or pathological structures. Thus, electron backscatter diffraction complements other microscope techniques as a useful tool for understanding taphonomical alterations in fossil eggshells. PMID:27144767

  3. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi.

    PubMed

    Boonla, Chanchai; Tosukhowong, Piyaratana; Spittau, Björn; Schlosser, Andreas; Pimratana, Chaowat; Krieglstein, Kerstin

    2014-02-15

    To uncover whether urinary proteins are incorporated into stones, the proteomic profiles of kidney stones and urine collected from the same patients have to be explored. We employed 1D-PAGE and nanoHPLC-ESI-MS/MS to analyze the proteomes of kidney stone matrix (n=16), nephrolithiatic urine (n=14) and healthy urine (n=3). We identified 62, 66 and 22 proteins in stone matrix, nephrolithiatic urine and healthy urine, respectively. Inflammation- and fibrosis-associated proteins were frequently detected in the stone matrix and nephrolithiatic urine. Eighteen proteins were exclusively found in the stone matrix and nephrolithiatic urine, considered as candidate biomarkers for kidney stone formation. S100A8 and fibronectin, representatives of inflammation and fibrosis, respectively, were up-regulated in nephrolithiasis renal tissues. S100A8 was strongly expressed in infiltrated leukocytes. Fibronectin was over-expressed in renal tubular cells. S100A8 and fibronectin were immunologically confirmed to exist in nephrolithiatic urine and stone matrix, but in healthy urine they were undetectable. Conclusion, both kidney stones and urine obtained from the same patients greatly contained inflammatory and fibrotic proteins. S100A8 and fibronectin were up-regulated in stone-baring kidneys and nephrolithiatic urine. Therefore, inflammation and fibrosis are suggested to be involved in the formation of kidney calculi.

  4. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets

    PubMed Central

    Vinayagam, Arunachalam; Gibson, Travis E.; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-01-01

    The protein–protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as “indispensable,” “neutral,” or “dispensable,” which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets. PMID:27091990

  5. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma.

    PubMed

    Havelund, Jesper F; Wojdyla, Katarzyna; Davies, Michael J; Jensen, Ole N; Møller, Ian Max; Rogowska-Wrzesinska, Adelina

    2017-03-06

    Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues are derivatised with biotin-hydrazide, enriched and characterised by tandem mass spectrometry. The strength of the method lies in an improved elution of biotinylated peptides from monomeric avidin resin using hot water (95°C) and increased sensitivity achieved by reduction of analyte losses during sample preparation and chromatography. For the first time MS/MS data analysis utilising diagnostic biotin fragment ions is used to pinpoint sites of biotin labelling and improve the confidence of carbonyl peptide assignments. We identified a total of 125 carbonylated residues in bovine serum albumin after extensive in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine, valine, alanine, isoleucine, glutamine, lysine and glutamic acid (+14Da), an oxidised form of methionine - aspartate semialdehyde (-32Da) - and decarboxylated glutamic acid and aspartic acid (-30Da).

  6. Novel protein kinase signaling systems regulating lifespan identified by small molecule library screening using Drosophila.

    PubMed

    Spindler, Stephen R; Li, Rui; Dhahbi, Joseph M; Yamakawa, Amy; Sauer, Frank

    2012-01-01

    Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptors, G-protein coupled receptor (GPCR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the insulin and insulin-like growth factor (IGFI) receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38), c-Jun N-terminal kinase (JNK) and protein kinase C (PKC). If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity.

  7. Changes in mineral composition of eggshells from black ducks and mallards fed DDE in the diet

    USGS Publications Warehouse

    Longcore, J.R.; Samson, F.B.; Kreitzer, J.F.; Spann, J.W.

    1971-01-01

    Diets containing 10 and 30 ppm (dry weight) DDE were fed to black ducks, and diets containing 1, 5, and 10 ppm (dry weight) DDE were fed to mallards. Among the results were the following changes in black duck eggshell composition: (a) significant increase in the percentage of Mg, (b) significant decreases in Ba and Sr, (c) increases (which approached significance) in average percentage of eggshell Na and Cu, (d) a decrease in shell Ca which approached significance, (e) patterns of mineral correlations which in some instances were distinct to dosage groups, and (f) inverse correlations in the control group between eggshell thickness Mg and Na. Changes in mallard eggshells were: (a) significant increase in percentage of magnesium at 5 and 10 ppm DDE, (b) significant decrease in Al at 5 and 10 ppm DDE, (c) a significant decrease in Ca from eggshells from the 10 ppm DDE group, and (d) an increase in average percentage of Na in eggshells from DDE dosed ducks which approached significance.

  8. The amino acid and stable isotope biogeochemistry of elephant bird ( Aepyornis) eggshells from southern Madagascar

    NASA Astrophysics Data System (ADS)

    Clarke, Simon J.; Miller, Gifford H.; Fogel, Marilyn L.; Chivas, Allan R.; Murray-Wallace, Colin V.

    2006-09-01

    A diverse suite of animals became extinct on Madagascar during the Late Holocene. As observed on landmasses elsewhere, the extinction process broadly coincided with the arrival of people. Our research on the amino acid racemisation and the carbon and oxygen isotope biogeochemistry of elephant bird ( Aepyornis) eggshells from southern Madagascar refines models that attempt to explain the extinction process. A correlation between the extent of isoleucine epimerisation (aIle/Ile) and radiocarbon age of eggshells allows aIle/Ile to serve as a proxy for eggshell age. The aIle/Ile values indicate the majority (87%) of eggshells in this study are Holocene, with the remainder representing Pleistocene Aepyornis populations, and that further amino acid analyses would help to constrain the timing of Aepyornis extinction. Carbon isotope ratios in the organic and calcite fractions of eggshells indicate that Aepyornis primarily browsed C 3 vegetation. Oxygen isotope values are more negative and less variable than in eggshells of ostriches living in semi-arid environments, suggesting that Aepyornis populations relied upon groundwater-fed coastal wetlands for their drinking water. The isotope results require that the changing abundances of C 3 vegetation and groundwater-fed watering points be considered in models that aim to understand the extinction of Aepyornis in southern Madagascar.

  9. Effects of Dietary Corticosterone on Yolk Colors and Eggshell Quality in Laying Hens

    PubMed Central

    Kim, Yeon-Hwa; Kim, Jimin; Yoon, Hyung-Sook; Choi, Yang-Ho

    2015-01-01

    The objective of this study was to investigate the effects of dietary corticosterone on egg quality. For 2 weeks hens received either control or experimental diet containing corticosterone at 30 mg/kg diet. Feed intake and egg production were monitored daily, and body weight measured weekly. Egg weights and egg quality were measured daily. Corticosterone treatment resulted in a remarkable increase in feed intake and sharp decrease in egg production compared with control (p<0.05) whereas body weight remained unchanged. Decreased albumen height, but no changes in egg weight, led to decreased Haugh unit (p<0.05). Corticosterone caused elevated eggshell thickness (p<0.05) without altering weight and strength, suggesting possible changes in shell structure. Yolk color and redness were increased by corticosterone (p<0.05) but lightness and yellowness were either not changed or inconsistent over the time period of measurements. Increased concentrations in plasma were also found for corticosterone, glucose, cholesterol, creatinine, uric acid, albumin, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, total protein, and amylase (p<0.05), suggesting that corticosterone increased protein breakdown, renal dysfunctions and pancreatitis. Together, the current results imply that dietary corticosterone affects egg quality such as yolk colors and shell thickness, in addition to its effects on feed intake and egg production. PMID:25925061

  10. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression

    PubMed Central

    Lamitina, Todd; Huang, Chunyi George; Strange, Kevin

    2006-01-01

    The detection, stabilization, and repair of stress-induced damage are essential requirements for cellular life. All cells respond to osmotic stress-induced water loss with increased expression of genes that mediate accumulation of organic osmolytes, solutes that function as chemical chaperones and restore osmotic homeostasis. The signals and signaling mechanisms that regulate osmoprotective gene expression in animal cells are poorly understood. Here, we show that gpdh-1 and gpdh-2, genes that mediate the accumulation of the organic osmolyte glycerol, are essential for survival of the nematode Caenorhabditis elegans during osmotic stress. Expression of GFP driven by the gpdh-1 promoter (Pgpdh-1::GFP) is detected only during hypertonic stress but is not induced by other stressors. Using Pgpdh-1::GFP expression as a phenotype, we screened ≈16,000 genes by RNAi feeding and identified 122 that cause constitutive activation of gpdh-1 expression and glycerol accumulation. Many of these genes function to regulate protein translation and cotranslational protein folding and to target and degrade denatured proteins, suggesting that the accumulation of misfolded proteins functions as a signal to activate osmoprotective gene expression and organic osmolyte accumulation in animal cells. Consistent with this hypothesis, 73% of these protein-homeostasis genes have been shown to slow age-dependent protein aggregation in C. elegans. Because diverse environmental stressors and numerous disease states result in protein misfolding, mechanisms must exist that discriminate between osmotically induced and other forms of stress-induced protein damage. Our findings provide a foundation for understanding how these damage-selectivity mechanisms function. PMID:16880390

  11. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.

    PubMed

    Huang, Hsien-Da; Lee, Tzong-Yi; Tzeng, Shih-Wei; Horng, Jorng-Tzong

    2005-07-01

    KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at http://KinasePhos.mbc.nctu.edu.tw/.

  12. SPECTRUS: A Dimensionality Reduction Approach for Identifying Dynamical Domains in Protein Complexes from Limited Structural Datasets.

    PubMed

    Ponzoni, Luca; Polles, Guido; Carnevale, Vincenzo; Micheletti, Cristian

    2015-08-04

    Identifying dynamical, quasi-rigid domains in proteins provides a powerful means for characterizing functionally oriented structural changes via a parsimonious set of degrees of freedom. In fact, the relative displacements of few dynamical domains usually suffice to rationalize the mechanics underpinning biological functionality in proteins and can even be exploited for structure determination or refinement purposes. Here we present SPECTRUS, a general scheme that, by solely using amino acid distance fluctuations, can pinpoint the innate quasi-rigid domains of single proteins or large complexes in a robust way. Consistent domains are usually obtained by using either a pair of representative structures or thousands of conformers. The functional insights offered by the approach are illustrated for biomolecular systems of very different size and complexity such as kinases, ion channels, and viral capsids. The decomposition tool is available as a software package and web server at spectrus.sissa.it.

  13. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock

    PubMed Central

    Agrawal, Parul; Hardin, Paul E.

    2016-01-01

    Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans. PMID:27784754

  14. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock.

    PubMed

    Agrawal, Parul; Hardin, Paul E

    2016-12-07

    Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans.

  15. Identifying Key Proteins in Hg Methylation Pathways of Desulfovibrio by Global Proteomics, Final Technical Report

    SciTech Connect

    Summers, Anne O.; Miller, Susan M.; Wall, Judy; Lipton, Mary

    2016-06-18

    Elemental mercury, Hg(0) is a contaminant at many DOE sites, especially at Oak Ridge National Laboratory (ORNL) where the spread of spilled Hg and its effects on microbial populations have been monitored for decades. To explore the microbial interactions with Hg, we have devised a global proteomic approach capable of directly detecting Hg-adducts of proteins. This technique developed in the facultative anaerobe, Escherichia coli, allows us to identify the proteins most vulnerable to acute exposure to organomercurials phenyl- and ethyl-mercury (as surrogates for the highly neurotoxic methyl-Hg) (Polacco, et al, 2011). We have found >300 such proteins in all metabolic functional groups and cellular compartments; most are highly conserved and can serve as markers for acute Hg exposure (Zink, et al. 2016, in preparation). We have also discovered that acute Hg exposure severely disrupts thiol, iron and redox homeostases, and electrolyte balance (LaVoie, et al., 2015) Thus, we proposed to bring these techniques to bear on the central problem of identifying the cellular proteins involved in bacterial uptake and methylation of mercury and its release from the cell.

  16. Effectively identifying compound-protein interactions by learning from positive and unlabeled examples.

    PubMed

    Cheng, Zhanzhan; Zhou, Shuigeng; Wang, Yang; Liu, Hui; Guan, Jihong; Chen, Yi-Ping Phoebe

    2016-05-18

    Prediction of compound-protein interactions (CPIs) is to find new compound-protein pairs where a protein is targeted by at least a compound, which is a crucial step in new drug design. Currently, a number of machine learning based methods have been developed to predict new CPIs in the literature. However, as there is not yet any publicly available set of validated negative CPIs, most existing machine learning based approaches use the unknown interactions (not validated CPIs) selected randomly as the negative examples to train classifiers for predicting new CPIs. Obviously, this is not quite reasonable and unavoidably impacts the CPI prediction performance. In this paper, we simply take the unknown CPIs as unlabeled examples, and propose a new method called PUCPI (the abbreviation of PU learning for Compound-Protein Interaction identification) that employs biased-SVM (Support Vector Machine) to predict CPIs using only positive and unlabeled examples. PU learning is a class of learning methods that leans from positive and unlabeled (PU) samples. To the best of our knowledge, this is the first work that identifies CPIs using only positive and unlabeled examples. We first collect known CPIs as positive examples and then randomly select compound-protein pairs not in the positive set as unlabeled examples. For each CPI/compound-protein pair, we extract protein domains as protein features and compound substructures as chemical features, then take the tensor product of the corresponding compound features and protein features as the feature vector of the CPI/compound-protein pair. After that, biased-SVM is employed to train classifiers on different datasets of CPIs and compound-protein pairs. Experiments over various datasets show that our method outperforms six typical classifiers, including random forest, L1- and L2-regularized logistic regression, naive Bayes, SVM and k-nearest neighbor (kNN), and three types of existing CPI prediction models. Source code, datasets and

  17. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell.

    PubMed

    Grealy, Alicia; Phillips, Matthew; Miller, Gifford; Gilbert, M Thomas P; Rouillard, Jean-Marie; Lambert, David; Bunce, Michael; Haile, James

    2017-04-01

    Palaeognaths, the sister group of all other living birds (neognaths), were once considered to be vicariant relics from the breakup of the Gondwanan supercontinent. However, recent molecular studies instead argue for dispersal of volant ancestors across marine barriers. Resolving this debate hinges upon accurately reconstructing their evolutionary relationships and dating their divergences, which often relies on phylogenetic information from extinct relatives and nuclear genomes. Mitogenomes from the extinct elephant birds of Madagascar have helped inform the palaeognath phylogeny; however, nuclear information has remained unavailable. Here, we use ancient DNA (aDNA) extracted from fossil eggshell, together with target enrichment and next-generation sequencing techniques, to reconstruct an additional new mitogenome from Aepyornis sp. with 33.5X coverage. We also recover the first elephant bird nuclear aDNA, represented by 12,500bp of exonic information. While we confirm that elephant birds are sister taxa to the kiwi, our data suggests that, like neognaths, palaeognaths underwent an explosive radiation between 69 and 52Ma-well after the break-up of Gondwana, and more rapidly than previously estimated from mitochondrial data alone. These results further support the idea that ratites primarily diversified immediately following the Cretaceous-Palaeogene mass extinction and convergently evolved flightlessness. Our study reinforces the importance of including information from the nuclear genome of extinct taxa for recovering deep evolutionary relationships. Furthermore, with approximately 3% endogenous aDNA retrieved, avian eggshell can be a valuable substrate for recovering high quality aDNA. We suggest that elephant bird whole genome recovery is ultimately achievable, and will provide future insights into the evolution these birds.

  18. Host Protein Biomarkers Identify Active Tuberculosis in HIV Uninfected and Co-infected Individuals

    PubMed Central

    Achkar, Jacqueline M.; Cortes, Laetitia; Croteau, Pascal; Yanofsky, Corey; Mentinova, Marija; Rajotte, Isabelle; Schirm, Michael; Zhou, Yiyong; Junqueira-Kipnis, Ana Paula; Kasprowicz, Victoria O.; Larsen, Michelle; Allard, René; Hunter, Joanna; Paramithiotis, Eustache

    2015-01-01

    Biomarkers for active tuberculosis (TB) are urgently needed to improve rapid TB diagnosis. The objective of this study was to identify serum protein expression changes associated with TB but not latent Mycobacterium tuberculosis infection (LTBI), uninfected states, or respiratory diseases other than TB (ORD). Serum samples from 209 HIV uninfected (HIV−) and co-infected (HIV+) individuals were studied. In the discovery phase samples were analyzed via liquid chromatography and mass spectrometry, and in the verification phase biologically independent samples were analyzed via a multiplex multiple reaction monitoring mass spectrometry (MRM-MS) assay. Compared to LTBI and ORD, host proteins were significantly differentially expressed in TB, and involved in the immune response, tissue repair, and lipid metabolism. Biomarker panels whose composition differed according to HIV status, and consisted of 8 host proteins in HIV− individuals (CD14, SEPP1, SELL, TNXB, LUM, PEPD, QSOX1, COMP, APOC1), or 10 host proteins in HIV+ individuals (CD14, SEPP1, PGLYRP2, PFN1, VASN, CPN2, TAGLN2, IGFBP6), respectively, distinguished TB from ORD with excellent accuracy (AUC = 0.96 for HIV− TB, 0.95 for HIV+ TB). These results warrant validation in larger studies but provide promise that host protein biomarkers could be the basis for a rapid, blood-based test for TB. PMID:26501113

  19. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    PubMed

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  20. A Phenotypic High-Content Screening Assay to Identify Regulators of Membrane Protein Localization.

    PubMed

    Smith, Lorey K; Thomas, Daniel W; Simpson, Kaylene J; Humbert, Patrick O

    2016-10-01

    Correct subcellular localization of proteins is a requirement for appropriate function. This is especially true in epithelial cells, which rely on the precise localization of a diverse array of epithelial polarity and cellular adhesion proteins. Loss of cell polarity and adhesion is a hallmark of cancer, and mislocalization of core polarity proteins, such as Scribble, is observed in a range of human epithelial tumors and is prognostic of poor survival. Despite this, little is known about how Scribble membrane localization is regulated. Here, we describe the development and application of a phenotypic high-content screening assay that is designed to specifically quantify membrane levels of Scribble to identify regulators of its membrane localization. A screening platform that is capable of resolving individual cells and quantifying membrane protein localization in confluent epithelial monolayers was developed by using the cytoplasm-to-cell-membrane bioapplication integrated with the Cellomics ArrayScan high-content imaging platform. Application of this method to a boutique human epithelial polarity and signaling small interfering RNA (siRNA) library resulted in highly robust coefficient-of-variance and Z' factor values. As proof of concept, we present two candidate genes whose depletion specifically reduces Scribble protein levels at the membrane. Data mining revealed that these proteins interact with components of the Scribble polarity complex, providing support for the utility of the screening approach. This method is broadly applicable to genome-wide and large-scale compound screening of membrane-bound proteins, and when coupled with pathway analysis the dataset becomes even more valuable and can provide predictive mechanistic insight.

  1. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  2. Trace element concentrations in eggshells and egg contents of black-tailed gull (Larus crassirostris) from Korea.

    PubMed

    Kim, Jungsoo; Oh, Jong-Min

    2014-09-01

    Concentrations of trace elements (cadmium, lead, copper, manganese and zinc) were examined in eggs of black-tailed gulls (Larus crassirostris) from Hongdo Island, Korea to determine the difference and distribution of trace elements in eggshells and egg contents. Cadmium, lead and manganese concentrations were greater in eggshells than in egg contents. In contrast, zinc concentrations were higher in egg contents than in eggshells. Trace element concentrations followed the order: zinc > lead = manganese = copper > cadmium (eggshells) and zinc > copper > manganese > lead > cadmium (egg contents). Cadmium concentrations were relatively low (<1 μg/g dw) in egg contents and eggshells. Concentrations of cadmium, lead and copper were significantly correlated between egg contents and eggshells. This indicates that cadmium, lead and copper levels in the eggshell can reflect their levels in the egg contents. There was also a high ratio (3.2) of eggshell/egg content for lead. These results indicate that the eggshell might be useful as a bio-indicator for monitoring cadmium, lead and copper in the egg content.

  3. Capture Compound Mass Spectrometry - A Powerful Tool to Identify Novel c-di-GMP Effector Proteins

    PubMed Central

    Laventie, Benoît-Joseph; Nesper, Jutta; Ahrné, Erik; Glatter, Timo; Schmidt, Alexander; Jenal, Urs

    2015-01-01

    Considerable progress has been made during the last decade towards the identification and characterization of enzymes involved in the synthesis (diguanylate cyclases) and degradation (phosphodiesterases) of the second messenger c-di-GMP. In contrast, little information is available regarding the molecular mechanisms and cellular components through which this signaling molecule regulates a diverse range of cellular processes. Most of the known effector proteins belong to the PilZ family or are degenerated diguanylate cyclases or phosphodiesterases that have given up on catalysis and have adopted effector function. Thus, to better define the cellular c-di-GMP network in a wide range of bacteria experimental methods are required to identify and validate novel effectors for which reliable in silico predictions fail. We have recently developed a novel Capture Compound Mass Spectrometry (CCMS) based technology as a powerful tool to biochemically identify and characterize c-di-GMP binding proteins. This technique has previously been reported to be applicable to a wide range of organisms1. Here we give a detailed description of the protocol that we utilize to probe such signaling components. As an example, we use Pseudomonas aeruginosa, an opportunistic pathogen in which c-di-GMP plays a critical role in virulence and biofilm control. CCMS identified 74% (38/51) of the known or predicted components of the c-di-GMP network. This study explains the CCMS procedure in detail, and establishes it as a powerful and versatile tool to identify novel components involved in small molecule signaling. PMID:25867682

  4. Identifying biological concepts from a protein-related corpus with a probabilistic topic model

    PubMed Central

    Zheng, Bin; McLean, David C; Lu, Xinghua

    2006-01-01

    Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA) model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO) terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text. PMID:16466569

  5. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng

    2015-08-01

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific

  6. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter.

    PubMed Central

    Taira, T; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription. Images PMID:8065368

  7. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens

    PubMed Central

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T.

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins. PMID:26057742

  8. Ratcheted molecular-dynamics simulations identify efficiently the transition state of protein folding

    NASA Astrophysics Data System (ADS)

    Tiana, Guido; Camilloni, Carlo

    2012-12-01

    The atomistic characterization of the transition state (TS) is a fundamental step to improve the understanding of the folding mechanism and the function of proteins. From a computational point of view, the identification of the conformations that build out the transition state is particularly cumbersome, mainly because of the large computational cost of generating a statistically sound set of folding trajectories. Here we show that a biasing algorithm, based on the physics of the ratchet-and-pawl, can be used to approximate efficiently the transition state. The basic idea is that the algorithmic ratchet exerts a force on the protein when it is climbing the free-energy barrier, while it is inactive when it is descending. The transition state can be identified as the point of the trajectory where the ratchet changes regime. Besides discussing this strategy in general terms, we test it within a protein model whose transition state can be studied independently by plain molecular dynamics simulations. Finally, we show its power in explicit-solvent simulations, obtaining and characterizing a set of transition-state conformations for Acyl-Coenzyme A-Binding Protein (ACBP) and Chymotrypsin Inhibitor 2 (CI2).

  9. Optimisation of Downscaled Tandem Affinity Purifications to Identify Core Protein Complexes

    PubMed Central

    Haura, Eric B.; Sacco, Roberto; Li, Jiannong; Müller, André C.; Grebien, Florian; Superti-Furga, Giulio; Bennett, Keiryn L.

    2013-01-01

    In this study we show that via stable, retroviral-expression of tagged EGFR del (L747-S752 deletion mutant) in the PC9 lung cancer cell line and stable doxycycline-inducible expression of tagged Grb2 using a Flp-mediated recombination HEK293 cell system, the SH-TAP can be downscaled to 5 to 12.5 mg total protein input (equivalent to 0.5 - 1 × 15 cm culture plate or 4 - 8 × 106 cells). The major constituents of the EGFR del complex (USB3B, GRB2, ERRFI, HSP7C, GRP78, HSP71) and the Grb2 complex (ARHG5, SOS1, ARG35, CBL, CBLB, PTPRA, SOS2, DYN2, WIPF2, IRS4) were identified. Adjustment of the quantity of digested protein injected into the mass spectrometer reveals that optimisation is required as high quantities of material led to a decrease in protein sequence coverage and the loss of some interacting proteins. This investigation should aid other researchers in performing tandem affinity purifications in general, and in particular, from low quantities of input material. PMID:24077984

  10. Initial characterization of Pf62, a novel protein of Plasmodium falciparum identified by immunoscreening.

    PubMed

    Moyano, Eva M; González, Luis Miguel; Montero, Estrella; Cuevas, Laureano; Perez-Pastrana, Esperanza; Santa-Maria, Ysmael; Benito, Agustín

    2009-06-01

    In order to find new antigens from Plasmodium falciparum, a complementary DNA (cDNA) library was constructed and screened. The study of expression library of P. falciparum was performed in an attempt to identify new antigens that could have potential relevance for the falciparum-malaria diagnosis and/or protection. Between the positive clones detected (ring erythrocyte surface antigen, merozoite erythrocyte surface antigen, RHOP H3, CSP, LSA), a new gene that correspond to a new protein (Pf62) was isolated and characterized. This antigen was useful for the diagnosis of malaria in enzyme-linked immunosorbent assay tests. The cDNA corresponding to this antigen and structure of the gene were characterized. Pf62 is a single copy gene that contains one exon. The Pf62 cDNA has an open reading frame of 1,599 nucleotides that code for a putative protein of 532 amino acids with a predicted molecular mass of 62 kDa. The polypeptide contains in the central section two regions of repeats of 21 and 19 amino acids, respectively. The localization of the Pf62 protein was performed by immunoblot, indirect immunofluorescence assay and immunoelectron microscopy. Pf62 is localized in the cytoplasm of the parasite and also on the surface of the infected erythrocyte. Serologic assays by using synthetic peptides designed from different antigenic regions of the Pf62 protein resulted in acceptable data of sensitivity and specificity in symptomatic malaria patients.

