Sample records for identify gene families

  1. Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    PubMed Central

    Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

    2014-01-01

    The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666

  2. The genetics of alcoholism: identifying specific genes through family studies.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2006-09-01

    Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.

  3. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer.

    PubMed

    Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John

    2007-06-01

    We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.

  4. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.

    PubMed

    Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

  5. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    PubMed Central

    Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases. PMID:25644381

  6. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder.

    PubMed

    Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P

    2018-03-01

    Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Caenorhabditis chemoreceptor gene families.

    PubMed

    Thomas, James H; Robertson, Hugh M

    2008-10-06

    Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

  8. The Caenorhabditis chemoreceptor gene families

    PubMed Central

    Thomas, James H; Robertson, Hugh M

    2008-01-01

    Background Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Conclusion Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space. PMID:18837995

  9. GeneSeqToFamily: a Galaxy workflow to find gene families based on the Ensembl Compara GeneTrees pipeline.

    PubMed

    Thanki, Anil S; Soranzo, Nicola; Haerty, Wilfried; Davey, Robert P

    2018-03-01

    Gene duplication is a major factor contributing to evolutionary novelty, and the contraction or expansion of gene families has often been associated with morphological, physiological, and environmental adaptations. The study of homologous genes helps us to understand the evolution of gene families. It plays a vital role in finding ancestral gene duplication events as well as identifying genes that have diverged from a common ancestor under positive selection. There are various tools available, such as MSOAR, OrthoMCL, and HomoloGene, to identify gene families and visualize syntenic information between species, providing an overview of syntenic regions evolution at the family level. Unfortunately, none of them provide information about structural changes within genes, such as the conservation of ancestral exon boundaries among multiple genomes. The Ensembl GeneTrees computational pipeline generates gene trees based on coding sequences, provides details about exon conservation, and is used in the Ensembl Compara project to discover gene families. A certain amount of expertise is required to configure and run the Ensembl Compara GeneTrees pipeline via command line. Therefore, we converted this pipeline into a Galaxy workflow, called GeneSeqToFamily, and provided additional functionality. This workflow uses existing tools from the Galaxy ToolShed, as well as providing additional wrappers and tools that are required to run the workflow. GeneSeqToFamily represents the Ensembl GeneTrees pipeline as a set of interconnected Galaxy tools, so they can be run interactively within the Galaxy's user-friendly workflow environment while still providing the flexibility to tailor the analysis by changing configurations and tools if necessary. Additional tools allow users to subsequently visualize the gene families produced by the workflow, using the Aequatus.js interactive tool, which has been developed as part of the Aequatus software project.

  10. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability

    PubMed Central

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-01-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1–3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal–parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID. PMID:27457812

  11. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.

    PubMed

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-11-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.

  12. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Gupta, Vidya S

    2012-05-08

    The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were

  13. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    PubMed

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system.

  14. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    PubMed Central

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that

  15. Whole-exome sequencing identifies novel candidate predisposition genes for familial polycythemia vera.

    PubMed

    Hirvonen, Elina A M; Pitkänen, Esa; Hemminki, Kari; Aaltonen, Lauri A; Kilpivaara, Outi

    2017-04-20

    Polycythemia vera (PV), characterized by massive production of erythrocytes, is one of the myeloproliferative neoplasms. Most patients carry a somatic gain-of-function mutation in JAK2, c.1849G > T (p.Val617Phe), leading to constitutive activation of JAK-STAT signaling pathway. Familial clustering is also observed occasionally, but high-penetrance predisposition genes to PV have remained unidentified. We studied the predisposition to PV by exome sequencing (three cases) in a Finnish PV family with four patients. The 12 shared variants (maximum allowed minor allele frequency <0.001 in Finnish population in ExAC database) predicted damaging in silico and absent in an additional control set of over 500 Finns were further validated by Sanger sequencing in a fourth affected family member. Three novel predisposition candidate variants were identified: c.1254C > G (p.Phe418Leu) in ZXDC, c.1931C > G (p.Pro644Arg) in ATN1, and c.701G > A (p.Arg234Gln) in LRRC3. We also observed a rare, predicted benign germline variant c.2912C > G (p.Ala971Gly) in BCORL1 in all four patients. Somatic mutations in BCORL1 have been reported in myeloid malignancies. We further screened the variants in eight PV patients in six other Finnish families, but no other carriers were found. Exome sequencing provides a powerful tool for the identification of novel variants, and understanding the familial predisposition of diseases. This is the first report on Finnish familial PV cases, and we identified three novel candidate variants that may predispose to the disease.

  16. Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease

    PubMed Central

    Fernández, Maria V.; Budde, John; Del-Aguila, Jorge L.; Ibañez, Laura; Deming, Yuetiva; Harari, Oscar; Norton, Joanne; Morris, John C.; Goate, Alison M.; Cruchaga, Carlos

    2018-01-01

    Gene-based tests to study the combined effect of rare variants on a particular phenotype have been widely developed for case-control studies, but their evolution and adaptation for family-based studies, especially studies of complex incomplete families, has been slower. In this study, we have performed a practical examination of all the latest gene-based methods available for family-based study designs using both simulated and real datasets. We examined the performance of several collapsing, variance-component, and transmission disequilibrium tests across eight different software packages and 22 models utilizing a cohort of 285 families (N = 1,235) with late-onset Alzheimer disease (LOAD). After a thorough examination of each of these tests, we propose a methodological approach to identify, with high confidence, genes associated with the tested phenotype and we provide recommendations to select the best software and model for family-based gene-based analyses. Additionally, in our dataset, we identified PTK2B, a GWAS candidate gene for sporadic AD, along with six novel genes (CHRD, CLCN2, HDLBP, CPAMD8, NLRP9, and MAS1L) as candidate genes for familial LOAD. PMID:29670507

  17. Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease.

    PubMed

    Fernández, Maria V; Budde, John; Del-Aguila, Jorge L; Ibañez, Laura; Deming, Yuetiva; Harari, Oscar; Norton, Joanne; Morris, John C; Goate, Alison M; Cruchaga, Carlos

    2018-01-01

    Gene-based tests to study the combined effect of rare variants on a particular phenotype have been widely developed for case-control studies, but their evolution and adaptation for family-based studies, especially studies of complex incomplete families, has been slower. In this study, we have performed a practical examination of all the latest gene-based methods available for family-based study designs using both simulated and real datasets. We examined the performance of several collapsing, variance-component, and transmission disequilibrium tests across eight different software packages and 22 models utilizing a cohort of 285 families ( N = 1,235) with late-onset Alzheimer disease (LOAD). After a thorough examination of each of these tests, we propose a methodological approach to identify, with high confidence, genes associated with the tested phenotype and we provide recommendations to select the best software and model for family-based gene-based analyses. Additionally, in our dataset, we identified PTK2B , a GWAS candidate gene for sporadic AD, along with six novel genes ( CHRD, CLCN2, HDLBP, CPAMD8, NLRP9 , and MAS1L ) as candidate genes for familial LOAD.

  18. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation.

    PubMed

    Filatov, Victor; Dowdle, John; Smirnoff, Nicholas; Ford-Lloyd, Brian; Newbury, H John; Macnair, Mark R

    2006-09-01

    One of the challenges of comparative genomics is to identify specific genetic changes associated with the evolution of a novel adaptation or trait. We need to be able to disassociate the genes involved with a particular character from all the other genetic changes that take place as lineages diverge. Here we show that by comparing the transcriptional profile of segregating families with that of parent species differing in a novel trait, it is possible to narrow down substantially the list of potential target genes. In addition, by assuming synteny with a related model organism for which the complete genome sequence is available, it is possible to use the cosegregation of markers differing in transcription level to identify regions of the genome which probably contain quantitative trait loci (QTLs) for the character. This novel combination of genomics and classical genetics provides a very powerful tool to identify candidate genes. We use this methodology to investigate zinc hyperaccumulation in Arabidopsis halleri, the sister species to the model plant, Arabidopsis thaliana. We compare the transcriptional profile of A. halleri with that of its sister nonaccumulator species, Arabidopsis petraea, and between accumulator and nonaccumulator F(3)s derived from the cross between the two species. We identify eight genes which consistently show greater expression in accumulator phenotypes in both roots and shoots, including two metal transporter genes (NRAMP3 and ZIP6), and cytoplasmic aconitase, a gene involved in iron homeostasis in mammals. We also show that there appear to be two QTLs for zinc accumulation, on chromosomes 3 and 7.

  19. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    PubMed

    Paulo, Paula; Maia, Sofia; Pinto, Carla; Pinto, Pedro; Monteiro, Augusta; Peixoto, Ana; Teixeira, Manuel R

    2018-04-01

    Considering that mutations in known prostate cancer (PrCa) predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS) in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  20. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families.

    PubMed

    Harripaul, R; Vasli, N; Mikhailov, A; Rafiq, M A; Mittal, K; Windpassinger, C; Sheikh, T I; Noor, A; Mahmood, H; Downey, S; Johnson, M; Vleuten, K; Bell, L; Ilyas, M; Khan, F S; Khan, V; Moradi, M; Ayaz, M; Naeem, F; Heidari, A; Ahmed, I; Ghadami, S; Agha, Z; Zeinali, S; Qamar, R; Mozhdehipanah, H; John, P; Mir, A; Ansar, M; French, L; Ayub, M; Vincent, J B

    2018-04-01

    Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations (ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7 and USP44), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.

  1. Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation

    PubMed Central

    Badal, Brateil; Solovyov, Alexander; Di Cecilia, Serena; Chan, Joseph Minhow; Chang, Li-Wei; Iqbal, Ramiz; Aydin, Iraz T.; Rajan, Geena S.; Chen, Chen; Abbate, Franco; Arora, Kshitij S.; Tanne, Antoine; Gruber, Stephen B.; Johnson, Timothy M.; Fullen, Douglas R.; Phelps, Robert; Bhardwaj, Nina; Bernstein, Emily; Ting, David T.; Brunner, Georg; Schadt, Eric E.; Greenbaum, Benjamin D.; Celebi, Julide Tok

    2017-01-01

    BACKGROUND. Melanoma is a heterogeneous malignancy. We set out to identify the molecular underpinnings of high-risk melanomas, those that are likely to progress rapidly, metastasize, and result in poor outcomes. METHODS. We examined transcriptome changes from benign states to early-, intermediate-, and late-stage tumors using a set of 78 treatment-naive melanocytic tumors consisting of primary melanomas of the skin and benign melanocytic lesions. We utilized a next-generation sequencing platform that enabled a comprehensive analysis of protein-coding and -noncoding RNA transcripts. RESULTS. Gene expression changes unequivocally discriminated between benign and malignant states, and a dual epigenetic and immune signature emerged defining this transition. To our knowledge, we discovered previously unrecognized melanoma subtypes. A high-risk primary melanoma subset was distinguished by a 122-epigenetic gene signature (“epigenetic” cluster) and TP53 family gene deregulation (TP53, TP63, and TP73). This subtype associated with poor overall survival and showed enrichment of cell cycle genes. Noncoding repetitive element transcripts (LINEs, SINEs, and ERVs) that can result in immunostimulatory signals recapitulating a state of “viral mimicry” were significantly repressed. The high-risk subtype and its poor predictive characteristics were validated in several independent cohorts. Additionally, primary melanomas distinguished by specific immune signatures (“immune” clusters) were identified. CONCLUSION. The TP53 family of genes and genes regulating the epigenetic machinery demonstrate strong prognostic and biological relevance during progression of early disease. Gene expression profiling of protein-coding and -noncoding RNA transcripts may be a better predictor for disease course in melanoma. This study outlines the transcriptional interplay of the cancer cell’s epigenome with the immune milieu with potential for future therapeutic targeting. FUNDING

  2. Mutational Landscape of Candidate Genes in Familial Prostate Cancer

    PubMed Central

    Johnson, Anna M.; Zuhlke, Kimberly A.; Plotts, Chris; McDonnell, Shannon K.; Middha, Sumit; Riska, Shaun M.; Thibodeau, Stephen N.; Douglas, Julie A.; Cooney, Kathleen A.

    2014-01-01

    Background Family history is a major risk factor for prostate cancer (PCa), suggesting a genetic component to the disease. However, traditional linkage and association studies have failed to fully elucidate the underlying genetic basis of familial PCa. Methods Here we use a candidate gene approach to identify potential PCa susceptibility variants in whole exome sequencing data from familial PCa cases. Six hundred ninety-seven candidate genes were identified based on function, location near a known chromosome 17 linkage signal, and/or previous association with prostate or other cancers. Single nucleotide variants (SNVs) in these candidate genes were identified in whole exome sequence data from 33 PCa cases from 11 multiplex PCa families (3 cases/family). Results Overall, 4856 candidate gene SNVs were identified, including 1052 missense and 10 nonsense variants. Twenty missense variants were shared by all 3 family members in each family in which they were observed. Additionally, 15 missense variants were shared by 2 of 3 family members and predicted to be deleterious by 5 different algorithms. Four missense variants, BLM Gln123Arg, PARP2 Arg283Gln, LRCC46 Ala295Thr and KIF2B Pro91Leu, and 1 nonsense variant, CYP3A43 Arg441Ter, showed complete co-segregation with PCa status. Twelve additional variants displayed partial co-segregation with PCa. Conclusions Forty-three nonsense and shared, missense variants were identified in our candidate genes. Further research is needed to determine the contribution of these variants to PCa susceptibility. PMID:25111073

  3. Identifying conserved gene clusters in the presence of homology families.

    PubMed

    He, Xin; Goldwasser, Michael H

    2005-01-01

    The study of conserved gene clusters is important for understanding the forces behind genome organization and evolution, as well as the function of individual genes or gene groups. In this paper, we present a new model and algorithm for identifying conserved gene clusters from pairwise genome comparison. This generalizes a recent model called "gene teams." A gene team is a set of genes that appear homologously in two or more species, possibly in a different order yet with the distance of adjacent genes in the team for each chromosome always no more than a certain threshold. We remove the constraint in the original model that each gene must have a unique occurrence in each chromosome and thus allow the analysis on complex prokaryotic or eukaryotic genomes with extensive paralogs. Our algorithm analyzes a pair of chromosomes in O(mn) time and uses O(m+n) space, where m and n are the number of genes in the respective chromosomes. We demonstrate the utility of our methods by studying two bacterial genomes, E. coli K-12 and B. subtilis. Many of the teams identified by our algorithm correlate with documented E. coli operons, while several others match predicted operons, previously suggested by computational techniques. Our implementation and data are publicly available at euler.slu.edu/ approximately goldwasser/homologyteams/.

  4. GSDM family genes meet autophagy.

    PubMed

    Tamura, Masaru; Shiroishi, Toshihiko

    2015-07-15

    In the previous issue of Biochemical Journal, Shi et al. [(2015) 468, 325-336] report that Gasdermin (Gsdm) family proteins regulate autophagy activity, which is counter-balanced by the opposite functions of well-conserved N- and C-terminal domains of the proteins. The Gsdm family was originally identified as the causative gene of dominant skin mutations exhibiting alopecia. Each member of the Gsdm gene family shows characteristic expression patterns in the epithelium, which is tissue and differentiation stage-specific. Previous phenotype analyses of mutant mice, biochemical analyses of proteins and genome-wide association studies showed that the Gsdm gene family might be involved in epithelial cell development, apoptosis, inflammation, carcinogenesis and immune-related diseases. To date, however, their molecular function(s) remain unclear. Shi et al. found that mutations in the C-terminal domain of Gsdma3, a member of the Gsdm family, induce autophagy. Further studies revealed that the wild-type N-terminal domain has pro-autophagic activity and that the C-terminal domain conversely inhibits this N-terminal function. These opposite functions of the two domains were also observed in other Gsdm family members. Thus, their study provides a new insight into the function of Gsdm genes in epithelial cell lineage, causality of cancers and immune-related diseases including childhood-onset asthma. © 2015 Authors; published by Portland Press Limited.

  5. Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene

    PubMed Central

    Pauli, Silke; Söker, Torben; Klopp, Norman; Illig, Thomas; Engel, Wolfgang

    2007-01-01

    Purpose The study demonstrates the functional candidate gene analysis in a cataract family of German descent. Methods We screened a German family, clinically documented to have congenital cataracts, for mutation in the candidate genes CRYG (A to D) and CRYBB2 through polymerase chain reaction analyses and sequencing. Results Congenital cataract was first observed in a daughter of healthy parents. Her two children (a boy and a girl) also suffer from congenital cataracts and have been operated within the first weeks of birth. Morphologically, the cataract is characterized as nuclear with an additional ring-shaped cortical opacity. Molecular analysis revealed no causative mutation in any of the CRYG genes. However, sequencing of the exons of the CRYBB2 gene identified a sequence variation in exon 5 (383 A>T) with a substitution of Asp to Val at position 128. All three affected family members revealed this change but it was not observed in any of the unaffected persons of the family. The putative mutation creates a restriction site for the enzyme TaiI. This mutation was checked for in controls of randomly selected DNA samples from ophthalmologically normal individuals from the population-based KORA S4 study (n=96) and no mutation was observed. Moreover, the Asp at position 128 is within a stretch of 12 amino acids, which are highly conserved throughout the animal kingdom. For the mutant protein, the isoelectric point is raised from pH 6.50 to 6.75. Additionally, the random coil structure of the protein between the amino acids 126-139 is interrupted by a short extended strand structure. In addition, this region becomes hydrophobic (from neutral to +1) and the electrostatic potential in the region surrounding the exchanged amino acid alters from a mainly negative potential to an enlarged positive potential. Conclusions The D128V mutation segregates only in affected family members and is not seen in representative controls. It represents the first mutation outside exon 6

  6. Identification of candidate genes for familial early-onset essential tremor.

    PubMed

    Liu, Xinmin; Hernandez, Nora; Kisselev, Sergey; Floratos, Aris; Sawle, Ashley; Ionita-Laza, Iuliana; Ottman, Ruth; Louis, Elan D; Clark, Lorraine N

    2016-07-01

    Essential tremor (ET) is one of the most common causes of tremor in humans. Despite its high heritability and prevalence, few susceptibility genes for ET have been identified. To identify ET genes, whole-exome sequencing was performed in 37 early-onset ET families with an autosomal-dominant inheritance pattern. We identified candidate genes for follow-up functional studies in five ET families. In two independent families, we identified variants predicted to affect function in the nitric oxide (NO) synthase 3 gene (NOS3) that cosegregated with disease. NOS3 is highly expressed in the central nervous system (including cerebellum), neurons and endothelial cells, and is one of three enzymes that converts l-arginine to the neurotransmitter NO. In one family, a heterozygous variant, c.46G>A (p.(Gly16Ser)), in NOS3, was identified in three affected ET cases and was absent in an unaffected family member; and in a second family, a heterozygous variant, c.164C>T (p.(Pro55Leu)), was identified in three affected ET cases (dizygotic twins and their mother). Both variants result in amino-acid substitutions of highly conserved amino-acid residues that are predicted to be deleterious and damaging by in silico analysis. In three independent families, variants predicted to affect function were also identified in other genes, including KCNS2 (KV9.2), HAPLN4 (BRAL2) and USP46. These genes are highly expressed in the cerebellum and Purkinje cells, and influence function of the gamma-amino butyric acid (GABA)-ergic system. This is in concordance with recent evidence that the pathophysiological process in ET involves cerebellar dysfunction and possibly cerebellar degeneration with a reduction in Purkinje cells, and a decrease in GABA-ergic tone.

  7. A family-based association study identified CYP17 as a candidate gene for obesity susceptibility in Caucasians.

    PubMed

    Yan, H; Guo, Y; Yang, T-L; Zhao, L-J; Deng, H-W

    2012-08-06

    The cytochrome P450c17α gene (CYP17) encodes a key biosynthesis enzyme of estrogen, which is critical in regulating adipogenesis and adipocyte development in humans. We therefore hypothesized that CYP17 is a candidate gene for predicting obesity. In order to test this hypothesis, we performed a family-based association test to investigate the relationship between the CYP17 gene and obesity phenotypes in a large sample comprising 1873 subjects from 405 Caucasian nuclear families of European origin recruited by the Osteoporosis Research Center of Creighton University, USA. Both single SNPs and haplotypes were tested for associations with obesity-related phenotypes, including body mass index (BMI) and fat mass. We identified three SNPs to be significantly associated with BMI, including rs3740397, rs6163, and rs619824. We further characterized the linkage disequilibrium structure for CYP17 and found that the whole CYP17 gene was located in a single-linkage disequilibrium block. This block was observed to be significantly associated with BMI. A major haplotype in this block was significantly associated with both BMI and fat mass. In conclusion, we suggest that the CYP17 gene has an effect on obesity in the Caucasian population. Further independent studies will be needed to confirm our findings.

  8. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins.

    PubMed

    Holmes, Roger S; Wright, Matthew W; Laulederkind, Stanley J F; Cox, Laura A; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J; Potter, Phillip M; Redinbo, Matthew R; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J

    2010-10-01

    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.

  9. Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2.

    PubMed

    Kraus, Cornelia; Hoyer, Juliane; Vasileiou, Georgia; Wunderle, Marius; Lux, Michael P; Fasching, Peter A; Krumbiegel, Mandy; Uebe, Steffen; Reuter, Miriam; Beckmann, Matthias W; Reis, André

    2017-01-01

    Breast and ovarian cancer (BC/OC) predisposition has been attributed to a number of high- and moderate to low-penetrance susceptibility genes. With the advent of next generation sequencing (NGS) simultaneous testing of these genes has become feasible. In this monocentric study, we report results of panel-based screening of 14 BC/OC susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, CHEK2, PALB2, ATM, NBN, CDH1, TP53, MLH1, MSH2, MSH6 and PMS2) in a group of 581 consecutive individuals from a German population with BC and/or OC fulfilling diagnostic criteria for BRCA1 and BRCA2 testing including 179 with a triple-negative tumor. Altogether we identified 106 deleterious mutations in 105 (18%) patients in 10 different genes, including seven different exon deletions. Of these 106 mutations, 16 (15%) were novel and only six were found in BRCA1/2. To further characterize mutations located in or nearby splicing consensus sites we performed RT-PCR analysis which allowed confirmation of pathogenicity in 7 of 9 mutations analyzed. In PALB2, we identified a deleterious variant in six cases. All but one were associated with early onset BC and a positive family history indicating that penetrance for PALB2 mutations is comparable to BRCA2. Overall, extended testing beyond BRCA1/2 identified a deleterious mutation in further 6% of patients. As a downside, 89 variants of uncertain significance were identified highlighting the need for comprehensive variant databases. In conclusion, panel testing yields more accurate information on genetic cancer risk than assessing BRCA1/2 alone and wide-spread testing will help improve penetrance assessment of variants in these risk genes. © 2016 UICC.

  10. Linkage analyses in Caribbean Hispanic families identify novel loci associated with familial late-onset Alzheimer's disease.

    PubMed

    Barral, Sandra; Cheng, Rong; Reitz, Christiane; Vardarajan, Badri; Lee, Joseph; Kunkle, Brian; Beecham, Gary; Cantwell, Laura S; Pericak-Vance, Margaret A; Farrer, Lindsay A; Haines, Jonathan L; Goate, Alison M; Foroud, Tatiana; Boerwinkle, Eric; Schellenberg, Gerard D; Mayeux, Richard

    2015-12-01

    We performed linkage analyses in Caribbean Hispanic families with multiple late-onset Alzheimer's disease (LOAD) cases to identify regions that may contain disease causative variants. We selected 67 LOAD families to perform genome-wide linkage scan. Analysis of the linked regions was repeated using the entire sample of 282 families. Validated chromosomal regions were analyzed using joint linkage and association. We identified 26 regions linked to LOAD (HLOD ≥3.6). We validated 13 of the regions (HLOD ≥2.5) using the entire family sample. The strongest signal was at 11q12.3 (rs2232932: HLODmax = 4.7, Pjoint = 6.6 × 10(-6)), a locus located ∼2 Mb upstream of the membrane-spanning 4A gene cluster. We additionally identified a locus at 7p14.3 (rs10255835: HLODmax = 4.9, Pjoint = 1.2 × 10(-5)), a region harboring genes associated with the nervous system (GARS, GHRHR, and NEUROD6). Future sequencing efforts should focus on these regions because they may harbor familial LOAD causative mutations. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  11. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.

    PubMed

    Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson

    2011-02-01

      This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families.   A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included.   A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta.   Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.

  12. Genome-Wide Comparative Gene Family Classification

    PubMed Central

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  13. Identification of a novel Gig2 gene family specific to non-amniote vertebrates.

    PubMed

    Zhang, Yi-Bing; Liu, Ting-Kai; Jiang, Jun; Shi, Jun; Liu, Ying; Li, Shun; Gui, Jian-Fang

    2013-01-01

    Gig2 (grass carp reovirus (GCRV)-induced gene 2) is first identified as a novel fish interferon (IFN)-stimulated gene (ISG). Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD) hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose) polymerases (PARPs), and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

  14. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    PubMed

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  15. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    PubMed

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  16. PlantTribes: a gene and gene family resource for comparative genomics in plants

    PubMed Central

    Wall, P. Kerr; Leebens-Mack, Jim; Müller, Kai F.; Field, Dawn; Altman, Naomi S.; dePamphilis, Claude W.

    2008-01-01

    The PlantTribes database (http://fgp.huck.psu.edu/tribe.html) is a plant gene family database based on the inferred proteomes of five sequenced plant species: Arabidopsis thaliana, Carica papaya, Medicago truncatula, Oryza sativa and Populus trichocarpa. We used the graph-based clustering algorithm MCL [Van Dongen (Technical Report INS-R0010 2000) and Enright et al. (Nucleic Acids Res. 2002; 30: 1575–1584)] to classify all of these species’ protein-coding genes into putative gene families, called tribes, using three clustering stringencies (low, medium and high). For all tribes, we have generated protein and DNA alignments and maximum-likelihood phylogenetic trees. A parallel database of microarray experimental results is linked to the genes, which lets researchers identify groups of related genes and their expression patterns. Unified nomenclatures were developed, and tribes can be related to traditional gene families and conserved domain identifiers. SuperTribes, constructed through a second iteration of MCL clustering, connect distant, but potentially related gene clusters. The global classification of nearly 200 000 plant proteins was used as a scaffold for sorting ∼4 million additional cDNA sequences from over 200 plant species. All data and analyses are accessible through a flexible interface allowing users to explore the classification, to place query sequences within the classification, and to download results for further study. PMID:18073194

  17. Mutations in the novel gene FOPV are associated with familial autosomal dominant and non-familial obliterative portal venopathy.

    PubMed

    Besmond, Claude; Valla, Dominique; Hubert, Laurence; Poirier, Karine; Grosse, Brigitte; Guettier, Catherine; Bernard, Olivier; Gonzales, Emmanuel; Jacquemin, Emmanuel

    2018-02-01

    Obliterative portal venopathy (OPV) is characterized by lesions of portal vein intrahepatic branches and is thought to be responsible for many cases of portal hypertension in the absence of cirrhosis or obstruction of large portal or hepatic veins. In most cases the cause of OPV remains unknown. The aim was to identify a candidate gene of OPV. Whole exome sequencing was performed in two families, including 6 patients with OPV. Identified mutations were confirmed by Sanger sequencing and expression of candidate gene transcript was studied by real time qPCR in human tissues. In both families, no mutations were identified in genes previously reported to be associated with OPV. In each family, we identified a heterozygous mutation (c.1783G>A, p.Gly595Arg and c.4895C>T, p.Thr1632Ile) in a novel gene located on chromosome 4, that we called FOPV (Familial Obliterative Portal Venopathy), and having a cDNA coding for 1793 amino acids. The FOPV mutations segregated with the disease in families and the pattern of inheritance was suggestive of autosomal dominant inherited OPV, with incomplete penetrance and variable expressivity. In silico analysis predicted a deleterious effect of each mutant and mutations concerned highly conserved amino acids in mammals. A deleterious heterozygous FOPV missense mutation (c.4244T>C, p.Phe1415Ser) was also identified in a patient with non-familial OPV. Expression study in liver veins showed that FOPV transcript was mainly expressed in intrahepatic portal vein. This report suggests that FOPV mutations may have a pathogenic role in some cases of familial and non-familial OPV. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Involvement of the Anopheles gambiae Nimrod gene family in mosquito immune responses.

    PubMed

    Estévez-Lao, Tania Y; Hillyer, Julián F

    2014-01-01

    Insects fight infection using a variety of signaling pathways and immune effector proteins. In Drosophila melanogaster, three members of the Nimrod gene family (draper, nimC1 and eater) bind bacteria, and this binding leads to phagocytosis by hemocytes. The Nimrod gene family has since been identified in other insects, but their function in non-drosophilids remains unknown. The purpose of this study was to identify the members of the Nimrod gene family in the malaria mosquito, Anopheles gambiae, and to assess their role in immunity. We identified and sequenced three members of this gene family, herein named draper, nimrod and eater, which are the orthologs of D. melanogaster draper, nimB2 and eater, respectively. The three genes are preferentially expressed in hemocytes and their peak developmental expression is in pupae and young adults. Infection induces the transcriptional upregulation of all three genes, but the magnitude of this upregulation becomes more attenuated as mosquitoes become older. RNAi-based knockdown of eater, but not draper or nimrod, decreased a mosquito's ability to kill Escherichia coli in the hemocoel. Knockdown of draper, eater, or any combination of Nimrod family genes rendered mosquitoes more likely to die from Staphylococcus epidermidis. Finally, knockdown of Nimrod family genes did not impact mRNA levels of the antimicrobial peptides defensin (def1), cecropin (cecA) or gambicin (gam1), but eater knockdown led to a decrease in mRNA levels of nitric oxide synthase. Together, these data show that members of the A. gambiae Nimrod gene family are positive regulators of the mosquito antibacterial response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  20. Profiling analysis of FOX gene family members identified FOXE1 as potential regulator of NSCLC development.

    PubMed

    Ji, G H; Cui, Y; Yu, H; Cui, X B

    2016-09-30

    Lung cancer is one of the most malignant tumors worldwide with a high mortality rate, which has not been improved since several decades ago. FOX gene family members have been reported to play extensive roles in regulating many biological processes and disorders. In order to clarify the contribution of FOX gene family members in lung cancer biology, we performed expression profiling analysis of FOX gene family members from FOXA to FOXR in lung cancer cell lines and tissue specimens by Real-time PCR, western blot and immunohistochemistry analysis. We found that FOXE1 was the only gene which was over-expressed in six out of eight lung cancer cell lines and human cancer tissue specimens (28 out of 35 cases with higher expression and 7 out of 35 cases with moderate expression). Further investigation showed that MMP2 gene was up-regulated, and autophagy markers such as LC3B, ATG5, ATG12 and BECLIN1, were down-regulated concomitant with the increase of FOXE1. These results implicated that FOXE1 may be an important regulator by targeting autophagy and MMPs pathways in lung cancer development.

  1. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  2. Analysis of the Prefoldin Gene Family in 14 Plant Species

    PubMed Central

    Cao, Jun

    2016-01-01

    Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies. PMID:27014333

  3. Characterization of the Avian Trojan Gene Family Reveals Contrasting Evolutionary Constraints

    PubMed Central

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    “Trojan” is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules. PMID:25803627

  4. Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian Familial Adenomatous Polyposis cohort.

    PubMed

    Khan, Nikhat; Lipsa, Anuja; Arunachal, Gautham; Ramadwar, Mukta; Sarin, Rajiv

    2017-05-22

    Colo-Rectal Cancer is a common cancer worldwide with 5-10% cases being hereditary. Familial Adenomatous Polyposis (FAP) syndrome is due to germline mutations in the APC or rarely MUTYH gene. NTHL1, POLD1, POLE have been recently reported in previously unexplained FAP cases. Unlike the Caucasian population, FAP phenotype and its genotypic associations have not been widely studied in several geoethnic groups. We report the first FAP cohort from South Asia and the only non-Caucasian cohort with comprehensive analysis of APC, MUTYH, NTHL1, POLD1, POLE genes. In this cohort of 112 individuals from 53 FAP families, we detected germline APC mutations in 60 individuals (45 families) and biallelic MUTYH mutations in 4 individuals (2 families). No NTHL1, POLD1, POLE mutations were identified. Fifteen novel APC mutations and a new Indian APC mutational hotspot at codon 935 were identified. Eight very rare FAP phenotype or phenotypes rarely associated with mutations outside specific APC regions were observed. APC genotype-phenotype association studies in different geo-ethnic groups can enrich the existing knowledge about phenotypic consequences of distinct APC mutations and guide counseling and risk management in different populations. A stepwise cost-effective mutation screening approach is proposed for genetic testing of south Asian FAP patients.

  5. Robust and Comprehensive Analysis of 20 Osteoporosis Candidate Genes by Very High-Density Single-Nucleotide Polymorphism Screen Among 405 White Nuclear Families Identified Significant Association and Gene–Gene Interaction

    PubMed Central

    Xiong, Dong-Hai; Shen, Hui; Zhao, Lan-Juan; Xiao, Peng; Yang, Tie-Lin; Guo, Yan; Wang, Wei; Guo, Yan-Fang; Liu, Yong-Jun; Recker, Robert R; Deng, Hong-Wen

    2007-01-01

    Many “novel” osteoporosis candidate genes have been proposed in recent years. To advance our knowledge of their roles in osteoporosis, we screened 20 such genes using a set of high-density SNPs in a large family-based study. Our efforts led to the prioritization of those osteoporosis genes and the detection of gene–gene interactions. Introduction We performed large-scale family-based association analyses of 20 novel osteoporosis candidate genes using 277 single nucleotide polymorphisms (SNPs) for the quantitative trait BMD variation and the qualitative trait osteoporosis (OP) at three clinically important skeletal sites: spine, hip, and ultradistal radius (UD). Materials and Methods One thousand eight hundred seventy-three subjects from 405 white nuclear families were genotyped and analyzed with an average density of one SNP per 4 kb across the 20 genes. We conducted association analyses by SNP- and haplotype-based family-based association test (FBAT) and performed gene–gene interaction analyses using multianalytic approaches such as multifactor-dimensionality reduction (MDR) and conditional logistic regression. Results and Conclusions We detected four genes (DBP, LRP5, CYP17, and RANK) that showed highly suggestive associations (10,000-permutation derived empirical global p ≤ 0.01) with spine BMD/OP; four genes (CYP19, RANK, RANKL, and CYP17) highly suggestive for hip BMD/OP; and four genes (CYP19, BMP2, RANK, and TNFR2) highly suggestive for UD BMD/OP. The associations between BMP2 with UD BMD and those between RANK with OP at the spine, hip, and UD also met the experiment-wide stringent criterion (empirical global p ≤ 0.0007). Sex-stratified analyses further showed that some of the significant associations in the total sample were driven by either male or female subjects. In addition, we identified and validated a two-locus gene–gene interaction model involving GCR and ESR2, for which prior biological evidence exists. Our results suggested the

  6. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes.

