Sample records for identify failure mechanisms

  1. Experimental methods for identifying failure mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1983-01-01

    Experimental methods for identifying failure mechanisms in fibrous composites are studied. Methods to identify failure in composite materials includes interferometry, holography, fractography and ultrasonics.

  2. Mechanical Circulatory Support Devices for Acute Right Ventricular Failure.

    PubMed

    Kapur, Navin K; Esposito, Michele L; Bader, Yousef; Morine, Kevin J; Kiernan, Michael S; Pham, Duc Thinh; Burkhoff, Daniel

    2017-07-18

    Right ventricular (RV) failure remains a major cause of global morbidity and mortality for patients with advanced heart failure, pulmonary hypertension, or acute myocardial infarction and after major cardiac surgery. Over the past 2 decades, percutaneously delivered acute mechanical circulatory support pumps specifically designed to support RV failure have been introduced into clinical practice. RV acute mechanical circulatory support now represents an important step in the management of RV failure and provides an opportunity to rapidly stabilize patients with cardiogenic shock involving the RV. As experience with RV devices grows, their role as mechanical therapies for RV failure will depend less on the technical ability to place the device and more on improved algorithms for identifying RV failure, patient monitoring, and weaning protocols for both isolated RV failure and biventricular failure. In this review, we discuss the pathophysiology of acute RV failure and both the mechanism of action and clinical data exploring the utility of existing RV acute mechanical circulatory support devices. © 2017 American Heart Association, Inc.

  3. Field failure mechanisms for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Shumka, A.

    1981-01-01

    Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.

  4. Failure mechanisms in energy-absorbing composite structures

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; David, Matthew

    2010-11-01

    Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.

  5. Simulated Hail Ice Mechanical Properties and Failure Mechanism at Quasi-Static Strain Rates

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan M.

    Hail is a significant threat to aircraft both on the ground and in the air. Aeronautical engineers are interested in better understanding the properties of hail to improve the safety of new aircraft. However, the failure mechanism and mechanical properties of hail, as opposed to clear ice, are not well understood. A literature review identifies basic mechanical properties of ice and a failure mechanism based upon the state of stress within an ice sphere is proposed. To better understand the properties of Simulated Hail Ice (SHI), several tests were conducted using both clear and cotton fiber reinforced ice. Pictures were taken to show the internal crystal structure of SHI. SHI crush tests were conducted to identify the overall force-displacement trends at various quasi-static strain rates. High speed photography was also used to visually track the failure mechanism of spherical SHI. Compression tests were done to measure the compression strength of SHI and results were compared to literature data. Fracture toughness tests were conducted to identify the crack resistance of SHI. Results from testing clear ice samples were successfully compared to previously published literature data to instill confidence in the testing methods. The methods were subsequently used to test and characterize the cotton fiber reinforced ice.

  6. Failure criterion for materials with spatially correlated mechanical properties

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Or, D.

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  7. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  8. Register of specialized sources for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Denny, F. J.

    1973-01-01

    Specialized information sources that generate information relative to six problem areas in aerospace mechanics of structural failure are identified. Selection for inclusion was based upon information obtained from the individual knowledge and professional contacts of Martin Marietta Aerospace staff members and the information uncovered by the staff of technical reviewers. Activities listed perform basic or applied research related to the mechanics of structural failure and publish the results of such research. The purpose of the register is to present, in easy reference form, original sources for dependable information regarding failure modes and mechanisms of aerospace structures.

  9. Antithrombin III is associated with acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support.

    PubMed

    Hoefer, Judith; Ulmer, Hanno; Kilo, Juliane; Margreiter, Raimund; Grimm, Michael; Mair, Peter; Ruttmann, Elfriede

    2017-06-01

    There are few data on the role of liver dysfunction in patients with end-stage heart failure supported by mechanical circulatory support. The aim of our study was to investigate predictors for acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support. A consecutive 164 patients with heart failure with New York Heart Association class IV undergoing mechanical circulatory support were investigated for acute liver failure using the King's College criteria. Clinical characteristics of heart failure together with hemodynamic and laboratory values were analyzed by logistic regression. A total of 45 patients (27.4%) with heart failure developed subsequent acute liver failure with a hospital mortality of 88.9%. Duration of heart failure, cause, cardiopulmonary resuscitation, use of vasopressors, central venous pressure, pulmonary capillary wedge pressure, pulmonary pulsatility index, cardiac index, and transaminases were not significantly associated with acute liver failure. Repeated decompensation, atrial fibrillation (P < .001) and the use of inotropes (P = .007), mean arterial (P = .005) and pulmonary pressures (P = .042), cholinesterase, international normalized ratio, bilirubin, lactate, and pH (P < .001) were predictive of acute liver failure in univariate analysis only. In multivariable analysis, decreased antithrombin III was the strongest single measurement indicating acute liver failure (relative risk per %, 0.84; 95% confidence interval, 0.77-0.93; P = .001) and remained an independent predictor when adjustment for the Model for End-Stage Liver Disease score was performed (relative risk per %, 0.89; 95% confidence interval, 0.80-0.99; P = .031). Antithrombin III less than 59.5% was identified as a cutoff value to predict acute liver failure with a corresponding sensitivity of 81% and specificity of 87%. In addition to the Model for End-Stage Liver Disease score, decreased antithrombin III activity tends

  10. Role of failure-mechanism identification in accelerated testing

    NASA Technical Reports Server (NTRS)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  11. Failure mechanisms of uni-ply composite plates with a circular hole under static compressive loading

    NASA Technical Reports Server (NTRS)

    Khamseh, A. R.; Waas, A. M.

    1992-01-01

    The objective of the study was to identify and study the failure mechanisms associated with compressive-loaded uniply graphite/epoxy square plates with a central circular hole. It is found that the type of compressive failure depends on the hole size. For large holes with the diameter/width ratio exceeding 0.062, fiber buckling/kinking initiated at the hole is found to be the dominant failure mechanism. In plates with smaller hole sizes, failure initiates away from the hole edge or complete global failure occurs. Critical buckle wavelengths at failure are presented as a function of the normalized hole diameter.

  12. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  13. Novel mechanism of premature battery failure due to lithium cluster formation in implantable cardioverter-defibrillators.

    PubMed

    Pokorney, Sean D; Greenfield, Ruth Ann; Atwater, Brett D; Daubert, James P; Piccini, Jonathan P

    2014-12-01

    Battery failure is an uncommon complication of implantable cardioverter-defibrillators (ICDs), but unanticipated battery depletion can have life-threatening consequences. The purpose of this study was to describe the prevalence of a novel mechanism of battery failure in St. Jude Medical Fortify and Unify ICDs. Cases of premature Fortify battery failure from a single center are reported. A search (January 1, 2010 through November 30, 2013) for Fortify and Unify premature batter failure was conducted of the Food and Drug Administration's Manufacturer and User Facility Device Experience Database (MAUDE). These findings were supplemented with information provided by St. Jude Medical. Premature battery failure for 2 Fortify ICDs in our practice were attributed to the presence of lithium clusters near the cathode, causing a short circuit and high current drain. The prevalence of this mechanism of premature battery failure was 0.6% in our practice. A MAUDE search identified 39 cases of Fortify (30) and Unify (9) premature battery depletion confirmed by the manufacturer, representing a 0.03% prevalence. Four additional Fortify and 2 Unify cases were identified in MAUDE as suspected premature battery depletion, but in these cases the pulse generator was not returned to the manufacturer for evaluation. St. Jude Medical identified 10 cases of premature battery failure due to lithium clusters in Fortify devices (9) and Unify devices (1), representing a 0.004% prevalence. The deposition of lithium clusters near the cathode is a novel mechanism of premature battery failure. The prevalence of this problem is unknown. Providers should be aware of this mechanism for patient management. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. Molecular Mechanisms of Right Ventricular Failure

    PubMed Central

    Reddy, Sushma; Bernstein, Daniel

    2015-01-01

    An abundance of data has provided insight into the mechanisms underlying the development of left ventricular (LV) hypertrophy and its progression to LV failure. In contrast, there is minimal data on the adaptation of the right ventricle (RV) to pressure and volume overload and the transition to RV failure. This is a critical clinical question, as the RV is uniquely at risk in many patients with repaired or palliated congenital heart disease and in those with pulmonary hypertension. Standard heart failure therapies have failed to improve function or survival in these patients, suggesting a divergence in the molecular mechanisms of RV vs. LV failure. Although, on the cellular level, the remodeling responses of the RV and LV to pressure overload are largely similar, there are several key differences: the stressed RV is more susceptible to oxidative stress, has a reduced angiogenic response, and is more likely to activate cell death pathways than the stressed LV. Together, these differences could explain the more rapid progression of the RV to failure vs. the LV. This review will highlight known molecular differences between the RV and LV responses to hemodynamic stress, the unique stressors on the RV associated with congenital heart disease, and the need to better understand these molecular mechanisms if we are to develop RV-specific heart failure therapeutics. PMID:26527692

  15. Shear-induced mechanical failure of β -G a2O3 from quantum mechanics simulations

    NASA Astrophysics Data System (ADS)

    An, Qi; Li, Guodong

    2017-10-01

    Monoclinic gallium oxide (β -G a2O3 ) has important applications in power devices and deep UV optoelectronic devices because of such novel properties as a wide band gap, high breakdown electric field, and a wide range of n -type doping conductivity. However, the intrinsic failure mechanisms of β -G a2O3 remain unknown, which limits the fabrication and packaging of β -G a2O3 -based electronic devices. Here we used density-functional theory at the Perdew-Burke-Ernzerhof level to examine the shear-induced failure mechanisms of β -G a2O3 along various plausible slip systems. We found that the (001 )/〈010 〉 slip system has the lowest ideal shear strength of 3.8 GPa among five plausible slip systems, suggesting that (001 )/〈010 〉 is the most plausible activated slip system. This slip leads to an intrinsic failure mechanism arising from breaking the longest Ga-O bond between octahedral Ga and fourfold-coordinated O. Then we identified the same failure mechanism of β -G a2O3 under biaxial shear deformation that mimics indentation stress conditions. Finally, the general stacking fault energy (SFE) surface is calculated for the (001) surface from which we concluded that there is no intrinsic stacking fault structure for β -G a2O3 . The deformation modes and SFE calculations are essential to understand the intrinsic mechanical processes of this semiconductor material, which provides insightful guidance for designing high-performance semiconductor devices.

  16. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandan; Staab, Lucas; Culberson, Michael; Pellicciotti, Joseph

    2014-01-01

    The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report [1] including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  17. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael; Pellicciotti, Joseph

    2014-01-01

    The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  18. Mechanics of rainfall-induced flow failure in unsaturated shallow slopes (Invited)

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2013-12-01

    The increase in pore water pressure due to rain infiltration can be a dominant component in the activation of slope instabilities. This work shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of rain infiltration promotes instabilities of the flow-type in the soil covers. The interplay between increase in pore water pressure and failure mechanisms is investigated at material point level. To account for multiple failure mechanisms, the second-order energy input is linked to the controllability theory and used to define different types of stability indices, each associated with a specific mode of slope failure. It is shown that the theory can be used to assess both shear failure and static liquefaction in saturated and unsaturated soil covers. In particular, it is shown that these instability modes are regulated by the hydro-mechanical characteristics of the soil covers, as well as by their mutual coupling. This finding discloses the importance of the constitutive functions that simulate the interaction between the response of the solid skeleton and the fluid-retention characteristics of the soil. As a consequence, they suggest that even material properties that are not be to directly associated with the shearing resistance (e.g., the potential for wetting compaction) may play a role in the initiation of catastrophic slope failures. According to the proposed interpretation, the process of pore pressure increase can be seen as the trigger of uncontrolled strains, which can anticipate the onset of frictional failure and promote a solid-to-fluid transition.

  19. Failure mechanisms of fibrin-based surgical tissue adhesives

    NASA Astrophysics Data System (ADS)

    Sierra, David Hugh

    A series of studies was performed to investigate the potential impact of heterogeneity in the matrix of multiple-component fibrin-based tissue adhesives upon their mechanical and biomechanical properties both in vivo and in vitro. Investigations into the failure mechanisms by stereological techniques demonstrated that heterogeneity could be measured quantitatively and that the variation in heterogeneity could be altered both by the means of component mixing and delivery and by the formulation of the sealant. Ex vivo tensile adhesive strength was found to be inversely proportional to the amount of heterogeneity. In contrast, in vivo tensile wound-closure strength was found to be relatively unaffected by the degree of heterogeneity, while in vivo parenchymal organ hemostasis in rabbits was found to be affected: greater heterogeneity appeared to correlate with an increase in hemostasis time and amount of sealant necessary to effect hemostasis. Tensile testing of the bulk sealant showed that mechanical parameters were proportional to fibrin concentration and that the physical characteristics of the failure supported a ductile mechanism. Strain hardening as a function of percentage of strain, and strain rate was observed for both concentrations, and syneresis was observed at low strain rates for the lower fibrin concentration. Blister testing demonstrated that burst pressure and failure energy were proportional to fibrin concentration and decreased with increasing flow rate. Higher fibrin concentration demonstrated predominately compact morphology debonds with cohesive failure loci, demonstrating shear or viscous failure in a viscoelastic rubbery adhesive. The lower fibrin concentration sealant exhibited predominately fractal morphology debonds with cohesive failure loci, supporting an elastoviscous material condition. The failure mechanism for these was hypothesized and shown to be flow-induced ductile fracture. Based on these findings, the failure mechanism was

  20. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  1. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force

    PubMed Central

    Park, Jung-Hwan; Prausnitz, Mark R.

    2010-01-01

    A polymeric microneedle has been developed for drug delivery applications. The ultimate goal of the polymeric microneedle is insertion into the specified region without failure for effective transdermal drug delivery. Mechanical failure of various geometries of microneedles by axial load was modeled using the Euler formula and the Johnson formula to predict the failure force of tapered-column microneedles. These formulas were compared with measured data to identify the mechanical behavior of microneedles by determining the critical factors including the actual length and end-fixed factor. The comparison of the two formulas with the data showed good agreement at the end-fixity (K) of 0.7. This value means that a microneedle column has one fixed end and one pinned end, and that part of the microneedle was overloaded by axial load. When the aspect ratio of length to equivalent diameter is 12:1 at 3 GPa of Young’s modulus, there is a transition from the Euler region to the Johnson region by the decreased length and increased base diameter of the microneedle. A polymer having less than 3 GPa of stiffness would follow the Euler formula. A 12:1 aspect ratio of length to equivalent diameter of the microneedle was the mechanical indicator determining the failure mode between elastic buckling and inelastic buckling at less than 3 GPa of Young’s modulus of polymer. Microneedles with below a 12:1 aspect ratio of length-to-equivalent diameter and more than 3 GPa of Young’s were recommended for reducing sudden failure by buckling and for successfully inserting the microneedle into the skin. PMID:21218133

  2. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study.

    PubMed

    Aktas, Guliz; Yerlikaya, Hatice; Akca, Kivanc

    2018-04-01

    To evaluate the effect of different silica-based ceramic materials on the mechanical failure behavior of endocrowns used in the restoration of endodontically treated mandibular molar teeth. Thirty-six intact mandibular molar teeth extracted because of a loss of periodontal support received root canal treatment. The teeth were prepared with a central cavity to support the endocrowns, replacing the occlusal surface with mesial-lingual-distal walls. Data acquisition of the prepared tooth surfaces was carried out digitally with a powder-free intraoral scanner. Restoration designs were completed on manufactured restorations from three silicate ceramics: alumina-silicate (control), zirconia-reinforced (Zr-R), and polymer-infiltrated (P-I). Following adhesive cementation, endocrowns were subjected to thermal aging, and then, each specimen was obliquely loaded to record the fracture strength and define the mechanical failure. For the failure definition, the fracture type characteristics were identified, and further analytic measurements were made on the fractured tooth and ceramic structure. Load-to-fracture failure did not differ significantly, and the calculated mean values were 1035.08 N, 1058.33 N, and 1025.00 N for control, Zr-R, and P-I groups, respectively; however, the stiffness of the restoration-tooth complex was significantly higher than that in both test groups. No statistically significant correlation was established in paired comparisons of the failure strength, restorative stiffness, and fractured tooth distance parameters. The failure mode for teeth restored with zirconia-reinforced glass ceramics was identified as non-restorable. The resin interface in the control and P-I groups presented similar adhesive failure behavior. Mechanical failure of endocrown restorations does not significantly differ for silica-based ceramics modified either with zirconia or polymer. © 2016 by the American College of Prosthodontists.

  3. Mechanical failure probability of glasses in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Results of five years of earth-orbital exposure on mechanical properties of glasses indicate that radiation effects on mechanical properties of glasses, for the glasses examined, are less than the probable error of measurement. During the 5 year exposure, seven micrometeorite or space debris impacts occurred on the samples examined. These impacts were located in locations which were not subjected to effective mechanical testing, hence limited information on their influence upon mechanical strength was obtained. Combination of these results with micrometeorite and space debris impact frequency obtained by other experiments permits estimates of the failure probability of glasses exposed to mechanical loading under earth-orbit conditions. This probabilistic failure prediction is described and illustrated with examples.

  4. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    PubMed Central

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  5. Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA

    NASA Astrophysics Data System (ADS)

    Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu

    Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.

  6. Is it possible to identify a trend in problem/failure data

    NASA Technical Reports Server (NTRS)

    Church, Curtis K.

    1990-01-01

    One of the major obstacles in identifying and interpreting a trend is the small number of data points. Future trending reports will begin with 1983 data. As the problem/failure data are aggregated by year, there are just seven observations (1983 to 1989) for the 1990 reports. Any statistical inferences with a small amount of data will have a large degree of uncertainty. Consequently, a regression technique approach to identify a trend is limited. Though trend determination by failure mode may be unrealistic, the data may be explored for consistency or stability and the failure rate investigated. Various alternative data analysis procedures are briefly discussed. Techniques that could be used to explore problem/failure data by failure mode are addressed. The data used are taken from Section One, Space Shuttle Main Engine, of the Calspan Quarterly Report dated April 2, 1990.

  7. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.

  8. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  9. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    DOE PAGES

    Zhang, Chao; Xu, Jun; Cao, Lei; ...

    2017-05-05

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less

  10. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)

    1983-01-01

    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.

  11. Pathological mechanisms of left main stent failure.

    PubMed

    Mori, Hiroyoshi; Torii, Sho; Harari, Emanuel; Jinnouchi, Hiroyuki; Brauman, Ryan; Smith, Samantha; Kutys, Robert; Fowler, David; Romero, Maria; Virmani, Renu; Finn, Aloke V

    2018-07-15

    Despite the increasing use of left main (LM) percutaneous coronary intervention (LM-PCI), there have been no pathological studies devoted to understanding the causes of LM stent failure. We aimed to systematically determine the pathological mechanisms of LM stent failure. From the CVPath Stent registry, a total of 46 lesions were identified to have LM-PCI. Pathologic stent failure (PSF) was defined as stent thrombosis, restenosis and in-stent chronic total occlusion (CTO). Failed and patent LM stented lesions were pathologically assessed to determine predictors of PSF. Malapposition and uncovered struts were numerically greater in the LM ostium, body, and bifurcation while neointimal thickness was relatively greater in bifurcation and proximal circumflex. In this study cohort, half of the lesions (n = 23) showed PSF. Stent thrombosis (ST, n = 18) was the major mode of PSF followed by in-stent CTO (n = 4) and restenosis (n = 1). Failed lesions showed significantly greater prevalence of malapposition >20% of struts/section (65% vs. 13%, P < 0.01), stent struts crossing an ostial side branch >30% of the circumference (48% vs. 13%, P < 0.01) and uncovered struts >30% (57% vs. 18%, P = 0.03). In multivariate analysis, the prevalence of malapposition >20% was the strongest risk factor for PSF (Odds ratio 8.0, 95% confidence interval 1.8-45.4, P < 0.01) followed by struts crossing an ostial side branch >30% (Odds ratio 4.2, 95% confidence interval 0.8-24.7, P = 0.09). Our data demonstrate the main pathological predictors for LM stent failure are malapposition and struts crossing an ostial side branch and suggest that imaging-guided PCI may be important. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Identifying the latent failures underpinning medication administration errors: an exploratory study.

    PubMed

    Lawton, Rebecca; Carruthers, Sam; Gardner, Peter; Wright, John; McEachan, Rosie R C

    2012-08-01

    The primary aim of this article was to identify the latent failures that are perceived to underpin medication errors. The study was conducted within three medical wards in a hospital in the United Kingdom. The study employed a cross-sectional qualitative design. Interviews were conducted with 12 nurses and eight managers. Interviews were transcribed and subject to thematic content analysis. A two-step inter-rater comparison tested the reliability of the themes. Ten latent failures were identified based on the analysis of the interviews. These were ward climate, local working environment, workload, human resources, team communication, routine procedures, bed management, written policies and procedures, supervision and leadership, and training. The discussion focuses on ward climate, the most prevalent theme, which is conceptualized here as interacting with failures in the nine other organizational structures and processes. This study is the first of its kind to identify the latent failures perceived to underpin medication errors in a systematic way. The findings can be used as a platform for researchers to test the impact of organization-level patient safety interventions and to design proactive error management tools and incident reporting systems in hospitals. © Health Research and Educational Trust.

  13. Compression failure mechanisms of composite structures

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Sohi, M.; Moon, S.

    1986-01-01

    An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.

  14. Mechanism of electromigration failure in Damascene processed copper interconnects

    NASA Astrophysics Data System (ADS)

    Michael, Nancy Lyn

    2002-11-01

    A major unresolved issue in Cu interconnect reliability is the interface role in the failure mechanism of real structures. The present study investigates failure in single-level damascene Cu interconnects with variations in interface condition, passivation and barrier, and linewidth. In the first phase, accelerated electromigration testing of 0.25mum Cu interconnects capped with SiN or SiCN, shows that lifetime and failure mode vary with capping layer. The first mode, seen primarily in SiN samples, is characterized by gradual resistance increase and extensive interface damage, believed to result from failure led by interface electromigration. The competing failure mode, found in SiCN capped samples, is characterized by abrupt resistance increase and localized voiding. The second phase fixes SiCN as the capping material and varies barrier material and line width. The three barrier materials, Ta, TaN, and Ta/TaN, produce similar lifetime statistics and failure is abrupt. Line width, however, does have a strong influence on failure time. The line width/grain size ratio ranged from 0.53 to 2.2 but does not correlate with mean time to failure (MTF). The strong dependence on interface fraction, combined with the conclusion from phase one that interface electromigration is not rate controlling, suggests another mechanism related to the interface is a controlling factor. The possibility that contamination and defects at the interface are key to this failure mode was investigated using electro-thermal fatigue (ETF). In ETF, where lines are simultaneously subjected to thermal cycling and constant current, damage caused by thermal stress is accelerated. Tests reveal that in 80 nm lines, transient failure occurs at times far below MTF in electromigration tests at higher temperatures. Failure found in ETF is clearly a result of damage growth due to thermal/mechanical stress rather than electromigration. At the stress levels created by the moderate ETF test conditions, the only

  15. Mechanisms and pathways of growth failure in primordial dwarfism.

    PubMed

    Klingseisen, Anna; Jackson, Andrew P

    2011-10-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.

  16. Effectiveness and predictors of failure of noninvasive mechanical ventilation in acute respiratory failure.

    PubMed

    Martín-González, F; González-Robledo, J; Sánchez-Hernández, F; Moreno-García, M N; Barreda-Mellado, I

    2016-01-01

    To assess the effectiveness and identify predictors of failure of noninvasive ventilation. A retrospective, longitudinal descriptive study was made. Adult patients with acute respiratory failure. A total of 410 consecutive patients with noninvasive ventilation treated in an Intensive Care Unit of a tertiary university hospital from 2006 to 2011. Noninvasive ventilation. Demographic variables and clinical and laboratory test parameters at the start and two hours after the start of noninvasive ventilation. Evolution during admission to the Unit and until hospital discharge. The failure rate was 50%, with an overall mortality rate of 33%. A total of 156 patients had hypoxemic respiratory failure, 87 postextubation respiratory failure, 78 exacerbation of chronic obstructive pulmonary disease, 61 hypercapnic respiratory failure without chronic obstructive pulmonary disease, and 28 had acute pulmonary edema. The failure rates were 74%, 54%, 27%, 31% and 21%, respectively. The etiology of respiratory failure, serum bilirubin at the start, APACHEII score, radiological findings, the need for sedation to tolerate noninvasive ventilation, changes in level of consciousness, PaO2/FIO2 ratio, respiratory rate and heart rate from the start and two hours after the start of noninvasive ventilation were independently associated to failure. The effectiveness of noninvasive ventilation varies according to the etiology of respiratory failure. Its use in hypoxemic respiratory failure and postextubation respiratory failure should be assessed individually. Predictors of failure could be useful to prevent delayed intubation. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  17. Development of failure mechanisms for fasteners in the United States

    Treesearch

    Douglas R. Rammer; Philip Line

    2006-01-01

    In the 2001 National Design Specifications® for Wood Construction (NDS), Appendix E was added to explicitly address wood failure mechanisms that may occur in fasteners. One approach to estimate design capacities for net section, row tear out, and group tear failure mechanisms is presented in Appendix E of the 2001 NDS. Since the 2001 NDS, efforts are being untaken to...

  18. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension

    PubMed Central

    Benoist, David; Stones, Rachel; Drinkhill, Mark J.; Benson, Alan P.; Yang, Zhaokang; Cassan, Cecile; Gilbert, Stephen H.; Saint, David A.; Cazorla, Olivier; Steele, Derek S.; Bernus, Olivier

    2012-01-01

    Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca2+ handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca2+ transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca2+-ATPase activity, increased sarcoplasmic reticular Ca2+-release fraction, and increased Ca2+ spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca2+ handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs. PMID:22427523

  19. Compression failure mechanisms of uni-ply composite plates with a circular cutout

    NASA Technical Reports Server (NTRS)

    Khamseh, A. R.; Waas, A. M.

    1992-01-01

    The effect of circular-hole size on the failure mode of uniply graphite-epoxy composite plates is investigated experimentally and analytically for uniaxial compressive loading. The test specimens are sandwiched between polyetherimide plastic for nondestructive evaluations of the uniply failure mechanisms associated with a range of hole sizes. Finite-element modeling based on classical lamination theory is conducted for the corresponding materials and geometries to reproduce the experimental results analytically. The type of compressive failure is found to be a function of hole size, with fiber buckling/kinking at the hole being the dominant failure mechanism for hole diam/plate width ratios exceeding 0.062. The results of the finite-element analysis supported the experimental data for these failure mechanisms and for those corresponding to smaller hole sizes.

  20. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael

    2014-01-01

    Commodities are transferred between the Multi-Purpose Crew Vehicle (MPCV) crew module (CM) and service module (SM) via an external umbilical that is driven apart with spring-loaded struts after the structural connection is severed. The spring struts must operate correctly for the modules to separate safely. There was no vibration testing of strut development units scoped in the MPCV Program Plan; therefore, any design problems discovered as a result of vibration testing would not have been found until the component qualification. The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations including identified lessons learned and best practices to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  1. Mechanisms and pathways of growth failure in primordial dwarfism

    PubMed Central

    Klingseisen, Anna; Jackson, Andrew P.

    2011-01-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth. PMID:21979914

  2. Identification of Bearing Failure Using Signal Vibrations

    NASA Astrophysics Data System (ADS)

    Yani, Irsyadi; Resti, Yulia; Burlian, Firmansyah

    2018-04-01

    Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98 %.

  3. Deformation and failure mechanisms of graphite/epoxy composites under static loading

    NASA Technical Reports Server (NTRS)

    Clements, L. L.

    1981-01-01

    The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.

  4. Failure mechanisms and closed reduction of a constrained tripolar acetabular liner.

    PubMed

    Robertson, William J; Mattern, Christopher J; Hur, John; Su, Edwin P; Pellicci, Paul M

    2009-02-01

    Unlike traditional bipolar constrained liners, the Osteonics Omnifit constrained acetabular insert is a tripolar device, consisting of an inner bipolar bearing articulating within an outer, true liner. Every reported failure of the Omnifit tripolar implant has been by failure at the shell-bone interface (Type I failure), failure at the shell-liner interface (Type II failure), or failure of the locking mechanism resulting in dislocation of the bipolar-liner interface (Type III failure). In this report we present two cases of failure of the Omnifit tripolar at the bipolar-femoral head interface. To our knowledge, these are the first reported cases of failure at the bipolar-femoral head interface (Type IV failure). In addition, we described the first successful closed reduction of a Type IV failure.

  5. Failure mechanism of THz GaAs photoconductive antenna

    NASA Astrophysics Data System (ADS)

    Qadri, Syed B.; Wu, Dong H.; Graber, Benjamin D.; Mahadik, Nadeemullah A.; Garzarella, Anthony

    2012-07-01

    We investigated the failure mechanism of THz GaAs photoconductive antenna using high resolution x-ray diffraction topography. From these studies, it was found that grain boundaries are formed during the high frequency device operation. This results in the segregation of gold at the boundaries causing electromigration of the metal between the gold micro-strips. This disrupts the photocurrents from being produced by femtosecond laser thus preventing terahertz beam generation from the photoconductive antennae leading to device failure.

  6. Failure mechanisms of laminates transversely loaded by bolt push-through

    NASA Technical Reports Server (NTRS)

    Waters, W. A., Jr.; Williams, J. G.

    1985-01-01

    Stiffened composite panels proposed for fuselage and wing design utilize a variety of stiffener-to-skin attachment concepts including mechanical fasteners. The attachment concept is an important factor influencing the panel's strength and can govern its performance following local damage. Mechanical fasteners can be an effective method for preventing stiffener-skin separation. One potential failure mode for bolted panels occurs when the bolts pull through the stiffener attachment flange or skin. The resulting loss of support by the skin to the stiffener and by the stiffener to the skin can result in local buckling and subsequent panel collapse. The characteristic failure modes associated with bolt push-through failure are described and the results of a parametric study of the effects that different material systems, boundary conditions, and laminates have on the forces and displacements required to cause damage and bolt pushthrough failure are presented.

  7. Identifying partial topology of complex dynamical networks via a pinning mechanism

    NASA Astrophysics Data System (ADS)

    Zhu, Shuaibing; Zhou, Jin; Lu, Jun-an

    2018-04-01

    In this paper, we study the problem of identifying the partial topology of complex dynamical networks via a pinning mechanism. By using the network synchronization theory and the adaptive feedback controlling method, we propose a method which can greatly reduce the number of nodes and observers in the response network. Particularly, this method can also identify the whole topology of complex networks. A theorem is established rigorously, from which some corollaries are also derived in order to make our method more cost-effective. Several numerical examples are provided to verify the effectiveness of the proposed method. In the simulation, an approach is also given to avoid possible identification failure caused by inner synchronization of the drive network.

  8. Mechanisms of dynamic wetting failure in the presence of soluble surfactants

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Liu, Chen-Yu; Carvalho, Marcio S.

    2017-11-01

    A hydrodynamic model and flow visualization experiments are used to understand the mechanisms through which soluble surfactants can influence the onset of dynamic wetting failure. In the model, a Newtonian liquid displaces air in a rectangular channel in the absence of inertia. A Navier-slip boundary condition and constant contact angle are used to describe the dynamic contact line, and surfactants are allowed to adsorb to the interface and moving channel wall (substrate). The Galerkin finite element method is used to calculate steady states and identify the critical capillary number Cacrit at which wetting failure occurs. It is found that surfactant solubility weakens the influence of Marangoni stresses, which tend to promote the onset of wetting failure. The experiments indicate that Cacrit increases with surfactant concentration. For the more viscous solutions used, this behaviour can largely be explained by accounting for changes to the mean surface tension and static contact angle produced by surfactants. For the lowest-viscosity solution used, comparison between the model predictions and experimental observations suggests that other surfactant-induced phenomena such as Marangoni stresses may play a more important role.

  9. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.

  10. An autonomous recovery mechanism against optical distribution network failures in EPON

    NASA Astrophysics Data System (ADS)

    Liem, Andrew Tanny; Hwang, I.-Shyan; Nikoukar, AliAkbar

    2014-10-01

    Ethernet Passive Optical Network (EPON) is chosen for servicing diverse applications with higher bandwidth and Quality-of-Service (QoS), starting from Fiber-To-The-Home (FTTH), FTTB (business/building) and FTTO (office). Typically, a single OLT can provide services to both residential and business customers on the same Optical Line Terminal (OLT) port; thus, any failures in the system will cause a great loss for both network operators and customers. Network operators are looking for low-cost and high service availability mechanisms that focus on the failures that occur within the drop fiber section because the majority of faults are in this particular section. Therefore, in this paper, we propose an autonomous recovery mechanism that provides protection and recovery against Drop Distribution Fiber (DDF) link faults or transceiver failure at the ONU(s) in EPON systems. In the proposed mechanism, the ONU can automatically detect any signal anomalies in the physical layer or transceiver failure, switching the working line to the protection line and sending the critical event alarm to OLT via its neighbor. Each ONU has a protection line, which is connected to the nearest neighbor ONU, and therefore, when failure occurs, the ONU can still transmit and receive data via the neighbor ONU. Lastly, the Fault Dynamic Bandwidth Allocation for recovery mechanism is presented. Simulation results show that our proposed autonomous recovery mechanism is able to maintain the overall QoS performance in terms of mean packet delay, system throughput, packet loss and EF jitter.

  11. Early laparotomy wound failure as the mechanism for incisional hernia formation

    PubMed Central

    Xing, Liyu; Culbertson, Eric J.; Wen, Yuan; Franz, Michael G.

    2015-01-01

    Background Incisional hernia is the most common complication of abdominal surgery leading to reoperation. In the United States, 200,000 incisional hernia repairs are performed annually, often with significant morbidity. Obesity is increasing the risk of laparotomy wound failure. Methods We used a validated animal model of incisional hernia formation. We intentionally induced laparotomy wound failure in otherwise normal adult, male Sprague-Dawley rats. Radio-opaque, metal surgical clips served as markers for the use of x-ray images to follow the progress of laparotomy wound failure. We confirmed radiographic findings of the time course for mechanical laparotomy wound failure by necropsy. Results Noninvasive radiographic imaging predicts early laparotomy wound failure and incisional hernia formation. We confirmed both transverse and craniocaudad migration of radio-opaque markers at necropsy after 28 d that was uniformly associated with the clinical development of incisional hernias. Conclusions Early laparotomy wound failure is a primary mechanism for incisional hernia formation. A noninvasive radiographic method for studying laparotomy wound healing may help design clinical trials to prevent and treat this common general surgical complication. PMID:23036516

  12. Identifying the necessary and sufficient number of risk factors for predicting academic failure.

    PubMed

    Lucio, Robert; Hunt, Elizabeth; Bornovalova, Marina

    2012-03-01

    Identifying the point at which individuals become at risk for academic failure (grade point average [GPA] < 2.0) involves an understanding of which and how many factors contribute to poor outcomes. School-related factors appear to be among the many factors that significantly impact academic success or failure. This study focused on 12 school-related factors. Using a thorough 5-step process, we identified which unique risk factors place one at risk for academic failure. Academic engagement, academic expectations, academic self-efficacy, homework completion, school relevance, school safety, teacher relationships (positive relationship), grade retention, school mobility, and school misbehaviors (negative relationship) were uniquely related to GPA even after controlling for all relevant covariates. Next, a receiver operating characteristic curve was used to determine a cutoff point for determining how many risk factors predict academic failure (GPA < 2.0). Results yielded a cutoff point of 2 risk factors for predicting academic failure, which provides a way for early identification of individuals who are at risk. Further implications of these findings are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  13. [Ten-year evolution of mechanical ventilation in acute respiratory failure in the hematogical patient admitted to the intensive care unit].

    PubMed

    Belenguer-Muncharaz, A; Albert-Rodrigo, L; Ferrandiz-Sellés, A; Cebrián-Graullera, G

    2013-10-01

    A comparison was made between invasive mechanical ventilation (IMV) and noninvasive positive pressure ventilation (NPPV) in haematological patients with acute respiratory failure. A retrospective observational study was made from 2001 to December 2011. A clinical-surgical intensive care unit (ICU) in a tertiary hospital. Patients with hematological malignancies suffering acute respiratory failure (ARF) and requiring mechanical ventilation in the form of either IMV or NPPV. Analysis of infection and organ failure rates, duration of mechanical ventilation and ICU and hospital stays, as well as ICU, hospital and mortality after 90 days. The same variables were analyzed in the comparison between NPPV success and failure. Forty-one patients were included, of which 35 required IMV and 6 NPPV. ICU mortality was higher in the IMV group (100% vs 37% in NPPV, P=.006). The intubation rate in NPPV was 40%. Compared with successful NPPV, failure in the NPPV group involved more complications, a longer duration of mechanical ventilation and ICU stay, and greater ICU and hospital mortality. Multivariate analysis of mortality in the NPPV group identified NPPV failure (OR 13 [95%CI 1.33-77.96], P=.008) and progression to acute respiratory distress syndrome (OR 10 [95%CI 1.95-89.22], P=.03) as prognostic factors. The use of NPPV reduced mortality compared with IMV. NPPV failure was associated with more complications. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  14. The global mechanical properties and multi-scale failure mechanics of heterogeneous human stratum corneum.

    PubMed

    Liu, X; Cleary, J; German, G K

    2016-10-01

    The outermost layer of skin, or stratum corneum, regulates water loss and protects underlying living tissue from environmental pathogens and insults. With cracking, chapping or the formation of exudative lesions, this functionality is lost. While stratum corneum exhibits well defined global mechanical properties, macroscopic mechanical testing techniques used to measure them ignore the structural heterogeneity of the tissue and cannot provide any mechanistic insight into tissue fracture. As such, a mechanistic understanding of failure in this soft tissue is lacking. This insight is critical to predicting fracture risk associated with age or disease. In this study, we first quantify previously unreported global mechanical properties of isolated stratum corneum including the Poisson's ratio and mechanical toughness. African American breast stratum corneum is used for all assessments. We show these parameters are highly dependent on the ambient humidity to which samples are equilibrated. A multi-scale investigation assessing the influence of structural heterogeneities on the microscale nucleation and propagation of cracks is then performed. At the mesoscale, spatially resolved equivalent strain fields within uniaxially stretched stratum corneum samples exhibit a striking heterogeneity, with localized peaks correlating closely with crack nucleation sites. Subsequent crack propagation pathways follow inherent topographical features in the tissue and lengthen with increased tissue hydration. At the microscale, intact corneocytes and polygonal shaped voids at crack interfaces highlight that cracks propagate in superficial cell layers primarily along intercellular junctions. Cellular fracture does occur however, but is uncommon. Human stratum corneum protects the body against harmful environmental pathogens and insults. Upon mechanical failure, this barrier function is lost. Previous studies characterizing the mechanics of stratum corneum have used macroscopic testing

  15. Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anoop Krishnan, N. M., E-mail: anoopnm@civil.iisc.ernet.in; Ghosh, Debraj

    2014-07-28

    The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation ofmore » failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.« less

  16. A Critical Review of Landslide Failure Mechanisms

    NASA Astrophysics Data System (ADS)

    Stead, D.; Wolter, A.; Clague, J. J.

    2011-12-01

    During the last ten years several comprehensive geotechnical studies have been completed on major historic landslides including Randa in Switzerland, Frank in Canada, Aknes in Norway, La Clapiere in France and Vaiont in Italy. In addition, numerous researchers have documented deep-seated gravitational deformations and a wide variety of large prehistoric rock slope failures. The information provided by these studies is evidence of the significant advances made in our ability to map, monitor and model landslides. Over the same period, the mining industry has developed large open pits with slope heights exceeding 1000 m that provide important analogues to high mountain slopes. In this paper we analyse data from the literature to illustrate the importance of brittle fracture, 3D controls, anisotropy, overburden stress, geomorphic processes, groundwater and temperature in major landslides and provide some indicators as to the research required to further understand the complexity of rock slope failure mechanisms. The nature of the landslide failure surface has received inadequate attention in the past, with failure surfaces typically considered in 2D and simulated as discrete, smooth and often planar features. Current work shows that failure surfaces are inherently three-dimensional and have much structural variability across the area of the landslide scarp, reflecting complex structural histories. Such anisotropy and variations may result in multiple events or distinct blocks that move at different rates. Just as most failure surfaces vary spatially, they may also change with depth and thus should more realistically be considered failure zones rather than discrete surfaces. The increasing recognition of the importance of step-path failures, internal dilation and brittle fracture are indicative of the complexity in slope failure surfaces. Related to the variation in failure surface characteristics is the importance of 3D rotational displacements and both the

  17. Mechanics of dual-mode dilative failure in subaqueous sediment deposits

    NASA Astrophysics Data System (ADS)

    You, Yao; Flemings, Peter; Mohrig, David

    2014-07-01

    We introduce dual-mode dilative failure with flume experiments. Dual-mode dilative failure combines slow and steady release of sediments by breaching with periodic sliding, which rapidly releases an internally coherent wedge of sediments. It occurs in dilative sandy deposits. This periodic slope failure results from cyclic evolution of the excess pore pressure in the deposit. Sliding generates large, transient, negative excess pore pressure that strengthens the deposit and allows breaching to occur. During breaching, negative excess pore pressure dissipates, the deposit weakens, and ultimately sliding occurs once again. We show that the sliding frequency is proportional to the coefficient of consolidation. We find that thicker deposits are more susceptible to dual-mode dilative failure. Discovery of dual-mode dilative failure provides a new mechanism to consider when interpreting the sedimentary deposits linked to submarine slope failures.

  18. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    PubMed Central

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-01-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185

  19. Progress and prospect on failure mechanisms of solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei

    2018-07-01

    By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.

  20. Development of a new code to solve hydro-mechanical coupling, shear failure and tensile failure due to hydraulic fracturing operations.

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; De Simone, Silvia; Carrera, Jesús

    2016-04-01

    Nowadays, there are still some unsolved relevant questions which must be faced if we want to proceed to the hydraulic fracturing in a safe way. How much will the fracture propagate? This is one of the most important questions that have to be solved in order to avoid the formation of pathways leading to aquifer targets and atmospheric release. Will the fracture failure provoke a microseismic event? Probably this is the biggest fear that people have in fracking. The aim of this work (developed as a part of the EU - FracRisk project) is to understand the hydro-mechanical coupling that controls the shear of existing fractures and their propagation during a hydraulic fracturing operation, in order to identify the key parameters that dominate these processes and answer the mentioned questions. This investigation focuses on the development of a new C++ code which simulates hydro-mechanical coupling, shear movement and propagation of a fracture. The framework employed, called Kratos, uses the Finite Element Method and the fractures are represented with an interface element which is zero thickness. This means that both sides of the element lie together in the initial configuration (it seems a 1D element in a 2D domain, and a 2D element in a 3D domain) and separate as the adjacent matrix elements deform. Since we are working in hard, fragile rocks, we can assume an elastic matrix and impose irreversible displacements in fractures when rock failure occurs. The formulation used to simulate shear and tensile failures is based on the analytical solution proposed by Okada, 1992 and it is part of an iterative process. In conclusion, the objective of this work is to employ the new code developed to analyze the main uncertainties related with the hydro-mechanical behavior of fractures derived from the hydraulic fracturing operations.

  1. Methods And Systms For Analyzing The Degradation And Failure Of Mechanical Systems

    DOEpatents

    Jarrell, Donald B.; Sisk, Daniel R.; Hatley, Darrel D.; Kirihara, Leslie J.; Peters, Timothy J.

    2005-02-08

    Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.

  2. Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response

    PubMed Central

    Jung, GangSeob; Qin, Zhao

    2017-01-01

    The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales. PMID:26108895

  3. Failure mechanism of the polymer infiltration of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Buchheim, Jakob; Park, Hyung Gyu

    2016-11-01

    Polymer melt infiltration is one of the feasible methods for manufacturing filter membranes out of carbon nanotubes (CNTs) on large scales. Practically, however, its process suffers from low yields, and the mechanism behind this failure is rather poorly understood. Here, we investigate a failure mechanism of polymer melt infiltration of vertical aligned (VA-) CNTs. In penetrating the VA-CNT interstices, polymer melts exert a capillarity-induced attractive force laterally on CNTs at the moving meniscus, leading to locally agglomerated macroscale bunches. Such a large configurational change can deform and distort individual CNTs so much as to cause buckling or breakdown of the alignment. In view of membrane manufacturing, this irreversible distortion of nanotubes is detrimental, as it could block the transport path of the membranes. The failure mechanism of the polymer melt infiltration is largely attributed to steric hindrance and an energy penalty of confined polymer chains. Euler beam theory and scaling analysis affirm that CNTs with low aspect ratio, thick walls and sparse distribution can maintain their vertical alignment. Our results can enrich a mechanistic understanding of the polymer melt infiltration process and offer guidelines to the facile large-scale manufacturing of the CNT-polymer filter membranes.

  4. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    PubMed

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  5. Investigation of short-circuit failure mechanisms of SiC MOSFETs by varying DC bus voltage

    NASA Astrophysics Data System (ADS)

    Namai, Masaki; An, Junjie; Yano, Hiroshi; Iwamuro, Noriyuki

    2018-07-01

    In this study, the experimental evaluation and numerical analysis of short-circuit mechanisms of 1200 V SiC planar and trench MOSFETs were conducted at various DC bus voltages from 400 to 800 V. Investigation of the impact of DC bus voltage on short-circuit capability yielded results that are extremely useful for many existing power electronics applications. Three failure mechanisms were identified in this study: thermal runaway, MOS channel current following device turn-off, and rupture of the gate oxide layer (gate oxide layer damage). The SiC MOSFETs experienced lattice temperatures exceeding 1000 K during the short-circuit transient; as Si insulated gate bipolar transistors (IGBTs) are not typically subject to such temperatures, the MOSFETs experienced distinct failure modes, and the mode experienced was significantly influenced by the DC bus voltage. In conclusion, suggestions regarding the SiC MOSFET design and operation methods that would enhance device robustness are proposed.

  6. Risk Analysis and Prediction of Floor Failure Mechanisms at Longwall Face in Parvadeh-I Coal Mine using Rock Engineering System (RES)

    NASA Astrophysics Data System (ADS)

    Aghababaei, Sajjad; Saeedi, Gholamreza; Jalalifar, Hossein

    2016-05-01

    The floor failure at longwall face decreases productivity and safety, increases operation costs, and causes other serious problems. In Parvadeh-I coal mine, the timber is used to prevent the puncture of powered support base into the floor. In this paper, a rock engineering system (RES)-based model is presented to evaluate the risk of floor failure mechanisms at the longwall face of E 2 and W 1 panels. The presented model is used to determine the most probable floor failure mechanism, effective factors, damaged regions and remedial actions. From the analyzed results, it is found that soft floor failure is dominant in the floor failure mechanism at Parvadeh-I coal mine. The average of vulnerability index (VI) for soft, buckling and compressive floor failure mechanisms was estimated equal to 52, 43 and 30 for both panels, respectively. By determining the critical VI for soft floor failure mechanism equal to 54, the percentage of regions with VIs beyond the critical VI in E 2 and W 1 panels is equal to 65.5 and 30, respectively. The percentage of damaged regions showed that the excess amount of used timber to prevent the puncture of weak floor below the powered support base is equal to 4,180,739 kg. RES outputs and analyzed results showed that setting and yielding load of powered supports, length of face, existent water at face, geometry of powered supports, changing the cutting pattern at longwall face and limiting the panels to damaged regions with supercritical VIs could be considered to control the soft floor failure in this mine. The results of this research could be used as a useful tool to identify the damaged regions prior to mining operation at longwall panel for the same conditions.

  7. Fundamental mechanisms of growth failure in inflammatory bowel disease.

    PubMed

    Ballinger, Anne

    2002-01-01

    Growth failure is common in children with inflammatory bowel disease (IBD) and has been attributed chiefly to undernutrition. Liquid enteral feeding can reverse the calorie deficit and increase growth velocity. The inflammatory process per se may also directly inhibit linear growth. After institution of enteral nutrition, significant changes in serum growth factors and inflammatory indices have been observed before any changes in nutritional parameters [Bannerjee et al., Gastroenterology 2000;118:A526]. In rats with trinitrobenzenesulphonic acid (TNBS)-induced colitis, about 60% of the final growth impairment can be attributed to undernutrition, inflammation accounting for the remaining growth deficit. Young patients with Crohn's disease and growth failure have normal stimulated and spontaneous growth hormone (GH) secretion and reduced plasma concentrations of insulin-like growth factor-1 (IGF-I), suggesting a degree of GH resistance. Rats with TNBS colitis also have normal plasma GH and reduced IGF-I concentrations, mediated by a combination of undernutrition and active inflammation. Immunoneutralization of interleukin-6 (IL-6) increases hepatic IGF-I mRNA expression, plasma concentrations of IGF-I and linear growth. In contrast, administration of anti-tumour necrosis factor-alpha antibodies (TNF-ab) had no effect on IGF-I in this model. TNFab did, however, increase linear growth, suggesting inhibitory effects of TNF-alpha on the growth axis by mechanisms other than reduction in IGF-I. Preliminary data suggests that TNF-alpha inhibits maturation of growth plate chondrocytes. We have identified IL-6 receptors on growth plate chondrocytes but to date have not identified the effect, if any, of IL-6 directly at the growth plate. Copyright 2002 S. Karger AG, Basel

  8. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  9. Migratory gold resistive shorts - Chemical aspects of a failure mechanism

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Griswold, T. W.; Clendening, P. J.

    1975-01-01

    Integrated-circuit devices using the Ti/W/Au metal system are subject to failure mechanisms based on electrolytic corrosion. The migratory gold resistive short (MGRS) failure mode is one example of this mechanism and results in the formation of filamentary or dendritic deposits of gold between adjacent stripes on the IC chip. This reaction requires the presence of a sufficient amount of water, a bias voltage between adjacent stripes, and the activation of the cathodic (-) stripe. Gold ions are transported from anode to cathode through a film of moisture adsorbed on the surface of the chip; halide ions are probably involved in the transfer. Their presence is verified experimentally by X-ray photoelectron spectroscopy. Some of the chemical and electrostatic factors involved in the MGRS mechanism are discussed in this paper, including the questions of a threshold level of moisture and contamination.

  10. Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms

    USGS Publications Warehouse

    Matasci, Battista; Stock, Greg M.; Jaboyedoff, Michael; Carrea, Dario; Collins, Brian D.; Guérin, Antoine; Matasci, G.; Ravanel, L.

    2018-01-01

    Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.

  11. Bibliography of information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Shaffer, R. A.; Smith, D. M.

    1973-01-01

    A bibliography of approximately 1500 reference citations related to six problem areas in the mechanics of failure in aerospace structures is presented. The bibliography represents a search of the literature published in the ten year period 1962-1972 and is largely limited to documents published in the United States. Listings are subdivided into the six problem areas: (1) life prediction of structural materials; (2) fracture toughness data; (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. An author index is included.

  12. Fractography, NDE, and fracture mechanics applications in failure analysis studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, C.R.; Shipley, R.J.; Wilkinson, J.A.

    1994-10-01

    While identification of the precise mode of a failure can lead logically to the underlying cause, a thorough failure investigation requires much more than just the identification of a specific metallurgical mechanism, for example, fatigue, creep, stress corrosion cracking, etc. Failures involving fracture provide good illustrations of this concept. An initial step in characterizing fracture surfaces is often the identification of an origin or origins. However, the analysis should not stop there. If the origin is associated with a discontinuity, the manner in which it was formed must also be addressed. The stresses that would have existed at the originmore » must be determined and compared with material properties to determine whether or not a crack should have initiated and propagated during normal operation. Many critical components are inspected throughout their lives by nondestructive methods. When a crack progresses to failure, its nondetection at earlier inspections must also be understood. Careful study of the fracture surface combined with crack growth analysis based on fracture mechanics can provide an estimate of the crack length at the times of previous inspections. An important issue often overlooked in such studies is how processing of parts during manufacture or rework affects the probability of detection of such cracks. The ultimate goal is to understand thoroughly the progression of the failure, to understand the root cause(s), and to design appropriate corrective action(s) to minimize recurrence.« less

  13. Laser engravings as reason for mechanical failure of titanium-alloyed total hip stems.

    PubMed

    Kluess, Daniel; Steinhauser, Erwin; Joseph, Micheal; Koch, Ursula; Ellenrieder, Martin; Mittelmeier, Wolfram; Bader, Rainer

    2015-07-01

    Two revisions of broken β-titanium total hip stems had to be performed in our hospital after 2 and 4 years in situ. Since both fractures were located at the level of a laser engraving, a failure analysis was conducted. Both retrieved hip stems were disinfected and collected in our retrieval database after patient's signed agreement. Each fragment was macroscopically photographed. Fracture surfaces were analyzed using scanning electron microscopy (SEM). Quantification of element content was conducted using energy dispersive X-ray (EDX) analysis. Both stems show fatigue fracture, as displayed by the lines of rest on the fracture surface. The origin of fracture was identified directly at the laser engraving of the company logo at both stems by means of SEM. The EDX analysis showed an oxygen level beneath the laser engraving about twice as high as in the substrate, causing material embrittlement. Laser engravings need to be reduced to a minimum of necessary information, and should be placed at locations with minimum mechanical load. Biomechanical analyses are recommended to identify less loaded areas in implant components to avoid such implant failures.

  14. Accuracy of a Rationally Derived Method for Identifying Treatment Failure in Children and Adolescents

    ERIC Educational Resources Information Center

    Bishop, Matthew J.; Bybee, Taige S.; Lambert, Michael J.; Burlingame, Gary M.; Wells, M. Gawain; Poppleton, Landon E.

    2005-01-01

    Psychotherapy outcome can be enhanced by early identification of potential treatment failures before they leave treatment. In adults, compelling data are emerging that provide evidence that an early warning system that identifies potential treatment failures can be developed and applied to enhance outcome. The present study reports an analysis of…

  15. Cardiovascular mechanisms of SSRI drugs and their benefits and risks in ischemic heart disease and heart failure.

    PubMed

    Andrade, Chittaranjan; Kumar, Chethan B; Surya, Sandarsh

    2013-05-01

    Depression and heart disease are commonly comorbid. Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat depression. In March 2011, we carried out a 15-year search of PubMed for preclinical and clinical publications related to SSRIs and ischemic heart disease (IHD) or congestive heart failure (CHF). We identify and discuss a number of mechanisms by which SSRIs may influence cardiovascular functioning and health outcomes in patients with heart disease; many of the mechanisms that we present have received little attention in previous reviews. We examine studies with positive, neutral, and negative outcomes in IHD and CHF patients treated with SSRIs. SSRIs influence cardiovascular functioning and health through several different mechanisms; for example, they inhibit serotonin-mediated and collagen-mediated platelet aggregation, reduce inflammatory mediator levels, and improve endothelial function. SSRIs improve indices of ventricular functioning in IHD and heart failure without adversely affecting electrocardiographic parameters. SSRIs may also be involved in favorable or unfavorable drug interactions with medications that influence cardiovascular functions. The clinical evidence suggests that, in general, SSRIs are safe in patients with IHD and may, in fact, exert a cardioprotective effect. The clinical data are less clear in patients with heart failure, and the evidence for benefits with SSRIs is weak.