  11. Genome-Wide RNAi Screen Identifies Novel Host Proteins Required for Alphavirus Entry

    PubMed Central

    Taylor, Gwen M.; Kielian, Margaret

    2013-01-01

    The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ), a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy. PMID:24367265

  12. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites.

    PubMed

    Fang, Chun; Noguchi, Tamotsu; Yamana, Hayato

    2014-10-01

    Evolutionary conservation information included in position-specific scoring matrix (PSSM) has been widely adopted by sequence-based methods for identifying protein functional sites, because all functional sites, whether in ordered or disordered proteins, are found to be conserved at some extent. However, different functional sites have different conservation patterns, some of them are linear contextual, some of them are mingled with highly variable residues, and some others seem to be conserved independently. Every value in PSSMs is calculated independently of each other, without carrying the contextual information of residues in the sequence. Therefore, adopting the direct output of PSSM for prediction fails to consider the relationship between conservation patterns of residues and the distribution of conservation scores in PSSMs. In order to demonstrate the importance of combining PSSMs with the specific conservation patterns of functional sites for prediction, three different PSSM-based methods for identifying three kinds of functional sites have been analyzed. Results suggest that, different PSSM-based methods differ in their capability to identify different patterns of functional sites, and better combining PSSMs with the specific conservation patterns of residues would largely facilitate the prediction.

  13. Using phylogenomic patterns and gene ontology to identify proteins of importance in plant evolution.

    PubMed

    Cibrián-Jaramillo, Angélica; De la Torre-Bárcena, Jose E; Lee, Ernest K; Katari, Manpreet S; Little, Damon P; Stevenson, Dennis W; Martienssen, Rob; Coruzzi, Gloria M; DeSalle, Rob

    2010-07-12

    We use measures of congruence on a combined expressed sequenced tag genome phylogeny to identify proteins that have potential significance in the evolution of seed plants. Relevant proteins are identified based on the direction of partitioned branch and hidden support on the hypothesis obtained on a 16-species tree, constructed from 2,557 concatenated orthologous genes. We provide a general method for detecting genes or groups of genes that may be under selection in directions that are in agreement with the phylogenetic pattern. Gene partitioning methods and estimates of the degree and direction of support of individual gene partitions to the overall data set are used. Using this approach, we correlate positive branch support of specific genes for key branches in the seed plant phylogeny. In addition to basic metabolic functions, such as photosynthesis or hormones, genes involved in posttranscriptional regulation by small RNAs were significantly overrepresented in key nodes of the phylogeny of seed plants. Two genes in our matrix are of critical importance as they are involved in RNA-dependent regulation, essential during embryo and leaf development. These are Argonaute and the RNA-dependent RNA polymerase 6 found to be overrepresented in the angiosperm clade. We use these genes as examples of our phylogenomics approach and show that identifying partitions or genes in this way provides a platform to explain some of the more interesting organismal differences among species, and in particular, in the evolution of plants.

  14. A phenotypic assay to identify Chikungunya virus inhibitors targeting the nonstructural protein nsP2.

    PubMed

    Lucas-Hourani, Marianne; Lupan, Alexandru; Desprès, Philippe; Thoret, Sylviane; Pamlard, Olivier; Dubois, Joëlle; Guillou, Catherine; Tangy, Frédéric; Vidalain, Pierre-Olivier; Munier-Lehmann, Hélène

    2013-02-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen responsible for an acute infection of abrupt onset, characterized by high fever, polyarthralgia, myalgia, headaches, chills, and rash. In 2006, CHIKV was responsible for an epidemic outbreak of unprecedented magnitude in the Indian Ocean, stressing the need for therapeutic approaches. Since then, we have acquired a better understanding of CHIKV biology, but we are still missing active molecules against this reemerging pathogen. We recently reported that the nonstructural nsP2 protein of CHIKV induces a transcriptional shutoff that allows the virus to block cellular antiviral response. This was demonstrated using various luciferase-based reporter gene assays, including a trans-reporter system where Gal4 DNA binding domain is fused to Fos transcription factor. Here, we turned this assay into a high-throughput screening system to identify small molecules targeting nsP2-mediated shutoff. Among 3040 molecules tested, we identified one natural compound that partially blocks nsP2 activity and inhibits CHIKV replication in vitro. This proof of concept suggests that similar functional assays could be developed to target other viral proteins mediating a cellular shutoff and identify innovative therapeutic molecules.

  15. Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell.

    PubMed

    Soares, Micaela A R; Quina, Margarida J; Quinta-Ferreira, Rosa M

    2015-12-01

    This study aims to evaluate the capacity of a compost obtained by co-composting of industrial eggshell (CES) to immobilise lead (Pb) and zinc (Zn) in an acidic soil contaminated by mining activities. Mature compost without eggshell (CWES) and natural eggshell (ES) were also tested as soil amendments for comparison purposes. Three different application rates were used for each material, ensuring the same quantity in terms of neutralizing capacity. Incubation experiments were conducted under controlled conditions and CO2 emissions monitored for 94 days. The environmental availability of Pb and Zn in the amended soil was assessed and bioassays were performed at the end of the incubation period. When eggshells were present, the CES compost raised the soil pH to values higher than 6 and reduced the soil mobile fraction for both Pb and Zn, in more than 95%. Soil toxicity towards Vibrio fischeri was also suppressed and environmental risk decreased to "low level". However, the immobilisation in the acid insoluble soil component was significantly achieved only for Zn. In addition, regarding soil carbon dynamics the CO2-C emissions were enhanced, mainly in the case of the highest rate of amendment. Both first order-E and parallel first order models may adequately describe the kinetic data of CO2-C cumulative release. Without eggshells, the CWES compost revealed limited effect on heavy metals immobilisation, likely due to its small capacity to correct soil acidity, at lower application rates. Using solely eggshells, the ES waste had similar outcomes when compared with CES, but at the higher application rate, CO2 emissions were enhanced with the eggshell compost due to the contribution of biotic carbon present therein. Therefore, this study points out that CES is an effective liming material and may be used for in situ remediation of contaminated soil with Pb and Zn.

  16. The role of python eggshell permeability dynamics in a respiration-hydration trade-off.

    PubMed

    Stahlschmidt, Zachary R; Heulin, Benoit; DeNardo, Dale F

    2010-01-01

    Parental care is taxonomically widespread because it improves developmental conditions and thus fitness of offspring. Although relatively simplistic compared with parental behaviors of other taxa, python egg-brooding behavior exemplifies parental care because it mediates a trade-off between embryonic respiration and hydration. However, because egg brooding increases gas-exchange resistance between embryonic and nest environments and because female pythons do not adjust their brooding behavior in response to the increasing metabolic requirements of developing offspring, python egg brooding imposes hypoxic costs on embryos during the late stages of incubation. We conducted a series of experiments to determine whether eggshells coadapted with brooding behavior to minimize the negative effects of developmental hypoxia. We tested the hypotheses that python eggshells (1) increase permeability over time to accommodate increasing embryonic respiration and (2) exhibit permeability plasticity in response to chronic hypoxia. Over incubation, we serially measured the atomic and structural components of Children's python (Antaresia childreni) eggshells as well as in vivo and in vitro gas exchange across eggshells. In support of our first hypothesis, A. childreni eggshells exhibited a reduced fibrous layer, became more permeable, and facilitated greater gas exchange as incubation progressed. Our second hypothesis was not supported, as incubation O(2) concentration did not affect the shells' permeabilities to O(2) and H(2)O vapor. Our results suggest that python eggshell permeability changes during incubation but that the alterations over time are fixed and independent of environmental conditions. These findings are of broad evolutionary interest because they demonstrate that, even in relatively simple parental-care models, successful parent-offspring relationships depend on adjustments made by both the parent (i.e., egg-brooding behavioral shifts) and the offspring (i

  17. The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services

    PubMed Central

    2010-01-01

    Background Many complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services. Results Here we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications. Conclusion By uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org. PMID:20047655

  18. Bombyx mori nucleopolyhedrovirus ORF94, a novel late protein is identified to be a component of ODV structural protein.

    PubMed

    Liang, Guiting; Li, Guohui; Chen, Keping; Yao, Qin; Chen, Huiqing; Zhou, Yang

    2010-09-01

    Orf94 (Bm94) of Bombyx mori nucleopolyhedrovirus (BmNPV) potentially encodes 424-amino acids with a predicted molecular weight of 49.4 kDa, but its function remains unknown. Blast search results revealed that Bm94 homologues exist in 10 completely sequenced Lepidopteron NPVs with identities ranging from 95 to 37%. Results of our recent study showed that Bm94 was transcribed from 12 to 72 h and the corresponding protein was detected from 24 to 72 h post-infection. Furthermore, Western blot analysis revealed that Bm94 was present in occlusion-derived virus (ODV) and in total protein from BmNPV-infected BmN cells, but not in budded virus. Immunofluorescence analysis revealed that the protein located primarily in the cytoplasm and was also present in the nucleus in the later infection. In conclusion, these results together indicated that Bm94 was a late gene, which distributed both in the cytoplasm and in the nucleus, and was identified to be a component of BmNPV ODV.

  19. Virtual screening studies to identify novel inhibitors for Sigma F protein of Mycobacterium tuberculosis.

    PubMed

    Mustyala, Kiran Kumar; Malkhed, Vasavi; Chittireddy, Venkataramana Reddy; Vuruputuri, Uma

    2015-12-01

    Tuberculosis (TB) is one of the oldest threats to public health. TB is caused by the pathogen Mycobacterium tuberculosis (MTB). The Sigma factors are essential for the survival of MTB. The Sigma factor Sigma F (SigF) regulates genes expression under stress conditions. The SigF binds to RNA polymerase and forms a holoenzyme, which initiates the transcription of various genes. The Usfx, an anti-SigF protein, binds to SigF and alters the transcription initiation and gene expression. In the present work, virtual screening studies are taken up to identify the interactions between SigF and small molecular inhibitors which can inhibit the formation of holoenzyme. The studies reveal that ARG 104 and ARG 224 amino acid residues of SigF protein are forming important binding interactions with the ligands. The in silico ADME properties for the ligand data set are calculated to check the druggability of the molecules.

  20. Support vector machines for learning to identify the critical positions of a protein.

    PubMed

    Dubey, Anshul; Realff, Matthew J; Lee, Jay H; Bommarius, Andreas S

    2005-06-07

    A method for identifying the positions in the amino acid sequence, which are critical for the catalytic activity of a protein using support vector machines (SVMs) is introduced and analysed. SVMs are supported by an efficient learning algorithm and can utilize some prior knowledge about the structure of the problem. The amino acid sequences of the variants of a protein, created by inducing mutations, along with their fitness are required as input data by the method to predict its critical positions. To investigate the performance of this algorithm, variants of the beta-lactamase enzyme were created in silico using simulations of both mutagenesis and recombination protocols. Results from literature on beta-lactamase were used to test the accuracy of this method. It was also compared with the results from a simple search algorithm. The algorithm was also shown to be able to predict critical positions that can tolerate two different amino acids and retain function.

  1. A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans

    PubMed Central

    Rauthan, Manish; Pilon, Marc

    2015-01-01

    We previously showed that inhibition of the mevalonate pathway in C. elegans causes inhibition of protein prenylation, developmental arrest and lethality. We also showed that constitutive activation of the mitochondrial unfolded protein response, UPRmt, is an effective way for C. elegans to become resistant to the negative effects of mevalonate pathway inhibition. This was an important finding since statins, a drug class prescribed to lower cholesterol levels in patients, act by inhibiting the mevalonate pathway, and it is therefore possible that some of their undesirable side effects could be alleviated by activating the UPRmt. Here, we screened a chemical library and identified 4 compounds that specifically activated the UPRmt. One of these compounds, methacycline hydrochloride (a tetracycline antibiotic) also protected C. elegans and mammalian cells from statin toxicity. Methacycline hydrochloride and ethidium bromide, a known UPRmt activator, were also tested in mice: only ethidium bromide significantly activate the UPRmt in skeletal muscles. PMID:27123370

  2. Mechanical Properties and Vulcanization Characteristics of Styrene-Butadiene Rubber (sbr) Based Compounds Filled with Eggshell Powder as a Bio-Filler

    NASA Astrophysics Data System (ADS)

    Saeb, Mohammad Reza; Dakhel, Hadi Ramezani; Ghaffari, Akbar

    2008-08-01

    Egg shell is an ordered bioceramic composite with five different layers [1, 2]. In this study, the effect of using various types of eggshell powder including after and before hatching eggshell and boiled eggshell on the mechanical properties and vulcanization characteristics of SBR compounds has been investigated. The obtained results were compared with calcium carbonate filled compounds. Evaluation of mechanical properties exhibited that incorporation of eggshell increased almost all of the mechanical properties of the compounds. BET test demonstrated higher specific area of eggshell powders compare with calcium carbonate. Some of the observed results attributed to higher specific area of eggshell powder. However, there is no definitive reason for some other results at this time. Vulcanization characteristics of the compounds showed that incorporation of eggshell powder had no considerable effect on curing time. The results of this research showed that all kinds of eggshell powders can be used in SBR based compounds successfully.

  3. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  4. Ultrasonic eggshell thickness measurement for selection of layers.

    PubMed

    Kibala, Lucyna; Rozempolska-Rucinska, Iwona; Kasperek, Kornel; Zieba, Grzegorz; Lukaszewicz, Marek

    2015-10-01

    This study aimed to develop a methodology for using ultrasonic technology (USG) to record eggshell thickness for selection of layers. Genetic correlations between eggshell strength and its thickness have been reported to be around 0.8, making shell thickness a selection index candidate element. Applying ultrasonic devices to measure shell thickness leaves an egg intact for further handling. In this study, eggs from 2 purebred populations of Rhode Island White (RIW) and Rhode Island Red (RIR) hens were collected on a single day in the 33rd week of the farm laying calendar from 2,414 RIR and 4,525 RIW hens. Beginning from the large end of the egg, measurements were taken at 5 latitudes: 0º (USG0), 45º (USG45), 90º (USG90), 135º (USG135), and 180º (USG180). To estimate the repeatability of readings, measurements were repeated at each parallel on 3 meridians. Electronic micrometer measurement ( EMM: ) were taken with an electronic micrometer predominantly at the wider end of eggs from 2,397 RIR and 4,447 RIW hens. A multiple-trait statistical model fit the fixed effect of year-of-hatch × hatch-within-year, and random effects due to repeated measurements (except EMM) and an animal's additive genetic component. The shell was thinnest in the region where chicks break it upon hatching (USG0, USG45). Heritabilities of shell thickness in different regions of the shell ranged from 0.09 to 0.19 (EMM) in RIW and from 0.12 to 0.23 (EMM) in RIR and were highest for USG45 and USG0. Because the measurement repeatabilities were all above 0.90, our recommendation for balancing egg strength against hatching ease is to take a single measurement of USG45. Due to high positive genetic correlations between shell thickness in different regions of the shell its thickness in the pointed end region will be modified accordingly, in response to selection for USG45.

  5. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    NASA Astrophysics Data System (ADS)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  6. Beta atomic contacts: identifying critical specific contacts in protein binding interfaces.

    PubMed

    Liu, Qian; Kwoh, Chee Keong; Hoi, Steven C H

    2013-01-01

    Specific binding between proteins plays a crucial role in molecular functions and biological processes. Protein binding interfaces and their atomic contacts are typically defined by simple criteria, such as distance-based definitions that only use some threshold of spatial distance in previous studies. These definitions neglect the nearby atomic organization of contact atoms, and thus detect predominant contacts which are interrupted by other atoms. It is questionable whether such kinds of interrupted contacts are as important as other contacts in protein binding. To tackle this challenge, we propose a new definition called beta (β) atomic contacts. Our definition, founded on the β-skeletons in computational geometry, requires that there is no other atom in the contact spheres defined by two contact atoms; this sphere is similar to the van der Waals spheres of atoms. The statistical analysis on a large dataset shows that β contacts are only a small fraction of conventional distance-based contacts. To empirically quantify the importance of β contacts, we design βACV, an SVM classifier with β contacts as input, to classify homodimers from crystal packing. We found that our βACV is able to achieve the state-of-the-art classification performance superior to SVM classifiers with distance-based contacts as input. Our βACV also outperforms several existing methods when being evaluated on several datasets in previous works. The promising empirical performance suggests that β contacts can truly identify critical specific contacts in protein binding interfaces. β contacts thus provide a new model for more precise description of atomic organization in protein quaternary structures than distance-based contacts.

  7. A fibrinogen-related protein identified from hepatopancreas of crayfish is a potential pattern recognition receptor.

    PubMed

    Chen, Qiming; Bai, Suhua; Dong, Chaohua

    2016-09-01

    Fibrinogen-related protein (FREP) family is a large group of proteins containing fibrinogen-like (FBG) domain and plays multiple physiological roles in animals. However, their immune functions in crayfish are not fully explored. In the present study, a novel fibrinogen-like protein (designated as PcFBN1) was identified and characterized from hepatopancreas of red swamp crayfish Procambarus clarkii. The cDNA sequence of PcFBN1 contains an open reading frame (ORF) of 1353 bp encoding a protein of 450 amino acids. Sequence and structural analysis indicated that PcFBN1 contains an FBG domain in C-terminal and a putative signal peptide of 19 amino acids in N-terminal. Semi-quantitative PCR revealed that the main expression of PcFBN1 was observed in hepatopancreas and hemocyte. Temporal expression analysis exhibited that PcFBN1 expression could be significantly induced by heat-killed Aeromonas hydrophila. Tissue distribution and temporal change of PcFBN1 suggested that PcFBN1 may be involved in immune responses of red swamp crayfish. Recombinant PcFBN1 protein binds and agglutinates both gram-negative bacteria Escherichia coli and gram-positive bacteria Micrococcus lysodeikticus. Moreover, binding and agglutination is Ca(2+) dependent. Further analysis indicated that PcFBN1 recognizes some acetyl group-containing substance LPS and PGN. RNAi experiment revealed that PcFBN1 is required for bacterial clearance and survival from A. hydrophila infection. Reduction of PcFBN1 expression significantly decreased the survival and enhanced the number of A. hydrophila in the hemolymph. These results indicated that PcFBN1 plays an important role in the innate immunity of red swamp crayfish as a potential pattern recognition receptor.

  8. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas.

    PubMed

    Wu, Chih-Ching; Hsu, Chia-Wei; Chen, Chi-De; Yu, Chia-Jung; Chang, Kai-Ping; Tai, Dar-In; Liu, Hao-Ping; Su, Wen-Hui; Chang, Yu-Sun; Yu, Jau-Song

    2010-06-01

    Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6-137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.

  9. Double error shrinkage method for identifying protein binding sites observed by tiling arrays with limited replication

    PubMed Central

    Kim, Youngchul; Bekiranov, Stefan; Lee, Jae K.; Park, Taesung

    2009-01-01

    Motivation: ChIP–chip has been widely used for various genome-wide biological investigations. Given the small number of replicates (typically two to three) per biological sample, methods of analysis that control the variance are desirable but in short supply. We propose a double error shrinkage (DES) method by using moving average statistics based on local-pooled error estimates which effectively control both heterogeneous error variances and correlation structures of an extremely large number of individual probes on tiling arrays. Results: Applying DES to ChIP–chip tiling array study for discovering genome-wide protein-binding sites, we identified 8400 target regions that include highly likely TFIID binding sites. About 33% of these were well matched with the known transcription starting sites on the DBTSS library, while many other newly identified sites have a high chance to be real binding sites based on a high positive predictive value of DES. We also showed the superior performance of DES compared with other commonly used methods for detecting actual protein binding sites. Contact: tspark@snu.ac.kr; jaeklee@virginia.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19667080

  10. Prediction of Eggshell Ultrastructure via Some Non-destructive and Destructive Measurements in Fayoumi Breed.

    PubMed

    Radwan, Lamiaa M; Galal, A; Shemeis, A R

    2015-07-01

    Possibilities of predicting eggshell ultrastructure from direct non-destructive and destructive measurements were examined using 120 Fayoumi eggs collected from the flock at 45 weeks of age. The non-destructive measurements included weight, length and width of the egg. The destructive measurements were breaking strength and shell thickness. The eggshell ultrastructure traits involved the total thickness of eggshell layer, thickness of palisade layer, cone layer and total score. Prediction of total thickness of eggshell layer based on non-destructive measurements individually or simultaneously was not possible (R(2) = 0.01 to 0.16). The destructive measurements were far more accurate than the non-destructive in predicting total thickness of eggshell layer. Prediction based on breaking strength alone was more accurate (R(2) = 0.85) than that based on shell thickness alone (R(2) = 0.72). Adding shell thickness to breaking strength (the best predictor) increased the accuracy of prediction by 5%. The results obtained indicated that both non-destructive and destructive measurements were not useful in predicting the cone layer (R(2) not exceeded 18%). The maximum accuracy of prediction of total score (R(2) = 0.48) was obtained from prediction based on breaking strength alone. Combining shell thicknesses and breaking strength into one equation was no help in improving the accuracy of prediction.

  11. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    PubMed

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  12. Identifying native-like protein structures using physics-based potentials.

    PubMed

    Dominy, Brian N; Brooks, Charles L

    2002-01-15

    As the field of structural genomics matures, new methods will be required that can accurately and rapidly distinguish reliable structure predictions from those that are more dubious. We present a method based on the CHARMM gas phase implicit hydrogen force field in conjunction with a generalized Born implicit solvation term that allows one to make such discrimination. We begin by analyzing pairs of threaded structures from the EMBL database, and find that it is possible to identify the misfolded structures with over 90% accuracy. Further, we find that misfolded states are generally favored by the solvation term due to the mispairing of favorable intramolecular ionic contacts. We also examine 29 sets of 29 misfolded globin sequences from Levitt's "Decoys 'R' Us" database generated using a sequence homology-based method. Again, we find that discrimination is possible with approximately 90% accuracy. Also, even in these less distorted structures, mispairing of ionic contacts results in a more favorable solvation energy for misfolded states. This is also found to be the case for collapsed, partially folded conformations of CspA and protein G taken from folding free energy calculations. We also find that the inclusion of the generalized Born solvation term, in postprocess energy evaluation, improves the correlation between structural similarity and energy in the globin database. This significantly improves the reliability of the hypothesis that more energetically favorable structures are also more similar to the native conformation. Additionally, we examine seven extensive collections of misfolded structures created by Park and Levitt using a four-state reduced model also contained in the "Decoys 'R' Us" database. Results from these large databases confirm those obtained in the EMBL and misfolded globin databases concerning predictive accuracy, the energetic advantage of misfolded proteins regarding the solvation component, and the improved correlation between energy

  13. Alternate dissociation pathways identified in charge-reduced protein complex ions.

    PubMed

    Pagel, Kevin; Hyung, Suk-Joon; Ruotolo, Brandon T; Robinson, Carol V

    2010-06-15

    Tandem mass spectrometry (MS) of large protein complexes has proven to be capable of assessing the stoichiometry, connectivity, and structural details of multiprotein assemblies. While the utility of tandem MS is without question, a deeper understanding of the mechanism of protein complex dissociation will undoubtedly drive the technology into new areas of enhanced utility and information content. We present here the systematic analysis of the charge state dependent decay of the noncovalently associated complex of human transthyretin, generated by collision-induced dissociation (CID). A crown ether based charge reduction approach was applied to generate intact transthyretin tetramers with charge states ranging from 15+ to 7+. These nine charge states were subsequently analyzed by means of tandem MS and ion mobility spectrometry. Three different charge-dependent mechanistic regimes were identified: (1) common asymmetric dissociation involving ejection of unfolded monomers, (2) expulsion of folded monomers from the intact tetramer, and (3) release of C-terminal peptide fragments from the intact complex. Taken together, the results presented highlight the potential of charge state modulation as a method for directing the course of gas-phase dissociation and unfolding of protein complexes.