    PubMed

    Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou

    2011-11-01

    Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.

  7. Exome Sequencing Identifies Three Novel Candidate Genes Implicated in Intellectual Disability

    PubMed Central

    Azam, Maleeha; Ayub, Humaira; Vissers, Lisenka E. L. M.; Gilissen, Christian; Ali, Syeda Hafiza Benish; Riaz, Moeen; Veltman, Joris A.; Pfundt, Rolph; van Bokhoven, Hans; Qamar, Raheel

    2014-01-01

    Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID. PMID:25405613

  8. Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin

    PubMed Central

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192

  9. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  10. Plant ion channels: gene families, physiology, and functional genomics analyses.

    PubMed

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  11. Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica.

    PubMed

    Liang, Dong; Xia, Hui; Wu, Shan; Ma, Fengwang

    2012-12-01

    The family of dehydrin genes has important roles in protecting higher plants against abiotic stress, such as drought, salinity and cold. However, knowledge about apple dehydrin gene family is limited. In the present study, we used a bioinformatics approach to identify members of that family in apple (Malus domestica). A total of 12 apple dehydrin genes (MdDHNs) were identified and located on various chromosomes. All putative proteins from those genes contained a typical K domain. Among 12 MdDHNs, nine were cloned and their expression patterns were investigated. Expression profiling indicated that the these nine dehydrin genes display differential expression patterns in various tissues. Moreover, transcript levels of some MdDHNs were up-regulated significantly under drought, low temperature, or ABA treatment, which indicated their important roles during stress adaptation. These results demonstrate that the apple dehydrin gene family may function in tissue development and plant stress responses.

  12. The Role of a Novel TRMT1 Gene Mutation and Rare GRM1 Gene Defect in Intellectual Disability in Two Azeri Families.

    PubMed

    Davarniya, Behzad; Hu, Hao; Kahrizi, Kimia; Musante, Luciana; Fattahi, Zohreh; Hosseini, Masoumeh; Maqsoud, Fariba; Farajollahi, Reza; Wienker, Thomas F; Ropers, H Hilger; Najmabadi, Hossein

    2015-01-01

    Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1-3% of the world's population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder.

  13. Basic Helix-Loop-Helix Transcription Factor Gene Family Phylogenetics and Nomenclature

    PubMed Central

    Skinner, Michael K.; Rawls, Alan; Wilson-Rawls, Jeanne; Roalson, Eric H.

    2010-01-01

    A phylogenetic analysis of the basic helix-loop-helix (bHLH) gene superfamily was performed using seven different species (human, mouse, rat, worm, fly, yeast, and plant Arabidopsis) and involving over 600 bHLH genes [1]. All bHLH genes were identified in the genomes of the various species, including expressed sequence tags, and the entire coding sequence was used in the analysis. Nearly 15% of the gene family has been updated or added since the original publication. A super-tree involving six clades and all structural relationships was established and is now presented for four of the species. The wealth of functional data available for members of the bHLH gene superfamily provides us with the opportunity to use this exhaustive phylogenetic tree to predict potential functions of uncharacterized members of the family. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique elements of the evolution and functional relationships of the different genes in the bHLH gene family. PMID:20219281

  14. Genome-wide identification of the SWEET gene family in wheat.

    PubMed

    Gao, Yue; Wang, Zi Yuan; Kumar, Vikranth; Xu, Xiao Feng; Yuan, De Peng; Zhu, Xiao Feng; Li, Tian Ya; Jia, Baolei; Xuan, Yuan Hu

    2018-02-05

    The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing.

    PubMed

    Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M

    2013-12-01

    Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.

  16. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    PubMed

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  17. The Role of a Novel TRMT1 Gene Mutation and Rare GRM1 Gene Defect in Intellectual Disability in Two Azeri Families

    PubMed Central

    Kahrizi, Kimia; Musante, Luciana; Fattahi, Zohreh; Hosseini, Masoumeh; Maqsoud, Fariba; Farajollahi, Reza; Wienker, Thomas F.; Ropers, H. Hilger; Najmabadi, Hossein

    2015-01-01

    Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1–3% of the world’s population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder. PMID:26308914

  18. Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium

    USDA-ARS?s Scientific Manuscript database

    A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...

  19. Prenatal diagnosis for a Chinese family with a de novo DMD gene mutation

    PubMed Central

    Li, Tao; Zhang, Zhao-jing; Ma, Xin; Lv, Xue; Xiao, Hai; Guo, Qian-nan; Liu, Hong-yan; Wang, Hong-dan; Wu, Dong; Lou, Gui-yu; Wang, Xin; Zhang, Chao-yang; Liao, Shi-xiu

    2017-01-01

    Abstract Background: Patients with Duchenne muscular dystrophy (DMD) usually have severe and fatal symptoms. At present, there is no effective treatment for DMD, thus it is very important to avoid the birth of children with DMD by effective prenatal diagnosis. We identified a de novo DMD gene mutation in a Chinese family, and make a prenatal diagnosis. Methods: First, multiplex ligation-dependent probe amplification (MLPA) was applied to analyze DMD gene exon deletion/duplication in all family members. The coding sequences of 79 exons in DMD gene were analyzed by Sanger sequencing in the patient; and then according to DMD gene exon mutation in the patient, DMD gene sequencing was performed in the family members. On the basis of results above, the pathogenic mutation in DMD gene was identified. Results: MLPA showed no DMD gene exon deletion/duplication in all family members. Sanger sequencing revealed c.2767_2767delT [p.Ser923LeufsX26] mutation in DMD gene of the patient. Heterozygous deletion mutation (T/-) at this locus was observed in the pregnant woman and her mother and younger sister. The analyses of amniotic fluid samples indicated negative Y chromosome sex-determining gene, no DMD gene exon deletion/duplication, no mutations at c.2767 locus, and the inherited maternal X chromosome different from that of the patient. Conclusion: The pathogenic mutation in DMD gene, c.2767_2767delT [p.Ser923LeufsX26], identified in this family is a de novo mutation. On the basis of specific conditions, it is necessary to select suitable methods to make prenatal diagnosis more effective, accurate, and economic. PMID:29390271

  20. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2012-01-01

    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.

  1. Identification of rare genetic variation of NLRP1 gene in familial multiple sclerosis.

    PubMed

    Maver, Ales; Lavtar, Polona; Ristić, Smiljana; Stopinšek, Sanja; Simčič, Saša; Hočevar, Keli; Sepčić, Juraj; Drulović, Jelena; Pekmezović, Tatjana; Novaković, Ivana; Alenka, Hodžić; Rudolf, Gorazd; Šega, Saša; Starčević-Čizmarević, Nada; Palandačić, Anja; Zamolo, Gordana; Kapović, Miljenko; Likar, Tina; Peterlin, Borut

    2017-06-16

    The genetic etiology and the contribution of rare genetic variation in multiple sclerosis (MS) has not yet been elucidated. Although familial forms of MS have been described, no convincing rare and penetrant variants have been reported to date. We aimed to characterize the contribution of rare genetic variation in familial and sporadic MS and have identified a family with two sibs affected by concomitant MS and malignant melanoma (MM). We performed whole exome sequencing in this primary family and 38 multiplex MS families and 44 sporadic MS cases and performed transcriptional and immunologic assessment of the identified variants. We identified a potentially causative homozygous missense variant in NLRP1 gene (Gly587Ser) in the primary family. Further possibly pathogenic NLRP1 variants were identified in the expanded cohort of patients. Stimulation of peripheral blood mononuclear cells from MS patients with putatively pathogenic NLRP1 variants showed an increase in IL-1B gene expression and active cytokine IL-1β production, as well as global activation of NLRP1-driven immunologic pathways. We report a novel familial association of MS and MM, and propose a possible underlying genetic basis in NLRP1 gene. Furthermore, we provide initial evidence of the broader implications of NLRP1-related pathway dysfunction in MS.

  2. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce.

    PubMed

    Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W

    1998-08-01

    The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.

  3. Familial testicular germ cell tumor: no associated syndromic pattern identified

    PubMed Central

    2014-01-01

    Background Testicular germ cell tumor (TGCT) is the most common malignancy in young men. Familial clustering, epidemiologic evidence of increased risk with family or personal history, and the association of TGCT with genitourinary (GU) tract anomalies have suggested an underlying genetic predisposition. Linkage data have not identified a rare, highly-penetrant, single gene in familial TGCT (FTGCT) cases. Based on its association with congenital GU tract anomalies and suggestions that there is an intrauterine origin to TGCT, we hypothesized the existence of unrecognized dysmorphic features in FTGCT. Methods We evaluated 38 FTGCT individuals and 41 first-degree relatives from 22 multiple-case families with detailed dysmorphology examinations, physician-based medical history and physical examination, laboratory testing, and genitourinary imaging studies. Results The prevalence of major abnormalities and minor variants did not significantly differ between either FTGCT individuals or their first-degree relatives when compared with normal population controls, except for tall stature, macrocephaly, flat midface, and retro-/micrognathia. However, these four traits were not manifest as a constellation of features in any one individual or family. We did detect an excess prevalence of the genitourinary anomalies cryptorchidism and congenital inguinal hernia in our population, as previously described in sporadic TGCT, but no congenital renal, retroperitoneal or mediastinal anomalies were detected. Conclusions Overall, our study did not identify a constellation of dysmorphic features in FTGCT individuals, which is consistent with results of genetic studies suggesting that multiple low-penetrance genes are likely responsible for FTGCT susceptibility. PMID:24559313

  4. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  5. Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death

    PubMed Central

    Chen, Bisi; Niu, Fangfang; Liu, Wu-Zhen; Yang, Bo; Zhang, Jingxiao; Ma, Jieyu; Cheng, Hao; Han, Feng; Jiang, Yuan-Qing

    2016-01-01

    The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some plant species, little is known about R2R3-MYB genes in canola (Brassica napus L.). In this study, we have identified 76 R2R3-MYB genes in the canola genome through mining of expressed sequence tags (ESTs). The cDNA sequences of 44 MYB genes were successfully cloned. The transcriptional activities of BnaMYB proteins encoded by these genes were assayed in yeast. The subcellular localizations of representative R2R3-MYB proteins were investigated through GFP fusion. Besides, the transcript abundance level analysis during abiotic conditions and ABA treatment identified a group of R2R3-MYB genes that responded to one or more treatments. Furthermore, we identified a previously functionally unknown MYB gene-BnaMYB78, which modulates reactive oxygen species (ROS)-dependent cell death in Nicotiana benthamiana, through regulating the transcription of a few ROS- and defence-related genes. Taken together, this study has provided a solid foundation for understanding the roles and regulatory mechanism of canola R2R3-MYB genes. PMID:26800702

  6. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat.

    PubMed

    Ariyarathna, H A Chandima K; Oldach, Klaus H; Francki, Michael G

    2016-01-19

    Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.

  7. Exome Sequencing and Linkage Analysis Identified Novel Candidate Genes in Recessive Intellectual Disability Associated with Ataxia.

    PubMed

    Jazayeri, Roshanak; Hu, Hao; Fattahi, Zohreh; Musante, Luciana; Abedini, Seyedeh Sedigheh; Hosseini, Masoumeh; Wienker, Thomas F; Ropers, Hans Hilger; Najmabadi, Hossein; Kahrizi, Kimia

    2015-10-01

    Intellectual disability (ID) is a neuro-developmental disorder which causes considerable socio-economic problems. Some ID individuals are also affected by ataxia, and the condition includes different mutations affecting several genes. We used whole exome sequencing (WES) in combination with homozygosity mapping (HM) to identify the genetic defects in five consanguineous families among our cohort study, with two affected children with ID and ataxia as major clinical symptoms. We identified three novel candidate genes, RIPPLY1, MRPL10, SNX14, and a new mutation in known gene SURF1. All are autosomal genes, except RIPPLY1, which is located on the X chromosome. Two are housekeeping genes, implicated in transcription and translation regulation and intracellular trafficking, and two encode mitochondrial proteins. The pathogenesis of these variants was evaluated by mutation classification, bioinformatic methods, review of medical and biological relevance, co-segregation studies in the particular family, and a normal population study. Linkage analysis and exome sequencing of a small number of affected family members is a powerful new technique which can be used to decrease the number of candidate genes in heterogenic disorders such as ID, and may even identify the responsible gene(s).

  8. The sieve element occlusion gene family in dicotyledonous plants

    PubMed Central

    Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Noll, Gundula A

    2011-01-01

    Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae. PMID:21422825

  9. The sieve element occlusion gene family in dicotyledonous plants.

    PubMed

    Ernst, Antonia M; Rüping, Boris; Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Prüfer, Dirk; Noll, Gundula A

    2011-01-01

    Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae.

  10. Identification and analysis of the TIFY gene family in Gossypium raimondii.

    PubMed

    He, D H; Lei, Z P; Tang, B S; Xing, H Y; Zhao, J X; Jing, Y L

    2015-08-21

    The highly conserved TIFY domain is included in the TIFY protein family of transcription factors, which is important in plant development. Here, 28 TIFY family genes were identified in the Gossypium raimondii genome and classified into JAZ (15 genes), ZML (8), PPD (3), and TIFY (2). The normal (TIF[F/Y]XG) motif was dominant in the TIFY family, excluding the ZML subfamily, in which TLSFXG was prevalent. TIFY family genes were unevenly distributed in the G. raimondii genome, with TIFY clusters present on chromosome 9. Phylogenetic analysis indicated abundant variations in the G. raimondii TIFY family, which were most closely related to those in Theobroma cacao among 5 species. Exon-intron organization and intron phases were homologous within each subfamily, correlating with their phylogeny. Intra-species synteny analyses indicated that genomic duplication contributed to the expansion of the TIFY family. Inter-species synteny analyses indicated that synteny regions involved in G. raimondii TIFY family genes were also present in the comparison of G. raimondii vs Arabidopsis thaliana or T. cacao, signifying that these genes had common ancestors and play the same or similar roles in biological processes. Greater synteny was present in the comparison of G. raimondii vs T. cacao than of G. raimondii vs A. thaliana. The expression patterns of TIFY family genes were characterized and most TIFY family genes were indicated to be involved in fiber development. Our study provides new data related to the evolution of TIFYs and their role as important regulators of transcription; these data can be useful for fiber development.

  11. Genome-Wide Identification of the Invertase Gene Family in Populus.

    PubMed

    Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.

  12. Genome-Wide Identification of the Invertase Gene Family in Populus

    PubMed Central

    Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  13. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    PubMed

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  14. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis.

    PubMed

    Bi, Changwei; Xu, Yiqing; Ye, Qiaolin; Yin, Tongming; Ye, Ning

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of

  15. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis

    PubMed Central

    Ye, Qiaolin; Yin, Tongming

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution

  16. Gene family innovation, conservation and loss on the animal stem lineage.

    PubMed

    Richter, Daniel J; Fozouni, Parinaz; Eisen, Michael; King, Nicole

    2018-05-31

    Choanoflagellates, the closest living relatives of animals, can provide unique insights into the changes in gene content that preceded the origin of animals. However, only two choanoflagellate genomes are currently available, providing poor coverage of their diversity. We sequenced transcriptomes of 19 additional choanoflagellate species to produce a comprehensive reconstruction of the gains and losses that shaped the ancestral animal gene repertoire. We identified ~1,944 gene families that originated on the animal stem lineage, of which only 39 are conserved across all animals in our study. In addition, ~372 gene families previously thought to be animal-specific, including Notch, Delta, and homologs of the animal Toll-like receptor genes, instead evolved prior to the animal-choanoflagellate divergence. Our findings contribute to an increasingly detailed portrait of the gene families that defined the biology of the Urmetazoan and that may underpin core features of extant animals. © 2018, Richter et al.

  17. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    PubMed Central

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  18. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae.

    PubMed

    Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Bailey, Paul C; O'Sullivan, Donal M

    2012-01-01

    Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.

  19. Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): Implications for the evolution of the Pax gene family

    PubMed Central

    Miller, David J.; Hayward, David C.; Reece-Hoyes, John S.; Scholten, Ingo; Catmull, Julian; Gehring, Walter J.; Callaerts, Patrick; Larsen, Jill E.; Ball, Eldon E.

    2000-01-01

    Pax genes encode a family of transcription factors, many of which play key roles in animal embryonic development but whose evolutionary relationships and ancestral functions are unclear. To address these issues, we are characterizing the Pax gene complement of the coral Acropora millepora, an anthozoan cnidarian. As the simplest animals at the tissue level of organization, cnidarians occupy a key position in animal evolution, and the Anthozoa are the basal class within this diverse phylum. We have identified four Pax genes in Acropora: two (Pax-Aam and Pax-Bam) are orthologs of genes identified in other cnidarians; the others (Pax-Cam and Pax-Dam) are unique to Acropora. Pax-Aam may be orthologous with Drosophila Pox neuro, and Pax-Bam clearly belongs to the Pax-2/5/8 class. The Pax-Bam Paired domain binds specifically and preferentially to Pax-2/5/8 binding sites. The recently identified Acropora gene Pax-Dam belongs to the Pax-3/7 class. Clearly, substantial diversification of the Pax family occurred before the Cnidaria/higher Metazoa split. The fourth Acropora Pax gene, Pax-Cam, may correspond to the ancestral vertebrate Pax gene and most closely resembles Pax-6. The expression pattern of Pax-Cam, in putative neurons, is consistent with an ancestral role of the Pax family in neural differentiation and patterning. We have determined the genomic structure of each Acropora Pax gene and show that some splice sites are shared both between the coral genes and between these and Pax genes in triploblastic metazoans. Together, these data support the monophyly of the Pax family and indicate ancient origins of several introns. PMID:10781047

  20. Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns

    PubMed Central

    Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng

    2014-01-01

    F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786

  1. GNormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains

    PubMed Central

    Lu, Zhiyong

    2015-01-01

    The automatic recognition of gene names and their associated database identifiers from biomedical text has been widely studied in recent years, as these tasks play an important role in many downstream text-mining applications. Despite significant previous research, only a small number of tools are publicly available and these tools are typically restricted to detecting only mention level gene names or only document level gene identifiers. In this work, we report GNormPlus: an end-to-end and open source system that handles both gene mention and identifier detection. We created a new corpus of 694 PubMed articles to support our development of GNormPlus, containing manual annotations for not only gene names and their identifiers, but also closely related concepts useful for gene name disambiguation, such as gene families and protein domains. GNormPlus integrates several advanced text-mining techniques, including SimConcept for resolving composite gene names. As a result, GNormPlus compares favorably to other state-of-the-art methods when evaluated on two widely used public benchmarking datasets, achieving 86.7% F1-score on the BioCreative II Gene Normalization task dataset and 50.1% F1-score on the BioCreative III Gene Normalization task dataset. The GNormPlus source code and its annotated corpus are freely available, and the results of applying GNormPlus to the entire PubMed are freely accessible through our web-based tool PubTator. PMID:26380306

  2. Genome Dynamics Explain the Evolution of Flowering Time CCT Domain Gene Families in the Poaceae

    PubMed Central

    Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Bailey, Paul C.; O'Sullivan, Donal M.

    2012-01-01

    Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken. PMID:23028921

  3. Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families

    PubMed Central

    Ullah, Asmat; Umair, Muhammad; Yousaf, Maryam; Khan, Sher Alam; Nazim-ud-din, Muhammad; Shah, Khadim; Ahmad, Farooq; Azeem, Zahid; Ali, Ghazanfar; Alhaddad, Bader; Rafique, Afzal; Jan, Abid; Haack, Tobias B.; Strom, Tim M.; Meitinger, Thomas; Ghous, Tahseen

    2017-01-01

    Purpose To investigate the molecular basis of Bardet-Biedl syndrome (BBS) in five consanguineous families of Pakistani origin. Methods Linkage in two families (A and B) was established to BBS7 on chromosome 4q27, in family C to BBS8 on chromosome 14q32.1, and in family D to BBS10 on chromosome 12q21.2. Family E was investigated directly with exome sequence analysis. Results Sanger sequencing revealed two novel mutations and three previously reported mutations in the BBS genes. These mutations include two deletions (c.580_582delGCA, c.1592_1597delTTCCAG) in the BBS7 gene, a missense mutation (p.Gln449His) in the BBS8 gene, a frameshift mutation (c.271_272insT) in the BBS10 gene, and a nonsense mutation (p.Ser40*) in the MKKS (BBS6) gene. Conclusions Two novel mutations and three previously reported variants, identified in the present study, further extend the body of evidence implicating BBS6, BBS7, BBS8, and BBS10 in causing BBS. PMID:28761321

  4. Phenotypes of Recessive Pediatric Cataract in a Cohort of Children with Identified Homozygous Gene Mutations (An American Ophthalmological Society Thesis)

    PubMed Central

    Khan, Arif O.; Aldahmesh, Mohammed A.; Alkuraya, Fowzan S.

    2015-01-01

    Purpose: To assess for phenotype-genotype correlations in families with recessive pediatric cataract and identified gene mutations. Methods: Retrospective review (2004 through 2013) of 26 Saudi Arabian apparently nonsyndromic pediatric cataract families referred to one of the authors (A.O.K.) and for which recessive gene mutations were identified. Results: Fifteen different homozygous recessive gene mutations were identified in the 26 consanguineous families; two genes and five families are novel to this study. Ten families had a founder CRYBB1 deletion (all with bilateral central pulverulent cataract), two had the same missense mutation in CRYAB (both with bilateral juvenile cataract with marked variable expressivity), and two had different mutations in FYCO1 (both with bilateral posterior capsular abnormality). The remaining 12 families each had mutations in 12 different genes (CRYAA, CRYBA1, AKR1E2, AGK, BFSP2, CYP27A1, CYP51A1, EPHA2, GCNT2, LONP1, RNLS, WDR87) with unique phenotypes noted for CYP27A1 (bilateral juvenile fleck with anterior and/or posterior capsular cataract and later cerebrotendinous xanthomatosis), EPHA2 (bilateral anterior persistent fetal vasculature), and BFSP2 (bilateral flecklike with cloudy cortex). Potential carrier signs were documented for several families. Conclusions: In this recessive pediatric cataract case series most identified genes are noncrystallin. Recessive pediatric cataract phenotypes are generally nonspecific, but some notable phenotypes are distinct and associated with specific gene mutations. Marked variable expressivity can occur from a recessive missense CRYAB mutation. Genetic analysis of apparently isolated pediatric cataract can sometimes uncover mutations in a syndromic gene. Some gene mutations seem to be associated with apparent heterozygous carrier signs. PMID:26622071

  5. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy.

    PubMed

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo; Xu, Ge-Zhi

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. We identified two novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype-phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling.

  6. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy

    PubMed Central

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931

  7. Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species

    PubMed Central

    Chung, Hsiao-Hang; Schwinn, Kathy E.; Ngo, Hanh M.; Lewis, David H.; Massey, Baxter; Calcott, Kate E.; Crowhurst, Ross; Joyce, Daryl C.; Gould, Kevin S.; Davies, Kevin M.; Harrison, Dion K.

    2015-01-01

    Plant betalain pigments are intriguing because they are restricted to the Caryophyllales and are mutually exclusive with the more common anthocyanins. However, betalain biosynthesis is poorly understood compared to that of anthocyanins. In this study, betalain production and betalain-related genes were characterized in Parakeelya mirabilis (Montiaceae). RT-PCR and transcriptomics identified three sequences related to the key biosynthetic enzyme Dopa 4,5-dioxgenase (DOD). In addition to a LigB gene similar to that of non-Caryophyllales species (Class I genes), two other P. mirabilis LigB genes were found (DOD and DOD-like, termed Class II). PmDOD and PmDOD-like had 70% amino acid identity. Only PmDOD was implicated in betalain synthesis based on transient assays of enzyme activity and correlation of transcript abundance to spatio-temporal betalain accumulation. The role of PmDOD-like remains unknown. The striking pigment patterning of the flowers was due to distinct zones of red betacyanin and yellow betaxanthin production. The major betacyanin was the unglycosylated betanidin rather than the commonly found glycosides, an occurrence for which there are a few previous reports. The white petal zones lacked pigment but had DOD activity suggesting alternate regulation of the pathway in this tissue. DOD and DOD-like sequences were also identified in other betalain-producing species but not in examples of anthocyanin-producing Caryophyllales or non-Caryophyllales species. A Class I LigB sequence from the anthocyanin-producing Caryophyllaceae species Dianthus superbus and two DOD-like sequences from the Amaranthaceae species Beta vulgaris and Ptilotus spp. did not show DOD activity in the transient assay. The additional sequences suggests that DOD is part of a larger LigB gene family in betalain-producing Caryophyllales taxa, and the tandem genomic arrangement of two of the three B. vulgaris LigB genes suggests the involvement of duplication in the gene family evolution

  8. Phylogenomics of MADS-Box Genes in Plants - Two Opposing Life Styles in One Gene Family.

    PubMed

    Gramzow, Lydia; Theißen, Günter

    2013-09-12

    The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in sequenced plant genomes will allow a better understanding of the evolutionary patterns of these genes and the association of their evolution with the evolution of plant morphologies. Here, we have applied a combination of automatic and manual annotations to identify the complete set of MADS-box genes in 17 plant genomes. Furthermore, three plant genomes were reanalyzed and published datasets were used for four genomes such that more than 2,600 genes from 24 species were classified into the two types of MADS-box genes, Type I and Type II. Our results extend previous studies, highlighting the remarkably different evolutionary patterns of Type I and Type II genes and provide a basis for further studies on the evolution and function of MADS-box genes.

  9. Novel Mutations in PSENEN Gene in Two Chinese Acne Inversa Families Manifested as Familial Multiple Comedones and Dowling-Degos Disease

    PubMed Central

    Zhou, Cheng; Wen, Guang-Dong; Soe, Lwin Myint; Xu, Hong-Jun; Du, Juan; Zhang, Jian-Zhong

    2016-01-01

    Background: Acne inversa (AI), also called hidradenitis suppurativa, is a chronic, inflammatory, recurrent skin disease of the hair follicle. Familial AI shows autosomal-dominant inheritance caused by mutations in the γ-secretase genes. This study was aimed to identify the specific mutations in the γ-secretase genes in two Chinese families with AI. Methods: In this study, two Chinese families with AI were investigated. All the affected individuals in the two families mainly manifested with multiple comedones, pitted scars, and a few inflammatory nodules on their face, neck, trunk, axilla, buttocks, upper arms, and thighs. Reticulate pigmentation in the flexures areas resembled Dowling-Degos disease clinically and pathologically. In addition, one of the affected individuals developed anal canal squamous cell carcinoma. Molecular mutation analysis of γ-secretase genes including PSENEN, PSEN1, and NCSTN was performed by polymerase chain reaction and direct DNA sequencing. Results: Two novel mutations of PSENEN gene were identified, including a heterozygous missense mutation c.194T>G (p.L65R) and a splice site mutation c.167-2A>G. Conclusions: The identification of the two mutations could expand the spectrum of mutations in the γ-secretase genes underlying AI and provide valuable information for further study of genotype-phenotype correlations. PMID:27900998

  10. Evolutionary analysis of the jacalin-related lectin family genes in 11 fishes.

    PubMed

    Cao, Jun; Lv, Yueqing

    2016-09-01

    Jacalin-related lectins are a type of carbohydrate-binding proteins, which are distributed across a wide variety of organisms and involved in some important biological processes. The evolution of this gene family in fishes is unknown. Here, 47 putative jacalin genes in 11 fish species were identified and divided into 4 groups through phylogenetic analysis. Conserved gene organization and motif distribution existed in each group, suggesting their functional conservation. Some fishes have eleven jacalin genes, while others have only one or zero gene in their genomes, suggesting dynamic changes in the number of jacalin genes during the evolution of fishes. Intragenic recombination played a key role in the evolution of jacalin genes. Synteny analyses of jacalin genes in some fishes implied conserved and dynamic evolution characteristics of this gene family and related genome segments. Moreover, a few functional divergence sites were identified within each group pairs. Divergent expression profiles of the zebra fish jacalin genes were further investigated in different stresses. The results provided a foundation for exploring the characterization of the jacalin genes in fishes and will offer insights for additional functional studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mutations in the ADAR1 gene in Chinese families with dyschromatosis symmetrica hereditaria.

    PubMed

    Zhang, G L; Shi, H J; Shao, M H; Li, M; Mu, H J; Gu, Y; Du, X F; Xie, P

    2013-01-04

    We investigated 2 Chinese families with dyschromatosis symmetrica hereditaria (DSH) and search for mutations in the adenosine deaminase acting on RNA1 (ADAR1) gene in these 2 pedigrees. We performed a mutation analysis of the ADAR1 gene in 2 Chinese families with DSH and reviewed all articles published regarding ADAR1 mutations reported since 2003 by using PubMed. By direct sequencing, a 2-nucleotide AG deletion, 2099-2100delAG, was found in family 1, and a C→T mutation was identified at nucleotide 1420 that changed codon 474 from arginine to a translational termination codon in family 2. Two different pathogenic mutations were identified, c.2099-2100delAG and c.1420C>T, the former being a novel mutation, and the latter previously reported in 3 other families with DSH. To date, a total of 110 mutations in the ADAR1 gene have been reported, and 10 of them were recurrent; the mutations R474X, R1083C, R1096X, and R1155W might be the DSH-related hotspots.

  12. In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum.

    PubMed

    Nasir, Muhammad; Ahmad, Nafees; Sieber, Christian M K; Latif, Amir; Malik, Salman Akbar; Hameed, Abdul

    2013-09-24

    Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system. Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain.

  13. In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum

    PubMed Central

    2013-01-01

    Background Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. Results The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system. Conclusions Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain. PMID:24063568

  14. Genome-Wide Linkage Analysis to Identify Genetic Modifiers of ALK Mutation Penetrance in Familial Neuroblastoma

    PubMed Central

    Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael

    2011-01-01

    Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404

  15. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs

  16. Gene-based rare allele analysis identified a risk gene of Alzheimer's disease.

    PubMed

    Kim, Jong Hun; Song, Pamela; Lim, Hyunsun; Lee, Jae-Hyung; Lee, Jun Hong; Park, Sun Ah

    2014-01-01

    Alzheimer's disease (AD) has a strong propensity to run in families. However, the known risk genes excluding APOE are not clinically useful. In various complex diseases, gene studies have targeted rare alleles for unsolved heritability. Our study aims to elucidate previously unknown risk genes for AD by targeting rare alleles. We used data from five publicly available genetic studies from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the database of Genotypes and Phenotypes (dbGaP). A total of 4,171 cases and 9,358 controls were included. The genotype information of rare alleles was imputed using 1,000 genomes. We performed gene-based analysis of rare alleles (minor allele frequency≤3%). The genome-wide significance level was defined as meta P<1.8×10(-6) (0.05/number of genes in human genome = 0.05/28,517). ZNF628, which is located at chromosome 19q13.42, showed a genome-wide significant association with AD. The association of ZNF628 with AD was not dependent on APOE ε4. APOE and TREM2 were also significantly associated with AD, although not at genome-wide significance levels. Other genes identified by targeting common alleles could not be replicated in our gene-based rare allele analysis. We identified that rare variants in ZNF628 are associated with AD. The protein encoded by ZNF628 is known as a transcription factor. Furthermore, the associations of APOE and TREM2 with AD were highly significant, even in gene-based rare allele analysis, which implies that further deep sequencing of these genes is required in AD heritability studies.

  17. Next-generation sequencing identifies three novel missense variants in ILDR1 and MYO6 genes in an Iranian family with hearing loss with review of the literature.

    PubMed

    Talebi, Farah; Mardasi, Farideh Ghanbari; Asl, Javad Mohammadi; Sayahi, Masoomeh

    2017-12-01

    Hearing impairment is the most common sensorineural disorder and is genetically heterogeneous. Identification of the pathogenic mutations underlying hearing impairment is difficult, since causative mutations in 127 different genes have so far been reported. In this study, we performed Next-generation sequencing (NGS) in 2 individuals from a consanguineous family with hearing loss. Three novel mutations in known deafness genes were identified in the family; MYO6-p.R928C and -p.D1223N in heterozygous state and ILDR1-p.Y143C in homozygous state. Sanger sequencing confirmed co-segregation of the three mutations with deafness in the family. The identified mutation in ILDR1 gene is located in the immunoglobulin-type domain of the ILDR1 protein and the detected mutations in MY06 are located in the tail domain of the MYO6 protein. The mutations are predicted to be pathogenic by SIFT, PolyPhen and Mutation Taster. Our results suggest that either the homozygous ILDR1-p.Y143C mutation might be the pathogenic variant for ARNSHL or heterozygous MYO6- p.R928C, -p.D1223N might be involved in these patient's disorder due to compound heterozygousity. To our knowledge, this is the first ILDR1 and MYO6 mutations recognized in the southwest Iran. Our data expands the spectrum of mutations in ILDR1 and MYO6 genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy

    PubMed Central

    Mogensen, Jens; Klausen, Ib C.; Pedersen, Anders K.; Egeblad, Henrik; Bross, Peter; Kruse, Torben A.; Gregersen, Niels; Hansen, Peter S.; Baandrup, Ulrik; Børglum, Anders D.