  16. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... notice provides clarification to owners and operators of gas distribution pipeline facilities when... of a gas distribution pipeline facility to file a written report for any mechanical fitting failure...

  17. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1975-01-01

    This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  18. A New Rock Strength Criterion from Microcracking Mechanisms Which Provides Theoretical Evidence of Hybrid Failure

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-Zhi

    2017-02-01

    A proper criterion describing when material fails is essential for deep understanding and constitutive modeling of rock damage and failure by microcracking. Physically, such a criterion should be the global effect of local mechanical response and microstructure evolution inside the material. This paper aims at deriving a new mechanisms-based failure criterion for brittle rocks, based on micromechanical unilateral damage-friction coupling analyses rather than on the basic results from the classical linear elastic fracture mechanics. The failure functions respectively describing three failure modes (purely tensile mode, tensile-shear mode as well as compressive-shear mode) are achieved in a unified upscaling framework and illustrated in the Mohr plane and also in the plane of principal stresses. The strength envelope is proved to be continuous and smooth with a compressive to tensile strength ratio dependent on material properties. Comparisons with experimental data are finally carried out. By this work, we also provide a theoretical evidence on the hybrid failure and the smooth transition from tensile failure to compressive-shear failure.

  19. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy

    NASA Astrophysics Data System (ADS)

    Orlandini, Stefano; Moretti, Giovanni; Albertson, John D.

    2015-10-01

    A levee failure occurred along the Secchia River, Northern Italy, on 19 January 2014, resulting in flood damage in excess of $500 million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10 cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors, it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management.

  20. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy

    NASA Astrophysics Data System (ADS)

    Orlandini, Stefano; Moretti, Giovanni; Albertson, John

    2017-04-01

    A levee failure occurred along the Secchia River, Northern Italy, on January 19, 2014, resulting in flood damage in excess of 500 Million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10-cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management.

  1. Failure Mechanisms for III-Nitride HEMT Devices

    DTIC Science & Technology

    2013-11-19

    rf plasma-assisted molecular beam epitaxy on freestanding GaN substrates, J. Cryst. Growth 380, 14-17 (2013). ii) Conference presentations (Invited...1 eFinal Report – AOARD Grant FA-2386-11-1-4107 Failure Mechanisms for III-nitride HEMT devices 19 November 2013 Principal Investigators: Martha...aspects of III-nitride HEMT materials and devices. Energy-filtered imaging of unstressed and stressed Ni/Au-gated AlGaN/GaN HEMTs indicated that

  2. Mechanisms, predictors, and trends of electrical failure of Riata leads.

    PubMed

    Cheung, Jim W; Al-Kazaz, Mohamed; Thomas, George; Liu, Christopher F; Ip, James E; Bender, Seth R; Siddiqi, Faisal K; Markowitz, Steven M; Lerman, Bruce B

    2013-10-01

    Riata and Riata ST implantable cardioverter-defibrillator leads have been shown to be prone to structural and electrical failure. To determine predictors, mechanisms, and temporal patterns of Riata/ST lead electrical failure. All 314 patients who underwent Riata/ST lead implantation at our institution with greater than or equal to 90 days of follow-up were studied. The Kaplan-Meier analysis of lead survival was performed. Results from the returned product analysis of explanted leads with electrical lead failure were recorded. During a median follow-up of 4.1 years, the Riata lead electrical failure rate was 6.6%. The rate of externalized conductors among failed leads was 57%. The engineering analysis of 10 explanted leads revealed 5 (50%) leads with electrical failure owing to breach of ethylene tetrafluoroethylene conductor coating. Female gender (hazard ratio 2.7; 95% confidence interval 1.1-6.7; P = .04) and age (hazard ratio 0.95; 95% confidence interval 0.92-0.97; P < .001) were multivariate predictors of lead failure. By using log-log analysis, we noted that the rate of Riata lead failure initially increased exponentially with a power of 2.1 but leads surviving past 4 years had a linear pattern of lead failure with a power of 1.0. Younger age and female gender are independent predictors of Riata lead failure. Loss of integrity of conductor cables with ethylene tetrafluoroethylene coating is an important mode of electrical failure of the Riata lead. Further study of Riata lead failure trends is warranted to guide lead management. © 2013 Heart Rhythm Society. All rights reserved.

  3. Global left atrial failure in heart failure.

    PubMed

    Triposkiadis, Filippos; Pieske, Burkert; Butler, Javed; Parissis, John; Giamouzis, Gregory; Skoularigis, John; Brutsaert, Dirk; Boudoulas, Harisios

    2016-11-01

    The left atrium plays an important role in the maintenance of cardiovascular and neurohumoral homeostasis in heart failure. However, with progressive left ventricular dysfunction, left atrial (LA) dilation and mechanical failure develop, which frequently culminate in atrial fibrillation. Moreover, LA mechanical failure is accompanied by LA endocrine failure [deficient atrial natriuretic peptide (ANP) processing-synthesis/development of ANP resistance) and LA regulatory failure (dominance of sympathetic nervous system excitatory mechanisms, excessive vasopressin release) contributing to neurohumoral overactivity, vasoconstriction, and volume overload (global LA failure). The purpose of the present review is to describe the characteristics and emphasize the clinical significance of global LA failure in patients with heart failure. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.

  4. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    DTIC Science & Technology

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen...K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions , Int. J. Impact Eng., 2010, 37, p 537–551 24. T

  5. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.

    1973-01-01

    A list of approximately 150 experts from approximately 60 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure is presented. Each author included is listed by organizational affiliation, address and principal field of expertise. The initial criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The Register includes two indexes: an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  6. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  7. Failure mechanism of hollow tree trunks due to cross-sectional flattening

    PubMed Central

    Huang, Yan-San; Hsu, Fu-Lan; Lee, Chin-Mei

    2017-01-01

    Failure of hollow trees in urban areas is a worldwide concern, and it can be caused by different mechanisms, i.e. bending stresses or flattening-related failures. Here we derive a new analytical expression for predicting the bending moment for tangential cracking, and compare the breaking moment of various failure modes, including Brazier buckling, tangential cracking, shear failure and conventional bending failure, as a function of t/R ratio, where t and R are the trunk wall thickness and trunk radius, respectively, of a hollow tree. We use Taiwan red cypress as an example and show that its failure modes and the corresponding t/R ratios are: Brazier buckling (Mode I), tangential cracking followed by longitudinal splitting (Mode II) and conventional bending failure (Mode III) for 0 < t/R < 0.06, 0.06 < t/R < 0.27 and 0.27 < t/R < 1, respectively. The exact values of those ratios may vary within and among species, but the variation is much smaller than individual mechanical properties. Also, shear failure, another type of cracking due to maximum shear stress near the neutral axis of the tree trunk, is unlikely to occur since it requires much larger bending moments. Hence, we conclude that tangential cracking due to cross-sectional flattening, followed by longitudinal splitting, is dominant for hollow trunks. Our equations are applicable to analyse straight hollow tree trunks and plant stems, but are not applicable to those with side openings or those with only heart decay. Our findings provide insights for those managing trees in urban situations and those managing for conservation of hollow-dependent fauna in both urban and rural settings. PMID:28484616

  8. Mechanisms of epoxyeicosatrienoic acids to improve cardiac remodeling in chronic renal failure disease.

    PubMed

    Zhang, Kun; Wang, Ju; Zhang, Huanji; Chen, Jie; Zuo, Zhiyi; Wang, Jingfeng; Huang, Hui

    2013-02-15

    Both clinical and basic science studies have demonstrated that cardiac remodeling in patients with chronic renal failure (CRF) is very common. It is a key feature during the course of heart failure and an important risk factor for subsequent cardiac mortality. Traditional drugs or therapies rarely have effects on cardiac regression of CRF and cardiovascular events are still the first cause of death. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acids metabolized by cytochrome P450 epoxygenases. It has been found that EETs have important biological effects including anti-hypertension and anti-inflammation. Recent data suggest that EETs are involved in regulating cardiomyocyte injury, renal dysfunction, chronic kidney disease (CKD)-related risk factors and signaling pathways, all of which play key roles in cardiac remodeling induced by CRF. This review analyzes the literature to identify the possible mechanisms for EETs to improve cardiac remodeling induced by CRF and indicates the therapeutic potential of EETs in it. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Acute respiratory failure requiring mechanical ventilation in severe chronic obstructive pulmonary disease (COPD)

    PubMed Central

    Gadre, Shruti K.; Duggal, Abhijit; Mireles-Cabodevila, Eduardo; Krishnan, Sudhir; Wang, Xiao-Feng; Zell, Katrina; Guzman, Jorge

    2018-01-01

    Abstract There are limited data on the epidemiology of acute respiratory failure necessitating mechanical ventilation in patients with severe chronic obstructive pulmonary disease (COPD). The prognosis of acute respiratory failure requiring invasive mechanical ventilation is believed to be grim in this population. The purpose of this study was to illustrate the epidemiologic characteristics and outcomes of patients with underlying severe COPD requiring mechanical ventilation. A retrospective study of patients admitted to a quaternary referral medical intensive care unit (ICU) between January 2008 and December 2012 with a diagnosis of severe COPD and requiring invasive mechanical ventilation for acute respiratory failure. We evaluated 670 patients with an established diagnosis of severe COPD requiring mechanical ventilation for acute respiratory failure of whom 47% were male with a mean age of 63.7 ± 12.4 years and Acute physiology and chronic health evaluation (APACHE) III score of 76.3 ± 27.2. Only seventy-nine (12%) were admitted with a COPD exacerbation, 27(4%) had acute respiratory distress syndrome (ARDS), 78 (12%) had pneumonia, 78 (12%) had sepsis, and 312 (47%) had other causes of respiratory failure, including pulmonary embolism, pneumothorax, etc. Eighteen percent of the patients received a trial of noninvasive positive pressure ventilation. The median duration of mechanical ventilation was 3 days (interquartile range IQR 2–7); the median duration for ICU length of stay (LOS) was 5 (IQR 2–9) days and the median duration of hospital LOS was 12 (IQR 7–22) days. The overall ICU mortality was 25%. Patients with COPD exacerbation had a shorter median duration of mechanical ventilation (2 vs 4 days; P = .04), ICU (3 vs 5 days; P = .01), and hospital stay (10 vs 13 days; P = .01). The ICU mortality (9% vs 27%; P < .001), and the hospital mortality (17% vs 32%; P = .004) for mechanically ventilated patients with an acute

  10. Acute respiratory failure requiring mechanical ventilation in severe chronic obstructive pulmonary disease (COPD).

    PubMed

    Gadre, Shruti K; Duggal, Abhijit; Mireles-Cabodevila, Eduardo; Krishnan, Sudhir; Wang, Xiao-Feng; Zell, Katrina; Guzman, Jorge

    2018-04-01

    There are limited data on the epidemiology of acute respiratory failure necessitating mechanical ventilation in patients with severe chronic obstructive pulmonary disease (COPD). The prognosis of acute respiratory failure requiring invasive mechanical ventilation is believed to be grim in this population. The purpose of this study was to illustrate the epidemiologic characteristics and outcomes of patients with underlying severe COPD requiring mechanical ventilation.A retrospective study of patients admitted to a quaternary referral medical intensive care unit (ICU) between January 2008 and December 2012 with a diagnosis of severe COPD and requiring invasive mechanical ventilation for acute respiratory failure.We evaluated 670 patients with an established diagnosis of severe COPD requiring mechanical ventilation for acute respiratory failure of whom 47% were male with a mean age of 63.7 ± 12.4 years and Acute physiology and chronic health evaluation (APACHE) III score of 76.3 ± 27.2. Only seventy-nine (12%) were admitted with a COPD exacerbation, 27(4%) had acute respiratory distress syndrome (ARDS), 78 (12%) had pneumonia, 78 (12%) had sepsis, and 312 (47%) had other causes of respiratory failure, including pulmonary embolism, pneumothorax, etc. Eighteen percent of the patients received a trial of noninvasive positive pressure ventilation. The median duration of mechanical ventilation was 3 days (interquartile range IQR 2-7); the median duration for ICU length of stay (LOS) was 5 (IQR 2-9) days and the median duration of hospital LOS was 12 (IQR 7-22) days. The overall ICU mortality was 25%. Patients with COPD exacerbation had a shorter median duration of mechanical ventilation (2 vs 4 days; P = .04), ICU (3 vs 5 days; P = .01), and hospital stay (10 vs 13 days; P = .01). The ICU mortality (9% vs 27%; P < .001), and the hospital mortality (17% vs 32%; P = .004) for mechanically ventilated patients with an acute exacerbation of severe

  11. A systematic review of the main mechanisms of heart failure disease management interventions.

    PubMed

    Clark, Alexander M; Wiens, Kelly S; Banner, Davina; Kryworuchko, Jennifer; Thirsk, Lorraine; McLean, Lianne; Currie, Kay

    2016-05-01

    To identify the main mechanisms of heart failure (HF) disease management programmes based in hospitals, homes or the community. Systematic review of qualitative and quantitative studies using realist synthesis. The search strategy incorporated general and specific terms relevant to the research question: HF, self-care and programmes/interventions for HF patients. To be included, papers had to be published in English after 1995 (due to changes in HF care over recent years) to May 2014 and contain specific data related to mechanisms of effect of HF programmes. 10 databases were searched; grey literature was located via Proquest Dissertations and Theses, Google and publications from organisations focused on HF or self-care. 33 studies (n=3355 participants, mean age: 65 years, 35% women) were identified (18 randomised controlled trials, three mixed methods studies, six pre-test post-test studies and six qualitative studies). The main mechanisms identified in the studies were associated with increased patient understanding of HF and its links to self-care, greater involvement of other people in this self-care, increased psychosocial well-being and support from health professionals to use technology. Future HF disease management programmes should seek to harness the main mechanisms through which programmes actually work to improve HF self-care and outcomes, rather than simply replicating components from other programmes. The most promising mechanisms to harness are associated with increased patient understanding and self-efficacy, involvement of other caregivers and health professionals and improving psychosocial well-being and technology use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  13. Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors

    DTIC Science & Technology

    2015-09-28

    malicious behavior found in our dataset and (ii) to create ground truth to evaluate the system proposed in Section V. We begin by removing those cases that...2011. [10] S. Hao, N. Feamster, and R. Pandrangi, “Monitoring the Initial DNS Behavior of Malicious Domains,” in ACM IMC , 2011. [11] R. Perdisci et...distribution is unlimited. Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors The views, opinions and/or findings contained in

  14. Cascading failures mechanism based on betweenness-degree ratio distribution with different connecting preferences

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Juan; Guo, Shi Ze; Jin, Lei; Chen, Mo

    We study the structural robustness of the scale free network against the cascading failure induced by overload. In this paper, a failure mechanism based on betweenness-degree ratio distribution is proposed. In the cascading failure model we built the initial load of an edge which is proportional to the node betweenness of its ends. During the edge random deletion, we find a phase transition. Then based on the phase transition, we divide the process of the cascading failure into two parts: the robust area and the vulnerable area, and define the corresponding indicator to measure the performance of the networks in both areas. From derivation, we find that the vulnerability of the network is determined by the distribution of betweenness-degree ratio. After that we use the connection between the node ability coefficient and distribution of betweenness-degree ratio to explain the cascading failure mechanism. In simulations, we verify the correctness of our derivations. By changing connecting preferences, we find scale free networks with a slight assortativity, which performs better both in robust area and vulnerable area.

  15. The future of mechanical circulatory support for advanced heart failure.

    PubMed

    Marinescu, Karolina K; Uriel, Nir; Adatya, Sirtaz

    2016-05-01

    Mechanical circulatory support (MCS) has become the main focus of heart replacement therapy for end stage heart failure patients. Advances in technology are moving towards miniaturization, biventricular support devices, complete internalization, improved hemocompatibility profiles, and responsiveness to cardiac loading conditions. This review will discuss the recent advances and investigational devices in MCS for advanced heart failure. The demand for both short-term and long-term durable devices for advanced heart failure is increasing. The current devices are still fraught with an unacceptably high incidence of gastrointestinal bleeding and thromboembolic and infectious complications. New devices are on the horizon focusing on miniaturization, versatility for biventricular support, improved hemocompatibility, use of alternate energy sources, and incorporation of continuous hemodynamic monitoring. The role for MCS in advanced heart replacement therapy is steadily increasing. With the advent of newer generation devices on the horizon, the potential exists for MCS to surpass heart transplantation as the primary therapy for advanced heart failure.

  16. Mechanisms That Modulate Peripheral Oxygen Delivery during Exercise in Heart Failure.

    PubMed

    Kisaka, Tomohiko; Stringer, William W; Koike, Akira; Agostoni, Piergiuseppe; Wasserman, Karlman

    2017-07-01

    Oxygen uptake ([Formula: see text]o 2 ) measured at the mouth, which is equal to the cardiac output (CO) times the arterial-venous oxygen content difference [C(a-v)O 2 ], increases more than 10- to 20-fold in normal subjects during exercise. To achieve this substantial increase in oxygen uptake [[Formula: see text]o 2  = CO × C(a-v)O 2 ] both CO and the arterial-venous difference must simultaneously increase. Although this occurs in normal subjects, patients with heart failure cannot achieve significant increases in cardiac output and must rely primarily on changes in the arterial-venous difference to increase [Formula: see text]o 2 during exercise. Inadequate oxygen delivery to the tissue during exercise in heart failure results in tissue anaerobiosis, lactic acid accumulation, and reduction in exercise tolerance. H + is an important regulatory and feedback mechanism to facilitate additional oxygen delivery to the tissue (Bohr effect) and further aerobic production of ATP when tissue anaerobic metabolism increases the production of lactate (anaerobic threshold). This H + production in the muscle capillary promotes the continued unloading of oxygen (oxyhemoglobin desaturation) while maintaining the muscle capillary Po 2 (Fick principle) at a sufficient level to facilitate aerobic metabolism and overcome the diffusion barriers from capillary to mitochondria ("critical capillary Po 2 ," 15-20 mm Hg). This mechanism is especially important during exercise in heart failure where cardiac output increase is severely constrained. Several compensatory mechanisms facilitate peripheral oxygen delivery during exercise in both normal persons and patients with heart failure.

  17. 76 FR 5494 - Pipeline Safety: Mechanical Fitting Failure Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Safety: Mechanical Fitting Failure Reporting Requirements AGENCY: Pipeline and Hazardous Materials Safety... tightening. A widely accepted industry guidance document, Gas Pipeline Technical Committee (GPTC) Guide, does...

  18. Light water reactor lower head failure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broadermore » range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.« less

  19. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

    PubMed Central

    Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy

    2014-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935

  20. Early failure mechanisms of constrained tripolar acetabular sockets used in revision total hip arthroplasty.

    PubMed

    Cooke, Christopher C; Hozack, William; Lavernia, Carlos; Sharkey, Peter; Shastri, Shani; Rothman, Richard H

    2003-10-01

    Fifty-eight patients received an Osteonics constrained acetabular implant for recurrent instability (46), girdlestone reimplant (8), correction of leg lengthening (3), and periprosthetic fracture (1). The constrained liner was inserted into a cementless shell (49), cemented into a pre-existing cementless shell (6), cemented into a cage (2), and cemented directly into the acetabular bone (1). Eight patients (13.8%) required reoperation for failure of the constrained implant. Type I failure (bone-prosthesis interface) occurred in 3 cases. Two cementless shells became loose, and in 1 patient, the constrained liner was cemented into an acetabular cage, which then failed by pivoting laterally about the superior fixation screws. Type II failure (liner locking mechanism) occurred in 2 cases. Type III failure (femoral head locking mechanism) occurred in 3 patients. Seven of the 8 failures occurred in patients with recurrent instability. Constrained liners are an effective method for treatment during revision total hip arthroplasty but should be used in select cases only.

  1. Failure mechanism of shear-wall dominant multi-story buildings

    USGS Publications Warehouse

    Yuksel, S.B.; Kalkan, E.

    2008-01-01

    The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.

  2. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    NASA Astrophysics Data System (ADS)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of

  3. Product Reliability Trends, Derating Considerations and Failure Mechanisms with Scaled CMOS

    NASA Technical Reports Server (NTRS)

    White, Mark; Vu, Duc; Nguyen, Duc; Ruiz, Ron; Chen, Yuan; Bernstein, Joseph B.

    2006-01-01

    As microelectronics is scaled into the deep sub-micron regime, space and aerospace users of advanced technology CMOS are reassessing how scaling effects impact long-term product reliability. The effects of electromigration (EM), time-dependent-dielectric-breakdown (TDDB) and hot carrier degradation (HCI and NBTI) wearout mechanisms on scaled technologies and product reliability are investigated, accelerated stress testing across several technology nodes is performed, and FA is conducted to confirm the failure mechanism(s).

  4. Differentiating Electromechanical From Non-Electrical Substrates of Mechanical Discoordination to Identify Responders to Cardiac Resynchronization Therapy.

    PubMed

    Lumens, Joost; Tayal, Bhupendar; Walmsley, John; Delgado-Montero, Antonia; Huntjens, Peter R; Schwartzman, David; Althouse, Andrew D; Delhaas, Tammo; Prinzen, Frits W; Gorcsan, John

    2015-09-01

    Left ventricular (LV) mechanical discoordination, often referred to as dyssynchrony, is often observed in patients with heart failure regardless of QRS duration. We hypothesized that different myocardial substrates for LV mechanical discoordination exist from (1) electromechanical activation delay, (2) regional differences in contractility, or (3) regional scar and that we could differentiate electromechanical substrates responsive to cardiac resynchronization therapy (CRT) from unresponsive non-electrical substrates. First, we used computer simulations to characterize mechanical discoordination patterns arising from electromechanical and non-electrical substrates and accordingly devise the novel systolic stretch index (SSI), as the sum of posterolateral systolic prestretch and septal systolic rebound stretch. Second, 191 patients with heart failure (QRS duration ≥120 ms; LV ejection fraction ≤35%) had baseline SSI quantified by automated echocardiographic radial strain analysis. Patients with SSI≥9.7% had significantly less heart failure hospitalizations or deaths 2 years after CRT (hazard ratio, 0.32; 95% confidence interval, 0.19-0.53; P<0.001) and less deaths, transplants, or LV assist devices (hazard ratio, 0.28; 95% confidence interval, 0.15-0.55; P<0.001). Furthermore, in a subgroup of 113 patients with intermediate electrocardiographic criteria (QRS duration of 120-149 ms or non-left bundle branch block), SSI≥9.7% was independently associated with significantly less heart failure hospitalizations or deaths (hazard ratio, 0.41; 95% confidence interval, 0.23-0.79; P=0.004) and less deaths, transplants, or LV assist devices (hazard ratio, 0.27; 95% confidence interval, 0.12-0.60; P=0.001). Computer simulations differentiated patterns of LV mechanical discoordination caused by electromechanical substrates responsive to CRT from those related to regional hypocontractility or scar unresponsive to CRT. The novel SSI identified patients who benefited more

  5. Mining Clinicians' Electronic Documentation to Identify Heart Failure Patients with Ineffective Self-Management: A Pilot Text-Mining Study.

    PubMed

    Topaz, Maxim; Radhakrishnan, Kavita; Lei, Victor; Zhou, Li

    2016-01-01

    Effective self-management can decrease up to 50% of heart failure hospitalizations. Unfortunately, self-management by patients with heart failure remains poor. This pilot study aimed to explore the use of text-mining to identify heart failure patients with ineffective self-management. We first built a comprehensive self-management vocabulary based on the literature and clinical notes review. We then randomly selected 545 heart failure patients treated within Partners Healthcare hospitals (Boston, MA, USA) and conducted a regular expression search with the compiled vocabulary within 43,107 interdisciplinary clinical notes of these patients. We found that 38.2% (n = 208) patients had documentation of ineffective heart failure self-management in the domains of poor diet adherence (28.4%), missed medical encounters (26.4%) poor medication adherence (20.2%) and non-specified self-management issues (e.g., "compliance issues", 34.6%). We showed the feasibility of using text-mining to identify patients with ineffective self-management. More natural language processing algorithms are needed to help busy clinicians identify these patients.

  6. 49 CFR 191.12 - Distribution Systems: Mechanical Fitting Failure Reports

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Distribution Systems: Mechanical Fitting Failure Reports 191.12 Section 191.12 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER...

  7. Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites

    NASA Technical Reports Server (NTRS)

    Ha, Jong-Bae; Nairn, John A.

    1992-01-01

    A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.

  8. Slow crack growth versus creep cavity coalescence: Competing failure mechanisms during high-temperature deformation of advanced ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, M.G.; Kohles, S.S.; Stevens, T.L.

    1996-12-31

    Duality of failure mechanisms (slow crack growth from pre-existing defects versus cumulative creep damage) is examined in a silicon nitride advanced ceramic recently tested at elevated-temperatures. Static (constant stress over time), dynamic (monotonically-increasing stress over time), and cyclic (fluctuating stress over time) fatigue behaviors were evaluated in tension in ambient air at temperatures of 1150, 1260, and 1370{degrees}C for a hot-isostatically pressed monolithic {beta}-silicon nitride. At 1150{degrees}C, all three types of fatigue results showed the similar failure mechanism of slow crack growth (SCG). At 1260 and 1370{degrees}C the failure mechanism was more complex. Failure under static fatigue was dominated bymore » the accumulation of creep damage via diffusion-controlled cavities. In dynamic fatigue, failure occurred by SCG at high stress rates (>10{sup {minus}2}MPa/s) and by creep damage at low stress rates ({le}10{sup {minus}2} MPa/s). For cyclic fatigue, such rate effects influenced the stress rupture results in which times to failure were greater for dynamic and cyclic fatigue than for static fatigue. Elucidation of failure mechanisms is necessary for accurate prediction of long-term survivability and reliability of structural ceramics.« less

  9. Failure Analysis to Identify Thermal Runaway of Bypass Diodes in Fielded Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao, Uchida, Yasunori; Johnston, Steve; Hacke, Peter

    We studied a bypass diode recuperated from fielded modules in a rooftop installation to determine the failure mechanism. The field-failed diode showed similar characteristics to thermal runaway, specifically X-ray tomography evidence of migrated metal. We also observed burn marks on the silicon surface like those lab-stressed for thermal runaway. Reaction products are more soluble than silicon and the surface is oxygen rich.

  10. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  11. Muscle wasting and cachexia in heart failure: mechanisms and therapies.

    PubMed

    von Haehling, Stephan; Ebner, Nicole; Dos Santos, Marcelo R; Springer, Jochen; Anker, Stefan D

    2017-06-01

    Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β 2 -adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.

  12. Mechanisms Explaining the Influence of Subclinical Hypothyroidism on the Onset and Progression of Chronic Heart Failure.

    PubMed

    Triggiani, Vincenzo; Angelo Giagulli, Vito; De Pergola, Giovanni; Licchelli, Brunella; Guastamacchia, Edoardo; Iacoviello, Massimo

    2016-01-01

    Subclinical hypothyroidism can be associated with the onset and progression of chronic heart failure. We undertook a careful search of the literature aiming to review the possible pathogenetic mechanisms explaining the influence of subclinical hypothyroidism on the onset and progression of chronic heart failure. Thyroid hormones can influence the expression of genes involved in calcium handling and contractile properties of myocardiocytes. Subclinical hypothyroidism, therefore, can alter both cardiovascular morphology and function leading to changes in myocardiocytes shape and structure, and to alterations of both contractile and relaxing properties, impairing systolic as well as diastolic functions. Furthermore, it can favour dyslipidemia, endothelial dysfunction and diastolic hypertension, favouring atherogenesis and coronary heart disease, possibly evolving into chronic heart failure. Beside an influence on the onset of chronic heart failure, subclinical hypothyroidism can represent a risk factor for its progression, in particular hospitalization and mortality but the mechanisms involved need to be fully elucidated. Subclinical hypothyroidism can be associated with the onset of chronic heart failure, because it can favour two frequent conditions that can evolve in heart failure: coronary heart disease and hypertension; it can also alter both cardiovascular morphology and function leading to heart failure progression in patients already affected through mechanisms still not completely understood.

  13. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables.

    PubMed

    Horiuchi, Yu; Tanimoto, Shuzou; Latif, A H M Mahbub; Urayama, Kevin Y; Aoki, Jiro; Yahagi, Kazuyuki; Okuno, Taishi; Sato, Yu; Tanaka, Tetsu; Koseki, Keita; Komiyama, Kota; Nakajima, Hiroyoshi; Hara, Kazuhiro; Tanabe, Kengo

    2018-07-01

    Acute heart failure (AHF) is a heterogeneous disease caused by various cardiovascular (CV) pathophysiology and multiple non-CV comorbidities. We aimed to identify clinically important subgroups to improve our understanding of the pathophysiology of AHF and inform clinical decision-making. We evaluated detailed clinical data of 345 consecutive AHF patients using non-hierarchical cluster analysis of 77 variables, including age, sex, HF etiology, comorbidities, physical findings, laboratory data, electrocardiogram, echocardiogram and treatment during hospitalization. Cox proportional hazards regression analysis was performed to estimate the association between the clusters and clinical outcomes. Three clusters were identified. Cluster 1 (n=108) represented "vascular failure". This cluster had the highest average systolic blood pressure at admission and lung congestion with type 2 respiratory failure. Cluster 2 (n=89) represented "cardiac and renal failure". They had the lowest ejection fraction (EF) and worst renal function. Cluster 3 (n=148) comprised mostly older patients and had the highest prevalence of atrial fibrillation and preserved EF. Death or HF hospitalization within 12-month occurred in 23% of Cluster 1, 36% of Cluster 2 and 36% of Cluster 3 (p=0.034). Compared with Cluster 1, risk of death or HF hospitalization was 1.74 (95% CI, 1.03-2.95, p=0.037) for Cluster 2 and 1.82 (95% CI, 1.13-2.93, p=0.014) for Cluster 3. Cluster analysis may be effective in producing clinically relevant categories of AHF, and may suggest underlying pathophysiology and potential utility in predicting clinical outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Background and design of the profiling biobehavioral responses to mechanical support in advanced heart failure study.

    PubMed

    Lee, Christopher S; Mudd, James O; Gelow, Jill M; Nguyen, Thuan; Hiatt, Shirin O; Green, Jennifer K; Denfeld, Quin E; Bidwell, Julie T; Grady, Kathleen L

    2014-01-01

    Unexplained heterogeneity in response to ventricular assist device (VAD) implantation for the management of advanced heart failure impedes our ability to predict favorable outcomes, provide adequate patient and family education, and personalize monitoring and symptom management strategies. The purpose of this article was to describe the background and the design of a study entitled "Profiling Biobehavioral Responses to Mechanical Support in Advanced Heart Failure" (PREMISE). PREMISE is a prospective cohort study designed to (1) identify common and distinct trajectories of change in physical and psychological symptom burden; (2) characterize common trajectories of change in serum biomarkers of myocardial stress, systemic inflammation, and endothelial dysfunction; and (3) quantify associations between symptoms and biomarkers of pathogenesis in adults undergoing VAD implantation. Latent growth mixture modeling, including parallel process and cross-classification modeling, will be used to address the study aims and will entail identifying trajectories, quantifying associations between trajectories and both clinical and quality-of-life outcomes, and identifying predictors of favorable symptom and biomarker responses to VAD implantation. Research findings from the PREMISE study will be used to enhance shared patient and provider decision making and to shape a much-needed new breed of interventions and clinical management strategies that are tailored to differential symptom and pathogenic responses to VAD implantation.

  15. Fracture simulation of restored teeth using a continuum damage mechanics failure model.

    PubMed

    Li, Haiyan; Li, Jianying; Zou, Zhenmin; Fok, Alex Siu-Lun

    2011-07-01

    The aim of this paper is to validate the use of a finite-element (FE) based continuum damage mechanics (CDM) failure model to simulate the debonding and fracture of restored teeth. Fracture testing of plastic model teeth, with or without a standard Class-II MOD (mesial-occusal-distal) restoration, was carried out to investigate their fracture behavior. In parallel, 2D FE models of the teeth are constructed and analyzed using the commercial FE software ABAQUS. A CDM failure model, implemented into ABAQUS via the user element subroutine (UEL), is used to simulate the debonding and/or final fracture of the model teeth under a compressive load. The material parameters needed for the CDM model to simulate fracture are obtained through separate mechanical tests. The predicted results are then compared with the experimental data of the fracture tests to validate the failure model. The failure processes of the intact and restored model teeth are successfully reproduced by the simulation. However, the fracture parameters obtained from testing small specimens need to be adjusted to account for the size effect. The results indicate that the CDM model is a viable model for the prediction of debonding and fracture in dental restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Failure mechanisms in wood joints bonded with urea-formaldehyde adhesives

    Treesearch

    B.H. River; R.O. Ebewele; G.E. Myers

    1994-01-01

    Wood joints bonded with urea-formaldehyde (UF) are weakened by cyclic swelling and shrinking. To study the failure mechanisms in UF-bonded joints, specimens were bonded with unmodified, modified (amine), or phenol formaldehyde adhesive and subjected to accelerated aging. Modification of the adhesive properties increased the cleavage fracture toughness and shear...

  17. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2017-03-30

    Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics 5b. GRANT NUMBER NOOO 14-16-1-21 73 5c. PROGRAM...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Texas A&M Engineering Experiment Station (TEES) 400 Harvey Mitchell Parkway, Suite 300 M160 1473 I...Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics Award Number N00014-16-1-2173 DOD-NAVY- Office of Naval Research PI: Ramesh

  18. Forensic Study of Early Failures with Unbonded Concrete Overlays

    DOT National Transportation Integrated Search

    2017-11-01

    A forensic investigation was conducted to identify failure mechanisms responsible for early failures of unbonded concrete overlays on selected projects in Ohio, including I-70 in Madison County, I-77 in Washington and Noble Counties, and I-90 in Lake...

  19. Failure Engineering Study and Accelerated Stress Test Results for the Mars Global Surveyor Spacecraft's Power Shunt Assemblies

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark; Larson, Timothy

    2000-01-01

    An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.

  20. 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients.

    PubMed

    Kokkinis, Dimitri; Bouville, Florian; Studart, André R

    2018-05-01

    Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DEFORMATION AND FRACTURE OF POORLY CONSOLIDATED MEDIA - Borehole Failure Mechanisms in High-Porosity Sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezalel c. Haimson

    2005-06-10

    We investigated failure mechanisms around boreholes and the formation of borehole breakouts in high-porosity sandstone, with particular interest to grain-scale micromechanics of failure leading to the hitherto unrecognized fracture-like borehole breakouts and apparent compaction band formation in poorly consolidated granular materials. We also looked at a variety of drilling-related factors that contribute to the type, size and shape of borehole breakouts. The objective was to assess their effect on the ability to establish correlations between breakout geometry and in situ stress magnitudes, as well as on borehole stability prediction, and hydrocarbon/water extraction in general. We identified two classes of mediummore » to high porosity (12-30%) sandstones, arkosic, consisting of 50-70% quartz and 15 to 50% feldspar, and quartz-rich sandstones, in which quartz grain contents varied from 90 to 100%. In arkose sandstones critical far-field stress magnitudes induced compressive failure around boreholes in the form of V-shaped (dog-eared) breakouts, the result of dilatant intra-and trans-granular microcracking subparallel to both the maximum horizontal far-field stress and to the borehole wall. On the other hand, boreholes in quartz-rich sandstones failed by developing fracture-like breakouts. These are long and very narrow (several grain diameters) tabular failure zones perpendicular to the maximum stress. Evidence provided mainly by SEM observations suggests a failure process initiated by localized grain-bond loosening along the least horizontal far-field stress springline, the packing of these grains into a lower porosity compaction band resembling those discovered in Navajo and Aztec sandstones, and the emptying of the loosened grains by the circulating drilling fluid starting from the borehole wall. Although the immediate several grain layers at the breakout tip often contain some cracked or even crushed grains, the failure mechanism enabled by the formation

  2. Deformation and failure mechanism of secondary cell wall in Spruce late wood

    NASA Astrophysics Data System (ADS)

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Ghisleni, Rudy; Zimmermann, Tanja; Michler, Johann

    2010-08-01

    The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

  3. Landslide Frequency and Failure Mechanisms at NE Gela Basin (Strait of Sicily)

    NASA Astrophysics Data System (ADS)

    Kuhlmann, J.; Asioli, A.; Trincardi, F.; Klügel, A.; Huhn, K.

    2017-11-01

    Despite intense research by both academia and industry, the parameters controlling slope stability at continental margins are often speculated upon. Lack of core recovery and age control on failed sediments prevent the assessment of failure timing/frequency and the role of prefailure architecture as shaped by paleoenvironmental changes. This study uses an integrated chronological framework from two boreholes and complementary ultrahigh-resolution acoustic profiling in order to assess (1) the frequency of submarine landsliding at the continental margin of NE Gela Basin and (2) the associated mechanisms of failure. Accurate age control was achieved through absolute radiocarbon dating and indirect dating relying on isotope stratigraphic and micropaleontological reconstructions. A total of nine major slope failure events have been recognized that occurred within the last 87 kyr ( 10 kyr return frequency), though there is evidence for additional syndepositional, small-scaled transport processes of lower volume. Preferential failure involves translational movement of mudflows along subhorizontal surfaces that are induced by sedimentological changes relating to prefailure stratal architecture. Along with sequence-stratigraphic boundaries reflecting paleoenvironmental fluctuations, recovered core material suggests that intercalated volcaniclastic layers are key to the basal confinement and lateral movement of these events in the study area. Another major predisposing factor is given by rapid loading of fine-grained homogenous strata and successive generation of excess pore pressure, as expressed by several fluid escape structures. Recurrent failure, however, requires repeated generation of favorable conditions, and seismic activity, though low if compared to many other Mediterranean settings, is shown to represent a legitimate trigger mechanism.

  4. Carbon Fiber Strand Tensile Failure Dynamic Event Characterization

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth L.; Reeder, James

    2016-01-01

    There are few if any clear, visual, and detailed images of carbon fiber strand failures under tension useful for determining mechanisms, sequences of events, different types of failure modes, etc. available to researchers. This makes discussion of physics of failure difficult. It was also desired to find out whether the test article-to-test rig interface (grip) played a part in some failures. These failures have nothing to do with stress rupture failure, thus representing a source of waste for the larger 13-00912 investigation into that specific failure type. Being able to identify or mitigate any competing failure modes would improve the value of the 13-00912 test data. The beginnings of the solution to these problems lay in obtaining images of strand failures useful for understanding physics of failure and the events leading up to failure. Necessary steps include identifying imaging techniques that result in useful data, using those techniques to home in on where in a strand and when in the sequence of events one should obtain imaging data.

  5. Are Your Students Ready for Anatomy and Physiology? Developing Tools to Identify Students at Risk for Failure

    ERIC Educational Resources Information Center

    Gultice, Amy; Witham, Ann; Kallmeyer, Robert

    2015-01-01

    High failure rates in introductory college science courses, including anatomy and physiology, are common at institutions across the country, and determining the specific factors that contribute to this problem is challenging. To identify students at risk for failure in introductory physiology courses at our open-enrollment institution, an online…

  6. The failure of earthquake failure models

    USGS Publications Warehouse

    Gomberg, J.

    2001-01-01

    In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.

  7. Pathophysiologic Mechanisms in Heart Failure: Role of the Sympathetic Nervous System.

    PubMed

    Antoine, Steve; Vaidya, Gaurang; Imam, Haider; Villarreal, Daniel

    2017-01-01

    The syndrome of heart failure involves complex pathophysiologic mechanisms and is associated with extremely high-morbidity, mortality and economic costs. This growing global epidemic has diverse etiologies and is fundamentally characterized by dyshomeostasis between heart and kidneys, leading to development and progression of the cardiorenal syndrome. Excessive and sustained sympathoexcitation has emerged as a single prominent factor involved in the structural and functional dysfunction of multiple organ systems during this disease. Studies in experimental models of heart failure indicate that ablation of the renal nerves may help restore renal sodium and water equilibrium as well as the attenuation of adverse cardiac remodeling. With the recent development of minimally invasive endovascular renal denervation in humans, it is anticipated that this technology would become a novel and important paradigm shift in the management of heart failure. Copyright © 2017. Published by Elsevier Inc.

  8. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates.

    PubMed

    Song, Z Q; Ni, Y; Peng, L M; Liang, H Y; He, L H

    2016-03-31

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.

  9. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    NASA Technical Reports Server (NTRS)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  10. Defective boron nitride nanotubes: mechanical properties, electronic structures and failure behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Ding, Ning; Zhao, Xian; Wu, Chi-Man Lawrence

    2018-03-01

    Due to their excellent physical and chemical characteristics, boron nitride nanotubes (BNNTs) are regarded as a complementary addition to carbon nanotubes. Pioneer studies have demonstrated that defects in carbon nanotubes are considered tools for tuning the physical properties of these materials. In the present work, investigation on the mechanical and electronic properties of pristine and defective BNNTs was performed using the density functional theory method. The analysis on the intrinsic strength, stiffness, and failure critical strain of different types of BNNTs was conducted systematically. The computing results showed that the intrinsic strength of BNNTs decreased linearly with the increased Stone-Wales (SW) defect density around the axis. The SW defect density along the axis played a minor role on the changing of mechanical properties of BNNTs. The BNNT with a B vacancy expressed higher intrinsic strength than that of the N vacancy model. The final failure of the pristine BNNTs was due to the fracture of the Type1 bonds under the mechanical strain. Defects like SW or vacancy are served as the initial break site of BNNTs. Applying strain or creating defects are both effective methods for reducing the band gap of BNNTs.

  11. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  12. Mechanisms of fibrosis in acute liver failure.

    PubMed

    He, Yingli; Jin, Li; Wang, Jing; Yan, Zhi; Chen, Tianyan; Zhao, Yingren

    2015-07-01

    Acute liver failure (ALF) is a condition with high mortality and morbidity. Fibrosis in chronic liver disease was extensively researched, whereas fibrosis and underlying mechanism in acute liver failure remains unclear. Hepatitis B virus related ALF patients were recruited to investigate if there was ongoing fibrosis by liver histology and liver stiffness measurement(LSM) analysis as well as fibrosis markers assay. Sera HMGB1 were kinetically detected in progression and remission stage of ALF. Hepatic stellate cell(HSC) activation by HMGB1 was explored by testing mRNA and protein level of α-SMA and collagen 1a1 by using qPCR and western blot. Autophagy induction by HMGB1 was explored by LC3-II conversion, autophagy flux and fluorescence. Firstly, ongoing fibrosis in progression stage of ALF was confirmed by histological analysis, LS measurement as well as fibrosis markers detection. HSC activation and autophagy induction in explanted liver tissue also revealed. Next, kinetic monitoring sera HMGB1 revealed elevated HMGB1 in progression stage of ALF vs HBsAg carrier, and drop back to base level in remission stage. Thirdly, rHMGB1 dose dependently activated HSCs, as indicated by increased mRNA and proteins level in α-SMA and collagen 1a1. Moreover, autophagy was induced in HSC treated with rHMGB1, as illustrated by increased LC3 lipidation, elevated autophagy flux and GFP-LC3 puncta. Acute liver failure is accompanied by ongoing fibrosis, HSC activation and autophagy induction. Increased HMGB1 activates HSC via autophagy induction. Those findings integrate HMGB1, HSCs activation, autophagy into a common framework that underlies the fibrosis in ALF. © 2014 The Authors. Liver International Published by John Wiley & Sons Ltd.

  13. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failuremore » mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.« less

  14. Mitochondria and heart failure.

    PubMed

    Murray, Andrew J; Edwards, Lindsay M; Clarke, Kieran

    2007-11-01

    Energetic abnormalities in cardiac and skeletal muscle occur in heart failure and correlate with clinical symptoms and mortality. It is likely that the cellular mechanism leading to energetic failure involves mitochondrial dysfunction. Therefore, it is crucial to elucidate the causes of mitochondrial myopathy, in order to improve cardiac and skeletal muscle function, and hence quality of life, in heart failure patients. Recent studies identified several potential stresses that lead to mitochondrial dysfunction in heart failure. Chronically elevated plasma free fatty acid levels in heart failure are associated with decreased metabolic efficiency and cellular insulin resistance. Tissue hypoxia, resulting from low cardiac output and endothelial impairment, can lead to oxidative stress and mitochondrial DNA damage, which in turn causes dysfunction and loss of mitochondrial mass. Therapies aimed at protecting mitochondrial function have shown promise in patients and animal models with heart failure. Despite current therapies, which provide substantial benefit to patients, heart failure remains a relentlessly progressive disease, and new approaches to treatment are necessary. Novel pharmacological agents are needed that optimize substrate metabolism and maintain mitochondrial integrity, improve oxidative capacity in heart and skeletal muscle, and alleviate many of the clinical symptoms associated with heart failure.

  15. A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue

    PubMed Central

    Peyster, Eliot G.; Frank, Renee; Margulies, Kenneth B.; Feldman, Michael D.

    2018-01-01

    Over 26 million people worldwide suffer from heart failure annually. When the cause of heart failure cannot be identified, endomyocardial biopsy (EMB) represents the gold-standard for the evaluation of disease. However, manual EMB interpretation has high inter-rater variability. Deep convolutional neural networks (CNNs) have been successfully applied to detect cancer, diabetic retinopathy, and dermatologic lesions from images. In this study, we develop a CNN classifier to detect clinical heart failure from H&E stained whole-slide images from a total of 209 patients, 104 patients were used for training and the remaining 105 patients for independent testing. The CNN was able to identify patients with heart failure or severe pathology with a 99% sensitivity and 94% specificity on the test set, outperforming conventional feature-engineering approaches. Importantly, the CNN outperformed two expert pathologists by nearly 20%. Our results suggest that deep learning analytics of EMB can be used to predict cardiac outcome. PMID:29614076

  16. A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue.

    PubMed

    Nirschl, Jeffrey J; Janowczyk, Andrew; Peyster, Eliot G; Frank, Renee; Margulies, Kenneth B; Feldman, Michael D; Madabhushi, Anant

    2018-01-01

    Over 26 million people worldwide suffer from heart failure annually. When the cause of heart failure cannot be identified, endomyocardial biopsy (EMB) represents the gold-standard for the evaluation of disease. However, manual EMB interpretation has high inter-rater variability. Deep convolutional neural networks (CNNs) have been successfully applied to detect cancer, diabetic retinopathy, and dermatologic lesions from images. In this study, we develop a CNN classifier to detect clinical heart failure from H&E stained whole-slide images from a total of 209 patients, 104 patients were used for training and the remaining 105 patients for independent testing. The CNN was able to identify patients with heart failure or severe pathology with a 99% sensitivity and 94% specificity on the test set, outperforming conventional feature-engineering approaches. Importantly, the CNN outperformed two expert pathologists by nearly 20%. Our results suggest that deep learning analytics of EMB can be used to predict cardiac outcome.

  17. [Chronic heart failure and depression].

    PubMed

    Herrmann-Lingen, C

    2018-05-01

    Depression is a frequent comorbidity in chronic heart failure. It can be triggered by the experience of suffering from heart disease, but it can also play a causal role in accelerated development and poor prognosis of heart failure. The aim of this study was to investigate the interrelationships between heart failure and depression and the psychophysiological and behavioral mechanisms involved in this association. The effects of comorbid depression on quality of life in patients with heart failure were also examined and therapeutic options reviewed. A narrative review of the literature was undertaken. Several psychophysiological and behavioral mechanisms have been identified as mediators of the association between depression and heart failure and the adverse prognostic effects of this comorbidity. Comorbid depression leads to substantial reductions in health-related quality of life. These effects are only incompletely antagonized by exercise training and cognitive behavioral therapy. No specific effect of antidepressant medication has been demonstrated as yet in patients with heart failure. While current guidelines recommend the identification and treatment of depressive comorbidity in patients with heart failure, the available evidence provides no convincing rationale for specific treatment recommendations beyond the guideline-based treatment of heart failure itself, lifestyle interventions and patient-centered medical care. If available, psychotherapy should be offered, ideally cognitive behavioral therapy. For patients that do not improve sufficiently under outpatient treatment, the German health care system offers dedicated psychocardiological inpatient treatment programs.

  18. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  19. Tube Failure Mechanisms.

    DTIC Science & Technology

    studies will be made: ( a ) An investigation of the factors influencing electrical breakdown in a vacuum and across the surface of a dielectric. (b) An...The purpose of this program is to investigate the nature and the principal causes of failures in microwave tubes. In this context, the following...investigation of the various electrical and surface properties of materials commonly used in microwave tubes, i.e., OFHC copper, alumina ceramic, tungsten

  20. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure.

    PubMed

    Zhang, Zhongheng; Gu, Wan-Jie; Chen, Kun; Ni, Hongying

    2017-01-01

    Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation.

  1. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure

    PubMed Central

    Gu, Wan-Jie; Chen, Kun; Ni, Hongying

    2017-01-01

    Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation. PMID:28127231

  2. Developing a Model for Identifying Students at Risk of Failure in a First Year Accounting Unit

    ERIC Educational Resources Information Center

    Smith, Malcolm; Therry, Len; Whale, Jacqui

    2012-01-01

    This paper reports on the process involved in attempting to build a predictive model capable of identifying students at risk of failure in a first year accounting unit in an Australian university. Identifying attributes that contribute to students being at risk can lead to the development of appropriate intervention strategies and support…

  3. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo

    2017-10-01

    A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  4. A mid-layer model for human reliability analysis : understanding the cognitive causes of human failure events.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Song-Hua; Chang, James Y. H.; Boring,Ronald L.

    2010-03-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identifiedmore » human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.« less

  5. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    NASA Astrophysics Data System (ADS)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  6. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    PubMed Central

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  7. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research.

    PubMed

    Murphy, M M

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  8. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    NASA Astrophysics Data System (ADS)

    Murphy, M. M.

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  9. Detailed investigation of causes of avionics field failures

    NASA Astrophysics Data System (ADS)

    Kallis, J. M.; Buechler, D. W.; Richardson, Z. C.; Backes, P. G.; Lopez, S. B.; Erickson, J. J.; van Westerhuyzen, D. H.

    A detailed analysis of digital and analog modules from the F-15 AN/APG-63 Radar was performed to identify the kinds, types, and number of life models based on observed failure modes, mechanisms, locations, and characteristics needed to perform a Failure Free Operating Period prediction for these items. It is found that a significant fraction of the failures of the analog module and a small fraction of those of the digital module resulted from the exacerbation of latent defects by environmental stresses. It is also found that the fraction of failures resulting from thermal cycling and vibration is small.

  10. Heart Transplant and Mechanical Circulatory Support in Patients With Advanced Heart Failure.

    PubMed

    Sánchez-Enrique, Cristina; Jorde, Ulrich P; González-Costello, José

    2017-05-01

    Patients with advanced heart failure have a poor prognosis and heart transplant is still the best treatment option. However, the scarcity of donors, long waiting times, and an increasing number of unstable patients have favored the development of mechanical circulatory support. This review summarizes the indications for heart transplant, candidate evaluation, current immunosuppression strategies, the evaluation and treatment of rejection, infectious prophylaxis, and short and long-term outcomes. Regarding mechanical circulatory support, we distinguish between short- and long-term support and the distinct strategies that can be used: bridge to decision, recovery, candidacy, transplant, and destination therapy. We then discuss indications, risk assessment, management of complications, especially with long-term support, and outcomes. Finally, we discuss future challenges and how the widespread use of long-term support for patients with advanced heart failure will only be viable if their complications and costs are reduced. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Manipulation of sarcoplasmic reticulum Ca2+ release in heart failure through mechanical intervention

    PubMed Central

    Ibrahim, Michael; Nader, Anas; Yacoub, Magdi H; Terracciano, Cesare

    2015-01-01

    Left ventricular assist devices (LVADs) were developed as a means of temporary circulatory support, but the mechanical unloading they offer also results in significant reverse remodelling. In selected patients, these improvements are sufficient to allow ultimate device explantation without requiring transplantation; this represents a fundamental shift in our understanding of heart failure. Like heart failure itself, LVADs influence multiple biological systems. The transverse tubules are a system of membrane invaginations in ventricular cardiomyocytes which allow rapid propagation of the action potential throughout the cell. Through their dense concentration of L-type Ca2+ channels in close proximity to intracellular ryanodine receptors, the t-tubules enable synchronous Ca2+ release throughout the cell. The t-tubules’ structure appears to be specifically regulated by mechanical load, such that either the overload of heart failure (or the spontaneously hypertensive rat model) or the profound unloading in a chronically unloaded heart result in impaired t-tubule structure, with ineffective Ca2+ release. While there are multiple molecular pathways which underpin t-tubule regulation, Telethonin (Tcap) appears to be important in regulating the effect of altered loading on the t-tubule system. PMID:25922157

  12. First-Principles Study on the Tensile Properties and Failure Mechanism of the CoSb3/Ti Interface

    NASA Astrophysics Data System (ADS)

    She, Wuchang; Liu, Qiwen; Mei, Hai; Zhai, Pengcheng; Li, Jun; Liu, Lisheng

    2018-06-01

    The mechanical properties of the CoSb3/Ti interface play a critical role in the application of thermoelectric devices. To understand the failure mechanism of the CoSb3(001)/Ti(01 \\bar{1} 0) interface, we investigated its response during tensile deformations by first-principles calculations. By comparison with the result between the perfect interface and the interface after atomic migration, we find that the atomic migration at the interface has an obvious influence on the mechanical properties. The tensile tests indicate the ideal tensile stress of the CoSb3/Ti interface after atomic migration decreases by about 8.1% as compared to that of the perfect one. The failure mechanism of the perfect CoSb3/Ti interface is different from that of the migrated CoSb3/Ti interface. For the perfect CoSb3/Ti interface, the breakage of the Co-Sb bond leads to the failure of the system. For the CoSb3/Ti interface after atomic migration, the breakage of the Sb-Sb bond leads to the failure of the system. This is mainly because the new ionic Ti-Sb bonds make the electrons redistributed and weaken the stiffness of the Co-Sb bonds.

  13. Identifying Cellular and Molecular Mechanisms for Magnetosensation

    PubMed Central

    Clites, Benjamin L.; Pierce, Jonathan T.