  14. Identifying protein kinase-specific effectors of the osmostress response in yeast.

    PubMed

    Romanov, Natalie; Hollenstein, David Maria; Janschitz, Marion; Ammerer, Gustav; Anrather, Dorothea; Reiter, Wolfgang

    2017-03-07

    The budding yeast Saccharomyces cerevisiae reacts to increased external osmolarity by modifying many cellular processes. Adaptive signaling relies primarily on the high-osmolarity glycerol (HOG) pathway, which is closely related to the mammalian p38 mitogen-activated protein kinase (MAPK) pathway in core architecture. To identify target proteins of the MAPK Hog1, we designed a mass spectrometry-based high-throughput experiment to measure the impact of Hog1 activation or inhibition on the Scerevisiae phosphoproteome. In addition, we analyzed how deletion of RCK2, which encodes a known effector protein kinase target of Hog1, modulated osmotic stress-induced phosphorylation. Our results not only provide an overview of the diversity of cellular functions that are directly and indirectly affected by the activity of the HOG pathway but also enabled an assessment of the Hog1-independent events that occur under osmotic stress conditions. We extended the number of putative Hog1 direct targets by analyzing the modulation of motifs consisting of serine or threonine followed by a proline (S/T-P motif) and subsequently validated these with an in vivo interaction assay. Rck2 appears to act as a central hub for many Hog1-mediated secondary phosphorylation events. This study clarifies many of the direct and indirect effects of HOG signaling and its stress-adaptive functions.

  15. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas.

    PubMed

    Kim, Hyobi; Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak; Myeong, Donghoon; Chang, Byungjoon; Choe, Nong-Hoon

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry.

  16. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas

    PubMed Central

    Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry. PMID:27499670

  17. Thiolated eggshell membranes sorb and speciate inorganic selenium.

    PubMed

    Yang, Ting; Chen, Ming-Li; Hu, Xian-Wei; Wang, Zhao-Wen; Wang, Jian-Hua; Dasgupta, Purnendu K

    2011-01-07

    Eggshell membranes (ESMs) provide a unique, disulfide bond-rich surface. Thioglycolate reduction was used to generate thiol (-SH) groups on the ESM surface by S-S bond cleavage. The thiol-bearing ESMs (TESMs) were characterized by scanning electron microscopy and Raman spectroscopy. The fibrous network structure of the ESM is retained in the TESMs. TESMs adsorb both Se(IV) and Se(VI) but by different mechanisms: Se(VI) is retained reversibly, possibly via ionic interactions, while Se(IV) is reduced to Se(0) and deposited. We thus demonstrate speciation of selenium species, by using samples (a) as such and after prior oxidation to Se(VI), (b) preconcentration on a TESM microcolumn, (c) elution by 0.5 M HNO(3) that only elutes Se(VI) and (d) detection by graphite furnace atomic absorption spectrometry (GFAAS). The Se(IV) amount is determined by difference. For a 1.0 mL sample, the enrichment factor was 17.2, the S/N = 3 detection limit was 0.06 μg L(-1) and the precision was 3.3% at 0.50 μg L(-1). The linear range was 0.25-2.50 μg L(-1). The procedure was validated by analyzing selenium in certified reference materials of human hair (GBW 09101) and rice (GBW 10010). We further demonstrate utility by speciation of inorganic selenium in a series of water samples.

  18. Virtual Screening and Experimental Validation Identify Novel Inhibitors of the Plasmodium falciparum Atg8-Atg3 Protein-Protein Interaction.

    PubMed

    Hain, Adelaide U P; Miller, Alexia S; Levitskaya, Jelena; Bosch, Jürgen

    2016-04-19

    New therapies are needed against malaria, a parasitic infection caused by Plasmodium falciparum, as drug resistance emerges against the current treatment, artemisinin. We previously characterized the Atg8-Atg3 protein-protein interaction (PPI), which is essential for autophagy and parasite survival. Herein we illustrate the use of virtual library screening to selectively block the PPI in the parasite without inhibiting the homologous interaction in humans by targeting the A-loop of PfAtg8. This A-loop is important for Atg3 binding in Plasmodium, but is absent from the human Atg8 homologues. In this proof-of-concept study, we demonstrate a shift in lipidation state of PfAtg8 and inhibition of P. falciparum growth in both blood- and liver-stage cultures upon drug treatment. Our results illustrate how in silico screening and structure-aided drug design against a PPI can be used to identify new hits for drug development. Additionally, as we targeted a region of Atg8 that is conserved within apicomplexans, we predict that our small molecule will have cross-reactivity against other disease-causing apicomplexans, such as Toxoplasma, Cryptosporidium, Theileria, Neospora, Eimeria, and Babesia.

  19. Chemical Screens Identify Drugs that Enhance or Mitigate Cellular Responses to Antibody-Toxin Fusion Proteins

    PubMed Central

    Guha, Rajarshi; Simon, Nathan; Pasetto, Matteo; Keller, Jonathan; Huang, Manjie; Angelus, Evan; Pastan, Ira; Ferrer, Marc; FitzGerald, David J.; Thomas, Craig J.

    2016-01-01

    The intersection of small molecular weight drugs and antibody-based therapeutics is rarely studied in large scale. Both types of agents are currently part of the cancer armamentarium. However, very little is known about how to combine them in optimal ways. Immunotoxins are antibody-toxin gene fusion proteins engineered to target cancer cells via antibody binding to surface antigens. For fusion proteins derived from Pseudomonas exotoxin (PE), potency relies on the enzymatic domain of the toxin which catalyzes the ADP-ribosylation of EF2 causing inhibition of protein synthesis leading to cell death. Candidate immunotoxins have demonstrated clear value in clinical trials but generally have not been curative as single agents. Therefore we undertook three screens to discover effective combinations that could act synergistically. From the MIPE-3 library of compounds we identified various enhancers of immunotoxin action and at least one major class of inhibitor. Follow-up experiments confirmed the screening data and suggested that immunotoxins when administered with everolimus or nilotinib exhibit favorable combinatory activity and would be candidates for preclinical development. Mechanistic studies revealed that everolimus-immunotoxin combinations acted synergistically on elements of the protein synthetic machinery, including S61 kinase and 4E-BP1 of the mTORC1 pathway. Conversely, PARP inhibitors antagonized immunotoxins and also blocked the toxicity due to native ADP-ribosylating toxins. Thus, our goal of investigating a chemical library was justified based on the identification of several approved compounds that could be developed preclinically as ‘enhancers’ and at least one class of mitigator to be avoided. PMID:27556570

  20. A novel protein tyrosine kinase Tec identified in lamprey, Lampetra japonica.

    PubMed

    Li, Ranran; Su, Peng; Liu, Chang; Zhang, Qiong; Zhu, Ting; Pang, Yue; Liu, Xin; Li, Qingwei

    2015-08-01

    Protein tyrosine kinase Tec, a kind of non-receptor tyrosine kinase, is primarily found to be expressed in T cells, B cells, hematopoietic cells, and liver cells as a cytoplasmic protein. Tec has been proved to be a critical modulator of T cell receptor signaling pathway. In the present study, a homolog of Tec was identified in the lamprey, Lampetra japonica. The full-length Tec cDNA of L. japonica (Lja-Tec) contains a 1923 bp open reading frame that encodes a 641-amino acid protein. The multi-alignment of the deduced amino acid sequence of Lja-Tec with typical vertebrate Tecs showed that it possesses all conserved domains of the Tec family proteins, indicating that an ortholog of Tec exists in the extant jawless vertebrate. In the phylogenetic tree that was reconstructed with 24 homologs of jawless and jawed vertebrates, the Tecs from lampreys and hagfish were clustered as a single clade. The genetic distance between the outgroup and agnathan Tecs' group is closer than that between outgroup and gnathostome Tecs' group, indicating that its origin was far earlier than any of the jawed vertebrates. The mRNA levels of Lja-Tec in lymphocyte-like cells and gills were detected by real-time quantitative polymerase chain reaction. Results showed that it was significantly upregulated under stimulation with mixed pathogens. This result was further confirmed by western blot analysis. All these results indicated that Lja-Tec plays an important role in immune response. Our data will provide a reference for the further study of lamprey Tec and its immunological function in jawless vertebrates.

  1. Altered Protein S-Glutathionylation Identifies a Potential Mechanism of Resistance to Acetaminophen-Induced Hepatotoxicity

    PubMed Central

    McGarry, David J.; Chakravarty, Probir; Wolf, C. Roland

    2015-01-01

    Acetaminophen (APAP) is the most commonly used over-the-counter analgesic. However, hepatotoxicity induced by APAP is a major clinical issue, and the factors that define sensitivity to APAP remain unclear. We have previously demonstrated that mice nulled for glutathione S-transferase Pi (GSTP) are resistant to APAP-induced hepatotoxicity. This study aims to exploit this difference to delineate pathways of importance in APAP toxicity. We used mice nulled for GSTP and heme oxygenase-1 oxidative stress reporter mice, together with a novel nanoflow liquid chromatography–tandem mass spectrometry methodology to investigate the role of oxidative stress, cell signaling, and protein S-glutathionylation in APAP hepatotoxicity. We provide evidence that the sensitivity difference between wild-type and Gstp1/2−/− mice is unrelated to the ability of APAP to induce oxidative stress, despite observing significant increases in c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation in wild-type mice. The major difference in response to APAP was in the levels of protein S-glutathionylation: Gstp1/2−/− mice exhibited a significant increase in the number of S-glutathionylated proteins compared with wild-type animals. Remarkably, these S-glutathionylated proteins are involved in oxidative phosphorylation, respiratory complexes, drug metabolism, and mitochondrial apoptosis. Furthermore, we found that S-glutathionylation of the rate-limiting glutathione-synthesizing enzyme, glutamate cysteine ligase, was markedly increased in Gstp1/2−/− mice in response to APAP. The data demonstrate that S-glutathionylation provides an adaptive response to APAP and, as a consequence, suggest that this is an important determinant in APAP hepatotoxicity. This work identifies potential novel avenues associated with cell survival for the treatment of chemical-induced hepatotoxicity. PMID:26311813

  2. Quantitative Proteomics Identifies Vasopressin-Responsive Nuclear Proteins in Collecting Duct Cells

    PubMed Central

    Schenk, Laura K.; Bolger, Steven J.; Luginbuhl, Kelli; Gonzales, Patricia A.; Rinschen, Markus M.; Yu, Ming-Jiun; Hoffert, Jason D.; Pisitkun, Trairak

    2012-01-01

    Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nuclear proteins and identified significant changes in the abundance of 65, including previously established targets of vasopressin signaling in the collecting duct. Vasopressin-induced changes in the abundance of the transcription factors JunB, Elf3, Gatad2b, and Hmbox1; transcriptional co-regulators Ctnnb1 (β-catenin) and Crebbp; subunits of the Mediator complex; E3 ubiquitin ligase Nedd4; nuclear transport regulator RanGap1; and several proteins associated with tight junctions and adherens junctions. Bioinformatic analysis showed that many of the quantified transcription factors have putative binding sites in the 5′-flanking regions of genes coding for the channel proteins Aqp2, Aqp3, Scnn1b (ENaCβ), and Scnn1g (ENaCγ), which are known targets of vasopressin. Immunoblotting demonstrated that the increase in β-catenin in nuclear fractions was accompanied by an even larger increase in its phosphorylated form (pSer552). The findings provide a new online database resource for nuclear proteomics (http://helixweb.nih.gov/ESBL/Database/mNPD/) and generate new hypotheses regarding vasopressin-mediated transcriptional regulation in the collecting duct. PMID:22440904

  3. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    PubMed

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  4. The use of functional chemical-protein associations to identify multi-pathway renoprotectants.

    PubMed

    Xu, Jia; Meng, Kexin; Zhang, Rui; Yang, He; Liao, Chang; Zhu, Wenliang; Jiao, Jundong

    2014-01-01

    Typically, most nephropathies can be categorized as complex human diseases in which the cumulative effect of multiple minor genes, combined with environmental and lifestyle factors, determines the disease phenotype. Thus, multi-target drugs would be more likely to facilitate comprehensive renoprotection than single-target agents. In this study, functional chemical-protein association analysis was performed to retrieve multi-target drugs of high pathway wideness from the STITCH 3.1 database. Pathway wideness of a drug evaluated the efficiency of regulation of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in quantity. We identified nine experimentally validated renoprotectants that exerted remarkable impact on KEGG pathways by targeting a limited number of proteins. We selected curcumin as an illustrative compound to display the advantage of multi-pathway drugs on renoprotection. We compared curcumin with hemin, an agonist of heme oxygenase-1 (HO-1), which significantly affects only one KEGG pathway, porphyrin and chlorophyll metabolism (adjusted p = 1.5×10-5). At the same concentration (10 µM), both curcumin and hemin equivalently mitigated oxidative stress in H2O2-treated glomerular mesangial cells. The benefit of using hemin was derived from its agonistic effect on HO-1, providing relief from oxidative stress. Selective inhibition of HO-1 completely blocked the action of hemin but not that of curcumin, suggesting simultaneous multi-pathway intervention by curcumin. Curcumin also increased cellular autophagy levels, enhancing its protective effect; however, hemin had no effects. Based on the fact that the dysregulation of multiple pathways is implicated in the etiology of complex diseases, we proposed a feasible method for identifying multi-pathway drugs from compounds with validated targets. Our efforts will help identify multi-pathway agents capable of providing comprehensive protection against renal injuries.

  5. A novel method to identify and characterise peptide mimotopes of heat shock protein 70-associated antigens.

    PubMed

    Arnaiz, Blanca; Madrigal-Estebas, Laura; Todryk, Stephen; James, Tharappel C; Doherty, Derek G; Bond, Ursula

    2006-04-08

    The heat shock protein, Hsp70, has been shown to play an important role in tumour immunity. Vaccination with Hsp70-peptide complexes (Hsp70-PCs), isolated from autologous tumour cells, can induce protective immune responses. We have developed a novel method to identify synthetic mimic peptides of Hsp70-PCs and to test their ability to activate T-cells. Peptides (referred to as "recognisers") that bind to Hsp70-PCs from the human breast carcinoma cell line, MDA-MB-231, were identified by bio-panning a random peptide M13 phage display library. Synthetic recogniser peptides were subsequently used as bait in a reverse bio-panning experiment to identify potential Hsp70-PC mimic peptides. The ability of the recogniser and mimic peptides to prime human lymphocyte responses against tumour cell antigens was tested by stimulating lymphocytes with autologous peptide-loaded monocyte-derived dendritic cells (DCs). Priming and subsequent stimulation with either the recogniser or mimic peptide resulted in interferon-gamma (IFN-gamma) secretion by the lymphocytes. Furthermore, DCs loaded with Hsp70, Hsp70-PC or the recogniser or the mimic peptide primed the lymphocytes to respond to soluble extracts from breast cells. These results highlight the potential application of synthetic peptide-mimics of Hsp70-PCs, as modulators of the immune response against tumours.

  6. A rational approach to identify inhibitors of Mycobacterium tuberculosis enoyl acyl carrier protein reductase.

    PubMed

    Chhabria, Mahesh T; Parmar, Kailash B; Brahmkshatriya, Pathik S

    2013-01-01

    Mycobacterial enoyl acyl carrier protein (ACP) reductase is an attractive target for focused design of novel antitubercular agents. Structural information available on enoyl-ACP reductase in complex with different ligands was used to generate receptor-based pharmacophore model in Discovery Studio (DS). In parallel, pharmacophore models were also generated using ligand-based approach (HypoGen module in DS). Statistically significant models were generated (r(2) = 0.85) which were found to be predictive as indicated from internal and external cross-validations. The model was used as a query tool to search Zinc and Maybridge databases to identify lead compounds and predict their activity in silico. Database searching retrieved many potential lead compounds having better estimated IC50 values than the training set compounds. These compounds were then evaluated for their drug-likeliness and pharmacokinetic properties using DS. Few selected compounds were then docked into the crystal structure of enoyl-ACP reductase using Dock 6.5. Most compounds were found to have high score values, which was found to be consistent with the results from pharmacophore mapping. Additionally, molecular docking provided useful insights into the nature of binding of the identified hit molecules. In summary, we show a useful strategy employing ligand- and structure-based approaches (pharmacophore modeling coupled with molecular docking) to identify new enoyl- ACP reductase inhibitors for antimycobacterial chemotherapy.

  7. Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper.

    PubMed

    Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John

    2009-12-01

    The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper.

  8. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  9. Ultrastructure and characteristics of eggshells of the olive ridley turtle (Lepidochelys olivacea) from Gahirmatha, India.

    PubMed

    Sahoo, G; Mohapatra, B K; Sahoo, R K; Mohanty-Hejmadi, P

    1996-01-01

    The structure of a chelonian eggshell is of prime importance for the developing embryo. It acts as a protective covering as well as mediator in the exchange of heat and water. The fresh eggshell of the olive ridley (Lepidochelys olivacea) turtle displays a variety of structural forms in their aragonite framework. Its netted substrate, loose texture and poorly organised crystallites favour the easy exchange of air and water during its development. The shell consists mostly of calcium in carbonate form and K, Mg, Fe, Ni, Pb, Zn, Co, Cr, Cu, Mn and Cd in traces. Ba and Sr in traces are also a feature of the thermal analysis graph. Phosphorous was not detected in the shell and its absence eliminates an earlier suggestion of it being a key factor in the development of aragonite crystals in the inorganic structure of marine turtle eggshells. Its combustion characteristics, which have not been previously reported, are recorded.

  10. Hierarchical assembly of the eggshell and permeability barrier in C. elegans

    PubMed Central

    Olson, Sara K.; Greenan, Garrett; Desai, Arshad; Müller-Reichert, Thomas

    2012-01-01

    In metazoans, fertilization triggers the assembly of an extracellular coat that constitutes the interface between the embryo and its environment. In nematodes, this coat is the eggshell, which provides mechanical rigidity, prevents polyspermy, and is impermeable to small molecules. Using immunoelectron microscopy, we found that the Caenorhabditis elegans eggshell was composed of an outer vitelline layer, a middle chitin layer, and an inner layer containing chondroitin proteoglycans. The switch between the chitin and proteoglycan layers was achieved by internalization of chitin synthase coincident with exocytosis of proteoglycan-containing cortical granules. Inner layer assembly did not make the zygote impermeable as previously proposed. Instead, correlative light and electron microscopy demonstrated that the permeability barrier was a distinct envelope that formed in a separate step that required fatty acid synthesis, the sugar-modifying enzyme PERM-1, and the acyl chain transfer enzyme DGTR-1. These findings delineate the hierarchy of eggshell assembly and define key molecular mechanisms at each step. PMID:22908315

  11. The evolution of host-specific variation in cuckoo eggshell strength.

    PubMed

    Spottiswoode, C N

    2010-08-01

    Cuckoo eggs are renowned for their mimicry of different host species, leading to the evolution of host-specific races (or 'gentes') defined by egg colour and pattern. This study aims to test the prediction that another property of parasitic eggs, namely shell strength, might also have experienced divergent selection within cuckoo species. Host races of the common cuckoo Cuculus canorus encountering stronger host rejection have thicker-shelled eggs than those parasitising less discriminating species, as expected if egg strengthening discourages host rejection. Moreover, in the diederik cuckoo Chrysococcyx caprius, eggshell thickness was correlated across cuckoo gentes and host species, as expected if eggshell strength has been involved in coevolutionary interactions. This is the first report of host-specific differences in cuckoo egg properties other than colour and pattern and lends correlational support to the hypothesis that the strong eggshells of brood parasites are an adaptation to reduce host rejection.

  12. Biosorption of malachite green by eggshells: mechanism identification and process optimization.

    PubMed

    Podstawczyk, Daria; Witek-Krowiak, Anna; Chojnacka, Katarzyna; Sadowski, Zygmunt

    2014-05-01

    In the present work, eggshells were used to remove a dye (malachite green) from wastewater. The study was focused on identification and describing the binding mechanism of the dye by eggshells in a biosorption process optimized by Response Surface Methodology based on the Box-Behnken Design. The mechanism of biosorption was determined by characterization of the biosorbent before and after biosorption using scanning electron microscopy, X-ray diffraction analysis, the Brunauer-Emmett-Teller isotherm method, Fourier transform infrared spectroscopy. The second-order polynomial equation and 3D response surface plots were used to quantitatively determine the relationships between dependent and independent variables. The obtained results suggested the mechanism of wastewater treatment that included physical adsorption, alkaline fading phenomenon and microprecipitation. The results of the present study showed that waste eggshells have the potential to be used as an inexpensive but effective biosorbent useful in wastewater treatment.

  13. First Experimental Evidence for the Transmission of Chlamydia psittaci in Poultry through Eggshell Penetration.

    PubMed

    Ahmed, B; De Boeck, C; Dumont, A; Cox, E; De Reu, K; Vanrompay, D

    2017-02-01

    Eggshell penetration by pathogens is considered a potential route for their transmission in poultry flocks. Additionally, in case of zoonotic pathogens, contact with infected eggs or their consumption can result in human infection. Chlamydia psittaci is a zoonotic bacterium that causes a respiratory disease in poultry and humans. In this study, we provide an experimental evidence for eggshell penetration by C. psittaci. Additionally, we show that after eggshell penetration, C. psittaci could eventually infect the growing embryo. Our findings portend the potential of horizontal trans-shell transmission as a possible route for the spread of C. psittaci infection in poultry flocks. Considering that horizontal transmission of pathogens via eggs mainly occurs in hatcheries and hatching cabinets, we suggest the latter as critical control points in the transmission of C. psittaci to hatching chicks and broilers, as well as to the hatchery workers and consumers of table eggs.

  14. Habitat characteristics and eggshell distribution of the salt marsh mosquito, Aedes vigilax, in marshes in subtropical Eastern Australia.

    PubMed

    Dale, Pat E R; Knight, Jon; Kay, Brian H; Chapman, Heather; Ritchie, Scott A; Brown, Michael D

    2008-01-01

    Research at 10 locations in coastal subtropical Queensland, Australia, has shown that salt marshes contained heterogeneous distributions of eggshells of the pest and vector mosquito Aedes vigilax (Skuse) (Diptera:Culicidae). The eggshell distribution was related to specific vegetation assemblages, with a mix of the grass, Sporobolus virginicus (L.) Kunth (Poales: Poaceae), and the beaded glasswort, Sarcocornia quinqueflora (Bunge ex (Ung.-Stern) A.J. Scott (Caryophyllales: Chenopodiaceae), as significantly higher in eggshells than any other vegetation. There were also high numbers in the mix of S. virginicus with the arrowgrass, Triglochin striata Ruiz & Pavón (Alismatales: Juncaginaceae). Both mixed types are found in relatively wetter areas, despite very few eggshells being found generally in the low marsh. Most sites contained S. virginicus and eggshell locations were variable for this species alone. This was probably related to its life form variability in response to salinity and location on the marsh. Location on the marsh was important for eggshell distribution with most eggshells around the edges of pools and depressions, followed by, but to a significantly lesser extent, the marsh surface. Eggshells were fewest in the low marsh. Partition analysis resulted in a tree that simplified and summarised the factors important for eggshell distribution confirming the individual analyses. The potential effects of climate, sea level and other change are also briefly discussed in the context of likely changes to land cover and relative location on the marsh. For example, increased sea level may lead to low marsh conditions extending into higher marsh area with implications for oviposition and numbers of eggshells.

  15. Potential ecotoxicological significance of elevated concentrations of strontium in eggshells of passerine birds

    USGS Publications Warehouse

    Mora, Miguel A.; Taylor, Robert J.; Brattin, Bryan L.

    2007-01-01

    We investigated the occurrence and potential ecotoxicological significance of elevated concentrations of strontium (Sr) in eggshells of nine passerine birds from four regions in Arizona. Concentrations of Sr in eggshells ranged from 70 to 1360 µg g−1 dry weight (overall mean  =  684 ± 345 SD µg g−1 dw) for the four regions. 23% of the eggshells had Sr concentrations greater than 1000 µg g−1 dw. To our knowledge, these are among the highest levels of Sr that have been reported in bird eggshells in North America. Of the nine species, Brown-headed Cowbirds (Molothrus ater) had the greatest concentrations of Sr. There was a significant positive correlation between Sr and calcium (Ca), and between barium (Ba) and Ca. Ca, Sr, and Ba interact with each other and can exert similar chemical and pharmacological effects. Mean (n ≥ 3) eggshell∶egg ratios for Sr varied with species and ranged from 6.1∶1 to 40.2∶1; ratios for individual eggs reached 92.7∶1. Mean Sr/Ca values ranged from 1.3 × 10−3 to 3.0 × 10−3 and mean eggshell thickness ranged from 83 ± 6 to 120 ± 9 µm for all species. Eggshell thickness was not significantly correlated with Sr for any species but tended to increase with Sr concentrations. We postulate that high concentrations of Sr in the shell could affect later-stage embryos by possible interference with Ca metabolism and bone growth, resulting in reduced hatching success and potential minor beak deformities.