    1999-01-01

    We identified the α-cardiac actin gene (ACTC) as a novel disease gene in a pedigree suffering from familial hypertrophic cardiomyopathy (FHC). Linkage analyses excluded all the previously reported FHC loci as possible disease loci in the family studied, with lod scores varying between –2.5 and –6.0. Further linkage analyses of plausible candidate genes highly expressed in the adult human heart identified ACTC as the most likely disease gene, showing a maximal lod score of 3.6. Mutation analysis of ACTC revealed an Ala295Ser mutation in exon 5 close to 2 missense mutations recently described to cause the inherited form of idiopathic dilated cardiomyopathy (IDC). ACTC is the first sarcomeric gene described in which mutations are responsible for 2 different cardiomyopathies. We hypothesize that ACTC mutations affecting sarcomere contraction lead to FHC and that mutations affecting force transmission from the sarcomere to the surrounding syncytium lead to IDC. PMID:10330430

  19. Distribution of Gene Mutations Associated with Familial Normosmic Idiopathic Hypogonadotropic Hypogonadism

    PubMed Central

    Gürbüz, Fatih; Kotan, L. Damla; Mengen, Eda; Şıklar, Zeynep; Berberoğlu, Merih; Dökmetaş, Sebila; Kılıçlı, Mehmet Fatih; Güven, Ayla; Kirel, Birgül; Saka, Nurçin; Poyrazoğlu, Şükran; Cesur, Yaşar; Doğan, Murat; Özen, Samim; Özbek, Mehmet Nuri; Demirbilek, Hüseyin; Kekil, M. Burcu; Temiz, Fatih; Önenli Mungan, Neslihan; Yüksel, Bilgin; Topaloğlu, Ali Kemal

    2012-01-01

    Objective: Normosmic idiopathic hypogonadotropic hypogonadism (nIHH) is characterized by failure of initiation or maintenance of puberty due to insufficient gonadotropin release, which is not associated with anosmia/hyposmia. The objective of this study was to determine the distribution of causative mutations in a hereditary form of nIHH. Methods: In this prospective collaborative study, 22 families with more than one affected individual (i.e. multiplex families) with nIHH were recruited and screened for genes known or suspected to be strong candidates for nIHH. Results: Mutations were identified in five genes (GNRHR, TACR3, TAC3, KISS1R, and KISS1) in 77% of families with autosomal recessively inherited nIHH. GNRHR and TACR3 mutations were the most common two causative mutations occurring with about equal frequency. Conclusions: Mutations in these five genes account for about three quarters of the causative mutations in nIHH families with more than one affected individual. This frequency is significantly greater than the previously reported rates in all inclusive (familial plus sporadic) cohorts. GNRHR and TACR3 should be the first two genes to be screened for diagnostic purposes. Identification of causative mutations in the remaining families will shed light on the regulation of puberty. Conflict of interest:None declared. PMID:22766261

  20. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava

    PubMed Central

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  1. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    PubMed

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  2. A novel mutation of the beta myosin heavy chain gene responsible for familial hypertrophic cardiomyopathy.

    PubMed

    Wang, Juan; Xu, Shi-Jie; Zhou, Hua; Wang, Li-Jie; Hu, Bo; Fang, Fang; Zhang, Xu-Min; Luo, Yi-Wei; He, Xiao-Yan; Zhuang, Shao-Wei; Li, Xin-Ming; Liu, Zhong-Ming; Hu, Da-Yi

    2009-09-01

    Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder and shows high variability in genetic heterogeneity and phenotypic characteristics. The genetic etiology responsible for HCM in many individuals remains unclear. This instigation was sought to identify novel genetic determinants for familial hypertrophic cardiomyopathy. Six unrelated Chinese families with HCM were studied. For each of the 13 established HCM-susceptibility genes, 3 to 5 microsatellite markers were selected to perform genotyping and haplotype analysis. The linked genes were sequenced. Haplotype analyses on candidate genetic loci revealed cosegregation of the gene beta-myosin heavy chain (MYH7) with HCM in a single family. A novel double heterozygous missense mutation of Ala26Val plus Arg719Trp in MYH7 was subsequently identified by sequencing in this family and was associated with a severe phenotype of HCM. The novel double mutation of Ala26Val plus Arg719Trp in MYH7 identified in a Chinese family highlights the remarkable genetic heterogeneity of HCM, which provides important information for genetic counseling, accurate diagnosis, prognostic evaluation, and appropriate clinical management. Copyright 2009 Wiley Periodicals, Inc.

  3. Identification of ARF and AUX/IAA gene families in Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Elias, Nur Atiqah Mohd; Goh, Hoe-Han; Isa, Nurulhikma Md; Wan, Kiew-Lian

    2016-11-01

    Rafflesia is a unique plant that produces the largest flowers in the world. It has a short blooming period of 6 to 7 days. Due to its rarity and limited accessibility, little is known about the growth and developmental process in the Rafflesia plant. In all plant species, auxin is the key hormone that is involved in growth and development. The auxin signal transduction involves members of the ARF transcription factor and AUX/IAA regulator families, which activate or inhibit the regulation of auxin response genes, thereby control the developmental process in plants. To gain a better understanding of molecular regulations in the Rafflesia plant development during flowering, members of the ARF and AUX/IAA gene families were identified from the transcriptome data of flower blooming stages in Rafflesia cantleyi. Based on Rafflesia unique transcripts (UTs) against the Arabidopsis TAIR database using BLASTX search, a total of nine UTs were identified as ARF transcription factors, while another seven UTs were identified as AUX/IAA regulators. These genes were found to be expressed in all three R. cantleyi flower stages i.e. days 1 (F1), 3 (F2), and 5 (F3). Gene expression analysis identified three genes that are differentially expressed in stage F1 vs. F2 i.e. IAA4 is upregulated while IAA8 and ARF3 are downregulated. These genes may be involved in the activation and/or inhibition of the auxin signal transduction pathway. Further analysis of these genes may unravel their function in the phenotypic development of the Rafflesia plant.

  4. Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene.

    PubMed

    Thonberg, Håkan; Chiang, Huei-Hsin; Lilius, Lena; Forsell, Charlotte; Lindström, Anna-Karin; Johansson, Charlotte; Björkström, Jenny; Thordardottir, Steinunn; Sleegers, Kristel; Van Broeckhoven, Christine; Rönnbäck, Annica; Graff, Caroline

    2017-06-09

    Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. The majority of AD cases are sporadic, while up to 5% are families with an early onset AD (EOAD). Mutations in one of the three genes: amyloid beta precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2) can be disease causing. However, most EOAD families do not carry mutations in any of these three genes, and candidate genes, such as the sortilin-related receptor 1 (SORL1), have been suggested to be potentially causative. To identify AD causative variants, we performed whole-exome sequencing on five individuals from a family with EOAD and a missense variant, p.Arg1303Cys (c.3907C > T) was identified in SORL1 which segregated with disease and was further characterized with immunohistochemistry on two post mortem autopsy cases from the same family. In a targeted re-sequencing effort on independent index patients from 35 EOAD-families, a second SORL1 variant, c.3050-2A > G, was found which segregated with the disease in 3 affected and was absent in one unaffected family member. The c.3050-2A > G variant is located two nucleotides upstream of exon 22 and was shown to cause exon 22 skipping, resulting in a deletion of amino acids Gly1017- Glu1074 of SORL1. Furthermore, a third SORL1 variant, c.5195G > C, recently identified in a Swedish case control cohort included in the European Early-Onset Dementia (EU EOD) consortium study, was detected in two affected siblings in a third family with familial EOAD. The finding of three SORL1-variants that segregate with disease in three separate families with EOAD supports the involvement of SORL1 in AD pathology. The cause of these rare monogenic forms of EOAD has proven difficult to find and the use of exome and genome sequencing may be a successful route to target them.

  5. Exome sequencing identifies a novel mutation of the GDI1 gene in a Chinese non-syndromic X-linked intellectual disability family

    PubMed Central

    Duan, Yongheng; Lin, Sheng; Xie, Lichun; Zheng, Kaifeng; Chen, Shiguo; Song, Hui; Zeng, Xuchun; Gu, Xueying; Wang, Heyun; Zhang, Linghua; Shao, Hao; Hong, Wenxu; Zhang, Lijie; Duan, Shan

    2017-01-01

    Abstract X-linked intellectual disability (XLID) has been associated with various genes. Diagnosis of XLID, especially for non-syndromic ones (NS-XLID), is often hampered by the heterogeneity of this disease. Here we report the case of a Chinese family in which three males suffer from intellectual disability (ID). The three patients shared the same phenotype: no typical clinical manifestation other than IQ score ≤ 70. For a genetic diagnosis for this family we carried out whole exome sequencing on the proband, and validated 16 variants of interest in the genomic DNA of all the family members. A missense mutation (c.710G > T), which mapped to exon 6 of the Rab GDP-Dissociation Inhibitor 1 (GDI1) gene, was found segregating with the ID phenotype, and this mutation changes the 237th position in the guanosine diphosphate dissociation inhibitor (GDI) protein from glycine to valine (p. Gly237Val). Through molecular dynamics simulations we found that this substitution results in a conformational change of GDI, possibly affecting the Rab-binding capacity of this protein. In conclusion, our study identified a novel GDI1 mutation that is possibly NS-XLID causative, and showed that whole exome sequencing provides advantages for detecting novel ID-associated variants and can greatly facilitate the genetic diagnosis of the disease. PMID:28863211

  6. The Rice B-Box Zinc Finger Gene Family: Genomic Identification, Characterization, Expression Profiling and Diurnal Analysis

    PubMed Central

    Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo

    2012-01-01

    Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960

  7. Mutation analysis of 12 genes in Chinese families with congenital cataracts

    PubMed Central

    Sun, Wenmin; Xiao, Xueshan; Li, Shiqiang; Guo, Xiangming

    2011-01-01

    Purpose To identify mutations in 12 genes in Chinese families with congenital cataracts. Methods Twenty five families with congenital cataracts involved in this study. The coding exons and adjacent intronic regions of 12 genes were analyzed by cycle sequencing, including the alpha A crystallin (CRYAA), alpha B crystallin (CRYAB), beta A1 crystallin (CRYBA1), beta A4 crystallin (CRYBA4), beta B1 crystallin (CRYBB1), beta B2 crystallin (CRYBB2), beta B3 crystallin (CRYBB3), gamma C crystallin (CRYGC), gamma D crystallin (CRYGD), gamma S crystallin (CRYGS), alpha 3 gap junction protein (GJA3), and alpha 8 gap junction protein (GJA8) genes. Novel variants were further evaluated in 96 normal controls. Results Nine mutations were identified in 10 of the 25 families (40%), including 5 novel (c.350_352delGCT in CRYAA, c.205C>T in CRYAB, c.106G>C in CRYGD, c.77A>G in CRYGS, c.1143_1165del23 in GJA3) and 4 known (c.292G>A in CRYAA; c.215+1G>A and c.272_274delGAG in CRYBA1, and c.176C>T in GJA3). All novel mutations were predicted to be pathogenic and were not present in 96 controls. Conclusions Mutations in the 12 genes encoding crystallins and connexins were responsible for 40% Chinese families with congenital cataracts. Our results enriched our knowledge on the molecular basis of congenital cataracts in Chinese population. PMID:21866213

  8. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    PubMed

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  9. MMACHC gene mutation in familial hypogonadism with neurological symptoms.

    PubMed

    Shi, Changhe; Shang, Dandan; Sun, Shilei; Mao, Chengyuan; Qin, Jie; Luo, Haiyang; Shao, Mingwei; Chen, Zhengguang; Liu, Yutao; Liu, Xinjing; Song, Bo; Xu, Yuming

    2015-12-15

    Recent studies have convincingly documented that hypogonadism is a component of various hereditary disorders and is often recognized as an important clinical feature in combination with various neurological symptoms, yet, the causative genes in a few related families are still unknown. High-throughput sequencing has become an efficient method to identify causative genes in related complex hereditary disorders. In this study, we performed exome sequencing in a family presenting hypergonadotropic hypogonadism with neurological presentations of mental retardation, epilepsy, ataxia, and leukodystrophy. After bioinformatic analysis and Sanger sequencing validation, we identified compound heterozygous mutations: c.482G>A (p.R161Q) and c.609G>A (p.W203X) in MMACHC gene in this pedigree. MMACHC was previously confirmed to be responsible for methylmalonic aciduria (MMA) combined with homocystinuria, cblC type (cblC disease), a hereditary vitamin B12 metabolic disorder. Biochemical and gas chromatography-mass spectrometry (GC-MS) examinations in this pedigree further supported the cblC disease diagnosis. These results indicated that hypergonadotropic hypogonadism may be a novel clinical manifestation of cblC disease, but more reports on additional patients are needed to support this hypothesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The banana E2 gene family: Genomic identification, characterization, expression profiling analysis.

    PubMed

    Dong, Chen; Hu, Huigang; Jue, Dengwei; Zhao, Qiufang; Chen, Hongliang; Xie, Jianghui; Jia, Liqiang

    2016-04-01

    The E2 is at the center of a cascade of Ub1 transfers, and it links activation of the Ub1 by E1 to its eventual E3-catalyzed attachment to substrate. Although the genome-wide analysis of this family has been performed in some species, little is known about analysis of E2 genes in banana. In this study, 74 E2 genes of banana were identified and phylogenetically clustered into thirteen subgroups. The predicted banana E2 genes were distributed across all 11 chromosomes at different densities. Additionally, the E2 domain, gene structure and motif compositions were analyzed. The expression of all of the banana E2 genes was analyzed in the root, stem, leaf, flower organs, five stages of fruit development and under abiotic stresses. All of the banana E2 genes, with the exception of few genes in each group, were expressed in at least one of the organs and fruit developments, which indicated that the E2 genes might involve in various aspects of the physiological and developmental processes of the banana. Quantitative RT-PCR (qRT-PCR) analysis identified that 45 E2s under drought and 33 E2s under salt were induced. To the best of our knowledge, this report describes the first genome-wide analysis of the banana E2 gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress

    PubMed Central

    Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming

    2017-01-01

    The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance. PMID:28417911

  12. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress.

    PubMed

    Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming

    2017-04-12

    The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance.

  13. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  14. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  15. A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.

    PubMed

    Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P

    2005-10-01

    We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.

  16. [Analysis of TGFBI gene mutation in a Chinese family affected with Reis-Bucklers corneal dystrophy].

    PubMed

    Guan, Tao; Zhang, Lingjie; Xu, Dejian; Wu, Haijian; Zheng, Libin

    2017-10-10

    To analyze the clinical features and TGFBI gene mutation in a Chinese family affected with Reis-Bucklers corneal dystrophy. Genomic DNA was extracted from 53 members including 9 patients from the family. The 17 exons and splice region of introns of the TGFBI gene were amplified by PCR and directly sequenced. All family members were subjected to ophthalmologic examination. A heterozygous mutation (R124L) was found in exon 4 of the TGFBI gene among all patients from the family. The same mutation was not found among unaffected family members. The inheritance pattern of the family was identified as autosomal dominant, and the Reis-Bucklers corneal dystrophy in the family was diagnosed as the geographic type. The R124L mutation of the TGFBI gene probably underlies the pathogenesis of Reis-Bucklers corneal dystrophy in this Chinese family. Molecular genetic approach is useful for the proper diagnosis of this type of corneal dystrophy.

  17. Novel pathogenic variant (c.3178G>A) in the SMC1A gene in a family with Cornelia de Lange syndrome identified by exome sequencing.

    PubMed

    Jang, Mi Ae; Lee, Chang Woo; Kim, Jin Kyung; Ki, Chang Seok

    2015-11-01

    Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous congenital anomaly. Mutations in the NIPBL gene account for a half of the affected individuals. We describe a family with CdLS carrying a novel pathogenic variant of the SMC1A gene identified by exome sequencing. The proband was a 3-yr-old boy presenting with a developmental delay. He had distinctive facial features without major structural anomalies and tested negative for the NIPBL gene. His younger sister, mother, and maternal grandmother presented with mild mental retardation. By exome sequencing of the proband, a novel SMC1A variant, c.3178G>A, was identified, which was expected to cause an amino acid substitution (p.Glu1060Lys) in the highly conserved coiled-coil domain of the SMC1A protein. Sanger sequencing confirmed that the three female relatives with mental retardation also carry this variant. Our results reveal that SMC1A gene defects are associated with milder phenotypes of CdLS. Furthermore, we showed that exome sequencing could be a useful tool to identify pathogenic variants in patients with CdLS.

  18. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    PubMed

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  19. Identification a nonsense mutation of APC gene in Chinese patients with familial adenomatous polyposis.

    PubMed

    Li, Haishan; Zhang, Lingling; Jiang, Quan; Shi, Zhenwang; Tong, Hanxing

    2017-04-01

    Familial adenomatous polyposis (FAP; Mendelian of Inherintance in Man ID, 175100) is a rare autosomal dominant disorder characterized by the development of numerous adenomatous polyps throughout the colon and rectum associated with an increased risk of colorectal cancer. FAP is at time accompanied with certain extraintestinal manifestations such as congenital hypertrophy of the retinal pigment epithelium, dental disorders and desmoid tumors. It is caused by mutations in the adenomatous polyposis coli ( APC ) gene. The present study reported on a Chinese family with FAP. Polymerase chain reaction and direct sequencing of the full coding sequence of the APC gene were performed to identify the mutation in this family. A nonsense mutation of the APC gene was identified in this pedigree. It is a heterozygous G>T substitution at position 2,971 in exon 15 of the APC gene, which formed a premature stop codon at amino acid residue 991 (p.Glu991*). The resulting truncated protein lacked 1,853 amino acids. The present study expanded the database on APC gene mutations in FAP and enriched the spectrum of known germline mutations of the APC gene. Prophylactic proctocolectomy may be considered as a possible treatment for carriers of the mutation.

  20. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    PubMed

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  1. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    PubMed

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  2. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family

  3. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE PAGES

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; ...

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family

  4. A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER)

    PubMed Central

    Munfus, Delicia L; Haga, Christopher L; Burrows, Peter D; Cooper, Max D

    2007-01-01

    Background In mouse the cytokine interleukin-7 (IL-7) is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER). The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR), a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules. PMID:17854505

  5. Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins.

    PubMed

    Wang, Dan; Zhang, Lin; Hu, JunFeng; Gao, Dianshuai; Liu, Xin; Sha, Yan

    2018-04-01

    Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.

  6. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    PubMed Central

    2012-01-01

    Background Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on

  7. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  9. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants.

    PubMed

    Rawal, H C; Singh, N K; Sharma, T R

    2013-01-01

    Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  10. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    PubMed Central

    Rawal, H. C.; Singh, N. K.; Sharma, T. R.

    2013-01-01

    Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future. PMID:23671845

  11. Genome-Wide Analysis of the NADK Gene Family in Plants

    PubMed Central

    Li, Wen-Yan; Wang, Xiang; Li, Ri; Li, Wen-Qiang; Chen, Kun-Ming

    2014-01-01

    Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity

  12. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    PubMed

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  13. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family

    PubMed Central

    2013-01-01

    Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of

  14. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events.

    PubMed

    Zhou, Mi; Yan, Jun; Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication.

  15. Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family Members Critical for Normal Development.

    PubMed

    Litholdo, Celso G; Parker, Benjamin L; Eamens, Andrew L; Larsen, Martin R; Cordwell, Stuart J; Waterhouse, Peter M

    2016-06-01

    Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family Members Critical for Normal Development*

    PubMed Central

    Litholdo, Celso G.; Parker, Benjamin L.; Eamens, Andrew L.; Larsen, Martin R.; Cordwell, Stuart J.; Waterhouse, Peter M.

    2016-01-01

    Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development. PMID:27067051

  17. Gene family size conservation is a good indicator of evolutionary rates.

    PubMed

    Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen

    2010-08-01

    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.

  18. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape

    PubMed Central

    Zhang, Yucheng; Gao, Min; Singer, Stacy D.; Fei, Zhangjun; Wang, Hua; Wang, Xiping

    2012-01-01

    Background The TIFY gene family constitutes a plant-specific group of genes with a broad range of functions. This family encodes four subfamilies of proteins, including ZML, TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. JAZ proteins are targets of the SCFCOI1 complex, and function as negative regulators in the JA signaling pathway. Recently, it has been reported in both Arabidopsis and rice that TIFY genes, and especially JAZ genes, may be involved in plant defense against insect feeding, wounding, pathogens and abiotic stresses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant TIFY family members is limited, especially in a woody species such as grape. Methodology/Principal Findings A total of two TIFY, four ZML, two PPD and 11 JAZ genes were identified in the Vitis vinifera genome. Phylogenetic analysis of TIFY protein sequences from grape, Arabidopsis and rice indicated that the grape TIFY proteins are more closely related to those of Arabidopsis than those of rice. Both segmental and tandem duplication events have been major contributors to the expansion of the grape TIFY family. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologues of several grape TIFY genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of lineages that led to grape and Arabidopsis. Analyses of microarray and quantitative real-time RT-PCR expression data revealed that grape TIFY genes are not a major player in the defense against biotrophic pathogens or viruses. However, many of these genes were responsive to JA and ABA, but not SA or ET. Conclusion The genome-wide identification, evolutionary and expression analyses of grape TIFY genes should facilitate further research of this gene family and provide new insights regarding their evolutionary history and regulatory control. PMID:22984514

  19. A novel pathogenic splice acceptor site germline mutation in intron 14 of the APC gene in a Chinese family with familial adenomatous polyposis.

    PubMed

    Wang, Dan; Liang, Shengyun; Zhang, Zhao; Zhao, Guoru; Hu, Yuan; Liang, Shengran; Zhang, Xipeng; Banerjee, Santasree

    2017-03-28

    Familial adenomatous polyposis (FAP) is an autosomal dominant precancerous condition, clinically characterized by the presence of multiple colorectal adenomas or polyps. Patients with FAP has a high risk of developing colorectal cancer (CRC) from these colorectal adenomatous polyps by the mean age of diagnosis at 40 years. Germline mutations of the APC gene cause familial adenomatous polyposis (FAP). Colectomy has recommended for the FAP patients with significant polyposis. Here, we present a clinical molecular study of a four generation Chinese family with FAP. Clinical diagnosis of FAP has been done according to the phenotype, family history and medical records. Patient's blood samples were collected and genomic DNA was extracted. In order to identify the pathogenic mutation underlying the disease phenotype targeted next-generation sequencing and confirmatory sanger sequencing has undertaken. Targeted next generation sequencing identified a novel heterozygous splice-acceptor site mutation [c.1744-1G>A] in intron 14 of APC gene, which is co-segregated with the FAP phenotypes in the proband and amongst all the affected family members. This mutation is not present in unaffected family members and in normal healthy controls of same ethnic origin. According to the LOVD database for Chinese colorectal cancer patients, in Chinese population, 60% of the previously reported APC gene mutations causes FAP, are missense mutations. This novel splice-acceptor site mutation causing FAP in this Chinese family expands the germline mutation spectrum of the APC gene in the Chinese population.

  20. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale.

    PubMed

    He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun

    2017-08-23

    The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.

  1. NDP gene mutations in 14 French families with Norrie disease.

    PubMed

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  2. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes

    PubMed Central

    Hu, Wei; Xia, Zhiqiang; Yan, Yan; Ding, Zehong; Tie, Weiwei; Wang, Lianzhe; Zou, Meiling; Wei, Yunxie; Lu, Cheng; Hou, Xiaowan; Wang, Wenquan; Peng, Ming

    2015-01-01

    Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs) have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava. PMID:26579161

  3. Identifying the genes of unconventional high temperature superconductors.

    PubMed

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  4. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    PubMed

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes.

  5. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    PubMed

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  6. Novel sequence variants in the TMIE gene in families with autosomal recessive nonsyndromic hearing impairment

    PubMed Central

    Santos, Regie Lyn P.; El-Shanti, Hatem; Sikandar, Shaheen; Lee, Kwanghyuk; Bhatti, Attya; Yan, Kai; Chahrour, Maria H.; McArthur, Nathan; Pham, Thanh L.; Mahasneh, Amjad Abdullah; Ahmad, Wasim

    2010-01-01

    To date, 37 genes have been identified for nonsyndromic hearing impairment (NSHI). Identifying the functional sequence variants within these genes and knowing their population-specific frequencies is of public health value, in particular for genetic screening for NSHI. To determine putatively functional sequence variants in the transmembrane inner ear (TMIE) gene in Pakistani and Jordanian families with autosomal recessive (AR) NSHI, four Jordanian and 168 Pakistani families with ARNSHI that is not due to GJB2 (CX26) were submitted to a genome scan. Two-point and multipoint parametric linkage analyses were performed, and families with logarithmic odds (LOD) scores of 1.0 or greater within the TMIE region underwent further DNA sequencing. The evolutionary conservation and location in predicted protein domains of amino acid residues where sequence variants occurred were studied to elucidate the possible effects of these sequence variants on function. Of seven families that were screened for TMIE, putatively functional sequence variants were found to segregate with hearing impairment in four families but were not seen in not less than 110 ethnically matched control chromosomes. The previously reported c.241C>T (p.R81C) variant was observed in two Pakistani families. Two novel variants, c.92A>G (p.E31G) and the splice site mutation c.212–2A>C, were identified in one Pakistani and one Jordanian family, respectively. The c.92A>G (p.E31G) variant occurred at a residue that is conserved in the mouse and is predicted to be extracellular. Conservation and potential functionality of previously published mutations were also examined. The prevalence of functional TMIE variants in Pakistani families is 1.7% [95% confidence interval (CI) 0.3–4.8]. Further studies on the spectrum, prevalence rates, and functional effect of sequence variants in the TMIE gene in other populations should demonstrate the true importance of this gene as a cause of hearing impairment. PMID:16389551

  7. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease.

    PubMed

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-11-01

    Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.

  8. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease

    PubMed Central

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-01-01

    Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND. PMID:29133643

  9. Prospectively-Identified Incident Testicular Cancer Risk in a Familial Testicular Cancer Cohort

    PubMed Central

    Pathak, Anand; Adams, Charleen D.; Loud, Jennifer T.; Nichols, Kathryn; Stewart, Douglas R.; Greene, Mark H.

    2015-01-01

    Background Human testicular germ cell tumors (TGCT) have a strong genetic component and a high familial relative risk. However, linkage analyses have not identified a rare, highly-penetrant familial TGCT (FTGCT) susceptibility locus. Currently, multiple low-penetrance genes are hypothesized to underlie the familial multiple-case phenotype. The observation that two is the most common number of affected individuals per family presents an impediment to FTGCT gene discovery. Clinically, the prospective TGCT risk in the multiple-case family context is unknown. Methods We performed a prospective analysis of TGCT incidence in a cohort of multiple-affected-person families and sporadic-bilateral-case families; 1,260 men from 140 families (10,207 person-years of follow-up) met our inclusion criteria. Age-, gender-, and calendar time-specific standardized incidence ratios (SIR) for TGCT relative to the general population were calculated using SEER*Stat. Results Eight incident TGCTs occurred during prospective FTGCT cohort follow-up (versus 0.67 expected; SIR=11.9; 95% confidence interval [CI]=5.1–23.4; excess absolute risk=7.2/10,000). We demonstrate that the incidence rate of TGCT is greater among bloodline male relatives from multiple-case testicular cancer families than that expected in the general population, a pattern characteristic of adult-onset Mendelian cancer susceptibility disorders. Two of these incident TGCTs occurred in relatives of sporadic-bilateral cases (0.15 expected; SIR=13.4; 95%CI=1.6–48.6). Conclusions Our data are the first indicating that despite relatively low numbers of affected individuals per family, members of both multiple-affected-person FTGCT families and sporadic-bilateral TGCT families comprise high-risk groups for incident testicular cancer. Impact Men at high TGCT risk might benefit from tailored risk stratification and surveillance strategies. PMID:26265202

  10. Prospectively Identified Incident Testicular Cancer Risk in a Familial Testicular Cancer Cohort.

    PubMed

    Pathak, Anand; Adams, Charleen D; Loud, Jennifer T; Nichols, Kathryn; Stewart, Douglas R; Greene, Mark H

    2015-10-01

    Human testicular germ cell tumors (TGCT) have a strong genetic component and a high familial relative risk. However, linkage analyses have not identified a rare, highly penetrant familial TGCT (FTGCT) susceptibility locus. Currently, multiple low-penetrance genes are hypothesized to underlie the familial multiple-case phenotype. The observation that two is the most common number of affected individuals per family presents an impediment to FTGCT gene discovery. Clinically, the prospective TGCT risk in the multiple-case family context is unknown. We performed a prospective analysis of TGCT incidence in a cohort of multiple-affected-person families and sporadic-bilateral-case families; 1,260 men from 140 families (10,207 person-years of follow-up) met our inclusion criteria. Age-, gender-, and calendar time-specific standardized incidence ratios (SIR) for TGCT relative to the general population were calculated using SEER*Stat. Eight incident TGCTs occurred during prospective FTGCT cohort follow-up (versus 0.67 expected; SIR = 11.9; 95% CI, 5.1-23.4; excess absolute risk = 7.2/10,000). We demonstrate that the incidence rate of TGCT is greater among bloodline male relatives from multiple-case testicular cancer families than that expected in the general population, a pattern characteristic of adult-onset Mendelian cancer susceptibility disorders. Two of these incident TGCTs occurred in relatives of sporadic-bilateral cases (0.15 expected; SIR = 13.4; 95% CI, 1.6-48.6). Our data are the first to indicate that despite relatively low numbers of affected individuals per family, members of both multiple-affected-person FTGCT families and sporadic-bilateral TGCT families comprise high-risk groups for incident testicular cancer. Men at high TGCT risk might benefit from tailored risk stratification and surveillance strategies. ©2015 American Association for Cancer Research.

  11. Identification and characterization of NF-YB family genes in tung tree.

    PubMed

    Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun

    2015-12-01

    The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.

  12. Neurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease.

    PubMed

    Rahner, Nils; Holzmann, Carsten; Krüger, Rejko; Schöls, Ludger; Berger, Klaus; Riess, Olaf

    2002-09-27

    Mutations in two genes, alpha-synuclein and parkin, have been identified as some rare causes for familial Parkinson's disease (PD). alpha-Synuclein and parkin protein have subsequently been identified in Lewy bodies (LB). To gain further insight into the pathogenesis of PD we investigated the role of neurofilament light (NF-L), another component of LB aggregation. A detailed mutation search of the NF-L gene in 328 sporadic and familial PD patients of German ancestry revealed three silent DNA changes (G163A, C224T, C487T) in three unrelated patients. Analysis of the promoter region of the NF-L gene identified a total of three base pair substitutions defining five haplotypes. Association studies based on these haplotypes revealed no significant differences between PD patients and 344 control individuals. Therefore, NF-L is unlikely to play a major role in the pathogenesis of PD.

  13. Evolutionarily conserved gene family important for fat storage

    PubMed Central

    Kadereit, Bert; Kumar, Pradeep; Wang, Wen-Jun; Miranda, Diego; Snapp, Erik L.; Severina, Nadia; Torregroza, Ingrid; Evans, Todd; Silver, David L.

    2008-01-01

    The ability to store fat in the form of cytoplasmic triglyceride droplets is conserved from Saccharomyces cerevisiae to humans. Although much is known regarding the composition and catabolism of lipid droplets, the molecular components necessary for the biogenesis of lipid droplets have remained obscure. Here we report the characterization of a conserved gene family important for lipid droplet formation named fat-inducing transcript (FIT). FIT1 and FIT2 are endoplasmic reticulum resident membrane proteins that induce lipid droplet accumulation in cell culture and when expressed in mouse liver. shRNA silencing of FIT2 in 3T3-LI adipocytes prevents accumulation of lipid droplets, and depletion of FIT2 in zebrafish blocks diet-induced accumulation of lipid droplets in the intestine and liver, highlighting an important role for FIT2 in lipid droplet formation in vivo. Together these studies identify and characterize a conserved gene family that is important in the fundamental process of storing fat. PMID:18160536

  14. The Eucalyptus terpene synthase gene family.

    PubMed

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  15. Genomewide analysis of TCP transcription factor gene family in Malus domestica.

    PubMed

    Xu, Ruirui; Sun, Peng; Jia, Fengjuan; Lu, Longtao; Li, Yuanyuan; Zhang, Shizhong; Huang, Jinguang

    2014-12-01

    Teosinte branched 1/cycloidea/proliferating cell factor 1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are involved in various biological processes, including development and plant metabolism pathways. In this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and conserved domains of MdTCP proteins. Expression analysis from microarray data showed that the expression levels of 28 and 51 MdTCP genes changed during the ripening and rootstock-scion interaction processes, respectively. The expression patterns of 12 selected MdTCP genes were analysed in different tissues and in response to abiotic stresses. All of the selected genes were detected in at least one of the tissues tested, and most of them were modulated by adverse treatments indicating that the MdTCPs were involved in various developmental and physiological processes. To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family. These results provide valuable information for studies on functions of the TCP transcription factor genes in apple.

  16. Next-generation sequencing to solve complex inherited retinal dystrophy: A case series of multiple genes contributing to disease in extended families.