    2017-01-01

    Diverse animals ranging from worms and insects to birds and turtles perf orm impressive journeys using the magnetic field of the earth as a cue. Although major cellular and molecular mechanisms for sensing mechanical and chemical cues have been elucidated over the past three decades, the mechanisms that animals use to sense magnetic fields remain largely mysterious. Here we survey progress on the search for magnetosensory neurons and magnetosensitive molecules important for animal behaviors. Emphasis is placed on magnetosensation in insects and birds, as well as on the magnetosensitive neuron pair AFD in the nematode Caenorhabditis elegans. We also review conventional criteria used to define animal magnetoreceptors and suggest how approaches used to identify receptors for other sensory modalities may be adapted for magnetoreceptors. Finally, we discuss prospects for under-utilized and novel approaches to identify the elusive magnetoreceptors in animals. PMID:28772099

  14. On the failure load and mechanism of polycrystalline graphene by nanoindentation

    PubMed Central

    Sha, Z. D.; Wan, Q.; Pei, Q. X.; Quek, S. S.; Liu, Z. S.; Zhang, Y. W.; Shenoy, V. B.

    2014-01-01

    Nanoindentation has been recently used to measure the mechanical properties of polycrystalline graphene. However, the measured failure loads are found to be scattered widely and vary from lab to lab. We perform molecular dynamics simulations of nanoindentation on polycrystalline graphene at different sites including grain center, grain boundary (GB), GB triple junction, and holes. Depending on the relative position between the indenter tip and defects, significant scattering in failure load is observed. This scattering is found to arise from a combination of the non-uniform stress state, varied and weakened strengths of different defects, and the relative location between the indenter tip and the defects in polycrystalline graphene. Consequently, the failure behavior of polycrystalline graphene by nanoindentation is critically dependent on the indentation site, and is thus distinct from uniaxial tensile loading. Our work highlights the importance of the interaction between the indentation tip and defects, and the need to explicitly consider the defect characteristics at and near the indentation site in polycrystalline graphene during nanoindentation. PMID:25500732

  15. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Failure models for textile composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    1995-01-01

    The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the 'Binary Model,' was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.

  17. Energy evolution mechanism in process of Sandstone failure and energy strength criterion

    NASA Astrophysics Data System (ADS)

    Wang, Yunfei; Cui, Fang

    2018-07-01

    To reveal the inherent relation between energy change and confining pressure during the process of sandstone damage, and its characteristics of energy storage and energy dissipation in different deformation stage. Obtaining the mechanical parameters by testing the Sandstone of two1 coal seam roof under uniaxial compression in Zhaogu coalmine, using Particle Flow Code (PFC) and fish program to get the meso-mechanical parameters, studying Sandstone energy evolution mechanism under different confining pressures, and deducing energy strength criterion based on energy principle of rock failure, some main researching results are reached as follows: with the increasing of confining pressure, the Sandstone yield stage and ductility increases, but brittleness decreases; Under higher confining pressure, the elastic strain energy of Sandstone before peak approximately keeps constant in a certain strain range, and rock absorbs all the energy which converts into surface energy required for internal damage development; Under lower confining pressure, Sandstone no longer absorbs energy with increasing strain after peak under lower confining pressure, while it sequentially absorbs energy under higher confining pressure; Under lower confining pressure, the energy Sandstone before peak absorbed mainly converts into elastic strain energy, while under higher confining pressure, dissipation energy significantly increases before peak, which indicates that the degree rock strength loss is higher under higher confining pressure; with the increasing of confining pressure, the limit of elastic strain energy increases and there exists a favourable linear variation relationship; At the peak point, the ratio of elastic strain energy to total energy of Sandstone nonlinearly decreases, while the ratio of dissipation energy to total energy nonlinearly increases with the increasing of confining pressure; According to energy evolution mechanism of rock failure, an energy strength criterion is

  18. Construct validity of the Heart Failure Screening Tool (Heart-FaST) to identify heart failure patients at risk of poor self-care: Rasch analysis.

    PubMed

    Reynolds, Nicholas A; Ski, Chantal F; McEvedy, Samantha M; Thompson, David R; Cameron, Jan

    2018-02-14

    The aim of this study was to psychometrically evaluate the Heart Failure Screening Tool (Heart-FaST) via: (1) examination of internal construct validity; (2) testing of scale function in accordance with design; and (3) recommendation for change/s, if items are not well adjusted, to improve psychometric credential. Self-care is vital to the management of heart failure. The Heart-FaST may provide a prospective assessment of risk, regarding the likelihood that patients with heart failure will engage in self-care. Psychometric validation of the Heart-FaST using Rasch analysis. The Heart-FaST was administered to 135 patients (median age = 68, IQR = 59-78 years; 105 males) enrolled in a multidisciplinary heart failure management program. The Heart-FaST is a nurse-administered tool for screening patients with HF at risk of poor self-care. A Rasch analysis of responses was conducted which tested data against Rasch model expectations, including whether items serve as unbiased, non-redundant indicators of risk and measure a single construct and that rating scales operate as intended. The results showed that data met Rasch model expectations after rescoring or deleting items due to poor discrimination, disordered thresholds, differential item functioning, or response dependence. There was no evidence of multidimensionality which supports the use of total scores from Heart-FaST as indicators of risk. Aggregate scores from this modified screening tool rank heart failure patients according to their "risk of poor self-care" demonstrating that the Heart-FaST items constitute a meaningful scale to identify heart failure patients at risk of poor engagement in heart failure self-care. © 2018 John Wiley & Sons Ltd.

  19. User-defined Material Model for Thermo-mechanical Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.

  20. A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure.

    PubMed

    Rodrigues, Samantha A; Thambyah, Ashvin; Broom, Neil D

    2015-03-01

    The annulus-endplate anchorage system performs a critical role in the disc, creating a strong structural link between the compliant annulus and the rigid vertebrae. Endplate failure is thought to be associated with disc herniation, a recent study indicating that this failure mode occurs more frequently than annular rupture. The aim was to investigate the structural principles governing annulus-endplate anchorage and the basis of its strength and mechanisms of failure. Loading experiments were performed on ovine lumbar motion segments designed to induce annulus-endplate failure, followed by macro- to micro- to fibril-level structural analyses. The study was funded by a doctoral scholarship from our institution. Samples were loaded to failure in three modes: torsion using intact motion segments, in-plane tension of the anterior annulus-endplate along one of the oblique fiber angles, and axial tension of the anterior annulus-endplate. The anterior region was chosen for its ease of access. Decalcification was used to investigate the mechanical influence of the mineralized component. Structural analysis was conducted on both the intact and failed samples using differential interference contrast optical microscopy and scanning electron microscopy. Two main modes of anchorage failure were observed--failure at the tidemark or at the cement line. Samples subjected to axial tension contained more tidemark failures compared with those subjected to torsion and in-plane tension. Samples decalcified before testing frequently contained damage at the cement line, this being more extensive than in fresh samples. Analysis of the intact samples at their anchorage sites revealed that annular subbundle fibrils penetrate beyond the cement line to a limited depth and appear to merge with those in the vertebral and cartilaginous endplates. Annulus-endplate anchorage is more vulnerable to failure in axial tension compared with both torsion and in-plane tension and is probably due to acute

  1. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications.

    PubMed

    Li, Fuping; Li, Jinshan; Huang, Tingting; Kou, Hongchao; Zhou, Lian

    2017-01-01

    Porous titanium and its alloys are believed to be one of the most attractive biomaterials for orthopedic implant applications. In the present work, porous pure titanium with 50-70% porosity and different pore size was fabricated by diffusion bonding. Compression fatigue behavior was systematically studied along the out-of-plane direction. It resulted that porous pure titanium has anisotropic pore structure and the microstructure is fine-grained equiaxed α phase with a few twins in some α grains. Porosity and pore size have some effect on the S-N curve but this effect is negligible when the fatigue strength is normalized by the yield stress. The relationship between normalized fatigue strength and fatigue life conforms to a power law. The compression fatigue behavior is characteristic of strain accumulation. Porous titanium experiences uniform deformation throughout the entire sample when fatigue cycle is lower than a critical value (N T ). When fatigue cycles exceed N T , strain accumulates rapidly and a single collapse band forms with a certain angle to the loading direction, leading to the sudden failure of testing sample. Both cyclic ratcheting and fatigue crack growth contribute to the fatigue failure mechanism, while the cyclic ratcheting is the dominant one. Porous titanium possesses higher normalized fatigue strength which is in the range of 0.5-0.55 at 10 6 cycles. The reasons for the higher normalized fatigue strength were analyzed based on the microstructure and fatigue failure mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cadaveric study validating in vitro monitoring techniques to measure the failure mechanism of glenoid implants against clinical CT.

    PubMed

    Junaid, Sarah; Gregory, Thomas; Fetherston, Shirley; Emery, Roger; Amis, Andrew A; Hansen, Ulrich

    2018-03-23

    Definite glenoid implant loosening is identifiable on radiographs, however, identifying early loosening still eludes clinicians. Methods to monitor glenoid loosening in vitro have not been validated to clinical imaging. This study investigates the correlation between in vitro measures and CT images. Ten cadaveric scapulae were implanted with a pegged glenoid implant and fatigue tested to failure. Each scapulae were cyclically loaded superiorly and CT scanned every 20,000 cycles until failure to monitor progressive radiolucent lines. Superior and inferior rim displacements were also measured. A finite element (FE) model of one scapula was used to analyze the interfacial stresses at the implant/cement and cement/bone interfaces. All ten implants failed inferiorly at the implant-cement interface, two also failed at the cement-bone interface inferiorly, and three showed superior failure. Failure occurred at of 80,966 ± 53,729 (mean ± SD) cycles. CT scans confirmed failure of the fixation, and in most cases, was observed either before or with visual failure. Significant correlations were found between inferior rim displacement, vertical head displacement and failure of the glenoid implant. The FE model showed peak tensile stresses inferiorly and high compressive stresses superiorly, corroborating experimental findings. In vitro monitoring methods correlated to failure progression in clinical CT images possibly indicating its capacity to detect loosening earlier for earlier clinical intervention if needed. Its use in detecting failure non-destructively for implant development and testing is also valuable. The study highlights failure at the implant-cement interface and early signs of failure are identifiable in CT images. © 2018 The Authors. Journal of Orthopaedic Research ® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:XX-XX, 2018. © 2018 The Authors. Journal of Orthopaedic Research® Published by

  3. Role of long-term mechanical circulatory support in patients with advanced heart failure.

    PubMed

    Stokes, M B; Bergin, P; McGiffin, D

    2016-05-01

    Advanced heart failure represents a small proportion of patients with heart failure that possess high-risk features associated with high hospital readmission rates, significant functional impairment and mortality. Identification of those who have progressed to, or are near a state of advanced heart failure should prompt referral to a service that offers therapies in mechanical circulatory support (MCS) and cardiac transplantation. MCS has grown as a management strategy in the care of these patients, most commonly as a bridge to cardiac transplantation. The predominant utilisation of MCS is implantation of left ventricular assist devices (LVAD), which have evolved significantly in their technology and application over the past 15-20 years. The technology has evolved to such an extent that Destination Therapy is now being utilised as a strategy in management of advanced heart failure in appropriately selected patients. Complication rates have decreased with VAD implantation, but remain a significant consideration in the decision to implant a device, and in the follow up of these patients. © 2016 Royal Australasian College of Physicians.

  4. Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure.

    PubMed

    Ghanta, Ravi K; Rangaraj, Aravind; Umakanthan, Ramanan; Lee, Lawrence; Laurence, Rita G; Fox, John A; Bolman, R Morton; Cohn, Lawrence H; Chen, Frederick Y

    2007-03-13

    Ventricular restraint is a nontransplantation surgical treatment for heart failure. The effect of varying restraint level on left ventricular (LV) mechanics and remodeling is not known. We hypothesized that restraint level may affect therapy efficacy. We studied the immediate effect of varying restraint levels in an ovine heart failure model. We then studied the long-term effect of restraint applied over a 2-month period. Restraint level was quantified by use of fluid-filled epicardial balloons placed around the ventricles and measurement of balloon luminal pressure at end diastole. At 4 different restraint levels (0, 3, 5, and 8 mm Hg), transmural myocardial pressure (P(tm)) and indices of myocardial oxygen consumption (MVO2) were determined in control (n=5) and ovine heart failure (n=5). Ventricular restraint therapy decreased P(tm) and MVO2, and improved mechanical efficiency. An optimal physiological restraint level of 3 mm Hg was identified to maximize improvement without an adverse affect on systemic hemodynamics. At this optimal level, end-diastolic P(tm) and MVO2 indices decreased by 27% and 20%, respectively. The serial longitudinal effects of optimized ventricular restraint were then evaluated in ovine heart failure with (n=3) and without (n=3) restraint over 2 months. Optimized ventricular restraint prevented and reversed pathological LV dilatation (130+/-22 mL to 91+/-18 mL) and improved LV ejection fraction (27+/-3% to 43+/-5%). Measured restraint level decreased over time as the LV became smaller, and reverse remodeling slowed. Ventricular restraint level affects the degree of decrease in P(tm), the degree of decrease in MVO2, and the rate of LV reverse remodeling. Periodic physiological adjustments of restraint level may be required for optimal restraint therapy efficacy.

  5. Mechanism of failure of the Cabrol procedure: A computational fluid dynamic analysis.

    PubMed

    Poullis, M; Pullan, M

    2015-12-01

    Sudden failure of the Cabrol graft is common and frequently fatal. We utilised the technique of computational fluid dynamic (CFD) analysis to evaluate the mechanism of failure and potentially improve on the design of the Cabrol procedure. CFD analysis of the classic Cabrol procedure and a number of its variants was performed. Results from this analysis was utilised to generate further improved geometric options for the Cabrol procedure. These were also subjected to CFD analysis. All current Cabrol and variations of the Cabrol procedure are predicated by CFD analysis to be prone to graft thrombosis, secondary to stasis around the right coronary artery button. The right coronary artery flow characteristics were found to be the dominant reason for Cabrol graft failure. A simple modification of the Cabrol geometry is predicated to virtually eliminate any areas of blood stasis, and graft failure. Modification of the Cabrol graft geometry, due to CFD analysis may help reduce the incidence of graft thrombosis. A C shaped Cabrol graft with the right coronary button anastomosed to its side along its course from the aorta to the left coronary button is predicted to have the least thrombotic tendency. Clinical correlation is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Contact Mechanics and Failure Modes of Compliant Polymeric Bearing Materials for Knee Cartilage Replacement

    NASA Astrophysics Data System (ADS)

    Tohfafarosh, Mariya Shabbir

    Osteoarthritis (OA) is the most common cause of disability affecting millions of people worldwide. Total knee replacement is the current state-of-the-art treatment to alleviate pain and improve mobility among patients in the late stage of knee OA. The current gold standard materials for total knee arthroplasty are cobalt-chromium and ultra-high molecular weight polyethylene (UHMWPE). However, wear debris and implant loosening-related revision persists; consequently, total knee replacements are not universally recommended for all patient subgroups with OA. This work explores the potential of using compliant polymeric materials in knee cartilage replacement devices, which are closer in lubrication and mechanical properties of articular cartilage, to prevent excessive removal of underlying bone and prolong the need for a total knee replacement. Two materials investigated in this thesis are polycarbonate urethane, Bionate 80A, and a novel hydrogel, Cyborgel, both of which have shown promising wear and lubrication properties under physiological loads. Polycarbonate urethane has been previously tested for the effects of gamma sterilization and has shown no significant changes in its mechanical strength or chemical bonds. Since an important aspect of medical device development is the sterilization process, this thesis first evaluated the effect of 30-35 kGy electron beam and gamma radiation on the polymer swell ratio, and the mechanical, chemical and tribological behavior of the novel hydrogel. Three different formulations were mechanically tested, and biphasic material properties were identified using finite element analysis. Fourier transform infrared spectroscopy was used to investigate chemical changes, while the wear properties were tested for 2 million cycles in bovine serum. The results showed no significant difference (p > 0.05) in the swell ratio, mechanical and tribological properties of the electron beam and gamma sterilized hydrogel sample as compared to the

  7. Mechanical Circulatory Support of the Right Ventricle for Adult and Pediatric Patients With Heart Failure.

    PubMed

    Chopski, Steven G; Murad, Nohra M; Fox, Carson S; Stevens, Randy M; Throckmorton, Amy L

    2018-05-10

    The clinical implementation of mechanical circulatory assistance for a significantly dysfunctional or failing left ventricle as a bridge-to-transplant or bridge-to-recovery is on the rise. Thousands of patients with left-sided heart failure are readily benefitting from these life-saving technologies, and left ventricular failure often leads to severe right ventricular dysfunction or failure. Right ventricular failure (RVF) has a high rate of mortality caused by the risk of multisystem organ failure and prolonged hospitalization for patients after treatment. The use of a blood pump to support the left ventricle also typically results in an increase in right ventricular preload and may impair right ventricular contractility during left ventricular unloading. Patients with RVF might also suffer from severe pulmonary dysfunction, cardiac defects, congenital heart disease states, or a heterogeneity of cardiophysiologic challenges because of symptomatic congestive heart failure. Thus, the uniqueness and complexity of RVF is emerging as a new domain of significant clinical interest that motivates the development of right ventricular assist devices. In this review, we present the current state-of-the-art for clinically used blood pumps to support adults and pediatric patients with right ventricular dysfunction or failure concomitant with left ventricular failure. New innovative devices specifically for RVF are also highlighted. There continues to be a compelling need for novel treatment options to support patients with significant right heart dysfunction or failure.

  8. Failure Mechanisms of the Protective Coatings for the Hot Stamping Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Chen

    In the present study, four different nitriding techniques were carried on the ductile irons NAAMS-D6510 and cast steels NAAMS-S0050A, which are widely used stamping die materials; duplex treatments (PVD CrN coating+nitriding) were carried on H13 steels, which are common inserts for the hot stamping dies. Inclined impact-sliding wear tests were performed on the nitriding cases under simulated stamping conditions. Surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to investigate the wear and failure mechanisms of the protective coatings. It was found that the nitrided ductile iron samples performed better than the nitrided cast steel specimens. High temperature inclined impact-sliding wear tests were carried out on the CrN coatings. It was found that the coating performed better at elevated temperature. XPS analysis indicated the top surface layer (about 3-4nm) of the coating was oxidized at 400 °C and formed a Cr2O3 protective film. The in-situ formation of the thin Cr2O3 protective layer likely led to the change of wear mechanisms from severe adhesive failure to mild abrasive wear.

  9. Monitoring of Failure Mechanisms in a Composite Bending Actuator during Cyclic Loading by Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Woo, Sung-Choong; Goo, Nam Seo

    The objective of this work is to investigate the influence of electromechanical cyclic loading on the performance of a bending piezoelectric composite actuator. We have analyzed the fatigue damage mechanisms in terms of the behavior of the AE event rate. It was found that whether the actuators are subjected to purely electric loading or electromechanical loading, the initial fatigue damage of the bending piezoelectric composite actuator was caused by the transgranular fracture in the PZT ceramic layer; the final failure was caused only in the case of PCAWB under electromechanical loading by a local discharge, which critically affected the performance reduction of the actuators. As the number of cycles increased, a large reduction in displacement performance coincided with a high AE event rate, which was identified via microscopic observations.

  10. Mechanical Ventilation in Acute Hypoxemic Respiratory Failure: A Review of New Strategies for the Practicing Hospitalist

    PubMed Central

    Wilson, Jennifer G.; Matthay, Michael A.

    2014-01-01

    BACKGROUND The goal of mechanical ventilation in acute hypoxemic respiratory failure is to support adequate gas exchange without harming the lungs. How patients are mechanically ventilated can significantly impact their ultimate outcomes. METHODS This review focuses on emerging evidence regarding strategies for mechanical ventilation in patients with acute hypoxemic respiratory failure including: low tidal volume ventilation in the acute respiratory distress syndrome (ARDS), novel ventilator modes as alternatives to low tidal volume ventilation, adjunctive strategies that may enhance recovery in ARDS, the use of lung-protective strategies in patients without ARDS, rescue therapies in refractory hypoxemia, and an evidence-based approach to weaning from mechanical ventilation. RESULTS Once a patient is intubated and mechanically ventilated, low tidal volume ventilation remains the best strategy in ARDS. Adjunctive therapies in ARDS include a conservative fluid management strategy, as well as neuromuscular blockade and prone positioning in moderate-to-severe disease. There is also emerging evidence that a lung-protective strategy may benefit non-ARDS patients. For patients with refractory hypoxemia, extracorporeal membrane oxygenation should be considered. Once the patient demonstrates signs of recovery, the best approach to liberation from mechanical ventilation involves daily spontaneous breathing trials and protocolized assessment of readiness for extubation. CONCLUSIONS Prompt recognition of ARDS and use of lung-protective ventilation, as well as evidence-based adjunctive therapies, remain the cornerstones of caring for patients with acute hypoxemic respiratory failure. In the absence of contraindications, it is reasonable to consider lung-protective ventilation in non-ARDS patients as well, though the evidence supporting this practice is less conclusive. PMID:24733692

  11. Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    PubMed Central

    Malle, Elisabeth K.; Zammit, Nathan W.; Walters, Stacey N.; Koay, Yen Chin; Wu, Jianmin; Tan, Bernice M.; Villanueva, Jeanette E.; Brink, Robert; Loudovaris, Tom; Cantley, James; McAlpine, Shelli R.; Hesselson, Daniel

    2015-01-01

    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity. PMID:26122662

  12. Fracture and failure: Analyses, mechanisms and applications; Proceedings of the Symposium, Los Angeles, CA, March 17-20, 1980

    NASA Technical Reports Server (NTRS)

    Tung, P. P. (Editor); Agrawal, S. P.; Kumar, A.; Katcher, M.

    1981-01-01

    Papers are presented on the application of fracture mechanics to spacecraft design, fracture control applications on the Space Shuttle reaction control thrusters, and an assessment of fatigue crack growth rate relationships for metallic airframe materials. Also considered are fracture mechanisms and microstructural relationships in Ni-base alloy systems, the use of surface deformation markings to determine crack propagation directions, case histories of metallurgical failures in the electronics industry, and a failure analysis of silica phenolic nozzle liners.

  13. A systematic review of validated methods for identifying acute respiratory failure using administrative and claims data.

    PubMed

    Jones, Natalie; Schneider, Gary; Kachroo, Sumesh; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W

    2012-01-01

    The Food and Drug Administration's (FDA) Mini-Sentinel pilot program initially aims to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest (HOIs) from administrative and claims data. This paper summarizes the process and findings of the algorithm review of acute respiratory failure (ARF). PubMed and Iowa Drug Information Service searches were conducted to identify citations applicable to the anaphylaxis HOI. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles using administrative and claims data to identify ARF, including validation estimates of the coding algorithms. Our search revealed a deficiency of literature focusing on ARF algorithms and validation estimates. Only two studies provided codes for ARF, each using related yet different ICD-9 codes (i.e., ICD-9 codes 518.8, "other diseases of lung," and 518.81, "acute respiratory failure"). Neither study provided validation estimates. Research needs to be conducted on designing validation studies to test ARF algorithms and estimating their predictive power, sensitivity, and specificity. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Investigation of Tantalum Wet Slug Capacitor Failures in the Apollo Telescope Mount Charger Battery Regulator Modules

    NASA Technical Reports Server (NTRS)

    Williams, J. F.; Wiedeman, D. H.

    1973-01-01

    This investigation describes the capacitor failures and to identify the cause of the failure mechanism. Early failures were thought to have happened because of age and/or abuse since the failed capacitors were dated 1967. It is shown that all 1967 capacitors were replaced with 1972 capacitors.

  15. Failure mechanics in low-velocity impacts on thin composite plates

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1983-01-01

    Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.

  16. Three-dimensional Simulation and Prediction of Solenoid Valve Failure Mechanism Based on Finite Element Model

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Xiao, Mingqing; Liang, Yajun; Tang, Xilang; Li, Chao

    2018-01-01

    The solenoid valve is a kind of basic automation component applied widely. It’s significant to analyze and predict its degradation failure mechanism to improve the reliability of solenoid valve and do research on prolonging life. In this paper, a three-dimensional finite element analysis model of solenoid valve is established based on ANSYS Workbench software. A sequential coupling method used to calculate temperature filed and mechanical stress field of solenoid valve is put forward. The simulation result shows the sequential coupling method can calculate and analyze temperature and stress distribution of solenoid valve accurately, which has been verified through the accelerated life test. Kalman filtering algorithm is introduced to the data processing, which can effectively reduce measuring deviation and restore more accurate data information. Based on different driving current, a kind of failure mechanism which can easily cause the degradation of coils is obtained and an optimization design scheme of electro-insulating rubbers is also proposed. The high temperature generated by driving current and the thermal stress resulting from thermal expansion can easily cause the degradation of coil wires, which will decline the electrical resistance of coils and result in the eventual failure of solenoid valve. The method of finite element analysis can be applied to fault diagnosis and prognostic of various solenoid valves and improve the reliability of solenoid valve’s health management.

  17. Noninvasive Mechanical Ventilation in Acute Ventilatory Failure: Rationale and Current Applications.

    PubMed

    Esquinas, Antonio M; Benhamou, Maly Oron; Glossop, Alastair J; Mina, Bushra

    2017-12-01

    Noninvasive ventilation plays a pivotal role in acute ventilator failure and has been shown, in certain disease processes such as acute exacerbation of chronic obstructive pulmonary disease, to prevent and shorten the duration of invasive mechanical ventilation, reducing the risks and complications associated with it. The application of noninvasive ventilation is relatively simple and well tolerated by patients and in the right setting can change the course of their illness. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Study on the Failure and Energy Absorption Mechanism of Multilayer Explosively Welded Plates Impacted by Spherical Fragments

    NASA Astrophysics Data System (ADS)

    Zhou, N.; Wang, J. X.; Tang, S. Z.; Tao, Q. C.; Wang, M. X.

    2018-01-01

    A stereomicroscope, microscopic metallograph, scanning electron microscope, and the ANSYS/LS-DYNA 3D finite-element code were employed to investigate the failure and energy absorption mechanism of two-layer steel/aluminum and three-layer steel/aluminum/steel and aluminum/steel/aluminum explosively welded composite plates impacted by spherical fragments. The effects of layer number, target order, and the combination state of interfaces on the failure and energy absorption mechanism are analyzed based on experimental and numerical results. Results showed that the effect of the combination state of interfaces on the failure mode was pronounced the most compared with other factors. The failure mechanism of the front and middle plates were shearing and plugging, and that of rear plate was ductile deformation when the tied interface failed by tension (or by shearing and plugging when the interface combination remained connected). A narrow adiabatic shear band was formed in the locally yielding plate damaged by shearing and plugging during the penetration process. The amount of energy needed to completely perforate the three-layer composite target was greater than that for a two-layer composite target with the same areal density and total thickness. The protective performance of the steel/aluminum/steel target was better than that of the aluminum/steel/aluminum target with the same areal density.

  19. 3D visualization of membrane failures in fuel cells

    NASA Astrophysics Data System (ADS)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-03-01

    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  20. "Failure-to-Identify" Hunting Incidents: A Resilience Engineering Approach.

    PubMed

    Bridges, Karl E; Corballis, Paul M; Hollnagel, Erik

    2018-03-01

    Objective The objective was to develop an understanding, using the Functional Resonance Analysis Method (FRAM), of the factors that could cause a deer hunter to misidentify their intended target. Background Hunting is a popular activity in many communities. However, hunters vary considerably based on training, experience, and expertise. Surprisingly, safety in hunting has not received much attention, especially failure-to-identify hunting incidents. These are incidents in which the hunter, after spotting and targeting their quarry, discharge their firearm only to discover they have been spotting and targeting another human, an inanimate object, or flora by mistake. The hunter must consider environment, target, time of day, weather, and many other factors-continuously evaluating whether the hunt should continue. To understand how these factors can relate to one another is fundamental to begin to understand how incidents happen. Method Workshops with highly experienced and active hunters led to the development of a FRAM model detailing the functions of a "Hunting FRAM." The model was evaluated for correctness based on confidential and anonymous near-miss event submissions by hunters. Results A FRAM model presenting the functions of a hunt was produced, evaluated, and accepted. Using the model, potential sources of incidents or other unintended outcomes were identified, which in turn helped to improve the model. Conclusion Utilizing principles of understanding and visualization tools of the FRAM, the findings create a foundation for safety improvements potentially through training or safety messages based on an increased understanding of the complexity of hunting.

  1. Change Trajectories for the Youth Outcome Questionnaire Self-Report: Identifying Youth at Risk for Treatment Failure

    ERIC Educational Resources Information Center

    Cannon, Jennifer A. N.; Warren, Jared S.; Nelson, Philip L.; Burlingame, Gary M.

    2010-01-01

    This study used longitudinal youth outcome data in routine mental health services to test a system for identifying cases at risk for treatment failure. Participants were 2,715 youth (M age = 14) served in outpatient managed care and community mental health settings. Change trajectories were developed using multilevel modeling of archival data.…

  2. Association of intraventricular mechanical dyssynchrony with response to cardiac resynchronization therapy in heart failure patients with a narrow QRS complex

    PubMed Central

    van Bommel, Rutger J.; Tanaka, Hidekazu; Delgado, Victoria; Bertini, Matteo; Borleffs, Carel Jan Willem; Ajmone Marsan, Nina; Holzmeister, Johannes; Ruschitzka, Frank; Schalij, Martin J.; Bax, Jeroen J.; Gorcsan, John

    2010-01-01

    Aims Current criteria for cardiac resynchronization therapy (CRT) are restricted to patients with a wide QRS complex (>120 ms). Overall, only 30% of heart failure patients demonstrate a wide QRS complex, leaving the majority of heart failure patients without this treatment option. However, patients with a narrow QRS complex exhibit left ventricular (LV) mechanical dyssynchrony, as assessed with echocardiography. To further elucidate the possible beneficial effect of CRT in heart failure patients with a narrow QRS complex, this two-centre, non-randomized observational study focused on different echocardiographic parameters of LV mechanical dyssynchrony reflecting atrioventricular, interventricular and intraventricular dyssynchrony, and the response to CRT in these patients. Methods and results A total of 123 consecutive heart failure patients with a narrow QRS complex (<120 ms) undergoing CRT was included at two centres. Several widely accepted measures of mechanical dyssynchrony were evaluated: LV filling ratio (LVFT/RR), LV pre-ejection time (LPEI), interventricular mechanical dyssynchrony (IVMD), opposing wall delay (OWD), and anteroseptal posterior wall delay with speckle tracking (ASPWD). Response to CRT was defined as a reduction ≥15% in left ventricular end-systolic volume at 6 months follow-up. Measures of dyssynchrony can frequently be observed in patients with a narrow QRS complex. Nonetheless, for LVFT/RR, LPEI, and IVMD, presence of predefined significant dyssynchrony is <20%. Significant intraventricular dyssynchrony is more widely observed in these patients. With receiver operator characteristic curve analyses, both OWD and ASPWD demonstrated usefulness in predicting response to CRT in narrow QRS patients with a cut-off value of 75 and 107 ms, respectively. Conclusion Mechanical dyssynchrony can be widely observed in heart failure patients with a narrow QRS complex. In particular, intraventricular measures of mechanical dyssynchrony may be useful in

  3. Validation and Potential Mechanisms of Red Cell Distribution Width as a Prognostic Marker in Heart Failure

    PubMed Central

    ALLEN, LARRY A.; FELKER, G. MICHAEL; MEHRA, MANDEEP R.; CHIONG, JUN R.; DUNLAP, STEPHANIE H.; GHALI, JALAL K.; LENIHAN, DANIEL J.; OREN, RON M.; WAGONER, LYNNE E.; SCHWARTZ, TODD A.; ADAMS, KIRKWOOD F.

    2014-01-01

    Background: Adverse outcomes have recently been linked to elevated red cell distribution width (RDW) in heart failure. Our study sought to validate the prognostic value of RDW in heart failure and to explore the potential mechanisms underlying this association. Methods and Results: Data from the Study of Anemia in a Heart Failure Population (STAMINA-HFP) registry, a prospective, multicenter cohort of ambulatory patients with heart failure supported multivariable modeling to assess relationships between RDW and outcomes. The association between RDW and iron metabolism, inflammation, and neurohormonal activation was studied in a separate cohort of heart failure patients from the United Investigators to Evaluate Heart Failure (UNITE-HF) Biomarker registry. RDW was independently predictive of outcome (for each 1% increase in RDW, hazard ratio for mortality 1.06, 95% CI 1.01-1.12; hazard ratio for hospitalization or mortality 1.06; 95% CI 1.02-1.10) after adjustment for other covariates. Increasing RDW correlated with decreasing hemoglobin, increasing interleukin-6, and impaired iron mobilization. Conclusions: Our results confirm previous observations that RDW is a strong, independent predictor of adverse outcome in chronic heart failure and suggest elevated RDW may indicate inflammatory stress and impaired iron mobilization. These findings encourage further research into the relationship between heart failure and the hematologic system. PMID:20206898

  4. Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure.

    PubMed

    Allen, Larry A; Felker, G Michael; Mehra, Mandeep R; Chiong, Jun R; Dunlap, Stephanie H; Ghali, Jalal K; Lenihan, Daniel J; Oren, Ron M; Wagoner, Lynne E; Schwartz, Todd A; Adams, Kirkwood F

    2010-03-01

    Adverse outcomes have recently been linked to elevated red cell distribution width (RDW) in heart failure. Our study sought to validate the prognostic value of RDW in heart failure and to explore the potential mechanisms underlying this association. Data from the Study of Anemia in a Heart Failure Population (STAMINA-HFP) registry, a prospective, multicenter cohort of ambulatory patients with heart failure supported multivariable modeling to assess relationships between RDW and outcomes. The association between RDW and iron metabolism, inflammation, and neurohormonal activation was studied in a separate cohort of heart failure patients from the United Investigators to Evaluate Heart Failure (UNITE-HF) Biomarker registry. RDW was independently predictive of outcome (for each 1% increase in RDW, hazard ratio for mortality 1.06, 95% CI 1.01-1.12; hazard ratio for hospitalization or mortality 1.06; 95% CI 1.02-1.10) after adjustment for other covariates. Increasing RDW correlated with decreasing hemoglobin, increasing interleukin-6, and impaired iron mobilization. Our results confirm previous observations that RDW is a strong, independent predictor of adverse outcome in chronic heart failure and suggest elevated RDW may indicate inflammatory stress and impaired iron mobilization. These findings encourage further research into the relationship between heart failure and the hematologic system. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; hide

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  6. Deformation and failure of single- and multi-phase silicate liquids: seismic precursors and mechanical work

    NASA Astrophysics Data System (ADS)

    Vasseur, Jeremie; Lavallée, Yan; Hess, Kai-Uwe; Wassermann, Joachim; Dingwell, Donald B.

    2013-04-01

    Along with many others, volcanic unrest is regarded as a catastrophic material failure phenomenon and is often preceded by diverse precursory signals. Although a volcanic system intrinsically behave in a non-linear and stochastic way, these precursors display systematic evolutionary trends to upcoming eruptions. Seismic signals in particular are in general dramatically increasing prior to an eruption and have been extensively reported to show accelerating rates through time, as well as in the laboratory before failure of rock samples. At the lab-scale, acoustic emissions (AE) are high frequency transient stress waves used to track fracture initiation and propagation inside a rock sample. Synthesized glass samples featuring a range of porosities (0 - 30%) and natural rock samples from volcán de Colima, Mexico, have been failed under high temperature uniaxial compression experiments at constant stresses and strain rates. Using the monitored AEs and the generated mechanical work during deformation, we investigated the evolutionary trends of energy patterns associated to different degrees of heterogeneity. We observed that the failure of dense, poorly porous glasses is achieved by exceeding elevated strength and thus requires a significant accumulation of strain, meaning only pervasive small-scale cracking is occurring. More porous glasses as well as volcanic samples need much lower applied stress and deformation to fail, as fractures are nucleating, propagating and coalescing into localized large-scale cracks, taking the advantage of the existence of numerous defects (voids for glasses, voids and crystals for volcanic rocks). These observations demonstrate that the mechanical work generated through cracking is efficiently distributed inside denser and more homogeneous samples, as underlined by the overall lower AE energy released during experiments. In contrast, the quicker and larger AE energy released during the loading of heterogeneous samples shows that the

  7. Natural history of β-cell adaptation and failure in type 2 diabetes

    PubMed Central

    Alejandro, Emilyn U.; Gregg, Brigid; Blandino-Rosano, Manuel; Cras-Méneur, Corentin; Bernal-Mizrachi, Ernesto

    2014-01-01

    Type 2 diabetes mellitus (T2D) is a complex disease characterized by β-cell failure in the setting of insulin resistance. The current evidence suggests that genetic predisposition, and environmental factors can impair the capacity of the β-cells to respond to insulin resistance and ultimately lead to their failure. However, genetic studies have demonstrated that known variants account for less than 10% of the overall estimated T2D risk, suggesting that additional unidentified factors contribute to susceptibility of this disease. In this review, we will discuss the different stages that contribute to the development of β-cell failure in T2D. We divide the natural history of this process in three major stages: susceptibility, β-cell adaptation and β-cell failure and provide an overview of the molecular mechanisms involved. Further research into mechanisms will reveal key modulators of β-cell failure and thus identify possible novel therapeutic targets and potential interventions to protect against β-cell failure. PMID:25542976

  8. Modes of failure of Osteonics constrained tripolar implants: a retrospective analysis of forty-three failed implants.

    PubMed

    Guyen, Olivier; Lewallen, David G; Cabanela, Miguel E

    2008-07-01

    The Osteonics constrained tripolar implant has been one of the most commonly used options to manage recurrent instability after total hip arthroplasty. Mechanical failures were expected and have been reported. The purpose of this retrospective review was to identify the observed modes of failure of this device. Forty-three failed Osteonics constrained tripolar implants were revised at our institution between September 1997 and April 2005. All revisions related to the constrained acetabular component only were considered as failures. All of the devices had been inserted for recurrent or intraoperative instability during revision procedures. Seven different methods of implantation were used. Operative reports and radiographs were reviewed to identify the modes of failure. The average time to failure of the forty-three implants was 28.4 months. A total of five modes of failure were observed: failure at the bone-implant interface (type I), which occurred in eleven hips; failure at the mechanisms holding the constrained liner to the metal shell (type II), in six hips; failure of the retaining mechanism of the bipolar component (type III), in ten hips; dislocation of the prosthetic head at the inner bearing of the bipolar component (type IV), in three hips; and infection (type V), in twelve hips. The mode of failure remained unknown in one hip that had been revised at another institution. The Osteonics constrained tripolar total hip arthroplasty implant is a complex device involving many parts. We showed that failure of this device can occur at most of its interfaces. It would therefore appear logical to limit its application to salvage situations.

  9. Failure Mechanism of Cemented Hydrate-bearing Sand at Microscales

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Jin, Y.; Katagiri, J.; Tenma, N.

    2016-12-01

    On the basis of hypothetical particle-level mechanisms, several constitutive models of hydrate-bearing sediments have been proposed previously for gas production. However, to the best of our knowledge, the microstructural large-strain behaviors of hydrate-bearing sediments has not been reported to date because of the experimental challenges posed by the high-pressure and low-temperature testing conditions. Herein, as a part of a Japanese National hydrate research program (MH21, funded by METI), a novel microtriaxial testing apparatus was developed, and the mechanical large strain behavior of hydrate-bearing sediments with various hydrate saturation values (Sh = 0%, 39%, and 62%) were analyzed using microfocus X-ray computed tomography. Patchy hydrates were observed in the sediments at Sh = 39%. The obtained stress-strain relationships indicated strengthening with increasing hydrate saturation and a brittle failure mode of the hydrate-bearing sand. Localized deformations were quantified via image processing at the submillimeter and micrometer scale. Shear planes and particle deformation and/or rotation were detected, and the shear band thickness decreased with increasing hydrate saturation.

  10. Humoral immunity in heart failure.

    PubMed

    Sarkar, Amrita; Rafiq, Khadija

    2018-05-17

    Cardiovascular disease (CVD) is a class of diseases that involve disorders of heart and blood vessels, including: hypertension, coronary heart disease, cerebrovascular disease, peripheral vascular disease, which finally lead to heart failure (HF). There are several treatments available all over the world, but still CVD and heart failure became the number one problem causing death every year worldwide. Both experimental and clinical studies have shown a role for inflammation in the pathogenesis of heart failure. This seems related to an imbalance between pro-inflammatory and anti-inflammatory cytokines. Cardiac inflammation is major pathophysiological mechanism operating in the failing heart, regardless of HF aetiology. Disturbances of the cellular and humoral immune system are frequently observed in heart failure. This review describes how B-cells play specific role in the heart failure states. There is an urgent need to identify novel therapeutic targets and develop advanced therapeutic strategies to combat the syndrome of HF. Understanding and describing the elements of the humoral immunity function are essential, and may suggest potential new treatment strategies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Parametric Studies Of Failure Mechanisms In Thermal Barrier Coatings During Thermal Cycling Using FEM

    NASA Astrophysics Data System (ADS)

    Srivathsa, B.; Das, D. K.

    2015-12-01

    Thermal barrier coatings (TBCs) are widely used on different hot components of gas turbine engines such as blades and vanes. Although, several mechanisms for the failure of the TBCs have been suggested, it is largely accepted that the durability of these coatings is primarily determined by the residual stresses that are developed during the thermal cycling. In the present study, the residual stress build-up in an electron beam physical vapour deposition (EB-PVD) based TBCs on a coupon during thermal cycling has been studied by varying three parameters such as the cooling rate, TBC thickness and substrate thickness. A two-dimensional thermomechanical generalized plane strain finite element simulations have been performed for thousand cycles. It was observed that these variations change the stress profile significantly and the stress severity factor increases non-linearly. Overall, the predictions of the model agree with reported experimental results and help in predicting the failure mechanisms.

  12. Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo.

    PubMed

    Grote, Stefan; Noeldeke, Tatjana; Blauth, Michael; Mutschler, Wolf; Bürklein, Dominik

    2013-06-07

    Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (Densi - Probe®). We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD) and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dualenergy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher's Ztransformation. Moreover, linear regression analysis was carried out. The unpaired Student's t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm(2) (±0.17 g/cm(2)), followed by the upper neck region with 0.546 g/cm(2) (±0.16 g/cm(2)), trochanteric region with 0.685 g/cm(2) (±0.19 g/cm(2)) and the femoral neck with 0.813 g/cm(2) (±0.2 g/cm(2)). Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm). Load to failure was 4050.2 N (±1586.7 N). The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001). The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001). A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing.

  13. Heart Failure as an Aging-Related Phenotype.

    PubMed

    Morita, Hiroyuki; Komuro, Issei

    2018-01-27

    The molecular pathophysiology of heart failure, which is one of the leading causes of mortality, is not yet fully understood. Heart failure can be regarded as a systemic syndrome of aging-related phenotypes. Wnt/β-catenin signaling and the p53 pathway, both of which are key regulators of aging, have been demonstrated to play a critical role in the pathogenesis of heart failure. Circulating C1q was identified as a novel activator of Wnt/β-catenin signaling, promoting systemic aging-related phenotypes including sarcopenia and heart failure. On the other hand, p53 induces the apoptosis of cardiomyocytes in the failing heart. In these molecular mechanisms, the cross-talk between cardiomyocytes and non-cardiomyocytes (e,g,. endothelial cells, fibroblasts, smooth muscle cells, macrophages) deserves mentioning. In this review, we summarize recent advances in the understanding of the molecular pathophysiology underlying heart failure, focusing on Wnt/β-catenin signaling and the p53 pathway.

  14. Analysis of a Memory Device Failure

    NASA Technical Reports Server (NTRS)

    Nicolas, David P.; Devaney, John; Gores, Mark; Dicken, Howard

    1998-01-01

    The recent failure of a vintage memory device presented a unique challenge to failure analysts. Normally device layouts, fabrication parameters and other technical information were available to assist the analyst in the analysis. However, this device was out of production for many years and the manufacturer was no longer in business, so the information was not available. To further complicate this analysis, the package leads were all but removed making additional electrical testing difficult. Under these conditions, new and innovative methods were used to analyze the failure. The external visual exam, radiography, PIND, and leak testing were performed with nominal results. Since electrical testing was precluded by the short lead lengths, the device was delidded to expose the internal structures for microscopic examination. No failure mechanism was identified. The available electrical data suggested an ESD or low level EOS type mechanism which left no visible surface damage. Due to parallel electrical paths, electrical probing on the chip failed to locate the failure site. Two non-destructive Scanning Electron Microscopy techniques, CIVA (Charge Induced Voltage Alteration) and EBIC (Electron Beam Induced Current), and a liquid crystal decoration technique which detects localized heating were employed to aid in the analysis. CIVA and EBIC isolated two faults in the input circuitry, and the liquid crystal technique further localized two hot spots in regions on two input gates. Removal of the glassivation and metallization revealed multiple failure sites located in the gate oxide of two input transistors suggesting machine (testing) induced damage.

  15. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  16. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    DOE PAGES

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; ...

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural pathmore » for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.« less

  17. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  18. Metaiodobenzylguanidine (/sup 131/I) scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.

    1987-12-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine (/sup 131/I) to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine (/sup 131/I) and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4more » hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine (/sup 131/I) scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine (/sup 123/I) scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients.« less

  19. NASA Space Mechanisms Handbook: Lessons Learned Documented

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1999-01-01

    The need to improve space mechanism reliability is underscored by a long history of flight failures and anomalies caused by malfunctioning mechanisms on spacecraft and launch vehicles. Some examples of these failures are listed in a table. Because much experience has been gained over the years, many specialized design practices have evolved and many unsatisfactory design approaches have been identified.NASA and the NASA Lewis Research Center conducted a Lessons Learned Study (refs. 1 and 2) and wrote a handbook to document what has been learned in the past. The primary goals of the handbook were to identify desirable and undesirable design practices for space mechanisms and to reduce the number of failures caused by the repetition of past design errors. Another goal was to identify a variety of design approaches for specific applications and to provide the associated considerations and caveats for each approach in an effort to help designers choose the approach most suitable for each application. This technical summary outlines the goals and objectives of the handbook and study as well as the contents of the handbook.

  20. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    NASA Astrophysics Data System (ADS)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  1. Identifying core NANDA-I nursing diagnoses, NIC interventions, NOC outcomes, and NNN linkages for heart failure.

    PubMed

    Park, Hyejin

    2014-02-01

    The purpose of the study was to identify the core nursing diagnoses, interventions, outcomes, and linkages using standardized nursing terminologies for patients with heart failure (HF). For this study a retrospective descriptive design was used. The frequently used NANDA-I, NIC, NOC, and NNN linkages were identified through 272 inpatient records of patients discharged with HF in a midwestern community. The findings indicate that the top 10 NANDA-I, NIC, and NOC accounted for more than 50% of nursing diagnoses, interventions, and outcomes. The most frequently used top 10 NNN linkages were identified for patients with HF. The identified core NANDA-I, NIC, NOC, and NNN linkages for HF from this study provide scope of practice of nurses working in HF clinics. © 2013 NANDA International, Inc.

  2. A preliminary evaluation of a failure detection filter for detecting and identifying control element failures in a transport aircraft

    NASA Technical Reports Server (NTRS)

    Bundick, W. T.

    1985-01-01

    The application of the failure detection filter to the detection and identification of aircraft control element failures was evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 Aircraft. Simulation results show that with a simple correlator and threshold detector used to process the filter residuals, the failure detection performance is seriously degraded by the effects of turbulence.

  3. Failure mechanisms and lifetime prediction methodology for polybutylene pipe in water distribution system

    NASA Astrophysics Data System (ADS)

    Niu, Xiqun

    Polybutylene (PB) is a semicrystalline thermoplastics. It has been widely used in potable water distribution piping system. However, field practice shows that failure occurs much earlier than the expected service lifetime. What are the causes and how to appropriately evaluate its lifetime motivate this study. In this thesis, three parts of work have been done. First is the understanding of PB, which includes material thermo and mechanical characterization, aging phenomena and notch sensitivity. The second part analyzes the applicability of the existing lifetime testing method for PB. It is shown that PB is an anomaly in terms of the temperature-lifetime relation because of the fracture mechanism transition across the testing temperature range. The third part is the development of the methodology of lifetime prediction for PB pipe. The fracture process of PB pipe consists of three stages, i.e., crack initiation, slow crack growth (SCG) and crack instability. The practical lifetime of PB pipe is primarily determined by the duration of the first two stages. The mechanism of crack initiation and the quantitative estimation of the time to crack initiation are studied by employing environment stress cracking technique. A fatigue slow crack growth testing method has been developed and applied in the study of SCG. By using Paris-Erdogan equation, a model is constructed to evaluate the time for SCG. As a result, the total lifetime is determined. Through this work, the failure mechanisms of PB pipe has been analyzed and the lifetime prediction methodology has been developed.

  4. Mechanics-Based Definition of Safety Factors Against Flow Failure in Unsaturated Shallow Slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.; Lizarraga-Barrera, J.

    2014-12-01

    Physical models for landslide forecasting rely on the combination of hydrologic models for water infiltration and stability criteria based on infinite slope mechanics. Such concepts can be used to derive safety factors for shallow landsliding, in which the mobilization of the soil cover is associated with the attainment of critical values of pore water pressures expressed as a function of the frictional strength. While such models capture the role of important geomorphic features and geotechnical properties, their performance depends on the validity of the postulate of frictional failure. As a result, the safety factors do not to consider a broader range of solid-fluid interactions promoting different slope failure mechanisms, such as flow slides. This work combines principles of soil stability, unsaturated soil mechanics and plasticity theory to derive an alternative set of safety factors. While frictional slips are included in the study as a particular case, the proposed analytical methodology can also be applied to cases in which an increase in degree of saturation promotes liquefaction instabilities, i.e. possible transitions from solid- to fluid-like response. The study shows that the incorporation of principles of unsaturated soil mechanics into slope stability analyses generates suction-dependent coefficients that alter the value of the safety factors. As a result, while the proposed approach can still be combined with standard hydrologic models simulating the evolution of pore pressures in the near-surface, it can also provide a spatially distributed assessment of evolving safety conditions in landscapes susceptible to landslides of the flow type.

  5. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  6. The Genomic Architecture of Sporadic Heart Failure

    PubMed Central

    Dorn, Gerald W

    2011-01-01

    Common or sporadic systolic heart failure (heart failure) is the clinical syndrome of insufficient forward cardiac output resulting from myocardial disease. Most heart failure is the consequence of ischemic or idiopathic cardiomyopathy. There is a clear familial predisposition to heart failure, with a genetic component estimated to confer between 20 and 30% of overall risk. The multifactorial etiology of this syndrome has complicated identification of its genetic underpinnings. Until recently, almost all genetic studies of heart failure were designed and deployed according to the common disease-common variant hypothesis, in which individual risk alleles impart a small positive or negative effect and overall genetic risk is the cumulative impact of all functional genetic variations. Early studies employed a candidate gene approach, focused mainly on factors within adrenergic and renin-angiotensin pathways that affect heart failure progression and are targeted by standard pharmacotherapeutics. Many of these reported allelic associations with heart failure have not been replicated. However, the preponderance of data support risk-modifier effects for the Arg389Gly polymorphism of β1-adrenergic receptors and the intron 16 in/del polymorphism of angiotensin converting enzyme. Recent unbiased studies using genome-wide single nucleotide polymorphism (SNP) microarrays have shown fewer positive results than when these platforms were applied to hypertension, myocardial infarction, or diabetes, possibly reflecting the complex etiology of heart failure. A new cardiovascular gene-centric sub-genome SNP array identified a common heat failure risk allele at 1p36 in multiple independent cohorts, but the biological mechanism for this association is still uncertain. It is likely that common gene polymorphisms account for only a fraction of individual genetic heart failure risk, and future studies using deep resequencing are likely to identify rare gene variants with larger

  7. Creep-Fatigue Failure Diagnosis

    PubMed Central

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  8. Protocolized sedation vs usual care in pediatric patients mechanically ventilated for acute respiratory failure: a randomized clinical trial.

    PubMed

    Curley, Martha A Q; Wypij, David; Watson, R Scott; Grant, Mary Jo C; Asaro, Lisa A; Cheifetz, Ira M; Dodson, Brenda L; Franck, Linda S; Gedeit, Rainer G; Angus, Derek C; Matthay, Michael A

    2015-01-27

    (median, 9 [IQR, 5-15] days vs 10 [IQR, 4-21] days; P = .01), were exposed to fewer sedative classes (median, 2 [IQR, 2-3] classes vs 3 [IQR, 2-4] classes; P < .001), and were more often awake and calm while intubated (median, 86% [IQR, 67%-100%] of days vs 75% [IQR, 50%-100%] of days; P = .004) than control patients, respectively; however, intervention patients had more days with any report of a pain score ≥ 4 (median, 50% [IQR, 27%-67%] of days vs 23% [IQR, 0%-46%] of days; P < .001) and any report of agitation (median, 60% [IQR, 33%-80%] vs 40% [IQR, 13%-67%]; P = .003), respectively. Among children undergoing mechanical ventilation for acute respiratory failure, the use of a sedation protocol compared with usual care did not reduce the duration of mechanical ventilation. Exploratory analyses of secondary outcomes suggest a complex relationship among wakefulness, pain, and agitation. clinicaltrials.gov Identifier: NCT00814099.

  9. Lubrication and failure mechanisms of molybdenum disulfide films. 1: Effect of atmosphere

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1978-01-01

    Friction, wear, and wear lives of rubbed molybdenum disulfide (MoS2 films applied to sanded 440C HT steel surfaces were evaluated in moist air, dry air, and dry argon. Optical microscope observations were made as a function of sliding distance to determine the effect of moisture and oxygen on the lubricating and failure mechanisms of MoS2 films. In general, the lubrication process consisted of the formation of a thin, metallic colored, coalesced film of MoS2 that flowed between the surfaces in relative motion. In air, failure was due to the transformation of the metallic colored, coalesced films to a black, powdery material. Water in the air appeared to accelerate the transformation rate. In argon, no transformation of MoS2 was observed with the microscope, but cracking and spalling of the coalesced film occurred and resulted in the gradual depletion of the film.

  10. Mechanical behavior and failure mechanisms of Li-ion battery separators

    DOE PAGES

    Kalnaus, Sergiy; Wang, Yanli; Turner, John A.