  16. Nest Bacterial Environment Affects Microbiome of Hoopoe Eggshells, but Not That of the Uropygial Secretion.

    PubMed

    Martínez-García, Ángela; Martín-Vivaldi, Manuel; Rodríguez-Ruano, Sonia M; Peralta-Sánchez, Juan Manuel; Valdivia, Eva; Soler, Juan J

    2016-01-01

    The study of associations between symbiotic bacterial communities of hosts and those of surrounding environments would help to understand how bacterial assemblages are acquired, and how they are transmitted from one to another location (i.e. symbiotic bacteria acquisition by hosts). Hoopoes (Upupa epops) smear their eggshells with uropygial secretion (oily secretion produced in their uropygial gland) that harbors antibiotic producing bacteria. Trying to elucidate a possible role of nest material and cloaca microbiota in determining the bacterial community of the uropygial gland and the eggshells of hoopoes, we characterized bacterial communities of nest material, cloaca, uropygial gland and eggshells by the ARISA fingerprinting. Further, by adding material with scarce bacteria and antimicrobial properties, we manipulated the bacterial community of nest material and thus tested experimentally its effects on the microbiomes of the uropygial secretion and of the eggshells. The experiment did not influence the microbiome of the uropygial secretion of females, but affected the community established on eggshells. This is the first experimental evidence indicating that nest material influences the bacterial community of the eggshells and, therefore, probability of embryo infection. Some of the bacterial strains detected in the secretion were also in the bacterial communities of the nest material and of cloaca, but their occurrence within nests was not associated, which suggests that bacterial environments of nest material and cloaca are not sources of symbiotic bacteria for the gland. These results do not support a role of nest environments of hoopoes as reservoirs of symbiotic bacteria. We discuss possible scenarios explaining bacterial acquisition by hoopoes that should be further explored.

  17. Penguin eggshell membranes reflect homogeneity of mercury in the marine food web surrounding the Antarctic Peninsula.

    PubMed

    Brasso, Rebecka L; Polito, Michael J; Lynch, Heather J; Naveen, R; Emslie, Steven D

    2012-11-15

    Remote regions such as the Antarctic have become increasingly important for investigations into far-reaching anthropogenic impacts on the environment, most recently in regard to the global mercury cycle. Spatial patterns of mercury availability in four regions of the Antarctic Peninsula were investigated using three species of sympatrically breeding Pygoscelis penguins as biomonitors. Eggshells with intact membranes from Adélie, Gentoo, and Chinstrap penguins were collected at 24 breeding colonies in the South Orkney Islands, South Shetland Islands, eastern Antarctic Peninsula, and western Antarctic Peninsula during the 2006/2007 austral summer. In addition, we compared eggshell membrane mercury concentrations with eggshell stable isotope values (δ(15)N and δ(13)C) to determine if species-specific trophic or foraging habitat preferences influenced female mercury exposure prior to breeding. With few exceptions, mercury concentrations were found to be fairly homogeneous throughout the Antarctic Peninsula suggesting little spatial variation in the risk of exposure to dietary mercury in this food web. Mercury concentrations in Gentoo and Adélie penguins were similar while Chinstrap penguins tended to have higher eggshell membrane mercury concentrations than their congeners. However, inter and intra-specific differences in eggshell membrane mercury concentration were not related to eggshell δ(15)N or δ(13)C values, a likely result of all three species foraging at similar trophic positions. The lack of regional-scale differences in mercury availability in this marine ecosystem may be a reflection of generally uniform atmospheric deposition and upwelling of regionally homogeneous deep water rather than from geographically distinct point sources.

  18. Nest Bacterial Environment Affects Microbiome of Hoopoe Eggshells, but Not That of the Uropygial Secretion

    PubMed Central

    Martínez-García, Ángela; Martín-Vivaldi, Manuel; Rodríguez-Ruano, Sonia M.; Peralta-Sánchez, Juan Manuel; Valdivia, Eva; Soler, Juan J.

    2016-01-01

    The study of associations between symbiotic bacterial communities of hosts and those of surrounding environments would help to understand how bacterial assemblages are acquired, and how they are transmitted from one to another location (i.e. symbiotic bacteria acquisition by hosts). Hoopoes (Upupa epops) smear their eggshells with uropygial secretion (oily secretion produced in their uropygial gland) that harbors antibiotic producing bacteria. Trying to elucidate a possible role of nest material and cloaca microbiota in determining the bacterial community of the uropygial gland and the eggshells of hoopoes, we characterized bacterial communities of nest material, cloaca, uropygial gland and eggshells by the ARISA fingerprinting. Further, by adding material with scarce bacteria and antimicrobial properties, we manipulated the bacterial community of nest material and thus tested experimentally its effects on the microbiomes of the uropygial secretion and of the eggshells. The experiment did not influence the microbiome of the uropygial secretion of females, but affected the community established on eggshells. This is the first experimental evidence indicating that nest material influences the bacterial community of the eggshells and, therefore, probability of embryo infection. Some of the bacterial strains detected in the secretion were also in the bacterial communities of the nest material and of cloaca, but their occurrence within nests was not associated, which suggests that bacterial environments of nest material and cloaca are not sources of symbiotic bacteria for the gland. These results do not support a role of nest environments of hoopoes as reservoirs of symbiotic bacteria. We discuss possible scenarios explaining bacterial acquisition by hoopoes that should be further explored. PMID:27409772

  19. Clumped isotope paleothermometry of eggshells as an indicator of vertebrate endothermy

    NASA Astrophysics Data System (ADS)

    Canavan, R. R.; Field, D. J.; Therrien, F.; Zelenitsky, D.; Affek, H. P.

    2014-12-01

    Isotopic analyses of the calcite or aragonite shells of aquatic organisms are often used in the study of the environmental conditions in which they grow; however, this approach is less straightforward in the terrestrial realm, where environments may be more heterogeneous. In such terrestrial localities, the bioapatite of vertebrate teeth comprises the typical archival material for isotopic analyses. The calcitic eggshells of birds and other reptiles may provide suitable material for isotopic analyses that are aimed at studying their physiology and ecology. Here we apply a novel thermometer, carbonate clumped isotopes (Δ47), to test for endothermy in extinct non-avian dinosaurs in the context provided by eggs of modern reptiles and birds. These Δ47-derived temperatures should reflect the temperature of shell formation, which in endothermic animals such as birds should represent the mother's internal body temperature. In ectothermic animals, the same is true although their body temperatures are more affected by the external environment and thus Δ47 temperatures could more accurately describe local environmental temperatures during eggshell formation. Fossil eggshells represent appropriate material for reconstructing internal body temperatures of extinct non-avian dinosaurs since they mineralized within the mother's body, and fragments of eggshell are commonly recovered from dinosaur-bearing fossil deposits. The dimensions of these fragments provide sufficient material for the relatively large sample required for clumped isotope analysis (~20mg). Fossil eggshell samples from several taxa of Late Cretaceous non-avian dinosaurs were analyzed using Δ47 paleothermometry. Textural inspection was used as a first test for diagenetic alteration of the original calcite, and histological indicators were used for broad taxonomic identifications. Preliminary results of Δ47-derived body temperature estimates from eggshells are consistent with previous body temperatures

  20. Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus.

    PubMed Central

    Chang, G J; Cropp, B C; Kinney, R M; Trent, D W; Gubler, D J

    1995-01-01

    The evolution of yellow fever virus over 67 years was investigated by comparing the nucleotide sequences of the envelope (E) protein genes of 20 viruses isolated in Africa, the Caribbean, and South America. Uniformly weighted parsimony algorithm analysis defined two major evolutionary yellow fever virus lineages designated E genotypes I and II. E genotype I contained viruses isolated from East and Central Africa. E genotype II viruses were divided into two sublineages: IIA viruses from West Africa and IIB viruses from America, except for a 1979 virus isolated from Trinidad (TRINID79A). Unique signature patterns were identified at 111 nucleotide and 12 amino acid positions within the yellow fever virus E gene by signature pattern analysis. Yellow fever viruses from East and Central Africa contained unique signatures at 60 nucleotide and five amino acid positions, those from West Africa contained unique signatures at 25 nucleotide and two amino acid positions, and viruses from America contained such signatures at 30 nucleotide and five amino acid positions in the E gene. The dissemination of yellow fever viruses from Africa to the Americas is supported by the close genetic relatedness of genotype IIA and IIB viruses and genetic evidence of a possible second introduction of yellow fever virus from West Africa, as illustrated by the TRINID79A virus isolate. The E protein genes of American IIB yellow fever viruses had higher frequencies of amino acid substitutions than did genes of yellow fever viruses of genotypes I and IIA on the basis of comparisons with a consensus amino acid sequence for the yellow fever E gene. The great variation in the E proteins of American yellow fever virus probably results from positive selection imposed by virus interaction with different species of mosquitoes or nonhuman primates in the Americas. PMID:7637022

  1. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein

    SciTech Connect

    Calvert, Amanda E.; Kalantarov, Gavreel F.; Chang, Gwong-Jen J.; Trakht, Ilya; Blair, Carol D.; Roehrig, John T.

    2011-02-05

    Hybridoma cell lines (2E8, 8G8 and 5G12) producing fully human monoclonal antibodies (hMAbs) specific for the pre-membrane (prM) protein of West Nile virus (WNV) were prepared using a human fusion partner cell line, MFP-2, and human peripheral blood lymphocytes from a blood donor diagnosed with WNV fever in 2004. Using site-directed mutagenesis of a WNV-like particle (VLP) we identified 4 amino acid residues in the prM protein unique to WNV and important in the binding of these hMAbs to the VLP. Residues V19 and L33 are important epitopes for the binding of all three hMAbs. Mutations at residue, T20 and T24 affected the binding of hMAbs, 8G8 and 5G12 only. These hMAbs did not significantly protect AG129 interferon-deficient mice or Swiss Webster outbred mice from WNV infection.

  2. Evolutionary and molecular analysis of Dof transcription factors identified a conserved motif for intercellular protein trafficking.

    PubMed

    Chen, Huan; Ahmad, Munawar; Rim, Yeonggil; Lucas, William J; Kim, Jae-Yean

    2013-06-01

    · Cell-to-cell trafficking of transcription factors (TFs) has been shown to play an important role in the regulation of plant developmental events, but the evolutionary relationship between cell-autonomous and noncell-autonomous (NCA) TFs remains elusive. · AtDof4.1, named INTERCELLULAR TRAFFICKING DOF 1 (ITD1), was chosen as a representative NCA member to explore this evolutionary relationship. Using domain structure-function analyses and swapping studies, we examined the cell-to-cell trafficking of plant-specific Dof TF family members across Arabidopsis and other species. · We identified a conserved intercellular trafficking motif (ITM) that is necessary and sufficient for selective cell-to-cell trafficking and can impart gain-of-function cell-to-cell movement capacity to an otherwise cell-autonomous TF. The functionality of related motifs from Dof members across the plant kingdom extended, surprisingly, to a unicellular alga that lacked plasmodesmata. By contrast, the algal homeodomain related to the NCA KNOX homeodomain was either inefficient or unable to impart such cell-to-cell movement function. · The Dof ITM appears to predate the evolution of selective plasmodesmal trafficking in the plant kingdom, which may well have acted as a molecular template for the evolution of Dof proteins as NCA TFs. However, the ability to efficiently traffic for KNOX homeodomain (HD) proteins may have been acquired during the evolution of early nonvascular plants.

  3. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein.

    PubMed

    Calvert, Amanda E; Kalantarov, Gavreel F; Chang, Gwong-Jen J; Trakht, Ilya; Blair, Carol D; Roehrig, John T

    2011-02-05

    Hybridoma cell lines (2E8, 8G8 and 5G12) producing fully human monoclonal antibodies (hMAbs) specific for the pre-membrane (prM) protein of West Nile virus (WNV) were prepared using a human fusion partner cell line, MFP-2, and human peripheral blood lymphocytes from a blood donor diagnosed with WNV fever in 2004. Using site-directed mutagenesis of a WNV-like particle (VLP) we identified 4 amino acid residues in the prM protein unique to WNV and important in the binding of these hMAbs to the VLP. Residues V19 and L33 are important epitopes for the binding of all three hMAbs. Mutations at residue, T20 and T24 affected the binding of hMAbs, 8G8 and 5G12 only. These hMAbs did not significantly protect AG129 interferon-deficient mice or Swiss Webster outbred mice from WNV infection.

  4. LigSearch: a knowledge-based web server to identify likely ligands for a protein target

    SciTech Connect

    Beer, Tjaart A. P. de; Laskowski, Roman A.; Duban, Mark-Eugene; Chan, A. W. Edith; Anderson, Wayne F.; Thornton, Janet M.

    2013-12-01

    LigSearch is a web server for identifying ligands likely to bind to a given protein. Identifying which ligands might bind to a protein before crystallization trials could provide a significant saving in time and resources. LigSearch, a web server aimed at predicting ligands that might bind to and stabilize a given protein, has been developed. Using a protein sequence and/or structure, the system searches against a variety of databases, combining available knowledge, and provides a clustered and ranked output of possible ligands. LigSearch can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/LigSearch.

  5. The newly identified migration inhibitory protein regulates the radial migration in the developing neocortex

    PubMed Central

    Zhang, Suxiang; Kanemitsu, Yoshitaka; Fujitani, Masashi; Yamashita, Toshihide

    2014-01-01

    Neuronal migration is a crucial process in the organization of the developing cerebral cortex. Although a number of positive regulatory mechanisms of radial migration have been identified, negative cell-autonomous mechanisms have yet to be fully described. Here we report a newly identified Migration Inhibitory Protein (MINP, formerly known as 2900011O08Rik) that negatively regulates radial migration. MINP mRNA was specifically detected in the central and peripheral nervous system, and especially enriched in the cerebral cortex. MINP immunoreactivity co-localized with the neuronal marker Tuj1 and was detected in the cytoplasm of post-mitotic neurons. To elucidate the function of MINP in the developing brain, we performed in utero electroporation of MINP siRNA, MINP shRNA, or MINP-overexpressing vectors into mouse cortices and carried out in vivo migration assays. Whereas knockdown of MINP did not alter neuronal morphology, the radial migration was found accelerated by MINP knockdown, and reduced by MINP overexpression. This migration phenotype was also confirmed in vitro, indicating that MINP regulates neuronal migration in a cell-autonomous fashion. Furthermore, downregulation of MINP affected microtubule stability by interacting with tubulin that is a potential mechanism involved in the regulation of neuronal migration. PMID:25099998

  6. Integrating multiple ‘omics’ analyses identifies serological protein biomarkers for preeclampsia

    PubMed Central

    2013-01-01

    Background Preeclampsia (PE) is a pregnancy-related vascular disorder which is the leading cause of maternal morbidity and mortality. We sought to identify novel serological protein markers to diagnose PE with a multi-’omics’ based discovery approach. Methods Seven previous placental expression studies were combined for a multiplex analysis, and in parallel, two-dimensional gel electrophoresis was performed to compare serum proteomes in PE and control subjects. The combined biomarker candidates were validated with available ELISA assays using gestational age-matched PE (n=32) and control (n=32) samples. With the validated biomarkers, a genetic algorithm was then used to construct and optimize biomarker panels in PE assessment. Results In addition to the previously identified biomarkers, the angiogenic and antiangiogenic factors (soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PIGF)), we found 3 up-regulated and 6 down-regulated biomakers in PE sera. Two optimal biomarker panels were developed for early and late onset PE assessment, respectively. Conclusions Both early and late onset PE diagnostic panels, constructed with our PE biomarkers, were superior over sFlt-1/PIGF ratio in PE discrimination. The functional significance of these PE biomarkers and their associated pathways were analyzed which may provide new insights into the pathogenesis of PE. PMID:24195779

  7. Dual activators of Protein Kinase R (PKR) and Protein Kinase R Like Kinase (PERK) Identify Common and Divergent Catalytic Targets

    PubMed Central

    Ming, Jie; Sun, Hong; Cao, Peng; Fusco, Dahlene N.; Chung, Raymond T.; Chorev, Michael; Jin, Qi; Aktas, Bertal H.

    2013-01-01

    Chemical genetics has evolved into a powerful tool for studying gene function in normal- and patho-biology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2α) kinases, play critical roles in maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and recently identified inhibitors. In contrast, activating probes for studying the role of catalytic activity of these kinases are not available. We identified a 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5,7-dihydroxy-4H-chromen-4-one (DHBDC) as specific dual activator of PKR and PERK by screening a chemical library of 20,000 small molecules in a dual luciferase surrogate eIF2α phosphorylation assay. We present here extensive biological characterization and preliminary structure-activity relationship of DHBDC, which phosphorylate eIF2α by activating PKR and PERK but no other eIF2α kinases. These agents also activate downstream effectors of eIF2α phosphorylation; inducing CHOP and suppressing cyclin D1 expression and inhibiting cancer cell proliferation, all in a manner dependent on PKR and PERK. Consistent with the role of eIF2α phosphorylation in viral infection, DHBDC inhibits proliferation of human hepatitis C virus. Finally, DHBDC induces phosphorylation of Ikβα, and activates NF-κB pathway. Surprisingly, activation of NF-κB pathway is dependent on PERK but independent of PKR activity. These data indicate that DHBDC is an invaluable probe for elucidating the role of PKR and PERK in normal- and patho-biology. PMID:23784735

  8. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase.

    PubMed

    Dokládal, Ladislav; Honys, David; Rana, Rajiv; Lee, Lan-Ying; Gelvin, Stanton B; Sýkorová, Eva

    2015-01-01

    Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.

  9. A Fluorescence-Based Thermal Shift Assay Identifies Inhibitors of Mitogen Activated Protein Kinase Kinase 4

    PubMed Central

    Krishna, Sankar N.; Luan, Chi-Hao; Mishra, Rama K.; Xu, Li; Scheidt, Karl A.; Anderson, Wayne F.; Bergan, Raymond C.

    2013-01-01

    Prostate cancer (PCa) is the second highest cause of cancer death in United States males. If the metastatic movement of PCa cells could be inhibited, then mortality from PCa could be greatly reduced. Mitogen-activated protein kinase kinase 4 (MAP2K4) has previously been shown to activate pro-invasion signaling pathways in human PCa. Recognizing that MAP2K4 represents a novel and validated therapeutic target, we sought to develop and characterize an efficient process for the identification of small molecules that target MAP2K4. Using a fluorescence-based thermal shift assay (FTS) assay, we first evaluated an 80 compound library of known kinase inhibitors, thereby identifying 8 hits that thermally stabilized MAP2K4 in a concentration dependent manner. We then developed an in vitro MAP2K4 kinase assay employing the biologically relevant downstream substrates, JNK1 and p38 MAPK, to evaluate kinase inhibitory function. In this manner, we validated the performance of our initial FTS screen. We next applied this approach to a 2000 compound chemically diverse library, identified 7 hits, and confirmed them in the in vitro kinase assay. Finally, by coupling our structure-activity relationship data to MAP2K4's crystal structure, we constructed a model for ligand binding. It predicts binding of our identified inhibitory compounds to the ATP binding pocket. Herein we report the creation of a robust inhibitor-screening platform with the ability to inform the discovery and design of new and potent MAP2K4 inhibitors. PMID:24339940

  10. Pleiotropy among Common Genetic Loci Identified for Cardiometabolic Disorders and C-Reactive Protein

    PubMed Central

    Ligthart, Symen; de Vries, Paul S.; Uitterlinden, André G.; Hofman, Albert; Franco, Oscar H.; Chasman, Daniel I.; Dehghan, Abbas

    2015-01-01

    Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP) is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic background of inflammation and cardiometabolic phenotypes using published genome-wide association studies (GWAS). We also evaluated whether the pleiotropic effects of such loci were biological or mediated in nature. First, we examined whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. Second, we tested whether 18 variants identified for serum CRP are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 (0.05/463) as a threshold of significance. We evaluated the independent pleiotropic effect on both phenotypes using individual level data from the Women Genome Health Study. Evaluating the genetic overlap between inflammation and cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10) appeared to have a pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes. These included loci where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18) had an effect on CRP largely mediated through the cardiometabolic phenotypes. In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic variants partially underlie the association between CRP and cardiometabolic phenotypes. PMID:25768928

  11. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening.

  12. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands).

    PubMed

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ(18)Ocalc and δ(13)Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ(18)Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in (18)O relative to (16)O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ(18)Ocalc value of eggshell calcite to the δ(18)Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ(13)Ccalc and δ(18)Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ(13)Ccalc and high δ(18)Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  13. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  14. Identifying recommended dietary allowances for protein and amino acids: a critique of the 2007 WHO/FAO/UNU report.

    PubMed

    Millward, D Joe

    2012-08-01

    The WHO/FAO/UNU (2007) report examines dietary protein and amino acid requirements for all age groups, protein requirements during pregnancy, lactation and catch-up growth in children, the implications of these requirements for developing countries and protein quality evaluation. Requirements were defined as the minimum dietary intake which satisfies the metabolic demand and achieves nitrogen equilibrium and maintenance of the body protein mass, plus the needs for growth in children and pregnancy and lactation in healthy women. Insufficient evidence was identified to enable recommendations for specific health outcomes. A meta analysis of nitrogen balance studies identifies protein requirements for adults 10 % higher than previous values with no influence of gender or age, consistent with a subsequently published comprehensive study. A new factorial model for infants and children, validated on the basis of the adequacy of breast milk protein intakes and involving a lower maintenance requirement value, no provision for saltatory growth and new estimates of protein deposition identifies lower protein requirements than in previous reports. Higher values for adult amino acid requirements, derived from a re-evaluation of nitrogen balance studies and new stable isotope studies, identify some cereal-based diets as being inadequate for lysine. The main outstanding issues relate to the biological implausibility of the very low efficiencies of protein utilisation used in the factorial models for protein requirements for all population groups especially pregnancy when requirements may be overestimated. Also considerable uncertainty remains about the design and interpretation of most of the studies used to identify amino acid requirement values.

  15. A strategy based on protein-protein interface motifs may help in identifying drug off-targets.

    PubMed

    Engin, H Billur; Keskin, Ozlem; Nussinov, Ruth; Gursoy, Attila

    2012-08-27

    Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can "attack" nodes or edges of a protein-protein interaction network. In this work, we propose a new network strategy, "The Interface Attack", based on protein-protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding to others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model that we call "Protein Interface and Interaction Network (P2IN)", which is the integration of protein-protein interface structures and protein interaction networks. This interface-based network organization clarifies which protein pairs have structurally similar interfaces and which proteins may compete to bind the same surface region. We built the P2IN with the p53 signaling network and performed network robustness analysis. We show that (1) "hitting" frequent interfaces (a set of edges distributed around the network) might be as destructive as eleminating high degree proteins (hub nodes), (2) frequent interfaces are not always topologically critical elements in the network, and (3) interface attack may reveal functional changes in the system better than the attack of single proteins. In the off-target detection case study, we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the interaction between CDK4 and CDKN2D.

  16. Identifying Druggable Targets by Protein Microenvironments Matching: Application to Transcription Factors

    PubMed Central

    Liu, T; Altman, R B

    2014-01-01

    Druggability of a protein is its potential to be modulated by drug-like molecules. It is important in the target selection phase. We hypothesize that: (i) known drug-binding sites contain advantageous physicochemical properties for drug binding, or “druggable microenvironments” and (ii) given a target, the presence of multiple druggable microenvironments similar to those seen previously is associated with a high likelihood of druggability. We developed DrugFEATURE to quantify druggability by assessing the microenvironments in potential small-molecule binding sites. We benchmarked DrugFEATURE using two data sets. One data set measures druggability using NMR-based screening. DrugFEATURE correlates well with this metric. The second data set is based on historical drug discovery outcomes. Using the DrugFEATURE cutoffs derived from the first, we accurately discriminated druggable and difficult targets in the second. We further identified novel druggable transcription factors with implications for cancer therapy. DrugFEATURE provides useful insight for drug discovery, by evaluating druggability and suggesting specific regions for interacting with drug-like molecules. PMID:24452614

  17. Novel single chain antibodies to the prion protein identified by phage display.

    PubMed

    Adamson, Catherine S; Yao, Yongxiu; Vasiljevic, Snezana; Sy, Man-Sun; Ren, Junyuan; Jones, Ian M

    2007-02-05

    A well defined structure is available for the carboxyl half of the cellular prion protein (PrP(c)), while the structure of the amino terminal half of the molecule remains ill defined. The unstructured nature of the polypeptide has meant that relatively few of the many antibodies generated against PrP(c) recognise this region. To circumvent this problem, we have used a previously characterised and well expressed fragment derived from the amino terminus of PrP(c) as bait for panning a single chain antibody phage (scFv-P) library. Using this approach, we identified and characterised 1 predominant and 3 additional scFv-Ps that contained different V(H) and V(L) sequences and that bound specifically to the PrP(c) target. Epitope mapping revealed that all scFv-Ps recognised linear epitopes between PrP(c) residues 76 and 156. When compared with existing monoclonal antibodies (MAb), the binding of the scFvs was significantly different in that high level binding was evident on truncated forms of PrP(c) that reacted poorly or not at all with several pre-existing MAbs. These data suggest that the isolated scFv-Ps bind to novel epitopes within the amino-central region of PrP(c). In addition, the binding of MAbs to known linear epitopes within PrP(c) depends strongly on the endpoints of the target PrP(c) fragment used.