    PubMed

    Jones, Kaylie D; Wheaton, Dianna K; Bowne, Sara J; Sullivan, Lori S; Birch, David G; Chen, Rui; Daiger, Stephen P

    2017-01-01

    With recent availability of next-generation sequencing (NGS), it is becoming more common to pursue disease-targeted panel testing rather than traditional sequential gene-by-gene dideoxy sequencing. In this report, we describe using NGS to identify multiple disease-causing mutations that contribute concurrently or independently to retinal dystrophy in three relatively small families. Family members underwent comprehensive visual function evaluations, and genetic counseling including a detailed family history. A preliminary genetic inheritance pattern was assigned and updated as additional family members were tested. Family 1 (FAM1) and Family 2 (FAM2) were clinically diagnosed with retinitis pigmentosa (RP) and had a suspected autosomal dominant pedigree with non-penetrance (n.p.). Family 3 (FAM3) consisted of a large family with a diagnosis of RP and an overall dominant pedigree, but the proband had phenotypically cone-rod dystrophy. Initial genetic analysis was performed on one family member with traditional Sanger single gene sequencing and/or panel-based testing, and ultimately, retinal gene-targeted NGS was required to identify the underlying cause of disease for individuals within the three families. Results obtained in these families necessitated further genetic and clinical testing of additional family members to determine the complex genetic and phenotypic etiology of each family. Genetic testing of FAM1 (n = 4 affected; 1 n.p.) identified a dominant mutation in RP1 (p.Arg677Ter) that was present for two of the four affected individuals but absent in the proband and the presumed non-penetrant individual. Retinal gene-targeted NGS in the fourth affected family member revealed compound heterozygous mutations in USH2A (p. Cys419Phe, p.Glu767Serfs*21). Genetic testing of FAM2 (n = 3 affected; 1 n.p.) identified three retinal dystrophy genes ( PRPH2 , PRPF8 , and USH2A ) with disease-causing mutations in varying combinations among the affected family members

  17. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: New insights into the gene family evolution.

    PubMed

    Alvarez, José M; Bueno, Natalia; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M; Ordás, Ricardo J

    2018-02-01

    WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ IV) Gene Family from Musa accuminata

    PubMed Central

    Pandey, Ashutosh; Misra, Prashant; Alok, Anshu; Kaur, Navneet; Sharma, Shivani; Lakhwani, Deepika; Asif, Mehar H.; Tiwari, Siddharth; Trivedi, Prabodh K.

    2016-01-01

    The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs. PMID:26870050

  19. Mutation analysis of the APC gene in Taiwanese FAP families: low incidence of APC germline mutation in a distinct subgroup of FAP families.

    PubMed

    Chiang, J M; Chen, H W; Tang, R P; Chen, J S; Changchien, C R; Hsieh, P S; Wang, J Y

    2010-06-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominant disease caused by germline mutations in the adenomatous polyposis coli (APC) gene. The affected individuals develop colorectal polyposis and show various extra-colonic manifestations. In this study, we aimed to investigate the genetic and clinical characteristics of FAP in Taiwanese families and analyze the genotype-phenotype correlations. Blood samples were obtained from 66 FAP patients registered in the hereditary colorectal cancer database. Then, germline mutations in the APC genes of these 66 polyposis patients from 47 unrelated FAP families were analyzed. The germline-mutation-negative cases were analyzed by performing multiplex ligation-dependent probe amplification (MLPA) and single-strand conformation polymorphism (SSCP) analysis of the MUTYH gene. Among the analyzed families, 79% (37/47) of the families showed 28 APC mutations, including 19 frameshift mutations, 4 nonsense mutations, 3 genomic deletion mutations, 1 missense mutation, and 1 splice-site mutation. In addition, we identified 15 novel mutations in 32% (15/47) of the families. The cases in which APC mutations were not identified showed significantly lower incidence of profuse polyposis (P = 0.034) and gastroduodenal polyps (P = 0.027). Furthermore, FAP families in which some affected individuals had less than 100 polyps showed significant association with low incidence of APC germline mutations (P = 0.002). We have added the APC germline-mutation data for Taiwanese FAP patients and indicated the presence of an FAP subgroup comprising affected individuals with nonadenomatous polyps or less than 100 adenomatous polyps; this form of FAP is less frequently caused by germline mutations of the APC gene.

  20. Mutations in TULP1, NR2E3, and MFRP genes in Indian families with autosomal recessive retinitis pigmentosa

    PubMed Central

    Singh, Hardeep; Sahini, Nishika; Jalali, Subhadra; Mohan, Gayathri

    2012-01-01

    Purpose To identify genes underlying autosomal recessive retinitis pigmentosa (ARRP) by homozygosity mapping. Methods Families with ARRP were recruited after complete ophthalmic evaluation of all members and diagnosis of RP by predefined criteria. Genomic DNA from affected members of 26 families was genotyped on Illumina single nucleotide polymorphism (SNP) 6.0 K arrays with standard procedures. Genotypes were evaluated for homozygous regions that were common and concordant between affected members of each family. The genes mapping to homozygous intervals within these families were screened for pathogenic changes with PCR amplification and sequencing of coding regions. Cosegegration of sequence changes with disease was determined within each pedigree, and each variation was tested for presence in 100 unrelated normal controls. Results A genome-wide scan for homozygosity showed homozygous regions harboring the tubby like protein 1 gene (TULP1; chromosome 6) in one family, the nuclear receptor subfamily 2, group E, member 3 gene (NR2E3; chromosome 15) in three families, and the membrane frizzled-related protein gene (MFRP; chromosome 11) in one family. Screening of the three genes in the respective families revealed homozygous disease-causing mutations in three families. These included a missense mutation in TULP1, a deletion-cum-insertion in NR2E3, and a single base deletion in MFRP. Patients from all three families had a rod-cone type of dystrophy with night blindness initially. The NR2E3 and MFRP genes were associated with fundus features atypical of RP. Conclusions This study shows involvement of the TULP1, NR2E3, and MFRP genes in ARRP in Indian cases. Genome-wide screening with SNP arrays followed by a prioritized candidate gene evaluation is useful in identifying genes in these patients. PMID:22605927

  1. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    PubMed

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  2. Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.

    PubMed

    Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T

    1995-05-20

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.

  3. Comparative and Evolutionary Analysis of the HES/HEY Gene Family Reveal Exon/Intron Loss and Teleost Specific Duplication Events

    PubMed Central

    Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    Background HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. Methods and Findings In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Conclusions Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and

  4. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis).

    PubMed

    Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin

    2015-11-01

    The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.

  5. Comparative and evolutionary analysis of the 14-3-3 family genes in eleven fishes.

    PubMed

    Cao, Jun; Tan, Xiaona

    2018-07-01

    14-3-3 proteins are a type of highly conserved acidic proteins, which are distributed over a wide variety of organisms and are involved in multiple cellular processes. While the comparative and evolutionary analysis of this gene family is unavailable in various fish species. In this study, we identified 101 putative 14-3-3 genes in 11 fish species and divided them into 5 groups via phylogenetic analysis. Synteny analysis implied conserved and dynamic evolution characteristics near the 14-3-3 gene loci in some vertebrates. We also found that some recombination events have accelerated the evolution of this gene family. Moreover, a positive selection site was also identified, and mutation of this site could reduce the 14-3-3 stability. Divergent expression profiles of the zebrafish 14-3-3 genes were further investigated under organophosphorus stress, suggesting that they may be involved in the different osmoregulation and immune response. The results will serve as a foundation for the further functional investigation into the 14-3-3 genes in fishes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Amelogenesis Imperfecta: 1 Family, 2 Phenotypes, and 2 Mutated Genes.

    PubMed

    Prasad, M K; Laouina, S; El Alloussi, M; Dollfus, H; Bloch-Zupan, A

    2016-12-01

    Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous group of diseases characterized by enamel defects. The authors have identified a large consanguineous Moroccan family segregating different clinical subtypes of hypoplastic and hypomineralized AI in different individuals within the family. Using targeted next-generation sequencing, the authors identified a novel heterozygous nonsense mutation in COL17A1 (c.1873C>T, p.R625*) segregating with hypoplastic AI and a novel homozygous 8-bp deletion in C4orf26 (c.39_46del, p.Cys14Glyfs*18) segregating with hypomineralized-hypoplastic AI in this family. This study highlights the phenotypic and genotypic heterogeneity of AI that can exist even within a single consanguineous family. Furthermore, the identification of novel mutations in COL17A1 and C4orf26 and their correlation with distinct AI phenotypes can contribute to a better understanding of the pathophysiology of AI and the contribution of these genes to amelogenesis. © International & American Associations for Dental Research 2016.

  7. Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.

    PubMed

    Ma, Xiang; Li, Xiaoxin; Wang, Lihua

    2008-01-01

    To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.

  8. Epstein-Barr virus latent gene sequences as geographical markers of viral origin: unique EBNA3 gene signatures identify Japanese viruses as distinct members of the Asian virus family.

    PubMed

    Sawada, Akihisa; Croom-Carter, Deborah; Kondo, Osamu; Yasui, Masahiro; Koyama-Sato, Maho; Inoue, Masami; Kawa, Keisei; Rickinson, Alan B; Tierney, Rosemary J

    2011-05-01

    Polymorphisms in Epstein-Barr virus (EBV) latent genes can identify virus strains from different human populations and individual strains within a population. An Asian EBV signature has been defined almost exclusively from Chinese viruses, with little information from other Asian countries. Here we sequenced polymorphic regions of the EBNA1, 2, 3A, 3B, 3C and LMP1 genes of 31 Japanese strains from control donors and EBV-associated T/NK-cell lymphoproliferative disease (T/NK-LPD) patients. Though identical to Chinese strains in their dominant EBNA1 and LMP1 alleles, Japanese viruses were subtly different at other loci. Thus, while Chinese viruses mainly fall into two families with strongly linked 'Wu' or 'Li' alleles at EBNA2 and EBNA3A/B/C, Japanese viruses all have the consensus Wu EBNA2 allele but fall into two families at EBNA3A/B/C. One family has variant Li-like sequences at EBNA3A and 3B and the consensus Li sequence at EBNA3C; the other family has variant Wu-like sequences at EBNA3A, variants of a low frequency Chinese allele 'Sp' at EBNA3B and a consensus Sp sequence at EBNA3C. Thus, EBNA3A/B/C allelotypes clearly distinguish Japanese from Chinese strains. Interestingly, most Japanese viruses also lack those immune-escape mutations in the HLA-A11 epitope-encoding region of EBNA3B that are so characteristic of viruses from the highly A11-positive Chinese population. Control donor-derived and T/NK-LPD-derived strains were similarly distributed across allelotypes and, by using allelic polymorphisms to track virus strains in patients pre- and post-haematopoietic stem-cell transplant, we show that a single strain can induce both T/NK-LPD and B-cell-lymphoproliferative disease in the same patient.

  9. Exome Sequencing Identified a Recessive RDH12 Mutation in a Family with Severe Early-Onset Retinitis Pigmentosa

    PubMed Central

    Gong, Bo; Wei, Bo; Huang, Lulin; Hao, Jilong; Li, Xiulan; Yang, Yin; Zhou, Yu; Hao, Fang; Cui, Zhihua; Zhang, Dingding; Wang, Le

    2015-01-01

    Retinitis pigmentosa (RP) is the most important hereditary retinal disease caused by progressive degeneration of the photoreceptor cells. This study is to identify gene mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in a Chinese family using next-generation sequencing technology. A Chinese family with 7 members including two individuals affected with severe early-onset RP was studied. All patients underwent a complete ophthalmic examination. Exome sequencing was performed on a single RP patient (the proband of this family) and direct Sanger sequencing on other family members and normal controls was followed to confirm the causal mutations. A homozygous mutation c.437Tgene, which encodes an NADPH-dependent retinal reductase, was identified as being related to the phenotype of this arRP family. This homozygous mutation was detected in the two affected patients, but not present in other family members and 600 normal controls. Another three normal members in the family were found to carry this heterozygous missense mutation. Our results emphasize the importance of c.437T

  10. Three Approaches to Modeling Gene-Environment Interactions in Longitudinal Family Data: Gene-Smoking Interactions in Blood Pressure.

    PubMed

    Basson, Jacob; Sung, Yun Ju; de Las Fuentes, Lisa; Schwander, Karen L; Vazquez, Ana; Rao, Dabeeru C

    2016-01-01

    Blood pressure (BP) has been shown to be substantially heritable, yet identified genetic variants explain only a small fraction of the heritability. Gene-smoking interactions have detected novel BP loci in cross-sectional family data. Longitudinal family data are available and have additional promise to identify BP loci. However, this type of data presents unique analysis challenges. Although several methods for analyzing longitudinal family data are available, which method is the most appropriate and under what conditions has not been fully studied. Using data from three clinic visits from the Framingham Heart Study, we performed association analysis accounting for gene-smoking interactions in BP at 31,203 markers on chromosome 22. We evaluated three different modeling frameworks: generalized estimating equations (GEE), hierarchical linear modeling, and pedigree-based mixed modeling. The three models performed somewhat comparably, with multiple overlaps in the most strongly associated loci from each model. Loci with the greatest significance were more strongly supported in the longitudinal analyses than in any of the component single-visit analyses. The pedigree-based mixed model was more conservative, with less inflation in the variant main effect and greater deflation in the gene-smoking interactions. The GEE, but not the other two models, resulted in substantial inflation in the tail of the distribution when variants with minor allele frequency <1% were included in the analysis. The choice of analysis method should depend on the model and the structure and complexity of the familial and longitudinal data. © 2015 WILEY PERIODICALS, INC.

  11. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    PubMed

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  12. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    PubMed

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families.

    PubMed

    Shah, Shiraz A; Alkhnbashi, Omer S; Behler, Juliane; Han, Wenyuan; She, Qunxin; Hess, Wolfgang R; Garrett, Roger A; Backofen, Rolf

    2018-06-19

    A study was undertaken to identify conserved proteins that are encoded adjacent to cas gene cassettes of Type III CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats - CRISPR associated) interference modules. Type III modules have been shown to target and degrade dsDNA, ssDNA and ssRNA and are frequently intertwined with cofunctional accessory genes, including genes encoding CRISPR-associated Rossman Fold (CARF) domains. Using a comparative genomics approach, and defining a Type III association score accounting for coevolution and specificity of flanking genes, we identified and classified 39 new Type III associated gene families. Most archaeal and bacterial Type III modules were seen to be flanked by several accessory genes, around half of which did not encode CARF domains and remain of unknown function. Northern blotting and interference assays in Synechocystis confirmed that one particular non-CARF accessory protein family was involved in crRNA maturation. Non-CARF accessory genes were generally diverse, encoding nuclease, helicase, protease, ATPase, transporter and transmembrane domains with some encoding no known domains. We infer that additional families of non-CARF accessory proteins remain to be found. The method employed is scalable for potential application to metagenomic data once automated pipelines for annotation of CRISPR-Cas systems have been developed. All accessory genes found in this study are presented online in a readily accessible and searchable format for researchers to audit their model organism of choice: http://accessory.crispr.dk .

  14. Dlx homeobox gene family expression in osteoclasts.

    PubMed

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  15. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    PubMed

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  16. Epidermal growth factor gene is a newly identified candidate gene for gout.

    PubMed

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-08-10

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.

  17. Phylogenetic analysis and protein structure modelling identifies distinct Ca(2+)/Cation antiporters and conservation of gene family structure within Arabidopsis and rice species.

    PubMed

    Pittman, Jon K; Hirschi, Kendal D

    2016-12-01

    The Ca(2+)/Cation Antiporter (CaCA) superfamily is an ancient and widespread family of ion-coupled cation transporters found in nearly all kingdoms of life. In animals, K(+)-dependent and K(+)-indendent Na(+)/Ca(2+) exchangers (NCKX and NCX) are important CaCA members. Recently it was proposed that all rice and Arabidopsis CaCA proteins should be classified as NCX proteins. Here we performed phylogenetic analysis of CaCA genes and protein structure homology modelling to further characterise members of this transporter superfamily. Phylogenetic analysis of rice and Arabidopsis CaCAs in comparison with selected CaCA members from non-plant species demonstrated that these genes form clearly distinct families, with the H(+)/Cation exchanger (CAX) and cation/Ca(2+) exchanger (CCX) families dominant in higher plants but the NCKX and NCX families absent. NCX-related Mg(2+)/H(+) exchanger (MHX) and CAX-related Na(+)/Ca(2+) exchanger-like (NCL) proteins are instead present. Analysis of genomes of ten closely-related rice species and four Arabidopsis-related species found that CaCA gene family structures are highly conserved within related plants, apart from minor variation. Protein structures were modelled for OsCAX1a and OsMHX1. Despite exhibiting broad structural conservation, there are clear structural differences observed between the different CaCA types. Members of the CaCA superfamily form clearly distinct families with different phylogenetic, structural and functional characteristics, and therefore should not be simply classified as NCX proteins, which should remain as a separate gene family.

  18. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Qing-lin; Xu, Jia; Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related genemore » with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.« less

  19. A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations.

    PubMed

    Taghavi, Shaghayegh; Chaouni, Rita; Tafakhori, Abbas; Azcona, Luis J; Firouzabadi, Saghar Ghasemi; Omrani, Mir Davood; Jamshidi, Javad; Emamalizadeh, Babak; Shahidi, Gholam Ali; Ahmadi, Mona; Habibi, Seyed Amir Hassan; Ahmadifard, Azadeh; Fazeli, Atena; Motallebi, Marzieh; Petramfar, Peyman; Askarpour, Saeed; Askarpour, Shiva; Shahmohammadibeni, Hossein Ali; Shahmohammadibeni, Neda; Eftekhari, Hajar; Shafiei Zarneh, Amir Ehtesham; Mohammadihosseinabad, Saeed; Khorrami, Mehdi; Najmi, Safa; Chitsaz, Ahmad; Shokraeian, Parasto; Ehsanbakhsh, Hossein; Rezaeidian, Jalal; Ebrahimi Rad, Reza; Madadi, Faranak; Andarva, Monavvar; Alehabib, Elham; Atakhorrami, Minoo; Mortazavi, Seyed Erfan; Azimzadeh, Zahra; Bayat, Mahdis; Besharati, Amir Mohammad; Harati-Ghavi, Mohammad Ali; Omidvari, Samareh; Dehghani-Tafti, Zahra; Mohammadi, Faraz; Mohammad Hossein Pour, Banafsheh; Noorollahi Moghaddam, Hamid; Esmaili Shandiz, Ehsan; Habibi, Arman; Taherian-Esfahani, Zahra; Darvish, Hossein; Paisán-Ruiz, Coro

    2018-04-01

    In this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families.

  20. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.

    PubMed

    Nicolas, Aude; Kenna, Kevin P; Renton, Alan E; Ticozzi, Nicola; Faghri, Faraz; Chia, Ruth; Dominov, Janice A; Kenna, Brendan J; Nalls, Mike A; Keagle, Pamela; Rivera, Alberto M; van Rheenen, Wouter; Murphy, Natalie A; van Vugt, Joke J F A; Geiger, Joshua T; Van der Spek, Rick A; Pliner, Hannah A; Shankaracharya; Smith, Bradley N; Marangi, Giuseppe; Topp, Simon D; Abramzon, Yevgeniya; Gkazi, Athina Soragia; Eicher, John D; Kenna, Aoife; Mora, Gabriele; Calvo, Andrea; Mazzini, Letizia; Riva, Nilo; Mandrioli, Jessica; Caponnetto, Claudia; Battistini, Stefania; Volanti, Paolo; La Bella, Vincenzo; Conforti, Francesca L; Borghero, Giuseppe; Messina, Sonia; Simone, Isabella L; Trojsi, Francesca; Salvi, Fabrizio; Logullo, Francesco O; D'Alfonso, Sandra; Corrado, Lucia; Capasso, Margherita; Ferrucci, Luigi; Moreno, Cristiane de Araujo Martins; Kamalakaran, Sitharthan; Goldstein, David B; Gitler, Aaron D; Harris, Tim; Myers, Richard M; Phatnani, Hemali; Musunuri, Rajeeva Lochan; Evani, Uday Shankar; Abhyankar, Avinash; Zody, Michael C; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K; LeNail, Alex; Lima, Leandro; Fraenkel, Ernest; Svendsen, Clive N; Thompson, Leslie M; Van Eyk, Jennifer E; Berry, James D; Miller, Timothy M; Kolb, Stephen J; Cudkowicz, Merit; Baxi, Emily; Benatar, Michael; Taylor, J Paul; Rampersaud, Evadnie; Wu, Gang; Wuu, Joanne; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Comi, Giacomo P; Sorarù, Gianni; Cereda, Cristina; Corcia, Philippe; Laaksovirta, Hannu; Myllykangas, Liisa; Jansson, Lilja; Valori, Miko; Ealing, John; Hamdalla, Hisham; Rollinson, Sara; Pickering-Brown, Stuart; Orrell, Richard W; Sidle, Katie C; Malaspina, Andrea; Hardy, John; Singleton, Andrew B; Johnson, Janel O; Arepalli, Sampath; Sapp, Peter C; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Al-Sarraj, Safa; King, Andrew; Troakes, Claire; Vance, Caroline; de Belleroche, Jacqueline; Baas, Frank; Ten Asbroek, Anneloor L M A; Muñoz-Blanco, José Luis; Hernandez, Dena G; Ding, Jinhui; Gibbs, J Raphael; Scholz, Sonja W; Floeter, Mary Kay; Campbell, Roy H; Landi, Francesco; Bowser, Robert; Pulst, Stefan M; Ravits, John M; MacGowan, Daniel J L; Kirby, Janine; Pioro, Erik P; Pamphlett, Roger; Broach, James; Gerhard, Glenn; Dunckley, Travis L; Brady, Christopher B; Kowall, Neil W; Troncoso, Juan C; Le Ber, Isabelle; Mouzat, Kevin; Lumbroso, Serge; Heiman-Patterson, Terry D; Kamel, Freya; Van Den Bosch, Ludo; Baloh, Robert H; Strom, Tim M; Meitinger, Thomas; Shatunov, Aleksey; Van Eijk, Kristel R; de Carvalho, Mamede; Kooyman, Maarten; Middelkoop, Bas; Moisse, Matthieu; McLaughlin, Russell L; Van Es, Michael A; Weber, Markus; Boylan, Kevin B; Van Blitterswijk, Marka; Rademakers, Rosa; Morrison, Karen E; Basak, A Nazli; Mora, Jesús S; Drory, Vivian E; Shaw, Pamela J; Turner, Martin R; Talbot, Kevin; Hardiman, Orla; Williams, Kelly L; Fifita, Jennifer A; Nicholson, Garth A; Blair, Ian P; Rouleau, Guy A; Esteban-Pérez, Jesús; García-Redondo, Alberto; Al-Chalabi, Ammar; Rogaeva, Ekaterina; Zinman, Lorne; Ostrow, Lyle W; Maragakis, Nicholas J; Rothstein, Jeffrey D; Simmons, Zachary; Cooper-Knock, Johnathan; Brice, Alexis; Goutman, Stephen A; Feldman, Eva L; Gibson, Summer B; Taroni, Franco; Ratti, Antonia; Gellera, Cinzia; Van Damme, Philip; Robberecht, Wim; Fratta, Pietro; Sabatelli, Mario; Lunetta, Christian; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Camu, William; Trojanowski, John Q; Van Deerlin, Vivianna M; Brown, Robert H; van den Berg, Leonard H; Veldink, Jan H; Harms, Matthew B; Glass, Jonathan D; Stone, David J; Tienari, Pentti; Silani, Vincenzo; Chiò, Adriano; Shaw, Christopher E; Traynor, Bryan J; Landers, John E

    2018-03-21

    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Rare variants in axonogenesis genes connect three families with sound-color synesthesia.

    PubMed

    Tilot, Amanda K; Kucera, Katerina S; Vino, Arianna; Asher, Julian E; Baron-Cohen, Simon; Fisher, Simon E

    2018-03-20

    Synesthesia is a rare nonpathological phenomenon where stimulation of one sense automatically provokes a secondary perception in another. Hypothesized to result from differences in cortical wiring during development, synesthetes show atypical structural and functional neural connectivity, but the underlying molecular mechanisms are unknown. The trait also appears to be more common among people with autism spectrum disorder and savant abilities. Previous linkage studies searching for shared loci of large effect size across multiple families have had limited success. To address the critical lack of candidate genes, we applied whole-exome sequencing to three families with sound-color (auditory-visual) synesthesia affecting multiple relatives across three or more generations. We identified rare genetic variants that fully cosegregate with synesthesia in each family, uncovering 37 genes of interest. Consistent with reports indicating genetic heterogeneity, no variants were shared across families. Gene ontology analyses highlighted six genes- COL4A1 , ITGA2 , MYO10 , ROBO3 , SLC9A6 , and SLIT2 -associated with axonogenesis and expressed during early childhood when synesthetic associations are formed. These results are consistent with neuroimaging-based hypotheses about the role of hyperconnectivity in the etiology of synesthesia and offer a potential entry point into the neurobiology that organizes our sensory experiences. Copyright © 2018 the Author(s). Published by PNAS.

  2. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize.

    PubMed

    Chai, Wenbo; Jiang, Pengfei; Huang, Guoyu; Jiang, Haiyang; Li, Xiaoyu

    2017-10-01

    The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize ( Z . mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.

  3. Genome-wide identification and characterization of the SBP-box gene family in Petunia.

    PubMed

    Zhou, Qin; Zhang, Sisi; Chen, Feng; Liu, Baojun; Wu, Lan; Li, Fei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng

    2018-03-12

    SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box genes encode a family of plant-specific transcription factors (TFs) that play important roles in many growth and development processes including phase transition, leaf initiation, shoot and inflorescence branching, fruit development and ripening etc. The SBP-box gene family has been identified and characterized in many species, but has not been well studied in Petunia, an important ornamental genus. We identified 21 putative SPL genes of Petunia axillaris and P. inflata from the reference genome of P. axillaris N and P. inflata S6, respectively, which were supported by the transcriptome data. For further confirmation, all the 21 genes were also cloned from P. hybrida line W115 (Mitchel diploid). Phylogenetic analysis based on the highly conserved SBP domains arranged PhSPLs in eight groups, analogous to those from Arabidopsis and tomato. Furthermore, the Petunia SPL genes had similar exon-intron structure and the deduced proteins contained very similar conserved motifs within the same subgroup. Out of 21 PhSPL genes, fourteen were predicted to be potential targets of PhmiR156/157, and the putative miR156/157 response elements (MREs) were located in the coding region of group IV, V, VII and VIII genes, but in the 3'-UTR regions of group VI genes. SPL genes were also identified from another two wild Petunia species, P. integrifolia and P. exserta, based on their transcriptome databases to investigate the origin of PhSPLs. Phylogenetic analysis and multiple alignments of the coding sequences of PhSPLs and their orthologs from wild species indicated that PhSPLs were originated mainly from P. axillaris. qRT-PCR analysis demonstrated differential spatiotemperal expression patterns of PhSPL genes in petunia and many were expressed predominantly in the axillary buds and/or inflorescences. In addition, overexpression of PhSPL9a and PhSPL9b in Arabidopsis suggested that these genes play a conserved role in promoting the vegetative

  4. Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila.

    PubMed

    Dolezal, Tomas; Gazi, Michal; Zurovec, Michal; Bryant, Peter J

    2003-10-01

    Many Drosophila genes exist as members of multigene families and within each family the members can be functionally redundant, making it difficult to identify them by classical mutagenesis techniques based on phenotypic screening. We have addressed this problem in a genetic analysis of a novel family of six adenosine deaminase-related growth factors (ADGFs). We used ends-in targeting to introduce mutations into five of the six ADGF genes, taking advantage of the fact that five of the family members are encoded by a three-gene cluster and a two-gene cluster. We used two targeting constructs to introduce loss-of-function mutations into all five genes, as well as to isolate different combinations of multiple mutations, independent of phenotypic consequences. The results show that (1) it is possible to use ends-in targeting to disrupt gene clusters; (2) gene conversion, which is usually considered a complication in gene targeting, can be used to help recover different mutant combinations in a single screening procedure; (3) the reduction of duplication to a single copy by induction of a double-strand break is better explained by the single-strand annealing mechanism than by simple crossing over between repeats; and (4) loss of function of the most abundantly expressed family member (ADGF-A) leads to disintegration of the fat body and the development of melanotic tumors in mutant larvae.

  5. Genome-wide analysis of the WRKY gene family in cotton.

    PubMed

    Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun

    2014-12-01

    WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

  6. Novel Mutations in the ZEB1 Gene Identified in Czech and British Patients With Posterior Polymorphous Corneal Dystrophy

    PubMed Central

    Liskova, Petra; Tuft, Stephen J.; Gwilliam, Rhian; Ebenezer, Neil D.; Jirsova, Katerina; Prescott, Quincy; Martincova, Radka; Pretorius, Marike; Sinclair, Neil; Boase, David L.; Jeffrey, Margaret J.; Deloukas, Panos; Hardcastle, Alison J.; Filipec, Martin; Bhattacharya, Shomi S.

    2009-01-01

    We describe the search for mutations in six unrelated Czech and four unrelated British families with posterior polymorphous corneal dystrophy (PPCD); a relatively rare eye disorder. Coding exons and intron/exon boundaries of all three genes (VSX1, COL8A2, and ZEB1/TCF8) previously reported to be implicated in the pathogenesis of this disorder were screened by DNA sequencing. Four novel pathogenic mutations were identified in four families; two deletions, one nonsense, and one duplication within exon 7 in the ZEB1 gene located at 10p11.2. We also genotyped the Czech patients to test for a founder haplotype and lack of disease segregation with the 20p11.2 locus we previously described. Although a systematic clinical examination was not performed, our investigation does not support an association between ZEB1 changes and self reported non-ocular anomalies. In the remaining six families no disease causing mutations were identified thereby indicating that as yet unidentified gene(s) are likely to be responsible for PPCD. PMID:17437275

  7. NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome.

    PubMed

    Shoshany, Nadav; Avni, Isaac; Morad, Yair; Weiner, Chen; Einan-Lifshitz, Adi; Pras, Eran

    2017-09-01

    To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.

  8. Characterization of resistance gene analogues (RGAs) in Apple (Malus 6domestica Borkh.) and their evolutionary history of the Rosaceae family

    USDA-ARS?s Scientific Manuscript database

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden...

  9. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    PubMed Central

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-01-01

    Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476

  10. Endo-(1,4)-β-Glucanase gene families in the grasses: temporal and spatial Co-transcription of orthologous genes1

    PubMed Central

    2012-01-01

    Background Endo-(1,4)-β-glucanase (cellulase) glycosyl hydrolase GH9 enzymes have been implicated in several aspects of cell wall metabolism in higher plants, including cellulose biosynthesis and degradation, modification of other wall polysaccharides that contain contiguous (1,4)-β-glucosyl residues, and wall loosening during cell elongation. Results The endo-(1,4)-β-glucanase gene families from barley (Hordeum vulgare), maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa) and Brachypodium (Brachypodium distachyon) range in size from 23 to 29 members. Phylogenetic analyses show variations in clade structure between the grasses and Arabidopsis, and indicate differential gene loss and gain during evolution. Map positions and comparative studies of gene structures allow orthologous genes in the five species to be identified and synteny between the grasses is found to be high. It is also possible to differentiate between homoeologues resulting from ancient polyploidizations of the maize genome. Transcript analyses using microarray, massively parallel signature sequencing and quantitative PCR data for barley, rice and maize indicate that certain members of the endo-(1,4)-β-glucanase gene family are transcribed across a wide range of tissues, while others are specifically transcribed in particular tissues. There are strong correlations between transcript levels of several members of the endo-(1,4)-β-glucanase family and the data suggest that evolutionary conservation of transcription exists between orthologues across the grass family. There are also strong correlations between certain members of the endo-(1,4)-β-glucanase family and other genes known to be involved in cell wall loosening and cell expansion, such as expansins and xyloglucan endotransglycosylases. Conclusions The identification of these groups of genes will now allow us to test hypotheses regarding their functions and joint participation in wall synthesis, re-modelling and degradation

  11. VH gene family expression in mice with the xid defect

    PubMed Central

    1991-01-01

    Preferential use of particular VH gene families in the response to specific antigens has been demonstrated in several systems. The lack of responses to certain types of antigens, therefore, could be the result of deletion of or failure to express some VH genes. Because CBA/N mice, which carry the X-linked immunodeficiency (xid) gene defect, have been shown to be unresponsive to thymus-independent polysaccharide antigens, it was of interest to examine if this unresponsiveness could be accounted for by abnormal expression of particular VH gene families. Using in situ hybridization on B cell colonies, we determined the expression of nine VH gene families in CBA/CaHN females (genotypically normal), CBA/N males (xid) and females (xid), and (CBA/N x CBA/CaHN)F1 males (xid) and females (phenotypically normal). Our results indicate that VH gene family expression, including the S107 family, in CBA/N males and F1 males, is similar to that of CBA/CaHN and F1 females with predominant expression of J558, the largest gene family, in all individuals. Interestingly, CBA/N female mice, which carry two defective X chromosomes, as a group expressed significantly reduced levels of the J558 gene family, and as individuals showed variation in which family was predominantly expressed. We conclude that the unresponsiveness of mice with the xid defect to polysaccharide antigens can not attributed to a failure to express the nine VH gene families that we examined. Our findings do not support previous studies (Primi, D., and P.-A. Cazenave 1986. J. Exp. Med. 165:357), which found an absence of expression of the S107 family in xid mice. PMID:1711566

  12. Positive selection in the SLC11A1 gene in the family Equidae.

    PubMed

    Bayerova, Zuzana; Janova, Eva; Matiasovic, Jan; Orlando, Ludovic; Horin, Petr

    2016-05-01

    Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.