    2017-03-09

    We determine and compare anisotropic mechanical properties for three types of commercially available Li-ion battery separators: Celgard 2325, Celgard PP2075 dry-processed polymer separators, and DreamWeaver Gold 40 non-woven separator. Significant amount of anisotropy of properties was determined, with the Young's modulus being different by up to a factor of 5 and ultimate strength being different by a factor of 10 between orthogonal directions within a polymer separator layer. Strain rate sensitivity was investigated by applying strain rates ranging from 1•10 -4 s -1 to 0.1 s -1. Significant strengthening was observed and the strain rate strengthening coefficients were determined formore » both elastic modulus and yield stress in case of polymer separators. Digital image correlation technique was used to measure and map the strains over the specimen's gage section. A significant strain concentration in bands running perpendicular to the tensile axis was observed in polymer separator samples oriented in transverse direction. Such localized necking allows for extremely high strains close to 300% to develop in the material. Furthermore, the failure mode was remarkably different for all three types of separators which adds additional variable in safe design of Li-ion batteries for prevention of internal short circuits.« less

  11. Study of Cavitation and Failure Mechanisms of a Superplastic 5083 Aluminum Alloy

    DTIC Science & Technology

    2003-09-01

    Failure Mechanisms of a Superplastic 5083 Aluminum Alloy 6. AUTHOR( S ) Boydon, Juanito F. 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND...NAME( S ) AND ADDRESS(ES) General Motors Corp., Research and Development Center, Warren, MI (Dr. Paul E. Krajewski, Technical Program...of 973931(A3), deformed gauge area 1- region 1. Sample was pulled under uniaxial tension at 450 °C at a strain rate of 3x10-4 s -1 and elongated to

  12. Identifying Students at Risk of School Failure in Luxembourgish Secondary School

    ERIC Educational Resources Information Center

    Klapproth, Florian; Schaltz, Paule

    2013-01-01

    If teachers knew in advance whether their students are at risk of school failure, they would have the opportunity to supply these students with additional or special instruction. In Luxembourg, the likelihood of failure in school is particularly high. Taking this result into account, this paper deals with the identification of variables of primary…

  13. Failure analysis of fractured dental zirconia implants.

    PubMed

    Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E

    2012-03-01

    The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.

  14. Deformation and Failure Mechanisms of Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Samantha Hayes

    2015-04-15

    The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior resultsmore » on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.« less

  15. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the modelmore » to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.« less

  16. Novel prognostic tissue markers in congestive heart failure.

    PubMed

    Stone, James R

    2015-01-01

    Heart failure is a relatively common disorder associated with high morbidity, mortality, and economic burden. Better tools to predict outcomes for patients with heart failure could allow for better decision making concerning patient treatment and management and better utilization of health care resources. Endomyocardial biopsy offers a mechanism to pathologically diagnose specific diseases in patients with heart failure, but such biopsies can often be negative, with no specific diagnostic information. Novel tissue markers in endomyocardial biopsies have been identified that may be useful in assessing prognosis in heart failure patients. Such tissue markers include ubiquitin, Gremlin-1, cyclophilin A, and heterogeneous nuclear ribonucleoprotein C. In some cases, tissue markers have been found to be independent of and even superior to clinical indices and serum markers in predicting prognosis for heart failure patients. In some cases, these novel tissue markers appear to offer prognostic information even in the setting of an otherwise negative endomyocardial biopsy. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Study of the Rock Mass Failure Process and Mechanisms During the Transformation from Open-Pit to Underground Mining Based on Microseismic Monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Yang, Tianhong; Bohnhoff, Marco; Zhang, Penghai; Yu, Qinglei; Zhou, Jingren; Liu, Feiyue

    2018-05-01

    To quantitatively understand the failure process and failure mechanism of a rock mass during the transformation from open-pit mining to underground mining, the Shirengou Iron Mine was selected as an engineering project case study. The study area was determined using the rock mass basic quality classification method and the kinematic analysis method. Based on the analysis of the variations in apparent stress and apparent volume over time, the rock mass failure process was analyzed. According to the recent research on the temporal and spatial change of microseismic events in location, energy, apparent stress, and displacement, the migration characteristics of rock mass damage were studied. A hybrid moment tensor inversion method was used to determine the rock mass fracture source mechanisms, the fracture orientations, and fracture scales. The fracture area can be divided into three zones: Zone A, Zone B, and Zone C. A statistical analysis of the orientation information of the fracture planes orientations was carried out, and four dominant fracture planes were obtained. Finally, the slip tendency analysis method was employed, and the unstable fracture planes were obtained. The results show: (1) The microseismic monitoring and hybrid moment tensor analysis can effectively analyze the failure process and failure mechanism of rock mass, (2) during the transformation from open-pit to underground mining, the failure type of rock mass is mainly shear failure and the tensile failure is mostly concentrated in the roof of goafs, and (3) the rock mass of the pit bottom and the upper of goaf No. 18 have the possibility of further damage.

  18. Epigenome-Wide Association Study Identifies Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure.

    PubMed

    Meder, Benjamin; Haas, Jan; Sedaghat-Hamedani, Farbod; Kayvanpour, Elham; Frese, Karen; Lai, Alan; Nietsch, Rouven; Scheiner, Christina; Mester, Stefan; Bordalo, Diana Martins; Amr, Ali; Dietrich, Carsten; Pils, Dietmar; Siede, Dominik; Hund, Hauke; Bauer, Andrea; Holzer, Daniel Benjamin; Ruhparwar, Arjang; Mueller-Hennessen, Matthias; Weichenhan, Dieter; Plass, Christoph; Weis, Tanja; Backs, Johannes; Wuerstle, Maximilian; Keller, Andreas; Katus, Hugo A; Posch, Andreas E

    2017-10-17

    Biochemical DNA modification resembles a crucial regulatory layer among genetic information, environmental factors, and the transcriptome. To identify epigenetic susceptibility regions and novel biomarkers linked to myocardial dysfunction and heart failure, we performed the first multi-omics study in myocardial tissue and blood of patients with dilated cardiomyopathy and controls. Infinium human methylation 450 was used for high-density epigenome-wide mapping of DNA methylation in left-ventricular biopsies and whole peripheral blood of living probands. RNA deep sequencing was performed on the same samples in parallel. Whole-genome sequencing of all patients allowed exclusion of promiscuous genotype-induced methylation calls. In the screening stage, we detected 59 epigenetic loci that are significantly associated with dilated cardiomyopathy (false discovery corrected P ≤0.05), with 3 of them reaching epigenome-wide significance at P ≤5×10 -8 . Twenty-seven (46%) of these loci could be replicated in independent cohorts, underlining the role of epigenetic regulation of key cardiac transcription regulators. Using a staged multi-omics study design, we link a subset of 517 epigenetic loci with dilated cardiomyopathy and cardiac gene expression. Furthermore, we identified distinct epigenetic methylation patterns that are conserved across tissues, rendering these CpGs novel epigenetic biomarkers for heart failure. The present study provides to our knowledge the first epigenome-wide association study in living patients with heart failure using a multi-omics approach. © 2017 American Heart Association, Inc.

  19. Some Aspects of the Failure Mechanisms in BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David Donhang; Sampson, Michael J.

    2012-01-01

    The objective of this presentation is to gain insight into possible failure mechanisms in BaTiO3-based ceramic capacitors that may be associated with the reliability degradation that accompanies a reduction in dielectric thickness, as reported by Intel Corporation in 2010. The volumetric efficiency (microF/cm3) of a multilayer ceramic capacitor (MLCC) has been shown to not increase limitlessly due to the grain size effect on the dielectric constant of ferroelectric ceramic BaTiO3 material. The reliability of an MLCC has been discussed with respect to its structure. The MLCCs with higher numbers of dielectric layers will pose more challenges for the reliability of dielectric material, which is the case for most base-metal-electrode (BME) capacitors. A number of MLCCs manufactured using both precious-metal-electrode (PME) and BME technology, with 25 V rating and various chip sizes and capacitances, were tested at accelerated stress levels. Most of these MLCCs had a failure behavior with two mixed failure modes: the well-known rapid dielectric wearout, and so-called 'early failures." The two failure modes can be distinguished when the testing data were presented and normalized at use-level using a 2-parameter Weibull plot. The early failures had a slope parameter of Beta >1, indicating that the early failures are not infant mortalities. Early failures are triggered due to external electrical overstress and become dominant as dielectric layer thickness decreases, accompanied by a dramatic reduction in reliability. This indicates that early failures are the main cause of the reliability degradation in MLCCs as dielectric layer thickness decreases. All of the early failures are characterized by an avalanche-like breakdown leakage current. The failures have been attributed to the extrinsic minor construction defects introduced during fabrication of the capacitors. A reliability model including dielectric thickness and extrinsic defect feature size is proposed in this

  20. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.

    PubMed

    Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J

    2016-03-15

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.

  1. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure

    PubMed Central

    Torres, Ashley M.; Matheny, Jonathan B.; Keaveny, Tony M.; Taylor, David; Rimnac, Clare M.; Hernandez, Christopher J.

    2016-01-01

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure. PMID:26929343

  2. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  3. Are your students ready for anatomy and physiology? Developing tools to identify students at risk for failure.

    PubMed

    Gultice, Amy; Witham, Ann; Kallmeyer, Robert

    2015-06-01

    High failure rates in introductory college science courses, including anatomy and physiology, are common at institutions across the country, and determining the specific factors that contribute to this problem is challenging. To identify students at risk for failure in introductory physiology courses at our open-enrollment institution, an online pilot survey was administered to 200 biology students. The survey results revealed several predictive factors related to academic preparation and prompted a comprehensive analysis of college records of >2,000 biology students over a 5-yr period. Using these historical data, a model that was 91% successful in predicting student success in these courses was developed. The results of the present study support the use of surveys and similar models to identify at-risk students and to provide guidance in the development of evidence-based advising programs and pedagogies. This comprehensive approach may be a tangible step in improving student success for students from a wide variety of backgrounds in anatomy and physiology courses. Copyright © 2015 The American Physiological Society.

  4. Mechanical ventilation during extracorporeal membrane oxygenation.

    PubMed

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  5. Mechanical ventilation during extracorporeal membrane oxygenation

    PubMed Central

    2014-01-01

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes. PMID:24447458

  6. Revision Distal Femoral Arthroplasty With the Compress(®) Prosthesis Has a Low Rate of Mechanical Failure at 10 Years.

    PubMed

    Zimel, Melissa N; Farfalli, German L; Zindman, Alexandra M; Riedel, Elyn R; Morris, Carol D; Boland, Patrick J; Healey, John H

    2016-02-01

    Patients with failed distal femoral megaprostheses often have bone loss that limits reconstructive options and contributes to the high failure rate of revision surgery. The Compress(®) Compliant Pre-stress (CPS) implant can reconstruct the femur even when there is little remaining bone. It differs from traditional stemmed prostheses because it requires only 4 to 8 cm of residual bone for fixation. Given the poor long-term results of stemmed revision constructs, we sought to determine the failure rate and functional outcomes of the CPS implant in revision surgery. (1) What is the cumulative incidence of mechanical and other types of implant failure when used to revise failed distal femoral arthroplasties placed after oncologic resection? (2) What complications are characteristic of this prosthesis? (3) What function do patients achieve after receiving this prosthesis? We retrospectively reviewed 27 patients who experienced failure of a distal femoral prosthesis and were revised to a CPS implant from April 2000 to February 2013. Indications for use included a minimum 2.5 mm cortical thickness of the remaining proximal femur, no prior radiation, life expectancy > 10 years, and compliance with protected weightbearing for 3 months. The cumulative incidence of failure was calculated for both mechanical (loss of compression between the implant anchor plug and spindle) and other failure modes using a competing risk analysis. Failure was defined as removal of the CPS implant. Followup was a minimum of 2 years or until implant removal. Median followup for patients with successful revision arthroplasty was 90 months (range, 24-181 months). Functional outcomes were measured with the Musculoskeletal Tumor Society (MSTS) functional assessment score. The cumulative incidence of mechanical failure was 11% (95% confidence interval [CI], 4%-33%) at both 5 and 10 years. These failures occurred early at a median of 5 months. The cumulative incidence of other failures was 18% (95% CI

  7. Tension Strength, Failure Prediction and Damage Mechanisms in 2D Triaxial Braided Composites with Notch

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  8. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales

    PubMed Central

    Darrah, Thomas H.; Vengosh, Avner; Jackson, Robert B.; Warner, Nathaniel R.; Poreda, Robert J.

    2014-01-01

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ13C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., 4He, 20Ne, 36Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, 4He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, 36Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing. PMID:25225410

  9. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales.

    PubMed

    Darrah, Thomas H; Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel R; Poreda, Robert J

    2014-09-30

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, (36)Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.

  10. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    NASA Astrophysics Data System (ADS)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  11. Bacterial colonization of penile prosthesis after its withdrawal due to mechanical failure.

    PubMed

    Etcheverry-Giadrosich, B; Torremadé-Barreda, J; Pujol-Galarza, L; Vigués-Julià, F

    2017-12-01

    Prosthetic surgery to treat erectile dysfunction has a risk of infection of up to 3%, but this risk can increase to 18% when the surgery involves replacement. This increased risk of infection is attributed to the bacterial colonization of the prosthesis during the initial surgery. To analyse the presence of germs in the prosthesis that is withdrawn due to mechanical failure (not infection), as well as the surgical results and its progression. A retrospective study was conducted of all replacements performed between 2013 and 2016 at a single centre. We analysed demographic data, prior type of prosthesis, surgical procedure, microbiological study and follow-up. Of the 12 replacement procedures, a microbiological study of the extracted prosthesis was performed in a total of 10 cases. Of the 10 replacements, the cultures were positive in 5 cases (50%). Staphylococcus epidermidis was the most prevalent germ. All patients underwent a flushing procedure, and an antibiotic-coated prosthesis was implanted. We recorded no infections with the new implanted device after a mean follow-up of 27.33 months (SD 4.13; 95% CI 18.22-36.43). In our study population, we observed a high rate of bacterial colonization of the prostheses that were replaced due to mechanical failure. When a flushing procedure was performed during the replacement surgery, there were no more infections than those reported in treatment-naive cases. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Teacher Perceptions of High School Student Failure in the Classroom: Identifying Preventive Practices of Failure Using Critical Incident Technique

    ERIC Educational Resources Information Center

    Kalahar, Kory G.

    2011-01-01

    Student failure is a prominent issue in many comprehensive secondary schools nationwide. Researchers studying error, reliability, and performance in organizations have developed and employed a method known as critical incident technique (CIT) for investigating failure. Adopting an action research model, this study involved gathering and analyzing…

  13. Procalcitonin Identifies Cell Injury, Not Bacterial Infection, in Acute Liver Failure.

    PubMed

    Rule, Jody A; Hynan, Linda S; Attar, Nahid; Sanders, Corron; Korzun, William J; Lee, William M

    2015-01-01

    Because acute liver failure (ALF) patients share many clinical features with severe sepsis and septic shock, identifying bacterial infection clinically in ALF patients is challenging. Procalcitonin (PCT) has proven to be a useful marker in detecting bacterial infection. We sought to determine whether PCT discriminated between presence and absence of infection in patients with ALF. Retrospective analysis of data and samples of 115 ALF patients from the United States Acute Liver Failure Study Group randomly selected from 1863 patients were classified for disease severity and ALF etiology. Twenty uninfected chronic liver disease (CLD) subjects served as controls. Procalcitonin concentrations in most samples were elevated, with median values for all ALF groups near or above a 2.0 ng/mL cut-off that generally indicates severe sepsis. While PCT concentrations increased somewhat with apparent liver injury severity, there were no differences in PCT levels between the pre-defined severity groups-non-SIRS and SIRS groups with no documented infections and Severe Sepsis and Septic Shock groups with documented infections, (p = 0.169). PCT values from CLD patients differed from all ALF groups (median CLD PCT value 0.104 ng/mL, (p ≤0.001)). Subjects with acetaminophen (APAP) toxicity, many without evidence of infection, demonstrated median PCT >2.0 ng/mL, regardless of SIRS features, while some culture positive subjects had PCT values <2.0 ng/mL. While PCT appears to be a robust assay for detecting bacterial infection in the general population, there was poor discrimination between ALF patients with or without bacterial infection presumably because of the massive inflammation observed. Severe hepatocyte necrosis with inflammation results in elevated PCT levels, rendering this biomarker unreliable in the ALF setting.

  14. Role of Grain Crushing in the Alteration of Mechanical and Flow Properties of Sandstones during Mechanical Failure

    NASA Astrophysics Data System (ADS)

    Mirabolghasemi, M.; Prodanovic, M.; Choens, R. C., II; Dewers, T. A.

    2016-12-01

    We present a workflow to study the alteration of flow and mechanical characteristics of sandstones after shear failure, specifically modeling weakening of the formation due to CO2 injection. We use discrete elements method (DEM) to represent each sand grain as a cluster of bonded sub-particles, and model their potential crushing. We also introduce bonds between sand grain clusters to enable the modeling of the mechanical behavior of consolidated sandstones. The model is tuned by comparing our numerical compression tests on single sand grains with the experimental results reported in the literature. Once the mechanical behavior of individual grains is adequately captured by the model, a packing of such grains is subjected to shear stress. Once the packing fails under the imposed shear stress, its mechanical properties, permeability, and porosity are calculated. This test is repeated for various conditions by varying parameters such as the brittleness of single grains (the relative quartz-feldspar content of the grains), normal stress, and cement strength (assuming (chemical) weakening of the inter- and intra-grain-cluster bonds due to CO2 injection). We specifically compare the effect of cement/bond strength weakening on mechanical properties to triaxial compression experimental measurements before and after hydrous scCO2 and CO2-saturated brine injection in Boise sandstone performed in Sandia National Laboratory.

  15. Identifying biologically relevant putative mechanisms in a given phenotype comparison

    PubMed Central

    Hanoudi, Samer; Donato, Michele; Draghici, Sorin

    2017-01-01

    A major challenge in life science research is understanding the mechanism involved in a given phenotype. The ability to identify the correct mechanisms is needed in order to understand fundamental and very important phenomena such as mechanisms of disease, immune systems responses to various challenges, and mechanisms of drug action. The current data analysis methods focus on the identification of the differentially expressed (DE) genes using their fold change and/or p-values. Major shortcomings of this approach are that: i) it does not consider the interactions between genes; ii) its results are sensitive to the selection of the threshold(s) used, and iii) the set of genes produced by this approach is not always conducive to formulating mechanistic hypotheses. Here we present a method that can construct networks of genes that can be considered putative mechanisms. The putative mechanisms constructed by this approach are not limited to the set of DE genes, but also considers all known and relevant gene-gene interactions. We analyzed three real datasets for which both the causes of the phenotype, as well as the true mechanisms were known. We show that the method identified the correct mechanisms when applied on microarray datasets from mouse. We compared the results of our method with the results of the classical approach, showing that our method produces more meaningful biological insights. PMID:28486531

  16. [Understanding heart failure].

    PubMed

    Boo, José Fernando Guadalajara

    2006-01-01

    Heart failure is a disease with several definitions. The term "heart failure" is used by has brougth about confusion in the terminology. For this reason, the value of the ejection fraction (< 0.40 or < 0.35) is used in most meganalyses on the treatment of heart failure, avoiding the term "heart failure" that is a confounding concept. In this paper we carefully analyze the meaning of contractility, ventricular function or performance, preload, afterload, heart failure, compensation mechanisms in heart failure, myocardial oxygen consumption, inadequate, adequate and inappropriate hypertrophy, systole, diastole, compliance, problems of relaxation, and diastolic dysfunction. Their definitions are supported by the original scientific descriptions in an attempt to clarify the concepts about ventricular function and heart failure and, in this way, use the same scientific language about the meaning of ventricular function, heart failure, and diastolic dysfunction.

  17. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    PubMed Central

    Xia, Kang; Zhan, Haifei; Hu, De’an; Gu, Yuantong

    2016-01-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989

  18. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  19. Mechanical dispersion is associated with poor outcome in heart failure with a severely depressed left ventricular function and bundle branch blocks.

    PubMed

    Stankovic, Ivan; Janicijevic, Aleksandra; Dimic, Aleksandra; Stefanovic, Milica; Vidakovic, Radosav; Putnikovic, Biljana; Neskovic, Aleksandar N

    2018-03-01

    Bundle branch blocks (BBB)-related mechanical dyssynchrony and dispersion may improve patient selection for device therapy, but their effect on the natural history of this patient population is unknown. A total of 155 patients with LVEF ≤ 35% and BBB, not treated with device therapy, were included. Mechanical dyssynchrony was defined as the presence of either septal flash or apical rocking. Contraction duration was assessed as time interval from the electrocardiographic R-(Q-)wave to peak longitudinal strain in each of 17 left ventricular segments. Mechanical dispersion was defined as either the standard deviation of all time intervals (dispersion SD ) or as the difference between the longest and shortest time intervals (dispersion delta ). Patients were followed for cardiac mortality during a median period of 33 months. Mechanical dyssynchrony was not associated with survival. More pronounced mechanical dispersion delta was found in patients with dyssynchrony than in those without. In the multivariate regression analysis, patients' functional class, diabetes mellitus and dispersion delta were independently associated with mortality. Mechanical dispersion, but not dyssynchrony, was independently associated with mortality and it may be useful for risk stratification of patients with heart failure (HF) and BBB. Key Messages Mechanical dispersion, measured by strain echocardiography, is associated with poor outcome in heart failure with a severely depressed left ventricular function and bundle branch blocks. Mechanical dispersion may be useful for risk stratification of patients with heart failure and bundle branch blocks.

  20. Interprofessional communication failures in acute care chains: How can we identify the causes?

    PubMed

    van Leijen-Zeelenberg, Janneke E; van Raak, Arno J A; Duimel-Peeters, Inge G P; Kroese, Mariëlle E A L; Brink, Peter R G; Vrijhoef, Hubertus J M

    2015-01-01

    Although communication failures between professionals in acute care delivery occur, explanations for these failures remain unclear. We aim to gain a deeper understanding of interprofessional communication failures by assessing two different explanations for them. A multiple case study containing six cases (i.e. acute care chains) was carried out in which semi-structured interviews, physical artifacts and archival records were used for data collection. Data were entered into matrices and the pattern-matching technique was used to examine the two complementary propositions. Based on the level of standardization and integration present in the acute care chains, the six acute care chains could be divided into two categories of care processes, with the care chains equally distributed among the categories. Failures in communication occurred in both groups. Communication routines were embedded within organizations and descriptions of communication routines in the entire acute care chain could not be found. Based on the results, failures in communication could not exclusively be explained by literature on process typology. Literature on organizational routines was useful to explain the occurrence of communication failures in the acute care chains. Organizational routines can be seen as repetitive action patterns and play an important role in organizations, as most processes are carried out by means of routines. The results of this study imply that it is useful to further explore the role of organizational routines on interprofessional communication in acute care chains to develop a solution for failures in handover practices.

  1. Micromechanics-Based Progressive Failure Analysis of Composite Laminates Using Different Constituent Failure Theories

    NASA Technical Reports Server (NTRS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett A.; Arnold, Steven M.

    2008-01-01

    Predicting failure in a composite can be done with ply level mechanisms and/or micro level mechanisms. This paper uses the Generalized Method of Cells and High-Fidelity Generalized Method of Cells micromechanics theories, coupled with classical lamination theory, as implemented within NASA's Micromechanics Analysis Code with Generalized Method of Cells. The code is able to implement different failure theories on the level of both the fiber and the matrix constituents within a laminate. A comparison is made among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories. To verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have been used. The WWFE is a comprehensive study that covers a wide range of polymer matrix composite laminates. The numerical results indicate good correlation with the experimental results for most of the composite layups, but also point to the need for more accurate resin damage progression models.

  2. A prospective observational cohort study in primary care practices to identify factors associated with treatment failure in Staphylococcus aureus skin and soft tissue infections.

    PubMed

    Lee, Grace C; Hall, Ronald G; Boyd, Natalie K; Dallas, Steven D; Du, Liem C; Treviño, Lucina B; Treviño, Sylvia B; Retzloff, Chad; Lawson, Kenneth A; Wilson, James; Olsen, Randall J; Wang, Yufeng; Frei, Christopher R

    2016-11-22

    The incidence of outpatient visits for skin and soft tissue infections (SSTIs) has substantially increased over the last decade. The emergence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has made the management of S. aureus SSTIs complex and challenging. The objective of this study was to identify risk factors contributing to treatment failures associated with community-associated S. aureus skin and soft tissue infections SSTIs. This was a prospective, observational study among 14 primary care clinics within the South Texas Ambulatory Research Network. The primary outcome was treatment failure within 90 days of the initial visit. Univariate associations between the explanatory variables and treatment failure were examined. A generalized linear mixed-effect model was developed to identify independent risk factors associated with treatment failure. Overall, 21% (22/106) patients with S. aureus SSTIs experienced treatment failure. The occurrence of treatment failure was similar among patients with methicillin-resistant S. aureus and those with methicillin-susceptible S. aureus SSTIs (19 vs. 24%; p = 0.70). Independent predictors of treatment failure among cases with S. aureus SSTIs was a duration of infection of ≥7 days prior to initial visit [aOR, 6.02 (95% CI 1.74-19.61)] and a lesion diameter size ≥5 cm [5.25 (1.58-17.20)]. Predictors for treatment failure included a duration of infection for ≥7 days prior to the initial visit and a wound diameter of ≥5 cm. A heightened awareness of these risk factors could help direct targeted interventions in high-risk populations.

  3. Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure.

    PubMed

    Haack, Karla K V; Zucker, Irving H

    2015-03-01

    The control of sympathetic outflow in the chronic heart failure (CHF) state is markedly abnormal. Patients with heart failure present with increased plasma norepinephrine and increased sympathetic nerve activity. The mechanism for this sympatho-excitation is multiple and varied. Both depression in negative feedback sensory control mechanisms and augmentation of excitatory reflexes contribute to this sympatho-excitation. These include the arterial baroreflex, cardiac reflexes, arterial chemoreflexes and cardiac sympathetic afferent reflexes. In addition, abnormalities in central signaling in autonomic pathways have been implicated in the sympatho-excitatory process in CHF. These mechanisms include increases in central Angiotensin II and the Type 1 receptor, increased in reactive oxygen stress, upregulation in glutamate signaling and NR1 (N-methyl-D-aspartate subtype 1) receptors and others. Exercise training in the CHF state has been shown to reduce sympathetic outflow and result in increased survival and reduced cardiac events. Exercise training has been shown to reduce central Angiotensin II signaling including the Type 1 receptor and reduce oxidative stress by lowering the expression of many of the subunits of NADPH oxidase. In addition, there are profound effects on the central generation of nitric oxide and nitric oxide synthase in sympatho-regulatory areas of the brain. Recent studies have pointed to the balance between Angiotensin Converting Enzyme (ACE) and ACE2, translating into Angiotensin II and Angiotensin 1-7 as important regulators of sympathetic outflow. These enzymes appear to be normalized following exercise training in CHF. Understanding the precise molecular mechanisms by which exercise training is sympatho-inhibitory will uncover new targets for therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. MAXimising Involvement in MUltiMorbidity (MAXIMUM) in primary care: protocol for an observation and interview study of patients, GPs and other care providers to identify ways of reducing patient safety failures

    PubMed Central

    Daker-White, Gavin; Hays, Rebecca; Esmail, Aneez; Minor, Brian; Barlow, Wendy; Brown, Benjamin; Blakeman, Thomas; Bower, Peter

    2014-01-01

    Introduction Increasing numbers of older people are living with multiple long-term health conditions but global healthcare systems and clinical guidelines have traditionally focused on the management of single conditions. Having two or more long-term conditions, or ‘multimorbidity’, is associated with a range of adverse consequences and poor outcomes and could put patients at increased risk of safety failures. Traditionally, most research into patient safety failures has explored hospital or inpatient settings. Much less is known about patient safety failures in primary care. Our core aims are to understand the mechanisms by which multimorbidity leads to safety failures, to explore the different ways in which patients and services respond (or fail to respond), and to identify opportunities for intervention. Methods and analysis We plan to undertake an applied ethnographic study of patients with multimorbidity. Patients’ interactions and environments, relevant to their healthcare, will be studied through observations, diary methods and semistructured interviews. A framework, based on previous studies, will be used to organise the collection and analysis of field notes, observations and other qualitative data. This framework includes the domains: access breakdowns, communication breakdowns, continuity of care errors, relationship breakdowns and technical errors. Ethics and dissemination Ethical approval was received from the National Health Service Research Ethics Committee for Wales. An individual case study approach is likely to be most fruitful for exploring the mechanisms by which multimorbidity leads to safety failures. A longitudinal and multiperspective approach will allow for the constant comparison of patient, carer and healthcare worker expectations and experiences related to the provision, integration and management of complex care. This data will be used to explore ways of engaging patients and carers more in their own care using shared decision

  5. Development of a quantitative model for the mechanism of raveling failure in highway rock slopes using LIDAR.

    DOT National Transportation Integrated Search

    2013-03-01

    Rock falls on highways while dangerous are unpredictable. Most rock falls are of the raveling type and not conducive to stability : calculations, and even the failure mechanisms are not well understood. LIDAR (LIght Detection And Ranging) has been sh...

  6. Enhanced dielectric standoff and mechanical failure in field-structured composites

    NASA Astrophysics Data System (ADS)

    Martin, James E.; Tigges, Chris P.; Anderson, Robert A.; Odinek, Judy

    1999-09-01

    We report dielectric breakdown experiments on electric-field-structured composites of high-dielectric-constant BaTiO3 particles in an epoxy resin. These experiments show a significant increase in the dielectric standoff strength perpendicular to the field structuring direction, relative to control samples consisting of randomly dispersed particles. To understand the relation of this observation to microstructure, we apply a simple resistor-short breakdown model to three-dimensional composite structures generated from a dynamical simulation. In this breakdown model the composite material is assumed to conduct primarily through particle contacts, so the simulated structures are mapped onto a resistor network where the center of mass of each particle is a node that is connected to neighboring nodes by resistors of fixed resistance that irreversibly short to perfect conductors when the current reaches a threshold value. This model gives relative breakdown voltages that are in good agreement with experimental results. Finally, we consider a primitive model of the mechanical strength of a field-structured composite material, which is a current-driven, conductor-insulator fuse model. This model leads to a macroscopic fusing behavior and can be related to mechanical failure of the composite.

  7. Acute Heart Failure Management

    PubMed Central

    2018-01-01

    Acute heart failure (AHF) is a life-threatening medical condition, where urgent diagnostic and treatment methods are of key importance. However, there are few evidence-based treatment methods. Interestingly, despite relatively similar ways of management of AHF throughout the globe, mid-term outcome in East Asia, including South Korea is more favorable than in Europe. Yet, most of the treatment methods are symptomatic. The cornerstone of AHF management is identifying precipitating factors and specific phenotype. Multidisciplinary approach is important in AHF, which can be caused or aggravated by both cardiac and non-cardiac causes. The main pathophysiological mechanism in AHF is congestion, both systemic and inside the organs (lung, kidney, or liver). Cardiac output is often preserved in AHF except in a few cases of advanced heart failure. This paper provides guidance on AHF management in a time-based approach. Treatment strategies, criteria for triage, admission to hospital and discharge are described. PMID:29856141

  8. Cortical and Spinal Mechanisms of Task Failure of Sustained Submaximal Fatiguing Contractions

    PubMed Central

    Williams, Petra S.; Hoffman, Richard L.; Clark, Brian C.

    2014-01-01

    In this and the subsequent companion paper, results are presented that collectively seek to delineate the contribution that supraspinal circuits have in determining the time to task failure (TTF) of sustained submaximal contractions. The purpose of this study was to compare adjustments in supraspinal and spinal excitability taken concurrently throughout the performance of two different fatigue tasks with identical mechanical demands but different TTF (i.e., force-matching and position-matching tasks). On separate visits, ten healthy volunteers performed the force-matching or position-matching task at 15% of maximum strength with the elbow flexors to task failure. Single-pulse transcranial magnetic stimulation (TMS), paired-pulse TMS, paired cortico-cervicomedullary stimulation, and brachial plexus electrical stimulation were delivered in a 6-stimuli sequence at baseline and every 2–3 minutes throughout fatigue-task performance. Contrary to expectations, the force-matching task TTF was 42% shorter (17.5±7.9 min) than the position-matching task (26.9±15.11 min; p<0.01); however, both tasks caused the same amount of muscle fatigue (p = 0.59). There were no task-specific differences for the total amount or rate of change in the neurophysiologic outcome variables over time (p>0.05). Therefore, failure occurred after a similar mean decline in motorneuron excitability developed (p<0.02, ES = 0.35–0.52) coupled with a similar mean increase in measures of corticospinal excitability (p<0.03, ES = 0.30–0.41). Additionally, the amount of intracortical inhibition decreased (p<0.03, ES = 0.32) and the amount of intracortical facilitation (p>0.10) and an index of upstream excitation of the motor cortex remained constant (p>0.40). Together, these results suggest that as fatigue develops prior to task failure, the increase in corticospinal excitability observed in relationship to the decrease in spinal excitability results from a combination of decreasing

  9. No evidence that manual closure of the bronchial stump has a lower failure rate than mechanical stapler closure following anatomical lung resection.

    PubMed

    Zakkar, Mustafa; Kanagasabay, Robin; Hunt, Ian

    2014-04-01

    A best evidence topic in cardiothoracic surgery was written according to a structured protocol. The question addressed was whether manual closure of the bronchial stump is safer with lower failure rates than mechanical closure using a stapling device following anatomical lung resection. One hundred and twenty-nine papers were identified using the search below. Eight papers presented the best evidence to answer the clinical question as they included sufficient number of patients to reach conclusions regarding the issues of interest for this review. Complications, complication rates and operation time were included in the assessment. The author, journal, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of the papers are tabulated. When looking at manual vs mechanical staples, it was noted that stapler failure can occur in around 4% of cases. The rate of bronchopleural fistula (BPF) development varied more in patients who underwent manual closure (1.5-12.5%) than in patients who underwent mechanical closure (1-5.7%). Although most of the studies reviewed showed no statistical differences between manual and mechanical closure in terms of BPF development, one study, however, showed that manual closure was significantly associated with lower numbers of postoperative BPF, while another study showed that mechanical closure is significantly associated with lower incidence of BPF. When looking at the role of the learning curve and training opportunities, it seems that the surgeon's inexperience when using mechanical staples can contribute to BPF development. A surgeon's experience can play a major role in the prevention of BPF development in patients having manual closure. Manual closure can provide a cheap and reliable technique when compared with costs incurred from using staplers, it is applicable in all situations and can be taught to surgeons in training with an acceptable risk. However, there is a lack

  10. No evidence that manual closure of the bronchial stump has a lower failure rate than mechanical stapler closure following anatomical lung resection

    PubMed Central

    Zakkar, Mustafa; Kanagasabay, Robin; Hunt, Ian

    2014-01-01

    A best evidence topic in cardiothoracic surgery was written according to a structured protocol. The question addressed was whether manual closure of the bronchial stump is safer with lower failure rates than mechanical closure using a stapling device following anatomical lung resection. One hundred and twenty-nine papers were identified using the search below. Eight papers presented the best evidence to answer the clinical question as they included sufficient number of patients to reach conclusions regarding the issues of interest for this review. Complications, complication rates and operation time were included in the assessment. The author, journal, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of the papers are tabulated. When looking at manual vs mechanical staples, it was noted that stapler failure can occur in around 4% of cases. The rate of bronchopleural fistula (BPF) development varied more in patients who underwent manual closure (1.5–12.5%) than in patients who underwent mechanical closure (1–5.7%). Although most of the studies reviewed showed no statistical differences between manual and mechanical closure in terms of BPF development, one study, however, showed that manual closure was significantly associated with lower numbers of postoperative BPF, while another study showed that mechanical closure is significantly associated with lower incidence of BPF. When looking at the role of the learning curve and training opportunities, it seems that the surgeon's inexperience when using mechanical staples can contribute to BPF development. A surgeon's experience can play a major role in the prevention of BPF development in patients having manual closure. Manual closure can provide a cheap and reliable technique when compared with costs incurred from using staplers, it is applicable in all situations and can be taught to surgeons in training with an acceptable risk. However, there is a

  11. Heart Failure With Preserved Ejection Fraction in Diabetes: Mechanisms and Management.

    PubMed

    Meagher, Patrick; Adam, Mohamed; Civitarese, Robert; Bugyei-Twum, Antoinette; Connelly, Kim A

    2018-05-01

    Diabetes mellitus (DM) is a major cause of heart failure in the Western world, either secondary to coronary artery disease or from a distinct entity known as "diabetic cardiomyopathy." Furthermore, heart failure with preserved ejection fraction (HFpEF) is emerging as a significant clinical problem for patients with DM. Current clinical data suggest that between 30% and 40% of patients with HFpEF suffer from DM. The typical structural phenotype of the HFpEF heart consists of endothelial dysfunction, increased interstitial and perivascular fibrosis, cardiomyocyte stiffness, and hypertrophy along with advanced glycation end products deposition. There is a myriad of mechanisms that result in the phenotypical HFpEF heart including impaired cardiac metabolism and substrate utilization, altered insulin signalling leading to protein kinase C activation, advanced glycated end products deposition, prosclerotic cytokine activation (eg, transforming growth factor-β activation), along with impaired nitric oxide production from the endothelium. Moreover, recent investigations have focused on the role of endothelial-myocyte interactions. Despite intense research, current therapeutic strategies have had little effect on improving morbidity and mortality in patients with DM and HFpEF. Possible explanations for this include a limited understanding of the role that direct cell-cell communication or indirect cell-cell paracrine signalling plays in the pathogenesis of DM and HFpEF. Additionally, integrins remain another important mediator of signals from the extracellular matrix to cells within the failing heart and might play a significant role in cell-cell cross-talk. In this review we discuss the characteristics and mechanisms of DM and HFpEF to stimulate potential future research for patients with this common, and morbid condition. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  12. Identifying failure in a tree network of a parallel computer

    DOEpatents

    Archer, Charles J.; Pinnow, Kurt W.; Wallenfelt, Brian P.

    2010-08-24

    Methods, parallel computers, and products are provided for identifying failure in a tree network of a parallel computer. The parallel computer includes one or more processing sets including an I/O node and a plurality of compute nodes. For each processing set embodiments include selecting a set of test compute nodes, the test compute nodes being a subset of the compute nodes of the processing set; measuring the performance of the I/O node of the processing set; measuring the performance of the selected set of test compute nodes; calculating a current test value in dependence upon the measured performance of the I/O node of the processing set, the measured performance of the set of test compute nodes, and a predetermined value for I/O node performance; and comparing the current test value with a predetermined tree performance threshold. If the current test value is below the predetermined tree performance threshold, embodiments include selecting another set of test compute nodes. If the current test value is not below the predetermined tree performance threshold, embodiments include selecting from the test compute nodes one or more potential problem nodes and testing individually potential problem nodes and links to potential problem nodes.

  13. Experimental and Numerical Investigation on the Bearing and Failure Mechanism of Multiple Pillars Under Overburden

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Chen, Lu; Zhao, Yuan; Zhao, Tongbin; Cai, Xin; Du, Xueming

    2017-04-01

    To reveal the mechanical response of a multi-pillar supporting system under external loads, compressive tests were carried out on single-pillar and double-pillar specimens. The digital speckle correlation method and acoustic emission technique were applied to record and analyse information of the deformation and failure processes. Numerical simulations with the software programme PFC2D were also conducted. In the compressive process of the double-pillar system, if both individual pillars have the same mechanical properties, each pillar deforms similarly and reaches the critical stable state almost simultaneously by sharing equal loads. If the two individual pillars have different mechanical properties, the pillar with higher elastic modulus or lower strength would be damaged and lose its bearing capacity firstly. The load would then be transferred to the other pillar under a load redistribution process. When the pillar with higher strength is strong enough, the load carried by the pillar system would increase again. However, the maximum bearing load of the double-pillar system is smaller than the sum of peak load of individual pillars. The study also indicates that the strength, elastic modulus, and load state of pillars all influence the supporting capacity of the pillar system. In underground space engineering, the appropriate choice of pillar dimensions and layout may play a great role in preventing the occurrence of cascading pillar failure.

  14. Linking Seismicity at Depth to the Mechanics of a Lava Dome Failure - a Forecasting Approach

    NASA Astrophysics Data System (ADS)

    Salvage, R. O.; Neuberg, J. W.; Murphy, W.

    2014-12-01

    Soufriere Hills volcano (SHV), Montserrat has been in a state of ongoing unrest since 1995. Prior to eruptions, an increase in the number of seismic events has been observed. We use the Material Failure Law (MFL) (Voight, 1988) to investigate how an accelerating number of low frequency seismic events are related to the timing of a large scale dome collapse in June 1997. We show that although the forecasted timing of a dome collapse may coincide with the known timing, the accuracy of the application of the MFL to the data is poor. Using a cross correlation technique we show how characterising seismicity into similar waveform "families'' allows us to focus on a single process at depth and improve the reliability of our forecast. A number of families are investigated to assess their relative importance. We show that despite the timing of a forecasted dome collapse ranging between several hours of the known timing of collapse, each of the families produces a better forecast in terms of fit to the seismic acceleration data than when using all low frequency seismicity. In addition, we investigate the stability of such families between major dome collapses (1997 and 2003), assessing their potential for use in real-time forecasting. Initial application of Grey's Incidence Analysis suggests that a key parameter influencing the potential for a large scale slumping on the dome of SHV is the rate of low frequency seismicity associated with magma movement and dome growth. We undertook numerical modelling of an andesitic dome with a hydrothermally altered layer down to 800m. The geometry of the dome is based on SHV prior to the collapse of 2003. We show that a critical instability is reached once slope angles exceed 25°, corresponding to a summit height of just over 1100m a.s.l.. The geometry of failure is in close agreement with the identified failure plane suggesting that the input mechanical properties are broadly consistent with reality. We are therefore able to compare

  15. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  16. Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.

    2018-01-01

    One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

  17. A 3D Analysis of Rock Block Deformation and Failure Mechanics Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Rowe, Emily; Hutchinson, D. Jean; Kromer, Ryan A.; Edwards, Tom

    2017-04-01

    planes on the slope that were confining the block. It is concluded that rock blocks in White Canyon may be classified as one of five main failure mechanisms based on their pre-failure deformation and structure: planar slide, topple, rotation, wedge, and overhang, with overhang failures representing a large portion of rockfalls in this area. Overhang rockfalls in the White Canyon are characterized by blocks that (a) are not supported by an underlying discontinuity plane, and (b) generally do not exhibit pre-failure deformation. Though overhanging rock blocks are a structural subset of toppling failure, their behavior suggests a different mechanism of detachment. Future work will further populate the present database of rockfalls in White Canyon and will expand the study to include other sites along this corridor. The ultimate goal of this research is to establish warning thresholds based on deformation magnitudes for rockfalls in White Canyon to assist Canadian railways in better understanding and managing these slopes.

  18. Graphical Displays Assist In Analysis Of Failures

    NASA Technical Reports Server (NTRS)

    Pack, Ginger; Wadsworth, David; Razavipour, Reza

    1995-01-01

    Failure Environment Analysis Tool (FEAT) computer program enables people to see and better understand effects of failures in system. Uses digraph models to determine what will happen to system if set of failure events occurs and to identify possible causes of selected set of failures. Digraphs or engineering schematics used. Also used in operations to help identify causes of failures after they occur. Written in C language.

  19. A unified phase-field theory for the mechanics of damage and quasi-brittle failure

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Ying

    2017-06-01

    Being one of the most promising candidates for the modeling of localized failure in solids, so far the phase-field method has been applied only to brittle fracture with very few exceptions. In this work, a unified phase-field theory for the mechanics of damage and quasi-brittle failure is proposed within the framework of thermodynamics. Specifically, the crack phase-field and its gradient are introduced to regularize the sharp crack topology in a purely geometric context. The energy dissipation functional due to crack evolution and the stored energy functional of the bulk are characterized by a crack geometric function of polynomial type and an energetic degradation function of rational type, respectively. Standard arguments of thermodynamics then yield the macroscopic balance equation coupled with an extra evolution law of gradient type for the crack phase-field, governed by the aforesaid constitutive functions. The classical phase-field models for brittle fracture are recovered as particular examples. More importantly, the constitutive functions optimal for quasi-brittle failure are determined such that the proposed phase-field theory converges to a cohesive zone model for a vanishing length scale. Those general softening laws frequently adopted for quasi-brittle failure, e.g., linear, exponential, hyperbolic and Cornelissen et al. (1986) ones, etc., can be reproduced or fit with high precision. Except for the internal length scale, all the other model parameters can be determined from standard material properties (i.e., Young's modulus, failure strength, fracture energy and the target softening law). Some representative numerical examples are presented for the validation. It is found that both the internal length scale and the mesh size have little influences on the overall global responses, so long as the former can be well resolved by sufficiently fine mesh. In particular, for the benchmark tests of concrete the numerical results of load versus displacement

  20. Acoustic Emission Determination of Deformation Mechanisms Leading to Failure of Naval Alloys. Volume 1

    DTIC Science & Technology

    1983-05-01

    DThSRT)C- STE -CP- 18-83 Contract No. No024-10-C-5317 Acoustic Emission Determination of Deformation Mechanisms Leading to Failure of Naval Alloys J...mobile dislocation motion were both found to generate AE as well [34-36]. Phase transformations have also been known to cause AE for some time (29...of alloying constituents and the heat treatment resulted in a fairly broken, complex, microstructure. All three steels were of a tempered martensitic

  1. Mechanisms of Post-Infarct Left Ventricular Remodeling

    PubMed Central

    French, Brent A.; Kramer, Christopher M.

    2008-01-01

    Heart failure secondary to myocardial infarction (MI) remains a major source of morbidity and mortality. Long-term outcome after MI can be largely be defined in terms of its impact on the size and shape of the left ventricle (i.e., LV remodeling). Three major mechanisms contribute to LV remodeling: 1) early infarct expansion, 2) subsequent infarct extension into adjacent noninfarcted myocardium, and 3) late hypertrophy in the remote LV. Future developments in preventing post-MI heart failure will depend not only on identifying drugs targeting each of these individual mechanisms, but also on diagnostic techniques capable of assessing efficacy against each mechanism. PMID:18690295

  2. Three potential mechanisms for failure of high intensity focused ultrasound ablation in cardiac tissue.

    PubMed

    Laughner, Jacob I; Sulkin, Matthew S; Wu, Ziqi; Deng, Cheri X; Efimov, Igor R

    2012-04-01

    High intensity focused ultrasound (HIFU) has been introduced for treatment of cardiac arrhythmias because it offers the ability to create rapid tissue modification in confined volumes without directly contacting the myocardium. In spite of the benefits of HIFU, a number of limitations have been reported, which hindered its clinical adoption. In this study, we used a multimodal approach to evaluate thermal and nonthermal effects of HIFU in cardiac ablation. We designed a computer controlled system capable of simultaneous fluorescence mapping and HIFU ablation. Using this system, linear lesions were created in isolated rabbit atria (n=6), and point lesions were created in the ventricles of whole-heart (n=6) preparations by applying HIFU at clinical doses (4-16 W). Additionally, we evaluate the gap size in ablation lines necessary for conduction in atrial preparations (n=4). The voltage sensitive dye di-4-ANEPPS was used to assess functional damage produced by HIFU. Optical coherence tomography and general histology were used to evaluate lesion extent. Conduction block was achieved in 1 (17%) of 6 atrial preparations with a single ablation line. Following 10 minutes of rest, 0 (0%) of 6 atrial preparations demonstrated sustained conduction block from a single ablation line. Tissue displacement of 1 to 3 mm was observed during HIFU application due to acoustic radiation force along the lesion line. Additionally, excessive acoustic pressure and high temperature from HIFU generated cavitation, causing macroscopic tissue damage. A minimum gap size of 1.5 mm was found to conduct electric activity. This study identified 3 potential mechanisms responsible for the failure of HIFU ablation in cardiac tissues. Both acoustic radiation force and acoustic cavitation, in conjunction with inconsistent thermal deposition, can increase the risk of lesion discontinuity and result in gap sizes that promote ablation failure.

  3. Acute Respiratory Failure in Renal Transplant Recipients: A Single Intensive Care Unit Experience.

    PubMed

    Ulas, Aydin; Kaplan, Serife; Zeyneloglu, Pinar; Torgay, Adnan; Pirat, Arash; Haberal, Mehmet

    2015-11-01

    Frequency of pulmonary complications after renal transplant has been reported to range from 3% to 17%. The objective of this study was to evaluate renal transplant recipients admitted to an intensive care unit to identify incidence and cause of acute respiratory failure in the postoperative period and compare clinical features and outcomes between those with and without acute respiratory failure. We retrospectively screened the data of 540 consecutive adult renal transplant recipients who received their grafts at a single transplant center and included those patients admitted to an intensive care unit during this period for this study. Acute respiratory failure was defined as severe dyspnea, respiratory distress, decreased oxygen saturation, hypoxemia or hypercapnia on room air, or requirement of noninvasive or invasive mechanical ventilation. Among the 540 adult renal transplant recipients, 55 (10.7%) were admitted to an intensive care unit, including 26 (47.3%) admitted for acute respiratory failure. Median time from transplant to intensive care unit admission was 10 months (range, 0-67 mo). The leading causes of acute respiratory failure were bacterial pneumonia (56%) and cardiogenic pulmonary edema (44%). Mean partial pressure of arterial oxygen to fractional inspired oxygen ratio was 174 ± 59, invasive mechanical ventilation was used in 13 patients (50%), and noninvasive mechanical ventilation was used in 8 patients (31%). The overall mortality was 16.4%. Acute respiratory failure was the reason for intensive care unit admission in almost half of our renal transplant recipients. Main causes of acute respiratory failure were bacterial pneumonia and cardiogenic pulmonary edema. Mortality of patients admitted for acute respiratory failure was similar to those without acute respiratory failure.

  4. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    NASA Astrophysics Data System (ADS)

    Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang

    2018-01-01

    The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile

  5. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  6. In Situ Observation of Failure Mechanisms Controlled by Rock Masses with Weak Interlayer Zones in Large Underground Cavern Excavations Under High Geostress

    NASA Astrophysics Data System (ADS)

    Duan, Shu-Qian; Feng, Xia-Ting; Jiang, Quan; Liu, Guo-Feng; Pei, Shu-Feng; Fan, Yi-Lin

    2017-09-01

    A weak interlayer zone (WIZ) is a poor rock mass system with loose structure, weak mechanical properties, variable thickness, random distribution, strong extension, and high risk due to the shear motion of rock masses under the action of tectonism, bringing many stability problems and geological hazards, especially representing a potential threat to the overall stability of rock masses with WIZs in large underground cavern excavations. Focusing on the deformation and failure problems encountered in the process of excavation unloading, this research proposes comprehensive in situ observation schemes for rock masses with WIZs in large underground cavern on the basis of the collection of geological, construction, monitoring, and testing data. The schemes have been fully applied in two valuable project cases of an underground cavern group under construction in the southwest of China, including the plastic squeezing-out tensile failure and the structural stress-induced collapse of rock masses with WIZs. In this way, the development of rock mass failure, affected by the step-by-step excavations along the cavern's axis and the subsequent excavation downward, could be observed thoroughly. Furthermore, this paper reveals the preliminary analyses of failure mechanism of rock masses with WIZs from several aspects, including rock mass structure, strength, high stress, ground water effects, and microfracture mechanisms. Finally, the failure particularities of rock masses with WIZs and rethink on prevention and control of failures are discussed. The research results could provide important guiding reference value for stability analysis, as well as for rethinking the excavation and support optimization of rock masses with WIZs in similar large underground cavern under high geostress.

  7. Mechanisms of bee venom-induced acute renal failure.

    PubMed

    Grisotto, Luciana S D; Mendes, Glória E; Castro, Isac; Baptista, Maria A S F; Alves, Venancio A; Yu, Luis; Burdmann, Emmanuel A

    2006-07-01

    The spread of Africanized bees in the American continent has increased the number of severe envenomation after swarm attacks. Acute renal failure (ARF) is one of the major hazards in surviving patients. To assess the mechanisms of bee venom-induced ARF, rats were evaluated before, up to 70 min and 24h after 0.5mg/kg of venom injection. Control rats received saline. Bee venom caused an early and significant reduction in glomerular filtration rate (GFR, inulin clearance, 0.84+/-0.05 to 0.40+/-0.08 ml/min/100g, p<0.0001) and renal blood flow (RBF, laser Doppler flowmetry), which was more severe in the cortical (-72%) than in the medullary area (-48%), without systemic blood pressure decrease. Creatine phosphokinase, lactic dehydrogenase (LDH) and serum glutamic oxaloacetic transaminase increased significantly, pointing to rhabdomyolysis, whereas serum glutamic pyruvic transaminase and hematocrit remained stable. Twenty-four hours after venom, RBF recovered but GFR remained significantly impaired. Renal histology showed acute tubular injury and a massive tubular deposition of myoglobin. Venom was added to isolated rat proximal tubules (PT) suspension subjected to normoxia and hypoxia/reoxygenation (H/R) for direct nephrotoxicity evaluation. After 60 min of incubation, 0.1, 2 and 10 microg of venom induced significant increases in LDH release: 47%, 64% and 86%, respectively, vs. 21% in control PT while 2 microg of venom enhanced H/R injury (85% vs. 55%, p<0.01). These results indicate that vasoconstriction, direct nephrotoxicity and rhabdomyolysis are important mechanisms in the installation of bee venom-induced ARF that may occur even without hemolysis or hypotension.

  8. Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique

    NASA Astrophysics Data System (ADS)

    Shahid, M. R.; Abbas, Musharaf

    2013-06-01

    Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs

  9. Ductile failure initiation and evolution in porous polycrystalline aggregates due to interfacial effects

    NASA Astrophysics Data System (ADS)

    Ashmawi, Waeil Muhammad Al-Anwar

    New analytical and computational formulations have been developed for the investigation of micro structurally induced ductile failure mechanisms in porous polycrystalline aggregates with low and high (CSL) angle grain-boundaries (GBs). A multiple-slip rate-dependent crystalline constitutive formulation that is coupled to the evolution of mobile and immobile dislocation densities, a new internal porosity formulation for void nucleation and growth, and specialized computational schemes have been developed to obtain a detailed understanding of the multi-scale interrelated physical mechanisms that result in ductile failure in polycrystalline materials. Comprehensive transmission and pile-up mechanisms have also been introduced to investigate dislocation-density impedance and slip-rate incompatibility at the GBs. The interrelated effects of GB orientation, mobile and immobile dislocation densities, strain hardening, geometrical softening, localized plastic strains, and dislocation-density transmission and blockage on void growth, interaction, and coalescence have been studied. Criteria have been developed to identify and monitor the initiation and development of potential dislocation-density activity sites adjacent to GB regions. These interactions play an important role in the formation of GB pile-up and transmission regions. The effects of GB structure and orientation on ductile failure have been accounted for by the development of GB interfacial kinematic conditions that account for a multitude of dislocation-density interactions with GBs, such as full and partial transmission, impedance, blockage, and absorption. Pile-ups and transmission regions are identified and monitored as the deformation and failure evolve. These kinematic conditions are linked to the initiation and evolution of failure modes by the development of a new internal porosity evolution formulation that accounts for void nucleation and growth. The internal porosity relation is coupled with the

  10. Finite element analysis of the failure mechanism of gentle slopes in weak disturbed clays

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Mezzina, Giuseppe; Cotecchia, Federica

    2014-05-01

    Italian south-eastern Apennines are affected by a large number of deep slow active landslide processes that interact with urban structures and infrastructures throughout the region, thus causing damages and economic losses. For most landslide processes in the region, the main predisposing factors for instability are represented by the piezometric regime and the extremely poor mechanical properties of the weak disturbed clays in the lower and central portions of the slopes that are overlaid in some cases by a stiffer cap layer, formed of rocky flysch, e.g. alternations of rock and soil strata. Based on phenomenological approaches, landslide processes are deemed to be triggered within the weaker clay layer and later on to develop upward to the stiffer cap, with the shear bands reaching also high depths. The paper presents the results of two-dimensional numerical analyses of the failure mechanisms developing in the unstable slopes of the region, carried out by means of the finite element method (Plaxis 2011) applied to slope conditions representative for the region. In particular, the effects of slope inclination, along with the thickness and the strength of the material forming the caprock at the top of the slope, on the depth of the sliding surface, the mobilised strengths, the evolution of the landslide process and the predisposing factors of landsliding have been explored by means of the finite element analysis of an ideal case study representative of the typical geomechanical context of the region. In particular, the increase of slope inclination is shown to raise the depth of the shear band as well as to extend landslide scarp upwards, in accordance with the field evidence. Moreover, the numerical results indicate how the increase of the caprock thickness tends to confine the development of the shear band to the underlying weaker clay layer, so that the depth of the shear band is also observed to reduce, and when the stiffer top stratum becomes involved in the

  11. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  12. [Non-invasive mechanical ventilation in the treatment of acute heart failure].