  18. How important is the eggshell as a source for initial acquisition of Salmonella in hatchling turtles?

    PubMed

    Holgersson, Mikael C N; Nichols, Wade A; Paitz, Ryan T; Bowden, Rachel M

    2016-02-01

    How and when turtles first acquire gut microflora is largely speculative. In this study, the eggshell and hatching process were evaluated for their role in the initial acquisition of Salmonella, by red-eared slider turtles (Trachemys scripta elegans). First, we examined whether the eggshell is a viable substrate for bacterial persistence during incubation, and if internal egg components (i.e., albumen, yolk, and embryo) have detectable bacterial loads. Second, we experimentally manipulated Salmonella by treating eggs with combinations of Salmonella and gentamicin, an effective Gram-negative antibiotic. We found that the eggshell is a viable substrate for maintaining bacteria, as well as an effective barrier to Salmonella transmission as internal egg components were largely bacteria-free. Water samples collected 18 days post-hatch from individuals that were experimentally inoculated with a topical application of Salmonella as eggs had a higher prevalence of Salmonella than those from eggs inoculated with Salmonella but topically treated with gentamicin prior to hatching, control eggs, and eggs only treated with gentamicin, but by day 35 post-hatch there were no detectable differences among the treatment groups. Though it can also act as a barrier that prevents the bacteria from infecting the embryo prior to hatching these findings suggest that the eggshell is a likely source of Salmonella infection in turtle hatchlings.

  19. Efficacy of combination chemicals as sanitizers of Salmonella-inoculated broiler hatching eggshells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sanitization of broiler hatching eggs provides an opportunity to reduce the eggshell bacterial load entering hatchery incubators, which can be subsequently carried with the chicks to the growout farm and ultimately into the processing plant. Two experiments evaluated combination chemicals containin...

  20. Dinosaur eggshell geochemistry as an indicator of Central Asian Cretaceous paleoenvironments

    NASA Astrophysics Data System (ADS)

    Montanari, S.; Higgins, P.; Norell, M.

    2011-12-01

    The Late Cretaceous fossiliferous beds of Mongolia's Gobi Desert have yielded spectacular articulated remains of an extraordinary diversity of fossil mammals, reptiles, birds, and dinosaurs. Paleoenvironmental interpretations of the deposits at these localities have ranged from arid wind-blown dune fields to more mesic, moist environments. Among the diversity of fossils, dinosaur eggshells are commonly found at these localities and dinosaur embryos, although rare, are also encountered. Dinosaur (including modern bird) eggs are constructed of calcite (CaCO3) allowing carbon and oxygen stable isotopes to be quantified to provide information about the environment the egg-laying animals were living in. Here we show that dinosaur eggshell from the Djadokhta Formation at one locality has not been significantly altered and reflects an environment that of dry-climate adapted C3 plants and isolated, ephemeral water sources during the egg-laying season. Carbonate nodules from the same eggshell-bearing layers also independently reflects a similar environmental signal. This study represents the first geochemical analysis of dinosaur remains from the Cretaceous of Mongolia and illustrates the potential of utilizing dinosaur eggshell geochemistry to reconstruct Mesozoic environments.
    Mean, n, standard deviation, and range for both carbon and oxygen isotope values for all materials sampled

  1. Novel Mitochondria-Targeted Heat-Soluble Proteins Identified in the Anhydrobiotic Tardigrade Improve Osmotic Tolerance of Human Cells

    PubMed Central

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D.; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called “anhydrobiosis”. Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments. PMID:25675104

  2. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    PubMed

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.

  3. Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins.

    PubMed

    Wang, Yang; Yi, Li; Wu, Zongfu; Shao, Jing; Liu, Guangjin; Fan, Hongjie; Zhang, Wei; Lu, Chengping

    2012-01-01

    Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections.

  4. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferasel identified using phage display and biopanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of PROTEIN ISOASPARTYL-METHYLTRANSFERASE (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of specific PIMT target proteins in p...

  5. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI.

  6. Identifying initial molecular targets of PDT: protein and lipid oxidation products

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Kim, Junhwan; Rodriguez, Myriam E.; Xue, Liang-yan; Kenney, Malcolm E.; Anderson, Vernon E.

    2009-06-01

    Photodynamic Therapy (PDT) generates singlet oxygen (1O2) which oxidizes biomolecules in the immediate vicinity of its formation. The phthalocyanine photosensitizer Pc 4 localizes to mitochondria and endoplasmic reticulum, and the primary targets of Pc 4-PDT are expected to be lipids and proteins of those membranes. The initial damage then causes apoptosis in cancer cells via the release of cytochrome c (Cyt-c) from mitochondria into the cytosol, followed by the activation of caspases. That damage also triggers the induction of autophagy, an attempt by the cells to eliminate damaged organelles, or when damage is too extensive, to promote cell death. Cyt-c is bound to the cytosolic side of the mitochondrial inner membrane through association with cardiolipin (CL), a phospholipid containing four unsaturated fatty acids and thus easily oxidized by 1O2 or by other oxidizing agents. Increasing evidence suggests that oxidation of CL loosens its association with Cyt-c, and that the peroxidase activity of Cyt-c can oxidize CL. In earlier studies of Cyt-c in homogeneous medium by MALDI-TOF-MS and LC-ESI-MS, we showed that 1O2 generated by Pc 4-PDT oxidized histidine, methionine, tryptophan, and unexpectedly phenylalanine but not tyrosine. Most of the oxidation products were known to be formed by other oxidizing agents, such as hydroxyl radical, superoxide radical anion, and peroxynitrite. However, two products of histidine were unique to 1O2 and may be useful for reporting the action of 1O2 in cells and tissues. These products, as well as CL oxidation products, have now been identified in liposomes and mitochondria after Pc 4-PDT. In mitochondria, the PDT dose-dependent oxidations can be related to specific changes in mitochondrial function, Bcl-2 photodamage, and Cyt-c release. Thus, the role of PDT-generated 1O2 in oxidizing Cyt-c and CL and the interplay between protein and lipid targets may be highly relevant to understanding one mechanism for cell killing by PDT.

  7. Eggshell pigmentation pattern in relation to breeding performance of blue tits Cyanistes caeruleus.

    PubMed

    Sanz, Juan José; García-Navas, Vicente

    2009-01-01

    1. We test the consequences, in terms of breeding success and parental effort, of eggshell pigmentation pattern in a hole-nesting bird, the blue tit Cyanistes caeruleus that lays eggs asymmetrically speckled with reddish spots (maculated eggs). 2. We assess the effect of distribution of spots (pigment 'spread') and spot size and pigment intensity (pigment 'darkness') on eggshell physical properties and breeding parameters concerning nestling condition, investment of parents in offspring care and reproductive output in two different habitat types: a deciduous oakwoodland and an evergreen forest. 3. Blue tit clutches with more widely distributed spots showed a thicker eggshell, a shorter incubation period, a lesser amount of mass loss per day and a higher hatching probability than those with spots forming a 'corona' ring. While eggs with larger and darker (more pigment intensity) spots showed a thicker eggshell and a shorter incubation period. In the light of 'signal function hypothesis', these egg traits may reflect female health status and, consequently, this could affect male parental effort. 4. Here we show supports for some of the necessary assumptions of this hypothesis. We found a positive relationship between egg pigment 'spread' and male but not female provisioning rates per day. On the other hand, pigment 'darkness' of blue tits' clutches was positively related to female tarsus length, while pigment 'spread' was positively related to clutch size, male body mass and nestling tarsus length. Our study shows that eggshell pigment 'spread' can be used as an indicator of clutch quality. Further investigations are needed to understand the role of calcium availability as possible causal agent of deviant eggs and its relation to the maculation phenomenon.

  8. Newly identified phosphorylation site in the vesicular stomatitis virus P protein is required for viral RNA synthesis.

    PubMed

    Mondal, Arindam; Victor, Ken G; Pudupakam, R S; Lyons, Charles E; Wertz, Gail W

    2014-02-01

    The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form. Previously, five sites of phosphorylation were identified on the P protein and these sites were reported to be differentially important for mRNA synthesis or genomic replication. The previous studies were carried out by biochemical analysis of portions of the authentic viral P protein or by analysis of bacterium-expressed, exogenously phosphorylated P protein by mutagenesis. However, there has been no systematic biochemical search for phosphorylation sites on authentic, virus-expressed P protein. In this study, we analyzed the P protein isolated from VSV-infected cells for sites of phosphorylation by mass spectrometry. We report the identification of Tyr14 as a previously unidentified phosphorylation site of VSV P and show that it is essential for viral transcription and replication. However, our mass spectral analysis failed to observe the phosphorylation of previously reported C-terminal residues Ser226 and Ser227 and mutagenic analyses did not demonstrate a role for these sites in RNA synthesis.

  9. A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum.

    PubMed

    Barros, Bruno H R; da Silva, Sérgio H; dos ReisMarques, Everaldo Dos Reis; Rosa, José C; Yatsuda, Ana Patrícia; Roberts, Donald W; Braga, Gilberto U L

    2010-07-01

    Metarhizium spp. is an important worldwide group of entomopathogenic fungi used as an interesting alternative to chemical insecticides in programs of agricultural pest and disease vector control. Metarhizium conidia are important in fungal propagation and also are responsible for host infection. Despite their importance, several aspects of conidial biology, including their proteome, are still unknown. We have established conidial and mycelial proteome reference maps for Metarhizium acridum using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). In all, 1130±102 and 1200±97 protein spots were detected in ungerminated conidia and fast-growing mycelia, respectively. Comparison of the two protein-expression profiles reveled that only 35% of the protein spots were common to both developmental stages. Out of 94 2-DE protein spots (65 from conidia, 25 from mycelia and two common to both) analyzed using mass spectrometry, seven proteins from conidia, 15 from mycelia and one common to both stages were identified. The identified protein spots exclusive to conidia contained sequences similar to known fungal stress-protector proteins (such as heat shock proteins (HSP) and 6-phosphogluconate dehydrogenase) plus the fungal allergen Alt a 7, actin and the enzyme cobalamin-independent methionine synthase. The identified protein spots exclusive to mycelia included proteins involved in several cell housekeeping biological processes. Three proteins (HSP 90, 6-phosphogluconate dehydrogenase and allergen Alt a 7) were present in spots in conidial and mycelial gels, but they differed in their locations on the two gels.

  10. A permeabilized cell system identifies the endoplasmic reticulum as a site of protein degradation

    PubMed Central

    1991-01-01

    Analysis of the fate of a variety of newly synthesized proteins in the secretory pathway has provided evidence for the existence of a novel protein degradation system distinct from that of the lysosome. Although current evidence suggests that proteins degraded by this system are localized to a pre-Golgi compartment before degradation, the site of proteolysis has not been determined. A permeabilized cell system was developed to examine whether degradation by this pathway required transport out of the ER, and to define the biochemical characteristics of this process. Studies were performed on fibroblast cell lines expressing proteins known to be sensitive substrates for this degradative process, such as the chimeric integral membrane proteins, Tac-TCR alpha and Tac-TCR beta. By immunofluorescence microscopy, these proteins were found to be localized to the ER. Treatment with cycloheximide resulted in the progressive disappearance of intracellular staining without change in the ER localization of the chimeric proteins. Cells permeabilized with the pore-forming toxin streptolysin O were able to degrade these newly synthesized proteins. The protein degradation seen in permeabilized cells was representative of that seen in intact cells, as judged by the similar speed of degradation, substrate selectivity, temperature dependence, and involvement of free sulfhydryl groups. Degradation of these proteins in permeabilized cells took place in the absence of transport between the ER and the Golgi system. Moreover, degradation occurred in the absence of added ATP or cytosol, and in the presence of apyrase, GTP gamma S, or EDTA; i.e., under conditions which prevent transport of proteins out of the ER. The efficiency and selectivity of degradation of newly synthesized proteins were also conserved in an isolated ER fraction. These data indicate that the machinery responsible for pre-Golgi degradation of newly synthesized proteins exists within the ER itself, and can operate

  11. New protein-protein interactions identified for the regulatory and structural components and substrates of the type III Secretion system of the phytopathogen Xanthomonas axonopodis Pathovar citri.

    PubMed

    Alegria, Marcos C; Docena, Cassia; Khater, Leticia; Ramos, Carlos H I; da Silva, Ana C R; Farah, Chuck S

    2004-09-01

    We have initiated a project to identify protein-protein interactions involved in the pathogenicity of the bacterial plant pathogen Xanthomonas axonopodis pv. citri. Using a yeast two-hybrid system based on Gal4 DNA-binding and activation domains, we have focused on identifying interactions involving subunits, regulators, and substrates of the type III secretion system coded by the hrp (for hypersensitive response and pathogenicity), hrc (for hrp conserved), and hpa (for hrp associated) genes. We have identified several previously uncharacterized interactions involving (i) HrpG, a two-component system response regulator responsible for the expression of X. axonopodis pv. citri hrp operons, and XAC0095, a previously uncharacterized protein encountered only in Xanthomonas spp.; (ii) HpaA, a protein secreted by the type III secretion system, HpaB, and the C-terminal domain of HrcV; (iii) HrpB1, HrpD6, and HrpW; and (iv) HrpB2 and HrcU. Homotropic interactions were also identified for the ATPase HrcN. These newly identified protein-protein interactions increase our understanding of the functional integration of phytopathogen-specific type III secretion system components and suggest new hypotheses regarding the molecular mechanisms underlying Xanthomonas pathogenicity.

  12. Nonspecific Cytotoxic Cell Antimicrobial Protein (NCAMP-1): A Novel Alarmin Ligand Identified in Zebrafish

    PubMed Central

    Monette, Margaret Mariscal; Evans, Donald Lee; Krunkosky, Thomas; Camus, Alvin; Jaso-Friedmann, Liliana

    2015-01-01

    Cells from the coelomic cavity of adult zebrafish (zf) were used to study the alarmin-like activities of nonspecific cytotoxic cell antimicrobial protein-1 (NCAMP-1). Immunohistochemistry studies using polyclonal anti-NCAMP-1 identified constitutive NCAMP-1 in epithelial cells of the zf anterior kidney, in liver parenchyma and in the lamina propria of the intestine. NCAMP-1 was also located in the cytosol of mononuclear cells in these tissues. Cytosolic NCAMP-1 was detected in a diverse population of coelomic cells (CC) using confocal microscopy and polyclonal anti-NCAMP-1 staining. Large mononuclear and heterophil-like CC had intracellular NCAMP-1. These studies indicated that NCAMP-1 is constitutively found in epithelial cells and in ZFCC. To establish a relationship between NCAMP-1 and the alarmin functions of ATP, a stimulation-secretion model was initiated using zf coelomic cells (ZFCC). ZFCCs treated with the alarmin ATP secreted NCAMP-1 into culture supernatants. Treatment of ZFCC with either ATP or NCAMP-1 activated purinergic receptor induced pore formation detected by the ZFCC uptake of the dye YO-PRO-1. ATP induced YO-PRO-1 uptake was inhibited by antagonists oxidized-ATP, KN62, or CBB. These antagonists did not compete with NCAMP-1 induced YO-PRO-1 uptake. Binding of ZFCC by both ATP and NCAMP-1 produced an influx of Ca2+. Combined treatment of ZFCC with ATP and NCAMP-1 increased target cell cytotoxicity. Individually NCAMP-1 or ATP treatment did not produce target cell damage. Similar to ATP, NCAMP-1 activates cellular pore formation, calcium influx and cytotoxicity. PMID:25689842

  13. Novel seminal fluid proteins in the seed beetle Callosobruchus maculatus identified by a proteomic and transcriptomic approach.

    PubMed

    Bayram, H; Sayadi, A; Goenaga, J; Immonen, E; Arnqvist, G

    2017-02-01

    The seed beetle Callosobruchus maculatus is a significant agricultural pest and increasingly studied model of sexual conflict. Males possess genital spines that increase the transfer of seminal fluid proteins (SFPs) into the female body. As SFPs alter female behaviour and physiology, they are likely to modulate reproduction and sexual conflict in this species. Here, we identified SFPs using proteomics combined with a de novo transcriptome. A prior 2D-sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis identified male accessory gland protein spots that were probably transferred to the female at mating. Proteomic analysis of these spots identified 98 proteins, a majority of which were also present within ejaculates collected from females. Standard annotation workflows revealed common functional groups for SFPs, including proteases and metabolic proteins. Transcriptomic analysis found 84 transcripts differentially expressed between the sexes. Notably, genes encoding 15 proteins were highly expressed in male abdomens and only negligibly expressed within females. Most of these sequences corresponded to 'unknown' proteins (nine of 15) and may represent rapidly evolving SFPs novel to seed beetles. Our combined analyses highlight 44 proteins for which there is strong evidence that they are SFPs. These results can inform further investigation, to better understand the molecular mechanisms of sexual conflict in seed beetles.

  14. Retinal S Antigen Identified as the 48K Protein Regulating Light-Dependent Phosphodiesterase in Rods

    NASA Astrophysics Data System (ADS)

    Pfister, C.; Chabre, M.; Plouet, J.; Tuyen, V. V.; de Kozak, Y.; Faure, J. P.; Kuhn, H.

    1985-05-01

    Retinal S antigen chromatographically purified from whole retina, induces experimental autoimmune uveoretinitis in laboratory animals. The 48K protein, a soluble protein found in rod outer segments, is purified through its specific binding to photoexcited rhodopsin and is involved in the quenching of light-induced guanosine 3',5'-monophosphate-phosphodiesterase activity. Biochemical, immunological, functional, and pathological tests showed that retinal S antigen and the 48K protein are identical.

  15. Bioorthogonal labeling cell-surface proteins expressed in pancreatic cancer cells to identify potential diagnostic/therapeutic biomarkers

    PubMed Central

    Haun, Randy S; Quick, Charles M; Siegel, Eric R; Raju, Ilangovan; Mackintosh, Samuel G; Tackett, Alan J

    2015-01-01

    To develop new diagnostic and therapeutic tools to specifically target pancreatic tumors, it is necessary to identify cell-surface proteins that may serve as potential tumor-specific targets. In this study we used an azido-labeled bioorthogonal chemical reporter to metabolically label N-linked glycoproteins on the surface of pancreatic cancer cell lines to identify potential targets that may be exploited for detection and/or treatment of pancreatic cancer. Labeled glycoproteins were tagged with biotin using click chemistry, purified by streptavidin-coupled magnetic beads, separated by gel electrophoresis, and identified by liquid chromatography-tandem mass spectrometry (MS). MS/MS analysis of peptides from 3 cell lines revealed 954 unique proteins enriched in the azido sugar samples relative to control sugar samples. A comparison of the proteins identified in each sample indicated 20% of these proteins were present in 2 cell lines (193 of 954) and 17 of the proteins were found in all 3 cell lines. Five of the 17 proteins identified in all 3 cell lines have not been previously reported to be expressed in pancreatic cancer; thus indicating that novel cell-surface proteins can be revealed through glycoprotein profiling. Western analysis of one of these glycoproteins, ecto-5′-nucleotidase (NT5E), revealed it is expressed in 8 out of 8 pancreatic cancer cell lines examined. Further, immunohistochemical analysis of human pancreatic tissues indicates NT5E is significantly overexpressed in pancreatic tumors compared to normal pancreas. Thus, we have demonstrated that metabolic labeling with bioorthogonal chemical reporters can be used to selectively enrich and identify novel cell-surface glycoproteins expressed in pancreatic ductal adenocarcinomas. PMID:26176765

  16. IDENTIFYING MUTATION SPECIFIC CANCER PATHWAYS USING A STRUCTURALLY RESOLVED PROTEIN INTERACTION NETWORK

    PubMed Central

    ENGIN, H. BILLUR; HOFREE, MATAN; CARTER, HANNAH

    2014-01-01

    Here we present a method for extracting candidate cancer pathways from tumor ‘omics data while explicitly accounting for diverse consequences of mutations for protein interactions. Disease-causing mutations are frequently observed at either core or interface residues mediating protein interactions. Mutations at core residues frequently destabilize protein structure while mutations at interface residues can specifically affect the binding energies of protein-protein interactions. As a result, mutations in a protein may result in distinct interaction profiles and thus have different phenotypic consequences. We describe a protein structure-guided pipeline for extracting interacting protein sets specific to a particular mutation. Of 59 cancer genes with 3D co-complexed structures in the Protein Data Bank, 43 showed evidence of mutations with different functional consequences. Literature survey reciprocated functional predictions specific to distinct mutations on APC, ATRX, BRCA1, CBL and HRAS. Our analysis suggests that accounting for mutation-specific perturbations to cancer pathways will be essential for personalized cancer therapy. PMID:25592571

  17. Two-Dimensional Differential Gel Electrophoresis to Identify Protein Biomarkers in Amniotic Fluid of Edwards Syndrome (Trisomy 18) Pregnancies

    PubMed Central

    Hsu, Te-Yao; Lin, Hao; Hung, Hsuan-Ning; Yang, Kuender D.; Ou, Chia-Yu; Tsai, Ching-Chang; Cheng, Hsin-Hsin; Chung, Su-Hai; Cheng, Bi-Hua; Wong, Yi-Hsun; Chou, An Kuo; Hsiao, Chang-Chun

    2016-01-01

    Background Edwards syndrome (ES) is a severe chromosomal abnormality with a prevalence of about 0.8 in 10,000 infants born alive. The aims of this study were to identify candidate proteins associated with ES pregnancies from amniotic fluid supernatant (AFS) using proteomics, and to explore the role of biological networks in the pathophysiology of ES. Methods AFS from six second trimester pregnancies with ES fetuses and six normal cases were included in this study. Fluorescence-based two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) were used for comparative proteomic analysis. The identified proteins were further validated by Western blotting and the role of biological networks was analyzed. Results Twelve protein spots were differentially expressed by more than 1.5-fold in the AFS of the ES pregnancies. MALDI-TOF/MS identified one up-regulated protein: apolipoprotein A1 (ApoA1), and four under-regulated proteins: vitamin D binding protein (VDBP), alpha-1-antitrypsin (A1AT), insulin-like growth factor-binding protein 1 (IGFBP-1), and transthyretin (TTR). Western blot and densitometric analysis of ApoA1, A1AT, IGFBP-1, and TTR confirmed the alteration of these proteins in the amniotic fluid samples. Biological network analysis revealed that the proteins of the ES AFS were involved mainly in lipid and hormone metabolism, immune response, and cardiovascular disease. Conclusions These five proteins may be involved in the pathogenesis of ES. Further studies are needed to explore. PMID:26752631

  18. Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani.

    PubMed

    Lee, Joohyun; Bricker, Terry M; Lefevre, Michael; Pinson, Shannon R M; Oard, James H

    2006-09-01

    SUMMARY Sheath blight, caused by the fungus Rhizoctonia solani, is a major disease of rice world-wide, but little is known about the host response to infection. The objective of this study was to identify proteins and DNA markers in resistant and susceptible rice associated with response to infection by R. solani. Replicated two-dimensional polyacrylamide gel electrophoresis experiments were conducted to detect proteins differentially expressed under inoculated and non-inoculated conditions. Tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS) was carried out for protein identification with the NCBI non-redundant protein database. Seven proteins were increased after inoculation in both susceptible and resistant plants. Six of the seven proteins were identified with presumed antifungal, photosynthetic and proteolytic activities. An additional 14 proteins were detected in the response of the resistant line. Eleven of the 14 proteins were identified with presumed functions relating to antifungal activity, signal transduction, energy metabolism, photosynthesis, molecular chaperone, proteolysis and antioxidation. The induction of 3-beta-hydroxysteroid dehydrogenase/isomerase was detected for the first time in resistant rice plants after pathogen challenge, suggesting a defensive role of this enzyme in rice against attack by R. solani. The chromosomal locations of four induced proteins were found to be in close physical proximity to genetic markers for sheath blight resistance in two genetic mapping populations. The proteomic and genetic results from this study indicate a complex response of rice to challenge by R. solani that involves simultaneous induction of proteins from multiple defence pathways.

  19. A novel RNA-binding protein from Triturus carnifex identified by RNA-ligand screening with the newt hammerhead ribozyme

    PubMed Central

    Denti, Michela A.; Alba, A. Emilio Martínez de; Sägesser, Rudolf; Tsagris, Mina; Tabler, Martin

    2000-01-01

    The newt hammerhead ribozyme is transcribed from Satellite 2 DNA, which consists of tandemly repeated units of 330 bp. However, different transcripts are synthesized in different tissues. In all somatic tissues and in testes, dimeric and multimeric RNA transcripts are generated which, to some extent, self-cleave into monomers at the hammerhead domain. In ovaries, primarily a distinct monomeric unit is formed by transcription, which retains an intact hammerhead self-cleavage site. The ovarian monomeric RNA associates to form a 12S complex with proteins that are poorly characterised so far. In this work we identified NORA, a protein that binds the ovarian form of the newt ribozyme. We show that the newt ribozyme binds to the Escherichia coli-expressed protein, as well as to a protein of identical size that is found exclusively in newt ovaries. Also NORA mRNA was detectable only in ovary, but in neither somatic tissues nor testes. The tissue-specific expression of NORA is analogous to the ovary-specific transcription of the newt ribozyme. Although NORA was identified by its ability to bind to the newt ribozyme in the presence of a vast excess of carrier RNA, it was able to interact with certain other RNA probes. This novel RNA-binding protein does not contain any motif characteristic for RNA-binding proteins or any other known protein domain, but it shares a striking similarity with a rat resiniferatoxin-binding protein. PMID:10666442

  20. Global analysis of SUMO-binding proteins identifies SUMOylation as a key regulator of the INO80 chromatin remodeling complex.