  13. NIH Researchers Identify OCD Risk Gene

    MedlinePlus

    ... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

  14. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)

    PubMed Central

    2014-01-01

    Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and

  15. Prospecting Metagenomic Enzyme Subfamily Genes for DNA Family Shuffling by a Novel PCR-based Approach*

    PubMed Central

    Wang, Qiuyan; Wu, Huili; Wang, Anming; Du, Pengfei; Pei, Xiaolin; Li, Haifeng; Yin, Xiaopu; Huang, Lifeng; Xiong, Xiaolong

    2010-01-01

    DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64–99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering. PMID:20962349

  16. Gene mapping in an anophthalmic pedigree of a consanguineous Pakistani family opened new horizons for research

    PubMed Central

    Ajmal, M; Zafar, S; Hameed, A

    2016-01-01

    ABSTRACT Clinical anophthalmia is a rare inherited disease of the eye and phenotype refers to the absence of ocular tissue in the orbit of eye. Patients may have unilateral or bilateral anophthalmia, and generally have short palpebral fissures and small orbits. Anophthalmia may be isolated or associated with a broader syndrome and may have genetic or environmental causes. However, genetic cause has been defined in only a small proportion of cases, therefore, a consanguineous Pakistani family of the Pashtoon ethnic group, with isolated clinical anophthalmia was investigated using linkage mapping. A family pedigree was created to trace the possible mode of inheritance of the disease. Blood samples were collected from affected as well as normal members of this family, and screened for disease-associated mutations. This family was analyzed for linkage to all the known loci of clinical anophthalmia, using microsatellite short tandem repeat (STR) markers. Direct sequencing was performed to find out disease-associated mutations in the candidate gene. This family with isolated clinical anophthalmia, was mapped to the SOX2 gene that is located at chromosome 3q26.3-q27. However, on exonic and regulatory regions mutation screening of the SOX2 gene, the disease-associated mutation was not identified. It showed that another gene responsible for development of the eye might be present at chromosome 3q26.3-q27 and needs to be identified and screened for the disease-associated mutation in this family. PMID:27785411

  17. Genome-Wide Screening and Characterization of the Dof Gene Family in Physic Nut (Jatropha curcas L.).

    PubMed

    Wang, Peipei; Li, Jing; Gao, Xiaoyang; Zhang, Di; Li, Anlin; Liu, Changning

    2018-05-29

    Physic nut ( Jatropha curcas L.) is a species of flowering plant with great potential for biofuel production and as an emerging model organism for functional genomic analysis, particularly in the Euphorbiaceae family. DNA binding with one finger (Dof) transcription factors play critical roles in numerous biological processes in plants. Nevertheless, the knowledge about members, and the evolutionary and functional characteristics of the Dof gene family in physic nut is insufficient. Therefore, we performed a genome-wide screening and characterization of the Dof gene family within the physic nut draft genome. In total, 24 JcDof genes (encoding 33 JcDof proteins) were identified. All the JcDof genes were divided into three major groups based on phylogenetic inference, which was further validated by the subsequent gene structure and motif analysis. Genome comparison revealed that segmental duplication may have played crucial roles in the expansion of the JcDof gene family, and gene expansion was mainly subjected to positive selection. The expression profile demonstrated the broad involvement of JcDof genes in response to various abiotic stresses, hormonal treatments and functional divergence. This study provides valuable information for better understanding the evolution of JcDof genes, and lays a foundation for future functional exploration of JcDof genes.

  18. Epidermal growth factor gene is a newly identified candidate gene for gout

    PubMed Central

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  19. Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene.

    PubMed

    Tavera-Tapia, A; Pérez-Cabornero, L; Macías, J A; Ceballos, M I; Roncador, G; de la Hoya, M; Barroso, A; Felipe-Ponce, V; Serrano-Blanch, R; Hinojo, C; Miramar-Gallart, M D; Urioste, M; Caldés, T; Santillan-Garzón, S; Benitez, J; Osorio, A

    2017-02-01

    There is still a considerable percentage of hereditary breast and ovarian cancer (HBOC) cases not explained by BRCA1 and BRCA2 genes. In this report, next-generation sequencing (NGS) techniques were applied to identify novel variants and/or genes involved in HBOC susceptibility. Using whole exome sequencing, we identified a novel germline mutation in the moderate-risk gene ATM (c.5441delT; p.Leu1814Trpfs*14) in a family negative for mutations in BRCA1/2 (BRCAX). A case-control association study was performed to establish its prevalence in Spanish population, in a series of 1477 BRCAX families and 589 controls further screened, and NGS panels were used for ATM mutational screening in a cohort of 392 HBOC Spanish BRCAX families and 350 patients affected with diseases not related to breast cancer. Although the interrogated mutation was not prevalent in case-control association study, a comprehensive mutational analysis of the ATM gene revealed 1.78% prevalence of mutations in the ATM gene in HBOC and 1.94% in breast cancer-only BRCAX families in Spanish population, where data about ATM mutations were very limited. ATM mutation prevalence in Spanish population highlights the importance of considering ATM pathogenic variants linked to breast cancer susceptibility.

  20. Dynamic expression of the LAP family of genes during early development of Xenopus tropicalis.

    PubMed

    Yang, Qiutan; Lv, Xiaoyan; Kong, Qinghua; Li, Chaocui; Zhou, Qin; Mao, Bingyu

    2011-10-01

    The leucine-rich repeats and PDZ (LAP) family of genes are crucial for the maintenance of cell polarity as well as for epithelial homeostasis and tumor suppression in both vertebrates and invertebrates. Four members of this gene family are known: densin, erbin, scribble and lano. Here, we identified the four members of the LAP gene family in Xenopus tropicalis and studied their expression patterns during embryonic development. The Xenopus LAP proteins show a conserved domain structure that is similar to their homologs in other vertebrates. In Xenopus embryos, these genes were detected in animal cap cells at the early gastrula stage. At later stages of development, they were widely expressed in epithelial tissues that are highly polar in nature, including the neural epithelia, optic and otic vesicles, and in the pronephros. These data suggest that the roles of the Xenopus LAP genes in the control of cell polarity and morphogenesis are conserved during early development. Erbin and lano show similar expression patterns in the developing head, suggesting potential functional interactions between the two molecules in vivo.

  1. Genome-Wide Evolutionary Characterization and Expression Analyses of WRKY Family Genes in Brachypodium distachyon

    PubMed Central

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-01-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression. PMID:24453041

  2. Genome-wide analysis of WRKY gene family in Cucumis sativus

    PubMed Central

    2011-01-01

    Background WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. Results We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Conclusions Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes. PMID:21955985

  3. Genome-wide analysis of WRKY gene family in Cucumis sativus.

    PubMed

    Ling, Jian; Jiang, Weijie; Zhang, Ying; Yu, Hongjun; Mao, Zhenchuan; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

    2011-09-28

    WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.

  4. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans

    PubMed Central

    2010-01-01

    Background zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Results Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm), in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic) is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Conclusions Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor. PMID:21054859

  5. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II).

    PubMed

    Zheng, Hui; Shao, Chong; Zheng, Yan; He, Jin-Wei; Fu, Wen-Zhen; Wang, Chun; Zhang, Zhen-Lin

    2016-07-01

    Autosomal dominant osteopetrosis type II (ADO-II) is a heritable bone disorder characterized by osteosclerosis, predominantly involving the spine (vertebral end-plate thickening, or rugger-jersey spine), the pelvis ("bone-within-bone" structures) and the skull base. Chloride channel 7 (CLCN7) has been reported to be the causative gene. In this study, we aimed to identify the pathogenic mutation in four Chinese families with ADO-II. All 25 exons of the CLCN7 gene, including the exon-intron boundaries, were amplified and sequenced directly in four probands from the Chinese families with ADO-II. The mutation site was then identified in other family members and 250 healthy controls. In family 1, a known missense mutation c.296A>G in exon 4 of CLCN7 was identified in the proband, resulting in a tyrosine (UAU) to cysteine (UGU) substitution at p.99 (Y99C); the mutation was also identified in his affected father. In family 2, a novel missense mutation c.865G>C in exon 10 was identified in the proband, resulting in a valine (GUC) to leucine (CUC) substitution at p.289 (V289L); the mutation was also identified in her healthy mother and sister. In family 3, a novel missense mutation c.1625C>T in exon 17 of CLCN7 was identified in the proband, resulting in an alanine (GCG) to valine (GUG) substitution at p.542 (A542V); the mutation was also identified in her father. In family 4, a hot spot, R767W (c.2299C>T, CGG>TGG), in exon 24 was found in the proband which once again proved the susceptibility of the site or the similar genetic background in different races. Moreover, two novel mutations, V289L and A542V, occurred at a highly conserved position, found by a comparison of the protein sequences from eight vertebrates, and were predicted to have a pathogenic effect by PolyPhen-2 software, which showed "probably damaging" with a score of approximately 1. These mutation sites were not identified in 250 healthy controls. Our present findings suggest that the novel missense

  6. Identifying asteroid families >2 Gyrs-old

    NASA Astrophysics Data System (ADS)

    Bolin, Bryce T.; Morbidelli, Alessandro; Delbo, Marco; Walsh, Kevin J.

    2017-10-01

    There are only a few known Main Belt (MB) asteroid families with ages >2 Gyr. The lack of ancient families may be due to a bias in current techniques used to identify families. Ancient asteroid family fragments disperse in their orbital elements (a,e,i), due to secular resonances and the Yarkovsky effect (YE) making them difficult to identify. We have developed a new technique that is insensitive to the resonant spreading of fragments in e and i by searching for V-shaped correlations between family members in a vs 1/Diameter space. Our V-shape technique is demonstrated on known families and used to discover a 4 Gyr-old family linking most dark asteroids in the inner MB previously not included in any known family. In addition, the 4 Gyr-old family reveals asteroids with D >35 km that are do not belong to any asteroid family implying that they originally accreted from the protoplanetary disk.The V-shape detection tool is also a powerful analysis tool by finding the boundary of an asteroid family and fitting for its shape. Following the proposed relationship between thermal inertia (TI) with D, we find that asteroids YE drift rate might have a more complex size dependence than previous thought, leading to a curved family boundary in a vs 1/D space. The V-shape tool is capable of detecting this on synthetic families and was deployed on >30 families located throughout the MB to find this effect and quantify the YE size-dependent drift rate. We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger a suggesting that the relationship between TI and D is weaker in the outer MB.By examining families <20 Myrs-old, we can use this tool to separate family shape that is due to the initial ejection velocity and that which is due to the YE drift rate. V-shapes which do not contain any spreading due to YE preserve their initial ejection velocity. We constrain the initial initial

  7. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    PubMed

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  8. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica.

    PubMed

    Immanen, Juha; Nieminen, Kaisa; Duchens Silva, Héctor; Rodríguez Rojas, Fernanda; Meisel, Lee A; Silva, Herman; Albert, Victor A; Hvidsten, Torgeir R; Helariutta, Ykä

    2013-12-16

    Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis.

  9. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica

    PubMed Central

    2013-01-01

    Background Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Results Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. Conclusions In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis. PMID:24341635

  10. Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family.

    PubMed

    de Kovel, C G F; Hol, F A; Heister, J G A M; Willemen, J J H T; Sandkuijl, L A; Franke, B; Padberg, G W

    2004-09-01

    Dyslexia is a common disorder with a strong genetic component, but despite significant research effort, the aetiology is still largely unknown. To identify loci contributing to dyslexia risk. This was a genomewide linkage analysis in a single large family. Dutch families with at least two first degree relatives suffering from dyslexia participated in the study. Participants were recruited through an advertisement campaign in papers and magazines. The main outcome measure was linkage between genetic markers and dyslexia phenotype. Using parametric linkage analysis, we found strong evidence for a locus influencing dyslexia on Xq27.3 (multipoint lod = 3.68). Recombinations in two family members flanked an 8 cM region, comprising 11 currently confirmed genes. All four males carrying the risk haplotype had very low scores on the reading tests. The presentation in females was more variable, but 8/9 females carrying the risk haplotype were diagnosed dyslexic by our composite score, so we considered the putative risk allele to be dominant with reduced penetrance. Linkage was not found in an additional collection of affected sibling pairs. A locus influencing dyslexia risk is probably located between markers DXS1227 and DXS8091 on the X chromosome, closely situated to a locus indicated by a published genome scan of English sibling pairs. Although the locus may not be a common cause for dyslexia, the relatively small and gene poor region offers hope to identify the responsible gene.

  11. Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family

    PubMed Central

    de Kovel, C G F; Hol, F; Heister, J; Willemen, J; Sandkuijl, L; Franke, B; Padberg, G

    2004-01-01

    Context: Dyslexia is a common disorder with a strong genetic component, but despite significant research effort, the aetiology is still largely unknown. Objective: To identify loci contributing to dyslexia risk. Methods: This was a genomewide linkage analysis in a single large family. Dutch families with at least two first degree relatives suffering from dyslexia participated in the study. Participants were recruited through an advertisement campaign in papers and magazines. The main outcome measure was linkage between genetic markers and dyslexia phenotype. Results: Using parametric linkage analysis, we found strong evidence for a locus influencing dyslexia on Xq27.3 (multipoint lod = 3.68). Recombinations in two family members flanked an 8 cM region, comprising 11 currently confirmed genes. All four males carrying the risk haplotype had very low scores on the reading tests. The presentation in females was more variable, but 8/9 females carrying the risk haplotype were diagnosed dyslexic by our composite score, so we considered the putative risk allele to be dominant with reduced penetrance. Linkage was not found in an additional collection of affected sibling pairs. Conclusions: A locus influencing dyslexia risk is probably located between markers DXS1227 and DXS8091 on the X chromosome, closely situated to a locus indicated by a published genome scan of English sibling pairs. Although the locus may not be a common cause for dyslexia, the relatively small and gene poor region offers hope to identify the responsible gene. PMID:15342694

  12. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    PubMed

    Gu, Yan-bing; Ji, Zhi-rui; Chi, Fu-mei; Qiao, Zhuang; Xu, Cheng-nan; Zhang, Jun-xiang; Zhou, Zong-shan; Dong, Qing-long

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  13. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    PubMed

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

  14. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development

    PubMed Central

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  15. Leiomodins: larger members of the tropomodulin (Tmod) gene family

    NASA Technical Reports Server (NTRS)

    Conley, C. A.; Fritz-Six, K. L.; Almenar-Queralt, A.; Fowler, V. M.

    2001-01-01

    The 64-kDa autoantigen D1 or 1D, first identified as a potential autoantigen in Graves' disease, is similar to the tropomodulin (Tmod) family of actin filament pointed end-capping proteins. A novel gene with significant similarity to the 64-kDa human autoantigen D1 has been cloned from both humans and mice, and the genomic sequences of both genes have been identified. These genes form a subfamily closely related to the Tmods and are here named the Leiomodins (Lmods). Both Lmod genes display a conserved intron-exon structure, as do three Tmod genes, but the intron-exon structure of the Lmods and the Tmods is divergent. mRNA expression analysis indicates that the gene formerly known as the 64-kDa autoantigen D1 is most highly expressed in a variety of human tissues that contain smooth muscle, earning it the name smooth muscle Leiomodin (SM-Lmod; HGMW-approved symbol LMOD1). Transcripts encoding the novel Lmod gene are present exclusively in fetal and adult heart and adult skeletal muscle, and it is here named cardiac Leiomodin (C-Lmod; HGMW-approved symbol LMOD2). Human C-Lmod is located near the hypertrophic cardiomyopathy locus CMH6 on human chromosome 7q3, potentially implicating it in this disease. Our data demonstrate that the Lmods are evolutionarily related and display tissue-specific patterns of expression distinct from, but overlapping with, the expression of Tmod isoforms. Copyright 2001 Academic Press.

  16. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  17. Functional differentiation and spatial-temporal co-expression networks of the NBS-encoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer.

    PubMed

    Yin, Rui; Zhao, Mingzhu; Wang, Kangyu; Lin, Yanping; Wang, Yanfang; Sun, Chunyu; Wang, Yi; Zhang, Meiping

    2017-01-01

    Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal plants for human health and medicine. It has been documented that over 80% of genes conferring resistance to bacteria, viruses, fungi and nematodes are contributed by the nucleotide binding site (NBS)-encoding gene family. Therefore, identification and characterization of NBS genes expressed in ginseng are paramount to its genetic improvement and breeding. However, little is known about the NBS-encoding genes in ginseng. Here we report genome-wide identification and systems analysis of the NBS genes actively expressed in ginseng (PgNBS genes). Four hundred twelve PgNBS gene transcripts, derived from 284 gene models, were identified from the transcriptomes of 14 ginseng tissues. These genes were classified into eight types, including TNL, TN, CNL, CN, NL, N, RPW8-NL and RPW8-N. Seven conserved motifs were identified in both the Toll/interleukine-1 receptor (TIR) and coiled-coil (CC) typed genes whereas six were identified in the RPW8 typed genes. Phylogenetic analysis showed that the PgNBS gene family is an ancient family, with a vast majority of its genes originated before ginseng originated. In spite of their belonging to a family, the PgNBS genes have functionally dramatically differentiated and been categorized into numerous functional categories. The expressions of the across tissues, different aged roots and the roots of different genotypes. However, they are coordinating in expression, forming a single co-expression network. These results provide a deeper understanding of the origin, evolution and functional differentiation and expression dynamics of the NBS-encoding gene family in plants in general and in ginseng particularly, and a NBS gene toolkit useful for isolation and characterization of disease resistance genes and for enhanced disease resistance breeding in ginseng and related species.

  18. Functional differentiation and spatial-temporal co-expression networks of the NBS-encoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer

    PubMed Central

    Wang, Kangyu; Lin, Yanping; Wang, Yanfang; Sun, Chunyu; Wang, Yi

    2017-01-01

    Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal plants for human health and medicine. It has been documented that over 80% of genes conferring resistance to bacteria, viruses, fungi and nematodes are contributed by the nucleotide binding site (NBS)-encoding gene family. Therefore, identification and characterization of NBS genes expressed in ginseng are paramount to its genetic improvement and breeding. However, little is known about the NBS-encoding genes in ginseng. Here we report genome-wide identification and systems analysis of the NBS genes actively expressed in ginseng (PgNBS genes). Four hundred twelve PgNBS gene transcripts, derived from 284 gene models, were identified from the transcriptomes of 14 ginseng tissues. These genes were classified into eight types, including TNL, TN, CNL, CN, NL, N, RPW8-NL and RPW8-N. Seven conserved motifs were identified in both the Toll/interleukine-1 receptor (TIR) and coiled-coil (CC) typed genes whereas six were identified in the RPW8 typed genes. Phylogenetic analysis showed that the PgNBS gene family is an ancient family, with a vast majority of its genes originated before ginseng originated. In spite of their belonging to a family, the PgNBS genes have functionally dramatically differentiated and been categorized into numerous functional categories. The expressions of the across tissues, different aged roots and the roots of different genotypes. However, they are coordinating in expression, forming a single co-expression network. These results provide a deeper understanding of the origin, evolution and functional differentiation and expression dynamics of the NBS-encoding gene family in plants in general and in ginseng particularly, and a NBS gene toolkit useful for isolation and characterization of disease resistance genes and for enhanced disease resistance breeding in ginseng and related species. PMID:28727829

  19. Massive expansion of the calpain gene family in unicellular eukaryotes.

    PubMed

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  20. Massive expansion of the calpain gene family in unicellular eukaryotes

    PubMed Central

    2012-01-01

    Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes. PMID:23020305

  1. Exome Sequencing of 18 Chinese Families with Congenital Cataracts: A New Sight of the NHS Gene

    PubMed Central

    Sun, Wenmin; Xiao, Xueshan; Li, Shiqiang; Guo, Xiangming; Zhang, Qingjiong

    2014-01-01

    Purpose The aim of this study was to investigate the mutation spectrum and frequency of 34 known genes in 18 Chinese families with congenital cataracts. Methods Genomic DNA and clinical data was collected from 18 families with congenital cataracts. Variations in 34 cataract-associated genes were screened by whole exome sequencing and then validated by Sanger sequencing. Results Eleven candidate variants in seven of the 34 genes were detected by exome sequencing and then confirmed by Sanger sequencing, including two variants predicted to be benign and the other pathogenic mutations. The nine mutations were present in 9 of the 18 (50%) families with congenital cataracts. Of the four families with mutations in the X-linked NHS gene, no other abnormalities were recorded except for cataract, in which a pseudo-dominant inheritance form was suggested, as female carriers also had different forms of cataracts. Conclusion This study expands the mutation spectrum and frequency of genes responsible for congenital cataract. Mutation in NHS is a common cause of nonsyndromic congenital cataract with pseudo-autosomal dominant inheritance. Combined with our previous studies, a genetic basis could be identified in 67.6% of families with congenital cataracts in our case series, in which mutations in genes encoding crystallins, genes encoding connexins, and NHS are responsible for 29.4%, 14.7%, and 11.8% of families, respectively. Our results suggest that mutations in NHS are the common cause of congenital cataract, both syndromic and nonsyndromic. PMID:24968223

  2. Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Zhao; Ge, Xiaoyang; Yang, Zuoren; Zhang, Chaojun; Zhao, Ge; Chen, Eryong; Liu, Ji; Zhang, Xueyan; Li, Fuguang

    2017-06-12

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a plant-specific serine/threonine kinase family involved in the abscisic acid (ABA) signaling pathway and responds to osmotic stress. A genome-wide analysis of this protein family has been conducted previously in some plant species, but little is known about SnRK2 genes in upland cotton (Gossypium hirsutum L.). The recent release of the G. hirsutum genome sequence provides an opportunity to identify and characterize the SnRK2 kinase family in upland cotton. We identified 20 putative SnRK2 sequences in the G. hirsutum genome, designated as GhSnRK2.1 to GhSnRK2.20. All of the sequences encoded hydrophilic proteins. Phylogenetic analysis showed that the GhSnRK2 genes were classifiable into three groups. The chromosomal location and phylogenetic analysis of the cotton SnRK2 genes indicated that segmental duplication likely contributed to the diversification and evolution of the genes. The gene structure and motif composition of the cotton SnRK2 genes were analyzed. Nine exons were conserved in length among all members of the GhSnRK2 family. Although the C-terminus was divergent, seven conserved motifs were present. All GhSnRK2s genes showed expression patterns under abiotic stress based on transcriptome data. The expression profiles of five selected genes were verified in various tissues by quantitative real-time RT-PCR (qRT-PCR). Transcript levels of some family members were up-regulated in response to drought, salinity or ABA treatments, consistent with potential roles in response to abiotic stress. This study is the first comprehensive analysis of SnRK2 genes in upland cotton. Our results provide the fundamental information for the functional dissection of GhSnRK2s and vital availability for the improvement of plant stress tolerance using GhSnRK2s.

  3. Gene Environment Interactions and Predictors of Colorectal Cancer in Family-Based, Multi-Ethnic Groups.

    PubMed

    Shiao, S Pamela K; Grayson, James; Yu, Chong Ho; Wasek, Brandi; Bottiglieri, Teodoro

    2018-02-16

    For the personalization of polygenic/omics-based health care, the purpose of this study was to examine the gene-environment interactions and predictors of colorectal cancer (CRC) by including five key genes in the one-carbon metabolism pathways. In this proof-of-concept study, we included a total of 54 families and 108 participants, 54 CRC cases and 54 matched family friends representing four major racial ethnic groups in southern California (White, Asian, Hispanics, and Black). We used three phases of data analytics, including exploratory, family-based analyses adjusting for the dependence within the family for sharing genetic heritage, the ensemble method, and generalized regression models for predictive modeling with a machine learning validation procedure to validate the results for enhanced prediction and reproducibility. The results revealed that despite the family members sharing genetic heritage, the CRC group had greater combined gene polymorphism rates than the family controls ( p < 0.05), on MTHFR C677T , MTR A2756G , MTRR A66G, and DHFR 19 bp except MTHFR A1298C. Four racial groups presented different polymorphism rates for four genes (all p < 0.05) except MTHFR A1298C. Following the ensemble method, the most influential factors were identified, and the best predictive models were generated by using the generalized regression models, with Akaike's information criterion and leave-one-out cross validation methods. Body mass index (BMI) and gender were consistent predictors of CRC for both models when individual genes versus total polymorphism counts were used, and alcohol use was interactive with BMI status. Body mass index status was also interactive with both gender and MTHFR C677T gene polymorphism, and the exposure to environmental pollutants was an additional predictor. These results point to the important roles of environmental and modifiable factors in relation to gene-environment interactions in the prevention of CRC.

  4. Exome analysis of a family with Wolff-Parkinson-White syndrome identifies a novel disease locus.

    PubMed

    Bowles, Neil E; Jou, Chuanchau J; Arrington, Cammon B; Kennedy, Brett J; Earl, Aubree; Matsunami, Norisada; Meyers, Lindsay L; Etheridge, Susan P; Saarel, Elizabeth V; Bleyl, Steven B; Yost, H Joseph; Yandell, Mark; Leppert, Mark F; Tristani-Firouzi, Martin; Gruber, Peter J

    2015-12-01

    Wolff-Parkinson-White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5'-AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene. © 2015 Wiley Periodicals, Inc.

  5. Exome Analysis of a Family with Wolff–Parkinson–White Syndrome Identifies a Novel Disease Locus

    PubMed Central

    Bowles, Neil E.; Jou, Chuanchau J.; Arrington, Cammon B.; Kennedy, Brett J.; Earl, Aubree; Matsunami, Norisada; Meyers, Lindsay L.; Etheridge, Susan P.; Saarel, Elizabeth V.; Bleyl, Steven B.; Yost, H. Joseph; Yandell, Mark; Leppert, Mark F.; Tristani-Firouzi, Martin; Gruber, Peter J.

    2016-01-01

    Wolff–Parkinson–White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5’ -AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene. PMID:26284702

  6. Screening for large genomic rearrangements in the FANCA gene reveals extensive deletion in a Finnish breast cancer family.

    PubMed

    Solyom, Szilvia; Winqvist, Robert; Nikkilä, Jenni; Rapakko, Katrin; Hirvikoski, Pasi; Kokkonen, Hannaleena; Pylkäs, Katri

    2011-03-28

    A portion of familial breast cancer cases are caused by mutations in the same genes that are inactivated in the downstream part of Fanconi anemia (FA) signaling pathway. Here we have assessed the FANCA gene for breast cancer susceptibility by examining blood DNA for aberrations from 100 Northern Finnish breast cancer families using the MLPA method. We identified a novel heterozygous deletion, removing the promoter and 12 exons of the gene in one family. This allele was absent from 124 controls. We conclude that FANCA deletions might contribute to breast cancer susceptibility, potentially in combination with other germline mutations. To our knowledge, this is the first study reporting a large deletion in an upstream FA gene in familial breast cancer. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence.

    PubMed

    Mohseni, Sara; Che, Hua; Djillali, Zakia; Dumont, Estelle; Nankeu, Joseph; Danyluk, Jean

    2012-12-01

    Expression of cold-regulated genes needed for protection against freezing stress is mediated, in part, by the CBF transcription factor family. Previous studies with temperate cereals suggested that the CBF gene family in wheat was large, and that CBF genes were at the base of an important low temperature tolerance trait. Therefore, the goal of our study was to identify the CBF repertoire in the freezing-tolerant hexaploid wheat cultivar Norstar, and then to examine if the coding region of CBF genes in two spring cultivars contain polymorphisms that could affect the protein sequence and structure. Our analyses reveal that hexaploid wheat contains a complex CBF family consisting of at least 65 CBF genes of which 60 are known to be expressed in the cultivar Norstar. They represent 27 paralogous genes with 1-3 homeologous copies for the A, B, and D genomes. The cultivar Norstar contains two pseudogenes and at least 24 additional proteins having sequences and (or) structures that deviate from the consensus in the conserved AP2 DNA-binding and (or) C-terminal activation-domains. This suggests that in cultivars such as Norstar, low temperature tolerance may be increased through breeding of additional optimal alleles. The examination of the CBF repertoire present in the two spring cultivars, Chinese Spring and Manitou, reveals that they have additional polymorphisms affecting conserved positions in these domains. Understanding the effects of these polymorphisms will provide additional information for the selection of optimum CBF alleles in Triticeae breeding programs.

  8. A candidate gene study in low HDL-cholesterol families provides evidence for the involvement of the APOA2 gene and the APOA1C3A4 gene cluster.

    PubMed

    Lilja, Heidi E; Soro, Aino; Ylitalo, Kati; Nuotio, Ilpo; Viikari, Jorma S A; Salomaa, Veikko; Vartiainen, Erkki; Taskinen, Marja-Riitta; Peltonen, Leena; Pajukanta, Päivi

    2002-09-01

    In patients with premature coronary heart disease, the most common lipoprotein abnormality is high-density lipoprotein (HDL) deficiency. To assess the genetic background of the low HDL-cholesterol trait, we performed a candidate gene study in 25 families with low HDL, collected from the genetically isolated population of Finland. We studied 21 genes encoding essential proteins involved in the HDL metabolism by genotyping intragenic and flanking markers for these genes. We found suggestive evidence for linkage in two candidate regions: Marker D1S2844, in the apolipoprotein A-II (APOA2) region, yielded a LOD score of 2.14 and marker D11S939 flanking the apolipoprotein A-I/C-III/A-IV gene cluster (APOA1C3A4) produced a LOD score of 1.69. Interestingly, we identified potential shared haplotypes in these two regions in a subset of low HDL families. These families also contributed to the obtained positive LOD scores, whereas the rest of the families produced negative LOD scores. None of the remaining candidate regions provided any evidence for linkage. Since only a limited number of loci were tested in this candidate gene study, these LOD scores suggest significant involvement of the APOA2 gene and the APOA1C3A4 gene cluster, or loci in their immediate vicinity, in the pathogenesis of low HDL.

  9. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer.

    PubMed

    Wu, Lang; Shi, Wei; Long, Jirong; Guo, Xingyi; Michailidou, Kyriaki; Beesley, Jonathan; Bolla, Manjeet K; Shu, Xiao-Ou; Lu, Yingchang; Cai, Qiuyin; Al-Ejeh, Fares; Rozali, Esdy; Wang, Qin; Dennis, Joe; Li, Bingshan; Zeng, Chenjie; Feng, Helian; Gusev, Alexander; Barfield, Richard T; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Aronson, Kristan J; Auer, Paul L; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W; Benitez, Javier; Bermisheva, Marina; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Brauch, Hiltrud; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brucker, Sara Y; Burwinkel, Barbara; Caldés, Trinidad; Canzian, Federico; Carter, Brian D; Castelao, J Esteban; Chang-Claude, Jenny; Chen, Xiaoqing; Cheng, Ting-Yuan David; Christiansen, Hans; Clarke, Christine L; Collée, Margriet; Cornelissen, Sten; Couch, Fergus J; Cox, David; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Devilee, Peter; Doheny, Kimberly F; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dumont, Martine; Dwek, Miriam; Eccles, Diana M; Eilber, Ursula; Eliassen, A Heather; Engel, Christoph; Eriksson, Mikael; Fachal, Laura; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gabrielson, Marike; Gago-Dominguez, Manuela; Gapstur, Susan M; García-Closas, Montserrat; Gaudet, Mia M; Ghoussaini, Maya; Giles, Graham G; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Guénel, Pascal; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hall, Per; Hallberg, Emily; Hamann, Ute; Harrington, Patricia; Hein, Alexander; Hicks, Belynda; Hillemanns, Peter; Hollestelle, Antoinette; Hoover, Robert N; Hopper, John L; Huang, Guanmengqian; Humphreys, Keith; Hunter, David J; Jakubowska, Anna; Janni, Wolfgang; John, Esther M; Johnson, Nichola; Jones, Kristine; Jones, Michael E; Jung, Audrey; Kaaks, Rudolf; Kerin, Michael J; Khusnutdinova, Elza; Kosma, Veli-Matti; Kristensen, Vessela N; Lambrechts, Diether; Le Marchand, Loic; Li, Jingmei; Lindström, Sara; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Lubinski, Jan; Luccarini, Craig; Lux, Michael P; MacInnis, Robert J; Maishman, Tom; Kostovska, Ivana Maleva; Mannermaa, Arto; Manson, JoAnn E; Margolin, Sara; Mavroudis, Dimitrios; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Meyer, Jeffery; Mulligan, Anna Marie; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F; Nordestgaard, Børge G; Olopade, Olufunmilayo I; Olson, Janet E; Olsson, Håkan; Peterlongo, Paolo; Peto, Julian; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gad; Rennert, Hedy S; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Rudolph, Anja; Saloustros, Emmanouil; Sandler, Dale P; Sawyer, Elinor J; Schmidt, Marjanka K; Schmutzler, Rita K; Schneeweiss, Andreas; Scott, Rodney J; Scott, Christopher G; Seal, Sheila; Shah, Mitul; Shrubsole, Martha J; Smeets, Ann; Southey, Melissa C; Spinelli, John J; Stone, Jennifer; Surowy, Harald; Swerdlow, Anthony J; Tamimi, Rulla M; Tapper, William; Taylor, Jack A; Terry, Mary Beth; Tessier, Daniel C; Thomas, Abigail; Thöne, Kathrin; Tollenaar, Rob A E M; Torres, Diana; Truong, Thérèse; Untch, Michael; Vachon, Celine; Van Den Berg, David; Vincent, Daniel; Waisfisz, Quinten; Weinberg, Clarice R; Wendt, Camilla; Whittemore, Alice S; Wildiers, Hans; Willett, Walter C; Winqvist, Robert; Wolk, Alicja; Xia, Lucy; Yang, Xiaohong R; Ziogas, Argyrios; Ziv, Elad; Dunning, Alison M; Pharoah, Paul D P; Simard, Jacques; Milne, Roger L; Edwards, Stacey L; Kraft, Peter; Easton, Douglas F; Chenevix-Trench, Georgia; Zheng, Wei

    2018-06-18

    The breast cancer risk variants identified in genome-wide association studies explain only a small fraction of the familial relative risk, and the genes responsible for these associations remain largely unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide association study evaluating associations of genetically predicted gene expression with breast cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the Genotype-Tissue Expression Project to establish genetic models to predict gene expression in breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the 8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected threshold of P < 5.82 × 10 -6 , including 14 genes at loci not yet reported for breast cancer. We silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony-forming efficiency. Our study provides new insights into breast cancer genetics and biology.

  10. A Novel Mutation in the XLRS1 Gene in a Korean Family with X-linked Retinoschisis

    PubMed Central

    Jwa, Nam Soo; Kim, Sung Soo; Lee, Sung Chul; Kwon, Oh Woong

    2006-01-01

    Purpose To report a novel missense mutation in the XLRS1 gene in a Korean family with X-linked retinoschisis. Methods Observation case report of a family with a proband with X-linked retinoschisis underwent complete ophthalmologic examination. Genomic DNA was excluded from the family's blood and all exons of the XLRS1 gene were amplified by polymerase chain reaction and analyzed using a direct sequencing method. Results A novel Leu103Phe missense mutation was identified. Conclusions A novel Leu103Phe mutation is an additional missense mutation which is responsible for the pathogenesis of X-linked retinoschisis. PMID:16768192

  11. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton.