    PubMed

    Alfonso Megido, Joaquín; González Franco, Alvaro

    2014-03-01

    When acute heart failure progresses and there is acute cardiogenic pulmonary edema, routine therapeutic measures should be accompanied by other measures that help to correct oxygenation of the patient. The final and most drastic step is mechanical ventilation. Non-invasive ventilation has been developed in the last few years as a method that attempts to improve oxygenation without the need for intubation, thus, in theory, reducing morbidity and mortality in these patients. The present article describes the controversies surrounding the results of this technique and discusses its indications. The article also discusses how to start non-invasive ventilation in patients with acute pulmonary edema from a practical point of view. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  13. A mechanics framework for a progressive failure methodology for laminated composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Allen, David H.; Lo, David C.

    1989-01-01

    A laminate strength and life prediction methodology has been postulated for laminated composites which accounts for the progressive development of microstructural damage to structural failure. A damage dependent constitutive model predicts the stress redistribution in an average sense that accompanies damage development in laminates. Each mode of microstructural damage is represented by a second-order tensor valued internal state variable which is a strain like quantity. The mechanics framework together with the global-local strategy for predicting laminate strength and life is presented in the paper. The kinematic effects of damage are represented by effective engineering moduli in the global analysis and the results of the global analysis provide the boundary conditions for the local ply level stress analysis. Damage evolution laws are based on experimental results.

  14. Microstructural studies on failure mechanisms in thermo-mechanical fatigue of repaired DS R80 and IN 738 Superalloys

    NASA Astrophysics Data System (ADS)

    Abrokwah, Emmanuel Otchere

    Directionally solidified Rene 80 (DS R80) and polycrystalline Inconel 738(IN 738) Superalloys were tested in thermo-mechanical fatigue (TMF) over the temperature range of 500-900°C and plastic strain range from 0.1 to 0.8% using a DSI Gleeble thermal simulator. Thermo-mechanical testing was carried out on the parent material (baseline) in the conventional solution treated and aged condition (STA), as well as gas tungsten arc welded (GTAW) with an IN-738 filler, followed by solution treatment and ageing. Comparison of the baseline alloy microstructure with that of the welded and heat treated alloy showed that varying crack initiation mechanisms, notably oxidation by stress assisted grain boundary oxidation, grain boundary MC carbides fatigue crack initiation, fatigue crack initiation from sample surfaces, crack initiation from weld defects and creep deformation were operating, leading to different “weakest link” and failure initiation points. The observations from this study show that the repaired samples had extra crack initiation sites not present in the baseline, which accounted for their occasional poor fatigue life. These defects include lack of fusion between the weld and the base metal, fusion zone cracking, and heat affected zone microfissures.

  15. Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel.

    PubMed

    Chen, Qiang; Xie, Zhiwen; Chen, Tian; Gong, Feng

    2016-11-26

    TiN/SiO x duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiO x . Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiO x layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.

  16. Failure Modes in Capacitors When Tested Under a Time-Varying Stress

    NASA Technical Reports Server (NTRS)

    Liu, David (Donhang)

    2011-01-01

    Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors in decoupling applications. A surge step stress test (SSST) has been previously applied to identify the critical stress level of a capacitor batch to give some predictability to the power-on failure mechanism [1]. But SSST can also be viewed as an electrically destructive test under a time-varying stress (voltage). It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. When the reliability of capacitors is evaluated, a highly accelerated life test (HALT) is usually adopted since it is a time-efficient method of determining the failure mechanism; however, a destructive test under a time-varying stress such as SSST is even more time efficient. It usually takes days or weeks to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating a specific time-varying stress profile into a statistical model is significant in providing an alternative life test method for quickly revealing the failure mechanism in capacitors. In this paper, a time-varying stress that mimics a typical SSST has been incorporated into the Weibull model to characterize the failure mechanism in different types of capacitors. The SSST circuit and transient conditions for correctly surge testing capacitors are discussed. Finally, the SSST was applied for testing Ta capacitors, polymer aluminum capacitors (PA capacitors), and multi-layer ceramic (MLC) capacitors with both precious metal electrodes (PME) and base metal electrodes (BME). The test results are found to be directly associated with the dielectric layer breakdown in Ta and PA capacitors and are independent of the capacitor values, the way the capacitors were built, and the capacitors manufacturers. The test results also show that MLC capacitors exhibit surge breakdown

  17. Bibliography of information on mechanics of structural failure (hydrogen embrittlement, protective coatings, composite materials, NDE)

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.

    1976-01-01

    This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.

  18. Risk Factors for Noninvasive Ventilation Failure in Critically Ill Subjects With Confirmed Influenza Infection.

    PubMed

    Rodríguez, Alejandro; Ferri, Cristina; Martin-Loeches, Ignacio; Díaz, Emili; Masclans, Joan R; Gordo, Federico; Sole-Violán, Jordi; Bodí, María; Avilés-Jurado, Francesc X; Trefler, Sandra; Magret, Monica; Moreno, Gerard; Reyes, Luis F; Marin-Corral, Judith; Yebenes, Juan C; Esteban, Andres; Anzueto, Antonio; Aliberti, Stefano; Restrepo, Marcos I

    2017-10-01

    Despite wide use of noninvasive ventilation (NIV) in several clinical settings, the beneficial effects of NIV in patients with hypoxemic acute respiratory failure (ARF) due to influenza infection remain controversial. The aim of this study was to identify the profile of patients with risk factors for NIV failure using chi-square automatic interaction detection (CHAID) analysis and to determine whether NIV failure is associated with ICU mortality. This work was a secondary analysis from prospective and observational multi-center analysis in critically ill subjects admitted to the ICU with ARF due to influenza infection requiring mechanical ventilation. Three groups of subjects were compared: (1) subjects who received NIV immediately after ICU admission for ARF and then failed (NIV failure group); (2) subjects who received NIV immediately after ICU admission for ARF and then succeeded (NIV success group); and (3) subjects who received invasive mechanical ventilation immediately after ICU admission for ARF (invasive mechanical ventilation group). Profiles of subjects with risk factors for NIV failure were obtained using CHAID analysis. Of 1,898 subjects, 806 underwent NIV, and 56.8% of them failed. Acute Physiology and Chronic Health Evaluation II (APACHE II) score, Sequential Organ Failure Assessment (SOFA) score, infiltrates in chest radiograph, and ICU mortality (38.4% vs 6.3%) were higher ( P < .001) in the NIV failure than in the NIV success group. SOFA score was the variable most associated with NIV failure, and 2 cutoffs were determined. Subjects with SOFA ≥ 5 had a higher risk of NIV failure (odds ratio = 3.3, 95% CI 2.4-4.5). ICU mortality was higher in subjects with NIV failure (38.4%) compared with invasive mechanical ventilation subjects (31.3%, P = .018), and NIV failure was associated with increased ICU mortality (odds ratio = 11.4, 95% CI 6.5-20.1). An automatic and non-subjective algorithm based on CHAID decision-tree analysis can help to define the

  19. Mechanisms of compressive failure in woven composites and stitched laminates

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Morris, W. L.; Schroeder, S.

    1992-01-01

    Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band.

  20. Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure.

    PubMed

    Packer, Milton

    2017-10-17

    The mechanisms underlying the progression of diabetes mellitus and heart failure are closely intertwined, such that worsening of one condition is frequently accompanied by worsening of the other; the degree of clinical acceleration is marked when the 2 coexist. Activation of the sodium-hydrogen exchanger in the heart and vasculature (NHE1 isoform) and the kidneys (NHE3 isoform) may serve as a common mechanism that links both disorders and may underlie their interplay. Insulin insensitivity and adipokine abnormalities (the hallmarks of type 2 diabetes mellitus) are characteristic features of heart failure; conversely, neurohormonal systems activated in heart failure (norepinephrine, angiotensin II, aldosterone, and neprilysin) impair insulin sensitivity and contribute to microvascular disease in diabetes mellitus. Each of these neurohormonal derangements may act through increased activity of both NHE1 and NHE3. Drugs used to treat diabetes mellitus may favorably affect the pathophysiological mechanisms of heart failure by inhibiting either or both NHE isoforms, and drugs used to treat heart failure may have beneficial effects on glucose tolerance and the complications of diabetes mellitus by interfering with the actions of NHE1 and NHE3. The efficacy of NHE inhibitors on the risk of cardiovascular events may be enhanced when heart failure and glucose intolerance coexist and may be attenuated when drugs with NHE inhibitory actions are given concomitantly. Therefore, the sodium-hydrogen exchanger may play a central role in the interplay of diabetes mellitus and heart failure, contribute to the physiological and clinical progression of both diseases, and explain certain drug-drug and drug-disease interactions that have been reported in large-scale randomized clinical trials. © 2017 American Heart Association, Inc.

  1. Zebrafish Heart Failure Models for the Evaluation of Chemical Probes and Drugs

    PubMed Central

    Monte, Aaron; Cook, James M.; Kabir, Mohd Shahjahan; Peterson, Karl P.

    2013-01-01

    Abstract Heart failure is a complex disease that involves genetic, environmental, and physiological factors. As a result, current medication and treatment for heart failure produces limited efficacy, and better medication is in demand. Although mammalian models exist, simple and low-cost models will be more beneficial for drug discovery and mechanistic studies of heart failure. We previously reported that aristolochic acid (AA) caused cardiac defects in zebrafish embryos that resemble heart failure. Here, we showed that cardiac troponin T and atrial natriuretic peptide were expressed at significantly higher levels in AA-treated embryos, presumably due to cardiac hypertrophy. In addition, several human heart failure drugs could moderately attenuate the AA-induced heart failure by 10%–40%, further verifying the model for drug discovery. We then developed a drug screening assay using the AA-treated zebrafish embryos and identified three compounds. Mitogen-activated protein kinase kinase inhibitor (MEK-I), an inhibitor for the MEK-1/2 known to be involved in cardiac hypertrophy and heart failure, showed nearly 60% heart failure attenuation. C25, a chalcone derivative, and A11, a phenolic compound, showed around 80% and 90% attenuation, respectively. Time course experiments revealed that, to obtain 50% efficacy, these compounds were required within different hours of AA treatment. Furthermore, quantitative polymerase chain reaction showed that C25, not MEK-I or A11, strongly suppressed inflammation. Finally, C25 and MEK-I, but not A11, could also rescue the doxorubicin-induced heart failure in zebrafish embryos. In summary, we have established two tractable heart failure models for drug discovery and three potential drugs have been identified that seem to attenuate heart failure by different mechanisms. PMID:24351044

  2. Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal dysfunction in patients with decompensated heart failure.

    PubMed

    Brisco, Meredith A; Coca, Steven G; Chen, Jennifer; Owens, Anjali Tiku; McCauley, Brian D; Kimmel, Stephen E; Testani, Jeffrey M

    2013-03-01

    Identifying reversible renal dysfunction (RD) in the setting of heart failure is challenging. The goal of this study was to evaluate whether elevated admission blood urea nitrogen/creatinine ratio (BUN/Cr) could identify decompensated heart failure patients likely to experience improvement in renal function (IRF) with treatment. Consecutive hospitalizations with a discharge diagnosis of heart failure were reviewed. IRF was defined as ≥20% increase and worsening renal function as ≥20% decrease in estimated glomerular filtration rate. IRF occurred in 31% of the 896 patients meeting eligibility criteria. Higher admission BUN/Cr was associated with in-hospital IRF (odds ratio, 1.5 per 10 increase; 95% confidence interval [CI], 1.3-1.8; P<0.001), an association persisting after adjustment for baseline characteristics (odds ratio, 1.4; 95% CI, 1.1-1.8; P=0.004). However, higher admission BUN/Cr was also associated with post-discharge worsening renal function (odds ratio, 1.4; 95% CI, 1.1-1.8; P=0.011). Notably, in patients with an elevated admission BUN/Cr, the risk of death associated with RD (estimated glomerular filtration rate <45) was substantial (hazard ratio, 2.2; 95% CI, 1.6-3.1; P<0.001). However, in patients with a normal admission BUN/Cr, RD was not associated with increased mortality (hazard ratio, 1.2; 95% CI, 0.67-2.0; P=0.59; p interaction=0.03). An elevated admission BUN/Cr identifies decompensated patients with heart failure likely to experience IRF with treatment, providing proof of concept that reversible RD may be a discernible entity. However, this improvement seems to be largely transient, and RD, in the setting of an elevated BUN/Cr, remains strongly associated with death. Further research is warranted to develop strategies for the optimal detection and treatment of these high-risk patients.

  3. The pathophysiology of heart failure.

    PubMed

    Kemp, Clinton D; Conte, John V

    2012-01-01

    Heart failure is a clinical syndrome that results when the heart is unable to provide sufficient blood flow to meet metabolic requirements or accommodate systemic venous return. This common condition affects over 5 million people in the United States at a cost of $10-38 billion per year. Heart failure results from injury to the myocardium from a variety of causes including ischemic heart disease, hypertension, and diabetes. Less common etiologies include cardiomyopathies, valvular disease, myocarditis, infections, systemic toxins, and cardiotoxic drugs. As the heart fails, patients develop symptoms which include dyspnea from pulmonary congestion, and peripheral edema and ascites from impaired venous return. Constitutional symptoms such as nausea, lack of appetite, and fatigue are also common. There are several compensatory mechanisms that occur as the failing heart attempts to maintain adequate function. These include increasing cardiac output via the Frank-Starling mechanism, increasing ventricular volume and wall thickness through ventricular remodeling, and maintaining tissue perfusion with augmented mean arterial pressure through activation of neurohormonal systems. Although initially beneficial in the early stages of heart failure, all of these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Treatment strategies have been developed based upon the understanding of these compensatory mechanisms. Medical therapy includes diuresis, suppression of the overactive neurohormonal systems, and augmentation of contractility. Surgical options include ventricular resynchronization therapy, surgical ventricular remodeling, ventricular assist device implantation, and heart transplantation. Despite significant understanding of the underlying pathophysiological mechanisms in heart failure, this disease causes significant morbidity and carries a 50% 5-year mortality. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.

    1999-01-01

    A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.

  5. Systems Biology and Biomechanical Model of Heart Failure

    PubMed Central

    Louridas, George E; Lourida, Katerina G

    2012-01-01

    Heart failure is seen as a complex disease caused by a combination of a mechanical disorder, cardiac remodeling and neurohormonal activation. To define heart failure the systems biology approach integrates genes and molecules, interprets the relationship of the molecular networks with modular functional units, and explains the interaction between mechanical dysfunction and cardiac remodeling. The biomechanical model of heart failure explains satisfactorily the progression of myocardial dysfunction and the development of clinical phenotypes. The earliest mechanical changes and stresses applied in myocardial cells and/or myocardial loss or dysfunction activate left ventricular cavity remodeling and other neurohormonal regulatory mechanisms such as early release of natriuretic peptides followed by SAS and RAAS mobilization. Eventually the neurohormonal activation and the left ventricular remodeling process are leading to clinical deterioration of heart failure towards a multi-organic damage. It is hypothesized that approaching heart failure with the methodology of systems biology we promote the elucidation of its complex pathophysiology and most probably we can invent new therapeutic strategies. PMID:22935019

  6. Heart Failure in Women

    PubMed Central

    Bozkurt, Biykem; Khalaf, Shaden

    2017-01-01

    Heart failure is an important cause of morbidity and mortality in women, and they tend to develop it at an older age compared to men. Heart failure with preserved ejection fraction is more common in women than in men and accounts for at least half the cases of heart failure in women. When comparing men and women who have heart failure and a low left ventricular ejection fraction, the women are more symptomatic and have a similarly poor outcome. Overall recommendations for guideline-directed medical therapies show no differences in treatment approaches between men and women. Overall, women are generally underrepresented in clinical trials for heart failure. Further studies are needed to shed light into different mechanisms, causes, and targeted therapies of heart failure in women. PMID:29744014

  7. Development of failure model for nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Gupta, A.

    1980-01-01

    The development of a method for the life prediction of nickel cadmium cells is discussed. The approach described involves acquiring an understanding of the mechanisms of degradation and failure and at the same time developing nondestructive evaluation techniques for the nickel cadmium cells. The development of a statistical failure model which will describe the mechanisms of degradation and failure is outlined.

  8. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    NASA Astrophysics Data System (ADS)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support

  9. Targeting Cardiomyocyte Ca2+ Homeostasis in Heart Failure

    PubMed Central

    Røe, Åsmund T.; Frisk, Michael; Louch, William E.

    2015-01-01

    Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic intervention: the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic approaches. PMID:25483944

  10. A multi-sensor approach to landslide monitoring of rainfall-induced failures in Scotland.

    NASA Astrophysics Data System (ADS)

    Gilles, Charlie; Hoey, Trevor; Williams, Richard

    2017-04-01

    Landslides are of significant interest in upland areas of the United Kingdom due to their: complex mechanics, potential to channelize into hazardous debris flows and their costly potential impacts on infrastructure. The British Geological Survey National Landslide Database contains an average of 367 landslides per year (from 1970). Slope failures in the UK are typically triggered by extended periods of intense rainfall, and can occur at any time of year. In any given rainfall event that triggers landslides, most potentially vulnerable slopes remain stable. Accurate warning systems would be facilitated by identifying landslide precursors prior to failure events. This project tests whether such precursors can be identified in the valley of Glen Ogle, Scotland (87 km north-west of Edinburgh), where in summer 2004 two debris flows blocked the main road (A85), trapping fifty-seven people. Two adjacent sites have been selected on a west facing slope in Glen Ogle, one of which (the control) has been stable since at least 2004 and the other failed in 2004 and remains unstable. Understanding the immediate causes and antecedent conditions responsible for landslides requires a multi-scale approach. This project uses multiple sensors to assess failure mechanisms of landslides in Glen Ogle: (1) 3-monthly, high (1.8 arcsec) resolution terrestrial laser scanning of topography to detect changes and identify patterns of movement prior to major failure, using the Riegl VZ-1000 (NERC Geophysical Equipment Fund); (2) rainfall and soil moisture data to monitor pore pressure of landslide failure prior to and after hydrologically triggered events; (3) monitoring ground motion using grain-scale sensors which are becoming lower cost, more efficient in terms of power, and can be wirelessly networked these will be used to detect small scale movement of the landslide. Comparative data from the control and test sites will be presented, from which patterns of surface deformation between failure

  11. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Lowell, C. E.

    1982-01-01

    The failure of a ZrO2-8%Y2O3/Ni-14% Al-0.1% Zr coating system on Rene 41 in Mach 0.3 burner rig tests was characterized. High flame and metal temperatures were employed in order to accelerate coating failure. Failure by delamination was shown to precede surface cracking or spalling. This type of failure could be duplicated by cooling down the specimen after a single long duration isothermal high temperature cycle in a burner rig or a furnace, but only if the atmosphere was oxidizing. Stresses due to thermal expansion mismatch on cooling coupled with the effects of plastic deformation of the bond coat and oxidation of the irregular bond coat are the probable life limiting factors. Heat up stresses alone could not fail the coating in the burner rig tests. Spalling eventually occurs on heat up but only after the coating has already failed through delamination.

  12. Heart failure.

    PubMed

    Metra, Marco; Teerlink, John R

    2017-10-28

    Heart failure is common in adults, accounting for substantial morbidity and mortality worldwide. Its prevalence is increasing because of ageing of the population and improved treatment of acute cardiovascular events, despite the efficacy of many therapies for patients with heart failure with reduced ejection fraction, such as angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), β blockers, and mineralocorticoid receptor antagonists, and advanced device therapies. Combined angiotensin receptor blocker neprilysin inhibitors (ARNIs) have been associated with improvements in hospital admissions and mortality from heart failure compared with enalapril, and guidelines now recommend substitution of ACE inhibitors or ARBs with ARNIs in appropriate patients. Improved safety of left ventricular assist devices means that these are becoming more commonly used in patients with severe symptoms. Antidiabetic therapies might further improve outcomes in patients with heart failure. New drugs with novel mechanisms of action, such as cardiac myosin activators, are under investigation for patients with heart failure with reduced left ventricular ejection fraction. Heart failure with preserved ejection fraction is a heterogeneous disorder that remains incompletely understood and will continue to increase in prevalence with the ageing population. Although some data suggest that spironolactone might improve outcomes in these patients, no therapy has conclusively shown a significant effect. Hopefully, future studies will address these unmet needs for patients with heart failure. Admissions for acute heart failure continue to increase but, to date, no new therapies have improved clinical outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    PubMed Central

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-01-01

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445

  14. Failure Analysis in Space: International Space Station (ISS) Starboard Solar Alpha Rotary Joint (SARJ) Debris Analysis

    NASA Technical Reports Server (NTRS)

    Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.

    2010-01-01

    This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.

  15. Update: Acute Heart Failure (VII): Nonpharmacological Management of Acute Heart Failure.

    PubMed

    Plácido, Rui; Mebazaa, Alexandre

    2015-09-01

    Acute heart failure is a major and growing public health problem worldwide with high morbidity, mortality, and cost. Despite recent advances in pharmacological management, the prognosis of patients with acute decompensated heart failure remains poor. Consequently, nonpharmacological approaches are being developed and increasingly used. Such techniques may include several modalities of ventilation, ultrafiltration, mechanical circulatory support, myocardial revascularization, and surgical treatment, among others. This document reviews the nonpharmacological approach in acute heart failure, indications, and prognostic implications. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Acceleration of recovery in acute renal failure: from cellular mechanisms of tubular repair to innovative targeted therapies.

    PubMed

    Abbate, M; Remuzzi, G

    1996-05-01

    Kidney repair from injury is a major focus of interest for research, both clinical and basic, in the field of acute renal failure. This is so because very little progress has been made during the past several years to improve mortality in hospitalized patients with acute renal failure despite the unique potential of the kidney for complete structural and functional recovery. Novel therapeutic options have recently emerged from the knowledge of molecular mechanisms of tissue injury after ischemia, including pathways of endothelial-leukocyte interaction and epithelial cell aggregation mediated by integrin molecules. These strategies are promising because they may target early mechanisms of leukocyte infiltration and tubular obstruction. However, it seems clear that additional interventions should address the reparative program that potentially leads to the full restoration of kidney structure and function. Thus, acceleration of repair from acute renal failure is achieved experimentally by growth factors which besides different renal actions seem to have in common the ability to stimulate proliferation of surviving tubular epithelial cells. We direct attention to cellular processes which characterize, and possibly have role in, renal repair from acute tubular injury as potential targets of therapy. In addition to proliferation, they include epithelial differentiation and apoptosis. Further investigation in the biology of repair should set the stage for rational design of targeted therapies which may accelerate the pace of recovery and hopefully decrease mortality in such a dramatic and potentially reversible setting.

  17. Failure of flight feathers under uniaxial compression.

    PubMed

    Schelestow, Kristina; Troncoso, Omar P; Torres, Fernando G

    2017-09-01

    Flight feathers are light weight engineering structures. They have a central shaft divided in two parts: the calamus and the rachis. The rachis is a thinly walled conical shell filled with foam, while the calamus is a hollow tube-like structure. Due to the fact that bending loads are produced during birds' flight, the resistance to bending of feathers has been reported in different studies. However, the analysis of bent feathers has shown that compression could induce failure by buckling. Here, we have studied the compression of feathers in order to assess the failure mechanisms involved. Axial compression tests were carried out on the rachis and the calamus of dove and pelican feathers. The failure mechanisms and folding structures that resulted from the compression tests were observed from images obtained by scanning electron microscopy (SEM). The rachis and calamus fail due to structural instability. In the case of the calamus, this instability leads to a progressive folding process. In contrast, the rachis undergoes a typical Euler column-type buckling failure. The study of failed specimens showed that delamination buckling, cell collapse and cell densification are the primary failure mechanisms of the rachis structure. The role of the foam is also discussed with regard to the mechanical response of the samples and the energy dissipated during the compression tests. Critical stress values were calculated using delamination buckling models and were found to be in very good agreement with the experimental values measured. Failure analysis and mechanical testing have confirmed that flight feathers are complex thin walled structures with mechanical adaptations that allow them to fulfil their functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. GENE EXPRESSION PROFILING TO IDENTIFY MECHANISMS OF MALE REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Gene Expression Profiling to Identify Mechanisms of Male Reproductive Toxicity
    David J. Dix
    National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
    Ab...

  19. Modelling the failure behaviour of wind turbines

    NASA Astrophysics Data System (ADS)

    Faulstich, S.; Berkhout, V.; Mayer, J.; Siebenlist, D.

    2016-09-01

    Modelling the failure behaviour of wind turbines is an essential part of offshore wind farm simulation software as it leads to optimized decision making when specifying the necessary resources for the operation and maintenance of wind farms. In order to optimize O&M strategies, a thorough understanding of a wind turbine's failure behaviour is vital and is therefore being developed at Fraunhofer IWES. Within this article, first the failure models of existing offshore O&M tools are presented to show the state of the art and strengths and weaknesses of the respective models are briefly discussed. Then a conceptual framework for modelling different failure mechanisms of wind turbines is being presented. This framework takes into account the different wind turbine subsystems and structures as well as the failure modes of a component by applying several influencing factors representing wear and break failure mechanisms. A failure function is being set up for the rotor blade as exemplary component and simulation results have been compared to a constant failure rate and to empirical wind turbine fleet data as a reference. The comparison and the breakdown of specific failure categories demonstrate the overall plausibility of the model.

  20. Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes – Mechanisms, Management, and Clinical Considerations

    PubMed Central

    Low Wang, Cecilia C.; Hess, Connie N.; Hiatt, William R.; Goldfine, Allison B.

    2016-01-01

    Cardiovascular disease remains the principal cause of death and disability among patients with diabetes mellitus. Diabetes exacerbates mechanisms underlying atherosclerosis and heart failure. Unfortunately, these mechanisms are not adequately modulated by therapeutic strategies focusing solely on optimal glycemic control with currently available drugs or approaches. In the setting of multi-factorial risk reduction with statins and other lipid lowering agents, anti-hypertensive therapies, and anti-hyperglycemic treatment strategies, cardiovascular complication rates are falling, yet remain higher for patients with diabetes than for those without. This review considers the mechanisms, history, controversies, new pharmacologic agents, and recent evidence for current guidelines for cardiovascular management in the patient with diabetes mellitus to support evidence-based care in the patient with diabetes and heart disease outside of the acute care setting. PMID:27297342

  1. Aligning quality and payment for heart failure care: defining the challenges.

    PubMed

    Havranek, Edward P; Krumholz, Harlan M; Dudley, R Adams; Adams, Kirkwood; Gregory, Douglas; Lampert, Steven; Lindenfeld, Joann; Massie, Barry M; Pina, Ileana; Restaino, Susan; Rich, Michael W; Konstam, Marvin A

    2003-08-01

    Hospitals may not support programs that improve the quality of care delivered to heart failure patients because these programs lower readmission rates and empty beds, and therefore further diminish already-declining revenues. A conflict between the highest quality of care and financial solvency does not serve the interests of patients, physicians, hospitals, or payers. In principle, resolution of this conflict is simple: reimbursement systems should reward higher quality care. In practice, resolving the conflict is not simple. A recent roundtable discussion sponsored by the Heart Failure Society of America identified 4 major challenges to the design and implementation of reimbursement schemes that promote higher quality care for heart failure: defining quality, accounting for differences in disease severity, crafting novel payment mechanisms, and overcoming professional parochialism. This article describes each of these challenges in turn.

  2. Pre-mRNA mis-splicing of sarcomeric genes in heart failure.

    PubMed

    Zhu, Chaoqun; Chen, Zhilong; Guo, Wei

    2017-08-01

    Pre-mRNA splicing is an important biological process that allows production of multiple proteins from a single gene in the genome, and mainly contributes to protein diversity in eukaryotic organisms. Alternative splicing is commonly governed by RNA binding proteins to meet the ever-changing demands of the cell. However, the mis-splicing may lead to human diseases. In the heart of human, mis-regulation of alternative splicing has been associated with heart failure. In this short review, we focus on alternative splicing of sarcomeric genes and review mis-splicing related heart failure with relatively well studied Sarcomeric genes and splicing mechanisms with identified regulatory factors. The perspective of alternative splicing based therapeutic strategies in heart failure has also been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Mechanics and complications of reverse shoulder arthroplasty: morse taper failure analysis and prospective rectification

    NASA Astrophysics Data System (ADS)

    Hoskin, HLD; Furie, E.; Collins, W.; Ganey, TM; Schlatterer, DR

    2017-05-01

    and O are used as stabilizers that help raise the temperature at which titanium can be cast. Since the presence of stabilizers reduces ductility and fatigue strength, all interstitial elements are removed after casting. Considering this, the presence of C and O suggests that not all of the interstitials were removed during the manufacturing process, resulting in decreased fatigue strength. Further destructive analytical testing would verify weld quality and failure mode. RTSSs are quite successful in select patients not amenable to traditional shoulder arthroplasty options. This case report highlights how an implant may function well for several years and then suddenly fail without warning. SEM and EDS analysis suggest that residual C and O in the taper lowered the metal implant’s integrity, leading to torsional cracking at the weld junction of the humeral tray and the taper. The elevated levels of C and O measured at fracture sites on both the tray and the taper suggest poor quality filler metal or failure to remove all interstitial elements after casting. In both cases, the results would be decreased fatigue strength and overall toughness, leading to mechanical failure. A manufacturer’s recall of all implants soon followed the reporting of this implant failure; subsequently, the metal materials were changed from Ti6Al4V to both titanium alloy and cobalt-chrome alloy (Co-Cr-Mo). Time will tell if the alterations were sufficient.

  4. ISS Ammonia Pump Failure, Recovery, and Lesson Learned A Hydrodynamic Bearing Perspective

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Manco, Richard A., II

    2014-01-01

    The design, development, and operation of long duration spaceflight hardware has become an evolutionary process in which meticulous attention to details and lessons learned from previous experiences play a critical role. Invaluable to this process is the ability to retrieve and examine spaceflight hardware that has experienced a premature failure. While these situations are rare and unfortunate, the failure investigation and recovery from the event serve a valuable purpose in advancing future space mechanism development. Such a scenario began on July 31, 2010 with the premature failure of an ammonia pump on the external active thermal control system of the International Space Station. The ground-based inspections of the returned pump and ensuing failure investigation revealed five potential bearing forces that were un-accounted for in the design phase and qualification testing of the pump. These forces could combine in a number of random orientations to overload the pump bearings leading to solid-surface contact, wear, and premature failure. The recovery plan identified one of these five forces as being related to the square of the operating speed of the pump and this fact was used to recover design life through a change in flight rules for the operation of the pump module. Through the course of the failure investigation, recovery, and follow-on assessment of pump wear life, design guidance has been developed to improve the life of future mechanically pumped thermal control systems for both human and robotic exploration missions.

  5. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism

    PubMed Central

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-01-01

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio (SA1) behaviors and three types of anisotropic strength difference (SA2) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion cw and friction angle ϕw of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of SA1 and significant increase of SA2 with increasing confinement for higher cohesion cw and lower to medium friction angle ϕw. This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of cw and ϕw under different confinements, different combinations of cw and ϕw may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir. PMID:29140292

  6. Pyrotechnic system failures: Causes and prevention

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.

    1988-01-01

    Although pyrotechnics have successfully accomplished many critical mechanical spacecraft functions, such as ignition, severance, jettisoning and valving (excluding propulsion), failures continue to occur. Provided is a listing of 84 failures of pyrotechnic hardware with completed design over a 23-year period, compiled informally by experts from every NASA Center, as well as the Air Force Space Division and the Naval Surface Warfare Center. Analyses are presented as to when and where these failures occurred, their technical source or cause, followed by the reasons why and how these kinds of failures persist. The major contributor is a fundamental lack of understanding of the functional mechanisms of pyrotechnic devices and systems, followed by not recognizing pyrotechnics as an engineering technology, insufficient manpower with hands-on experience, too few test facilities, and inadequate guidelines and specifications for design, development, qualification and acceptance. Recommendations are made on both a managerial and technical basis to prevent failures, increase reliability, improve existing and future designs, and develop the technology to meet future requirements.

  7. Hydro-mechanical mechanism and thresholds of rainfall-induced unsaturated landslides

    NASA Astrophysics Data System (ADS)

    Yang, Zongji; Lei, Xiaoqin; Huang, Dong; Qiao, Jianping

    2017-04-01

    The devastating Ms 8 Wenchuan earthquake in 2008 created the greatest number of co-seismic mountain hazards ever recorded in China. However, the dynamics of rainfall induced mass remobilization and transport deposits after giant earthquake are not fully understood. Moreover, rainfall intensity and duration (I-D) methods are the predominant early warning indicators of rainfall-induced landslides in post-earthquake region, which are a convenient and straight-forward way to predict the hazards. However, the rainfall-based criteria and thresholds are generally empirical and based on statistical analysis,consequently, they ignore the failure mechanisms of the landslides. This study examines the mechanism and hydro-mechanical behavior and thresholds of these unsaturated deposits under the influence of rainfall. To accomplish this, in situ experiments were performed in an instrumented landslide deposit, The field experimental tests were conducted on a natural co-seismic fractured slope to 1) simulate rainfall-induced shallow failures in the depression channels of a debris flow catchment in an earthquake-affected region, 2)explore the mechanisms and transient processes associated with hydro-mechanical parameter variations in response to the infiltration of rainfall, and 3) identify the hydrologic parameter thresholds and critical criteria of gravitational erosion in areas prone to mass remobilization as a source of debris flows. These experiments provided instrumental evidence and directly proved that post-earthquake rainfall-induced mass remobilization occurred under unsaturated conditions in response to transient rainfall infiltration, and revealed the presence of transient processes and the dominance of preferential flow paths during rainfall infiltration. A hydro-mechanical method was adopted for the transient hydrologic process modelling and unsaturated slope stability analysis. and the slope failures during the experimental test were reproduced by the model

  8. Psychobiology of depression/distress in congestive heart failure

    PubMed Central

    Hassan, Mustafa; Sheps, David S.

    2011-01-01

    Heart failure affects millions of Americans and new diagnosis rates are expected to almost triple over the next 30 years as our population ages. Affective disorders including clinical depression and anxiety are common in patients with congestive heart failure. Furthermore, the presence of these disorders significantly impacts quality of life, medical outcomes, and healthcare service utilization. In recent years, the literature has attempted to describe potential pathophysiologic mechanisms relating affective disorders and psychosocial stress to heart failure. Several potential mechanisms have been proposed including autonomic nervous system dysfunction, inflammation, cardiac arrhythmias, and altered platelet function. These mechanisms are reviewed in this article. Additional novel mechanisms such as mental stress-induced myocardial ischemia are also discussed. PMID:18368481

  9. CD4 criteria improves the sensitivity of a clinical algorithm developed to identify viral failure in HIV-positive patients on antiretroviral therapy

    PubMed Central

    Evans, Denise H; Fox, Matthew P; Maskew, Mhairi; McNamara, Lynne; MacPhail, Patrick; Mathews, Christopher; Sanne, Ian

    2014-01-01

    Introduction Several studies from resource-limited settings have demonstrated that clinical and immunologic criteria are poor predictors of virologic failure, confirming the need for viral load monitoring or at least an algorithm to target viral load testing. We used data from an electronic patient management system to develop an algorithm to identify patients at risk of viral failure using a combination of accessible and inexpensive markers. Methods We analyzed data from HIV-positive adults initiated on antiretroviral therapy (ART) in Johannesburg, South Africa, between April 2004 and February 2010. Viral failure was defined as ≥2 consecutive HIV-RNA viral loads >400 copies/ml following suppression ≤400 copies/ml. We used Cox-proportional hazards models to calculate hazard ratios (HR) and 95% confidence intervals (CI). Weights for each predictor associated with virologic failure were created as the sum of the natural logarithm of the adjusted HR and dichotomized with the optimal cut-off at the point with the highest sensitivity and specificity (i.e. ≤4 vs. >4). We assessed the diagnostic accuracy of predictor scores cut-offs, with and without CD4 criteria (CD4 <100 cells/mm3; CD4 < baseline; >30% drop in CD4), by calculating the proportion with the outcome and the observed sensitivity, specificity, positive and negative predictive value of the predictor score compared to the gold standard of virologic failure. Results We matched 919 patients with virologic failure (1:3) to 2756 patients without. Our predictor score included variables at ART initiation (i.e. gender, age, CD4 count <100 cells/mm3, WHO stage III/IV and albumin) and laboratory and clinical follow-up data (drop in haemoglobin, mean cell volume (MCV) <100 fl, CD4 count <200 cells/mm3, new or recurrent WHO stage III/IV condition, diagnosis of new condition or symptom and regimen change). Overall, 51.4% had a score 51.4% had a score ≥4 and 48.6% had a score <4. A predictor score including CD4

  10. Blood Urea Nitrogen/Creatinine Ratio Identifies a High-Risk but Potentially Reversible Form of Renal Dysfunction in Patients With Decompensated Heart Failure

    PubMed Central

    Brisco, Meredith A.; Coca, Steven G.; Chen, Jennifer; Owens, Anjali Tiku; McCauley, Brian D.; Kimmel, Stephen E.; Testani, Jeffrey M.

    2014-01-01

    Background Identifying reversible renal dysfunction (RD) in the setting of heart failure is challenging. The goal of this study was to evaluate whether elevated admission blood urea nitrogen/creatinine ratio (BUN/Cr) could identify decompensated heart failure patients likely to experience improvement in renal function (IRF) with treatment. Methods and Results Consecutive hospitalizations with a discharge diagnosis of heart failure were reviewed. IRF was defined as ≥20% increase and worsening renal function as ≥20% decrease in estimated glomerular filtration rate. IRF occurred in 31% of the 896 patients meeting eligibility criteria. Higher admission BUN/Cr was associated with inhospital IRF (odds ratio, 1.5 per 10 increase; 95% confidence interval [CI], 1.3–1.8; P<0.001), an association persisting after adjustment for baseline characteristics (odds ratio, 1.4; 95% CI, 1.1–1.8; P=0.004). However, higher admission BUN/Cr was also associated with post-discharge worsening renal function (odds ratio, 1.4; 95% CI, 1.1–1.8; P=0.011). Notably, in patients with an elevated admission BUN/Cr, the risk of death associated with RD (estimated glomerular filtration rate <45) was substantial (hazard ratio, 2.2; 95% CI, 1.6–3.1; P<0.001). However, in patients with a normal admission BUN/Cr, RD was not associated with increased mortality (hazard ratio, 1.2; 95% CI, 0.67–2.0; P=0.59; p interaction=0.03). Conclusions An elevated admission BUN/Cr identifies decompensated patients with heart failure likely to experience IRF with treatment, providing proof of concept that reversible RD may be a discernible entity. However, this improvement seems to be largely transient, and RD, in the setting of an elevated BUN/Cr, remains strongly associated with death. Further research is warranted to develop strategies for the optimal detection and treatment of these high-risk patients. PMID:23325460

  11. Could anterior papillary muscle partial necrosis explain early mitral valve repair failure?

    PubMed

    Pozzi, Matteo; Generali, Tommaso; Henaine, Roland; Mitchell, Julia; Lemaire, Anais; Chiari, Pascal; Fran, Jean; Obadia, Jean François

    2014-09-01

    Standardized techniques of mitral valve repair (MVR) have recently witnessed the introduction of a 'respect rather than resect' concept, the strategy of which involves the use of artificial chordae. MVR displays several advantages over mitral valve replacement in degenerative mitral regurgitation (MR), but the risk of reoperation for MVR failure must be taken into account. Different mechanisms could be advocated as the leading cause of MVR failure; procedure-related mechanisms are usually involved in early MVR failure, while valve-related mechanisms are common in late failure. Here, the case is reported of an early failure of MVR using artificial chordae that could be explained by an unusual procedure-related mechanism, namely anterior papillary muscle necrosis. MVR failure is a well-known complication after surgical repair of degenerative MR, but anterior papillary muscle partial necrosis might also be considered a possible mechanism of procedure-related MVR failure, especially when considering the increasing use of artificial chordae. Owing to the encouraging results obtained, mitral valve re-repair might be considered a viable solution, but must be selected after only a meticulous evaluation of the underlying mechanism of MVR failure.

  12. Development of a 'toolkit' to identify medical students at risk of failure to thrive on the course: an exploratory retrospective case study

    PubMed Central

    2011-01-01

    Background An earlier study at Nottingham suggested that 10-15% of the medical student intake was likely to fail completely or have substantial problems on the course. This is a problem for the students, the Faculty, and society as a whole. If struggling students could be identified early in the course and additional pastoral resources offered, some of this wastage might be avoided. An exploratory case study was conducted to determine whether there were common indicators in the early years, over and above academic failure, that might aid the identification of students potentially at risk. Methods The study group was drawn from five successive cohorts. Students who had experienced difficulties were identified in any of four ways: from Minutes of the Academic Progress Committee; by scanning examination lists at key stages (end of the first two years, and finals at the end of the clinical course); from lists of students flagged to the Postgraduate Deanery as in need of extra monitoring or support; and from progress files of those who had left the course prematurely. Relevant data were extracted from each student's course progress file into a customised database. Results 1188 students were admitted over the five years. 162 (14%) were identified for the study, 75 of whom had failed to complete the course by October 2010. In the 87 who did graduate, a combination of markers in Years 1 and 2 identified over half of those who would subsequently have the most severe problems throughout the course. This 'toolkit' comprised failure of 3 or more examinations per year, an overall average of <50%, health or social difficulties, failure to complete Hepatitis B vaccination on time, and remarks noted about poor attitude or behaviour. Conclusions A simple toolkit of academic and non-academic markers could be used routinely to help identify potential strugglers at an early stage, enabling additional support and guidance to be given to these students. PMID:22098629

  13. Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin

    NASA Astrophysics Data System (ADS)

    Morelle, X. P.; Chevalier, J.; Bailly, C.; Pardoen, T.; Lani, F.

    2017-08-01

    The nonlinear deformation and fracture of RTM6 epoxy resin is characterized as a function of strain rate and temperature under various loading conditions involving uniaxial tension, notched tension, uniaxial compression, torsion, and shear. The parameters of the hardening law depend on the strain-rate and temperature. The pressure-dependency and hardening law, as well as four different phenomenological failure criteria, are identified using a subset of the experimental results. Detailed fractography analysis provides insight into the competition between shear yielding and maximum principal stress driven brittle failure. The constitutive model and a stress-triaxiality dependent effective plastic strain based failure criterion are readily introduced in the standard version of Abaqus, without the need for coding user subroutines, and can thus be directly used as an input in multi-scale modeling of fibre-reinforced composite material. The model is successfully validated against data not used for the identification and through the full simulation of the crack propagation process in the V-notched beam shear test.

  14. Insights into Metabolic Mechanisms Underlying Folate-Responsive Neural Tube Defects: A Minireview

    PubMed Central

    Beaudin, Anna E.; Stover, Patrick J.

    2015-01-01

    Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the association between folic acid and NTD pathogenesis have not been identified. This review summarizes our current understanding of the mechanisms by which impairments in folate metabolism might ultimately lead to failure of neural tube closure, with an emphasis on untangling the relative contributions of nutritional deficiency and genetic risk factors to NTD pathogenesis. PMID:19180567

  15. Coaching behaviors associated with changes in fear of failure: changes in self-talk and need satisfaction as potential mechanisms.

    PubMed

    Conroy, David E; Coatsworth, J Douglas

    2007-04-01

    Cognitive-interpersonal and motivational mechanisms may regulate relations between youth perceptions of interpersonal aspects of the social ecology and their fear-of-failure (FF) levels. Youth (N=165) registered for a summer swim league rated their fear of failure at the beginning, middle, and end of the season. Extensive model comparisons indicated that youths' end-of-season ratings of coach behaviors could be reduced to three factors (affiliation, control, blame). Perceived control and blame from coaches predicted residualized change in corresponding aspects of youths' self-talk, but only changes in self-blame positively predicted changes in FF levels during the season. Perceived affiliation from coaches predicted autonomy need satisfaction which, in turn, negatively predicted the rate of change in FF levels during the season. These findings indicate that (a) youth perceptions of coaches were directly and indirectly related to acute socialization of FF and (b) both cognitive-interpersonal and motivational mechanisms contributed to this socialization process. Further research is needed to test for developmental differences in these mechanisms to determine whether findings generalize to more heterogeneous and at-risk populations and to investigate other potential social-ecological influences on socialization.

  16. A bivariate model for analyzing recurrent multi-type automobile failures

    NASA Astrophysics Data System (ADS)

    Sunethra, A. A.; Sooriyarachchi, M. R.

    2017-09-01

    The failure mechanism in an automobile can be defined as a system of multi-type recurrent failures where failures can occur due to various multi-type failure modes and these failures are repetitive such that more than one failure can occur from each failure mode. In analysing such automobile failures, both the time and type of the failure serve as response variables. However, these two response variables are highly correlated with each other since the timing of failures has an association with the mode of the failure. When there are more than one correlated response variables, the fitting of a multivariate model is more preferable than separate univariate models. Therefore, a bivariate model of time and type of failure becomes appealing for such automobile failure data. When there are multiple failure observations pertaining to a single automobile, such data cannot be treated as independent data because failure instances of a single automobile are correlated with each other while failures among different automobiles can be treated as independent. Therefore, this study proposes a bivariate model consisting time and type of failure as responses adjusted for correlated data. The proposed model was formulated following the approaches of shared parameter models and random effects models for joining the responses and for representing the correlated data respectively. The proposed model is applied to a sample of automobile failures with three types of failure modes and up to five failure recurrences. The parametric distributions that were suitable for the two responses of time to failure and type of failure were Weibull distribution and multinomial distribution respectively. The proposed bivariate model was programmed in SAS Procedure Proc NLMIXED by user programming appropriate likelihood functions. The performance of the bivariate model was compared with separate univariate models fitted for the two responses and it was identified that better performance is secured by

  17. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2009-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation.

  18. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  19. Kidney disease models: tools to identify mechanisms and potential therapeutic targets

    PubMed Central

    Bao, Yin-Wu; Yuan, Yuan; Chen, Jiang-Hua; Lin, Wei-Qiang

    2018-01-01

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored. PMID:29515089

  20. Elasticity dominates strength and failure in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. Q.; Qu, R. T.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn

    2015-01-07

    Two distinct deformation mechanisms of shearing and volume dilatation are quantitatively analyzed in metallic glasses (MGs) from the fundamental thermodynamics. Their competition is deduced to intrinsically dominate the strength and failure behaviors of MGs. Both the intrinsic shear and normal strengths give rise to the critical mechanical energies to activate destabilization of amorphous structures, under pure shearing and volume dilatation, respectively, and can be determined in terms of elastic constants. By adopting an ellipse failure criterion, the strength and failure behaviors of MGs can be precisely described just according to their shear modulus and Poisson's ratio without mechanical testing. Quantitativemore » relations are established systematically and verified by experimental results. Accordingly, the real-sense non-destructive failure prediction can be achieved in various MGs. By highlighting the broad key significance of elasticity, a “composition-elasticity-property” scheme is further outlined for better understanding and controlling the mechanical properties of MGs and other glassy materials from the elastic perspectives.« less

  1. Novel failure mechanism and improvement for split-gate trench MOSFET with large current under unclamped inductive switch stress

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Yang, Zhuo; Xu, Zhiyuan; Liu, Siyang; Sun, Weifeng; Shi, Longxing; Zhu, Yuanzheng; Ye, Peng; Zhou, Jincheng

    2018-04-01

    In this paper, a novel failure mechanism under unclamped inductive switch (UIS) for Split-Gate Trench Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with large current is investigated. The device sample is tested and analyzed in detail. The simulation results demonstrate that the nonuniform potential distribution of the source poly should be responsible for the failure. Three structures are proposed and verified available to improve the device UIS ruggedness by TCAD simulation. The best one of the structures the device with source metal inserting into source poly through contacts in the field oxide is carried out and measured. The results demonstrate that the optimized structure can balance the trade-off between the UIS ruggedness and the static characteristics.

  2. The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression.

    PubMed

    Kádár, Csilla; Máthis, Kristián; Knapek, Michal; Chmelík, František

    2017-02-17

    The influence of the matrix material on the deformation and failure mechanisms in metal matrix syntactic foams was investigated in this study. Samples with commercially pure Al (Al) and Al-12 wt % Si (AlSi12) eutectic aluminum matrix, reinforced by hollow ceramic spheres, were compressed at room temperature. Concurrently, the acoustic emission response and the strain field development on the surface were monitored in-situ. The results indicate that the plastic deformation of the cell walls is the governing mechanism in the early stage of straining for both types of foams. At large stresses, deformation bands form both in the Al and AlSi12 foam. In Al foam, cell walls collapse in a large volume. In contrast, the AlSi12 foam is more brittle; therefore, the fracture of precipitates and the crushing of the matrix take place within a distinctive deformation band, along with an occurrence of a significant stress drop. The onset stress of ceramic sphere failure was shown to be not influenced by the matrix material. The in-situ methods provided complementary data which further support these results.

  3. Rationale of the FIBROTARGETS study designed to identify novel biomarkers of myocardial fibrosis

    PubMed Central

    Ferreira, João Pedro; Machu, Jean‐Loup; Girerd, Nicolas; Jaisser, Frederic; Thum, Thomas; Butler, Javed; González, Arantxa; Diez, Javier; Heymans, Stephane; McDonald, Kenneth; Gyöngyösi, Mariann; Firat, Hueseyin; Rossignol, Patrick; Pizard, Anne

    2017-01-01

    Abstract Aims Myocardial fibrosis alters the cardiac architecture favouring the development of cardiac dysfunction, including arrhythmias and heart failure. Reducing myocardial fibrosis may improve outcomes through the targeted diagnosis and treatment of emerging fibrotic pathways. The European‐Commission‐funded ‘FIBROTARGETS’ is a multinational academic and industrial consortium with the main aims of (i) characterizing novel key mechanistic pathways involved in the metabolism of fibrillary collagen that may serve as biotargets, (ii) evaluating the potential anti‐fibrotic properties of novel or repurposed molecules interfering with the newly identified biotargets, and (iii) characterizing bioprofiles based on distinct mechanistic phenotypes involving the aforementioned biotargets. These pathways will be explored by performing a systematic and collaborative search for mechanisms and targets of myocardial fibrosis. These mechanisms will then be translated into individualized diagnostic tools and specific therapeutic pharmacological options for heart failure. Methods and results The FIBROTARGETS consortium has merged data from 12 patient cohorts in a common database available to individual consortium partners. The database consists of >12 000 patients with a large spectrum of cardiovascular clinical phenotypes. It integrates community‐based population cohorts, cardiovascular risk cohorts, and heart failure cohorts. Conclusions The FIBROTARGETS biomarker programme is aimed at exploring fibrotic pathways allowing the bioprofiling of patients into specific ‘fibrotic’ phenotypes and identifying new therapeutic targets that will potentially enable the development of novel and tailored anti‐fibrotic therapies for heart failure. PMID:28988439

  4. Patients Commonly Believe Their Heart Failure Hospitalizations Are Preventable and Identify Worsening Heart Failure, Nonadherence, and a Knowledge Gap as Reasons for Admission.

    PubMed

    Gilotra, Nisha A; Shpigel, Adam; Okwuosa, Ike S; Tamrat, Ruth; Flowers, Deirdre; Russell, Stuart D

    2017-03-01

    There are few data describing patient-identified precipitants of heart failure (HF) hospitalization. We hypothesized a patient's perception of reason for or preventability of an admission may be related to 30-day readmission rates. Ninety-four patients admitted with decompensated HF from July 2014 to March 2015 completed a brief questionnaire regarding circumstances leading to admission. Thirty-day outcomes were assessed via telephone call and chart review. Mean age was 58 ± 14 years, with 60% blacks (n = 56) and 41% females (n = 39). Median left ventricular ejection fraction was 30%; 27 had preserved ejection fraction. Seventy-two patients identified their hospitalization to be due to HF (± another condition). Most common patient-identified precipitants of admission were worsening HF (n = 37) and dietary nonadherence (n = 11). Readmitted patients tended to have longer time until first follow-up appointment (21 vs 8 days). Seven of the 42 patients who identified their hospitalization as preventable were readmitted compared with 21/49 who believed their hospitalization was unpreventable (P = .012). On multivariate regression analysis, patients who thought their hospitalization was preventable were less likely to be readmitted (odds ratio 0.31; 95% confidence interval 0.10-0.91; P = .04). Almost 50% of patients believe their HF hospitalization is preventable, and these patients appear to be less likely to be readmitted within 30 days. Notably, patients cite nonadherence and lack of knowledge as reasons hospitalizations are preventable. These results lend insight into possible interventions to reduce HF readmissions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Preventing Spacecraft Failures Due to Tribological Problems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    2001-01-01

    Many mechanical failures that occur on spacecraft are caused by tribological problems. This publication presents a study that was conducted by the author on various preventatives, analyses, controls and tests (PACTs) that could be used to prevent spacecraft mechanical system failure. A matrix is presented in the paper that plots tribology failure modes versus various PACTs that should be performed before a spacecraft is launched in order to insure success. A strawman matrix was constructed by the author and then was sent out to industry and government spacecraft designers, scientists and builders of spacecraft for their input. The final matrix is the result of their input. In addition to the matrix, this publication describes the various PACTs that can be performed and some fundamental knowledge on the correct usage of lubricants for spacecraft applications. Even though the work was done specifically to prevent spacecraft failures the basic methodology can be applied to other mechanical system areas.