    PubMed

    Cox, Eric; Hwang, Woochang; Uzoma, Ijeoma; Hu, Jianfei; Guzzo, Catherine; Jeong, Junseop; Matunis, Michael; Qian, Jiang; Zhu, Heng; Blackshaw, Seth

    2017-03-02

    SUMOylation is a critical regulator of a broad range of cellular processes, and is thought to do so in part by modulation of protein interaction. To comprehensively identify human proteins whose interaction is modulated by SUMOylation, we developed an in vitro binding assay using human proteome microarrays to identify targets of SUMO1 and SUMO2. We then integrated these results with protein SUMOylation and protein-protein interaction data to perform network motif analysis. We focused on a single network motif we termed a SUMOmodPPI (SUMO-modulated Protein-Protein Interaction) that included the INO80 chromatin remodeling complex subunits TFPT and INO80E. We validated the SUMO-binding activity of INO80E, and showed that TFPT is a SUMO substrate both in vitro and in vivo. We then demonstrated a key role for SUMOylation in mediating the interaction between these two proteins, both in vitro and in vivo. By demonstrating a key role for SUMOylation in regulating the INO80 chromatin-remodeling complex, this work illustrates the power of integrated analysis of large datasets in predicting novel biological phenomena.

  1. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    PubMed

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity.

  2. Calcium-45 uptake by shell gland, oviduct, plasma and eggshell of DDT-dosed ducks and chickens.

    PubMed

    Davison, K L

    1978-01-01

    Experiments were conducted with ducks and chickens to determine the effects of acute doses of DDT and DDE on calcium-45 balance and calcium-45 distribution among plasma, femur, tibia, oviduct, shell gland, and eggshell. Species differences in distribution of calcium-45 were evident between control ducks and control chickens. Ducks contained more radiocalcium in plasma, shell glands, tibias, and femurs than chickens and eliminated less radiocalcium in their droppings than chickens. The percentage of radiocalcium deposited in eggshells by control birds of either species was about equal. Ducks and chickens treated with DDT or DDE contained more radiocalcium in their shell glands than their respective controls. Treatment with DDT or DDE caused eggshell thinning in ducks but not in chickens; however, treatment with DDT or DDE did not alter significantly the percentage of radiocalcium that appeared in eggshells of either species.

  3. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    SciTech Connect

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  4. A set of descriptors for identifying the protein-drug interaction in cellular networking.

    PubMed

    Nanni, Loris; Lumini, Alessandra; Brahnam, Sheryl

    2014-10-21

    The study of protein-drug interactions is a significant issue for drug development. Unfortunately, it is both expensive and time-consuming to perform physical experiments to determine whether a drug and a protein are interacting with each other. Some previous attempts to design an automated system to perform this task were based on the knowledge of the 3D structure of a protein, which is not always available in practice. With the availability of protein sequences generated in the post-genomic age, however, a sequence-based solution to deal with this problem is necessary. Following other works in this area, we propose a new machine learning system based on several protein descriptors extracted from several protein representations, such as, variants of the position specific scoring matrix (PSSM) of proteins, the amino-acid sequence, and a matrix representation of a protein. The prediction engine is operated by an ensemble of support vector machines (SVMs), with each SVM trained on a specific descriptor and the results of each SVM combined by sum rule. The overall success rate achieved by our final ensemble is notably higher than previous results obtained on the same datasets using the same testing protocols reported in the literature. MATLAB code and the datasets used in our experiments are freely available for future comparison at http://www.dei.unipd.it/node/2357.

  5. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates.

    PubMed

    Hawley, Robert G; Chen, Yuzhong; Riz, Irene; Zeng, Chen

    2012-05-04

    In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.

  6. An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics.

    PubMed

    Chávez-Fumagalli, Miguel A; Schneider, Mônica S; Lage, Daniela P; Machado-de-Ávila, Ricardo A; Coelho, Eduardo A F

    2017-05-01

    Leishmaniasis is a parasitic disease caused by the protozoan of the Leishmania genus. While no human vaccine is available, drugs such as pentavalent antimonials, pentamidine and amphotericin B are used for treat the patients. However, the high toxicity of these pharmaceutics, the emergence of parasite resistance and/or their high cost have showed to the urgent need of identify new targets to be employed in the improvement of the treatment against leishmaniasis. In a recent immunoproteomics approach performed in the Leishmania infantum species, 104 antigenic proteins were recognized by antibodies in sera of visceral leishmaniasis (VL) dogs. Some of them were later showed to be effective diagnostic markers and/or vaccine candidates against the disease. Between these proteins, 24 considered as hypothetical were identified in the promastigote and amastigote-like extracts of the parasites. The present study aimed to use bioinformatics tools to select new drug targets between these hypothetical proteins. Their cellular localization was predicted to be seven membrane proteins, as well as eight cytoplasmic, three nuclear, one mitochondrial and five proteins remained unclassified. Their functions were predicted as being two transport proteins, as well as five with metabolic activity, three as cell signaling and fourteen proteins remained unclassified. Ten hypothetical proteins were well-annotated and compared to their homology regarding to human proteins. Two proteins, a calpain-like and clavaminate synthase-like proteins were selected by using Docking analysis as being possible drug targets. In this sense, the present study showed the employ of new strategies to select possible drug candidates, according their localization and biological function in Leishmania parasites, aiming to treat against VL.

  7. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins

    PubMed Central

    2015-01-01

    Background Molecular docking is a widely-employed method in structure-based drug design. An essential component of molecular docking programs is a scoring function (SF) that can be used to identify the most stable binding pose of a ligand, when bound to a receptor protein, from among a large set of candidate poses. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited docking power (or ability to successfully identify the correct pose) has been a major impediment to cost-effective drug discovery. Therefore, in this work, we explore a range of novel SFs employing different machine-learning (ML) approaches in conjunction with physicochemical and geometrical features characterizing protein-ligand complexes to predict the native or near-native pose of a ligand docked to a receptor protein's binding site. We assess the docking accuracies of these new ML SFs as well as those of conventional SFs in the context of the 2007 PDBbind benchmark dataset on both diverse and homogeneous (protein-family-specific) test sets. Further, we perform a systematic analysis of the performance of the proposed SFs in identifying native poses of ligands that are docked to novel protein targets. Results and conclusion We find that the best performing ML SF has a success rate of 80% in identifying poses that are within 1 Å root-mean-square deviation from the native poses of 65 different protein families. This is in comparison to a success rate of only 70% achieved by the best conventional SF, ASP, employed in the commercial docking software GOLD. In addition, the proposed ML SFs perform better on novel proteins that they were never trained on before. We also observed steady gains in the performance of these scoring functions as the training set size and number of features were increased by considering more protein-ligand complexes and/or more computationally-generated poses for each complex. PMID:25916860

  8. Eggshell Appearance Does Not Signal Maternal Corticosterone Exposure in Japanese Quail: An Experimental Study with Brown-Spotted Eggs

    PubMed Central

    Duval, Camille; Cassey, Phillip; Lovell, Paul G.; Mikšík, Ivan; Reynolds, S. James; Spencer, Karen A.

    2013-01-01

    Reproduction is a critical period for birds as they have to cope with many stressful events. One consequence of an acute exposure to stress is the release of corticosterone, the avian stress hormone. Prolonged stress can have negative impacts on the immune system, resulting in, for example, increased oxidative stress. Through maternal effects, females are known to modulate their investment in eggs content according to their own physiological condition. Less is known about maternal investment in eggshells, especially in pigments. The two main eggshell pigments may possess opposite antioxidant properties: protoporphyrin (brown) is a pro-oxidant, whereas biliverdin (blue-green) is an antioxidant. In Japanese quail, we know that the deposition of both pigments is related to female body condition. Thus, a chronic stress response may be reflected in eggshell coloration. Using female Japanese quails that lay brown-spotted eggs, we explored whether physiological exposure to corticosterone induces a change in female basal stress and antioxidant factors, and eggshell pigment concentration, spectrophotometric reflectance, and maculation coverage. We supplemented adult females over a 2 week period with either peanut oil (control) or corticosterone (treatment). We collected pre- and post-supplementation eggs and analysed the effect of corticosterone treatment on female physiology and eggshell appearance parameters. Except for corticosterone-fed birds which laid eggs with brighter spots, supplementation had no significant effect on female physiology or eggshell pigment concentration, reflectance and maculation. The change in eggshell spot brightness was not detected by a photoreceptor noise-limited color opponent model of avian visual perception. Our data confirms that eggshell reflectance in spotted eggs varies over the laying sequence, and spot reflectance may be a key factor that is affected by females CORT exposure, even if the changes are not detected by an avian visual

  9. Special structures of hoopoe eggshells enhance the adhesion of symbiont-carrying uropygial secretion that increase hatching success.

    PubMed

    Martín-Vivaldi, Manuel; Soler, Juan J; Peralta-Sánchez, Juan M; Arco, Laura; Martín-Platero, Antonio M; Martínez-Bueno, Manuel; Ruiz-Rodríguez, Magdalena; Valdivia, Eva

    2014-11-01

    Animals live in a bacterial world, and detecting and exploring adaptations favouring mutualistic relationships with antibiotic-producing bacteria as a strategy to fight pathogens are of prime importance for evolutionary ecologists. Uropygial secretion of European hoopoes (Upupa epops, Linnaeus) contains antimicrobials from mutualistic bacteria that may be used to prevent embryo infection. Here, we investigated the microscopic structure of hoopoe eggshells looking for special features favouring the adhesion of antimicrobial uropygial secretions. We impeded female access to the uropygial gland and compared microscopic characteristics of eggshells, bacterial loads of eggs and of uropygial secretion, and hatching success of experimental and control females. Then, we explored the link between microbiological characteristics of uropygial secretion and these of eggs of hoopoes, as well as possible fitness benefits. The microscopic study revealed special structures in hoopoes' eggshells (crypts). The experimental prevention of females' gland access demonstrated that crypts are filled with uropygial secretion and that symbiotic enterococci bacteria on the eggshells come, at least partially, from those in the female's uropygial gland. Moreover, the experiment resulted in a higher permeability of eggshells by several groups of bacteria and in elimination of the positive relationships detected for control nests between hatching success and density of symbiotic bacteria, either in the uropygial secretion of females or on the eggshell. The findings of specialized crypts on the eggshells of hoopoes, and of video-recorded females smearing secretion containing symbiotic bacteria at a high density onto the eggshells strongly support a link between secretion and bacteria on eggs. Moreover, the detected associations between bacteria and hatching success suggest that crypts enhancing the adhesion of symbiont-carrying uropygial secretion likely protect embryos against infections.

  10. Comparative evaluation of air cell and eggshell temperature measurement methodologies used in broiler hatching eggs during late incubation.

    PubMed

    Peebles, E D; Zhai, W; Gerard, P D

    2012-07-01

    The current study was conducted to compare and contrast the uses of 2 devices (temperature transponder or infrared thermometer) and their locations (inner air cell membrane or outer eggshell surface) in Ross × Ross 708 broiler hatching eggs. The air cells of 14 embryonated and 10 nonembryonated eggs were implanted with temperature transponders on d 13.5 of incubation. Likewise, for these same eggs, eggshell surface temperature was detected with the use of transponders and an infrared thermometer. Temperatures were recorded every 12 h between 14.5 and 18 d of incubation, and graphs and corresponding regression values were used to track the temperatures over these time periods. The temperature readings using all methods in embryonated and nonembryonated eggs were positively correlated. In nonembryonated eggs, temperatures in the air cell and on the eggshell surface using transponders were higher than those on the eggshell surface using an infrared thermometer. Mean air cell temperature readings of embryonated eggs using transponders were higher than those of the eggshell, as determined with the use of transponders or an infrared thermometer. Furthermore, the differences in air cell temperature using transponders and eggshell temperature using an infrared thermometer in embryonated eggs increased with embryonic age. These readings confirmed increased embryo heat production during the incubational period examined. It was further concluded that when compared with actual embryo body temperatures determined in previous studies, the use of transponders in the air cells of broiler hatching eggs detected a higher and closer temperature than eggshell surface temperature. It is suggested that the air cell transponders in embryonated eggs circumvented the confounding effects of the thermal barrier properties of the eggshell and the flow of air across its surface.

  11. topPTM: a new module of dbPTM for identifying functional post-translational modifications in transmembrane proteins

    PubMed Central

    Su, Min-Gang; Huang, Kai-Yao; Lu, Cheng-Tsung; Kao, Hui-Ju; Chang, Ya-Han; Lee, Tzong-Yi

    2014-01-01

    Transmembrane (TM) proteins have crucial roles in various cellular processes. The location of post-translational modifications (PTMs) on TM proteins is associated with their functional roles in various cellular processes. Given the importance of PTMs in the functioning of TM proteins, this study developed topPTM (available online at http://topPTM.cse.yzu.edu.tw), a new dbPTM module that provides a public resource for identifying the functional PTM sites on TM proteins with structural topology. Experimentally verified TM topology data were integrated from TMPad, TOPDB, PDBTM and OPM. In addition to the PTMs obtained from dbPTM, experimentally verified PTM sites were manually extracted from research articles by text mining. In an attempt to provide a full investigation of PTM sites on TM proteins, all UniProtKB protein entries containing annotations related to membrane localization and TM topology were considered potential TM proteins. Two effective tools were then used to annotate the structural topology of the potential TM proteins. The TM topology of TM proteins is represented by graphical visualization, as well as by the PTM sites. To delineate the structural correlation between the PTM sites and TM topologies, the tertiary structure of PTM sites on TM proteins was visualized by Jmol program. Given the support of research articles by manual curation and the investigation of domain–domain interactions in Protein Data Bank, 1347 PTM substrate sites are associated with protein–protein interactions for 773 TM proteins. The database content is regularly updated on publication of new data by continuous surveys of research articles and available resources. PMID:24302577

  12. A novel approach to segregate and identify functional loop regions in protein structures using their Ramachandran maps.

    PubMed

    Kumar, Mattaparthi Venkata Satish; Swaminathan, Rajaram

    2010-03-01

    The loops which connect or flank helices/sheets in protein structures are known to be functionally important. However, ironically they also belong to the part of protein whose structure is least accurately predicted. Here, a new method to isolate and analyze loop regions in protein structure is proposed using the spatial coordinates of the solved three-dimensional structure. The extent of dispersion among points of successive amino acid residues in the Ramachandran map of protein region is utilized to calculate the Mean Separation between these points in the Ramachandran Plot (MSRP). Based on analysis of 2935 protein secondary structure regions obtained using DSSP software, spanning a range from 2 to 64 residues, taken from a set of 170 proteins, it is shown that helices (MSRP < 17) and strands (MSRP < 64) stand effectively demarcated from the loop regions (MSRP > 130). Analysis of 43 DNA binding and 98 ligand binding proteins revealed several loop regions with clear change in MSRP subsequent to binding. The population of such loops correlated with the magnitude of backbone displacement in the protein subsequent to binding. Can changes in MSRP quantify the temporal oscillations in dihedral angles among structured/unstructured regions in proteins? Molecular dynamics simulations (10 ns) revealed that deviations in MSRP among different snapshots in the trajectory were at least twofold higher for unstructured proteins in comparison with ordered proteins. The above results validate the use of MSRP parameter as a tool to identify and investigate functionally active loops and unstructured regions in protein structures. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  13. Mem-ADSVM: A two-layer multi-label predictor for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-06-07

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. However, most of the existing membrane-protein predictors have the following problems: (1) they do not predict whether a given protein is a membrane protein or not; (2) they are limited to predicting membrane proteins with single-label functional types but ignore those with multi-functional types; and (3) there is still much room for improvement for their performance. To address these problems, this paper proposes a two-layer multi-label predictor, namely Mem-ADSVM, which can identify membrane proteins (Layer I) and their multi-functional types (Layer II). Specifically, given a query protein, its associated gene ontology (GO) information is retrieved by searching a compact GO-term database with its homologous accession number. Subsequently, the GO information is classified by a binary support vector machine (SVM) classifier to determine whether it is a membrane protein or not. If yes, it will be further classified by a multi-label multi-class SVM classifier equipped with an adaptive-decision (AD) scheme to determine to which functional type(s) it belongs. Experimental results show that Mem-ADSVM significantly outperforms state-of-the-art predictors in terms of identifying both membrane proteins and their multi-functional types. This paper also suggests that the two-layer prediction architecture is better than the one-layer for prediction performance. For reader׳s convenience, the Mem-ADSVM server is available online at http://bioinfo.eie.polyu.edu.hk/MemADSVMServer/.

  14. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome.

    PubMed

    Higuera, Clara; Gardiner, Katheleen J; Cios, Krzysztof J

    2015-01-01

    Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets.

  15. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome

    PubMed Central

    Higuera, Clara; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2015-01-01

    Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets. PMID:26111164

  16. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.

    PubMed

    Brahma, Rajeev Kungur; McCleary, Ryan J R; Kini, R Manjunatha; Doley, Robin

    2015-01-01

    Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.

  17. In-Frame cDNA Library Combined with Protein Complementation Assay Identifies ARL11-Binding Partners

    PubMed Central

    Lee, Sangkyou; Lee, Ilkyun; Jung, Yoonsuh; McConkey, David; Czerniak, Bogdan

    2012-01-01

    The cDNA expression libraries that produce correct proteins are essential in facilitating the identification of protein-protein interactions. The 5′-untranslated regions (UTRs) that are present in the majority of mammalian and non-mammalian genes are predicted to alter the expression of correct proteins from cDNA libraries. We developed a novel cDNA expression library from which 5′-UTRs were removed using a mixture of polymerase chain reaction primers that complement the Kozak sequences we refer to as an “in-frame cDNA library.” We used this library with the protein complementation assay to identify two novel binding partners for ras-related ADP-ribosylation factor-like 11 (ARL11), cellular retinoic acid binding protein 2 (CRABP2), and phosphoglycerate mutase 1 (PGAM1). Thus, the in-frame cDNA library without 5′-UTRs we describe here increases the chance of correctly identifying protein interactions and will have wide applications in both mammalian and non-mammalian detection systems. PMID:23272234

  18. In-frame cDNA library combined with protein complementation assay identifies ARL11-binding partners.

    PubMed

    Lee, Sangkyou; Lee, Ilkyun; Jung, Yoonsuh; McConkey, David; Czerniak, Bogdan

    2012-01-01

    The cDNA expression libraries that produce correct proteins are essential in facilitating the identification of protein-protein interactions. The 5'-untranslated regions (UTRs) that are present in the majority of mammalian and non-mammalian genes are predicted to alter the expression of correct proteins from cDNA libraries. We developed a novel cDNA expression library from which 5'-UTRs were removed using a mixture of polymerase chain reaction primers that complement the Kozak sequences we refer to as an "in-frame cDNA library." We used this library with the protein complementation assay to identify two novel binding partners for ras-related ADP-ribosylation factor-like 11 (ARL11), cellular retinoic acid binding protein 2 (CRABP2), and phosphoglycerate mutase 1 (PGAM1). Thus, the in-frame cDNA library without 5'-UTRs we describe here increases the chance of correctly identifying protein interactions and will have wide applications in both mammalian and non-mammalian detection systems.

  19. An in vivo crosslinking system for identifying mycobacterial protein–protein interactions

    PubMed Central

    Lougheed, Kathryn E.A.; Bennett, Mark H.; Williams, Huw D.

    2014-01-01

    The analysis of protein–protein interactions in Mycobacterium tuberculosis has the potential to shed light on the functions of the large number of predicted open-reading frames annotated as conserved hypothetical proteins. We have developed a formaldehyde crosslinking system to detect in vivo interactions in mycobacteria. Our Gateway-adapted vector system uses three promoter strengths, including constitutive and regulatable versions, for the expression of target proteins with either an N- or C-terminal His–Strep–Strep tag. Tandem affinity purification using the His- and Strep-tags is well-suited to the isolation of protein complexes with a high purity and no detectable background. We have validated this approach using the well-described pyruvate dehydrogenase complex. PMID:25034228

  20. A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide

    NASA Technical Reports Server (NTRS)

    Herbert, A. G.; Rich, A.

    1993-01-01

    An oligodeoxynucleotide that readily flips to the Z-DNA conformation in 10mM MgCl2 was produced by using Klenow enzyme to incorporate 5-bromodeoxycytosine and deoxyguanosine into a (dC-dG)22 template. During synthesis the oligomer can be labeled with 32P to high specific activity. The labeled oligodeoxynucleotide can be used in bandshift experiment to detect proteins that bind Z-DNA. This allows the binding specificity of such proteins to be determined with high reliability using unlabeled linear and supercoiled DNA competitors. In addition, because the radioactive oligodeoxynucleotide contains bromine atoms, DNA-protein complexes can be readily crosslinked using UV light. This allows an estimate to be made of the molecular weight of the proteins that bind to the radioactive probe. Both techniques are demonstrated using a goat polyclonal anti-Z-DNA antiserum.

  1. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data

    PubMed Central

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2016-01-01

    The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew’s Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions. PMID:26861308

  2. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data.

    PubMed

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2016-02-06

    The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew's Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions.

  3. A comparative quantitative proteomic study identifies new proteins relevant for sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum.

    PubMed

    Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena; Dahl, Christiane

    2014-04-01

    In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515).

  4. A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni.

    PubMed

    Guo, Wei; Li, Guoxun; Pang, Yi; Wang, Ping

    2005-11-01

    A novel midgut peritrophic membrane (PM) protein, TnPM-P42, was identified from the cabbage looper, Trichoplusia ni. TnPM-P42 was shown as a 42kDa protein by SDS-PAGE analysis and appeared to be associated with the PM throughout its entire length. In T. ni larvae, the midgut is the only tissue where TnPM-P42 could be detected during the feeding period of the larvae. TnPM-P42 has chitin-binding activity and is strongly associated with the PM, which is similar to the currently known peritrophin type PM proteins. However, TnPM-P42 represents a unique family of proteins distinctly different from the peritrophin type PM proteins in its sequence characteristics. TnPM-P42 does not contain the peritrophin domain which is present in all the currently known PM proteins, but instead has a chitin deacetylase-like domain. Sequence similarity search of the GenBank database did not result in identification of any known proteins with a significant overall sequence similarity to the TnPM-P42. However, expressed sequence tags (ESTs) from various arthropods were identified to code for proteins with high sequence similarities to TnPM-P42, indicating the presence of TnPM-P42 homologs in other arthropods. Consistent with the identification of various ESTs from arthropods, Western blot analysis demonstrated the presence of a TnPM-P42-like protein in the PMs from Heliothis virescens and Helicoverpa zea larvae. The sequence characteristics of TnPM-P42 indicate that TnPM-P42 represents a novel family of insect proteins. However, its biochemical and physiological functions require further investigation.

  5. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins

    PubMed Central

    Soni, Siddarth; Raaijmakers, Antonia J. A.; Raaijmakers, Linsey M.; Damen, J. Mirjam A.; van Stuijvenberg, Leonie; Vos, Marc A.; Heck, Albert J. R.

    2016-01-01

    Aims Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk (ID). The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies have shed light on increasingly prevalent cardiac diseases involving the ID. Insufficient knowledge of its composition makes it difficult to study these disease mechanisms in more detail and therefore here we aim expand the ID proteome. Here, using a combination of general membrane enrichment, in-depth quantitative proteomics and an intracellular location driven bioinformatics approach, we aim to discover new putative ID proteins in rat ventricular tissue. Methods and Results General membrane isolation, enriched amongst others also with ID proteins as based on presence of the established markers connexin-43 and n-cadherin, was performed using centrifugation. By mass spectrometry, we quantitatively evaluated the level of 3455 proteins in the enriched membrane fraction (EMF) and its counterpart, the soluble cytoplasmic fraction. These data were stringently filtered to generate a final set of 97 enriched, putative ID proteins. These included Cx43 and n-cadherin, but also many interesting novel candidates. We selected 4 candidates (Flotillin-2 (FLOT2), Nexilin (NEXN), Popeye-domain-containg-protein 2 (POPDC2) and thioredoxin-related-transmembrane-protein 2 (TMX2)) and confirmed their co-localization with n-cadherin in the ID of human and rat heart cryo-sections, and isolated dog cardiomyocytes. Conclusion The presented proteomics dataset of putative new ID proteins is a valuable resource for future research into this important molecular intersection of the heart. PMID:27148881

  6. A Large-Scale Quantitative Proteomic Approach To Identifying Sulfur Mustard-Induced Protein Phosphorylation Cascades

    DTIC Science & Technology

    2009-07-31

    with immobilized metal affinity chromatography to study the large-scale protein phosphorylation changes resulting from SM exposure in a human...medium, resulting in isotopically “light” and “ heavy ” cell populations, respectively. Protein samples collected from control (light-labeled) and...experimental ( heavy -labeled) cells can then be mixed in equal ratios, digested with trypsin, and analyzed by high-resolution mass spectrometry. The

  7. A Large-Scale Quantitative Proteomic Approach to Identifying Sulfur Mustard-Induced Protein Phosphorylation Cascades

    DTIC Science & Technology

    2010-01-01

    SILAC method employs 12C14N- and 13C15N-labeled amino acids added directly to the culture medium, resulting in isotopically “light” and “ heavy ” cell...populations, respectively. Protein samples collected from control (light-labeled) and experimental ( heavy -labeled) cells can then be mixed in equal...ratios, digested with trypsin, and analyzed by high-resolution mass spectrometry. The corresponding light and heavy peptides from the same protein will

  8. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes.