  12. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  13. Characterizations of 9p21 candidate genes in familial melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, G.J.; Flores, J.F.; Glendening, J.M.

    We have previously collected and characterized 16 melanoma families for the inheritance of a familial melanoma predisposition gene on 9p21. Clear evidence for genetic linkage has been detected in 8 of these families with the 9p21 markers D9S126 and 1FNA, while linkage of the remaining families to this region is less certain. A candidate for the 9p21 familial melanoma gene, the cyclin kinase inhibitor gene p16 (also known as the multiple tumor suppressor 1 (MTS1) gene), has been recently indentified. Notably, a nonsense mutation within the p16 gene has been detected in the lymphoblastoid cell line DNA from a dysplasticmore » nevus syndrome (DNS), or familial melanoma, patient. The p16 gene is also known to be frequently deleted or mutated in a variety of tumor cell lines (including melanoma) and resides within a region that has been defined as harboring the 9p21 melanoma predisposition locus. This region is delineated on the distal side by the marker D9S736 (which resides just distal to the p16 gene) and extends in a proximal direction to the marker D9S171. Overall, the entire distance between these two loci is estimated at 3-5Mb. Preliminary analysis of our two largest 9p21-linked melanoma kindreds (by direct sequencing of PCR products) has not yet revealed mutations within the coding region of the p16 gene. Others have reported that 8/11 unrelated 9p21-linked melanoma families do not appear to carry p16 mutations; thus the possibility exists that p16 is not a melanoma susceptibility gene per se, although it appears to play some role in melanoma tumor progression. Our melanoma kindred DNAs are currently being analyzed by SSCP using primers that amplify exons of other candidate genes from the 9p21 region implicated in familial melanoma. These novel genes reside within a distinct critical region of homozygous loss in melanoma which is located >2 Mb from the p16 gene on 9p21.« less

  14. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish

    PubMed Central

    Naville, Magali; Volff, Jean-Nicolas

    2017-01-01

    It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts. PMID:28738066

  15. [NOTCH3 gene mutations in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy].

    PubMed

    Sun, Qiying; Li, Wenwen; Zhou, Yafang; Yi, Fang; Wang, Jianfeng; Hu, Yacen; Yao, Lingyan; Zhou, Lin; Xu, Hongwei

    2017-12-10

    To analyze potential mutations of the NOTCH3 gene in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy (CADASIL). The two probands and related family members and 100 healthy controls were recruited. Potential mutations of the NOTCH3 gene were screened by PCR and direct sequencing. PolyPhen-2 and SIFT software were used to predict the protein function. The conditions of both probands were adult-onset, with main clinical features including recurrent transient ischemic attacks and/or strokes, cognitive impairment. MRI findings suggested multiple cerebral infarcts and severe leukoencephalopathy. A heterozygous mutation c.328C>T (p.Arg110Cys), which was located in exon 3 of the NOTCH3 gene and known as a causative mutation, was identified in proband 1. A novel heterozygous mutation c.1013 G>C (p.Cys338Ser) located in exon 6 of the NOTCH3 gene was identified in the proband 2, which was not reported previously. The same mutations were not detected among the 100 unrelated healthy controls. Function analysis suggested that heterozygous mutation c.1013G>C can severely affect the functions of NOTCH3 protein. Two heterozygous missense mutations in the NOTCH3 gene have been identified in two families affected with CADASIL. The novel heterozygous Cys338Ser mutation in exon 6 of the NOTCH3 gene probably underlies the CADASIL.

  16. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu

    PubMed Central

    Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  17. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu.

    PubMed

    Zhang, Yanlin; Luo, Guangbin; Liu, Dongcheng; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat.

  18. [Analysis of gene mutation in a Chinese family with Norrie disease].

    PubMed

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  19. [Analysis of the NDP gene in a Chinese family with X-linked recessive Norrie disease].

    PubMed

    Mei, Libin; Huang, Yanru; Pan, Qian; Liang, Desheng; Wu, Lingqian

    2015-05-01

    The purpose of the current research was to investigate the NDP (Norrie disease protein) gene in one Chinese family with Norrie disease (ND) and to characterize the related clinical features. Clinical data of the proband and his family members were collected. Complete ophthalmic examinations were carried out on the proband. Genomic DNA was extracted from peripheral blood leukocytes of 35 family members. Molecular analysis of the NDP gene was performed by polymerase chain reaction and direct sequencing of all exons and flanking regions. A hemizygous NDP missense mutation c.362G > A (p.Arg121Gln) in exon 3 was identified in the affected members, but not in any of the unaffected family individuals. The missense mutation c.362G > A in NDP is responsible for the Norrie disease in this family. This discovery will help provide the family members with accurate and reliable genetic counseling and prenatal diagnosis.

  20. New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands.

    PubMed

    Florijn, Ralph J; Loves, Willem; Maillette de Buy Wenniger-Prick, Liesbeth J J M; Mannens, Marcel M A M; Tijmes, Nel; Brooks, Simon P; Hardcastle, Alison J; Bergen, Arthur A B

    2006-09-01

    Mutations in the NHS gene cause Nance-Horan Syndrome (NHS), a rare X-chromosomal recessive disorder with variable features, including congenital cataract, microphthalmia, a peculiar form of the ear and dental anomalies. We investigated the NHS gene in four additional families with NHS from the Netherlands, by dHPLC and direct sequencing. We identified an unique mutation in each family. Three out of these four mutations were not reported before. We report here the first splice site sequence alteration mutation and three protein truncating mutations. Our results suggest that X-linked cataract and NHS are allelic disorders.

  1. Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia.

    PubMed

    Shao, Yun; Qin, Yuan; Zou, Yangjun; Ma, Fengwang

    2014-11-15

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) constitutes a small plant-specific serine/threonine kinase family with essential roles in the abscisic acid (ABA) signal pathway and in responses to osmotic stress. Although a genome-wide analysis of this family has been conducted in some species, little is known about SnRK2 genes in apple (Malus domestica). We identified 14 putative sequences encoding 12 deduced SnRK2 proteins within the apple genome. Gene chromosomal location and synteny analysis of the apple SnRK2 genes indicated that tandem and segmental duplications have likely contributed to the expansion and evolution of these genes. All 12 full-length coding sequences were confirmed by cloning from Malus prunifolia. The gene structure and motif compositions of the apple SnRK2 genes were analyzed. Phylogenetic analysis showed that MpSnRK2s could be classified into four groups. Profiling of these genes presented differential patterns of expression in various tissues. Under stress conditions, transcript levels for some family members were up-regulated in the leaves in response to drought, salinity, or ABA treatments. This suggested their possible roles in plant response to abiotic stress. Our findings provide essential information about SnRK2 genes in apple and will contribute to further functional dissection of this gene family. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon.

    PubMed

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-06-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.

    PubMed

    Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B

    2000-09-01

    Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.

  4. Phylogenetic Analysis of the MS4A and TMEM176 Gene Families

    PubMed Central

    Zuccolo, Jonathan; Bau, Jeremy; Childs, Sarah J.; Goss, Greg G.; Sensen, Christoph W.; Deans, Julie P.

    2010-01-01

    Background The MS4A gene family in humans includes CD20 (MS4A1), FcRβ (MS4A2), Htm4 (MS4A3), and at least 13 other syntenic genes encoding membrane proteins, most having characteristic tetraspanning topology. Expression of MS4A genes is variable in tissues throughout the body; however, several are limited to cells in the hematopoietic system where they have known roles in immune cell functions. Genes in the small TMEM176 group share significant sequence similarity with MS4A genes and there is evidence of immune function of at least one of the encoded proteins. In this study, we examined the evolutionary history of the MS4A/TMEM176 families as well as tissue expression of the phylogenetically earliest members, in order to investigate their possible origins in immune cells. Principal Findings Orthologs of human MS4A genes were found only in mammals; however, MS4A gene homologs were found in most jawed vertebrates. TMEM176 genes were found only in mammals and bony fish. Several unusual MS4A genes having 2 or more tandem MS4A sequences were identified in the chicken (Gallus gallus) and early mammals (opossum, Monodelphis domestica and platypus, Ornithorhyncus anatinus). A large number of highly conserved MS4A and TMEM176 genes was found in zebrafish (Danio rerio). The most primitive organism identified to have MS4A genes was spiny dogfish (Squalus acanthus). Tissue expression of MS4A genes in S. acanthias and D. rerio showed no evidence of expression restricted to the hematopoietic system. Conclusions/Significance Our findings suggest that MS4A genes first appeared in cartilaginous fish with expression outside of the immune system, and have since diversified in many species into their modern forms with expression and function in both immune and nonimmune cells. PMID:20186339

  5. Characterization of the c-type lysozyme gene family in Anopheles gambiae.

    PubMed

    Li, Bin; Calvo, Eric; Marinotti, Osvaldo; James, Anthony A; Paskewitz, Susan M

    2005-11-07

    Seven new c-type lysozyme genes were found using the Anopheles gambiae genome sequence, increasing to eight the total number of genes in this family identified in this species. The eight lysozymes in An. gambiae have considerable variation in gene structure and expression patterns. Lys c-6 has the most unusual primary amino acid structure as the predicted protein consists of five lysozyme-like domains. Transcript abundance of each c-type lysozyme was determined by semiquantitative RT-PCR. Lys c-1, c-6 and c-7 are expressed constitutively in all developmental stages from egg to adult. Lys c-2 and c-4 also are found in all stages, but with relatively much higher levels in adults. Conversely, Lys c-3 and c-8 transcripts are highest in larvae. Lys c-1, c-6 and c-7 transcripts are found in nearly all the adult tissue samples examined while Lys c-2 and Lys c-4 are more restricted in their expression. Lys c-1 and c-2 transcripts are clearly immune responsive and are increased significantly 6-12 h post challenge with bacteria. The functional adaptive changes that may have evolved during the expansion of this gene family are briefly discussed in terms of the expression patterns, gene and protein structures.

  6. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    PubMed

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought

  7. Global identification and expression analysis of stress-responsive genes of the Argonaute family in apple.

    PubMed

    Xu, Ruirui; Liu, Caiyun; Li, Ning; Zhang, Shizhong

    2016-12-01

    Argonaute (AGO) proteins, which are found in yeast, animals, and plants, are the core molecules of the RNA-induced silencing complex. These proteins play important roles in plant growth, development, and responses to biotic stresses. The complete analysis and classification of the AGO gene family have been recently reported in different plants. Nevertheless, systematic analysis and expression profiling of these genes have not been performed in apple (Malus domestica). Approximately 15 AGO genes were identified in the apple genome. The phylogenetic tree, chromosome location, conserved protein motifs, gene structure, and expression of the AGO gene family in apple were analyzed for gene prediction. All AGO genes were phylogenetically clustered into four groups (i.e., AGO1, AGO4, MEL1/AGO5, and ZIPPY/AGO7) with the AGO genes of Arabidopsis. These groups of the AGO gene family were statistically analyzed and compared among 31 plant species. The predicted apple AGO genes are distributed across nine chromosomes at different densities and include three segment duplications. Expression studies indicated that 15 AGO genes exhibit different expression patterns in at least one of the tissues tested. Additionally, analysis of gene expression levels indicated that the genes are mostly involved in responses to NaCl, PEG, heat, and low-temperature stresses. Hence, several candidate AGO genes are involved in different aspects of physiological and developmental processes and may play an important role in abiotic stress responses in apple. To the best of our knowledge, this study is the first to report a comprehensive analysis of the apple AGO gene family. Our results provide useful information to understand the classification and putative functions of these proteins, especially for gene members that may play important roles in abiotic stress responses in M. hupehensis.

  8. [Genome-wide identification and expression analysis of auxin-related gene families in grape].

    PubMed

    Yuan, Hua-zhao; Zhao, Mi-zhen; Wu, Wei-min; Yu, Hong-Mei; Qian, Ya-ming; Wang, Zhuang-wei; Wang, Xi-cheng

    2015-07-01

    The auxin response gene family adjusts the auxin balance and the growth hormone signaling pathways in plants. Using bioinformatics methods, the auxin-response genes from the grape genome database are identified and their chromosomal location, gene collinearity and phylogenetic analysis are performed. Probable genes include 25 AUX_IAA, 19 ARF, 9 GH3 and 42 LBD genes, which are unevenly distributed on all 19 chromosomes and some of them formed distinct tandem duplicate gene clusters. The available grape microarray databases show that all of the auxin-response genes are expressed in fruit and leaf buds, and significant overexpressed during fruit color-changing, bud break and bud dormancy periods. This paper provides a resource for functional studies of auxin-response genes in grape leaf and fruit development.

  9. Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening.

    PubMed

    Dautt-Castro, Mitzuko; Ochoa-Leyva, Adrian; Contreras-Vergara, Carmen A; Pacheco-Sanchez, Magda A; Casas-Flores, Sergio; Sanchez-Flores, Alejandro; Kuhn, David N; Islas-Osuna, Maria A

    2015-01-01

    Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. "Kent" was done to identify key genes associated with fruit ripening. Using the Illumina sequencing platform, 67,682,269 clean reads were obtained and a transcriptome of 4.8 Gb. A total of 33,142 coding sequences were predicted and after functional annotation, 25,154 protein sequences were assigned with a product according to Swiss-Prot database and 32,560 according to non-redundant database. Differential expression analysis identified 2,306 genes with significant differences in expression between mature-green and ripe mango [1,178 up-regulated and 1,128 down-regulated (FDR ≤ 0.05)]. The expression of 10 genes evaluated by both qRT-PCR and RNA-seq data was highly correlated (R = 0.97), validating the differential expression data from RNA-seq alone. Gene Ontology enrichment analysis, showed significantly represented terms associated to fruit ripening like "cell wall," "carbohydrate catabolic process" and "starch and sucrose metabolic process" among others. Mango genes were assigned to 327 metabolic pathways according to Kyoto Encyclopedia of Genes and Genomes database, among them those involved in fruit ripening such as plant hormone signal transduction, starch and sucrose metabolism, galactose metabolism, terpenoid backbone, and carotenoid biosynthesis. This study provides a mango transcriptome that will be very helpful to identify genes for expression studies in early and late flowering mangos during fruit ripening.

  10. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    PubMed

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  11. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori)

    PubMed Central

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-01-01

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family. PMID:27706106

  12. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori).

    PubMed

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-10-03

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.

  13. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    PubMed

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical

  14. Novel mutation at the initiation codon in the Norrie disease gene in two Japanese families.

    PubMed

    Isashiki, Y; Ohba, N; Yanagita, T; Hokita, N; Doi, N; Nakagawa, M; Ozawa, M; Kuroda, N

    1995-01-01

    We have identified a new mutation of Norrie disease (ND) gene in two Japanese males from unrelated families; they showed typical ocular features of ND but no mental retardation or hearing impairment. A mutation was found in both patients at the initiation codon of exon 2 of the ND gene (ATG to GTG), with otherwise normal nucleotide sequences. Their mothers had the normal and mutant types of the gene, which was expected for heterozygotes of the disease. The mutation of the initiation codon would cause the failure of ND gene expression or a defect in translation thereby truncating the amino terminus of ND protein. In view of the rarity and marked heterogeneity of mutations in the ND gene, the present apparently unrelated Japanese families who have lived in the same area for over two centuries presumably share the origin of the mutation.

  15. GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts

    PubMed Central

    Aubourg, Sébastien; Brunaud, Véronique; Bruyère, Clémence; Cock, Mark; Cooke, Richard; Cottet, Annick; Couloux, Arnaud; Déhais, Patrice; Deléage, Gilbert; Duclert, Aymeric; Echeverria, Manuel; Eschbach, Aimée; Falconet, Denis; Filippi, Ghislain; Gaspin, Christine; Geourjon, Christophe; Grienenberger, Jean-Michel; Houlné, Guy; Jamet, Elisabeth; Lechauve, Frédéric; Leleu, Olivier; Leroy, Philippe; Mache, Régis; Meyer, Christian; Nedjari, Hafed; Negrutiu, Ioan; Orsini, Valérie; Peyretaillade, Eric; Pommier, Cyril; Raes, Jeroen; Risler, Jean-Loup; Rivière, Stéphane; Rombauts, Stéphane; Rouzé, Pierre; Schneider, Michel; Schwob, Philippe; Small, Ian; Soumayet-Kampetenga, Ghislain; Stankovski, Darko; Toffano, Claire; Tognolli, Michael; Caboche, Michel; Lecharny, Alain

    2005-01-01

    Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database. This re-annotation project is being performed exhaustively on every member of each gene family. Performing a family-wide annotation makes the task easier and more efficient than a gene-by-gene approach since many features obtained for one gene can be extrapolated to some or all the other genes of a family. A complete annotation procedure based on the most efficient prediction tools available is being used by 16 partner laboratories, each contributing annotated families from its field of expertise. A database, named GeneFarm, and an associated user-friendly interface to query the annotations have been developed. More than 3000 genes distributed over 300 families have been annotated and are available at http://genoplante-info.infobiogen.fr/Genefarm/. Furthermore, collaboration with the Swiss Institute of Bioinformatics is underway to integrate the GeneFarm data into the protein knowledgebase Swiss-Prot. PMID:15608279

  16. The MB2 gene family of Plasmodium species has a unique combination of S1 and GTP-binding domains

    PubMed Central

    Romero, Lisa C; Nguyen, Thanh V; Deville, Benoit; Ogunjumo, Oluwasanmi; James, Anthony A

    2004-01-01

    Background Identification and characterization of novel Plasmodium gene families is necessary for developing new anti-malarial therapeutics. The products of the Plasmodium falciparum gene, MB2, were shown previously to have a stage-specific pattern of subcellular localization and proteolytic processing. Results Genes homologous to MB2 were identified in five additional parasite species, P. knowlesi, P. gallinaceum, P. berghei, P. yoelii, and P. chabaudi. Sequence comparisons among the MB2 gene products reveal amino acid conservation of structural features, including putative S1 and GTP-binding domains, and putative signal peptides and nuclear localization signals. Conclusions The combination of domains is unique to this gene family and indicates that MB2 genes comprise a novel family and therefore may be a good target for drug development. PMID:15222903

  17. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus.

    PubMed

    Cheng, Hongtao; Hao, Mengyu; Wang, Wenxiang; Mei, Desheng; Tong, Chaobo; Wang, Hui; Liu, Jia; Fu, Li; Hu, Qiong

    2016-09-08

    SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for

  18. Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families.

    PubMed

    Glahn, David C; Almasy, Laura; Barguil, Marcela; Hare, Elizabeth; Peralta, Juan Manuel; Kent, Jack W; Dassori, Albana; Contreras, Javier; Pacheco, Adriana; Lanzagorta, Nuria; Nicolini, Humberto; Raventós, Henriette; Escamilla, Michael A

    2010-02-01

    Although genetic influences on bipolar disorder are well established, localization of genes that predispose to the illness has proven difficult. Given that genes predisposing to bipolar disorder may be transmitted without expression of the categorical clinical phenotype, a strategy for identifying risk genes is to identify and map quantitative intermediate phenotypes or endophenotypes. To adjudicate neurocognitive endophenotypes for bipolar disorder. All participants underwent diagnostic interviews and comprehensive neurocognitive evaluations. Neurocognitive measures found to be heritable were entered into analyses designed to determine which test results are impaired in affected individuals, are sensitive to the genetic liability for the illness, and are genetically correlated with affection status. Central valley of Costa Rica; Mexico City, Mexico; and San Antonio, Texas. Seven hundred nine Latino individuals participated in the study. Of these, 660 were members of extended pedigrees with at least 2 siblings diagnosed as having bipolar disorder (n = 230). The remaining subjects were community control subjects drawn from each site who did not have a personal or family history of bipolar disorder or schizophrenia. Neurocognitive test performance. Two of the 22 neurocognitive variables were not significantly heritable and were excluded from subsequent analyses. Patients with bipolar disorder were impaired on 6 cognitive measures compared with nonrelated healthy controls. Nonbipolar first-degree relatives were impaired on 5 of these, and the following 3 tests were genetically correlated with affection status: Digit Symbol Coding Task, Object Delayed Response Task, and immediate facial memory. This large-scale extended pedigree study of cognitive functioning in bipolar disorder identifies measures of processing speed, working memory, and declarative (facial) memory as candidate endophenotypes for bipolar disorder.

  19. SpinachDB: A Well-Characterized Genomic Database for Gene Family Classification and SNP Information of Spinach.

    PubMed

    Yang, Xue-Dong; Tan, Hua-Wei; Zhu, Wei-Min

    2016-01-01

    Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools.

  20. Distinct distal myopathy phenotype caused by VCP gene mutation in a Finnish family.

    PubMed

    Palmio, Johanna; Sandell, Satu; Suominen, Tiina; Penttilä, Sini; Raheem, Olayinka; Hackman, Peter; Huovinen, Sanna; Haapasalo, Hannu; Udd, Bjarne

    2011-08-01

    Inclusion body myopathy with Paget disease and frontotemporal dementia (IBMPFD) is caused by mutations in the valosin-containing protein (VCP) gene. We report a new distal phenotype caused by VCP gene mutation in a Finnish family with nine affected members in three generations. Patients had onset of distal leg muscle weakness and atrophy in the anterior compartment muscles after age 35, which caused a foot drop at age 50. None of the siblings had scapular winging, proximal myopathy, cardiomyopathy or respiratory problems during long-term follow-up. Three distal myopathy patients developed rapidly progressive dementia, became bedridden and died of cachexia and pneumonia and VCP gene mutation P137L (c.410C>T) was then identified in the family. Late onset autosomal dominant distal myopathy with rimmed vacuolar muscle pathology was not sufficient for exact diagnosis in this family until late-occurring dementia provided the clue for molecular diagnosis. VCP needs to be considered in the differential diagnostic work-up in patients with distal myopathy phenotype. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Repeat-associated plasticity in the Helicobacter pylori RD gene family.

    PubMed

    Shak, Joshua R; Dick, Jonathan J; Meinersmann, Richard J; Perez-Perez, Guillermo I; Blaser, Martin J

    2009-11-01

    The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3' region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5' region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.

  2. Organization of the SUC gene family in Saccharomyces.

    PubMed Central

    Carlson, M; Botstein, D

    1983-01-01

    The SUC gene family of yeast (Saccharomyces) includes six structural genes for invertase (SUC1 through SUC5 and SUC7) found at unlinked chromosomal loci. A given yeast strain does not usually carry SUC+ alleles at all six loci; the natural negative alleles are called suc0 alleles. Cloned SUC2 DNA probes were used to investigate the physical structure of the SUC gene family in laboratory strains, commercial wine strains, and different Saccharomyces species. The active SUC+ genes are homologous. The suc0 allele at the SUC2 locus (suc2(0) in some strains is a silent gene or pseudogene. Other SUC loci carrying suc0 alleles appear to lack SUC DNA sequences. These findings imply that SUC genes have transposed to different chromosomal locations in closely related Saccharomyces strains. Images PMID:6843548

  3. Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function.

    PubMed

    Irwin, D M

    1995-09-01

    Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants.

  4. Genomewide identification and expression analysis of the ARF gene family in apple.

    PubMed

    Luo, Xiao-Cui; Sun, Mei-Hong; Xu, Rui-Rui; Shu, Huai-Rui; Wang, Jia-Wei; Zhang, Shi-Zhong

    2014-12-01

    Auxin response factors (ARF) are transcription factors that regulate auxin responses in plants. Although the genomewide analysis of this family has been performed in some species, little is known regarding ARF genes in apple (Malus domestica). In this study, 31 putative apple ARF genes have been identified and located within the apple genome. The phylogenetic analysis revealed that MdARFs could be divided into three subfamilies (groups I, II and III). The predicted MdARFs were distributed across 15 of 17 chromosomes with different densities. In addition, the analysis of exon-intron junctions and of the intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profile analyses of MdARF genes were performed in different tissues (root, stem, leaf, flower and fruit), and all the selected genes were expressed in at least one of the tissues that were tested, which indicated that MdARFs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this report is the first to provide a genomewide analysis of the apple ARF gene family. This study provides valuable information for understanding the classification and putative functions of the ARF signal in apple.

  5. The SPINK gene family and celiac disease susceptibility.

    PubMed

    Wapenaar, Martin C; Monsuur, Alienke J; Poell, Jos; van 't Slot, Ruben; Meijer, Jos W R; Meijer, Gerrit A; Mulder, Chris J; Mearin, Maria Luisa; Wijmenga, Cisca

    2007-05-01

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (n=15) and diet-treated patients (n=31) and controls (n=16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population.

  6. Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening

    PubMed Central

    Dautt-Castro, Mitzuko; Ochoa-Leyva, Adrian; Contreras-Vergara, Carmen A.; Pacheco-Sanchez, Magda A.; Casas-Flores, Sergio; Sanchez-Flores, Alejandro; Kuhn, David N.; Islas-Osuna, Maria A.

    2015-01-01

    Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. “Kent” was done to identify key genes associated with fruit ripening. Using the Illumina sequencing platform, 67,682,269 clean reads were obtained and a transcriptome of 4.8 Gb. A total of 33,142 coding sequences were predicted and after functional annotation, 25,154 protein sequences were assigned with a product according to Swiss-Prot database and 32,560 according to non-redundant database. Differential expression analysis identified 2,306 genes with significant differences in expression between mature-green and ripe mango [1,178 up-regulated and 1,128 down-regulated (FDR ≤ 0.05)]. The expression of 10 genes evaluated by both qRT-PCR and RNA-seq data was highly correlated (R = 0.97), validating the differential expression data from RNA-seq alone. Gene Ontology enrichment analysis, showed significantly represented terms associated to fruit ripening like “cell wall,” “carbohydrate catabolic process” and “starch and sucrose metabolic process” among others. Mango genes were assigned to 327 metabolic pathways according to Kyoto Encyclopedia of Genes and Genomes database, among them those involved in fruit ripening such as plant hormone signal transduction, starch and sucrose metabolism, galactose metabolism, terpenoid backbone, and carotenoid biosynthesis. This study provides a mango transcriptome that will be very helpful to identify genes for expression studies in early and late flowering mangos during fruit ripening. PMID:25741352

  7. APC gene mutations in individuals with possible attenuated familial adenomatous polyposis coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frayling, J.M.; Talbot, J.; Harocopos, C.A.

    Spirio et al. have described an attenuated form of familial adenomatous polyposis (FAP) termed AAPC, where affected individuals have been found to have mutations in exons 3 & 4 of the APC gene. AAPC expression within a family appears to be extremely variable and can overlap clinically with FAP, giving rise to between zero and a few hundred adenomas. The phenotypic range associated with AAPC mutations is undefined and the frequency in the population of such alleles of the APC gene is unknown. In addition, it is as yet unclear how many cases of sporadic colorectal adenomas might have AAPC.more » In order to address this we have identified 110 individuals having a phenotype compatible with a diagnosis of AAPC, in three groups: (1) 30 individuals (15m, 15f; median age = 55y, range 8-71y) with some or all of the following: colonic adenomas (28 cases); colorectal cancer (12 cases); extra-colonic features of FAP, either desmoid tumours (4 cases, including 2 without colonic adenomas) or sebaceous cysts (2 cases). Sixteen cases had a family history of adenomas/colorectal cancer/extra-colonic features of FAP. (2) 16 individuals (10m, 6f) from the St. Mark`s Polyposis Registry, diagnosed with FAP (including a family history), who had unusually few adenomas (median = 200) at colectomy (median age = 43y, range 17-62y). (3) 64 individuals (43m, 21f) from the St. Mark`s Hospital Adenoma Follow-up Study who either had >4 adenomas at presentation (median total adenomas = 9), or >4 adenomas detected during follow-up (median total adenomas = 9). Genomic DNA was obtained from these individuals and exons 1-4 of the APC gene were amplified by PCR. Chemical cleavage of mismatch was used to screen for mutations, followed by sequencing if variant bands were found. Germ-line mutations have been identified in exons 3 and 4 in a proportion of these individuals, thus extending the clinical spectrum of phenotypes associated with mutations in this region of the APC gene.« less

  8. A Combinatorial Approach to Detecting Gene-Gene and Gene-Environment Interactions in Family Studies

    PubMed Central

    Lou, Xiang-Yang; Chen, Guo-Bo; Yan, Lei; Ma, Jennie Z.; Mangold, Jamie E.; Zhu, Jun; Elston, Robert C.; Li, Ming D.

    2008-01-01

    Widespread multifactor interactions present a significant challenge in determining risk factors of complex diseases. Several combinatorial approaches, such as the multifactor dimensionality reduction (MDR) method, have emerged as a promising tool for better detecting gene-gene (G × G) and gene-environment (G × E) interactions. We recently developed a general combinatorial approach, namely the generalized multifactor dimensionality reduction (GMDR) method, which can entertain both qualitative and quantitative phenotypes and allows for both discrete and continuous covariates to detect G × G and G × E interactions in a sample of unrelated individuals. In this article, we report the development of an algorithm that can be used to study G × G and G × E interactions for family-based designs, called pedigree-based GMDR (PGMDR). Compared to the available method, our proposed method has several major improvements, including allowing for covariate adjustments and being applicable to arbitrary phenotypes, arbitrary pedigree structures, and arbitrary patterns of missing marker genotypes. Our Monte Carlo simulations provide evidence that the PGMDR method is superior in performance to identify epistatic loci compared to the MDR-pedigree disequilibrium test (PDT). Finally, we applied our proposed approach to a genetic data set on tobacco dependence and found a significant interaction between two taste receptor genes (i.e., TAS2R16 and TAS2R38) in affecting nicotine dependence. PMID:18834969

  9. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase.

    PubMed Central

    Brown, S M; Crouch, M L

    1990-01-01

    We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that the protein products of these genes are at least 38,000 daltons. We identified the protein encoded by one of the cDNAs in this family by using antibodies to beta-galactosidase/pollen cDNA fusion proteins. Immunoblot analysis using these antibodies identifies a family of proteins of approximately 40 kilodaltons that is present in mature pollen, indicating that these mRNAs are not stored solely for translation after pollen germination. These proteins accumulate late in pollen development and are not detectable in other parts of the plant. Although not present in unpollinated or self-pollinated styles, the 40-kilodalton to 45-kilodalton antigens are detectable in extracts from cross-pollinated styles, suggesting that the proteins are present in pollen tubes growing through the style during pollination. The proteins are also present in pollen tubes growing in vitro. Both nucleotide and amino acid sequences are similar to the published sequences for cDNAs encoding the enzyme polygalacturonase, which suggests that the P2 gene family may function in depolymerizing pectin during pollen development, germination, and tube growth. Cross-hybridizing RNAs and immunoreactive proteins were detected in pollen from a wide variety of plant species, which indicates that the P2 family of polygalacturonase-like genes are conserved and may be expressed in the pollen from many angiosperms. PMID:2152116

  10. A Driving Bioinformatics Approach to Explore Co-regulation of AOX Gene Family Members During Growth and Development.

    PubMed

    Costa, José Hélio; Arnholdt-Schmitt, Birgit

    2017-01-01

    The alternative oxidase (AOX) gene family is a hot candidate for functional marker development that could help plant breeding on yield stability through more robust plants based on multi-stress tolerance. However, there is missing knowledge on the interplay between gene family members that might interfere with the efficiency of marker development. It is common view that AOX1 and AOX2 have different physiological roles. Nevertheless, both family member groups act in terms of molecular-biochemical function as "typical" alternative oxidases and co-regulation of AOX1 and AOX2 had been reported. Although conserved sequence differences had been identified, the basis for differential effects on physiology regulation is not sufficiently explored.This protocol gives instructions for a bioinformatics approach that supports discovering potential interaction of AOX family members in regulating growth and development. It further provides a strategy to elucidate the relevance of gene sequence diversity and copy number variation for final functionality in target tissues and finally the whole plant. Thus, overall this protocol provides the means for efficiently identifying plant AOX variants as functional marker candidates related to growth and development.

  11. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat

    PubMed Central

    Buchner, Peter; Hawkesford, Malcolm J.

    2014-01-01

    NPF (formerly referred to as low-affinity NRT1) and ‘high-affinity’ NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling. PMID:24913625

  12. Obesogenic family types identified through latent profile analysis.

    PubMed

    Martinson, Brian C; VazquezBenitez, Gabriela; Patnode, Carrie D; Hearst, Mary O; Sherwood, Nancy E; Parker, Emily D; Sirard, John; Pasch, Keryn E; Lytle, Leslie

    2011-10-01

    Obesity may cluster in families due to shared physical and social environments. This study aims to identify family typologies of obesity risk based on family environments. Using 2007-2008 data from 706 parent/youth dyads in Minnesota, we applied latent profile analysis and general linear models to evaluate associations between family typologies and body mass index (BMI) of youth and parents. Three typologies described most families with 18.8% "Unenriched/Obesogenic," 16.9% "Risky Consumer," and 64.3% "Healthy Consumer/Salutogenic." After adjustment for demographic and socioeconomic factors, parent BMI and youth BMI Z-scores were higher in unenriched/obesogenic families (BMI difference = 2.7, p < 0.01 and BMI Z-score difference = 0.51, p < 0.01, respectively) relative to the healthy consumer/salutogenic typology. In contrast, parent BMI and youth BMI Z-scores were similar in the risky consumer families relative to those in healthy consumer/salutogenic type. We can identify family types differing in obesity risks with implications for public health interventions.