  6. Photovoltaic module reliability improvement through application testing and failure analysis

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Shumka, A.

    1982-01-01

    During the first four years of the U.S. Department of Energy (DOE) National Photovoltatic Program, the Jet Propulsion Laboratory Low-Cost Solar Array (LSA) Project purchased about 400 kW of photovoltaic modules for test and experiments. In order to identify, report, and analyze test and operational problems with the Block Procurement modules, a problem/failure reporting and analysis system was implemented by the LSA Project with the main purpose of providing manufacturers with feedback from test and field experience needed for the improvement of product performance and reliability. A description of the more significant types of failures is presented, taking into account interconnects, cracked cells, dielectric breakdown, delamination, and corrosion. Current design practices and reliability evaluations are also discussed. The conducted evaluation indicates that current module designs incorporate damage-resistant and fault-tolerant features which address field failure mechanisms observed to date.

  7. Kidney Failure and ESRD in the Atherosclerosis Risk in Communities (ARIC) Study: Comparing Ascertainment of Treated and Untreated Kidney Failure in a Cohort Study.

    PubMed

    Rebholz, Casey M; Coresh, Josef; Ballew, Shoshana H; McMahon, Blaithin; Whelton, Seamus P; Selvin, Elizabeth; Grams, Morgan E

    2015-08-01

    Linkage to the US Renal Data System (USRDS) registry commonly is used to identify end-stage renal disease (ESRD) cases, or kidney failure treated with dialysis or transplantation, but it underestimates the total burden of kidney failure. This study validates a kidney failure definition that includes both kidney failure treated and not treated by dialysis or transplantation. It compares kidney failure risk factors and outcomes using this broader definition with USRDS-identified ESRD risk factors and outcomes. Diagnostic test study with stratified random sampling of hospitalizations for chart review. Atherosclerosis Risk in Communities Study (n=11,530; chart review, n=546). USRDS-identified ESRD; treated or untreated kidney failure defined by USRDS-identified ESRD or International Classification of Diseases, Ninth or Tenth Revision, Clinical Modification (ICD-9-CM/ICD-10-CM) code for hospitalization or death. For ESRD, determination of permanent dialysis therapy or transplantation; for kidney failure, determination of permanent dialysis therapy, transplantation, or estimated glomerular filtration rate < 15 mL/min/1.73 m(2). During 13 years' median follow-up, 508 kidney failure cases were identified, including 173 (34.1%) from the USRDS registry. ESRD and kidney failure incidence were 1.23 and 3.66 cases per 1,000 person-years in the overall population and 1.35 and 6.59 cases per 1,000 person-years among participants older than 70 years, respectively. Other risk-factor associations were similar between ESRD and kidney failure, except diabetes and albuminuria, which were stronger for ESRD. Survivals at 1 and 5 years were 74.0% and 24.0% for ESRD and 59.8% and 31.6% for kidney failure, respectively. Sensitivity and specificity were 88.0% and 97.3% comparing the kidney failure ICD-9-CM/ICD-10-CM code algorithm to chart review; for USRDS-identified ESRD, sensitivity and specificity were 94.9% and 100.0%. Some medical charts were incomplete. A kidney failure definition

  8. Kidney Failure and ESRD in the Atherosclerosis Risk in Communities (ARIC) Study: Comparing Ascertainment of Treated and Untreated Kidney Failure in a Cohort Study

    PubMed Central

    Rebholz, Casey M.; Coresh, Josef; Ballew, Shoshana H.; McMahon, Blaithin; Whelton, Seamus P.; Selvin, Elizabeth; Grams, Morgan E.

    2015-01-01

    Background Linkage to the US Renal Data System (USRDS) registry is commonly used to identify end-stage renal disease (ESRD) cases, or kidney failure treated with dialysis or transplantation, but it underestimates the total burden of kidney failure. This study validates a kidney failure definition that includes both kidney failure treated and not treated by dialysis or transplantation. It compares kidney failure risk factors and outcomes using this broader definition to USRDS-identified ESRD risk factors and outcomes. Study Design Diagnostic test study with stratified random sampling of hospitalizations for chart review. Setting & Participants Atherosclerosis Risk in Communities Study (N=11,530; chart review n=546). Index Test USRDS-identified ESRD; treated or untreated kidney failure defined by USRDS-identified ESRD or International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)/ICD-10-CM code from hospitalization or death. Reference Test For ESRD, determination of permanent dialysis or transplantation; for kidney failure, determination of permanent dialysis, transplantation, or eGFR <15 mL/min/1.73 m2. Results Over 13 years' median follow-up, 508 kidney failure cases were identified, including 173 (34.1%) from the USRDS registry. ESRD and kidney failure incidence were 1.23 and 3.66 cases per 1,000 person-years in the overall population, and 1.35 and 6.59 cases per 1,000 person-years among participants older than 70 years, respectively. Other risk factor associations were similar between ESRD and kidney failure, except diabetes and albuminuria which were stronger for ESRD. Survival at 1 and 5 years were 74.0% and 24.0% for ESRD and 59.8% and 31.6% for kidney failure, respectively. Sensitivity and specificity were 88.0% and 97.3% comparing the kidney failure ICD-9-CM/ICD-10-CM code algorithm to chart review; for USRDS-identified ESRD, sensitivity and specificity were 94.9% and 100.0%. Limitations Some medical charts were incomplete

  9. Relation of Carotid Artery Diameter With Cardiac Geometry and Mechanics in Heart Failure With Preserved Ejection Fraction

    PubMed Central

    Liao, Zhen‐Yu; Peng, Ming‐Cheng; Yun, Chun‐Ho; Lai, Yau‐Huei; Po, Helen L.; Hou, Charles Jia‐Yin; Kuo, Jen‐Yuan; Hung, Chung‐Lieh; Wu, Yih‐Jer; Bulwer, Bernard E.; Yeh, Hung‐I; Tsai, Cheng‐Ho

    2012-01-01

    Background Central artery dilation and remodeling are associated with higher heart failure and cardiovascular risks. However, data regarding carotid artery diameter from hypertension to heart failure have remained elusive. We sought to investigate this issue by examining the association between carotid artery diameter and surrogates of ventricular dysfunction. Methods and Results Two hundred thirteen consecutive patients including 49 with heart failure and preserved ejection fraction (HFpEF), 116 with hypertension, and an additional 48 healthy participants underwent comprehensive echocardiography and tissue Doppler imaging. Ultrasonography of the common carotid arteries was performed for measurement of intima‐media thickness and diameter (CCAD). Cardiac mechanics, including LV twist, were assessed by novel speckle‐tracking software. A substantial graded enlargement of CCAD was observed across all 3 groups (6.8±0.6, 7.7±0.73, and 8.7±0.95 mm for normal, hypertension, and HFpEF groups, respectively; ANOVA P<0.001) and correlated with serum brain natriuretic peptide level (R2=0.31, P<0.001). Multivariable models showed that CCAD was associated with increased LV mass, LV mass‐to‐volume ratio (β‐coefficient=10.9 and 0.11, both P<0.001), reduced LV longitudinal and radial strain (β‐coeffficient=0.81 and −3.1, both P<0.05), and twist (β‐coefficient=−0.84, P<0.05). CCAD set at 8.07 mm as a cut‐off had a 77.6% sensitivity, 82.3% specificity, and area under the receiver operating characteristic curves (AUROC) of 0.86 (95% CI 0.80 to 0.92) in discriminating HFpEF. In addition, CCAD superimposed on myocardial deformation significantly expanded AUROC (for longitudinal strain, from 0.84 to 0.90, P of ΔAUROC=0.02) in heart failure discrimination models. Conclusions Increased carotid artery diameter is associated with worse LV geometry, higher brain natriuretic peptide level, and reduced contractile mechanics in individuals with HFpEF. PMID:23316319

  10. Rate based failure detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brett Emery Trabun; Gamage, Thoshitha Thanushka; Bakken, David Edward

    This disclosure describes, in part, a system management component and failure detection component for use in a power grid data network to identify anomalies within the network and systematically adjust the quality of service of data published by publishers and subscribed to by subscribers within the network. In one implementation, subscribers may identify a desired data rate, a minimum acceptable data rate, desired latency, minimum acceptable latency and a priority for each subscription. The failure detection component may identify an anomaly within the network and a source of the anomaly. Based on the identified anomaly, data rates and or datamore » paths may be adjusted in real-time to ensure that the power grid data network does not become overloaded and/or fail.« less

  11. Failure Mechanisms of Thermomechanically Loaded SnAgCu/Plastic Core Solder Ball Composite Joints in Low-Temperature Co-Fired Ceramic/Printed Wiring Board Assemblies

    NASA Astrophysics Data System (ADS)

    Nousiainen, O.; Putaala, J.; Kangasvieri, T.; Rautioaho, R.; Vähäkangas, J.

    2007-03-01

    The thermal fatigue endurance of completely lead-free 95.5Sn4Ag0.7Cu/plastic core solder ball (PCSB) composite joint structures in low-temperature Co-fired ceramic/printed wiring board (LTCC/PWB) assemblies was investigated using thermal cycling tests over the temperature ranges of -40°C 125°C and 0°C 100°C. Two separate creep/fatigue failures initiated and propagated in the joints during the tests: (1) a crack along the intermetallic compound (IMC)/solder interface on the LTCC side of the joint, which formed at the high-temperature extremes; and (2) a crack in the solder near the LTCC solder land, which formed at the low-temperature extremes. Moreover, localized recrystallization was detected at the outer edge of the joints that were tested in the harsh (-40°C 125°C) test conditions. The failure mechanism was creep/fatigue-induced mixed intergranular and transgranular cracking in the recrystallized zone, but it was dominated by transgranular thermal fatigue failure beyond the recrystallized zone. The change in the failure mechanism increased the rate of crack growth. When the lower temperature extreme was raised from -40°C to 0°C, no recrystallized zone was detected and the failure was due to intergranular cracks.

  12. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  13. Exome sequencing identifies titin mutations causing hereditary myopathy with early respiratory failure (HMERF) in families of diverse ethnic origins.

    PubMed

    Toro, Camilo; Olivé, Montse; Dalakas, Marinos C; Sivakumar, Kumaraswami; Bilbao, Juan M; Tyndel, Felix; Vidal, Noemí; Farrero, Eva; Sambuughin, Nyamkhishig; Goldfarb, Lev G

    2013-03-20

    Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin.

  14. Biological mechanisms of premature ovarian failure caused by psychological stress based on support vector regression

    PubMed Central

    Wang, Xiu-Feng; Zhang, Lei; Wu, Qing-Hua; Min, Jian-Xin; Ma, Na; Luo, Lai-Cheng

    2015-01-01

    Psychological stress has become a common and important cause of premature ovarian failure (POF). Therefore, it is very important to explore the mechanisms of POF resulting from psychological stress. Sixty SD rats were randomly divided into control and model groups. Biomolecules associated with POF (β-EP, IL-1, NOS, NO, GnRH, CRH, FSH, LH, E2, P, ACTH, and CORT) were measured in the control and psychologically stressed rats. The regulation relationships of the biomolecules were explored in the psychologically stressed state using support vector regression (SVR). The values of β-EP, IL-1, NOS, and GnRH in the hypothalamus decreased significantly, and the value of NO changed slightly, when the values of 3 biomolecules in the hypothalamic-pituitary-adrenal axis decreased. The values of E2 and P in the hypothalamic-pituitary-ovarian axis decreased significantly, while the values of FSH and LH changed slightly, when the values of the biomolecules in the hypothalamus decreased. The values of FSH and LH in the pituitary layer of the hypothalamic-pituitary-ovarian axis changed slightly when the values of E2 and P in the target gland layer of the hypothalamic-pituitary-ovarian axis decreased. An Imbalance in the neuroendocrine-immune bimolecular network, particularly the failure of the feedback action of the target gland layer to pituitary layer in the pituitary-ovarian axis, is possibly one of the pathogenic mechanisms of POF. PMID:26885082

  15. Failure modes and effects analysis (FMEA) for Gamma Knife radiosurgery.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Flickinger, John; Arai, Yoshio; Vacsulka, Jonet; Feng, Wenzheng; Monaco, Edward; Niranjan, Ajay; Lunsford, L Dade; Huq, M Saiful

    2017-11-01

    techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, unsecured plugs/inserts, overlooked target areas, and undetected machine mechanical failure during the morning QA process. The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential weaknesses in the overall process. The results of the present study give us a basis for the development of a risk based quality management program for Gamma Knife radiosurgery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. The function and failure of sensory predictions.

    PubMed

    Bansal, Sonia; Ford, Judith M; Spering, Miriam

    2018-04-23

    Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.

  17. Failure and fatigue characteristics of adhesive athletic tape.

    PubMed

    Bragg, Richard W; Macmahon, John M; Overom, Erin K; Yerby, Scott A; Matheson, Gordon O; Carter, Dennis R; Andriacchi, Thomas P

    2002-03-01

    Athletic tape has been commonly reported to lose much of its structural support after 20 min of exercise. Although many studies have addressed the functional performance characteristics of athletic tape, its mechanical properties are poorly understood. This study examines the failure and fatigue properties of several commonly used athletic tapes. A Web-based survey of professional sports trainers was used to select the following three tapes for the study: Zonas (Johnson & Johnson), Leukotape (Beiersdorf), and Jaylastic (Jaybird & Mais). Using a hydraulic material testing system (MTS), eight samples of each tape were compared in three different mechanical tests: load-to-failure, fatigue testing under load control, and fatigue testing under displacement control. Differences in tape microstructure were used to interpret the results of the mechanical tests. Significant differences (P < 0.001) in failure load, elongation at failure, and stiffness were found from failure tests. Significant differences were also found (P < 0.001) in fatigue behavior under both modes of control. As a representative example, in one normalized displacement control fatigue test after 20 min of cycling, 21% (Zonas), 29% (Leukotape), and 57% (Jaylastic) of the mechanical support was lost. After cycling, all tapes loaded to failure showed increased stiffness (P < 0.001), indicating significant energy absorption during cycling. Observed differences in the tapes' microstructure were qualitatively consistent with the measured differences in their mechanical properties. In understanding the shortcomings of currently available tapes, the results of these tests can now be used as benchmarks with which to compare and develop future tape designs. Ultimately, these improved tapes should reduce ankle injuries among athletes.

  18. Valve system incorporating single failure protection logic

    DOEpatents

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  19. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism.

    PubMed

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-11-15

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio ( S A 1 ) behaviors and three types of anisotropic strength difference ( S A 2 ) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion c w and friction angle ϕ w of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of S A 1 and significant increase of S A 2 with increasing confinement for higher cohesion c w and lower to medium friction angle ϕ w . This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of c w and ϕ w under different confinements, different combinations of c w and ϕ w may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir.

  20. Analyses of Transistor Punchthrough Failures

    NASA Technical Reports Server (NTRS)

    Nicolas, David P.

    1999-01-01

    The failure of two transistors in the Altitude Switch Assembly for the Solid Rocket Booster followed by two additional failures a year later presented a challenge to failure analysts. These devices had successfully worked for many years on numerous missions. There was no history of failures with this type of device. Extensive checks of the test procedures gave no indication for a source of the cause. The devices were manufactured more than twenty years ago and failure information on this lot date code was not readily available. External visual exam, radiography, PEID, and leak testing were performed with nominal results Electrical testing indicated nearly identical base-emitter and base-collector characteristics (both forward and reverse) with a low resistance short emitter to collector. These characteristics are indicative of a classic failure mechanism called punchthrough. In failure analysis punchthrough refers to an condition where a relatively low voltage pulse causes the device to conduct very hard producing localized areas of thermal runaway or "hot spots". At one or more of these hot spots, the excessive currents melt the silicon. Heavily doped emitter material diffuses through the base region to the collector forming a diffusion pipe shorting the emitter to base to collector. Upon cooling, an alloy junction forms between the pipe and the base region. Generally, the hot spot (punch-through site) is under the bond and no surface artifact is visible. The devices were delidded and the internal structures were examined microscopically. The gold emitter lead was melted on one device, but others had anomalies in the metallization around the in-tact emitter bonds. The SEM examination confirmed some anomalies to be cosmetic defects while other anomalies were artifacts of the punchthrough site. Subsequent to these analyses, the contractor determined that some irregular testing procedures occurred at the time of the failures heretofore unreported. These testing

  1. Statistical analysis of early failures in electromigration

    NASA Astrophysics Data System (ADS)

    Gall, M.; Capasso, C.; Jawarani, D.; Hernandez, R.; Kawasaki, H.; Ho, P. S.

    2001-07-01

    The detection of early failures in electromigration (EM) and the complicated statistical nature of this important reliability phenomenon have been difficult issues to treat in the past. A satisfactory experimental approach for the detection and the statistical analysis of early failures has not yet been established. This is mainly due to the rare occurrence of early failures and difficulties in testing of large sample populations. Furthermore, experimental data on the EM behavior as a function of varying number of failure links are scarce. In this study, a technique utilizing large interconnect arrays in conjunction with the well-known Wheatstone Bridge is presented. Three types of structures with a varying number of Ti/TiN/Al(Cu)/TiN-based interconnects were used, starting from a small unit of five lines in parallel. A serial arrangement of this unit enabled testing of interconnect arrays encompassing 480 possible failure links. In addition, a Wheatstone Bridge-type wiring using four large arrays in each device enabled simultaneous testing of 1920 interconnects. In conjunction with a statistical deconvolution to the single interconnect level, the results indicate that the electromigration failure mechanism studied here follows perfect lognormal behavior down to the four sigma level. The statistical deconvolution procedure is described in detail. Over a temperature range from 155 to 200 °C, a total of more than 75 000 interconnects were tested. None of the samples have shown an indication of early, or alternate, failure mechanisms. The activation energy of the EM mechanism studied here, namely the Cu incubation time, was determined to be Q=1.08±0.05 eV. We surmise that interface diffusion of Cu along the Al(Cu) sidewalls and along the top and bottom refractory layers, coupled with grain boundary diffusion within the interconnects, constitutes the Cu incubation mechanism.

  2. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas.

    PubMed

    Etemadmoghadam, Dariush; deFazio, Anna; Beroukhim, Rameen; Mermel, Craig; George, Joshy; Getz, Gad; Tothill, Richard; Okamoto, Aikou; Raeder, Maria B; Harnett, Paul; Lade, Stephen; Akslen, Lars A; Tinker, Anna V; Locandro, Bianca; Alsop, Kathryn; Chiew, Yoke-Eng; Traficante, Nadia; Fereday, Sian; Johnson, Daryl; Fox, Stephen; Sellers, William; Urashima, Mitsuyoshi; Salvesen, Helga B; Meyerson, Matthew; Bowtell, David

    2009-02-15

    A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.

  3. Erythrocyte Membrane Failure by Electromechanical Stress.

    PubMed

    Du, E; Qiang, Yuhao; Liu, Jia

    2018-01-01

    We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  4. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  5. In situ transmission electron microscopy of transistor operation and failure.

    PubMed

    Wang, Baoming; Islam, Zahabul; Haque, Aman; Chabak, Kelson; Snure, Michael; Heller, Eric; Glavin, Nicholas

    2018-08-03

    Microscopy is typically used as a post-mortem analytical tool in performance and reliability studies on nanoscale materials and devices. In this study, we demonstrate real time microscopy of the operation and failure of AlGaN/GaN high electron mobility transistors inside the transmission electron microscope. Loading until failure was performed on the electron transparent transistors to visualize the failure mechanisms caused by self-heating. At lower drain voltages, thermo-mechanical stresses induce irreversible microstructural deformation, mostly along the AlGaN/GaN interface, to initiate the damage process. At higher biasing, the self-heating deteriorates the gate and catastrophic failure takes place through metal/semiconductor inter-diffusion and/or buffer layer breakdown. This study indicates that the current trend of recreating the events, from damage nucleation to catastrophic failure, can be replaced by in situ microscopy for a quick and accurate account of the failure mechanisms.

  6. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur.

    PubMed

    Lochmüller, E M; Miller, P; Bürklein, D; Wehr, U; Rambeck, W; Eckstein, F

    2000-01-01

    The objective of this study was to directly compare in situ femoral dual-energy X-ray absorptiometry (DXA) and in vitro chemical analysis (ash weight and calcium) with mechanical failure loads of the proximal femur, and to determine the influence of bone size (volume) and density on mechanical failure and DXA-derived areal bone mineral density (BMD, in g/cm2). We performed femoral DXA in 52 fixed cadavers (age 82.1 +/- 9.7 years; 30 male, 22 female) with intact skin and soft tissues. The femora were then excised, mechanically loaded to failure in a stance phase configuration, their volume measured with a water displacement method (proximal neck to lesser trochanter), and the ash weight and calcium content of this region determined by chemical analysis. The correlation coefficient between the bone mineral content (measured in situ with DXA) and the ash weight was r = 0.87 (standard error of the estimate = 16%), the ash weight allowing for a better prediction of femoral failure loads (r = 0.78; p < 0.01) than DXA (r = 0.67; p < 0.01). The femoral volume (r = 0.61; p < 0.01), but not the volumetric bone density (r = 0.26), was significantly associated with the failure load. The femoral bone volume had a significant impact (r = 0.35; p < 0.01) on the areal BMD (DXA), and only 63% of the variability of bone volume could be predicted (based on the basis of body height, weight and femoral projectional bone area. The results suggest that accuracy errors of femoral DXA limit the prediction of mechanical failure loads, and that the influence of bone size on areal BMD cannot be fully corrected by accounting for body height, weight and projected femoral area.

  7. Right ventricular strain in heart failure: Clinical perspective.

    PubMed

    Tadic, Marijana; Pieske-Kraigher, Elisabeth; Cuspidi, Cesare; Morris, Daniel A; Burkhardt, Franziska; Baudisch, Ana; Haßfeld, Sabine; Tschöpe, Carsten; Pieske, Burket

    2017-10-01

    The number of studies demonstrating the importance of right ventricular remodelling in a wide range of cardiovascular diseases has increased in the past two decades. Speckle-tracking imaging provides new variables that give comprehensive information about right ventricular function and mechanics. In this review, we summarize current knowledge of right ventricular mechanics in heart failure with reduced ejection fraction and preserved ejection fraction. We searched PubMed, MEDLINE, Ovid and Embase databases for studies published from January 2000 to December 2016 in the English language using the following keywords: "right ventricle"; "strain"; "speckle tracking"; "heart failure with reduced ejection fraction"; and "heart failure with preserved ejection fraction". Investigations showed that right ventricular dysfunction is associated with higher cardiovascular and overall mortality in patients with heart failure, irrespective of ejection fraction. The number of studies investigating right ventricular strain in patients with heart failure with reduced ejection fraction is constantly increasing, whereas data on right ventricular mechanics in patients with heart failure with preserved ejection fraction are limited. Given the high feasibility, accuracy and clinical implications of right ventricular strain in the population with heart failure, it is of great importance to try to include the evaluation of right ventricular strain as a regular part of each echocardiographic examination in patients with heart failure. However, further investigations are necessary to establish right ventricular strain as a standard variable for decision-making. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    PubMed Central

    Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of

  9. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes

    PubMed Central

    Senni, Michele; Paulus, Walter J.; Gavazzi, Antonello; Fraser, Alan G.; Díez, Javier; Solomon, Scott D.; Smiseth, Otto A.; Guazzi, Marco; Lam, Carolyn S. P.; Maggioni, Aldo P.; Tschöpe, Carsten; Metra, Marco; Hummel, Scott L.; Edelmann, Frank; Ambrosio, Giuseppe; Stewart Coats, Andrew J.; Filippatos, Gerasimos S.; Gheorghiade, Mihai; Anker, Stefan D.; Levy, Daniel; Pfeffer, Marc A.; Stough, Wendy Gattis; Pieske, Burkert M.

    2014-01-01

    The management of heart failure with reduced ejection fraction (HF-REF) has improved significantly over the last two decades. In contrast, little or no progress has been made in identifying evidence-based, effective treatments for heart failure with preserved ejection fraction (HF-PEF). Despite the high prevalence, mortality, and cost of HF-PEF, large phase III international clinical trials investigating interventions to improve outcomes in HF-PEF have yielded disappointing results. Therefore, treatment of HF-PEF remains largely empiric, and almost no acknowledged standards exist. There is no single explanation for the negative results of past HF-PEF trials. Potential contributors include an incomplete understanding of HF-PEF pathophysiology, the heterogeneity of the patient population, inadequate diagnostic criteria, recruitment of patients without true heart failure or at early stages of the syndrome, poor matching of therapeutic mechanisms and primary pathophysiological processes, suboptimal study designs, or inadequate statistical power. Many novel agents are in various stages of research and development for potential use in patients with HF-PEF. To maximize the likelihood of identifying effective therapeutics for HF-PEF, lessons learned from the past decade of research should be applied to the design, conduct, and interpretation of future trials. This paper represents a synthesis of a workshop held in Bergamo, Italy, and it examines new and emerging therapies in the context of specific, targeted HF-PEF phenotypes where positive clinical benefit may be detected in clinical trials. Specific considerations related to patient and endpoint selection for future clinical trials design are also discussed. PMID:25104786

  10. Mechanical Failure Prognosis Through Oil Debris Monitoring

    DTIC Science & Technology

    1975-01-01

    laboratories. The writer first heard of it from Hakkenburg of the Caterpillar Tractor Company at the ASLE/ ASME 16 Chiu, Y. P., et al, "Refinement...34Examination of Abrasion Resistance Criteria for Some Ductile Metals," ASME Jour, of Lubr. Tech. 96F, 210-214 and 246 (1974). 21 Leonard, L...failures during five months in 1970. 28 Littmann, W. E., et al, "The role of Lubrication in Propagation of Con- tact Fatigue Cracks," Trans. ASME

  11. Performance degradation mechanisms and modes in terrestrial photovoltaic arrays and technology for their diagnosis

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Derringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Accelerated life-prediction test methodologies have been developed for the validation of a 20-year service life for low-cost photovoltaic arrays. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Measurements must provide sufficient confidence to permit selection among alternative designs and materials and to stimulate widespread deployment of such arrays. Furthermore, the diversity of candidate materials and designs, and the variety of potential environmental stress combinations, degradation mechanisms and failure modes require that combinations of measurement techniques be identified which are suitable for the characterization of various encapsulation system-cell structure-environment combinations.

  12. Mechanism of valve failure and efficacy of reintervention through catheterization in patients with bioprosthetic valves in the pulmonary position

    PubMed Central

    Callahan, Ryan; Bergersen, Lisa; Baird, Christopher W; Porras, Diego; Esch, Jesse J; Lock, James E; Marshall, Audrey C

    2017-01-01

    Background: Surgical and transcatheter bioprosthetic valves (BPVs) in the pulmonary position in patients with congenital heart disease may ultimately fail and undergo transcatheter reintervention. Angiographic assessment of the mechanism of BPV failure has not been previously described. Aims: The aim of this study was to determine the mode of BPV failure (stenosis/regurgitation) requiring transcatheter reintervention and to describe the angiographic characteristics of the failed BPVs and report the types and efficacy of reinterventions. Materials and Methods: This is a retrospective single-center review of consecutive patients who previously underwent pulmonary BPV placement (surgical or transcatheter) and subsequently underwent percutaneous reintervention from 2005 to 2014. Results: Fifty-five patients with surgical (41) and transcutaneous pulmonary valve (TPV) (14) implantation of BPVs underwent 66 catheter reinterventions. The surgically implanted valves underwent fifty reinterventions for indications including 16 for stenosis, seven for regurgitation, and 27 for both, predominantly associated with leaflet immobility, calcification, and thickening. Among TPVs, pulmonary stenosis (PS) was the exclusive failure mode, mainly due to loss of stent integrity (10) and endocarditis (4). Following reintervention, there was a reduction of right ventricular outflow tract gradient from 43 ± 16 mmHg to 16 ± 10 mmHg (P < 0.001) and RVp/AO ratio from 0.8 ± 0.2 to 0.5 ± 0.2 (P < 0.001). Reintervention with TPV placement was performed in 45 (82%) patients (34 surgical, 11 transcatheter) with no significant postintervention regurgitation or paravalvular leak. Conclusion: Failing surgically implanted BPVs demonstrate leaflet calcification, thickness, and immobility leading to PS and/or regurgitation while the mechanism of TPV failure in the short- to mid-term is stenosis, mainly from loss of stent integrity. This can be effectively treated with a catheter-based approach

  13. Acute Cardiopulmonary Failure From Sleep-Disordered Breathing

    PubMed Central

    Carr, Gordon E.; Mokhlesi, Babak

    2012-01-01

    Sleep-disordered breathing (SDB) comprises a diverse set of disorders marked by abnormal respiration during sleep. Clinicians should realize that SDB may present as acute cardiopulmonary failure in susceptible patients. In this review, we discuss three clinical phenotypes of acute cardiopulmonary failure from SDB: acute ventilatory failure, acute congestive heart failure, and sudden death. We review the pathophysiologic mechanisms and recommend general principles for management. Timely recognition of, and therapy for, SDB in the setting of acute cardiopulmonary failure may improve short- and long-term outcomes. PMID:22396567

  14. Failure Criteria for FRP Laminates in Plane Stress

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2003-01-01

    A new set of six failure criteria for fiber reinforced polymer laminates is described. Derived from Dvorak's fracture mechanics analyses of cracked plies and from Puck's action plane concept, the physically-based criteria, denoted LaRC03, predict matrix and fiber failure accurately without requiring curve-fitting parameters. For matrix failure under transverse compression, the fracture plane is calculated by maximizing the Mohr-Coulomb effective stresses. A criterion for fiber kinking is obtained by calculating the fiber misalignment under load, and applying the matrix failure criterion in the coordinate frame of the misalignment. Fracture mechanics models of matrix cracks are used to develop a criterion for matrix in tension and to calculate the associated in-situ strengths. The LaRC03 criteria are applied to a few examples to predict failure load envelopes and to predict the failure mode for each region of the envelope. The analysis results are compared to the predictions using other available failure criteria and with experimental results. Predictions obtained with LaRC03 correlate well with the experimental results.

  15. Recognition during recall failure: Semantic feature matching as a mechanism for recognition of semantic cues when recall fails.

    PubMed

    Cleary, Anne M; Ryals, Anthony J; Wagner, Samantha R

    2016-01-01

    Research suggests that a feature-matching process underlies cue familiarity-detection when cued recall with graphemic cues fails. When a test cue (e.g., potchbork) overlaps in graphemic features with multiple unrecalled studied items (e.g., patchwork, pitchfork, pocketbook, pullcork), higher cue familiarity ratings are given during recall failure of all of the targets than when the cue overlaps in graphemic features with only one studied target and that target fails to be recalled (e.g., patchwork). The present study used semantic feature production norms (McRae et al., Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005) to examine whether the same holds true when the cues are semantic in nature (e.g., jaguar is used to cue cheetah). Indeed, test cues (e.g., cedar) that overlapped in semantic features (e.g., a_tree, has_bark, etc.) with four unretrieved studied items (e.g., birch, oak, pine, willow) received higher cue familiarity ratings during recall failure than test cues that overlapped in semantic features with only two (also unretrieved) studied items (e.g., birch, oak), which in turn received higher familiarity ratings during recall failure than cues that did not overlap in semantic features with any studied items. These findings suggest that the feature-matching theory of recognition during recall failure can accommodate recognition of semantic cues during recall failure, providing a potential mechanism for conceptually-based forms of cue recognition during target retrieval failure. They also provide converging evidence for the existence of the semantic features envisaged in feature-based models of semantic knowledge representation and for those more concretely specified by the production norms of McRae et al. (Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005).

  16. The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression

    PubMed Central

    Kádár, Csilla; Máthis, Kristián; Knapek, Michal; Chmelík, František

    2017-01-01

    The influence of the matrix material on the deformation and failure mechanisms in metal matrix syntactic foams was investigated in this study. Samples with commercially pure Al (Al) and Al-12 wt % Si (AlSi12) eutectic aluminum matrix, reinforced by hollow ceramic spheres, were compressed at room temperature. Concurrently, the acoustic emission response and the strain field development on the surface were monitored in-situ. The results indicate that the plastic deformation of the cell walls is the governing mechanism in the early stage of straining for both types of foams. At large stresses, deformation bands form both in the Al and AlSi12 foam. In Al foam, cell walls collapse in a large volume. In contrast, the AlSi12 foam is more brittle; therefore, the fracture of precipitates and the crushing of the matrix take place within a distinctive deformation band, along with an occurrence of a significant stress drop. The onset stress of ceramic sphere failure was shown to be not influenced by the matrix material. The in-situ methods provided complementary data which further support these results. PMID:28772556

  17. Clinical Decision Support to Efficiently Identify Patients Eligible for Advanced Heart Failure Therapies.

    PubMed

    Evans, R Scott; Kfoury, Abdallah G; Horne, Benjamin D; Lloyd, James F; Benuzillo, Jose; Rasmusson, Kismet D; Roberts, Colleen; Lappé, Donald L

    2017-10-01

    Patients who need and receive timely advanced heart failure (HF) therapies have better long-term survival. However, many of these patients are not identified and referred as soon as they should be. A clinical decision support (CDS) application sent secure email notifications to HF patients' providers when they transitioned to advanced disease. Patients identified with CDS in 2015 were compared with control patients from 2013 to 2014. Kaplan-Meier methods and Cox regression were used in this intention-to-treat analysis to compare differences between visits to specialized and survival. Intervention patients were referred to specialized heart facilities significantly more often within 30 days (57% vs 34%; P < .001), 60 days (69% vs 44%; P < .0001), 90 days (73% vs 49%; P < .0001), and 180 days (79% vs 58%; P < .0001). Age and sex did not predict heart facility visits, but renal disease did and patients of nonwhite race were less likely to visit specialized heart facilities. Significantly more intervention patients were found to be alive at 30 (95% vs 92%; P = .036), 60 (95% vs 90%; P = .0013), 90 (94% vs 87%; P = .0002), and 180 days (92% vs 84%; P = .0001). Age, sex, and some comorbid diseases were also predictors of mortality, but race was not. We found that CDS can facilitate the early identification of patients needing advanced HF therapy and that its use was associated with significantly more patients visiting specialized heart facilities and longer survival. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Application of non-invasive mechanical ventilation in an asthmatic pregnant woman in respiratory failure: a case report

    PubMed Central

    Caner, Hanife; Eryuksel, Emel; Kosar, Filiz

    2013-01-01

    The use of non-invasive mechanical ventilation (NIV) during an asthma attack is controversial. We report a case of a 28-year-old female patient in her 16th week of pregnancy with community-acquired pneumonia who presented during an asthma attack, which led to hypoxic respiratory failure. She was successfully treated using NIV. This case is worth discussing as it includes two clinical conditions in which NIV is often considered contraindicated. PMID:23372957

  19. Predicting failure: acoustic emission of berlinite under compression.

    PubMed

    Nataf, Guillaume F; Castillo-Villa, Pedro O; Sellappan, Pathikumar; Kriven, Waltraud M; Vives, Eduard; Planes, Antoni; Salje, Ekhard K H

    2014-07-09

    Acoustic emission has been measured and statistical characteristics analyzed during the stress-induced collapse of porous berlinite, AlPO4, containing up to 50 vol% porosity. Stress collapse occurs in a series of individual events (avalanches), and each avalanche leads to a jerk in sample compression with corresponding acoustic emission (AE) signals. The distribution of AE avalanche energies can be approximately described by a power law p(E)dE = E(-ε)dE (ε ~ 1.8) over a large stress interval. We observed several collapse mechanisms whereby less porous minerals show the superposition of independent jerks, which were not related to the major collapse at the failure stress. In highly porous berlinite (40% and 50%) an increase of energy emission occurred near the failure point. In contrast, the less porous samples did not show such an increase in energy emission. Instead, in the near vicinity of the main failure point they showed a reduction in the energy exponent to ~ 1.4, which is consistent with the value reported for compressed porous systems displaying critical behavior. This suggests that a critical avalanche regime with a lack of precursor events occurs. In this case, all preceding large events were 'false alarms' and unrelated to the main failure event. Our results identify a method to use pico-seismicity detection of foreshocks to warn of mine collapse before the main failure (the collapse) occurs, which can be applied to highly porous materials only.

  20. A Bioreactor to Identify the Driving Mechanical Stimuli of Tissue Growth and Remodeling.

    PubMed

    van Kelle, Mathieu A J; Oomen, Pim J A; Bulsink, Jurgen A; Janssen-van den Broek, Marloes W J T; Lopata, Richard G P; Rutten, Marcel C M; Loerakker, Sandra; Bouten, Carlijn V C

    2017-06-01

    Tissue growth and remodeling are essential processes that should ensure long-term functionality of tissue-engineered (TE) constructs. Even though it is widely recognized that these processes strongly depend on mechanical stimuli, the underlying mechanisms of mechanically induced growth and remodeling are only partially understood. It is generally accepted that cells sense mechanical changes and respond by altering their surroundings, by means of extracellular matrix growth and remodeling, in an attempt to return to a certain preferred mechanical homeostatic state. However, the exact mechanical cues that trigger cells to synthesize and remodel their environment remain unclear. To identify the driving mechanical stimuli of these processes, it is critical to be able to temporarily follow the mechanical state of developing tissues under physiological loading conditions. Therefore, a novel "versatile tissue growth and remodeling" (Vertigro) bioreactor was developed that is capable of tissue culture and mechanical stimulation for a prolonged time period, while simultaneously performing mechanical testing. The Vertigro's unique two-chamber design allows easy, sterile handling of circular 3D TE constructs in a dedicated culture chamber, while a separate pressure chamber facilitates a pressure-driven dynamic loading regime during culture. As a proof-of-concept, temporal changes in the mechanical state of cultured tissues were quantified using nondestructive mechanical testing by means of a classical bulge test, in which the tissue displacement was tracked using ultrasound imaging. To demonstrate the successful development of the bioreactor system, compositional, structural, and geometrical changes were qualitatively and quantitatively assessed using a series of standard analysis techniques. With this bioreactor and associated mechanical analysis technique, a powerful toolbox has been developed to quantitatively study and identify the driving mechanical stimuli of engineered

  1. Readmission for dehydration or renal failure after ileostomy creation.

    PubMed

    Paquette, Ian M; Solan, Patrick; Rafferty, Janice F; Ferguson, Martha A; Davis, Bradley R

    2013-08-01

    Ileostomy creation is a commonly performed operation in colorectal surgery; however, many patients develop complications such as dehydration postoperatively. Dehydration is often severe enough to warrant hospital readmission and may result in renal failure. The true incidence of this complication has not been well described. The aim of this study was to identify the rate of hospital readmission secondary to dehydration or renal failure within 30 days of ileostomy creation. Retrospective review of all patients undergoing ileostomy creation from 2007 to 2011 in a single colorectal practice of 4 surgeons was performed. Charts were reviewed to identify patients readmitted for dehydration or renal failure within 30 days of operation. Data were then analyzed to identify predictors of readmission, dehydration, and renal failure. Subset analysis compared patients readmitted with simple dehydration versus patients with renal failure. Two hundred one patients undergoing colorectal operations that included ileostomy creation within a 4-year period at a single institution for a variety of indications were included. The primary outcome measured was readmission for dehydration or renal failure. We observed a 17% 30-day readmission rate for dehydration or renal failure following ileostomy creation. Age greater than 50 was identified as an independent predictor of readmission with renal failure, whereas IPAA was predictive of readmission for simple dehydration, but not renal failure. Patients admitted with renal failure had significantly longer hospital stays and median hospital charges after readmission in comparison with patients admitted with simple dehydration. This study was limited by its retrospective nature and its limited sample size. Hospital readmission due to dehydration or renal failure following ileostomy creation is common, with age >50 being the strongest predictor for renal failure. Appropriate strategies to decrease dehydration and renal failure following

  2. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  3. Damage Model and Progressive Failure Analyses for Filament Wound Composite Laminates

    NASA Astrophysics Data System (ADS)

    Ribeiro, Marcelo Leite; Vandepitte, Dirk; Tita, Volnei

    2013-10-01

    Recent improvements in manufacturing processes and materials properties associated with excellent mechanical characteristics and low weight have made composite materials very attractive for application on civil aircraft structures. However, even new designs are still very conservative, because the composite failure phenomenon is very complex. Several failure criteria and theories have been developed to describe the damage process and how it evolves, but the solution of the problem is still open. Moreover, modern filament winding techniques have been used to produce a wide variety of structural shapes not only cylindrical parts, but also “flat” laminates. Therefore, this work presents the development of a damage model and its application to simulate the progressive failure of flat composite laminates made using a filament winding process. The damage model was implemented as a UMAT (User Material Subroutine), in ABAQUSTM Finite Element (FE) framework. Progressive failure analyses were carried out using FE simulation in order to simulate the failure of flat filament wound composite structures under different loading conditions. In addition, experimental tests were performed in order to identify parameters related to the material model, as well as to evaluate both the potential and the limitations of the model. The difference between numerical and the average experimental results in a four point bending set-up is only 1.6 % at maximum load amplitude. Another important issue is that the model parameters are not so complicated to be identified. This characteristic makes this model very attractive to be applied in an industrial environment.

  4. Mechanical Testing of Hydrogels in Cartilage Tissue Engineering: Beyond the Compressive Modulus

    PubMed Central

    Xiao, Yinghua; Friis, Elizabeth A.; Gehrke, Stevin H.

    2013-01-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context. PMID:23448091

  5. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    PubMed

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  6. Heart failure and kidney dysfunction: epidemiology, mechanisms and management.

    PubMed

    Schefold, Joerg C; Filippatos, Gerasimos; Hasenfuss, Gerd; Anker, Stefan D; von Haehling, Stephan

    2016-10-01

    Heart failure (HF) is a major health-care problem and the prognosis of affected patients is poor. HF often coexists with a number of comorbidities of which declining renal function is of particular importance. A loss of glomerular filtration rate, as in acute kidney injury (AKI) or chronic kidney disease (CKD), independently predicts mortality and accelerates the overall progression of cardiovascular disease and HF. Importantly, cardiac and renal diseases interact in a complex bidirectional and interdependent manner in both acute and chronic settings. From a pathophysiological perspective, cardiac and renal diseases share a number of common pathways, including inflammatory and direct, cellular immune-mediated mechanisms; stress-mediated and (neuro)hormonal responses; metabolic and nutritional changes including bone and mineral disorder, altered haemodynamic and acid-base or fluid status; and the development of anaemia. In an effort to better understand the important crosstalk between the two organs, classifications such as the cardio-renal syndromes were developed. This classification might lead to a more precise understanding of the complex interdependent pathophysiology of cardiac and renal diseases. In light of exceptionally high mortality associated with coexisting HF and kidney disease, this Review describes important crosstalk between the heart and kidney, with a focus on HF and kidney disease in the acute and chronic settings. Underlying molecular and cellular pathomechanisms in HF, AKI and CKD are discussed in addition to current and future therapeutic approaches.

  7. Compendium of Mechanical Limit-States

    NASA Technical Reports Server (NTRS)

    Kowal, Michael

    1996-01-01

    A compendium was compiled and is described to provide a diverse set of limit-state relationships for use in demonstrating the application of probabilistic reliability methods to mechanical systems. The different limit-state relationships can be used to analyze the reliability of a candidate mechanical system. In determining the limit-states to be included in the compendium, a comprehensive listing of the possible failure modes that could affect mechanical systems reliability was generated. Previous literature defining mechanical modes of failure was studied, and cited failure modes were included. From this, classifications for failure modes were derived and are described in some detail.

  8. Identification of corrosion and damage mechanisms by using scanning electron microscopy and energy-dispersive X-ray microanalysis: contribution to failure analysis case histories

    NASA Astrophysics Data System (ADS)

    Pantazopoulos, G.; Vazdirvanidis, A.

    2014-03-01

    Emphasis is placed on the evaluation of corrosion failures of copper and machineable brass alloys during service. Typical corrosion failures of the presented case histories mainly focussed on stress corrosion cracking and dezincification that acted as the major degradation mechanisms in components used in piping and water supply systems. SEM assessment, coupled with EDS spectroscopy, revealed the main cracking modes together with the root-source(s) that are responsible for the damage initiation and evolution. In addition, fracture surface observations contributed to the identification of the incurred fracture mechanisms and potential environmental issues that stimulated crack initiation and propagation. Very frequently, the detection of chlorides among the corrosion products served as a suggestive evidence of the influence of working environment on passive layer destabilisation and metal dissolution.

  9. Identifying Differences Between Biochemical Failure and Cure: Incidence Rates and Predictors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vicini, Frank A., E-mail: fvicini@beaumont.edu; Shah, Chirag; Kestin, Larry

    2011-11-15

    Background: Patients treated with radiation therapy (RT) for prostate cancer were evaluated to estimate the length of time required to document biochemical cure (BC) after treatment and the variables associated with long-term treatment efficacy. Patients and Methods: 2,100 patients received RT alone for localized prostate carcinoma (external-beam RT, n = 1,504; brachytherapy alone, n = 241; or brachytherapy + pelvic radiation, n = 355). The median external-beam dose was 68.4 Gy, and the median follow-up time was 8.6 years. Biochemical failure (BF) was defined according to the Phoenix definition. Results: Biochemical failure was experienced by 685 patients (32.6%). The medianmore » times to BF for low-, intermediate-, and high-risk groups were 6.0, 5.6, and 4.5 years respectively (p < 0.001). The average annual incidence rates of BF for years 1-5, 5-10,11-15, and 16-20 in low-risk patients were 2.0%, 2.0%, 0.3%, and 0.06% (p < 0.001); for intermediate-risk patients, 4%, 3%, 0.3%, and 0% (p < 0.001); and for high-risk patients, 10.0%, 5.0%, 0.3%, and 0.3% (p < 0.001). After 5 years of treatment, 36.9% of all patients experienced BF. The percentage of total failures occurring during years 1-5, 5-10, 11-15, and 16-20 were 48.7%, 43.5%, 6.5%, and 1.3% for low-risk patients; 64.0%, 32.2%, 3.8%, and 0% for intermediate-risk patients; and 71.9%, 25.9%, 1.1%, and 1.1% for high-risk patients, respectively. Increasing time to nadir was associated with increased time to BF. On multivariate analysis, factors significantly associated with 10-year BC included prostate-specific antigen nadir and time to nadir. Conclusions: The incidence rates for BF did not plateau until later than 10 years after treatment, suggesting that extended follow-up time is required to monitor patients after treatment. Prostate-specific antigen nadir and time to nadir have the strongest association with long-term BC.« less

  10. A Case History of Embankment Failure: Geological and Geotechnical Aspects of the Celotex Levee Failure, New Orleans, Louisiana

    DTIC Science & Technology

    1999-12-01

    of Louisiana , scale 1:500,000, Baton Rouge, LA." Torrey, V. H., III. (1988). "Retrogressive failures in sand deposits of the Mississippi River ...Greenville revetment reach 107 Figure 26. General mechanism leading to bank failures where the river thalweg is in substratum sands 109 Figure 27...at Montz ( river mile 130) and Lucy ( river mile 135), Louisiana . In the second report in this series, Torrey (1988) examined other failures

  11. Alterations in myocardial free fatty acid clearance precede mechanical abnormalities in canine tachycardia-induced heart failure.

    PubMed

    Freeman, G L; Colston, J T; Miller, D D

    1994-01-01

    The purpose of this study was to evaluate whether abnormalities of free fatty acid metabolism are present before the onset of overt mechanical dysfunction in dogs with tachycardia-induced heart failure. We studied six dogs chronically instrumented to allow assessment of left ventricular function in the pressure-volume plane. Free fatty acid clearance was assessed according to the washout rate of a free fatty acid analog, iodophenylpentadecanoic acid ([123I]PPA or IPPA). IPPA clearance was measured within 1 hour of the hemodynamic assessment. The animals were studied under baseline conditions and 11.7 +/- 3.6 days after ventricular pacing at a rate of 240 beats/min. Hemodynamic studies after pacing showed a nonsignificant increase in left ventricular end-diastolic pressure (11.7 +/- 4.7 to 17.4 +/- 6.5 mm Hg) and a nonsignificant decrease in the maximum derivative of pressure with respect to time (1836 +/- 164 vs 1688 +/- 422 mm Hg/sec). There was also no change in the time constant of left ventricular relaxation, which was 34.8 +/- 7.67 msec before and 35.3 +/- 7.3 msec after pacing. However, a significant prolongation in the clearance half-time of [123I]PPA, from 86.1 +/- 23.9 to 146.5 +/- 22.6 minutes (p < 0.01) was found. Thus abnormal lipid clearance appears before the onset of significant mechanical dysfunction in tachycardia-induced heart failure. This suggests that abnormal substrate metabolism may play an important role in the pathogenesis of this condition.

  12. Ceramic capacitor insulation resistance failures accelerated by low voltage

    NASA Technical Reports Server (NTRS)

    Brennan, T. F.

    1978-01-01

    Ceramic capacitors failed insulation resistance testing at less than one-tenth their rated voltage. Many failures recovered as the voltage was increased. Comprehensive failure analysis techniques, some of which are unprecedented, were used to examine these failures. It was determined that there was more than one failure mechanism, and the results indicate a need for special additional screening.

  13. Failure detection and identification

    NASA Technical Reports Server (NTRS)

    Massoumnia, Mohammad-Ali; Verghese, George C.; Willsky, Alan S.

    1989-01-01

    Using the geometric concept of an unobservability subspace, a solution is given to the problem of detecting and identifying control system component failures in linear, time-invariant systems. Conditions are developed for the existence of a causal, linear, time-invariant processor that can detect and uniquely identify a component failure, first for the case where components can fail simultaneously, and then for the case where they fail only one at a time. Explicit design algorithms are provided when these conditions are satisfied. In addition to time-domain solvability conditions, frequency-domain interpretations of the results are given, and connections are drawn with results already available in the literature.

  14. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of MIL A46100 Armor-Grade Steel: A Computational Investigation

    DTIC Science & Technology

    2014-06-12

    distribution is unlimited. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel : A Computational Investigation The views...Welds of Mil A46100 Armor-Grade Steel : A Computational Investigation Report Title In our recent work, a multi-physics computational model for the...introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance

  15. Identifiability of conservative linear mechanical systems. [applied to large flexible spacecraft structures

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1985-01-01

    With a sufficiently great number of sensors and actuators, any finite dimensional dynamic system is identifiable on the basis of input-output data. It is presently indicated that, for conservative nongyroscopic linear mechanical systems, the number of sensors and actuators required for identifiability is very large, where 'identifiability' is understood as a unique determination of the mass and stiffness matrices. The required number of sensors and actuators drops by a factor of two, given a relaxation of the identifiability criterion so that identification can fail only if the system parameters being identified lie in a set of measure zero. When the mass matrix is known a priori, this additional information does not significantly affect the requirements for guaranteed identifiability, though the number of parameters to be determined is reduced by a factor of two.

  16. Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.

  17. Circulating proteins as predictors of incident heart failure in the elderly.

    PubMed

    Stenemo, Markus; Nowak, Christoph; Byberg, Liisa; Sundström, Johan; Giedraitis, Vilmantas; Lind, Lars; Ingelsson, Erik; Fall, Tove; Ärnlöv, Johan

    2018-01-01

    To identify novel risk markers for incident heart failure using proteomic profiling of 80 proteins previously associated with cardiovascular pathology. Proteomic profiling (proximity extension assay) was performed in two community-based prospective cohorts of elderly individuals without heart failure at baseline: the Prospective Investigation of the Vasculature in Uppsala Seniors [PIVUS, n = 901, median age 70.2 (interquartile range 70.0-70.3) years, 80 events]; and the Uppsala Longitudinal Study of Adult Men [ULSAM, n = 685, median age 77.8 (interquartile range 76.9-78.1) years, 90 events]. Twenty-nine proteins were associated with incident heart failure in the discovery cohort PIVUS after adjustment for age and sex, and correction for multiple testing. Eighteen associations replicated in ULSAM. In pooled analysis of both cohorts, higher levels of nine proteins were associated with incident heart failure after adjustment for established risk factors: growth differentiation factor 15 (GDF-15), T-cell immunoglobulin and mucin domain 1 (TIM-1), tumour necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2), spondin-1 (SPON1), matrix metalloproteinase-12 (MMP-12), follistatin (FS), urokinase-type plasminogen activator surface receptor (U-PAR), osteoprotegerin (OPG), and suppression of tumorigenicity 2 (ST2). Of these, GDF-15, U-PAR, MMP-12, TRAIL-R2, SPON1 and FS were associated with worsened echocardiographic left ventricular systolic function at baseline, while only TIM-1 was positively associated with worsened diastolic function (P < 0.02 for all). Proteomic profiling identified several novel associations between proteins involved in apoptosis, inflammation, matrix remodelling, and fibrinolysis with incident heart failure in elderly individuals. Our results encourage additional studies investigating the underlying mechanisms and the clinical utility of our findings. © 2017 The Authors. European Journal of Heart Failure © 2017 European

  18. Cardiac Rotational Mechanics As a Predictor of Myocardial Recovery in Heart Failure Patients Undergoing Chronic Mechanical Circulatory Support: A Pilot Study.

    PubMed

    Bonios, Michael J; Koliopoulou, Antigone; Wever-Pinzon, Omar; Taleb, Iosif; Stehlik, Josef; Xu, Weining; Wever-Pinzon, James; Catino, Anna; Kfoury, Abdallah G; Horne, Benjamin D; Nativi-Nicolau, Jose; Adamopoulos, Stamatis N; Fang, James C; Selzman, Craig H; Bax, Jeroen J; Drakos, Stavros G

    2018-04-01

    Impaired qualitative and quantitative left ventricular (LV) rotational mechanics predict cardiac remodeling progression and prognosis after myocardial infarction. We investigated whether cardiac rotational mechanics can predict cardiac recovery in chronic advanced cardiomyopathy patients. Sixty-three patients with advanced and chronic dilated cardiomyopathy undergoing implantation of LV assist device (LVAD) were prospectively investigated using speckle tracking echocardiography. Acute heart failure patients were prospectively excluded. We evaluated LV rotational mechanics (apical and basal LV twist, LV torsion) and deformational mechanics (circumferential and longitudinal strain) before LVAD implantation. Cardiac recovery post-LVAD implantation was defined as (1) final resulting LV ejection fraction ≥40%, (2) relative LV ejection fraction increase ≥50%, (iii) relative LV end-systolic volume decrease ≥50% (all 3 required). Twelve patients fulfilled the criteria for cardiac recovery (Rec Group). The Rec Group had significantly less impaired pre-LVAD peak LV torsion compared with the Non-Rec Group. Notably, both groups had similarly reduced pre-LVAD LV ejection fraction. By receiver operating characteristic curve analysis, pre-LVAD peak LV torsion of 0.35 degrees/cm had a 92% sensitivity and a 73% specificity in predicting cardiac recovery. Peak LV torsion before LVAD implantation was found to be an independent predictor of cardiac recovery after LVAD implantation (odds ratio, 0.65 per 0.1 degrees/cm [0.49-0.87]; P =0.014). LV rotational mechanics seem to be useful in selecting patients prone to cardiac recovery after mechanical unloading induced by LVADs. Future studies should investigate the utility of these markers in predicting durable cardiac recovery after the explantation of the cardiac assist device. © 2018 American Heart Association, Inc.