    PubMed

    Schallenberg-Rüdinger, Mareike; Lenz, Henning; Polsakiewicz, Monika; Gott, Jonatha M; Knoop, Volker

    2013-01-01

    The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among those carboxyterminal domain additions to plant PPR proteins, the so-called DYW domain is particularly interesting given its similarity to cytidine deaminases. The frequency of organelle C-to-U RNA editing and the diversity of DYW-type PPR proteins correlate well in plants and both were recently identified outside of land plants, in the protist Naegleria gruberi. Here we present a systematic survey of PPR protein genes and report on the identification of additional DYW-type PPR proteins in the protists Acanthamoeba castellanii, Malawimonas jakobiformis, and Physarum polycephalum. Moreover, DYW domains were also found in basal branches of multi-cellular lineages outside of land plants, including the alga Nitella flexilis and the rotifers Adineta ricciae and Philodina roseola. Intriguingly, the well-characterized and curious patterns of mitochondrial RNA editing in the slime mold Physarum also include examples of C-to-U changes. Finally, we identify candidate sites for mitochondrial RNA editing in Malawimonas, further supporting a link between DYW-type PPR proteins and C-to-U editing, which may have remained hitherto unnoticed in additional eukaryote lineages.

  9. Novel conserved group A streptococcal proteins identified by the antigenome technology as vaccine candidates for a non-M protein-based vaccine.

    PubMed

    Fritzer, Andrea; Senn, Beatrice M; Minh, Duc Bui; Hanner, Markus; Gelbmann, Dieter; Noiges, Birgit; Henics, Tamás; Schulze, Kai; Guzman, Carlos A; Goodacre, John; von Gabain, Alexander; Nagy, Eszter; Meinke, Andreas L

    2010-09-01

    Group A streptococci (GAS) can cause a wide variety of human infections ranging from asymptomatic colonization to life-threatening invasive diseases. Although antibiotic treatment is very effective, when left untreated, Streptococcus pyogenes infections can lead to poststreptococcal sequelae and severe disease causing significant morbidity and mortality worldwide. To aid the development of a non-M protein-based prophylactic vaccine for the prevention of group A streptococcal infections, we identified novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by S. pyogenes. Vaccine candidate antigens were further selected based on animal protection in murine lethal-sepsis models with intranasal or intravenous challenge with two different M serotype strains. The nine protective antigens identified are highly conserved; eight of them show more than 97% sequence identity in 13 published genomes as well as in approximately 50 clinical isolates tested. Since the functions of the selected vaccine candidates are largely unknown, we generated deletion mutants for three of the protective antigens and observed that deletion of the gene encoding Spy1536 drastically reduced binding of GAS cells to host extracellular matrix proteins, due to reduced surface expression of GAS proteins such as Spy0269 and M protein. The protective, highly conserved antigens identified in this study are promising candidates for the development of an M-type-independent, protein-based vaccine to prevent infection by S. pyogenes.

  10. Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination.

    PubMed

    Kegel, Linde; Jaegle, Martine; Driegen, Siska; Aunin, Eerik; Leslie, Kris; Fukata, Yuko; Watanabe, Masahiko; Fukata, Masaki; Meijer, Dies

    2014-04-01

    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution.

  11. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    EPA Science Inventory

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM
    IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2

    * Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue1
    1The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  12. CPTAC Investigators Identify Rogue Breast Tumor Proteins That Point To Potential Drug Therapies - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    For patients with difficult-to-treat cancers, doctors increasingly rely on genomic testing of tumors to identify errors in the DNA that indicate a tumor can be targeted by existing therapies. But this approach overlooks rogue proteins that may be driving cancer cells and also could be targeted with existing treatments, according to research.

  13. Results of a screening programme to identify plants or plant extracts that inhibit ruminal protein degradation.

    PubMed

    Selje, N; Hoffmann, E M; Muetzel, S; Ningrat, R; Wallace, R J; Becker, K

    2007-07-01

    One aim of the EC Framework V project, 'Rumen-up' (QLK5-CT-2001-00 992), was to find plants or plant extracts that would inhibit the nutritionally wasteful degradation of protein in the rumen. A total of 500 samples were screened in vitro using 14C-labelled casein in a 30-min incubation with ruminal digesta. Eight were selected for further investigation using a batch fermentation system and soya protein and bovine serum albumin as proteolysis substrates; proteolysis was monitored over 12 h by the disappearance of soluble protein and the production of branched SCFA and NH3. Freeze-dried, ground foliage of Peltiphyllum peltatum, Helianthemum canum, Arbutus unedo, Arctostaphylos uva-ursi and Knautia arvensis inhibited proteolysis (P < 0.05), while Daucus carota, Clematis vitalba and Erica arborea had little effect. Inhibition by the first four samples appeared to be caused by the formation of insoluble tannin-protein complexes. The samples were rich in phenolics and inhibition was reversed by polyethyleneglycol. In contrast, K. arvensis contained low concentrations of phenolics and no tannins, had no effect in the 30-min assay, yet inhibited the degradation rate of soluble protein (by 14 %, P < 0.0001) and the production of branched SCFA (by 17 %, P < 0.05) without precipitating protein in the 12-h batch fermentation. The effects showed some resemblance to those obtained in parallel incubations containing 3 mum-monensin, suggesting that K. arvensis may be a plant-derived feed additive that can suppress growth and activity of key proteolytic ruminal micro-organisms in a manner similar to that already well known for monensin.

  14. Characterization of RAB-like4, the first identified RAB-like protein from Trypanosoma cruzi with GTPase activity.

    PubMed

    Ramos, Fabiane Pereira; Araripe, Júlia Rolão; Urményi, Turán Péter; Silva, Rosane; Cunha e Silva, Narcisa Leal; Leite Fontes, Carlos Frederico; da Silveira, José Franco; Rondinelli, Edson

    2005-08-05

    RAB proteins, which belong to the RAS superfamily, regulate exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. Few RAB proteins have been identified in parasites. Molecular markers for cellular compartments are important to studies concerning about the protein traffic in Trypanosoma cruzi, the causal agent of Chagas disease. In this work, we describe the characterization of TcRABL4, the first RAB-like gene identified in T. cruzi (GenBank Accession No.: ), present as a single-copy gene. TcRABL4 contains all five consensus RAB motifs but lacks cysteine residues at the C terminus, which are essential to isoprenylation, an absolute prerequisite for membrane association of these proteins. TcRABL4 is a functional GTPase that is able to bind and hydrolyze GTP, and its gene is transcribed as a single 1.2 kb mRNA in epimastigotes. TcRABL4 appears to be differentially regulated in the three cell forms of the parasite, and the protein is not associated to membranes, unlike other RAB proteins. It is possible that TcRABL4 may be a member of a novel family of small GTPases.

  15. A Tyrosine-Rich Cell Surface Protein in the Diatom Amphora coffeaeformis Identified through Transcriptome Analysis and Genetic Transformation

    PubMed Central

    Buhmann, Matthias T.; Poulsen, Nicole; Klemm, Jennifer; Kennedy, Matthew R.; Sherrill, C. David; Kröger, Nils

    2014-01-01

    Diatoms are single-celled eukaryotic microalgae that are ubiquitously found in almost all aquatic ecosystems, and are characterized by their intricately structured SiO2 (silica)-based cell walls. Diatoms with a benthic life style are capable of attaching to any natural or man-made submerged surface, thus contributing substantially to both microbial biofilm communities and economic losses through biofouling. Surface attachment of diatoms is mediated by a carbohydrate- and protein- based glue, yet no protein involved in diatom underwater adhesion has been identified so far. In the present work, we have generated a normalized transcriptome database from the model adhesion diatom Amphora coffeaeformis. Using an unconventional bioinformatics analysis we have identified five proteins that exhibit unique amino acid sequences resembling the amino acid composition of the tyrosine-rich adhesion proteins from mussel footpads. Establishing the first method for the molecular genetic transformation of A. coffeaeformis has enabled investigations into the function of one of these proteins, AC3362, through expression as YFP fusion protein. Biochemical analysis and imaging by fluorescence microscopy revealed that AC3362 is not involved in adhesion, but rather plays a role in biosynthesis and/or structural stability of the cell wall. The methods established in the present study have paved the way for further molecular studies on the mechanisms of underwater adhesion and biological silica formation in the diatom A. coffeaeformis. PMID:25372470

  16. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    PubMed Central

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  17. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-04-01

    Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806.

  18. A tyrosine-rich cell surface protein in the diatom Amphora coffeaeformis identified through transcriptome analysis and genetic transformation.

    PubMed

    Buhmann, Matthias T; Poulsen, Nicole; Klemm, Jennifer; Kennedy, Matthew R; Sherrill, C David; Kröger, Nils

    2014-01-01

    Diatoms are single-celled eukaryotic microalgae that are ubiquitously found in almost all aquatic ecosystems, and are characterized by their intricately structured SiO2 (silica)-based cell walls. Diatoms with a benthic life style are capable of attaching to any natural or man-made submerged surface, thus contributing substantially to both microbial biofilm communities and economic losses through biofouling. Surface attachment of diatoms is mediated by a carbohydrate- and protein- based glue, yet no protein involved in diatom underwater adhesion has been identified so far. In the present work, we have generated a normalized transcriptome database from the model adhesion diatom Amphora coffeaeformis. Using an unconventional bioinformatics analysis we have identified five proteins that exhibit unique amino acid sequences resembling the amino acid composition of the tyrosine-rich adhesion proteins from mussel footpads. Establishing the first method for the molecular genetic transformation of A. coffeaeformis has enabled investigations into the function of one of these proteins, AC3362, through expression as YFP fusion protein. Biochemical analysis and imaging by fluorescence microscopy revealed that AC3362 is not involved in adhesion, but rather plays a role in biosynthesis and/or structural stability of the cell wall. The methods established in the present study have paved the way for further molecular studies on the mechanisms of underwater adhesion and biological silica formation in the diatom A. coffeaeformis.

  19. Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios.

    PubMed

    Siddharthan, A; Kumar, T S Sampath; Seshadri, S K

    2009-08-01

    Nanocrystalline apatites with different Ca/P ratios were synthesized using eggshell as a calcium source by microwave processing. The apatites were found to have a minor amount of Mg, Sr, Si and Na ions inherited from the eggshells. The presence of several foreign ions results in a perturbed lattice structure indicated by an increase in lattice constants and shift in vibrational frequencies of the functional groups. The apatites were heat treated to investigate the influence of foreign ions on thermal stability. The minor amounts of ions do not affect the thermal stability. The differences in thermal behaviour of these apatites were due to the presence of HPO(2-)(4) ions only and not due to other ions because of their low content.

  20. Aryl Hydrocarbon Receptor-Interacting Protein (AIP) N-Terminus Gene Mutations Identified in Pituitary Adenoma Patients Alter Protein Stability and Function.

    PubMed

    Formosa, Robert; Vassallo, Josanne

    2017-03-02

    Mutations spanning the entire aryl hydrocarbon receptor-interacting protein (AIP) gene have been found in isolated familial cases of pituitary adenomas (PA). Missense mutations located in the N-terminus of the gene have been identified in several patients. However, the functional significance of these mutations remains a matter of controversy. In most studies, the N-terminus of AIP has been shown to regulate protein stability and subcellular localization of the AIP-AHR-HSP90 complex but not to be involved in protein-protein interactions. Other studies found that the N-terminal domain interacts directly with other proteins. The aim of this study was to analyze whether specific N-terminus AIP mutations identified in PA patients would be functionally different from wild-type (WT) AIP. In vitro analyses were used to assess the role of known N-terminus variants, a locally identified mutant, R9Q, and three other commonly genotyped N-terminus mutations R16H, V49M and K103R are found in PA patients. Given the functional effect of WT AIP on cAMP signalling alterations caused by N-terminus mutants on this pathway were also analyzed in GH3 cells. Results indicate that N-terminus mutations lead to de-regulation of the effect of WT AIP on cAMP signalling and increased cAMP thresholds in GH3 cells resulting in increased growth hormone (GH) secretion. Cycloheximide chase analysis identified a variation in protein degradation patterns between WT and N-terminus variants. Therefore, both functional and structural studies reveal that N-terminus mutations in the AIP gene alter protein behaviour significantly and hence can truly be pathogenic in nature.

  1. Assessment of diagenetic alteration of dinosaur eggshells through petrography and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.

    2012-12-01

    Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.

  2. Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals

    PubMed Central

    Gill, Harindarpal S.

    2010-01-01

    The environment of individual tryptophans in known protein structures and the effectiveness of four commercial robotic UV microscopes to illuminate tryptophan-containing protein crystals by either tryptophan fluorescence (epi-illumination) or absorbance (transmission) are evaluated. In agreement with other studies, tryptophan residues are found on average to be largely buried in protein structures (with ∼84% of their surface area buried) and to be surrounded by partially polar microenvironments (with ∼43% of their surface area covered by polar residues), which suggests an inherent degree of fluorescence signal quenching. In bacterial genomes, up to one-third (∼18.5% on average) of open reading frames are deficient in tryptophan. In the laboratory, because of the attenuation of UV light by the media commonly used in sitting-drop and hanging-drop crystallization trials, it was often necessary to simplify the light path by manually removing or inverting the supporting media. Prolonged exposure (minutes) to UV light precipitates some protein samples. The absorbance spectra of many commercially available media in crystallization trials are presented. The advantages of using tryptophan absorbance over fluorescence for characterizing crystals are discussed. PMID:20208182

  3. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers.

    PubMed

    Hass, Matthew R; Liow, Hien-Haw; Chen, Xiaoting; Sharma, Ankur; Inoue, Yukiko U; Inoue, Takayoshi; Reeb, Ashley; Martens, Andrew; Fulbright, Mary; Raju, Saravanan; Stevens, Michael; Boyle, Scott; Park, Joo-Seop; Weirauch, Matthew T; Brent, Michael R; Kopan, Raphael

    2015-08-20

    We developed Split DamID (SpDamID), a protein complementation version of DamID, to mark genomic DNA bound in vivo by interacting or juxtapositioned transcription factors. Inactive halves of DAM (DNA adenine methyltransferase) were fused to protein pairs to be queried. Either direct interaction between proteins or proximity enabled DAM reconstitution and methylation of adenine in GATC. Inducible SpDamID was used to analyze Notch-mediated transcriptional activation. We demonstrate that Notch complexes label RBP sites broadly across the genome and show that a subset of these complexes that recruit MAML and p300 undergo changes in chromatin accessibility in response to Notch signaling. SpDamID differentiates between monomeric and dimeric binding, thereby allowing for identification of half-site motifs used by Notch dimers. Motif enrichment of Notch enhancers coupled with SpDamID reveals co-targeting of regulatory sequences by Notch and Runx1. SpDamID represents a sensitive and powerful tool that enables dynamic analysis of combinatorial protein-DNA transactions at a genome-wide level.

  4. Identifying the adaptive mechanism in globular proteins: Fluctuations in densely packed regions manipulate flexible parts

    NASA Astrophysics Data System (ADS)

    Yilmaz, Lutfu Safak; Atilgan, Ali Rana

    2000-09-01

    A low-resolution structural model based on the packing geometry of α-carbons is utilized to establish a connection between the flexible and rigid parts of a folded protein. The former commonly recognizes a complementing molecule for making a complex, while the latter manipulates the necessary conformational change for binding. We attempt analytically to distinguish this control architecture that intrinsically exists in globular proteins. First with two-dimensional simple models, then for a native protein, bovine pancreatic trypsin inhibitor, we explicitly demonstrate that inserting fluctuations in tertiary contacts supported by the stable core, one can regulate the displacement of residues on loop regions. The positional fluctuations of the flexible regions are annihilated by the rest of the protein in conformity with the Le Chatelier-Braun principle. The results indicate that the distortion of the principal nonbonded contacts between highly packed residues is accompanied by that of the slavery fluctuations that are widely distributed over the native structure. These positional arrangements do not appear in a reciprocal relation between a perturbation and the associated response; the effect of a movement of residue i on residue j is not equal to that of the same movement of residue j on residue i.

  5. Can You Solve the Crime? Using Agarose Electrophoresis To Identify an Unknown Colored Protein.

    ERIC Educational Resources Information Center

    Wiltfong, Cynthia L.; Chester, Emily; Albertin, Faith; Smith, Julia; Hall, Judith C.; Arth, Emily C.; Martin, Stephanie

    2003-01-01

    Describes a lab that introduces agarose electrophoresis techniques and basic information on proteins to middle school and high school students. Insists that, built around a scenario in which students must solve a crime, the lab has real-world applications that should spark student interest. (KHR)

  6. New Classes of Mind Bomb-Interacting Proteins Identified from Yeast Two-Hybrid Screens

    PubMed Central

    Cheng, Chun-Mei; Xu, Haoying; Hsu, Chia-Hao; Jiang, Yun-Jin

    2014-01-01

    Notch signaling pathway defines an evolutionarily conserved mechanism in cell-fate determination in a broad spectrum of developmental processes through local cell interactions. mind bomb (mib) encodes an E3 ubiquitin ligase that is involved in Notch activation through Delta ubiquitylation and internalization. To further dissect the function of Mib, two yeast two-hybrid screens for zebrafish Mib/Mib2-binding proteins with different strategies have been performed. 81 putative interesting proteins were discovered and classified into six groups: ubiquitin proteasome pathway, cytoskeleton, trafficking, replication/transcription/translation factors, cell signaling and others. Confirmed by coimmunoprecipitation (Co-IP), Mib interacted with four tested proteins: ubiquitin specific protease 1 (Usp1), ubiquitin specific protease 9 (Usp9), tumor-necrosis-factor-receptor-associated factor (TRAF)-binding domain (Trabid)/zinc finger, RAN-binding domain containing 1 (Zranb1) and hypoxia-inducible factor 1, alpha subunit inhibitor (Hif1an)/factor inhibiting HIF 1 (Fih-1). Usp1, Usp9, Trabid and Fih-1 also bound to zebrafish Mib2, a Mib homolog with similar structural domains and functions. Both Mib and Mib2 can ubiquitylate Trabid and Fih-1, indicating a potential regulating role of Mib and Mib2 on Trabid and Fih-1 and, furthermore, the possible involvement of Notch signaling in hypoxia-regulated differentiation, tumorigenesis and NF-κB pathway. Finally, functions of confirmed Mib/Mib2-interacting proteins are collated, summarized and hypothesized, which depicts a regulating network beyond Notch signaling. PMID:24714733

  7. Stable isotopes in modern ostrich eggshell: a calibration for paleoenvironmental applications in semi-arid regions of southern Africa

    NASA Astrophysics Data System (ADS)

    Johnson, Beverly J.; Fogel, Marilyn L.; Miller, Gifford H.

    1998-07-01

    An isotopic study of modern ostrich eggshell (OES) is presented as a calibration for terrestrial paleoenvironmental applications. The stable carbon and nitrogen isotope fractionations of OES were determined for various organic fractions of eggshell by measuring the isotopic ratios of modern OES samples collected from controlled settings (i.e., zoos and farms) and corresponding ostrich diet. These fractionations were used to evaluate the relationship between the isotope composition of OES laid by free-range birds living in South Africa and their environment. The carbon isotope composition of the total organic and inorganic fractions of OES were enriched by 2 and 16‰, respectively, relative to the diet. In natural settings, the δ 13C values of both the organic and inorganic fractions of OES reflected that of ambient vegetation, with a noted dietary preference for C 3 plants. The nitrogen isotope composition of the total organic fraction of OES was 3‰ enriched relative to the diet, and varied inversely with mean annual precipitation (MAP) in natural settings. A decrease in MAP of 100 mm was accompanied by an increase in δ 15N values of approximately 1‰. The oxygen isotope composition of the inorganic fraction of the OES varied linearly with that of the drinking water in controlled settings. However, in natural settings, the δ 18O of OES values were highly variable and are thought to be controlled primarily by the δ 18O of ingested plant leaf-water. The stability of the isotopic signal in the organic fraction of OES through geologic time was evaluated through a series of heating experiments. The δ 13C and δ 15N values of the total organic fraction of heated OES increased by less than 0.6 and 0.2‰ for carbon and nitrogen, respectively, in spite of extensive diagenetic alteration and changes in the amino acid composition of the samples. The results of this study indicate that the stable carbon and nitrogen isotope composition of OES is relatively stable

  8. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action

    PubMed Central

    Wang, Pengcheng; Xue, Liang; Batelli, Giorgia; Lee, Shinyoung; Hou, Yueh-Ju; Van Oosten, Michael J.; Zhang, Huiming; Tao, W. Andy; Zhu, Jian-Kang

    2013-01-01

    Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments. PMID:23776212

  9. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    PubMed

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-10-13

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  10. Eggshell: A green adsorbent for heavy metal removal in an MBR system.

    PubMed

    Pettinato, M; Chakraborty, S; Arafat, Hassan A; Calabro', V

    2015-11-01

    Presence of heavy metals as well as different metal ions in treated wastewater is a problem for the environment as well as human health. This paper aims to investigate the possibility to combine an MBR (membrane biological reactor) with an adsorption process onto powdered eggshell and eggshell membrane in order to improve metal removal from wastewater. The first step of the experimental analysis consists of the evaluation of the compatibility between the two processes. Then, a study about sorbent concentration and size effect on fouling was conducted, because the use of this kind of sorbent could affect membrane performance. The second step of the work concerns the check up of eggshell removal capacity as a function of sorbent size, achieved treating an aqueous solution containing Al(3+), Fe(2+) and Zn(2+) as water pollutants. Finally, synthetic wastewater, containing the metal species, was treated by two alternative process schemes: one of them performs the metal uptake in a dedicated adsorption unit, before the MBR. In the second, the two processes take place in the same unit. Results demonstrate that the optimization of the first option could be a solution to MBR upgrading.

  11. The physical properties of poly(l-lactide) and functionalized eggshell powder composites.

    PubMed

    Li, Yi; Xin, Shuangyang; Bian, Yijie; Xu, Kun; Han, Changyu; Dong, Lisong

    2016-04-01

    Aiming at improved crystallization performance and simultaneously enhanced solid-state properties of poly(l-lactide) such as mechanical properties and enzymatic hydrolysis. A novel functionalized eggshell powder decorated with calcium phenylphosphonic acid (NES) was synthesized via the chemical reaction between phenylphosphonic acid and calcium ion on the surface of eggshell powder to form effective nucleating surface for poly(l-lactide). The resultant NES was incorporated into PLLA matrix to form fully biodegradable composites by melt blending, which exhibited superior crystallization, mechanical properties, and enzymatic hydrolysis. Upon the addition of 20 wt% NES, the crystallization half-time of a PLLA/NES composite decreased from 27.09 to 0.69 min at 130°C, compared to that of neat PLLA. The storage and tensile moduli of the composites increased with increasing NES loadings. Even with 20 wt% NES, the composite still exhibited good mechanical properties with tensile strength of 53.4 MPa, tensile modulus of 2460MPa and elongation at break of 2.5%, respectively. Moreover, it was interesting to find that the enzymatic hydrolytic degradation rates had been enhanced pronouncedly in the PLLA/NES composites than in neat PLLA. Such high performance biocomposites have great potential in expanding the utilization of eggshell powder from sustainable resources and practical application as PLLA-based bioplastic.

  12. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis.

    PubMed

    Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape

    2011-09-01

    Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.

  13. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape

    2011-09-01

    Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.

  14. Description of adults, eggshells, nestling, fledgling, and nest of the poo-uli

    USGS Publications Warehouse

    Engilis, A.; Pratt, T.K.; Kepler, C.B.; Ecton, A.M.; Fluetsch, K.M.

    1996-01-01

    The Poo-uli (Melamprosops phaeosoma), a Hawaiian honeycreeper discovered on the island of Maui in 1973 and now near extinction, is represented in museums by only two specimens. Based on the first observations of a nesting pair and re-examination of the two specimens, we describe the adult male and female, eggshells, nestling, and fledgling Poo-uli. Poo-uli are sexually monochromatic but males are brighter. The male is brown above, whitish below, and has an extensive black mask bordered with gray on the crown and a distinct white auricular patch. The female differs in having a similar facial pattern not as sharply demarked and in having a grayish wash below. The observed fledgling resembled the adults but was paler brown above and whitish below and had a much smaller black mask and pale mandible. We tentatively assigned both museum specimens to first basic plumage because they resembled the adult female but retained some pale juvenal coloration in the mandible. We also determined from dissection that the holotype was an immature male; we could not determine sex of the paratype. The nest was an open cup of twigs and bryophytes with a thin lining of fern rootlets. The nest contained eggshell fragments with brown-gray speckling against a whitish background. The nests, eggshells, and nestlings resemble those of other Hawaiian honeycreepers.