  13. Comprehensive Genomic Identification and Expression Analysis of the Phosphate Transporter (PHT) Gene Family in Apple

    PubMed Central

    Sun, Tingting; Li, Mingjun; Shao, Yun; Yu, Lingyan; Ma, Fengwang

    2017-01-01

    Elemental phosphorus (Pi) is essential to plant growth and development. The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. Members include five sub-cellular phosphate transporters that play different roles in Pi uptake and transport. We searched the Genome Database for Rosaceae and identified five clusters of phosphate transporters in apple (Malus domestica), including 37 putative genes. The MdPHT1 family contains 14 genes while MdPHT2 has two, MdPHT3 has seven, MdPHT4 has 11, and MdPHT5 has three. Our overview of this gene family focused on structure, chromosomal distribution and localization, phylogenies, and motifs. These genes displayed differential expression patterns in various tissues. For example, expression was high for MdPHT1;12, MdPHT3;6, and MdPHT3;7 in the roots, and was also increased in response to low-phosphorus conditions. In contrast, MdPHT4;1, MdPHT4;4, and MdPHT4;10 were expressed only in the leaves while transcript levels of MdPHT1;4, MdPHT1;12, and MdPHT5;3 were highest in flowers. In general, these 37 genes were regulated significantly in either roots or leaves in response to the imposition of phosphorus and/or drought stress. The results suggest that members of the PHT family function in plant adaptations to adverse growing environments. Our study will lay a foundation for better understanding the PHT family evolution and exploring genes of interest for genetic improvement in apple. PMID:28424713

  14. Combined approach for finding susceptibility genes in DISH/chondrocalcinosis families: whole-genome-wide linkage and IBS/IBD studies.

    PubMed

    Couto, Ana Rita; Parreira, Bruna; Thomson, Russell; Soares, Marta; Power, Deborah M; Stankovich, Jim; Armas, Jácome Bruges; Brown, Matthew A

    2017-01-01

    Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P =0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4 , were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients ( P =0.03). Four variants were identified in LEMD3 , and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified.

  15. Combined approach for finding susceptibility genes in DISH/chondrocalcinosis families: whole-genome-wide linkage and IBS/IBD studies

    PubMed Central

    Couto, Ana Rita; Parreira, Bruna; Thomson, Russell; Soares, Marta; Power, Deborah M; Stankovich, Jim; Armas, Jácome Bruges; Brown, Matthew A

    2017-01-01

    Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P=0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4, were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients (P=0.03). Four variants were identified in LEMD3, and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified. PMID:29104755

  16. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    PubMed Central

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  17. Familial neurohypophyseal diabetes insipidus associated with a novel mutation in the vasopressin-neurophysin II gene.

    PubMed

    Fujii, H; Iida, S; Moriwaki, K

    2000-03-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder of renal water conservation due to deficiency of arginine vasopressin as the result of mutations in the arginine vasopressin-neurophysin II (AVP-NPII) gene that encodes the hormone or its carrier protein. Thirty-one different mutations have been reported. In this study, we evaluated the AVP-NPII gene in a family with FNDI and identified a new mutation (1911Gright curved arrow A) in the coding sequence for NPII in affected family members. This mutation substitutes Tyr for 74 Cys in the NPII moiety. NPII is an intracellular carrier protein for AVP during the axonal transport from the hypothalamus to the posterior pituitary and contains 14 conserved cysteine residues forming 7 disulfide bonds. Because the mutation cosegregates with the phenotype, it is possible that this mutation causes neurohypophyseal diabetes insipidus in this family.

  18. Genomic Organization, Phylogenetic Comparison and Differential Expression of the SBP-Box Family Genes in Grape

    PubMed Central

    Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping

    2013-01-01

    Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172

  19. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.).

    PubMed

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-03-10

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification.

  20. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.)

    PubMed Central

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W.; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-01-01

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification. PMID:25752830

  1. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    PubMed Central

    2011-01-01

    Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432

  2. Utilizing Gene Tree Variation to Identify Candidate Effector Genes in Zymoseptoria tritici

    PubMed Central

    McDonald, Megan C.; McGinness, Lachlan; Hane, James K.; Williams, Angela H.; Milgate, Andrew; Solomon, Peter S.

    2016-01-01

    Zymoseptoria tritici is a host-specific, necrotrophic pathogen of wheat. Infection by Z. tritici is characterized by its extended latent period, which typically lasts 2 wks, and is followed by extensive host cell death, and rapid proliferation of fungal biomass. This work characterizes the level of genomic variation in 13 isolates, for which we have measured virulence on 11 wheat cultivars with differential resistance genes. Between the reference isolate, IPO323, and the 13 Australian isolates we identified over 800,000 single nucleotide polymorphisms, of which ∼10% had an effect on the coding regions of the genome. Furthermore, we identified over 1700 probable presence/absence polymorphisms in genes across the Australian isolates using de novo assembly. Finally, we developed a gene tree sorting method that quickly identifies groups of isolates within a single gene alignment whose sequence haplotypes correspond with virulence scores on a single wheat cultivar. Using this method, we have identified < 100 candidate effector genes whose gene sequence correlates with virulence toward a wheat cultivar carrying a major resistance gene. PMID:26837952

  3. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae.

    PubMed

    Janova, Eva; Matiasovic, Jan; Vahala, Jiri; Vodicka, Roman; Van Dyk, Enette; Horin, Petr

    2009-07-01

    The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.

  4. Molecular evolution of the major chemosensory gene families in insects.

    PubMed

    Sánchez-Gracia, A; Vieira, F G; Rozas, J

    2009-09-01

    Chemoreception is a crucial biological process that is essential for the survival of animals. In insects, olfaction allows the organism to recognise volatile cues that allow the detection of food, predators and mates, whereas the sense of taste commonly allows the discrimination of soluble stimulants that elicit feeding behaviours and can also initiate innate sexual and reproductive responses. The most important proteins involved in the recognition of chemical cues comprise moderately sized multigene families. These families include odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are involved in peripheral olfactory processing, and the chemoreceptor superfamily formed by the olfactory receptor (OR) and gustatory receptor (GR) families. Here, we review some recent evolutionary genomic studies of chemosensory gene families using the data from fully sequenced insect genomes, especially from the 12 newly available Drosophila genomes. Overall, the results clearly support the birth-and-death model as the major mechanism of evolution in these gene families. Namely, new members arise by tandem gene duplication, progressively diverge in sequence and function, and can eventually be lost from the genome by a deletion or pseudogenisation event. Adaptive changes fostered by environmental shifts are also observed in the evolution of chemosensory families in insects and likely involve reproductive, ecological or behavioural traits. Consequently, the current size of these gene families is mainly a result of random gene gain and loss events. This dynamic process may represent a major source of genetic variation, providing opportunities for FUTURE specific adaptations.

  5. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism.

    PubMed

    Urbani, C; Russo, D; Raggi, F; Lombardi, M; Sardella, C; Scattina, I; Lupi, I; Manetti, L; Tomisti, L; Marcocci, C; Martino, E; Bogazzi, F

    2014-10-01

    Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.

  6. Intragenome Diversity of Gene Families Encoding Toxin-like Proteins in Venomous Animals.

    PubMed

    Rodríguez de la Vega, Ricardo C; Giraud, Tatiana

    2016-11-01

    The evolution of venoms is the story of how toxins arise and of the processes that generate and maintain their diversity. For animal venoms these processes include recruitment for expression in the venom gland, neofunctionalization, paralogous expansions, and functional divergence. The systematic study of these processes requires the reliable identification of the venom components involved in antagonistic interactions. High-throughput sequencing has the potential of uncovering the entire set of toxins in a given organism, yet the existence of non-venom toxin paralogs and the misleading effects of partial census of the molecular diversity of toxins make necessary to collect complementary evidence to distinguish true toxins from their non-venom paralogs. Here, we analyzed the whole genomes of two scorpions, one spider and one snake, aiming at the identification of the full repertoires of genes encoding toxin-like proteins. We classified the entire set of protein-coding genes into paralogous groups and monotypic genes, identified genes encoding toxin-like proteins based on known toxin families, and quantified their expression in both venom-glands and pooled tissues. Our results confirm that genes encoding toxin-like proteins are part of multigene families, and that these families arise by recruitment events from non-toxin genes followed by limited expansions of the toxin-like protein coding genes. We also show that failing to account for sequence similarity with non-toxin proteins has a considerable misleading effect that can be greatly reduced by comparative transcriptomics. Our study overall contributes to the understanding of the evolutionary dynamics of proteins involved in antagonistic interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.).

    PubMed

    Ma, Jin-Qi; Jian, Hong-Ju; Yang, Bo; Lu, Kun; Zhang, Ao-Xiang; Liu, Pu; Li, Jia-Na

    2017-07-15

    Growth regulating-factors (GRFs) are plant-specific transcription factors that help regulate plant growth and development. Genome-wide identification and evolutionary analyses of GRF gene families have been performed in Arabidopsis thaliana, Zea mays, Oryza sativa, and Brassica rapa, but a comprehensive analysis of the GRF gene family in oilseed rape (Brassica napus) has not yet been reported. In the current study, we identified 35 members of the BnGRF family in B. napus. We analyzed the chromosomal distribution, phylogenetic relationships (Bayesian Inference and Neighbor Joining method), gene structures, and motifs of the BnGRF family members, as well as the cis-acting regulatory elements in their promoters. We also analyzed the expression patterns of 15 randomly selected BnGRF genes in various tissues and in plant varieties with different harvest indices and gibberellic acid (GA) responses. The expression levels of BnGRFs under GA treatment suggested the presence of possible negative feedback regulation. The evolutionary patterns and expression profiles of BnGRFs uncovered in this study increase our understanding of the important roles played by these genes in oilseed rape. Copyright © 2017. Published by Elsevier B.V.

  8. Coalitional game theory as a promising approach to identify candidate autism genes.

    PubMed

    Gupta, Anika; Sun, Min Woo; Paskov, Kelley Marie; Stockham, Nate Tyler; Jung, Jae-Yoon; Wall, Dennis Paul

    2018-01-01

    Despite mounting evidence for the strong role of genetics in the phenotypic manifestation of Autism Spectrum Disorder (ASD), the specific genes responsible for the variable forms of ASD remain undefined. ASD may be best explained by a combinatorial genetic model with varying epistatic interactions across many small effect mutations. Coalitional or cooperative game theory is a technique that studies the combined effects of groups of players, known as coalitions, seeking to identify players who tend to improve the performance--the relationship to a specific disease phenotype--of any coalition they join. This method has been previously shown to boost biologically informative signal in gene expression data but to-date has not been applied to the search for cooperative mutations among putative ASD genes. We describe our approach to highlight genes relevant to ASD using coalitional game theory on alteration data of 1,965 fully sequenced genomes from 756 multiplex families. Alterations were encoded into binary matrices for ASD (case) and unaffected (control) samples, indicating likely gene-disrupting, inherited mutations in altered genes. To determine individual gene contributions given an ASD phenotype, a "player" metric, referred to as the Shapley value, was calculated for each gene in the case and control cohorts. Sixty seven genes were found to have significantly elevated player scores and likely represent significant contributors to the genetic coordination underlying ASD. Using network and cross-study analysis, we found that these genes are involved in biological pathways known to be affected in the autism cases and that a subset directly interact with several genes known to have strong associations to autism. These findings suggest that coalitional game theory can be applied to large-scale genomic data to identify hidden yet influential players in complex polygenic disorders such as autism.

  9. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress

    PubMed Central

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K.; Asif, Mehar H.

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively. PMID:27014321

  10. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

    PubMed

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.

  11. Host susceptibility to malaria in human and mice: compatible approaches to identify potential resistant genes.

    PubMed

    Hernandez-Valladares, Maria; Rihet, Pascal; Iraqi, Fuad A

    2014-01-01

    There is growing evidence for human genetic factors controlling the outcome of malaria infection, while molecular basis of this genetic control is still poorly understood. Case-control and family-based studies have been carried out to identify genes underlying host susceptibility to malarial infection. Parasitemia and mild malaria have been genetically linked to human chromosomes 5q31-q33 and 6p21.3, and several immune genes located within those regions have been associated with malaria-related phenotypes. Association and linkage studies of resistance to malaria are not easy to carry out in human populations, because of the difficulty in surveying a significant number of families. Murine models have proven to be an excellent genetic tool for studying host response to malaria; their use allowed mapping 14 resistance loci, eight of them controlling parasitic levels and six controlling cerebral malaria. Once quantitative trait loci or genes have been identified, the human ortholog may then be identified. Comparative mapping studies showed that a couple of human and mouse might share similar genetically controlled mechanisms of resistance. In this way, char8, which controls parasitemia, was mapped on chromosome 11; char8 corresponds to human chromosome 5q31-q33 and contains immune genes, such as Il3, Il4, Il5, Il12b, Il13, Irf1, and Csf2. Nevertheless, part of the genetic factors controlling malaria traits might differ in both hosts because of specific host-pathogen interactions. Finally, novel genetic tools including animal models were recently developed and will offer new opportunities for identifying genetic factors underlying host phenotypic response to malaria, which will help in better therapeutic strategies including vaccine and drug development.

  12. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    PubMed Central

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar

  13. Extreme variability among mammalian V1R gene families.

    PubMed

    Young, Janet M; Massa, Hillary F; Hsu, Li; Trask, Barbara J

    2010-01-01

    We report an evolutionary analysis of the V1R gene family across 37 mammalian genomes. V1Rs comprise one of three chemosensory receptor families expressed in the vomeronasal organ, and contribute to pheromone detection. We first demonstrate that Trace Archive data can be used effectively to determine V1R family sizes and to obtain sequences of most V1R family members. Analyses of V1R sequences from trace data and genome assemblies show that species-specific expansions previously observed in only eight species were prevalent throughout mammalian evolution, resulting in "semi-private" V1R repertoires for most mammals. The largest families are found in mouse and platypus, whose V1R repertoires have been published previously, followed by mouse lemur and rabbit (approximately 215 and approximately 160 intact V1Rs, respectively). In contrast, two bat species and dolphin possess no functional V1Rs, only pseudogenes, and suffered inactivating mutations in the vomeronasal signal transduction gene Trpc2. We show that primate V1R decline happened prior to acquisition of trichromatic vision, earlier during evolution than was previously thought. We also show that it is extremely unlikely that decline of the dog V1R repertoire occurred in response to selective pressures imposed by humans during domestication. Functional repertoire sizes in each species correlate roughly with anatomical observations of vomeronasal organ size and quality; however, no single ecological correlate explains the very diverse fates of this gene family in different mammalian genomes. V1Rs provide one of the most extreme examples observed to date of massive gene duplication in some genomes, with loss of all functional genes in other species.

  14. Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane.

    PubMed

    Wang, Liming; Zheng, Yuexia; Ding, Shihui; Zhang, Qing; Chen, Youqiang; Zhang, Jisen

    2017-06-23

    members of sugarcane by PCR cloning using sorghum as a reference, providing the first study of the INV gene family in sugarcane. Combining existing INV gene data from 7 plants with a comparative approach including a series of comprehensive analyses to isolate and identify INV gene family members proved to be highly successful. Moreover, the expression levels of INV genes and the variation of enzymatic activities associated with drought, low temperature, glucose, fructose, and sucrose are reported in sugarcane for the first time. The results offered useful foundation and framework for future research for understanding the physiological roles of INVs for sucrose accumulation in sugarcane.

  15. Characterization of macular structure and function in two Swedish families with genetically identified autosomal dominant retinitis pigmentosa

    PubMed Central

    Abdulridha-Aboud, Wissam; Kjellström, Ulrika; Andréasson, Sten

    2016-01-01

    Purpose To study the phenotype in two families with genetically identified autosomal dominant retinitis pigmentosa (adRP) focusing on macular structure and function. Methods Clinical data were collected at the Department of Ophthalmology, Lund University, Sweden, for affected and unaffected family members from two pedigrees with adRP. Examinations included optical coherence tomography (OCT), full-field electroretinography (ffERG), and multifocal electroretinography (mfERG). Molecular genetic screening was performed for known mutations associated with adRP. Results The mode of inheritance was autosomal dominant in both families. The members of the family with a mutation in the PRPF31 (p.IVS6+1G>T) gene had clinical features characteristic of RP, with severely reduced retinal rod and cone function. The degree of deterioration correlated well with increasing age. The mfERG showed only centrally preserved macular function that correlated well with retinal thinning on OCT. The family with a mutation in the RHO (p.R135W) gene had an extreme intrafamilial variability of the phenotype, with more severe disease in the younger generations. OCT showed pathology, but the degree of morphological changes was not correlated with age or with the mfERG results. The mother, with a de novo mutation in the RHO (p.R135W) gene, had a normal ffERG, and her retinal degeneration was detected merely with the reduced mfERG. Conclusions These two families demonstrate the extreme inter- and intrafamilial variability in the clinical phenotype of adRP. This is the first Swedish report of the clinical phenotype associated with a mutation in the PRPF31 (p.IVS6+1G>T) gene. Our results indicate that methods for assessment of the central retinal structure and function may improve the detection and characterization of the RP phenotype. PMID:27212874

  16. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    PubMed

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  17. The Sucrose Synthase Gene Family in Chinese Pear (Pyrus bretschneideri Rehd.): Structure, Expression, and Evolution.

    PubMed

    Abdullah, Muhammad; Cao, Yungpeng; Cheng, Xi; Meng, Dandan; Chen, Yu; Shakoor, Awais; Gao, Junshan; Cai, Yongping

    2018-05-11

    Sucrose synthase (SS) is a key enzyme involved in sucrose metabolism that is critical in plant growth and development, and particularly quality of the fruit. Sucrose synthase gene families have been identified and characterized in plants various plants such as tobacco, grape, rice, and Arabidopsis . However, there is still lack of detailed information about sucrose synthase gene in pear. In the present study, we performed a systematic analysis of the pear ( Pyrus bretschneideri Rehd.) genome and reported 30 sucrose synthase genes. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, gene duplications, promoter regions, collinearity, RNA-Seq data and qRT-PCR were conducted on these sucrose synthase genes. The transcript analysis revealed that 10 PbSSs genes (30%) were especially expressed in pear fruit development. Additionally, qRT-PCR analysis verified the RNA-seq data and shown that PbSS30 , PbSS24 , and PbSS15 have a potential role in the pear fruit development stages. This study provides important insights into the evolution of sucrose synthase gene family in pear and will provide assistance for further investigation of sucrose synthase genes functions in the process of fruit development, fruit quality and resistance to environmental stresses.

  18. Complexity in the cattle CD94/NKG2 gene families.

    PubMed

    Birch, James; Ellis, Shirley A

    2007-04-01

    Natural killer cell responses are controlled to a large extent by the interaction of an array of inhibitory and activating receptors with their ligands. The mostly nonpolymorphic CD94/NKG2 receptors in both humans and mice were shown to recognize a single nonclassical MHC class I molecule in each case. In this paper, we describe the CD94/NKG2 gene family in cattle. NKG2 and CD94 sequences were amplified from cDNA derived from four animals. Four CD94 sequences, ten NKG2A, and three NKG2C sequences were identified in total. In contrast to human, we show that cattle have multiple distinct NKG2A genes, some of which show minor allelic variation. All of the sequences designated NKG2A have two tyrosine-based inhibitory motifs in the cytoplasmic domain and one putative gene has, in addition, a charged residue in the transmembrane domain. NKG2C appears to be essentially monomorphic in cattle. All of the NKG2A sequences are similar apart from NKG2A-01, which, in contrast, shares the majority of its carbohydrate recognition domain with NKG2-C. Most of the genes appear to generate multiple alternatively spliced forms. These findings suggest that the CD94/NKG2A heterodimers in cattle, in contrast to other species, are binding several different ligands. Because NKG2C is not polymorphic, this raises questions as to the combined functional capacity of the CD94/NKG2 gene families in cattle.

  19. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis.

    PubMed

    Wu, Chi-Hong; Fallini, Claudia; Ticozzi, Nicola; Keagle, Pamela J; Sapp, Peter C; Piotrowska, Katarzyna; Lowe, Patrick; Koppers, Max; McKenna-Yasek, Diane; Baron, Desiree M; Kost, Jason E; Gonzalez-Perez, Paloma; Fox, Andrew D; Adams, Jenni; Taroni, Franco; Tiloca, Cinzia; Leclerc, Ashley Lyn; Chafe, Shawn C; Mangroo, Dev; Moore, Melissa J; Zitzewitz, Jill A; Xu, Zuo-Shang; van den Berg, Leonard H; Glass, Jonathan D; Siciliano, Gabriele; Cirulli, Elizabeth T; Goldstein, David B; Salachas, Francois; Meininger, Vincent; Rossoll, Wilfried; Ratti, Antonia; Gellera, Cinzia; Bosco, Daryl A; Bassell, Gary J; Silani, Vincenzo; Drory, Vivian E; Brown, Robert H; Landers, John E

    2012-08-23

    Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.

  20. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    PubMed

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria

    NASA Technical Reports Server (NTRS)

    Mazet, Francoise; Yu, Jr Kai; Liberles, David A.; Holland, Linda Z.; Shimeld, Sebastian M.

    2003-01-01

    The Forkhead or Fox gene family encodes putative transcription factors. There are at least four Fox genes in yeast, 16 in Drosophila melanogaster (Dm) and 42 in humans. Recently, vertebrate Fox genes have been classified into 17 groups named FoxA to FoxQ. Here, we extend this analysis to invertebrates, using available sequences from D. melanogaster, Anopheles gambiae (Ag), Caenorhabditis elegans (Ce), the sea squirt Ciona intestinalis (Ci) and amphioxus Branchiostoma floridae (Bf), from which we also cloned several Fox genes. Phylogenetic analyses lend support to the previous overall subclassification of vertebrate genes, but suggest that four subclasses (FoxJ, L, N and Q) could be further subdivided to reflect their relationships to invertebrate genes. We were unable to identify orthologs of Fox subclasses E, H, I, J, M and Q1 in D. melanogaster, A. gambiae or C. elegans, suggesting either considerable loss in ecdysozoans or the evolution of these subclasses in the deuterostome lineage. Our analyses suggest that the common ancestor of protostomes and deuterostomes had a minimum complement of 14 Fox genes.

  2. Novel gene fusion of PRCC-MITF defines a new member of MiT family translocation renal cell carcinoma: clinicopathological analysis and detection of the gene fusion by RNA sequencing and FISH.

    PubMed

    Xia, Qiu-Yuan; Wang, Xiao-Tong; Ye, Sheng-Bing; Wang, Xuan; Li, Rui; Shi, Shan-Shan; Fang, Ru; Zhang, Ru-Song; Ma, Heng-Hui; Lu, Zhen-Feng; Shen, Qin; Bao, Wei; Zhou, Xiao-Jun; Rao, Qiu

    2018-04-01

    MITF, TFE3, TFEB and TFEC belong to the same microphthalmia-associated transcription factor family (MiT). Two transcription factors in this family have been identified in two unusual types of renal cell carcinoma (RCC): Xp11 translocation RCC harbouring TFE3 gene fusions and t(6;11) RCC harbouring a MALAT1-TFEB gene fusion. The 2016 World Health Organisation classification of renal neoplasia grouped these two neoplasms together under the category of MiT family translocation RCC. RCCs associated with the other two MiT family members, MITF and TFEC, have rarely been reported. Herein, we identify a case of MITF translocation RCC with the novel PRCC-MITF gene fusion by RNA sequencing. Histological examination of the present tumour showed typical features of MiT family translocation RCCs, overlapping with Xp11 translocation RCC and t(6;11) RCC. However, this tumour showed negative results in TFE3 and TFEB immunochemistry and split fluorescence in-situ hybridisation (FISH) assays. The other MiT family members, MITF and TFEC, were tested further immunochemically and also showed negative results. RNA sequencing and reverse transcription-polymerase chain reaction confirmed the presence of a PRCC-MITF gene fusion: a fusion of PRCC exon 5 to MITF exon 4. We then developed FISH assays covering MITF break-apart probes and PRCC-MITF fusion probes to detect the MITF gene rearrangement. This study both proves the recurring existence of MITF translocation RCC and expands the genotype spectrum of MiT family translocation RCCs. © 2017 John Wiley & Sons Ltd.

  3. Identifying mutations in Tunisian families with retinal dystrophy.

    PubMed

    Habibi, Imen; Chebil, Ahmed; Falfoul, Yosra; Allaman-Pillet, Nathalie; Kort, Fedra; Schorderet, Daniel F; El Matri, Leila

    2016-11-22

    Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.

  4. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    PubMed Central

    Bii, Victor M.; Trobridge, Grant D.

    2016-01-01

    Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types. PMID:27792127

  5. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    PubMed

    Guo, Yong; Qiu, Li-Juan

    2013-01-01

    The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  6. Characterization of Urtica dioica agglutinin isolectins and the encoding gene family.

    PubMed

    Does, M P; Ng, D K; Dekker, H L; Peumans, W J; Houterman, P M; Van Damme, E J; Cornelissen, B J

    1999-01-01

    Urtica dioica agglutinin (UDA) has previously been found in roots and rhizomes of stinging nettles as a mixture of UDA-isolectins. Protein and cDNA sequencing have shown that mature UDA is composed of two hevein domains and is processed from a precursor protein. The precursor contains a signal peptide, two in-tandem hevein domains, a hinge region and a carboxyl-terminal chitinase domain. Genomic fragments encoding precursors for UDA-isolectins have been amplified by five independent polymerase chain reactions on genomic DNA from stinging nettle ecotype Weerselo. One amplified gene was completely sequenced. As compared to the published cDNA sequence, the genomic sequence contains, besides two basepair substitutions, two introns located at the same positions as in other plant chitinases. By partial sequence analysis of 40 amplified genes, 16 different genes were identified which encode seven putative UDA-isolectins. The deduced amino acid sequences share 78.9-98.9% identity. In extracts of roots and rhizomes of stinging nettle ecotype Weerselo six out of these seven isolectins were detected by mass spectrometry. One of them is an acidic form, which has not been identified before. Our results demonstrate that UDA is encoded by a large gene family.

  7. Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica).

    PubMed

    Zhang, C H; Ma, R J; Shen, Z J; Sun, X; Korir, N K; Yu, M L

    2014-04-08

    In this study, 33 homeodomain-leucine zipper (HD-ZIP) genes were identified in peach using the HD-ZIP amino acid sequences of Arabidopsis thaliana as a probe. Based on the phylogenetic analysis and the individual gene or protein characteristics, the HD-ZIP gene family in peach can be classified into 4 subfamilies, HD-ZIP I, II, III, and IV, containing 14, 7, 4, and 8 members, respectively. The most closely related peach HD-ZIP members within the same subfamilies shared very similar gene structure in terms of either intron/exon numbers or lengths. Almost all members of the same subfamily shared common motif compositions, thereby implying that the HD-ZIP proteins within the same subfamily may have functional similarity. The 33 peach HD-ZIP genes were distributed across scaffolds 1 to 7. Although the primary structure varied among HD-ZIP family proteins, their tertiary structures were similar. The results from this study will be useful in selecting candidate genes from specific subfamilies for functional analysis.

  8. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.

  9. Spinocerebellar ataxia type 12 identified in two Italian families may mimic sporadic ataxia.

    PubMed

    Brussino, Alessandro; Graziano, Claudio; Giobbe, Dario; Ferrone, Marina; Dragone, Elisa; Arduino, Carlo; Lodi, Raffaele; Tonon, Caterina; Gabellini, Anna; Rinaldi, Rita; Miccoli, Sara; Grosso, Enrico; Bellati, Maria Cristina; Orsi, Laura; Migone, Nicola; Brusco, Alfredo

    2010-07-15

    SCA12 is an autosomal dominant cerebellar ataxia characterized by onset in the fourth decade of life with action tremor of arms and head, mild ataxia, dysmetria, and hyperreflexia. The disease is caused by an expansion of >or=51 CAGs in the 5' region of the brain- specific phosphatase 2 regulatory subunit B-beta isoform (PPP2R2B) gene. SCA12 is very rare, except for a single ethnic group in India. We screened 159 Italian ataxic patients for SCA12 and identified two families that segregated an expanded allele of 57 to 58 CAGs, sharing a common haplotype. The age at onset, phenotype, and variability of symptoms were compatible with known cases. In one family, the disease was apparently sporadic due to possible incomplete penetrance and/or late age at onset. Our data indicate that SCA12 is also present in Italian patients, and its genetic testing should be applied to both sporadic and familial ataxias.

  10. An evolutionarily conserved gene family encodes proton-selective ion channels.

    PubMed

    Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R

    2018-03-02

    Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa.

    PubMed

    He, Hongsheng; Dong, Qing; Shao, Yuanhua; Jiang, Haiyang; Zhu, Suwen; Cheng, Beijiu; Xiang, Yan

    2012-07-01

    WRKY transcription factors participate in diverse physiological and developmental processes in plants. They have highly conserved WRKYGQK amino acid sequences in their N-termini, followed by the novel zinc-finger-like motifs, Cys₂His₂ or Cys₂HisCys. To date, numerous WRKY genes have been identified and characterized in a number of herbaceous species. Survey and characterization of WRKY genes in a ligneous species would facilitate a better understanding of the evolutionary processes and functions of this gene family. In this study, 104 poplar WRKY genes (PtWRKY) were identified in the latest poplar genome sequence. According to their structural features, the predicted members were divided into the previously defined groups I-III, as described in rice. In addition, chromosomal localization of the genes demonstrated that there might be WRKY gene hot spots in 2.3 Mb regions on chromosome 14. Furthermore, approximately 83% (86 out of 104) WRKY genes participated in gene duplication events, including 69% (29 out of 42) gene pairs which exhibited segmental duplication. Using semi-quantitative RT-PCR, the expression patterns of subgroup III genes were investigated under different stresses [cold, drought, salinity and salicylic acid (SA)]. The data revealed that these genes presented different expression levels in response to various stress conditions. Expression analysis exhibited PtWRKY76 gene induced markedly in 0.1 mM SA or 25% PEG-6000 treatment. The results presented here provide a fundamental clue for cloning specific function genes in further studies and applications. This study identified 104 poplar WRKY genes and demonstrated WRKY gene hot spots on chromosome 14. Furthermore, semi-quantitative RT-PCR showed variable stress responses in subgroup III.

  12. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms.

    PubMed

    Chen, Bin; Zhong, Daibin; Monteiro, Antónia

    2006-06-17

    HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C) via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2) and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all eukaryotes, and duplicated into HSP90AA and HSP90AB in

  13. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms

    PubMed Central

    Chen, Bin; Zhong, Daibin; Monteiro, Antónia

    2006-01-01

    Background HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. Results Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C) via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2) and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all eukaryotes, and duplicated into HSP

  14. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed

    Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.

  15. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  16. Evolution of the YABBY gene family in seed plants.

    PubMed

    Finet, Cédric; Floyd, Sandra K; Conway, Stephanie J; Zhong, Bojian; Scutt, Charles P; Bowman, John L

    2016-01-01

    Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants. © 2016 Wiley Periodicals, Inc.

  17. Birt-Hogg-Dubé syndrome in two Chinese families with mutations in the FLCN gene.

    PubMed

    Hou, Xiaocan; Zhou, Yuan; Peng, Yun; Qiu, Rong; Xia, Kun; Tang, Beisha; Zhuang, Wei; Jiang, Hong

    2018-01-22

    Birt-Hogg-Dubé syndrome is an autosomal dominant hereditary condition caused by mutations in the folliculin-encoding gene FLCN (NM_144997). It is associated with skin lesions such as fibrofolliculoma, acrochordon and trichodiscoma; pulmonary lesions including spontaneous pneumothorax and pulmonary cysts and renal cancer. Genomic DNA was extracted from peripheral venous blood samples of the propositi and their family members. Genetic analysis was performed by whole exome sequencing and Sanger sequencing aiming at corresponding exons in FLCN gene to explore the genetic mutations of these two families. In this study, we performed genetic analysis by whole exome sequencing and Sanger sequencing aiming at corresponding exons in FLCN gene to explore the genetic mutations in two Chinese families. Patients from family 1 mostly suffered from pneumothorax and pulmonary cysts, several of whom also mentioned skin lesions or kidney lesions. While in family 2, only thoracic lesions were found in the patients, without any other clinical manifestations. Two FLCN mutations have been identified: One is an insertion mutation (c.1579_1580insA/p.R527Xfs on exon 14) previously reported in three Asian families (one mainland family and two Taiwanese families); while the other is a firstly reviewed mutation in Asian population (c.649C > T / p.Gln217X on exon 7) that ever been detected in a French family. Overall, The detection of these two mutations expands the spectrum of FLCN mutations and will provide insight into genetic diagnosis and counseling of Birt-Hogg-Dubé syndrome.

  18. Genomics Analysis of Genes Expressed in Maize Endosperm Identifies Novel Seed Proteins and Clarifies Patterns of Zein Gene Expression

    PubMed Central

    Woo, Young-Min; Hu, David Wang-Nan; Larkins, Brian A.; Jung, Rudolf

    2001-01-01

    We analyzed cDNA libraries from developing endosperm of the B73 maize inbred line to evaluate the expression of storage protein genes. This study showed that zeins are by far the most highly expressed genes in the endosperm, but we found an inverse relationship between the number of zein genes and the relative amount of specific mRNAs. Although α-zeins are encoded by large multigene families, only a few of these genes are transcribed at high or detectable levels. In contrast, relatively small gene families encode the γ- and δ-zeins, and members of these gene families, especially the γ-zeins, are highly expressed. Knowledge of expressed storage protein genes allowed the development of DNA and antibody probes that distinguish between closely related gene family members. Using in situ hybridization, we found differences in the temporal and spatial expression of the α-, γ-, and δ-zein gene families, which provides evidence that γ-zeins are synthesized throughout the endosperm before α- and δ-zeins. This observation is consistent with earlier studies that suggested that γ-zeins play an important role in prolamin protein body assembly. Analysis of endosperm cDNAs also revealed several previously unidentified proteins, including a 50-kD γ-zein, an 18-kD α-globulin, and a legumin-related protein. Immunolocalization of the 50-kD γ-zein showed this protein to be located at the surface of prolamin-containing protein bodies, similar to other γ-zeins. The 18-kD α-globulin, however, is deposited in novel, vacuole-like organelles that were not described previously in maize endosperm. PMID:11595803

  19. Integrated pipeline for inferring the evolutionary history of a gene family embedded in the species tree: a case study on the STIMATE gene family.