  19. Rare Disease Mechanisms Identified by Genealogical Proteomics of Copper Homeostasis Mutant Pedigrees.

    PubMed

    Zlatic, Stephanie A; Vrailas-Mortimer, Alysia; Gokhale, Avanti; Carey, Lucas J; Scott, Elizabeth; Burch, Reid; McCall, Morgan M; Rudin-Rush, Samantha; Davis, John Bowen; Hartwig, Cortnie; Werner, Erica; Li, Lian; Petris, Michael; Faundez, Victor

    2018-03-28

    Rare neurological diseases shed light onto universal neurobiological processes. However, molecular mechanisms connecting genetic defects to their disease phenotypes are elusive. Here, we obtain mechanistic information by comparing proteomes of cells from individuals with rare disorders with proteomes from their disease-free consanguineous relatives. We use triple-SILAC mass spectrometry to quantify proteomes from human pedigrees affected by mutations in ATP7A, which cause Menkes disease, a rare neurodegenerative and neurodevelopmental disorder stemming from systemic copper depletion. We identified 214 proteins whose expression was altered in ATP7A -/y fibroblasts. Bioinformatic analysis of ATP7A-mutant proteomes identified known phenotypes and processes affected in rare genetic diseases causing copper dyshomeostasis, including altered mitochondrial function. We found connections between copper dyshomeostasis and the UCHL1/PARK5 pathway of Parkinson disease, which we validated with mitochondrial respiration and Drosophila genetics assays. We propose that our genealogical "omics" strategy can be broadly applied to identify mechanisms linking a genomic locus to its phenotypes. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Role of Protein Quality Control Failure in Alcoholic Hepatitis Pathogenesis.

    PubMed

    French, Samuel W; Masouminia, Maryam; Samadzadeh, Sara; Tillman, Brittany C; Mendoza, Alejandro; French, Barbara A

    2017-02-08

    The mechanisms of protein quality control in hepatocytes in cases of alcoholic hepatitis (AH) including ufmylation, FAT10ylation, metacaspase 1 (Mca1), ERAD (endoplasmic reticulum-associated degradation), JUNQ (juxta nuclear quality control), IPOD (insoluble protein deposit) autophagocytosis, and ER stress are reviewed. The Mallory-Denk body (MDB) formation develops in the hepatocytes in alcoholic hepatitis as a consequence of the failure of these protein quality control mechanisms to remove misfolded and damaged proteins and to prevent MDB aggresome formation within the cytoplasm of hepatocytes. The proteins involved in the quality control pathways are identified, quantitated, and visualized by immunofluorescent antibody staining of liver biopsies from patients with AH. Quantification of the proteins are achieved by measuring the fluorescent intensity using a morphometric system. Ufmylation and FAT10ylation pathways were downregulated, Mca1 pathways were upregulated, autophagocytosis was upregulated, and ER stress PERK (protein kinase RNA-like endoplasmic reticulum kinase) and CHOP (CCAAT/enhancer-binding protein homologous protein) mechanisms were upregulated. Despite the upregulation of several pathways of protein quality control, aggresomes (MDBs) still formed in the hepatocytes in AH. The pathogenesis of AH is due to the failure of protein quality control, which causes balloon-cell change with MDB formation and ER stress.

  1. Analyses of Failure Mechanisms and Residual Stresses in Graphite/Polyimide Composites Subjected to Shear Dominated Biaxial Loads

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Predecki, P. K.; Armentrout, D.; Benedikt, B.; Rupnowski, P.; Gentz, M.; Kumosa, L.; Sutter, J. K.

    2002-01-01

    This research contributes to the understanding of macro- and micro-failure mechanisms in woven fabric polyimide matrix composites based on medium and high modulus graphite fibers tested under biaxial, shear dominated stress conditions over a temperature range of -50 C to 315 C. The goal of this research is also to provide a testing methodology for determining residual stress distributions in unidirectional, cross/ply and fabric graphite/polyimide composites using the concept of embedded metallic inclusions and X-ray diffraction (XRD) measurements.

  2. Addressing Production System Failures Using Multi-agent Control

    NASA Astrophysics Data System (ADS)

    Gautam, Rajesh; Miyashita, Kazuo

    Output in high-volume production facilities is limited by bottleneck machines. We propose a control mechanism by modeling workstations as agents that pull jobs from other agents based on their current WIP level and requirements. During failures, when flows of some jobs are disrupted, the agents pull alternative jobs to maintain utilization of their capacity at a high level. In this paper, we empirically demonstrate that the proposed mechanism can react to failures more appropriately than other control mechanisms using a benchmark problem of a semiconductor manufacturing process.

  3. A procedure for combining acoustically induced and mechanically induced loads (first passage failure design criterion)

    NASA Technical Reports Server (NTRS)

    Crowe, D. R.; Henricks, W.

    1983-01-01

    The combined load statistics are developed by taking the acoustically induced load to be a random population, assumed to be stationary. Each element of this ensemble of acoustically induced loads is assumed to have the same power spectral density (PSD), obtained previously from a random response analysis employing the given acoustic field in the STS cargo bay as a stationary random excitation. The mechanically induced load is treated as either (1) a known deterministic transient, or (2) a nonstationary random variable of known first and second statistical moments which vary with time. A method is then shown for determining the probability that the combined load would, at any time, have a value equal to or less than a certain level. Having obtained a statistical representation of how the acoustic and mechanical loads are expected to combine, an analytical approximation for defining design levels for these loads is presented using the First Passage failure criterion.

  4. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure

    NASA Astrophysics Data System (ADS)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.

    2017-05-01

    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  5. Ventilator Dependence Risk Score for the Prediction of Prolonged Mechanical Ventilation in Patients Who Survive Sepsis/Septic Shock with Respiratory Failure.

    PubMed

    Chang, Ya-Chun; Huang, Kuo-Tung; Chen, Yu-Mu; Wang, Chin-Chou; Wang, Yi-Hsi; Tseng, Chia-Cheng; Lin, Meng-Chih; Fang, Wen-Feng

    2018-04-04

    We intended to develop a scoring system to predict mechanical ventilator dependence in patients who survive sepsis/septic shock with respiratory failure. This study evaluated 251 adult patients in medical intensive care units (ICUs) between August 2013 to October 2015, who had survived for over 21 days and received aggressive treatment. The risk factors for ventilator dependence were determined. We then constructed a ventilator dependence (VD) risk score using the identified risk factors. The ventilator dependence risk score was calculated as the sum of the following four variables after being adjusted by proportion to the beta coefficient. We assigned a history of previous stroke, a score of one point, platelet count less than 150,000/μL a score of one point, pH value less than 7.35 a score of two points, and the fraction of inspired oxygen on admission day 7 over 39% as two points. The area under the curve in the derivation group was 0.725 (p < 0.001). We then applied the VD risk score for validation on 175 patients. The area under the curve in the validation group was 0.658 (p = 0.001). VD risk score could be applied to predict prolonged mechanical ventilation in patients who survive sepsis/septic shock.

  6. Body habitus in heart failure: understanding the mechanisms and clinical significance of the obesity paradox.

    PubMed

    Parto, Parham; Lavie, Carl J; Arena, Ross; Bond, Samantha; Popovic, Dejana; Ventura, Hector O

    2016-11-01

    The prevalence of obesity among adults and children worldwide has reached epic proportions and has become a major independent risk factor for the development of heart failure (HF), in addition to a contributor of hypertension and cardiovascular disease. The implications of obesity in the development of HF involve adverse effects on cardiac structure and function. Despite all of this, in the setting of chronic HF, excess body mass is associated with improved clinical outcomes, demonstrating the presence of an obesity paradox. In this review, we will discuss the gender differences, global application, potential mechanisms and role of interventions based on fitness and purposeful weight loss as potential therapeutic strategies.

  7. Failure Mechanism of a Stellite Coating on Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Haixing; Wang, Huang; Li, Yuyan; Liu, Xia; He, Guo

    2017-09-01

    The Stellite 21 coating on the heat-resistant steel X12CrMoWVNbN10-1-1 (so-called COSTE) used in a steam turbine valve was found to be fatigue broken after service at around 873 K (600 °C) for about 8 years. In order to investigate the failure mechanism, a fresh Stellite 21 coating was also prepared on the same COSTE steel substrate by using the similar deposition parameters for comparison. It was found that the Stellite 21 coating was significantly diluted by the steel, resulting in a thin Fe-rich layer in the coating close to the fusion line. Such high Fe concentration together with the incessant Fe diffusion from the steel substrate to the coating during the service condition (about 873 K (600 °C) for long time) induced the eutectoid decomposition of the fcc α-Co(Fe,Cr,Mo) solid solution, forming an irregular eutectoid microstructure that was composed of the primitive cubic α'-FeCo(Cr,Mo) phase and the tetragonal σ-CrCo(Fe,Mo) phase. The brittle nature of such α'/ σ eutectoid microstructure contributed to the fatigue fracture of the Stellite 21 coating, resulting in an intergranular rupture mode.

  8. Development of GENOA Progressive Failure Parallel Processing Software Systems

    NASA Technical Reports Server (NTRS)

    Abdi, Frank; Minnetyan, Levon

    1999-01-01

    A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.

  9. Laser Engineered Net Shaping of Nickel-Based Superalloy Inconel 718 Powders onto AISI 4140 Alloy Steel Substrates: Interface Bond and Fracture Failure Mechanism

    PubMed Central

    Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao

    2017-01-01

    As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718. PMID:28772702

  10. Laser Engineered Net Shaping of Nickel-Based Superalloy Inconel 718 Powders onto AISI 4140 Alloy Steel Substrates: Interface Bond and Fracture Failure Mechanism.

    PubMed

    Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao

    2017-03-25

    As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718.

  11. Predictive value of daily living score in acute respiratory failure of COPD patients requiring invasive mechanical ventilation pilot study.

    PubMed

    Langlet, Ketty; Van Der Linden, Thierry; Launois, Claire; Fourdin, Caroline; Cabaret, Philippe; Kerkeni, Nadia; Barbe, Coralie; Lebargy, François; Deslée, Gaetan

    2012-10-18

    Mechanical ventilation (MV) is imperative in many forms of acute respiratory failure (ARF) in COPD patients. Previous studies have shown the difficulty to identify parameters predicting the outcome of COPD patients treated by invasive MV. Our hypothesis was that a non specialized score as the activities daily living (ADL) score may help to predict the outcome of these patients. We studied the outcome of 25 COPD patients admitted to the intensive care unit for ARF requiring invasive MV. The patients were divided into those weaning success (group A n = 17, 68%) or failure (group B n = 8, 32%). We investigated the correlation between the ADL score and the outcome and mortality. The ADL score was higher in group A (5.1 ±1.1 vs 3.7 ± 0.7 in group B, p < 0.01). Weaning was achieved in 76.5% of the cases with an ADL score ≥ 4 and in 23.5% of the cases with an ADL score < 4 (p < 0.05). Pulmonary function test, arterial blood gases collected during period of clinical stability and at admission and nutritional status were similar in both groups. The mortality, at six months, was 36%. The ADL score was a significant predictor of 6-month mortality (80 with an ADL score <4, 20 with an ADL score ≥4, p < 0.01). Our pilot study demonstrates that the ADL score is predictive of weaning success and mortality at 6 months, suggesting that the assessment of daily activities should be an important component of ARF management in COPD patients.

  12. Identifying Mechanisms of Teaching Practices: A Study in Swedish Comprehensive Schooling

    ERIC Educational Resources Information Center

    Reichenberg, Olof

    2018-01-01

    The aim of this article is to identify the mechanisms behind the occurrence of teaching practices of seatwork and recitation across lessons. The study is based on an analysis of 74 video recorded lessons from 4 school classes in Swedish comprehensive schools during 2013. Firstly, the results suggest that teaching practices such as seatwork…

  13. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  14. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping

    PubMed Central

    Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao

    2017-01-01

    AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity. PMID:29120374

  15. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping.

    PubMed

    Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao

    2017-11-09

    AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.

  16. How Robust Is Your Project? From Local Failures to Global Catastrophes: A Complex Networks Approach to Project Systemic Risk.

    PubMed

    Ellinas, Christos; Allan, Neil; Durugbo, Christopher; Johansson, Anders

    2015-01-01

    Current societal requirements necessitate the effective delivery of complex projects that can do more while using less. Yet, recent large-scale project failures suggest that our ability to successfully deliver them is still at its infancy. Such failures can be seen to arise through various failure mechanisms; this work focuses on one such mechanism. Specifically, it examines the likelihood of a project sustaining a large-scale catastrophe, as triggered by single task failure and delivered via a cascading process. To do so, an analytical model was developed and tested on an empirical dataset by the means of numerical simulation. This paper makes three main contributions. First, it provides a methodology to identify the tasks most capable of impacting a project. In doing so, it is noted that a significant number of tasks induce no cascades, while a handful are capable of triggering surprisingly large ones. Secondly, it illustrates that crude task characteristics cannot aid in identifying them, highlighting the complexity of the underlying process and the utility of this approach. Thirdly, it draws parallels with systems encountered within the natural sciences by noting the emergence of self-organised criticality, commonly found within natural systems. These findings strengthen the need to account for structural intricacies of a project's underlying task precedence structure as they can provide the conditions upon which large-scale catastrophes materialise.

  17. Lungs in Heart Failure

    PubMed Central

    Apostolo, Anna; Giusti, Giuliano; Gargiulo, Paola; Bussotti, Maurizio; Agostoni, Piergiuseppe

    2012-01-01

    Lung function abnormalities both at rest and during exercise are frequently observed in patients with chronic heart failure, also in the absence of respiratory disease. Alterations of respiratory mechanics and of gas exchange capacity are strictly related to heart failure. Severe heart failure patients often show a restrictive respiratory pattern, secondary to heart enlargement and increased lung fluids, and impairment of alveolar-capillary gas diffusion, mainly due to an increased resistance to molecular diffusion across the alveolar capillary membrane. Reduced gas diffusion contributes to exercise intolerance and to a worse prognosis. Cardiopulmonary exercise test is considered the “gold standard” when studying the cardiovascular, pulmonary, and metabolic adaptations to exercise in cardiac patients. During exercise, hyperventilation and consequent reduction of ventilation efficiency are often observed in heart failure patients, resulting in an increased slope of ventilation/carbon dioxide (VE/VCO2) relationship. Ventilatory efficiency is as strong prognostic and an important stratification marker. This paper describes the pulmonary abnormalities at rest and during exercise in the patients with heart failure, highlighting the principal diagnostic tools for evaluation of lungs function, the possible pharmacological interventions, and the parameters that could be useful in prognostic assessment of heart failure patients. PMID:23365739

  18. Sacroiliac joint luxation after pedicle subtraction osteotomy: report of two cases and analysis of failure mechanism.

    PubMed

    Charles, Yann Philippe; Yu, Bo; Steib, Jean-Paul

    2016-05-01

    Sagittal decompensation after pedicle subtraction osteotomy (PSO) is considered as late onset complication. Several mechanisms have been suggested, but little attention has been paid to the caudal end of lumbar instrumented fusion, especially sacral iliac joint (SIJ) deterioration. Clinical histories and radiographic sagittal parameters of two patients with SIJ luxation after PSO are presented. The biomechanical failure mechanism and risk factors are analysed. Two patients underwent correction of fixed anterior sagittal imbalance by PSO, followed by pseudarthrosis revision surgery. Both of them sustained persistent sacroiliac pain, progressive recurrence of anterior imbalance and progressive pelvic incidence (PI) increase around 10°. An acute bilateral SIJ luxation occurred in both patients leading to sharp increase or PI around 20°. One patient was treated by SIJ fusion and the other patient was placed on non-weight-bearing crutch ambulation for 1 year. Both patients had a high preoperative PI (95° and 78°). A theoretical match between lumbar lordosis (LL) and PI was not achieved by PSO. Osteopenia was present in both patients. Computed tomography evidenced L5-S1 pseudarthrosis and sacroiliac joint violation by pelvic or sacral ala screws. Patients with high PI might seek for further compensation at their SIJ when lacking LL after PSO. Chronic anterior imbalance might lead to progressive weakening of sacroiliac ligaments. Initial circumferential lumbosacral fusion and accurate iliac screw fixation might reduce stress on implants, risk for pseudarthrosis, implant failure and finally SIJ deterioration. Bone mineral density should further be investigated preoperatively.

  19. Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition

    PubMed Central

    Polles, Guido; Indelicato, Giuliana; Potestio, Raffaello; Cermelli, Paolo; Twarock, Reidun; Micheletti, Cristian

    2013-01-01

    Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available. PMID:24244139

  20. Deficiencies in the uterine environment and failure to support embryo development

    USDA-ARS?s Scientific Manuscript database

    Pregnancy failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. Although fertilization failure occurs, embryonic mortality has a greater contribution to pregnancy failure. The focus of this review is on cattle and factors affecting, and mechanisms r...

  1. A streamlined failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and usedmore » to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.« less

  2. A streamlined failure mode and effects analysis.

    PubMed

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  3. Numerical Analysis of Solids at Failure

    DTIC Science & Technology

    2011-08-20

    failure analyses include the formulation of invariant finite elements for thin Kirchhoff rods, and preliminary initial studies of growth in...analysis of the failure of other structural/mechanical systems, including the finite element modeling of thin Kirchhoff rods and the constitutive...algorithm based on the connectivity graph of the underlying finite element mesh. In this setting, the discontinuities are defined by fronts propagating

  4. Ventilatory support in critically ill hematology patients with respiratory failure

    PubMed Central

    2012-01-01

    Introduction Hematology patients admitted to the ICU frequently experience respiratory failure and require mechanical ventilation. Noninvasive mechanical ventilation (NIMV) may decrease the risk of intubation, but NIMV failure poses its own risks. Methods To establish the impact of ventilatory management and NIMV failure on outcome, data from a prospective, multicenter, observational study were analyzed. All hematology patients admitted to one of the 34 participating ICUs in a 17-month period were followed up. Data on demographics, diagnosis, severity, organ failure, and supportive therapies were recorded. A logistic regression analysis was done to evaluate the risk factors associated with death and NIVM failure. Results Of 450 patients, 300 required ventilatory support. A diagnosis of congestive heart failure and the initial use of NIMV significantly improved survival, whereas APACHE II score, allogeneic transplantation, and NIMV failure increased the risk of death. The risk factors associated with NIMV success were age, congestive heart failure, and bacteremia. Patients with NIMV failure experienced a more severe respiratory impairment than did those electively intubated. Conclusions NIMV improves the outcome of hematology patients with respiratory insufficiency, but NIMV failure may have the opposite effect. A careful selection of patients with rapidly reversible causes of respiratory failure may increase NIMV success. PMID:22827955

  5. Tensile strength and failure load of sutures for robotic surgery.

    PubMed

    Abiri, Ahmad; Paydar, Omeed; Tao, Anna; LaRocca, Megan; Liu, Kang; Genovese, Bradley; Candler, Robert; Grundfest, Warren S; Dutson, Erik P

    2017-08-01

    Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595-600, 1985. doi: 10.1002/jbm.820190511 ). However, these systems still suffer from lack of haptic feedback, which results in exertion of excessive force, often leading to suture failures (Barbash et al. in Ann Surg 259(1):1-6, 2014. doi: 10.1097/SLA.0b013e3182a5c8b8 ). This work catalogs tensile strength and failure load among commonly used sutures in an effort to prevent robotic surgical consoles from exceeding identified thresholds. Trials were thus conducted on common sutures varying in material type, gauge size, rate of pulling force, and method of applied force. Polydioxanone, Silk, Vicryl, and Prolene, gauges 5-0 to 1-0, were pulled till failure using a commercial mechanical testing system. 2-0 and 3-0 sutures were further tested for the effect of pull rate on failure load at rates of 50, 200, and 400 mm/min. 3-0 sutures were also pulled till failure using a da Vinci robotic surgical system in unlooped, looped, and at the needle body arrangements. Generally, Vicryl and PDS sutures had the highest mechanical strength (47-179 kN/cm 2 ), while Silk had the lowest (40-106 kN/cm 2 ). Larger diameter sutures withstand higher total force, but finer gauges consistently show higher force per unit area. The difference between material types becomes increasingly significant as the diameters decrease. Comparisons of identical suture materials and gauges show 27-50% improvement in the tensile strength over data obtained in 1985 (Ballantyne in Surg Endosc Other Interv Tech 16(10):1389-1402, 2002. doi: 10.1007/s00464-001-8283-7 ). No significant differences were observed when sutures were pulled at different rates. Reduction in suture strength appeared to be strongly affected by the technique used to manipulate the suture. Availability of suture tensile strength and failure load data will help define software safety

  6. Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.

  7. Failure Analysis in Platelet Molded Composite Systems

    NASA Astrophysics Data System (ADS)

    Kravchenko, Sergii G.

    Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.

  8. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure

    PubMed Central

    Rothermel, Beverly A.; Berenji, Kambeez; Tannous, Paul; Kutschke, William; Dey, Asim; Nolan, Bridgid; Yoo, Ki-Dong; Demetroulis, Elaine; Gimbel, Michael; Cabuay, Barry; Karimi, Mohsen; Hill, Joseph A.

    2014-01-01

    Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease. PMID:16033866

  9. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure.

    PubMed

    Rothermel, Beverly A; Berenji, Kambeez; Tannous, Paul; Kutschke, William; Dey, Asim; Nolan, Bridgid; Yoo, Ki-Dong; Demetroulis, Elaine; Gimbel, Michael; Cabuay, Barry; Karimi, Mohsen; Hill, Joseph A

    2005-09-21

    Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease.

  10. Analysis of electrolyte abnormalities and the mechanisms leading to arrhythmias in heart failure. A literature review.

    PubMed

    Urso, C; Canino, B; Brucculeri, S; Firenze, A; Caimi, G

    2016-01-01

    About 50% of deaths from heart failure (HF) are sudden, presumably referable to arrhythmias. Electrolyte and acid-base abnormalities are a frequent and potentially dangerous complication in HF patients. Their incidence is almost always correlated with the severity of cardiac dysfunction; furthermore leading to arrhythmias, these imbalances are associated with a poor prognosis. The frequency of ventricular ectopic beats and sudden cardiac death correlate with both plasma and whole body levels of potassium, especially in alkalemia. The early recognition of these alterations and the knowledge of the pathophysiological mechanisms are useful for the management of these HF patients.

  11. Advancements in mechanical circulatory support for patients in acute and chronic heart failure

    PubMed Central

    Csepe, Thomas A.

    2017-01-01

    Cardiogenic shock (CS) continues to have high mortality and morbidity despite advances in pharmacological, mechanical, and reperfusion approaches to treatment. When CS is refractory to medical therapy, percutaneous mechanical circulatory support (MCS) should be considered. Acute MCS devices, ranging from intra-aortic balloon pumps (IABPs) to percutaneous temporary ventricular assist devices (VAD) to extracorporeal membrane oxygenation (ECMO), can aid, restore, or maintain appropriate tissue perfusion before the development of irreversible end-organ damage. Technology has improved patient survival to recovery from CS, but in patients whom cardiac recovery does not occur, acute MCS can be effectively utilized as a bridge to long-term MCS devices and/or heart transplantation. Heart transplantation has been limited by donor heart availability, leading to a greater role of left ventricular assist device (LVAD) support. In patients with biventricular failure that are ineligible for LVAD implantation, further advancements in the total artificial heart (TAH) may allow for improved survival compared to medical therapy alone. In this review, we discuss the current state of acute and durable MCS, ongoing advances in LVADs and TAH devices, improved methods of durable MCS implantation and patient selection, and future MCS developments in this dynamic field that may allow for optimization of HF treatment. PMID:29268418

  12. Lox/Gox related failures during Space Shuttle Main Engine development

    NASA Technical Reports Server (NTRS)

    Cataldo, C. E.

    1981-01-01

    Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures were encountered during the development and testing of the space shuttle main engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.

  13. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC).

    PubMed

    Harjola, Veli-Pekka; Mullens, Wilfried; Banaszewski, Marek; Bauersachs, Johann; Brunner-La Rocca, Hans-Peter; Chioncel, Ovidiu; Collins, Sean P; Doehner, Wolfram; Filippatos, Gerasimos S; Flammer, Andreas J; Fuhrmann, Valentin; Lainscak, Mitja; Lassus, Johan; Legrand, Matthieu; Masip, Josep; Mueller, Christian; Papp, Zoltán; Parissis, John; Platz, Elke; Rudiger, Alain; Ruschitzka, Frank; Schäfer, Andreas; Seferovic, Petar M; Skouri, Hadi; Yilmaz, Mehmet Birhan; Mebazaa, Alexandre

    2017-07-01

    Organ injury and impairment are commonly observed in patients with acute heart failure (AHF), and congestion is an essential pathophysiological mechanism of impaired organ function. Congestion is the predominant clinical profile in most patients with AHF; a smaller proportion presents with peripheral hypoperfusion or cardiogenic shock. Hypoperfusion further deteriorates organ function. The injury and dysfunction of target organs (i.e. heart, lungs, kidneys, liver, intestine, brain) in the setting of AHF are associated with increased risk for mortality. Improvement in organ function after decongestive therapies has been associated with a lower risk for post-discharge mortality. Thus, the prevention and correction of organ dysfunction represent a therapeutic target of interest in AHF and should be evaluated in clinical trials. Treatment strategies that specifically prevent, reduce or reverse organ dysfunction remain to be identified and evaluated to determine if such interventions impact mortality, morbidity and patient-centred outcomes. This paper reflects current understanding among experts of the presentation and management of organ impairment in AHF and suggests priorities for future research to advance the field. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  14. [Failure mode effect analysis applied to preparation of intravenous cytostatics].

    PubMed

    Santos-Rubio, M D; Marín-Gil, R; Muñoz-de la Corte, R; Velázquez-López, M D; Gil-Navarro, M V; Bautista-Paloma, F J

    2016-01-01

    To proactively identify risks in the preparation of intravenous cytostatic drugs, and to prioritise and establish measures to improve safety procedures. Failure Mode Effect Analysis methodology was used. A multidisciplinary team identified potential failure modes of the procedure through a brainstorming session. The impact associated with each failure mode was assessed with the Risk Priority Number (RPN), which involves three variables: occurrence, severity, and detectability. Improvement measures were established for all identified failure modes, with those with RPN>100 considered critical. The final RPN (theoretical) that would result from the proposed measures was also calculated and the process was redesigned. A total of 34 failure modes were identified. The initial accumulated RPN was 3022 (range: 3-252), and after recommended actions the final RPN was 1292 (range: 3-189). RPN scores >100 were obtained in 13 failure modes; only the dispensing sub-process was free of critical points (RPN>100). A final reduction of RPN>50% was achieved in 9 failure modes. This prospective risk analysis methodology allows the weaknesses of the procedure to be prioritised, optimize use of resources, and a substantial improvement in the safety of the preparation of cytostatic drugs through the introduction of double checking and intermediate product labelling. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  15. Ageing and degradation determines failure mode on sea urchin spines.

    PubMed

    Merino, Monica; Vicente, Erika; Gonzales, Karen N; Torres, Fernando G

    2017-09-01

    Sea urchin spines are an example of a hard natural composite with mineral and organic phases. The role of the organic phase in the response to mechanical stress was assessed by promoting the degradation of such spines by exposing them to ageing and ultraviolet (UV) irradiation. Thermal and structural characterization of the irradiated samples show that this UV irradiation treatment promotes degradation of the organic and inorganic phase of spines. Uniaxial compression tests carried out on aged and UV irradiated samples showed that both treatments affected the mechanical properties of the spines. Scanning electron microscopy (SEM) images of failed specimens were used to analyze the failure mechanisms of the compressed spines. The analysis of the fracture surfaces showed that the failure mechanisms of spines were modified as a consequence of UV irradiation, leading in the last case to mostly brittle fracture surfaces. We suggest that the proteins responsible for the formation of calcite also determine the mechanical properties and the failure mode of spines. This system can be used as a model for the study of the failure modes of other natural and synthetic hard composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A new method to estimate location and slip of simulated rock failure events

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Galvan, Boris; Miller, Stephen Andrew

    2015-05-01

    At the laboratory scale, identifying and locating acoustic emissions (AEs) is a common method for short term prediction of failure in geomaterials. Above average AE typically precedes the failure process and is easily measured. At larger scales, increase in micro-seismic activity sometimes precedes large earthquakes (e.g. Tohoku, L'Aquilla, oceanic transforms), and can be used to assess seismic risk. The goal of this work is to develop a methodology and numerical algorithms for extracting a measurable quantity analogous to AE arising from the solution of equations governing rock deformation. Since there is no physical property to quantify AE derivable from the governing equations, an appropriate rock-mechanical analog needs to be found. In this work, we identify a general behavior of the AE generation process preceding rock failure. This behavior includes arbitrary localization of low magnitude events during pre-failure stage, followed by increase in number and amplitude, and finally localization around the incipient failure plane during macroscopic failure. We propose deviatoric strain rate as the numerical analog that mimics this behavior, and develop two different algorithms designed to detect rapid increases in deviatoric strain using moving averages. The numerical model solves a fully poro-elasto-plastic continuum model and is coupled to a two-phase flow model. We test our model by comparing simulation results with experimental data of drained compression and of fluid injection experiments. We find for both cases that occurrence and amplitude of our AE analog mimic the observed general behavior of the AE generation process. Our technique can be extended to modeling at the field scale, possibly providing a mechanistic basis for seismic hazard assessment from seismicity that occasionally precedes large earthquakes.

  17. Program Helps In Analysis Of Failures

    NASA Technical Reports Server (NTRS)

    Stevenson, R. W.; Austin, M. E.; Miller, J. G.

    1993-01-01

    Failure Environment Analysis Tool (FEAT) computer program developed to enable people to see and better understand effects of failures in system. User selects failures from either engineering schematic diagrams or digraph-model graphics, and effects or potential causes of failures highlighted in color on same schematic-diagram or digraph representation. Uses digraph models to answer two questions: What will happen to system if set of failure events occurs? and What are possible causes of set of selected failures? Helps design reviewers understand exactly what redundancies built into system and where there is need to protect weak parts of system or remove them by redesign. Program also useful in operations, where it helps identify causes of failure after they occur. FEAT reduces costs of evaluation of designs, training, and learning how failures propagate through system. Written using Macintosh Programmers Workshop C v3.1. Can be linked with CLIPS 5.0 (MSC-21927, available from COSMIC).

  18. Failure mode analysis to predict product reliability.

    NASA Technical Reports Server (NTRS)

    Zemanick, P. P.

    1972-01-01

    The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.

  19. International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary

    NASA Technical Reports Server (NTRS)

    Sievers, Daniel E.; Warden, Harry K.

    2010-01-01

    A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism. The mechanism that effects the structural connection of the Common Berthing Mechanism halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per Common Berthing Mechanism. The Common Berthing Mechanism has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface (Figure 1). The Powered Bolt Assemblies are preloaded to approximately 84.5 kN (19000 lb) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes that create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.

  20. The use of light emission in failure analysis of CMOS ICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, C.F.; Soden, J.M.; Cole, E.I. Jr.

    1990-01-01

    The use of photon emission for analyzing failure mechanisms and defects in CMOS ICs is presented. Techniques are given for accurate identification and spatial localization of failure mechanisms and physical defects, including defects such as short and open circuits which do not themselves emit photons.

  1. Islet β cell failure in type 2 diabetes

    PubMed Central

    Prentki, Marc; Nolan, Christopher J.

    2006-01-01

    The major focus of this Review is on the mechanisms of islet β cell failure in the pathogenesis of obesity-associated type 2 diabetes (T2D). As this demise occurs within the context of β cell compensation for insulin resistance, consideration is also given to the mechanisms involved in the compensation process, including mechanisms for expansion of β cell mass and for enhanced β cell performance. The importance of genetic, intrauterine, and environmental factors in the determination of “susceptible” islets and overall risk for T2D is reviewed. The likely mechanisms of β cell failure are discussed within the two broad categories: those with initiation and those with progression roles. PMID:16823478

  2. Rescue therapy by switching to total face mask after failure of face mask-delivered noninvasive ventilation in do-not-intubate patients in acute respiratory failure.

    PubMed

    Lemyze, Malcolm; Mallat, Jihad; Nigeon, Olivier; Barrailler, Stéphanie; Pepy, Florent; Gasan, Gaëlle; Vangrunderbeeck, Nicolas; Grosset, Philippe; Tronchon, Laurent; Thevenin, Didier

    2013-02-01

    To evaluate the impact of switching to total face mask in cases where face mask-delivered noninvasive mechanical ventilation has already failed in do-not-intubate patients in acute respiratory failure. Prospective observational study in an ICU and a respiratory stepdown unit over a 12-month study period. Switching to total face mask, which covers the entire face, when noninvasive mechanical ventilation using facial mask (oronasal mask) failed to reverse acute respiratory failure. Seventy-four patients with a do-not-intubate order and treated by noninvasive mechanical ventilation for acute respiratory failure. Failure of face mask-delivered noninvasive mechanical ventilation was associated with a three-fold increase in in-hospital mortality (36% vs. 10.5%; p = 0.009). Nevertheless, 23 out of 36 patients (64%) in whom face mask-delivered noninvasive mechanical ventilation failed to reverse acute respiratory failure and, therefore, switched to total face mask survived hospital discharge. Reasons for switching from facial mask to total face mask included refractory hypercapnic acute respiratory failure (n = 24, 66.7%), painful skin breakdown or facial mask intolerance (n = 11, 30%), and refractory hypoxemia (n = 1, 2.7%). In the 24 patients switched from facial mask to total face mask because of refractory hypercapnia, encephalopathy score (3 [3-4] vs. 2 [2-3]; p < 0.0001), PaCO2 (87 ± 25 mm Hg vs. 70 ± 17 mm Hg; p < 0.0001), and pH (7.24 ± 0.1 vs. 7.32 ± 0.09; p < 0.0001) significantly improved after 2 hrs of total face mask-delivered noninvasive ventilation. Patients switched early to total face mask (in the first 12 hrs) developed less pressure sores (n = 5, 24% vs. n = 13, 87%; p = 0.0002), despite greater length of noninvasive mechanical ventilation within the first 48 hrs (44 hrs vs. 34 hrs; p = 0.05) and less protective dressings (n = 2, 9.5% vs. n = 8, 53.3%; p = 0.007). The optimal cutoff value for face mask-delivered noninvasive mechanical ventilation

  3. The use of fractography to supplement analysis of bone mechanical properties in different strains of mice.

    PubMed

    Wise, L M; Wang, Z; Grynpas, M D

    2007-10-01

    Fractography has not been fully developed as a useful technique in assessing failure mechanisms of bone. While fracture surfaces of osteonal bone have been explored, this may not apply to conventional mechanical testing of mouse bone. Thus, the focus of this work was to develop and evaluate the efficacy of a fractography protocol for use in supplementing the interpretation of failure mechanisms in mouse bone. Micro-computed tomography and three-point bending were performed on femora of two groups of 6-month-old mice (C57BL/6 and a mixed strain background of 129SV/C57BL6). SEM images of fracture surfaces were collected, and areas of "tension", "compression" and "transition" were identified. Percent areas of roughness were identified and estimated within areas of "tension" and "compression" and subsequently compared to surface roughness measurements generated from an optical profiler. Porosity parameters were determined on the tensile side. Linear regression analysis was performed to evaluate correlations between certain parameters. Results show that 129 mice exhibit significantly increased bone mineral density (BMD), number of "large" pores, failure strength, elastic modulus and energy to failure compared to B6 mice (p<0.001). Both 129 and B6 mice exhibit significantly (p<0.01) more percent areas of tension (49+/-1%, 42+/-2%; respectively) compared to compression (26+/-2%, 31+/-1%; respectively). In terms of "roughness", B6 mice exhibit significantly less "rough" areas (30+/-4%) compared to "smooth" areas (70+/-4%) on the tensile side only (p<0.001). Qualitatively, 129 mice demonstrate more evidence of bone toughening through fiber bridging and loosely connected fiber bundles. The number of large pores is positively correlated with failure strength (p=0.004), elastic modulus (p=0.002) and energy to failure (p=0.041). Percent area of tensile surfaces is positively correlated with failure strength (p<0.001), elastic modulus (p=0.016) and BMD (p=0.037). Percent area of

  4. Cardiac Metabolism in Heart Failure - Implications beyond ATP production

    PubMed Central

    Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale

    2013-01-01

    The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714

  5. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1984-01-01

    Research on the reliability of terrestrial solar cells was performed to identify failure/degradation modes affecting solar cells and to relate these to basic physical, chemical, and metallurgical phenomena. Particular concerns addressed were the reliability attributes of individual single crystalline, polycrystalline, and amorphous thin film silicon cells. Results of subjecting different types of crystalline cells to the Clemson accelerated test schedule are given. Preliminary step stress results on one type of thin film amorphous silicon (a:Si) cell indicated that extraneous degradation modes were introduced above 140 C. Also described is development of measurement procedures which are applicable to the reliability testing of a:Si solar cells as well as an approach to achieving the necessary repeatability of fabricating a simulated a:Si reference cell from crystalline silicon photodiodes.

  6. Lifelong Cyclic Mechanical Strain Promotes Large Elastic Artery Stiffening: Increased Pulse Pressure and Old Age-Related Organ Failure.

    PubMed

    Thorin-Trescases, Nathalie; Thorin, Eric

    2016-05-01

    The arterial wall is under a huge mechanical constraint imposed by the cardiac cycle that is bound to generate damage with time. Each heartbeat indeed imposes a pulsatile pressure that generates a vascular stretch. Lifetime accumulation of pulsatile stretches will eventually induce fatigue of the elastic large arterial walls, such as aortic and carotid artery walls, promoting their stiffening that will gradually perturb the normal blood flow and local pressure within the organs, and lead to organ failure. The augmented pulse pressure induced by arterial stiffening favours left ventricular hypertrophy because of the repeated extra work against stiff high-pressure arteries, and tissue damage as a result of excessive pulsatile pressure transmitted into the microcirculation, especially in low resistance/high-flow organs such as the brain and kidneys. Vascular aging is therefore characterized by the stiffening of large elastic arteries leading to a gradual increase in pulse pressure with age. In this review we focus on the effect of age-related stiffening of large elastic arteries. We report the clinical evidence linking arterial stiffness and organ failure and discuss the molecular pathways that are activated by the increase of mechanical stress in the wall. We also discuss the possible interventions that could limit arterial stiffening with age, such as regular aerobic exercise training, and some pharmacological approaches. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  7. Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: Effects of fibril dimensions and failure energy in protein matrix.

    PubMed

    Lai, Zheng Bo; Yan, Cheng

    2017-01-01

    Many biological composite materials such as bone have demonstrated unique mechanical performance, i.e., a combination of superior stiffness and toughness. It has become increasingly clear that the constituents at the nano- and micro-length scales play a critical role in determining the mechanical performance of these biological composites. In this study, the underlying mechanisms governing the mechanical behaviour of the staggered array of mineralised collagen fibrils (MCF) embedded in extra-fibrillar protein matrix were numerically investigated. The evolution of damage zone in protein was estimated using cohesive zone models (CZM). The results indicate that the mechanisms and mechanical behaviour of MCF array are largely dependent on the MCF dimensions and the intrinsic failure energy in extra-fibrillar protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of Discontinuities and Uncertainties on the Response and Failure of Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.; Poteat, Marcia M. (Technical Monitor)

    2000-01-01

    The overall goal of this research was to assess the effect of discontinuities and uncertainties on the nonlinear response and failure of composite structures subjected to combined mechanical and thermal loads. The four key elements of the study were: (1) development of simple and efficient procedures for the accurate determination of transverse shear and transverse normal stresses in structural sandwiches as well as in unstiffened and stiffened composite panels and shells; (2) study the effects of transverse stresses on the response, damage initiation and propagation in composite and sandwich structures; (3) use of hierarchical sensitivity coefficients to identify the major parameters that affect the response and damage in each of the different levels in the hierarchy (micro-mechanical, layer, panel, subcomponent and component levels); and (4) application of fuzzy set techniques to identify the range and variation of possible responses. The computational models developed were used in conjunction with experiments, to understand the physical phenomena associated with the nonlinear response and failure of composite and sandwich structures. A toolkit was developed for use in conjunction with deterministic analysis programs to help the designer in assessing the effect of uncertainties in the different computational model parameters on the variability of the response quantities.

  9. Identifying and Evaluating Possible Trigger Mechanisms for Glacial Lake Outburst Floods in the Hindu Kush Himalayas Using Remote Sensing Satellite Data

    NASA Astrophysics Data System (ADS)

    Hess, T. G.; Haritashya, U. K.

    2014-12-01

    Glacierized basins in high-altitude and mountainous areas, such as the Himalayas, have seen an increase in the number of glacial lakes over the years as a result of a changing climate. As the meltwater becomes more prevalent, the runoff can accumulate in a depression left behind by the receding glacier and can be bound by the walls of frontal and lateral moraines. These moraines, however, often are comprised of loose, unconsolidated sediment and can prove to be unstable dam structures for proglacial lakes. The factor of instability associated with the moraines poses a serious threat for failure and severe flooding. If the moraines were to be breached by the lake water, a phenomenon known as a glacial lake outburst flood (GLOF) can occur, potentially putting lives and infrastructure in harm's way. Consequently, this study examines the likelihood of a GLOF occurrence by analyzing potential trigger mechanisms associated with three proglacial lakes in the Hindu Kush Himalayan region. Using ASTER satellite imagery, one lake from Nepal, India, and Bhutan have each been assessed for possible trigger mechanisms. Our results suggest that steep-sided moraines, rugged topography, unstable masses on the upper reaches of steep slopes, and smaller lakes perched high above can all be classified as possible trigger mechanisms for the areas of study. It is imperative to be able to successfully identify potential trigger mechanisms using satellite data so that further ground observations can be made and mitigation efforts can be incorporated where needed. As lakes continue to grow, so does the cause for concern for possible GLOFs. Glacial lake outburst floods are being studied more extensively now due to the greater number of glacial lakes in high-mountainous areas. It is vitally important to understand the dynamics of a GLOF, especially the potential trigger mechanisms associated with it.

  10. Comparative study of the failure rates among 3 implantable defibrillator leads.

    PubMed

    van Malderen, Sophie C H; Szili-Torok, Tamas; Yap, Sing C; Hoeks, Sanne E; Zijlstra, Felix; Theuns, Dominic A M J

    2016-12-01

    After the introduction of the Biotronik Linox S/SD high-voltage lead, several cases of early failure have been observed. The purpose of this article was to assess the performance of the Linox S/SD lead in comparison to 2 other contemporary leads. We used the prospective Erasmus MC ICD registry to identify all implanted Linox S/SD (n = 408), Durata (St. Jude Medical, model 7122) (n = 340), and Endotak Reliance (Boston Scientific, models 0155, 0138, and 0158) (n = 343) leads. Lead failure was defined by low- or high-voltage impedance, failure to capture, sense or defibrillate, or the presence of nonphysiological signals not due to external interference. During a median follow-up of 5.1 years, 24 Linox (5.9%), 5 Endotak (1.5%), and 5 Durata (1.5%) leads failed. At 5-year follow-up, the cumulative failure rate of Linox leads (6.4%) was higher than that of Endotak (0.4%; P < .0001) and Durata (2.0%; P = .003) leads. The incidence rate was higher in Linox leads (1.3 per 100 patient-years) than in Endotak and Durata leads (0.2 and 0.3 per 100 patient-years, respectively; P < .001). A log-log analysis of the cumulative hazard for Linox leads functioning at 3-year follow-up revealed a stable failure rate of 3% per year. The majority of failures consisted of noise (62.5%) and abnormal impedance (33.3%). This study demonstrates a higher failure rate of Linox S/SD high-voltage leads compared to contemporary leads. Although the mechanism of lead failure is unclear, the majority presents with abnormal electrical parameters. Comprehensive monitoring of Linox S/SD high-voltage leads includes remote monitoring to facilitate early detection of lead failure. Copyright © 2016. Published by Elsevier Inc.

  11. Identifying Clinical Factors Which Predict for Early Failure Patterns Following Resection for Pancreatic Adenocarcinoma in Patients Who Received Adjuvant Chemotherapy Without Chemoradiation.

    PubMed

    Walston, Steve; Salloum, Joseph; Grieco, Carmine; Wuthrick, Evan; Diaz, Dayssy A; Barney, Christian; Manilchuk, Andrei; Schmidt, Carl; Dillhoff, Mary; Pawlik, Timothy M; Williams, Terence M

    2018-05-04

    The role of radiation therapy (RT) in resected pancreatic cancer (PC) remains incompletely defined. We sought to determine clinical variables which predict for local-regional recurrence (LRR) to help select patients for adjuvant RT. We identified 73 patients with PC who underwent resection and adjuvant gemcitabine-based chemotherapy alone. We performed detailed radiologic analysis of first patterns of failure. LRR was defined as recurrence of PC within standard postoperative radiation volumes. Univariate analyses (UVA) were conducted using the Kaplan-Meier method and multivariate analyses (MVA) utilized the Cox proportional hazard ratio model. Factors significant on UVA were used for MVA. At median follow-up of 20 months, rates of local-regional recurrence only (LRRO) were 24.7%, LRR as a component of any failure 68.5%, metastatic recurrence (MR) as a component of any failure 65.8%, and overall disease recurrence (OR) 90.5%. On UVA, elevated postoperative CA 19-9 (>90 U/mL), pathologic lymph node positive (pLN+) disease, and higher tumor grade were associated with increased LRR, MR, and OR. On MVA, elevated postoperative CA 19-9 and pLN+ were associated with increased MR and OR. In addition, positive resection margin was associated with increased LRRO on both UVA and MVA. About 25% of patients with PC treated without adjuvant RT develop LRRO as initial failure. The only independent predictor of LRRO was positive margin, while elevated postoperative CA 19-9 and pLN+ were associated with predicting MR and overall survival. These data may help determine which patients benefit from intensification of local therapy with radiation.

  12. Global Failure Modes in Composite Structures

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.; Gonzalez, Luis

    2001-01-01

    Composite materials provide well-known advantages for space and aeronautical applications in terms of strength and rigidity to weight ratios and other mechanical properties. As a consequence, their use has experienced a constant increase in the past decades and it is anticipated that this trend will be maintained in the near future. At the same time, being these materials relatively new compared to metals, and having failure characteristics completely different from them, their damage growth and their failure mechanisms are not as well understood in a predictive sense. For example, while in metals fracture produces "clean" cracks with their well defined analytically stress fields at the crack tip, composite fracture is a more complex phenomenon. Instead of a crack, we confront a "damage zone" that may include fiber breakage, fiber microbuckling, fiber pullout, matrix cracking, delamination, debonding or any combination of all these different mechanisms. These phenomena are prevalent in any failure process through an aircraft structure, whether one addresses a global failure such as the ripping of a fuselage or wing section, or whether one is concerned with the failure initiation near a thickness change at stringers or other reinforcement. Thus the topic that has been under consideration has wide application in any real structure and is considered an essential contribution to the predictive failure analysis capability for aircraft containing composite components. The heterogeneity and the anisotropy of composites are not only advantageous but essential characteristics, yet these same features provide complex stress fields, especially in the presence of geometrical discontinuities such as notches, holes or cutouts or structural elements such as stiffeners, stringers, etc. To properly address the interaction between a damage/crack front and a hole with a stringer it is imperative that the stress and deformation fields of the former be (sufficiently well) characterized

  13. Failure of endodontic treatment: The usual suspects.

    PubMed

    Tabassum, Sadia; Khan, Farhan Raza

    2016-01-01

    Inappropriate mechanical debridement, persistence of bacteria in the canals and apex, poor obturation quality, over and under extension of the root canal filling, and coronal leakage are some of the commonly attributable causes of failure. Despite the high success rate of endodontic treatment, failures do occur in a large number of cases and most of the times can be attributed to the already stated causes. With an ever increasing number of endodontic treatments being done each day, it has become imperative to avoid or minimize the most fundamental of reasons leading to endodontic failure. This paper reviews the most common causes of endodontic failure along with radiographic examples.

  14. Failure of endodontic treatment: The usual suspects

    PubMed Central

    Tabassum, Sadia; Khan, Farhan Raza

    2016-01-01

    Inappropriate mechanical debridement, persistence of bacteria in the canals and apex, poor obturation quality, over and under extension of the root canal filling, and coronal leakage are some of the commonly attributable causes of failure. Despite the high success rate of endodontic treatment, failures do occur in a large number of cases and most of the times can be attributed to the already stated causes. With an ever increasing number of endodontic treatments being done each day, it has become imperative to avoid or minimize the most fundamental of reasons leading to endodontic failure. This paper reviews the most common causes of endodontic failure along with radiographic examples. PMID:27011754

  15. Effect of Progressive Heart Failure on Cerebral Hemodynamics and Monoamine Metabolism in CNS.

    PubMed

    Mamalyga, M L; Mamalyga, L M

    2017-07-01

    Compensated and decompensated heart failure are characterized by different associations of disorders in the brain and heart. In compensated heart failure, the blood flow in the common carotid and basilar arteries does not change. Exacerbation of heart failure leads to severe decompensation and is accompanied by a decrease in blood flow in the carotid and basilar arteries. Changes in monoamine content occurring in the brain at different stages of heart failure are determined by various factors. The functional exercise test showed unequal monoamine-synthesizing capacities of the brain in compensated and decompensated heart failure. Reduced capacity of the monoaminergic systems in decompensated heart failure probably leads to overstrain of the central regulatory mechanisms, their gradual exhaustion, and failure of the compensatory mechanisms, which contributes to progression of heart failure.

  16. Failure Analysis at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Salazar, Victoria L.; Wright, M. Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.

  17. Evaluation of the onset of failure under mechanical and thermal stresses on luting agent for metal–ceramic and metal crowns by finite element analysis

    PubMed Central

    Agnihotri, Hema; Bhatnagar, Naresh; Rao, G. Venugopal; Jain, Veena; Parkash, Hari; Kar, Aswini Kumar

    2010-01-01

    Long-term clinical failures of cemented prosthesis depend, to a large extent, on the integrity of the luting agent. The causative factors that lead to microfracture and, hence, failure of the luting agents are the stresses acting inside the oral cavity. Therefore, the present study was designed to develop an understanding of the relationship between stresses in the tooth and the failure potential of the luting agent. Two-dimensional finite element stress analysis was performed on the mandibular second premolar. The behavior of zinc-phosphate and glass-ionomer were studied under different crowns (metal–ceramic and metal crown) and loading conditions (mechanical force of 450 N acting vertically over the occlusal surface, thermal loads of 60° and 0°C). It was observed from the study that failure threshold of the luting agent was influenced both by the elastic modulus of the luting agent and by the type of the crown. PMID:22114426

  18. Failure analysis of aluminum alloy components

    NASA Technical Reports Server (NTRS)

    Johari, O.; Corvin, I.; Staschke, J.

    1973-01-01

    Analysis of six service failures in aluminum alloy components which failed in aerospace applications is reported. Identification of fracture surface features from fatigue and overload modes was straightforward, though the specimens were not always in a clean, smear-free condition most suitable for failure analysis. The presence of corrosion products and of chemically attacked or mechanically rubbed areas here hindered precise determination of the cause of crack initiation, which was then indirectly inferred from the scanning electron fractography results. In five failures the crack propagation was by fatigue, though in each case the fatigue crack initiated from a different cause. Some of these causes could be eliminated in future components by better process control. In one failure, the cause was determined to be impact during a crash; the features of impact fracture were distinguished from overload fractures by direct comparisons of the received specimens with laboratory-generated failures.

  19. Automated identification and predictive tools to help identify high-risk heart failure patients: pilot evaluation.

    PubMed

    Evans, R Scott; Benuzillo, Jose; Horne, Benjamin D; Lloyd, James F; Bradshaw, Alejandra; Budge, Deborah; Rasmusson, Kismet D; Roberts, Colleen; Buckway, Jason; Geer, Norma; Garrett, Teresa; Lappé, Donald L

    2016-09-01

    Develop and evaluate an automated identification and predictive risk report for hospitalized heart failure (HF) patients. Dictated free-text reports from the previous 24 h were analyzed each day with natural language processing (NLP), to help improve the early identification of hospitalized patients with HF. A second application that uses an Intermountain Healthcare-developed predictive score to determine each HF patient's risk for 30-day hospital readmission and 30-day mortality was also developed. That information was included in an identification and predictive risk report, which was evaluated at a 354-bed hospital that treats high-risk HF patients. The addition of NLP-identified HF patients increased the identification score's sensitivity from 82.6% to 95.3% and its specificity from 82.7% to 97.5%, and the model's positive predictive value is 97.45%. Daily multidisciplinary discharge planning meetings are now based on the information provided by the HF identification and predictive report, and clinician's review of potential HF admissions takes less time compared to the previously used manual methodology (10 vs 40 min). An evaluation of the use of the HF predictive report identified a significant reduction in 30-day mortality and a significant increase in patient discharges to home care instead of to a specialized nursing facility. Using clinical decision support to help identify HF patients and automatically calculating their 30-day all-cause readmission and 30-day mortality risks, coupled with a multidisciplinary care process pathway, was found to be an effective process to improve HF patient identification, significantly reduce 30-day mortality, and significantly increase patient discharges to home care. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. [Acute and chronic heart failure].

    PubMed

    Kresoja, K-P; Schmidt, G; Kherad, B; Krackhardt, F; Spillmann, F; Tschöpe, C

    2017-11-01

    The initial therapy of chronic heart failure is still based on diuretics, angiotensin-converting enzyme (ACE) inhibitors, beta-blockers and in specific cases mineralocorticoid receptor antagonists. The new European Society of Cardiology (ESC) guidelines published in 2016 introduced angiotensin-receptor-neprilysin inhibitors, such as sacubitril/valsartan (LCZ 696) as new therapeutic agents in patients with chronic and progressive heart failure. New subgroup analyses for LCZ 696 have been published showing a beneficial effect in the context of various comorbidities, such as renal insufficiency, diabetes and hypotension. Furthermore, new data are available on intravenous iron substitution in chronic heart failure and on the indications for implantable converter defibrillators, cardiac resynchronization therapy and other cardiac devices. Medicinal therapy of acute heart failure is still limited. For patients who cannot be treated with medicinal therapy, mechanical circulatory support, such as extracorporeal membrane oxygenation (ECMO) should be recommended.