  15. Eggshell colour does not predict measures of maternal investment in eggs of Turdus thrushes

    NASA Astrophysics Data System (ADS)

    Cassey, Phillip; Ewen, John G.; Blackburn, Tim M.; Hauber, Mark E.; Vorobyev, Misha; Marshall, N. Justin

    2008-08-01

    The striking diversity of avian eggshell colour has long fascinated biologists. Recently, it has been proposed that the blue-green colour of some eggs may function as a post-mating sexually selected signal of female phenotypic quality to their mates to induce higher allocation of paternal care. It has been suggested that maternally deposited yolk carotenoids may be the specific aspect of reproductive quality that the female is signalling via eggshell colour. We use the known properties of the thrush visual system ( Turdus sp.) to calculate photon capture for the four single cone photoreceptors, and the principal member of the double cone class for eggs in clutches of two introduced European thrush species ( Turdus merula and Turdus philomelos) in New Zealand. We show that differences in the avian-perceived colours of individual eggs are not consistently correlated with different measures of maternal investment in the egg. Given the growing extent of the knowledge between maternal quality, parental investment and eggshell pigmentation across avian taxa, we encourage the use of avian perceptual modelling for testing alternative non-signalling explanations for the structural and physiological basis of these relationships.

  16. Eggshell thinning and residues in mallards on year after DDE exposure

    USGS Publications Warehouse

    Haegele, M.A.; Hudson, R.H.

    1974-01-01

    A group of 16 mallard hens (Anas platyrhynchos), that had been given feed containing 40 ppm ofp,p'-DDE for 96 days, laid eggs with shells averaging about 15%?20% thinner than those of ten control birds during and up to 42 days after treatment. In eight of the treated birds killed at that time, whole-body DDE residues averaged 33.1 ppm (wet weight). The other eight treated birds and ten controls were kept through the winter with no additional DDE exposure and penned separately five days for individual egg collection about three weeks after laying began in spring. At that time (nearly 11 months after DDE feeding had stopped), the treated birds laid eggs with shells averaging 7.4% thinner than control eggshells (significant at P<0.05) and their whole-body DDE residues averaged 9.6 ppm (wet weight). Variations in eggshell thickness and DDE residues were considerable among treated birds. However, regression analysis showed moderate negative correlations (r=?0.51 to ?0.62) between eggshell thickness and DDE residues in whole bodies and eggs, and strong positive correlations (r=0.73 and 0.91) between DDE residues in whole bodies and in eggs.

  17. Discovery Proteomics Identifies a Molecular Link between the Coatomer Protein Complex I and Androgen Receptor-dependent Transcription*

    PubMed Central

    Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.

    2016-01-01

    Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR

  18. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell.

    PubMed

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-03-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation.

  19. Differential association of chromatin proteins identifies BAF60a/SMARCD1 as a regulator of embryonic stem cell differentiation.

    PubMed

    Alajem, Adi; Biran, Alva; Harikumar, Arigela; Sailaja, Badi Sri; Aaronson, Yair; Livyatan, Ilana; Nissim-Rafinia, Malka; Sommer, Andreia Gianotti; Mostoslavsky, Gustavo; Gerbasi, Vincent R; Golden, Daniel E; Datta, Arnab; Sze, Siu Kwan; Meshorer, Eran

    2015-03-31

    Embryonic stem cells (ESCs) possess a distinct chromatin conformation maintained by specialized chromatin proteins. To identify chromatin regulators in ESCs, we developed a simple biochemical assay named D-CAP (differential chromatin-associated proteins), using brief micrococcal nuclease digestion of chromatin, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Using D-CAP, we identified several differentially chromatin-associated proteins between undifferentiated and differentiated ESCs, including the chromatin remodeling protein SMARCD1. SMARCD1 depletion in ESCs led to altered chromatin and enhanced endodermal differentiation. Gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggested that SMARCD1 is both an activator and a repressor and is enriched at developmental regulators and that its chromatin binding coincides with H3K27me3. SMARCD1 knockdown caused H3K27me3 redistribution and increased H3K4me3 around the transcription start site (TSS). One of the identified SMARCD1 targets was Klf4. In SMARCD1-knockdown clones, KLF4, as well as H3K4me3 at the Klf4 locus, remained high and H3K27me3 was abolished. These results propose a role for SMARCD1 in restricting pluripotency and activating lineage pathways by regulating H3K27 methylation.

  20. Direct Metal Transfer Between Periplasmic Proteins Identifies a Bacterial Copper Chaperone

    SciTech Connect

    Bagai, I.; Rensing, C.; Blackburn, N.; McEvoy, M.M.

    2009-05-11

    Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In Gram-negative bacteria, copper is required in only small amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the Escherichia coli Cu(I)/Ag(I) efflux system undergo a metal-dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homologue of CusF with a 51% identical sequence and a similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of Gram-negative bacteria, serving to protect the periplasm from metal-mediated damage.

  1. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.

    PubMed

    Bagai, Ireena; Rensing, Christopher; Blackburn, Ninian J; McEvoy, Megan M

    2008-11-04

    Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In gram-negative bacteria, copper is required in only small amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the Escherichia coli Cu(I)/Ag(I) efflux system undergo a metal-dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homologue of CusF with a 51% identical sequence and a similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of gram-negative bacteria, serving to protect the periplasm from metal-mediated damage.

  2. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis.

    PubMed

    Jia, Huijuan; Hanate, Manaka; Aw, Wanping; Itoh, Hideomi; Saito, Kenji; Kobayashi, Shoko; Hachimura, Satoshi; Fukuda, Shinji; Tomita, Masaru; Hasebe, Yukio; Kato, Hisanori

    2017-03-08

    Gut microbiota is an essential factor in the shaping of intestinal immune system development and driving inflammation in inflammatory bowel disease (IBD). We report the effects and microbe-host interactions underlying an intervention using fine powder of eggshell membrane (ESM) against IBD. ESM attenuated lipopolysaccharide-induced inflammatory cytokine production and promoted the Caco-2 cell proliferation by up-regulating growth factors in vitro. In a murine model of dextran sodium sulphate-induced colitis, ESM significantly suppressed the disease activity index and colon shortening. These effects were associated with significant ameliorations of gene expressions of inflammatory mediators, intestinal epithelial cell proliferation, restitution-related factors and antimicrobial peptides. Multifaceted integrated omics analyses revealed improved levels of energy metabolism-related genes, proteins and metabolites. Concomitantly, cecal metagenomic information established an essential role of ESM in improving dysbiosis characterized by increasing the diversity of bacteria and decreasing absolute numbers of pathogenic bacteria such as Enterobacteriaceae and E. coli, as well as in the regulation of the expansion of Th17 cells by suppressing the overgrowth of segmented filamentous bacteria. Such modulations have functional effects on the host; i.e., repairing the epithelium, regulating energy requirements and eventually alleviating mucosal inflammation. These findings are first insights into ESM's modulation of microbiota and IBD suppression, providing new perspectives on the prevention/treatment of IBD.

  3. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis

    PubMed Central

    Jia, Huijuan; Hanate, Manaka; Aw, Wanping; Itoh, Hideomi; Saito, Kenji; Kobayashi, Shoko; Hachimura, Satoshi; Fukuda, Shinji; Tomita, Masaru; Hasebe, Yukio; Kato, Hisanori

    2017-01-01

    Gut microbiota is an essential factor in the shaping of intestinal immune system development and driving inflammation in inflammatory bowel disease (IBD). We report the effects and microbe-host interactions underlying an intervention using fine powder of eggshell membrane (ESM) against IBD. ESM attenuated lipopolysaccharide-induced inflammatory cytokine production and promoted the Caco-2 cell proliferation by up-regulating growth factors in vitro. In a murine model of dextran sodium sulphate-induced colitis, ESM significantly suppressed the disease activity index and colon shortening. These effects were associated with significant ameliorations of gene expressions of inflammatory mediators, intestinal epithelial cell proliferation, restitution-related factors and antimicrobial peptides. Multifaceted integrated omics analyses revealed improved levels of energy metabolism-related genes, proteins and metabolites. Concomitantly, cecal metagenomic information established an essential role of ESM in improving dysbiosis characterized by increasing the diversity of bacteria and decreasing absolute numbers of pathogenic bacteria such as Enterobacteriaceae and E. coli, as well as in the regulation of the expansion of Th17 cells by suppressing the overgrowth of segmented filamentous bacteria. Such modulations have functional effects on the host; i.e., repairing the epithelium, regulating energy requirements and eventually alleviating mucosal inflammation. These findings are first insights into ESM’s modulation of microbiota and IBD suppression, providing new perspectives on the prevention/treatment of IBD. PMID:28272447

  4. Effect of spatial resolution of soil data on predictions of eggshell trace element levels in the Rook Corvus frugilegus.

    PubMed

    Orłowski, Grzegorz; Siebielec, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2016-12-01

    Although a considerable research effort has gone into studying the dietary pathways of metals to the bodies of laying female birds and their eggs in recent years, no detailed investigations have yet been carried out relating the properties of the biogeochemical environment at large spatial scales to eggshell trace element levels in typical soil-invertebrate feeding birds under natural conditions. We used data from a large-scale nationwide monitoring survey of soil quality in Poland (3724 sampling points from the 43 792 available) to predict levels of five trace elements (copper [Cu], cadmium [Cd], nickel [Ni], zinc [Zn] and lead [Pb]) in Rook Corvus frugilegus eggshells from 42 breeding colonies. Our major aim was to test whether differences exist in the explanatory power of soil data (acidity, content of elements and organic matter, and particle size) used as a correlate of concentrations of eggshell trace elements among four different distances (5, 10, 15 and 20 km) around rookeries. Over all four distances around the rookeries only the concentrations of Cu and Cd in eggshells were positively correlated with those in soil, while eggshell Pb was correlated with the soil Pb level at the two longest distances (15 and 20 km) around the rookeries. The physical properties of soil (primarily the increase in pH) adversely affected eggshell Cd and Pb concentrations. The patterns and factors governing metal bioaccumulation in soil invertebrates and eggshells appear to be coincident, which strongly suggests a general similarity in the biochemical pathways of elements at different levels of the food web. The increasing acidification of arable soil as a result of excessive fertilisation and over-nitrification can enhance the bioavailability of toxic elements to laying females and their eggs.

  5. Combining in vitro protein detection and in vivo antibody detection identifies potential vaccine targets against Staphylococcus aureus during osteomyelitis.

    PubMed

    den Reijer, P Martijn; Sandker, Marjan; Snijders, Susan V; Tavakol, Mehri; Hendrickx, Antoni P A; van Wamel, Willem J B

    2017-02-01

    Currently, little is known about the in vivo human immune response against Staphylococcus aureus during a biofilm-associated infection, such as osteomyelitis, and how this relates to protein production in biofilms in vitro. Therefore, we characterized IgG responses in 10 patients with chronic osteomyelitis against 50 proteins of S. aureus, analyzed the presence of these proteins in biofilms of the infecting isolates on polystyrene (PS) and human bone in vitro, and explored the relation between in vivo and in vitro data. IgG levels against 15 different proteins were significantly increased in patients compared to healthy controls. Using a novel competitive Luminex-based assay, eight of these proteins [alpha toxin, Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FlipR), glucosaminidase, iron-responsive surface determinants A and H, the putative ABC transporter SACOL0688, staphylococcal complement inhibitor (SCIN), and serine-aspartate repeat-containing protein E (SdrE)] were also detected in a majority of the infecting isolates during biofilm formation in vitro. However, 4 other proteins were detected in only a minority of isolates in vitro while, vice versa, 7 proteins were detected in multiple isolates in vitro but not associated with significantly increased IgG levels in patients. Detection of proteins was largely confirmed using a transcriptomic approach. Our data provide further insights into potential therapeutic targets, such as for vaccination, to reduce S. aureus virulence and biofilm formation. At the same time, our data suggest that either in vitro or immunological in vivo data alone should be interpreted cautiously and that combined studies are necessary to identify potential targets.

  6. On the Design of Broad Based Screening Assays to Identify Potential Pharmacological Chaperones of Protein Misfolding Diseases†

    PubMed Central

    Naik, Subhashchandra; Zhang, Na; Gao, Phillip; Fisher, Mark T.

    2013-01-01

    Correcting aberrant folds that develop during protein folding disease states is now an active research endeavor that is attracting increasing attention from both academic and industrial circles. One particular approach focuses on developing or identifying small molecule correctors or pharmacological chaperones that specifically stabilize the native fold. Unfortunately, the limited screening platforms available to rapidly identify or validate potential drug candidates are usually inadequate or slow because the folding disease proteins in question are often transiently folded and/or aggregation-prone, complicating and/or interfering with the assay outcomes. In this review, we outline and discuss the numerous platform options currently being employed to identify small molecule therapeutics for folding diseases. Finally, we describe a new stability screening approach that is broad based and is easily applicable toward a very large number of both common and rare protein folding diseases. The label free screening method described herein couples the promiscuity of the GroEL binding to transient aggregation-prone hydrophobic folds with surface plasmon resonance enabling one to rapidly identify potential small molecule pharmacological chaperones. PMID:23339304

  7. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis.

    PubMed

    Culver, Brady P; Savas, Jeffrey N; Park, Sung K; Choi, Jeong H; Zheng, Shuqiu; Zeitlin, Scott O; Yates, John R; Tanese, Naoko

    2012-06-22

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.

  8. Proteomic Analysis of Wild-type and Mutant Huntingtin-associated Proteins in Mouse Brains Identifies Unique Interactions and Involvement in Protein Synthesis*

    PubMed Central

    Culver, Brady P.; Savas, Jeffrey N.; Park, Sung K.; Choi, Jeong H.; Zheng, Shuqiu; Zeitlin, Scott O.; Yates, John R.; Tanese, Naoko

    2012-01-01

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis. PMID:22556411

  9. Strategy for identifying dendritic cell-processed CD4+ T cell epitopes from the HIV gag p24 protein.

    PubMed

    Bozzacco, Leonia; Yu, Haiqiang; Dengjel, Jörn; Trumpfheller, Christine; Zebroski, Henry A; Zhang, Nawei; Küttner, Victoria; Ueberheide, Beatrix M; Deng, Haiteng; Chait, Brian T; Steinman, Ralph M; Mojsov, Svetlana; Fenyö, David

    2012-01-01

    Mass Spectrometry (MS) is becoming a preferred method to identify class I and class II peptides presented on major histocompability complexes (MHC) on antigen presenting cells (APC). We describe a combined computational and MS approach to identify exogenous MHC II peptides presented on mouse spleen dendritic cells (DCs). This approach enables rapid, effective screening of a large number of possible peptides by a computer-assisted strategy that utilizes the extraordinary human ability for pattern recognition. To test the efficacy of the approach, a mixture of epitope peptide mimics (mimetopes) from HIV gag p24 sequence were added exogenously to Fms-like tyrosine kinase 3 ligand (Flt3L)-mobilized splenic DCs. We identified the exogenously added peptide, VDRFYKTLRAEQASQ, and a second peptide, DRFYKLTRAEQASQ, derived from the original exogenously added 15-mer peptide. Furthermore, we demonstrated that our strategy works efficiently with HIV gag p24 protein when delivered, as vaccine protein, to Flt3L expanded mouse splenic DCs in vitro through the DEC-205 receptor. We found that the same MHC II-bound HIV gag p24 peptides, VDRFYKTLRAEQASQ and DRFYKLTRAEQASQ, were naturally processed from anti-DEC-205 HIV gag p24 protein and presented on DCs. The two identified VDRFYKTLRAEQASQ and DRFYKLTRAEQASQ MHC II-bound HIV gag p24 peptides elicited CD4(+) T-cell mediated responses in vitro. Their presentation by DCs to antigen-specific T cells was inhibited by chloroquine (CQ), indicating that optimal presentation of these exogenously added peptides required uptake and vesicular trafficking in mature DCs. These results support the application of our strategy to identify and characterize peptide epitopes derived from vaccine proteins processed by DCs and thus has the potential to greatly accelerate DC-based vaccine development.

  10. Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component

    PubMed Central

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M.; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Vidalain, Pierre-Olivier

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus. PMID:22258240

  11. Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component.

    PubMed

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Tangy, Frédéric; Vidalain, Pierre-Olivier

    2012-03-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus.

  12. Altering the thermal resistance of foodborne bacterial pathogens with an eggshell membrane waste by-product.

    PubMed

    Poland, A L; Sheldon, B W

    2001-04-01

    Eggshells from egg-breaking operations are a significant waste disposal problem. Thus, the development of value-added by-products from this waste would be welcomed by the industry. The ability of extracted eggshell membranes containing, several bacteriolytic enzymes (i.e., lysozyme and beta-N-acetylglucosaminidase) or other membrane components to alter the thermal resistance of gram-positive and gram-negative bacterial pathogens was evaluated. Mid-log phase cells of Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), Escherichia coli O157:H7 (EC), Listeria monocytogenes Scott A (LM), and Staphylococcus aureus (SA) were suspended in 100 ml of 0.1% peptone water (pH 6.9, 10(7-8) CFU/ml) containing either 0 (control) or 10 g of an eggshell membrane extract and incubated at 37 degrees C for 45 min. Following exposure, membrane-free samples (1.5 ml) were heated in a 56 degrees C (LM, SA), 54 degrees C (SE, ST), or 52 degrees C (EC) water bath from 0 to 14 min in sealed glass reaction vials (12 by 32 mm), and the survivors were recovered on brain heart infusion agar. Population reductions ranging from 27.6% (SA) to 99.8% (LM) (ST, 43.8%; SE, 47.5%; EC, 71.8%) were observed for cells treated for 45 min with extracted membrane, as compared to controls. D-value reductions ranging from 0 (LM) to 87.2% (SE) (SA, 36.7%; EC, 83.3%; ST, 86.3%) were observed when membrane-treated cells were subsequently heat inactivated. The effects of exposure pH, time, temperature, and organic load on membrane activity were also evaluated with Salmonella Typhimurium. Exposure pH (5.0 versus 6.9), time (15 versus 45 min), and temperature (4 degrees C versus 37 degrees C) did not significantly reduce the impact of eggshell membranes on D-values. However, the presence of organic matter (0.1% peptone water versus skim milk) significantly reduced the thermal resistance-reducing capacity of the membranes. These preliminary findings provide information on the potential use of extracted eggshell

  13. Novel approach for selecting the best predictor for identifying the binding sites in DNA binding proteins.

    PubMed

    Nagarajan, R; Ahmad, Shandar; Gromiha, M Michael

    2013-09-01

    Protein-DNA complexes play vital roles in many cellular processes by the interactions of amino acids with DNA. Several computational methods have been developed for predicting the interacting residues in DNA-binding proteins using sequence and/or structural information. These methods showed different levels of accuracies, which may depend on the choice of data sets used in training, the feature sets selected for developing a predictive model, the ability of the models to capture information useful for prediction or a combination of these factors. In many cases, different methods are likely to produce similar results, whereas in others, the predictors may return contradictory predictions. In this situation, a priori estimates of prediction performance applicable to the system being investigated would be helpful for biologists to choose the best method for designing their experiments. In this work, we have constructed unbiased, stringent and diverse data sets for DNA-binding proteins based on various biologically relevant considerations: (i) seven structural classes, (ii) 86 folds, (iii) 106 superfamilies, (iv) 194 families, (v) 15 binding motifs, (vi) single/double-stranded DNA, (vii) DNA conformation (A, B, Z, etc.), (viii) three functions and (ix) disordered regions. These data sets were culled as non-redundant with sequence identities of 25 and 40% and used to evaluate the performance of 11 different methods in which online services or standalone programs are available. We observed that the best performing methods for each of the data sets showed significant biases toward the data sets selected for their benchmark. Our analysis revealed important data set features, which could be used to estimate these context-specific biases and hence suggest the best method to be used for a given problem. We have developed a web server, which considers these features on demand and displays the best method that the investigator should use. The web server is freely available at

  14. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.

  15. Ecto-Fc MS identifies ligand-receptor interactions through extracellular domain Fc fusion protein baits and shotgun proteomic analysis

    PubMed Central

    Savas, Jeffrey N.; De Wit, Joris; Comoletti, Davide; Zemla, Roland; Ghosh, Anirvan

    2015-01-01

    Ligand-receptor interactions represent essential biological triggers which regulate many diverse and important cellular processes. We have developed a discovery-based proteomic biochemical protocol which couples affinity purification with multidimensional liquid chromatographic tandem mass spectrometry (LCLC-MS/MS) and bioinformatic analysis. Compared to previous approaches, our analysis increases sensitivity, shortens analysis duration, and boosts comprehensiveness. In this protocol, receptor extracellular domains are fused with the Fc region of IgG to generate fusion proteins that are purified from transfected HEK293T cells. These “ecto-Fcs” are coupled to protein A beads and serve as baits for binding assays with prey proteins extracted from rodent brain. After capture, the affinity purified proteins are digested into peptides and comprehensively analyzed by LCLC-MS/MS with ion trap mass spectrometers. In four working days, this protocol can generate shortlists of candidate ligand-receptor protein-protein interactions. Our “Ecto-Fc MS” approach outperforms antibody-based approaches and provides a reproducible and robust framework to identify extracellular ligand – receptor interactions. PMID:25101821

  16. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane1

    PubMed Central

    Kriechbaumer, Verena; Botchway, Stanley W.; Slade, Susan E.; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-01-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane. PMID:26353761

  17. ICP35 Is a TREX-Like Protein Identified in White Spot Syndrome Virus

    PubMed Central

    Phairoh, Panapat; Suthibatpong, Thana; Rattanarojpong, Triwit; Jongruja, Nujarin; Senapin, Saengchan; Choowongkomon, Kiattawee; Khunrae, Pongsak

    2016-01-01

    ICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35. The thioredoxin-fused ICP35 (thio-ICP35) was strongly expressed in E. coli and be able to form itself into dimers. Investigation of the interaction between ICP35 and DNA revealed that ICP35 can perform DNase activity. Structural model of ICP35 was successfully built on TREX1, suggesting that ICP35 might adopt the folding similar to that of TREX1 protein. Several residues important for dimerization in TREX1 are also conserved in ICP35. Residue Asn126 and Asp132, which are seen to be in close proximity to metal ions in the ICP35 model, were shown through site-directed mutagenesis to be critical for DNase activity. PMID:27348862

  18. Identifying constituents of whey protein concentrates that reduce the pink color defect in cooked ground turkey.

    PubMed

    Sammel, L M; Claus, J R; Greaser, M L; Lucey, J A

    2007-12-01

    Whey protein concentrate constituents were tested for their ability to reduce naturally occurring pink color defect and pink cooked color induced by sodium nitrite (10ppm) and nicotinamide (1.0%) in ground turkey. β-lactoglobulin (1.8%), α-lactalbumin (0.8%), bovine serum albumin (0.15-0.3%), lactose (1.0-3.0%), potassium chloride (500-1500ppm), and ferrous iron chloride (0.3-30ppm) had no effects on cooked pink color. Lactoferrin (30-5000ppm) increased or decreased pink color depending on its concentration in samples without added sodium nitrite or nicotinamide. Annatto (0.1-1.0ppm) reduced pink color whereas the higher concentration of magnesium chloride (22-88ppm) and ferric iron chloride (0.3-30ppm) increased pink color in samples with added nicotinamide. Calcium chloride (160-480ppm) was the only tested constituent that consistently reduced pink cooked color in samples with and without added nitrite and nicotinamide. Due to the variability of whey protein concentrates and the number of constituents that do not reduce pink cooked color, the addition of calcium alone or dried milk minerals containing calcium, phosphate, and citrate, represents a better means to regularly prevent the pink color defect in cooked ground turkey.

  19. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  20. Transgenic inhibitors identify two roles for protein kinase A in Drosophila development.

    PubMed Central

    Kiger, J A; Eklund, J L; Younger, S H; O'Kane, C J

    1999-01-01

    We have initiated an analysis of protein kinase A (PKA) in Drosophila using transgenic techniques to modulate PKA activity in specific tissues during development. We have constructed GAL4/UAS-regulated transgenes in active and mutant forms that encode PKAc, the catalytic subunit of PKA, and PKI(1-31), a competitive inhibitor of PKAc. We present evidence that the wild-type transgenes are active and summarize the phenotypes produced by a number of GAL4 enhancer-detector strains. We compare the effects of transgenes encoding PKI(1-31) with those encoding PKAr*, a mutant regulatory subunit that constitutively inhibits PKAc because of its inability to bind cyclic AMP. Both inhibitors block larval growth, but only PKAr* alters pattern formation by activating the Hedgehog signaling pathway. Therefore, transgenic PKI(1-31) should provide a tool to investigate the role of PKAc in larval growth regulation without concomitant changes in pattern formation. The different effects of PKI(1-31) and PKAr* suggest two distinct roles, cytoplasmic and nuclear, for PKAc in Hedgehog signal transduction. Alternatively, PKAr* may target proteins other than PKAc, suggesting a role for free PKAr in signal transduction, a role inhibited by PKAc in reversal of the classical relationship of these subunits. PMID:10224260