  1. Failure of operative treatment for glenohumeral instability: etiology and management.

    PubMed

    Shah, Apurva S; Karadsheh, Mark S; Sekiya, Jon K

    2011-05-01

    Failure of primary shoulder stabilization procedures is often related to uncorrected anatomic pathology. Orthopaedic surgeons must recognize excessive capsular laxity or large glenohumeral bone defects preoperatively to avoid recurrence of instability. When history, physical examination, and radiographic evaluation are used in conjunction, patients at risk for failure can be identified. The instability severity index score permits precise identification of patients at risk. When treating patients in whom prior surgical intervention has failed, the success of revision procedures correlates to the surgeon's ability to identify the essential pathology and use lesion-specific treatment strategies. Revision procedures remain technically demanding. Keen preoperative and intraoperative judgment is required to avoid additional recurrence of instability after revision procedures, particularly because results deteriorate with each successive operation. Glenoid or humeral defects with greater than 25% bone loss compromise stability provided through the mechanism of concavity compression. These defects must be specifically addressed to avoid recurrence of instability. We prefer anatomic reconstruction techniques combined with capsulolabral repair and, if bone defects are present, anatomic reconstruction with osteochondral allograft. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Failure mode and effects analysis: an empirical comparison of failure mode scoring procedures.

    PubMed

    Ashley, Laura; Armitage, Gerry

    2010-12-01

    To empirically compare 2 different commonly used failure mode and effects analysis (FMEA) scoring procedures with respect to their resultant failure mode scores and prioritization: a mathematical procedure, where scores are assigned independently by FMEA team members and averaged, and a consensus procedure, where scores are agreed on by the FMEA team via discussion. A multidisciplinary team undertook a Healthcare FMEA of chemotherapy administration. This included mapping the chemotherapy process, identifying and scoring failure modes (potential errors) for each process step, and generating remedial strategies to counteract them. Failure modes were scored using both an independent mathematical procedure and a team consensus procedure. Almost three-fifths of the 30 failure modes generated were scored differently by the 2 procedures, and for just more than one-third of cases, the score discrepancy was substantial. Using the Healthcare FMEA prioritization cutoff score, almost twice as many failure modes were prioritized by the consensus procedure than by the mathematical procedure. This is the first study to empirically demonstrate that different FMEA scoring procedures can score and prioritize failure modes differently. It found considerable variability in individual team members' opinions on scores, which highlights the subjective and qualitative nature of failure mode scoring. A consensus scoring procedure may be most appropriate for FMEA as it allows variability in individuals' scores and rationales to become apparent and to be discussed and resolved by the team. It may also yield team learning and communication benefits unlikely to result from a mathematical procedure.

  3. Metallization failures

    NASA Technical Reports Server (NTRS)

    Beatty, R.

    1971-01-01

    Metallization-related failure mechanisms were shown to be a major cause of integrated circuit failures under accelerated stress conditions, as well as in actual use under field operation. The integrated circuit industry is aware of the problem and is attempting to solve it in one of two ways: (1) better understanding of the aluminum system, which is the most widely used metallization material for silicon integrated circuits both as a single level and multilevel metallization, or (2) evaluating alternative metal systems. Aluminum metallization offers many advantages, but also has limitations particularly at elevated temperatures and high current densities. As an alternative, multilayer systems of the general form, silicon device-metal-inorganic insulator-metal, are being considered to produce large scale integrated arrays. The merits and restrictions of metallization systems in current usage and systems under development are defined.

  4. Refractory and Resistant Hypertension: Antihypertensive Treatment Failure versus Treatment Resistance

    PubMed Central

    2016-01-01

    Resistant hypertension has for many decades been defined as difficult-to-treat hypertension in order to identify patients who may benefit from special diagnostic and/or therapeutic considerations. Recently, the term "refractory hypertension" has been proposed as a novel phenotype of antihypertensive failure, that is, patients whose blood pressure cannot be controlled with maximal treatment. Early studies of this phenotype indicate that it is uncommon, affecting less than 5% of patients with resistant hypertension. Risk factors for refractory hypertension include obesity, diabetes, chronic kidney disease, and especially, being of African origin. Patients with refractory are at high cardiovascular risk based on increased rates of known heart disease, prior stroke, and prior episodes of congestive heart failure. Mechanisms of refractory hypertension need exploration, but early studies suggest a possible role of heightened sympathetic tone as evidenced by increased office and ambulatory heart rates and higher urinary excretion of norepinephrine compared to patients with controlled resistant hypertension. Important negative findings argue against refractory hypertension being fluid dependent as is typical of resistant hypertension, including aldosterone levels, dietary sodium intake, and brain natriuretic peptide levels being similar or even less than patients with resistant hypertension and the failure to control blood pressure with use of intensive diuretic therapy, including both a long-acting thiazide diuretic and a mineralocorticoid receptor antagonist. Further studies, especially longitudinal assessments, are needed to better characterize this extreme phenotype in terms of risk factors and outcomes and hopefully to identify effective treatment strategies. PMID:27721847

  5. Failure Mode Identification Through Clustering Analysis

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.

  6. Investigating compression failure mechanisms in composite laminates with a transparent fiberglass-epoxy birefringent materials

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Williams, J. G.

    1984-01-01

    The response and failure of a + or - 45s class laminate was studied by transparent fiberglass epoxy composite birefringent material. The birefringency property allows the laminate stress distribution to be observed during the test and also after the test if permanent residual stresses occur. The location of initial laminate failure and of the subsequent failure propagation are observed through its transparency characteristics. Experimental results are presented.

  7. The role of shear and tensile failure in dynamically triggered landslides

    USGS Publications Warehouse

    Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.

    2008-01-01

    Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  8. Pocketing mechanics of SRM nozzle liner

    NASA Technical Reports Server (NTRS)

    Verderaime, V. S.

    1986-01-01

    A systems approach was adopted to study the pocketing phenomena on a solid rocket nozzle liner. The classical thermoelastic analysis was used to identify marginally strained regions on the composite liner erosion surface and at a depth coincident with the peak value of the across ply coefficient of thermal expansion. A failure criterion was introduced which included a thermal term and permitted failure assessment over the charred liner. The method was verified by satisfactory application to a reported related experiment. Liner pocketing mechanism was attributed to very localized material degradation caused during manufacturing process either by reduction of fiber strength and/or by concentration of resin volume fraction. Pocketing scenario over the degraged material was constructed with supporting formulation to predict size of fissures with respect to degraded material size and location in the liner and with burn time. Sensitivities of liner material parameters were determined to influence test programs designed to update mechanical data base of carbon cloth phenolic over the char temperature range.

  9. BNP and congestive heart failure.

    PubMed

    Cowie, Martin R; Mendez, Gustavo F

    2002-01-01

    Brain natriuretic peptide (BNP), a peptide hormone secreted chiefly by ventricular myocytes, plays a key role in volume homeostasis. The plasma concentration of BNP is raised in various pathological states, especially heart failure. Many studies suggest that measurement of plasma BNP has clinical utility for excluding a diagnosis of heart failure in patients with dyspnea or fluid retention and for providing prognostic information in those with heart failure or other cardiac disease. It may also be of value in identifying patients after myocardial infarction in whom further assessment of cardiac function is likely to be worthwhile. Preliminary evidence suggests that measuring the plasma concentration of BNP may be useful in fine tuning therapy for heart failure. Artificially raising the circulating levels of BNP shows considerable promise as a treatment for heart failure. With simpler assay methods now available, it is likely that many physicians will measure plasma BNP to aid them in the diagnosis, risk stratification, and monitoring of their patients with heart failure or other cardiac dysfunction. Copyright 2002, Elsevier Science.

  10. Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure.

    PubMed

    Vegter, Eline L; Ovchinnikova, Ekaterina S; Silljé, Herman H W; Meems, Laura M G; van der Pol, Atze; van der Velde, A Rogier; Berezikov, Eugene; Voors, Adriaan A; de Boer, Rudolf A; van der Meer, Peter

    2017-01-01

    We recently identified a set of plasma microRNAs (miRNAs) that are downregulated in patients with heart failure in comparison with control subjects. To better understand their meaning and function, we sought to validate these circulating miRNAs in 3 different well-established rat and mouse heart failure models, and correlated the miRNAs to parameters of cardiac function. The previously identified let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30e-5p, miR-199a-3p, miR-223-3p, miR-423-3p, miR-423-5p and miR-652-3p were measured by means of quantitative real time polymerase chain reaction (qRT-PCR) in plasma samples of 8 homozygous TGR(mREN2)27 (Ren2) transgenic rats and 8 (control) Sprague-Dawley rats, 6 mice with angiotensin II-induced heart failure (AngII) and 6 control mice, and 8 mice with ischemic heart failure and 6 controls. Circulating miRNA levels were compared between the heart failure animals and healthy controls. Ren2 rats, AngII mice and mice with ischemic heart failure showed clear signs of heart failure, exemplified by increased left ventricular and lung weights, elevated end-diastolic left ventricular pressures, increased expression of cardiac stress markers and reduced left ventricular ejection fraction. All miRNAs were detectable in plasma from rats and mice. No significant differences were observed between the circulating miRNAs in heart failure animals when compared to the healthy controls (all P>0.05) and no robust associations with cardiac function could be found. The previous observation that miRNAs circulate in lower levels in human patients with heart failure could not be validated in well-established rat and mouse heart failure models. These results question the translation of data on human circulating miRNA levels to experimental models, and vice versa the validity of experimental miRNA data for human heart failure.

  11. Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology.

    PubMed

    Gorter, Thomas M; van Veldhuisen, Dirk J; Bauersachs, Johann; Borlaug, Barry A; Celutkiene, Jelena; Coats, Andrew J S; Crespo-Leiro, Marisa G; Guazzi, Marco; Harjola, Veli-Pekka; Heymans, Stephane; Hill, Loreena; Lainscak, Mitja; Lam, Carolyn S P; Lund, Lars H; Lyon, Alexander R; Mebazaa, Alexandre; Mueller, Christian; Paulus, Walter J; Pieske, Burkert; Piepoli, Massimo F; Ruschitzka, Frank; Rutten, Frans H; Seferovic, Petar M; Solomon, Scott D; Shah, Sanjiv J; Triposkiadis, Filippos; Wachter, Rolf; Tschöpe, Carsten; de Boer, Rudolf A

    2018-01-01

    There is an unmet need for effective treatment strategies to reduce morbidity and mortality in patients with heart failure with preserved ejection fraction (HFpEF). Until recently, attention in patients with HFpEF was almost exclusively focused on the left side. However, it is now increasingly recognized that right heart dysfunction is common and contributes importantly to poor prognosis in HFpEF. More insights into the development of right heart dysfunction in HFpEF may aid to our knowledge about this complex disease and may eventually lead to better treatments to improve outcomes in these patients. In this position paper from the Heart Failure Association of the European Society of Cardiology, the Committee on Heart Failure with Preserved Ejection Fraction reviews the prevalence, diagnosis, and pathophysiology of right heart dysfunction and failure in patients with HFpEF. Finally, potential treatment strategies, important knowledge gaps and future directions regarding the right side in HFpEF are discussed. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  12. Plasma microvesicle analysis identifies microRNA 129-5p as a biomarker of heart failure in univentricular heart disease.

    PubMed

    Ramachandran, Sweta; Lowenthal, Alexander; Ritner, Carissa; Lowenthal, Shiri; Bernstein, Harold S

    2017-01-01

    Biomarkers of heart failure in adults have been extensively studied. However, biomarkers to monitor the progression of heart failure in children with univentricular physiology are less well understood. We proposed that as mediators of diverse pathophysiology, miRNAs contained within circulating microvesicles could serve as biomarkers for the presence and progression of heart failure in univentricular patients. To test this, we studied the association of heart failure with elevations in specific miRNAs isolated from circulating microvesicles in a cohort of children with univentricular heart disease and heart failure. We conducted a single site cross-sectional observational study of 71 children aged 1 month-7 years with univentricular heart disease and heart failure. We demonstrated that levels of miR129-5p isolated from plasma microvesicles were inversely related to the degree of clinical heart failure as assessed by Ross score. We then showed that miR129-5p levels are downregulated in HL1 cells and human embryonic stem cell-derived cardiomyocytes exposed to oxidative stress. We demonstrated that bone morphogenetic protein receptor 2, which has been implicated in the development of pulmonary vascular disease, is a target of miR129-5p, and conversely regulated in response to oxidative stress in cell culture. Levels of miR129-5p were inversely related to the degree of clinical heart failure in patients with univentricular heart disease. This study demonstrates that miR129-5p is a sensitive and specific biomarker for heart failure in univentricular heart disease independent of ventricular morphology or stage of palliation. Further study is warranted to understand the targets affected by miR129-5p with the development of heart failure in patients with univentricular physiology.

  13. Diagnostics Tools Identify Faults Prior to Failure

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  14. A motivational counseling approach to improving heart failure self-care: mechanisms of effectiveness.

    PubMed

    Riegel, Barbara; Dickson, Victoria V; Hoke, Linda; McMahon, Janet P; Reis, Brendali F; Sayers, Steven

    2006-01-01

    Self-care is an integral component of successful heart failure (HF) management. Engaging patients in self-care can be challenging. Fifteen patients with HF enrolled during hospitalization received a motivational intervention designed to improve HF self-care. A mixed method, pretest posttest design was used to evaluate the proportion of patients in whom the intervention was beneficial and the mechanism of effectiveness. Participants received, on average, 3.0 +/- 1.5 home visits (median 3, mode 3, range 1-6) over a three-month period from an advanced practice nurse trained in motivational interviewing and family counseling. Quantitative and qualitative data were used to judge individual patients in whom the intervention produced a clinically significant improvement in HF self-care. Audiotaped intervention sessions were analyzed using qualitative methods to assess the mechanism of intervention effectiveness. Congruence between quantitative and qualitative judgments of improved self-care revealed that 71.4% of participants improved in self-care after receiving the intervention. Analysis of transcribed intervention sessions revealed themes of 1) communication (reflective listening, empathy); 2) making it fit (acknowledging cultural beliefs, overcoming barriers and constraints, negotiating an action plan); and, 3) bridging the transition from hospital to home (providing information, building skills, activating support resources). An intervention that incorporates the core elements of motivational interviewing may be effective in improving HF self-care, but further research is needed.

  15. Cognitive Mechanisms in Chronic Tinnitus: Psychological Markers of a Failure to Switch Attention

    PubMed Central

    Trevis, Krysta J.; McLachlan, Neil M.; Wilson, Sarah J.

    2016-01-01

    The cognitive mechanisms underpinning chronic tinnitus (CT; phantom auditory perceptions) are underexplored but may reflect a failure to switch attention away from a tinnitus sound. Here, we investigated a range of components that influence the ability to switch attention, including cognitive control, inhibition, working memory and mood, on the presence and severity of CT. Our participants with tinnitus showed significant impairments in cognitive control and inhibition as well as lower levels of emotional well-being, compared to healthy-hearing participants. Moreover, the subjective cognitive complaints of tinnitus participants correlated with their emotional well-being whereas complaints in healthy participants correlated with objective cognitive functioning. Combined, cognitive control and depressive symptoms correctly classified 67% of participants. These results demonstrate the core role of cognition in CT. They also provide the foundations for a neurocognitive account of the maintenance of tinnitus, involving impaired interactions between the neurocognitive networks underpinning attention-switching and mood. PMID:27605920

  16. Nanowire failure: long = brittle and short = ductile.

    PubMed

    Wu, Zhaoxuan; Zhang, Yong-Wei; Jhon, Mark H; Gao, Huajian; Srolovitz, David J

    2012-02-08

    Experimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure. We developed a simple model for predicting the critical nanowire length for this failure mode transition and showed that it is in excellent agreement with both the simulation results and the extant experimental data. The present results provide a new paradigm for the design of nanoscale mechanical systems that demarcates graceful and catastrophic failure. © 2012 American Chemical Society

  17. Zebrafish heart failure models: opportunities and challenges.

    PubMed

    Shi, Xingjuan; Chen, Ru; Zhang, Yu; Yun, Junghwa; Brand-Arzamendi, Koroboshka; Liu, Xiangdong; Wen, Xiao-Yan

    2018-05-03

    Heart failure is a complex pathophysiological syndrome of pumping functional failure that results from injury, infection or toxin-induced damage on the myocardium, as well as genetic influence. Gene mutations associated with cardiomyopathies can lead to various pathologies of heart failure. In recent years, zebrafish, Danio rerio, has emerged as an excellent model to study human cardiovascular diseases such as congenital heart defects, cardiomyopathy, and preclinical development of drugs targeting these diseases. In this review, we will first summarize zebrafish genetic models of heart failure arose from cardiomyopathy, which is caused by mutations in sarcomere, calcium or mitochondrial-associated genes. Moreover, we outline zebrafish heart failure models triggered by chemical compounds. Elucidation of these models will improve the understanding of the mechanism of pathogenesis and provide potential targets for novel therapies.

  18. Temporal Lobe Epilepsy Surgery Failures: A Review

    PubMed Central

    Harroud, Adil; Bouthillier, Alain; Weil, Alexander G.; Nguyen, Dang Khoa

    2012-01-01

    Patients with temporal lobe epilepsy (TLE) are refractory to antiepileptic drugs in about 30% of cases. Surgical treatment has been shown to be beneficial for the selected patients but fails to provide a seizure-free outcome in 20–30% of TLE patients. Several reasons have been identified to explain these surgical failures. This paper will address the five most common causes of TLE surgery failure (a) insufficient resection of epileptogenic mesial temporal structures, (b) relapse on the contralateral mesial temporal lobe, (c) lateral temporal neocortical epilepsy, (d) coexistence of mesial temporal sclerosis and a neocortical lesion (dual pathology); and (e) extratemporal lobe epilepsy mimicking TLE or temporal plus epilepsy. Persistence of epileptogenic mesial structures in the posterior temporal region and failure to distinguish mesial and lateral temporal epilepsy are possible causes of seizure persistence after TLE surgery. In cases of dual pathology, failure to identify a subtle mesial temporal sclerosis or regions of cortical microdysgenesis is a likely explanation for some surgical failures. Extratemporal epilepsy syndromes masquerading as or coexistent with TLE result in incomplete resection of the epileptogenic zone and seizure relapse after surgery. In particular, the insula may be an important cause of surgical failure in patients with TLE. PMID:22934162

  19. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  20. Pooled nucleic acid testing to identify antiretroviral treatment failure during HIV infection.

    PubMed

    May, Susanne; Gamst, Anthony; Haubrich, Richard; Benson, Constance; Smith, Davey M

    2010-02-01

    Pooling strategies have been used to reduce the costs of polymerase chain reaction-based screening for acute HIV infection in populations in which the prevalence of acute infection is low (less than 1%). Only limited research has been done for conditions in which the prevalence of screening positivity is higher (greater than 1%). We present data on a variety of pooling strategies that incorporate the use of polymerase chain reaction-based quantitative measures to monitor for virologic failure among HIV-infected patients receiving antiretroviral therapy. For a prevalence of virologic failure between 1% and 25%, we demonstrate relative efficiency and accuracy of various strategies. These results could be used to choose the best strategy based on the requirements of individual laboratory and clinical settings such as required turnaround time of results and availability of resources. Virologic monitoring during antiretroviral therapy is not currently being performed in many resource-constrained settings largely because of costs. The presented pooling strategies may be used to significantly reduce the cost compared with individual testing, make such monitoring feasible, and limit the development and transmission of HIV drug resistance in resource-constrained settings. They may also be used to design efficient pooling strategies for other settings with quantitative screening measures.

  1. Geological constraints on the mechanism of tectonic tremor

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. D.

    2016-12-01

    Observations of tectonic tremor in a wide variety of tectonic settings suggest that transitional behavior involving contemporaneous shear fracture and aseismic creep transients occurs in many major faults. Seismological and geophysical data indicate shear failure on critically stressed faults, likely under low effective stress conditions, are consistent characteristics, even though rock types and grain scale deformation mechanisms vary at these different locations. Geological observations could add additional insight into the specific failure mechanisms if the structures that form during tremor episodes can be identified. Exhumed shear zones often contain folded, boudinaged and/or dynamically recrystallized veins that record cyclical fracture and viscous deformation representing mixed bulk rheology. Examples from a Cretaceous transpressional continental shear zone in the Sierra Nevada, CA, include quartz-filled veins meters to tens of meters long with millimeters to centimeters of shear offset that preferentially developed along foliation planes in a high strain zone. Ambient temperatures during deformation were 400-600°C, and opening mode vein orientations and abundance suggest fluid pressure was near lithostatic at times. The orientation and spatial distribution of the veins indicate they formed under differential stress large enough for shear failure with pore pressures sufficiently high for the rocks to be critically stressed along mechanically weak foliation planes. Bulk deformation of the surrounding rock was accommodated viscously by crystal plastic deformation mechanisms. The mode of fracturing and overall behavior of the system was controlled by the local competition between the rates of stress recovery following fracture and stress drop, and pore pressure build up. The inferred mixed rheology recorded by the veins is phenomenologically similar to tremor. These shear fractures, and the conditions of failure they record, could be comparable to the

  2. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  3. Post-transcriptional regulation of α-1-antichymotrypsin by microRNA-137 in chronic heart failure and mechanical support.

    PubMed

    Lok, Sjoukje I; van Mil, Alain; Bovenschen, Niels; van der Weide, Petra; van Kuik, Joyce; van Wichen, Dick; Peeters, Ton; Siera, Erica; Winkens, Bjorn; Sluijter, Joost P G; Doevendans, Pieter A; da Costa Martins, Paula A; de Jonge, Nicolaas; de Weger, Roel A

    2013-07-01

    Better understanding of the molecular mechanisms of remodeling has become a major objective of heart failure (HF) research to stop or reverse its progression. Left ventricular assist devices (LVADs) are being used in patients with HF, leading to partial reverse remodeling. In the present study, proteomics identified significant changes in α-1-antichymotrypsin (ACT) levels during LVAD support. Moreover, the potential role of ACT in reverse remodeling was studied in detail. Expression of ACT mRNA (quantitative-polymerase chain reaction) decreased significantly in post-LVAD myocardial tissue compared with pre-LVAD tissue (n=15; P<0.01). Immunohistochemistry revealed that ACT expression and localization changed during LVAD support. Circulating ACT levels were elevated in HF patients (n=18) as compared with healthy controls (n=6; P=0.001) and normalized by 6 months of LVAD support. Because increasing evidence implicates that microRNAs (miRs) are involved in myocardial disease processes, we also investigated whether ACT is post-transcriptionally regulated by miRs. Bioinformatics analysis pointed miR-137 as a potential regulator of ACT. The miR-137 expression is inversely correlated with ACT mRNA in myocardial tissue. Luciferase activity assays confirmed ACT as a direct target for miR-137, and in situ hybridization indicated that ACT and miR-137 were mainly localized in cardiomyocytes and stromal cells. High ACT plasma levels in HF normalized during LVAD support, which coincides with decreased ACT mRNA in heart tissue, whereas miR-137 levels increased. MiR-137 directly targeted ACT, thereby indicating that ACT and miR-137 play a role in the pathophysiology of HF and reverse remodeling during mechanical support.

  4. Progressive Damage and Failure Analysis of Composite Laminates

    NASA Astrophysics Data System (ADS)

    Joseph, Ashith P. K.

    Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis

  5. Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2013-12-01

    The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy

  6. Failure-Modes-And-Effects Analysis Of Software Logic

    NASA Technical Reports Server (NTRS)

    Garcia, Danny; Hartline, Thomas; Minor, Terry; Statum, David; Vice, David

    1996-01-01

    Rigorous analysis applied early in design effort. Method of identifying potential inadequacies and modes and effects of failures caused by inadequacies (failure-modes-and-effects analysis or "FMEA" for short) devised for application to software logic.

  7. Fatigue failure of metal components as a factor in civil aircraft accidents

    NASA Technical Reports Server (NTRS)

    Holshouser, W. L.; Mayner, R. D.

    1972-01-01

    A review of records maintained by the National Transportation Safety Board showed that 16,054 civil aviation accidents occurred in the United States during the 3-year period ending December 31, 1969. Material failure was an important factor in the cause of 942 of these accidents. Fatigue was identified as the mode of the material failures associated with the cause of 155 accidents and in many other accidents the records indicated that fatigue failures might have been involved. There were 27 fatal accidents and 157 fatalities in accidents in which fatigue failures of metal components were definitely identified. Fatigue failures associated with accidents occurred most frequently in landing-gear components, followed in order by powerplant, propeller, and structural components in fixed-wing aircraft and tail-rotor and main-rotor components in rotorcraft. In a study of 230 laboratory reports on failed components associated with the cause of accidents, fatigue was identified as the mode of failure in more than 60 percent of the failed components. The most frequently identified cause of fatigue, as well as most other types of material failures, was improper maintenance (including inadequate inspection). Fabrication defects, design deficiencies, defective material, and abnormal service damage also caused many fatigue failures. Four case histories of major accidents are included in the paper as illustrations of some of the factors invovled in fatigue failures of aircraft components.

  8. Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.

    1997-01-01

    A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.

  9. Failure analysis of stainless steel femur fixation plate.

    PubMed

    Hussain, P B; Mohammad, M

    2004-05-01

    Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.

  10. On a common critical state in localized and diffuse failure modes

    NASA Astrophysics Data System (ADS)

    Zhu, Huaxiang; Nguyen, Hien N. G.; Nicot, François; Darve, Félix

    2016-10-01

    Accurately modeling the critical state mechanical behavior of granular material largely relies on a better understanding and characterizing the critical state fabric in different failure modes, i.e. localized and diffuse failure modes. In this paper, a mesoscopic scale is introduced, in which the organization of force-transmission paths (force-chains) and cells encompassed by contacts (meso-loops) can be taken into account. Numerical drained biaxial tests using a discrete element method are performed with different initial void ratios, in order to investigate the critical state fabric on the meso-scale in both localized and diffuse failure modes. According to the displacement and strain fields extracted from tests, the failure mode and failure area of each specimen are determined. Then convergent critical state void ratios are observed in failure area of specimens. Different mechanical features of two kinds of meso-structures (force-chains and meso-loops) are investigated, to clarify whether there exists a convergent meso-structure inside the failure area of granular material, as the signature of critical state. Numerical results support a positive answer. Failure area of both localized and diffuse failure modes therefore exhibits the same fabric in critical state. Hence, these two failure modes prove to be homological with respect to the concept of the critical state.

  11. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.

    PubMed

    Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan

    2014-03-01

    This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.

  12. Using Functional Signature Ontology (FUSION) to Identify Mechanisms of Action for Natural Products

    PubMed Central

    Potts, Malia B.; Kim, Hyun Seok; Fisher, Kurt W.; Hu, Youcai; Carrasco, Yazmin P.; Bulut, Gamze Betul; Ou, Yi-Hung; Herrera-Herrera, Mireya L.; Cubillos, Federico; Mendiratta, Saurabh; Xiao, Guanghua; Hofree, Matan; Ideker, Trey; Xie, Yang; Huang, Lily Jun-shen; Lewis, Robert E.; MacMillan, John B.; White, Michael A.

    2014-01-01

    A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells. We used cell-based screening and computational analysis to match gene expression signatures produced by natural products to those produced by siRNA and synthetic microRNA libraries. With this strategy, we matched proteins and microRNAs with diverse biological processes and also identified putative protein targets and mechanisms of action for several previously undescribed marine-derived natural products. We confirmed mechanistic relationships for selected short-interfering RNAs, microRNAs, and compounds with functional roles in autophagy, chemotaxis mediated by discoidin domain receptor 2, or activation of the kinase AKT. Thus, this approach may be an effective method for screening new drugs while simultaneously identifying their targets. PMID:24129700

  13. Recent trauma is associated with antiretroviral failure and HIV transmission risk behavior among HIV-positive women and female-identified transgenders.

    PubMed

    Machtinger, E L; Haberer, J E; Wilson, T C; Weiss, D S

    2012-11-01

    Trauma and posttraumatic stress disorder disproportionally affect HIV-positive women. Studies increasingly demonstrate that both conditions may predict poor HIV-related health outcomes and transmission-risk behaviors. This study analyzed data from a prevention-with-positives program to understand if socio-economic, behavioral, and health-related factors are associated with antiretroviral failure and HIV transmission-risk behaviors among 113 HIV-positive biological and transgender women. An affirmative answer to a simple screening question for recent trauma was significantly associated with both outcomes. Compared to participants without recent trauma, participants reporting recent trauma had over four-times the odds of antiretroviral failure (AOR 4.3; 95% CI 1.1-16.6; p = 0.04), and over three-times the odds of reporting sex with an HIV-negative or unknown serostatus partner (AOR 3.9; 95% CI 1.3-11.9; p = 0.02) and <100% condom use with these partners (AOR 4.5; 95% CI 1.5-13.3; p = 0.007). Screening for recent trauma in HIV-positive biological and transgender women identifies patients at high risk for poor health outcomes and HIV transmission-risk behavior.

  14. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  15. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  16. In-depth Investigation of Genetic Region Identifies Mechanism that Contributes to Cancer Risk

    Cancer.gov

    Investigators in the Laboratory of Translational Genomics have identified a genetic variant in a multi-cancer risk locus at chromosome 5p15.33 that explains, at least in part, the molecular mechanism through which this variant influences cancer risk.

  17. Modeling of damage driven fracture failure of fiber post-restored teeth.

    PubMed

    Xu, Binting; Wang, Yining; Li, Qing

    2015-09-01

    Mechanical failure of biomaterials, which can be initiated by either violent force, or progressive stress fatigue, is a serious issue. Great efforts have been made to improve the mechanical performances of dental restorations. Virtual simulation is a promising approach for biomechanical investigations, which presents significant advantages in improving efficiency than traditional in vivo/in vitro studies. Over the past few decades, a number of virtual studies have been conducted to investigate the biomechanical issues concerning dental biomaterials, but only with limited incorporation of brittle failure phenomena. Motivated by the contradictory findings between several finite element analyses and common clinical observations on the fracture resistance of post-restored teeth, this study aimed to provide an approach using numerical simulations for investigating the fracture failure process through a non-linear fracture mechanics model. The ability of this approach to predict fracture initiation and propagation in a complex biomechanical status based on the intrinsic material properties was investigated. Results of the virtual simulations matched the findings of experimental tests, in terms of the ultimate fracture failure strengths and predictive areas under risk of clinical failure. This study revealed that the failure of dental post-restored restorations is a typical damage-driven continuum-to-discrete process. This approach is anticipated to have ramifications not only for modeling fracture events, but also for the design and optimization of the mechanical properties of biomaterials for specific clinically determined requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Wear and Tear - Mechanical

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore

    2008-01-01

    The focus of this chapter is on the long term wear and tear, or aging, of the mechanical subsystem of a spacecraft. The mechanical subsystem is herein considered to be the primary support structure (as in a skeleton or exoskeleton) upon which all other spacecraft systems rest, and the associated mechanisms. Mechanisms are devices which have some component that moves at least once, in response to some type of passive or active control system. For the structure, aging may proceed as a gradual degradation of mechanical properties and/or function, possibly leading to complete structural failure over an extended period of time. However, over the 50 years of the Space Age such failures appear to be unusual. In contrast, failures for mechanisms are much more frequent and may have a very serious effect on mission performance. Just as on Earth, all moving devices are subject to normal (and possibly accelerated) degradation from mechanical wear due to loss or breakdown of lubricant, misalignment, temperature cycling effects, improper design/selection of materials, fatigue, and a variety of other effects. In space, such environmental factors as severe temperature swings (possibly 100's of degrees C while going in and out of direct solar exposure), hard vacuum, micrometeoroids, wear from operation in a dusty or contaminated environment, and materials degradation from radiation can be much worse. In addition, there are some ground handling issues such as humidity, long term storage, and ground transport which may be of concern. This chapter addresses the elements of the mechanical subsystem subject to wear, and identifies possible causes. The potential impact of such degradation is addressed, albeit with the recognition that the impact of such wear often depends on when it occurs and on what specific components. Most structural elements of the mechanical system typically are conservatively designed (often to a safety factor of greater than approximately 1.25 on yield for

  19. Esophageal and transpulmonary pressures in acute respiratory failure*

    PubMed Central

    Talmor, Daniel; Sarge, Todd; O’Donnell, Carl R.; Ritz, Ray; Malhotra, Atul; Lisbon, Alan; Loring, Stephen H.

    2008-01-01

    Objective Pressure inflating the lung during mechanical ventilation is the difference between pressure applied at the airway opening (Pao) and pleural pressure (Ppl). Depending on the chest wall’s contribution to respiratory mechanics, a given positive end-expiratory and/or end-inspiratory plateau pressure may be appropriate for one patient but inadequate or potentially injurious for another. Thus, failure to account for chest wall mechanics may affect results in clinical trials of mechanical ventilation strategies in acute respiratory distress syndrome. By measuring esophageal pressure (Pes), we sought to characterize influence of the chest wall on Ppl and transpulmonary pressure (PL) in patients with acute respiratory failure. Design Prospective observational study. Setting Medical and surgical intensive care units at Beth Israel Deaconess Medical Center. Patients Seventy patients with acute respiratory failure. Interventions: Placement of esophageal balloon-catheters. Measurements and Main Results Airway, esophageal, and gastric pressures recorded at end-exhalation and end-inflation Pes averaged 17.5 ± 5.7 cm H2O at end-expiration and 21.2 ± 7.7 cm H2O at end-inflation and were not significantly correlated with body mass index or chest wall elastance. Estimated PL was 1.5 ± 6.3 cm H2O at end-expiration, 21.4 ± 9.3 cm H2O at end-inflation, and 18.4 ± 10.2 cm H2O (n = 40) during an end-inspiratory hold (plateau). Although PL at end-expiration was significantly correlated with positive end-expiratory pressure (p < .0001), only 24% of the variance in PL was explained by Pao (R2 = .243), and 52% was due to variation in Pes. Conclusions In patients in acute respiratory failure, elevated esophageal pressures suggest that chest wall mechanical properties often contribute substantially and unpredictably to total respiratory impedance, and therefore Pao may not adequately predict PL or lung distention. Systematic use of esophageal manometry has the potential to

  20. Congestive heart failure and central sleep apnea.

    PubMed

    Sands, Scott A; Owens, Robert L

    2015-07-01

    Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Congestive Heart Failure and Central Sleep Apnea.

    PubMed

    Sands, Scott A; Owens, Robert L

    2016-03-01

    Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Can patients with moderate to severe acute respiratory failure from COPD be treated safely with noninvasive mechanical ventilation on the ward?

    PubMed

    Yalcinsoy, Murat; Salturk, Cuneyt; Oztas, Selahattin; Gungor, Sinem; Ozmen, Ipek; Kabadayi, Feyyaz; Oztim, Aysem Askim; Aksoy, Emine; Adıguzel, Nalan; Oruc, Ozlem; Karakurt, Zuhal

    2016-01-01

    Noninvasive mechanical ventilation (NIMV) usage outside of intensive care unit is not recommended in patients with COPD for severe acute respiratory failure (ARF). We assessed the factors associated with failure of NIMV in patients with ARF and severe acidosis admitted to the emergency department and followed on respiratory ward. This is a retrospective observational cohort study conducted in a tertiary teaching hospital specialized in chest diseases and thoracic surgery between June 1, 2013 and May 31, 2014. COPD patients who were admitted to our emergency department due to ARF were included. Patients were grouped according to the severity of acidosis into two groups: group 1 (pH=7.20-7.25) and group 2 (pH=7.26-7.30). Group 1 included 59 patients (mean age: 70±10 years, 30.5% female) and group 2 included 171 patients (mean age: 67±11 years, 28.7% female). On multivariable analysis, partial arterial oxygen pressure to the inspired fractionated oxygen (PaO2/FiO2) ratio <200, delta pH value <0.30, and pH value <7.31 on control arterial blood gas after NIMV in the emergency room and peak C-reactive protein were found to be the risk factors for NIMV failure in COPD patients with ARF in the ward. NIMV is effective not only in mild respiratory failure but also with severe forms of COPD patients presenting with severe exacerbation. The determination of the failure criteria of NIMV and the expertise of the team is critical for treatment success.

  3. Experimental and numerical study of the failure process and energy mechanisms of rock-like materials containing cross un-persistent joints under uniaxial compression.

    PubMed

    Cao, Rihong; Cao, Ping; Lin, Hang; Fan, Xiang

    2017-01-01

    Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D), the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength), CIS (crack initiation stress) and CDiS (critical dilatancy stress) increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.

  4. Failure modes and materials design for biomechanical layer structures

    NASA Astrophysics Data System (ADS)

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa

  5. Mechanical Properties and Tensile Failure Analysis of Novel Bio-absorbable Mg-Zn-Cu and Mg-Zn-Se Alloys for Endovascular Applications

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    In this paper, the mechanical properties and tensile failure mechanism of two novel bio-absorbable as-cast Mg-Zn-Se and Mg-Zn-Cu alloys for endovascular medical applications are characterized. Alloys were manufactured using an ARC melting process and tested as-cast with compositions of Mg-Zn-Se and Mg-Zn-Cu, being 98/1/1 wt.% respectively. Nanoindentation testing conducted at room temperature was used to characterize the elastic modulus (E) and surface hardness (H) for both the bare alloys and the air formed oxide layer. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties that can increase their biocompatibility, degradation kinetics, and the potential for medical device creation. PMID:23543822

  6. [Pharmacological and mechanical support of the myocardium in perioperative period in cardio-surgical patients with chronic heart failure].

    PubMed

    Babaev, M A; Eremenko, A A; Ziuliaeva, T P; Fedulova, S V; Molochnikov, I O; Fominykh, M V; Poliakova, P V; Dzemeshkevich, S L

    2014-01-01

    The article deals with a retrospective study devoted to the combined methods of myocardial support in cardiosurgical patients with chronic heart failure (III-IY FC according to NYHA) and low myocardial reserves capacity (LVEF 28.3 +/- 9.4%). This methods include pharmacologic (Levosimendan) and mechanical support (IABP). During the work we have analyzed data of 116 patients and measured pressure in the pulmonary artery (mmHg), end-systolic volume (ESV ml), end-diastolic volume (ED, ml), stroke volume output (SVO, ml), left ventricular ejection fraction (LVEF, %). We evaluated the level of valvular insufficiency and pulmonary hypertension (PH) and BNP concentration (pg/ml). The following indications for the usage of pharmacological and/or mechanical myocardial support were identified: I) Preventive usage of pharmacological and/or mechanical myocardial support is recommended for patients with CHF III-IY FC (NYHA) and low left ventricular EF(< or = 35%), significant valvular insufficiency, PH, PICS (postinfarction cardiosclerosis); 2) The certain method of the support can be chosen with the help of Levosimendan infusion testing; 3) In case one of the above mentioned indications (point 1) or in case of mild reaction to levosimendan infusion in patients with the lesions of more than 2 coronary arteries (including the trunk of the left coronary artery) the usage of combined support is recommended; 4) In case of < or = 6 scores according to EUROSCORE scale, lesions of 2 or more coronary arteries, tricuspid insufficiency (TriI), PH, and high pressure in pulmonary artery (higher than the 2nd degree), high end-diastolic volume, end-systolic volume of LV the isolated usage of levosimendan is recommended; 5) In case of significant ischemic heart disease, PICS, lesions of more than 2 coronary arteries, (including the trunk of the left coronary artery) but without significant decrease of pressure in the pulmonary artery, end-diastolic volume, end-systolic volume and TriI the

  7. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction.

    PubMed

    Unger, Erin D; Dubin, Ruth F; Deo, Rajat; Daruwalla, Vistasp; Friedman, Julie L; Medina, Crystal; Beussink, Lauren; Freed, Benjamin H; Shah, Sanjiv J

    2016-01-01

    Chronic kidney disease (CKD) is associated with worse outcomes in heart failure with preserved ejection fraction (HFpEF). Whether this association is due the effect of CKD on intrinsic abnormalities in cardiac function is unknown. We hypothesized that CKD is independently associated with worse cardiac mechanics in HFpEF. We prospectively studied 299 patients enrolled in the Northwestern University HFpEF Program. Using the creatinine-based CKD-Epi equation to calculate estimated glomerular filtration rate (eGFR), study participants were analysed by CKD status (using eGFR <60 mL/min/1.73 m(2) to denote CKD). Indices of cardiac mechanics (longitudinal strain parameters) were measured using speckle-tracking echocardiography. Using multivariable-adjusted linear and Cox regression analyses, we determined the association between CKD and echocardiographic parameters and clinical outcomes (cardiovascular hospitalization or death). Of 299 study participants, 48% had CKD. CKD (dichotomous variable) and reduced eGFR (continuous variable) were both associated with worse cardiac mechanics indices including left atrial (LA) reservoir strain, LV longitudinal strain, and right ventricular free wall strain even after adjusting for potential confounders, including co-morbidities, EF, and volume status. For example, for each 1-SD decrease in eGFR, LA reservoir strain was 3.52% units lower (P < 0.0001) after multivariable adjustment. Reduced eGFR was also associated with worse outcomes [adjusted hazard ratio (HR) 1.28, 95% confidence interval (CI) 1.01-1.61 per 1-SD decrease in eGFR; P = 0.039]. The association was attenuated after adjustment for indices of cardiac mechanics (P = 0.064). In HFpEF, CKD is independently associated with worse cardiac mechanics, which may explain why HFpEF patients with CKD have worse outcomes. NCT01030991. © 2015 The Authors European Journal of Heart Failure © 2015 European Society of Cardiology.

  8. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris G.

    2014-05-01

    Today, frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength for confined conditions corresponding to the seismogenic layer. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism, the rock failure associated with consecutive creation of small slabs (known as ‘domino-blocks') from the intact rock in the rupture tip is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance, self-sustaining stress intensification, and self-unbalancing conditions. Due to this the failure process caused by the mechanism is very dynamic and violent. This makes it impossible to directly observe and study the mechanism and can explain why the mechanism has not been detected before. This paper provides physical motivation for the mechanism, based upon side effects accompanying the failure process. Physical and mathematical models of the mechanism presented in the paper explain unique and paradoxical features of the mechanism. The new shear rupture mechanism allows a novel point of view for understanding the nature of spontaneous failure processes in hard rocks including earthquakes.

  9. Failure waves in glass and ceramics under shock compression

    NASA Astrophysics Data System (ADS)

    Brar, N. S.

    2000-04-01

    The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the "so called" failure wave or front, has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress. The shear strength [τ=1/2(σ1-σ2)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 1 GPa for soda-lime, borosilicate, and filled glasses. Optical (high-speed photography) observations also confirm formation of this failure front. There is a general agreement among various researchers on these failure observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton, is based on the hypothesis of densification of glass under shock compression. Densification is followed by shear failure around inhomogeneities resulting in a phase boundary between the comminuted and the intact material. The second, proposed by Grady, involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe micro-cracking originating from impact. The third, by Espinosa and Brar, proposes that the front is created through shear micro-cracks, which nucleate and propagate from the impact face; as originally suggested by Kanel. This later mechanism is supported by the observed loss of shear strength of glass by Clifton et al. at shock stress above the threshold level. Espinosa has incorporated this mechanism in multiple-plane model and simulations predict the increase in lateral

  10. The effect of the pore-fluid factor on strength and failure mechanism of Wilkeson sandstone

    NASA Astrophysics Data System (ADS)

    Kätker, A. K.; Rempe, M.; Renner, J.

    2016-12-01

    The effective stress law, σn,eff = σn - αpf, is a central tool in analysing phenomena related to hydromechanical coupling, such as fluid-induced seismicity or aftershock activity. The effective-stress coefficient α assumes different values for specific physical properties and may deviate from 1. The limited number of studies suggest that brittle compressive strength obeys an effective-stress law when effective drainage is achieved. Yet, open questions remain regarding, e.g., the role of the loading path. We performed suites of triaxial compression tests on samples of Wilkeson sandstone at a range of pore-fluid pressures but identical effective confining pressure (60, 100, and 120 MPa) maintaining the pore-fluid factor λ = pf / pc constant (0.05, 0.2, 0.4, 0.55) during the isostatic loading stage to ensure uniform loading paths. Samples were shortened with a strain rate of 4×10-7 s-1 yielding drained conditions. All tests were terminated at a total axial strain of 4.5% for comparability of microstructures. The tests also included continuous permeability determination and ultrasonic p-wave-velocity measurements to monitor microstructural evolution. Results from experiments conducted at peff = 100 MPa show that dry samples exhibit a higher peak strength and brittle failure while water-saturated samples tend to deform at lower stress by cataclastic flow indicating physico-chemical weakening. Regardless of pore-fluid factor, the saturated experiments exhibit similar peak and residual strength. Differences in failure mechanism (degree of macroscopic localization) and volumetric strain evolution are however noticed, albeit without systematic relation to pore-fluid factor. Microstructure analyses by optical and scanning electron microscopy revealed an evolution from localized shear zones in dry experiments and experiments with a low pore-fluid factor to rather distributed cataclastic flow for experiments with high pore fluid factors. Yet, mechanical and structural

  11. Comparison of clinical and laboratory parameters in patients with end-stage renal failure in the outcome of chronic glomerulonephritis and patients with end-stage renal failure in the outcome of other diseases.

    PubMed

    Popova, J A; Yadrihinskaya, V N; Krylova, M I; Sleptsovа, S S; Borisovа, N V

    frequent complications of hemodialysis treatments are coagulation disorders. This is due to activation of the coagulation of blood flow in the interaction with a dialysis membrane material vascular prostheses and extracorporeal circuit trunks. In addition, in hemodialysis patients receiving heparin for years, there is depletion of stocks in endothelial cells in tissue factor inhibitor, inhibits the activity of an external blood clotting mechanism. the aim of our study was to evaluate the hemostatic system parameters in patients with end-stage renal failure, depending on the cause of renal failure. to evaluate the hemostatic system parameters in patients with end-stage renal failure, depending on the cause of renal failure and hemodialysis treatment duration conducted a study that included 100 patients observed in the department of chronic hemodialysis and nephrology hospital №1 Republican National Medical Center in the period of 2013-2016. in patients with end-stage renal failure in the outcome of chronic glomerulonephritis, a great expression of activation of blood coagulation confirm increased the mean concentration of fibrinogen, whereas in the group, which included patients with end-stage renal failure in the outcome of other diseases, such is not different from the norm, and a higher rate of hyperfibrinogenemia, identified in 2/3 patients in this group. it was revealed that the state of homeostasis in patients with end-stage renal failure in increasingly characterizes the level of fibrinogen and the activation of the hemostatic markers: soluble fibrin monomer complexes, D-dimers.

  12. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyeon; Choi, Sung-Woong; Park, Doo-Hwan; Park, Seong-Bo; Kim, Seul-Kee; Park, Kwang-Jun; Lee, Jae-Myung

    2018-04-01

    The present study investigates the applicability of melamine-urea-formaldehyde (MUF) resin plywood in cryogenic applications, including liquefied natural gas (LNG) carrier insulation systems. Phenolic-formaldehyde (PF) resin plywood has been extensively used as a structural material in industrial applications. However, many shortcomings of PF resin plywood have been reported, and replacement of PF resin plywood with a new material is necessary to resolve these problems. MUF resin plywood has the advantages of short fabrication time, low veneer cost, and economic feasibility compared to PF resin plywood. However, the mechanical and failure characteristics of MUF resin plywood have not yet been investigated at low temperature ranges. For this reason, adapting MUF resin plywood for cryogenic applications has been difficult, despite the many strong points of the material in engineering aspects. In this study, the effects of cryogenic temperature and thermal treatment on the mechanical characteristics of MUF resin plywood are investigated. The performance of MUF resin plywood is compared with that of PF resin plywood to verify the applicability of the material for use as a structural material in LNG insulation systems. The results demonstrate that MUF resin plywood has mechanical properties comparable with those of PF resin plywood, even at cryogenic conditions.

  13. Application of fracture mechanics to failure in manatee rib bone.

    PubMed

    Yan, Jiahau; Clifton, Kari B; Reep, Roger L; Mecholsky, John J

    2006-06-01

    The Florida manatee (Trichechus manatus latirostris) is listed as endangered by the U.S. Department of the Interior. Manatee ribs have different microstructure from the compact bone of other mammals. Biomechanical properties of the manatee ribs need to be better understood. Fracture toughness (K(C)) has been shown to be a good index to assess the mechanical performance of bone. Quantitative fractography can be used in concert with fracture mechanics equations to identify fracture initiating defects/cracks and to calculate the fracture toughness of bone materials. Fractography is a standard technique for analyzing fracture behavior of brittle and quasi-brittle materials. Manatee ribs are highly mineralized and fracture in a manner similar to quasi-brittle materials. Therefore, quantitative fractography was applied to determine the fracture toughness of manatee ribs. Average fracture toughness values of small flexure specimens from six different sizes of manatees ranged from 1.3 to 2.6 MPa(m)(12). Scanning electron microscope (SEM) images show most of the fracture origins were at openings for blood vessels and interlayer spaces. Quantitative fractography and fracture mechanics can be combined to estimate the fracture toughness of the material in manatee rib bone. Fracture toughness of subadult and calf manatees appears to increase as the size of the manatee increases. Average fracture toughness of the manatee rib bone materials is less than the transverse fracture toughness of human and bovine tibia and femur.

  14. Using Generic Data to Establish Dormancy Failure Rates

    NASA Technical Reports Server (NTRS)

    Reistle, Bruce

    2014-01-01

    Many hardware items are dormant prior to being operated. The dormant period might be especially long, for example during missions to the moon or Mars. In missions with long dormant periods the risk incurred during dormancy can exceed the active risk contribution. Probabilistic Risk Assessments (PRAs) need to account for the dormant risk contribution as well as the active contribution. A typical method for calculating a dormant failure rate is to multiply the active failure rate by a constant, the dormancy factor. For example, some practitioners use a heuristic and divide the active failure rate by 30 to obtain an estimate of the dormant failure rate. To obtain a more empirical estimate of the dormancy factor, this paper uses the recently updated database NPRD-2011 [1] to arrive at a set of distributions for the dormancy factor. The resulting dormancy factor distributions are significantly different depending on whether the item is electrical, mechanical, or electro-mechanical. Additionally, this paper will show that using a heuristic constant fails to capture the uncertainty of the possible dormancy factors.

  15. Atomic-Scale Mechanisms of Defect-Induced Retention Failure in Ferroelectrics.

    PubMed

    Li, Linze; Zhang, Yi; Xie, Lin; Jokisaari, Jacob R; Beekman, Christianne; Yang, Jan-Chi; Chu, Ying-Hao; Christen, Hans M; Pan, Xiaoqing

    2017-06-14

    The ability to switch the ferroelectric polarization using an electric field makes ferroelectrics attractive for application in nanodevices such as high-density memories. One of the major challenges impeding this application, however, has been known as "retention failure", which is a spontaneous process of polarization back-switching that can lead to data loss. This process is generally thought to be caused by the domain instability arising from interface boundary conditions and countered by defects, which can pin the domain wall and impede the back-switching. Here, using in situ transmission electron microscopy and atomic-scale scanning transmission electron microscopy, we show that the polarization retention failure can be induced by commonly observed nanoscale impurity defects in BiFeO 3 thin films. The interaction between polarization and the defects can also lead to the stabilization of novel functional nanodomains with mixed-phase structures and head-to-head polarization configurations. Thus, defect engineering provides a new route for tuning properties of ferroelectric nanosystems.

  16. A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy

    NASA Astrophysics Data System (ADS)

    Parise, M.; Lollino, P.

    2011-11-01

    Natural and anthropogenic caves may represent a potential hazard for the built environment, due to the occurrence of instability within caves, that may propagate upward and eventually reach the ground surface, inducing the occurrence of sinkholes. In particular, when caves are at shallow depth, the effects at the ground surface may be extremely severe. Apulia region (southern Italy) hosts many sites where hazard associated with sinkholes is very serious due to presence of both natural karst caves and anthropogenic cavities, the latter being mostly represented by underground quarries. The Pliocene-Pleistocene calcarenite (a typical soft rock) was extensively quarried underground, by digging long and complex networks of tunnels. With time, these underground activities have progressively been abandoned and their memory lost, so that many Apulian towns are nowadays located just above the caves, due to urban expansion in the last decades. Therefore, a remarkable risk exists for society, which should not be left uninvestigated. The present contribution deals with the analysis of the most representative failure mechanisms observed in the field for such underground instability processes and the factors that seem to influence the processes, as for example those causing weathering of the rock and the consequent degradation of its physical and mechanical properties. Aimed at exploring the progression of instability of the cavities, numerical analyses have been developed by using both the finite element method for geological settings represented by continuous soft rock mass, and the distinct element method for jointed rock mass conditions. Both the effects of local instability processes occurring underground and the effects of the progressive enlargement of the caves on the overall stability of the rock mass have been investigated, along with the consequent failure mechanisms. In particular, degradation processes of the rock mass, as a consequence of wetting and weathering

  17. A comparison of stereology, structural rigidity and a novel 3D failure surface analysis method in the assessment of torsional strength and stiffness in a mouse tibia fracture model.

    PubMed

    Wright, David A; Nam, Diane; Whyne, Cari M

    2012-08-31

    In attempting to develop non-invasive image based measures for the determination of the biomechanical integrity of healing fractures, traditional μCT based measurements have been limited. This study presents the development and evaluation of a tool for assessment of fracture callus mechanical properties through determination of the geometric characteristics of the fracture callus, specifically along the surface of failure identified during destructive mechanical testing. Fractures were created in tibias of ten male mice and subjected to μCT imaging and biomechanical torsion testing. Failure surface analysis, along with previously described image based measures was calculated using the μCT image data, and correlated with mechanical strength and stiffness. Three-dimensional measures along the surface of failure, specifically the surface area and torsional rigidity of bone, were shown to be significantly correlating with mechanical strength and stiffness. It was also shown that surface area of bone along the failure surface exhibits stronger correlations with both strength and stiffness than measures of average and minimum torsional rigidity of the entire callus. Failure surfaces observed in this study were generally oriented at 45° to the long axis of the bone, and were not contained exclusively within the callus. This work represents a proof of concept study, and shows the potential utility of failure surface analysis in the assessment of fracture callus stability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Heterogeneity: The key to failure forecasting

    PubMed Central

    Vasseur, Jérémie; Wadsworth, Fabian B.; Lavallée, Yan; Bell, Andrew F.; Main, Ian G.; Dingwell, Donald B.

    2015-01-01

    Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power. PMID:26307196

  19. Heterogeneity: The key to failure forecasting.

    PubMed

    Vasseur, Jérémie; Wadsworth, Fabian B; Lavallée, Yan; Bell, Andrew F; Main, Ian G; Dingwell, Donald B

    2015-08-26

    Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power.

  20. Heterogeneity: The key to failure forecasting

    NASA Astrophysics Data System (ADS)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Lavallée, Yan; Bell, Andrew F.; Main, Ian G.; Dingwell, Donald B.

    2015-08-01

    Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power.