    PubMed

    Song, Jia; Zheng, Sisi; Nguyen, Nhung; Wang, Youjun; Zhou, Yubin; Lin, Kui

    2017-10-03

    Because phylogenetic inference is an important basis for answering many evolutionary problems, a large number of algorithms have been developed. Some of these algorithms have been improved by integrating gene evolution models with the expectation of accommodating the hierarchy of evolutionary processes. To the best of our knowledge, however, there still is no single unifying model or algorithm that can take all evolutionary processes into account through a stepwise or simultaneous method. On the basis of three existing phylogenetic inference algorithms, we built an integrated pipeline for inferring the evolutionary history of a given gene family; this pipeline can model gene sequence evolution, gene duplication-loss, gene transfer and multispecies coalescent processes. As a case study, we applied this pipeline to the STIMATE (TMEM110) gene family, which has recently been reported to play an important role in store-operated Ca 2+ entry (SOCE) mediated by ORAI and STIM proteins. We inferred their phylogenetic trees in 69 sequenced chordate genomes. By integrating three tree reconstruction algorithms with diverse evolutionary models, a pipeline for inferring the evolutionary history of a gene family was developed, and its application was demonstrated.

  20. Eight Mutations of Three Genes (EDA, EDAR, and WNT10A) Identified in Seven Hypohidrotic Ectodermal Dysplasia Patients.

    PubMed

    Zeng, Binghui; Xiao, Xue; Li, Sijie; Lu, Hui; Lu, Jiaxuan; Zhu, Ling; Yu, Dongsheng; Zhao, Wei

    2016-09-19

    Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.

  1. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family.

    PubMed

    Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-04-01

    Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Identifying public health competencies relevant to family medicine.

    PubMed

    Harvey, Bart J; Moloughney, Brent W; Iglar, Karl T

    2011-10-01

    Public health situations faced by family physicians and other primary care practitioners, such as severe acute respiratory syndrome (SARS) and more recently H1N1, have resulted in an increased interest to identify the public health competencies relevant to family medicine. At present there is no agreed-on set of public health competencies delineating the knowledge and skills that family physicians should possess to effectively face diverse public health challenges. Using a multi-staged, iterative process that included a detailed literature review, the authors developed a set of public health competencies relevant to primary care, identifying competencies relevant across four levels, from "post-MD" to "enhanced." Feedback from family medicine and public health educator-practitioners regarding the set of proposed "essential" competencies indicated the need for a more limited, feasible set of "priority" areas to be highlighted during residency training. This focused set of public health competencies has begun to guide relevant components of the University of Toronto's Family Medicine Residency Program curriculum, including academic half-days; clinical experiences, especially identifying "teachable moments" during patient encounters; resident academic projects; and elective public health agency placements. These competencies will also be used to guide the development of a family medicine-public health primer and faculty development sessions to support family medicine faculty facilitating residents to achieve these competencies. Once more fully implemented, an evaluation will be initiated to determine the degree to which these public health competencies are being achieved by family medicine graduates, especially whether they attained the knowledge, skills, and confidence necessary to effectively face diverse public health situations-from common to emergent. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Targeted sequencing identifies novel variants involved in autosomal recessive hereditary hearing loss in Qatari families.

    PubMed

    Alkowari, Moza K; Vozzi, Diego; Bhagat, Shruti; Krishnamoorthy, Navaneethakrishnan; Morgan, Anna; Hayder, Yousra; Logendra, Barathy; Najjar, Nehal; Gandin, Ilaria; Gasparini, Paolo; Badii, Ramin; Girotto, Giorgia; Abdulhadi, Khalid

    2017-08-01

    Hereditary hearing loss is characterized by a very high genetic heterogeneity. In the Qatari population the role of GJB2, the worldwide HHL major player, seems to be quite limited compared to Caucasian populations. In this study we analysed 18 Qatari families affected by non-syndromic hearing loss using a targeted sequencing approach that allowed us to analyse 81 genes simultaneously. Thanks to this approach, 50% of these families (9 out of 18) resulted positive for the presence of likely causative alleles in 6 different genes: CDH23, MYO6, GJB6, OTOF, TMC1 and OTOA. In particular, 4 novel alleles were detected while the remaining ones were already described to be associated to HHL in other ethnic groups. Molecular modelling has been used to further investigate the role of novel alleles identified in CDH23 and TMC1 genes demonstrating their crucial role in Ca2+ binding and therefore possible functional role in proteins. Present study showed that an accurate molecular diagnosis based on next generation sequencing technologies might largely improve molecular diagnostics outcome leading to benefits for both genetic counseling and definition of recurrence risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sequencing of sporadic Attention-Deficit Hyperactivity Disorder (ADHD) identifies novel and potentially pathogenic de novo variants and excludes overlap with genes associated with autism spectrum disorder.

    PubMed

    Kim, Daniel Seung; Burt, Amber A; Ranchalis, Jane E; Wilmot, Beth; Smith, Joshua D; Patterson, Karynne E; Coe, Bradley P; Li, Yatong K; Bamshad, Michael J; Nikolas, Molly; Eichler, Evan E; Swanson, James M; Nigg, Joel T; Nickerson, Deborah A; Jarvik, Gail P

    2017-06-01

    Attention-Deficit Hyperactivity Disorder (ADHD) has high heritability; however, studies of common variation account for <5% of ADHD variance. Using data from affected participants without a family history of ADHD, we sought to identify de novo variants that could account for sporadic ADHD. Considering a total of 128 families, two analyses were conducted in parallel: first, in 11 unaffected parent/affected proband trios (or quads with the addition of an unaffected sibling) we completed exome sequencing. Six de novo missense variants at highly conserved bases were identified and validated from four of the 11 families: the brain-expressed genes TBC1D9, DAGLA, QARS, CSMD2, TRPM2, and WDR83. Separately, in 117 unrelated probands with sporadic ADHD, we sequenced a panel of 26 genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD) to evaluate whether variation in ASD/ID-associated genes were also present in participants with ADHD. Only one putative deleterious variant (Gln600STOP) in CHD1L was identified; this was found in a single proband. Notably, no other nonsense, splice, frameshift, or highly conserved missense variants in the 26 gene panel were identified and validated. These data suggest that de novo variant analysis in families with independently adjudicated sporadic ADHD diagnosis can identify novel genes implicated in ADHD pathogenesis. Moreover, that only one of the 128 cases (0.8%, 11 exome, and 117 MIP sequenced participants) had putative deleterious variants within our data in 26 genes related to ID and ASD suggests significant independence in the genetic pathogenesis of ADHD as compared to ASD and ID phenotypes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Clinical expression of haemochromatosis in Irish C282Y homozygotes identified through family screening.

    PubMed

    Gleeson, F; Ryan, E; Barrett, S; Crowe, J

    2004-09-01

    In Ireland, the homozygote frequency of the C282Y mutation in the HFE gene is 1/83. The biochemical expression of this mutation is high in haemochromatosis (HH) individuals identified through family screening, but the clinical expression of the mutation in Irish HH subjects to date has not been investigated fully. To determine the clinical, biochemical and histological penetrance of the C282Y mutation in Irish C282Y homozygotes identified through family screening. Two hundred and nine C282Y homozygous individuals comprising of 172 first-degree relatives, 31 second-degree relatives and four unrelated individuals were identified following HFE mutation analysis of 167 families. The following variables were analysed: age at identification, gender, fasting transferrin saturation, fasting serum ferritin, liver enzymes, clinical symptomatology, liver histopathology and histochemical iron staining. An elevated transferrin saturation in combination with an elevated ferritin was present in 43.4% of males and 23.3% of females. Abnormal liver enzymes were found in 32.3% of males. Diabetes, a haemochromatosis-specific association, was noted in 2.8% of males. Of those individuals requiring liver histopathology evaluation, 38% had moderate-to-severe iron staining, and 42% had fibrosis; 2.8% of the biopsied cohort had cirrhosis. Thus, HH cirrhotics were identified in less than 1% of the screened population. Although the homozygote frequency in Ireland is very high, the prevalence of advanced liver disease was less than 1% of the family members screened. Nevertheless, 42% of biopsied patients had histological evidence of iron overload-related architectural change and 2.8% had cirrhosis. This cohort of young people had previously unrecognized biochemical iron overload and histopathological change. This emphasizes the importance and value of both genetic and biochemical screening in first-degree relatives of identified homozygotes.

  6. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification.

    PubMed

    Gjini, Erida; Haydon, Daniel T; David Barry, J; Cobbold, Christina A

    2014-01-21

    Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion. © 2013 Published by Elsevier Ltd. All rights reserved.

  7. A novel germline inactivating mutation in the CASR gene in an Italian kindred affected by familial hypocalciuric hypercalcemia.

    PubMed

    Falchetti, Alberto; Gozzini, Alessia; Terranegra, Annalisa; Soldati, Laura; Vezzoli, Giuseppe; Leoncini, Gigliola; Giusti, Francesca; Franceschelli, Francesco; Masi, Laura; Tanini, Annalisa; Cavalli, Loredana; Brandi, Maria Luisa

    2012-05-01

    Familial hypocalciuric hypercalcemia (FHH) syndrome is a rare benign condition, inherited as an autosomal dominant trait, in which inactivating mutations of the calcium-sensing receptor (CASR) gene affects the body's ability to regulate calcium homeostasis. Its outcome is featured by increased levels of serum calcium, moderate hypophosphatemia, and inadequately normal or elevated circulating parathyroid hormone levels. Affected patients are mostly asymptomatic and do not benefit from surgical resection of their mildly enlarged parathyroids. We evaluated for hypercalcemia an Italian family that was identified via a young adult male proband referred to our center for parathyroidectomy. The patients and the family members were evaluated both biochemically and genetically as suspected FHH subjects. An in vitro functional study was performed by site-directed mutagenesis, and CASR activity was monitored by measuring intracellular calcium ([Ca(2)(+)](i)). The patient had a novel germline heterozygous CASR mutation (c.361_364GATT; p.D121del/fsX122). The mutation caused a premature stop codon at codon 122, exiting a truncated protein. The biochemical phenotype of all family members carrying the heterozygous deletion was concordant with classic FHH syndrome. Our findings confirm the role of CASR gene mutational analysis to offer a valuable addition for the recognition of FHH in hypercalcemic patients not yet characterized for a positive familial history of hypercalcemia, the only condition that identifies CASR gene mutations in hypercalcemia.

  8. The ubiquilin gene family: evolutionary patterns and functional insights

    PubMed Central

    2014-01-01

    Background Ubiquilins are proteins that function as ubiquitin receptors in eukaryotes. Mutations in two ubiquilin-encoding genes have been linked to the genesis of neurodegenerative diseases. However, ubiquilin functions are still poorly understood. Results In this study, evolutionary and functional data are combined to determine the origin and diversification of the ubiquilin gene family and to characterize novel potential roles of ubiquilins in mammalian species, including humans. The analysis of more than six hundred sequences allowed characterizing ubiquilin diversity in all the main eukaryotic groups. Many organisms (e. g. fungi, many animals) have single ubiquilin genes, but duplications in animal, plant, alveolate and excavate species are described. Seven different ubiquilins have been detected in vertebrates. Two of them, here called UBQLN5 and UBQLN6, had not been hitherto described. Significantly, marsupial and eutherian mammals have the most complex ubiquilin gene families, composed of up to 6 genes. This exceptional mammalian-specific expansion is the result of the recent emergence of four new genes, three of them (UBQLN3, UBQLN5 and UBQLNL) with precise testis-specific expression patterns that indicate roles in the postmeiotic stages of spermatogenesis. A gene with related features has independently arisen in species of the Drosophila genus. Positive selection acting on some mammalian ubiquilins has been detected. Conclusions The ubiquilin gene family is highly conserved in eukaryotes. The infrequent lineage-specific amplifications observed may be linked to the emergence of novel functions in particular tissues. PMID:24674348

  9. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  10. [Identification of novel compound heterozygous mutations of USH2A gene in a family with Usher syndrome type II].

    PubMed

    Jiang, Haiou; Ge, Chuanqin; Wang, Yiwang; Tang, Genyun; Quan, Qingli

    2015-06-01

    To identify potential mutations in a Chinese family with Usher syndrome type II. Genomic DNA was obtained from two affected and four unaffected members of the family and subjected to amplification of the entire coding sequence and splicing sites of USH2A gene. Mutation detection was conducted by direct sequencing of the PCR products. A total of 100 normal unrelated individuals were used as controls. The patients were identified to be a compound heterozygote for two mutations: c.8272G>T (p.E2758X) in exon 42 from his mother and c.12376-12378ACT>TAA(p.T4126X) in exon 63 of the USH2A gene from his father. Both mutations were not found in either of the two unaffected family members or 100 unrelated controls, and had completely co-segregated with the disease phenotype in the family. Neither mutation has been reported in the HGMD database. The novel compound heterozygous mutations c.8272G>T and c.12376-12378ACT>TAA within the USH2A gene may be responsible for the disease. This result may provide new clues for molecular diagnosis of this disease.

  11. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the

  12. Sexy gene conversions: locating gene conversions on the X-chromosome.

    PubMed

    Lawson, Mark J; Zhang, Liqing

    2009-08-01

    Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.

  13. Candidate genes for panhypopituitarism identified by gene expression profiling

    PubMed Central

    Mortensen, Amanda H.; MacDonald, James W.; Ghosh, Debashis

    2011-01-01

    Mutations in the transcription factors PROP1 and PIT1 (POU1F1) lead to pituitary hormone deficiency and hypopituitarism in mice and humans. The dysmorphology of developing Prop1 mutant pituitaries readily distinguishes them from those of Pit1 mutants and normal mice. This and other features suggest that Prop1 controls the expression of genes besides Pit1 that are important for pituitary cell migration, survival, and differentiation. To identify genes involved in these processes we used microarray analysis of gene expression to compare pituitary RNA from newborn Prop1 and Pit1 mutants and wild-type littermates. Significant differences in gene expression were noted between each mutant and their normal littermates, as well as between Prop1 and Pit1 mutants. Otx2, a gene critical for normal eye and pituitary development in humans and mice, exhibited elevated expression specifically in Prop1 mutant pituitaries. We report the spatial and temporal regulation of Otx2 in normal mice and Prop1 mutants, and the results suggest Otx2 could influence pituitary development by affecting signaling from the ventral diencephalon and regulation of gene expression in Rathke's pouch. The discovery that Otx2 expression is affected by Prop1 deficiency provides support for our hypothesis that identifying molecular differences in mutants will contribute to understanding the molecular mechanisms that control pituitary organogenesis and lead to human pituitary disease. PMID:21828248

  14. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s.

    PubMed

    Li, Xuyan; Xie, Xin; Li, Ji; Cui, Yuhai; Hou, Yanming; Zhai, Lulu; Wang, Xiao; Fu, Yanli; Liu, Ranran; Bian, Shaomin

    2017-02-01

    microRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood. We identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity. This study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or

  15. The role of CCN family genes in haematological malignancies.

    PubMed

    Wells, J E; Howlett, M; Cheung, L C; Kees, Ursula R

    2015-09-01

    Haematological malignancies, although a broad range of specific disease types, continue to show considerable overlap in classification, and patients are treated using similar chemotherapy regimes. In this review we look at the role of the CCN family of matricellular proteins and indicate their role in nine haematological malignancies including both myeloid and lymphoid neoplasms. The potential for further haematological neoplasms with CCN family associations is argued by summarising the demonstrated role of CCN family genes in the differentiation of haematopoietic stem cells (HSC) and mesenchymal stem cells. The expanding field of knowledge encompassing CCN family genes and cancers of the HSC-lineage highlights the importance of extracellular matrix-interactions in both normal physiology and tumorigenesis of the blood, bone marrow and lymph nodes.

  16. [Polymorphism of HLA-B* 40 gene family in Chinese Han population].

    PubMed

    Li, Zhen; Jin, Shi-Zheng; Cheng, Liang-Hong; Wang, Da-Ming; Zhou, Dan; Zou, Hong-Yan; Wu, Guo-Guang

    2005-04-01

    To investigate the allele distribution of HLA-B* 40 gene family in Chinese Han population and to study its influence on the selection of clinical transplantation donor, the HLA-B genetypes of 381 individuals randomly selected from Chinese National Marrow Donor Project were identified by PCR-SSO, and then all the HLA-B* 40 positive samples from the above population and the B* 40 homozygote samples received from another 1 270 registered donors were analyzed by PCR-SBT and PCR-SSP at high resolution. The results showed that the population of 381 registered donors was examined at HLA-B locus by using Hardy-Weinberg equilibrium, the gene frequency of HLA-B* 40 was 0.1692. Four different HLA-B* 40 alleles (B* 4001, B* 4002, B* 4003, B* 4006) were identified, and the serological specificity was B60 and B61 respectively. The relative frequency of each allele was 0.1192 for B* 4001, 0.0154 for B* 4002, 0.0038 for B* 4003, 0.0308 for B* 4006. The distribution of B* 40 homozygote revealed a certain regularity at high-resolution, B* 40XX (B* 4001 group), at low-resolution; B* 4001 at high resolution; B* 40XX (B* 4002 group), at low-resolution; B* 4002 or B* 4006 or heterozygote of both at high-resolution. It is concluded that in Chinese Han population, predominant allele in HLA-B* 40 gene family is B* 4001, the high-resolution typing may be recommended to use for the selection of clinical transplantation donor.

  17. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube.

    PubMed

    Iaria, Domenico; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.

  18. Classification and evolutionary analysis of the basic helix-loop-helix gene family in the green anole lizard, Anolis carolinensis.

    PubMed

    Liu, Ake; Wang, Yong; Zhang, Debao; Wang, Xuhua; Song, Huifang; Dang, Chunwang; Yao, Qin; Chen, Keping

    2013-08-01

    Helix-loop-helix (bHLH) proteins play essential regulatory roles in a variety of biological processes. These highly conserved proteins form a large transcription factor superfamily, and are commonly identified in large numbers within animal, plant, and fungal genomes. The bHLH domain has been well studied in many animal species, but has not yet been characterized in non-avian reptiles. In this study, we identified 102 putative bHLH genes in the genome of the green anole lizard, Anolis carolinensis. Based on phylogenetic analysis, these genes were classified into 43 families, with 43, 24, 16, 3, 10, and 3 members assigned into groups A, B, C, D, E, and F, respectively, and 3 members categorized as "orphans". Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with highly conserved patterns observed for introns and additional domains. Results from phylogenetic analysis of the H/E(spl) family suggest that genome and tandem gene duplications have contributed to this family's expansion. Our classification and evolutionary analysis has provided insights into the evolutionary diversification of animal bHLH genes, and should aid future studies on bHLH protein regulation of key growth and developmental processes.

  19. Genomic structure and expression of STM2, the chromosome 1 familial Alzheimer disease gene.

    PubMed

    Levy-Lahad, E; Poorkaj, P; Wang, K; Fu, Y H; Oshima, J; Mulligan, J; Schellenberg, G D

    1996-06-01

    Mutations in the gene STM2 result in autosomal dominant familial Alzheimer disease. To screen for mutations and to identify regulatory elements for this gene, the genomic DNA sequence and intron-exon structure were determined. Twelve exons including 10 coding exons were identified in a genomic region spanning 23,737 bp. The first 2 exons encode the 5'-untranslated region. Expression analysis of STM2 indicates that two transcripts of 2.4 and 2.8 kb are found in skeletal muscle, pancreas, and heart. In addition, a splice variant of the 2.4-kb transcript was identified that is the result of the use of an alternative splice acceptor site located in exon 10. The use of this site results in a transcript lacking a single glutamate. The promotor for this gene and the alternatively spliced exons leading to the 2.8-kb form of the gene remain to be identified. Expression of STM2 was high in skeletal muscle and pancreas, with comparatively low levels observed in brain. This expression pattern is intriguing since in Alzheimer disease, pathology and degeneration are observed only in the central nervous system.

  20. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    PubMed Central

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  1. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamino, K.; Anderson, L.; O'dahl, S.

    1992-11-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in amore » Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.« less

  2. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

    PubMed Central

    Yuen, Ryan KC; Merico, Daniele; Bookman, Matt; Howe, Jennifer L; Thiruvahindrapuram, Bhooma; Patel, Rohan V; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A; Walker, Susan; Marshall, Christian R; Uddin, Mohammed; Zarrei, Mehdi; Deneault, Eric; D’Abate, Lia; Chan, Ada JS; Koyanagi, Stephanie; Paton, Tara; Pereira, Sergio L; Hoang, Ny; Engchuan, Worrawat; Higginbotham, Edward J; Ho, Karen; Lamoureux, Sylvia; Li, Weili; MacDonald, Jeffrey R; Nalpathamkalam, Thomas; Sung, Wilson WL; Tsoi, Fiona J; Wei, John; Xu, Lizhen; Tasse, Anne-Marie; Kirby, Emily; Van Etten, William; Twigger, Simon; Roberts, Wendy; Drmic, Irene; Jilderda, Sanne; Modi, Bonnie MacKinnon; Kellam, Barbara; Szego, Michael; Cytrynbaum, Cheryl; Weksberg, Rosanna; Zwaigenbaum, Lonnie; Woodbury-Smith, Marc; Brian, Jessica; Senman, Lili; Iaboni, Alana; Doyle-Thomas, Krissy; Thompson, Ann; Chrysler, Christina; Leef, Jonathan; Savion-Lemieux, Tal; Smith, Isabel M; Liu, Xudong; Nicolson, Rob; Seifer, Vicki; Fedele, Angie; Cook, Edwin H; Dager, Stephen; Estes, Annette; Gallagher, Louise; Malow, Beth A; Parr, Jeremy R; Spence, Sarah J; Vorstman, Jacob; Frey, Brendan J; Robinson, James T; Strug, Lisa J; Fernandez, Bridget A; Elsabbagh, Mayada; Carter, Melissa T; Hallmayer, Joachim; Knoppers, Bartha M; Anagnostou, Evdokia; Szatmari, Peter; Ring, Robert H; Glazer, David; Pletcher, Mathew T; Scherer, Stephen W

    2017-01-01

    We are performing whole genome sequencing (WGS) of families with Autism Spectrum Disorder (ASD) to build a resource, named MSSNG, to enable the sub-categorization of phenotypes and underlying genetic factors involved. Here, we report WGS of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible in a cloud platform, and through an internet portal with controlled access. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertion/deletions (indels) or copy number variations (CNVs) per ASD subject. We identified 18 new candidate ASD-risk genes such as MED13 and PHF3, and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (p=6×10−4). In 294/2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried CNV/chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD. PMID:28263302

  3. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene.

    PubMed

    Bonnefond, Amélie; Philippe, Julien; Durand, Emmanuelle; Dechaume, Aurélie; Huyvaert, Marlène; Montagne, Louise; Marre, Michel; Balkau, Beverley; Fajardy, Isabelle; Vambergue, Anne; Vatin, Vincent; Delplanque, Jérôme; Le Guilcher, David; De Graeve, Franck; Lecoeur, Cécile; Sand, Olivier; Vaxillaire, Martine; Froguel, Philippe

    2012-01-01

    Maturity-onset of the young (MODY) is a clinically heterogeneous form of diabetes characterized by an autosomal-dominant mode of inheritance, an onset before the age of 25 years, and a primary defect in the pancreatic beta-cell function. Approximately 30% of MODY families remain genetically unexplained (MODY-X). Here, we aimed to use whole-exome sequencing (WES) in a four-generation MODY-X family to identify a new susceptibility gene for MODY. WES (Agilent-SureSelect capture/Illumina-GAIIx sequencing) was performed in three affected and one non-affected relatives in the MODY-X family. We then performed a high-throughput multiplex genotyping (Illumina-GoldenGate assay) of the putative causal mutations in the whole family and in 406 controls. A linkage analysis was also carried out. By focusing on variants of interest (i.e. gains of stop codon, frameshift, non-synonymous and splice-site variants not reported in dbSNP130) present in the three affected relatives and not present in the control, we found 69 mutations. However, as WES was not uniform between samples, a total of 324 mutations had to be assessed in the whole family and in controls. Only one mutation (p.Glu227Lys in KCNJ11) co-segregated with diabetes in the family (with a LOD-score of 3.68). No KCNJ11 mutation was found in 25 other MODY-X unrelated subjects. Beyond neonatal diabetes mellitus (NDM), KCNJ11 is also a MODY gene ('MODY13'), confirming the wide spectrum of diabetes related phenotypes due to mutations in NDM genes (i.e. KCNJ11, ABCC8 and INS). Therefore, the molecular diagnosis of MODY should include KCNJ11 as affected carriers can be ideally treated with oral sulfonylureas.

  4. The Role of Retrotransposons in Gene Family Expansions in the Human and Mouse Genomes

    PubMed Central

    Janoušek, Václav; Laukaitis, Christina M.; Yanchukov, Alexey

    2016-01-01

    Abstract Retrotransposons comprise a large portion of mammalian genomes. They contribute to structural changes and more importantly to gene regulation. The expansion and diversification of gene families have been implicated as sources of evolutionary novelties. Given the roles retrotransposons play in genomes, their contribution to the evolution of gene families warrants further exploration. In this study, we found a significant association between two major retrotransposon classes, LINEs and LTRs, and lineage-specific gene family expansions in both the human and mouse genomes. The distribution and diversity differ between LINEs and LTRs, suggesting that each has a distinct involvement in gene family expansion. LTRs are associated with open chromatin sites surrounding the gene families, supporting their involvement in gene regulation, whereas LINEs may play a structural role promoting gene duplication. Our findings also suggest that gene family expansions, especially in the mouse genome, undergo two phases. The first phase is characterized by elevated deposition of LTRs and their utilization in reshaping gene regulatory networks. The second phase is characterized by rapid gene family expansion due to continuous accumulation of LINEs and it appears that, in some instances at least, this could become a runaway process. We provide an example in which this has happened and we present a simulation supporting the possibility of the runaway process. Altogether we provide evidence of the contribution of retrotransposons to the expansion and evolution of gene families. Our findings emphasize the putative importance of these elements in diversification and adaptation in the human and mouse lineages. PMID:27503295

  5. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes.

    PubMed

    Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong

    2018-03-01

    Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

  6. Effects of the Family Environment: Gene-Environment Interaction and Passive Gene-Environment Correlation

    ERIC Educational Resources Information Center

    Price, Thomas S.; Jaffee, Sara R.

    2008-01-01

    The classical twin study provides a useful resource for testing hypotheses about how the family environment influences children's development, including how genes can influence sensitivity to environmental effects. However, existing statistical models do not account for the possibility that children can inherit exposure to family environments…

  7. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    PubMed Central

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  8. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress.

    PubMed

    Zhao, Peng; Wang, Dongdong; Wang, Ruoqiu; Kong, Nana; Zhang, Chao; Yang, Chenghui; Wu, Wentao; Ma, Haoli; Chen, Qin

    2018-01-18

    Heat shock proteins (Hsps) are essential components in plant tolerance mechanism under various abiotic stresses. Hsp20 is the major family of heat shock proteins, but little of Hsp20 family is known in potato (Solanum tuberosum), which is an important vegetable crop that is thermosensitive. To reveal the mechanisms of potato Hsp20s coping with abiotic stresses, analyses of the potato Hsp20 gene family were conducted using bioinformatics-based methods. In total, 48 putative potato Hsp20 genes (StHsp20s) were identified and named according to their chromosomal locations. A sequence analysis revealed that most StHsp20 genes (89.6%) possessed no, or only one, intron. A phylogenetic analysis indicated that all of the StHsp20 genes, except 10, were grouped into 12 subfamilies. The 48 StHsp20 genes were randomly distributed on 12 chromosomes. Nineteen tandem duplicated StHsp20s and one pair of segmental duplicated genes (StHsp20-15 and StHsp20-48) were identified. A cis-element analysis inferred that StHsp20s, except for StHsp20-41, possessed at least one stress response cis-element. A heatmap of the StHsp20 gene family showed that the genes, except for StHsp20-2 and StHsp20-45, were expressed in various tissues and organs. Real-time quantitative PCR was used to detect the expression level of StHsp20 genes and demonstrated that the genes responded to multiple abiotic stresses, such as heat, salt or drought stress. The relative expression levels of 14 StHsp20 genes (StHsp20-4, 6, 7, 9, 20, 21, 33, 34, 35, 37, 41, 43, 44 and 46) were significantly up-regulated (more than 100-fold) under heat stress. These results provide valuable information for clarifying the evolutionary relationship of the StHsp20 family and in aiding functional characterization of StHsp20 genes in further research.

  9. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    PubMed

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  10. Identifying the Family, Job, and Workplace Characteristics of Employees Who Use Work-Family Benefits.

    ERIC Educational Resources Information Center

    Secret, Mary

    2000-01-01

    Employs a contextual effects perspective to identify family, job, and workplace characteristics associated with the use of work-family benefits of 527 employees in 83 businesses. Determined that particular family problems predict female employee use of paid leave and mental health benefits. Summarizes that workplace size, sector, and culture are…

  11. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-10-01

    SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.

  12. The d4 gene family in the human genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chestkov, A.V.; Baka, I.D.; Kost, M.V.

    1996-08-15

    The d4 domain, a novel zinc finger-like structural motif, was first revealed in the rat neuro-d4 protein. Here we demonstrate that the d4 domain is conserved in evolution and that three related genes form a d4 family in the human genome. The human neuro-d4 is very similar to rat neuro-d4 at both the amino acid and the nucleotide levels. Moreover, the same splice variants have been detected among rat and human neuro-d4 transcripts. This gene has been localized on chromosome 19, and two other genes, members of the d4 family isolated by screening of the human genomic library at lowmore » stringency, have been mapped to chromosomes 11 and 14. The gene on chromosome 11 is the homolog of the ubiquitously expressed mouse gene ubi-d4/requiem, which is required for cell death after deprivation of trophic factors. A gene with a conserved d4 domain has been found in the genome of the nematode Caenorhabditis elegans. The conservation of d4 proteins from nematodes to vertebrates suggests that they have a general importance, but a diversity of d4 proteins expressed in vertebrate nervous systems suggests that some family members have special functions. 11 refs., 2 figs.« less

  13. A double mutation in AGXT gene in families with primary hyperoxaluria type 1.

    PubMed

    Kanoun, Houda; Jarraya, Faiçal; Hadj Salem, Ikhlass; Mahfoudh, Hichem; Chaabouni, Yosr; Makni, Fatma; Hachicha, Jamil; Fakhfakh, Faiza

    2013-12-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inherited disorder of glyoxylate metabolism caused by mutations in the AGXT gene on chromosome 2q37.3 that encodes the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. These mutations are found throughout the entire gene and cause a wide spectrum of clinical severity. Rare in Europe, PH1 is responsible for 13% of the end stage renal failure in the Tunisian child. In the present work, we identified the double mutation c.32C>T (Pro11Leu) and c.731T>C (p.Ile244Thr) in AGXT gene in five unrelated Tunisian families with PH1 disease. Our results provide evidence regarding the potential involvement of c.32C>T, originally described as common polymorphism, on the resulting phenotype. We also reported an extreme intrafamilial heterogeneity in clinical presentation of PH1. Despite the same genetic background, the outcome of the affected members differs widely. The significant phenotypic heterogeneity observed within a same family, with a same genotype, suggests the existence of relevant modifier factors. © 2013.

  14. Ala397Asp mutation of myosin VIIA gene segregating in a Spanish family with type-Ib Usher syndrome.

    PubMed

    Espinós, C; Millán, J M; Sánchez, F; Beneyto, M; Nájera, C

    1998-06-01

    In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USHIB mutations in these families could be located in the unscreened regions of the gene.

  15. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  16. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-01-01

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts. PMID:26907269

  17. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus).

    PubMed

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-02-23

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  18. Two novel mutations of fibrillin-1 gene correlate with different phenotypes of Marfan syndrome in Chinese families.

    PubMed

    Zhao, Feng; Pan, Xinyuan; Zhao, Kanxing; Zhao, Chen

    2013-01-01

    To identify the causative mutations in two Chinese families with autosomal dominant Marfan syndrome and to describe the associated phenotypes. Complete physical, ophthalmic, and cardiovascular examinations were given to the patients and unaffected individuals in the two families. Exclusive linkage mapping was performed for transforming growth factor beta receptor II (TGFBR2) and fibrillin-1 (FBN1) loci in both families. The entire coding region and flanking splice sites of the FBN1 gene were screened for mutations in the two families with Sanger sequencing. The potential mutations of FBN1 were tested in 100 normal controls. Lens dislocation was observed in two out of ten patients in the MF1 family and all patients in the MF2 family. However, the MF1 family displayed more severe cardiovascular and skeletal system involvement compared with the MF2 family. The transforming growth factor beta receptor II locus was excluded in both families by linkage analysis. A maximum multipoint lod score score of 2.83 was obtained for marker D15S992 (located in the FBN1 gene) in the MF1 family and 1.51 for the same marker in the MF2 family. Two novel mutations of FBN1, p.C271* and p.C637Y, were identified in the MF1 and MF2 families, respectively. Genotype-phenotype correlations in this study indicate that nonsense mutations of FBN1 may correlate with relatively severe systemic phenotypes when compared with cysteine substitutions, the most common type of FBN1 mutations. Genetic diagnosis for patients with Marfan syndrome would help with genetic counseling, clinical intervention, and prognosis.

  19. Two novel mutations of fibrillin-1 gene correlate with different phenotypes of Marfan syndrome in Chinese families

    PubMed Central

    Zhao, Feng; Pan, Xinyuan; Zhao, Kanxing

    2013-01-01

    Purpose To identify the causative mutations in two Chinese families with autosomal dominant Marfan syndrome and to describe the associated phenotypes. Methods Complete physical, ophthalmic, and cardiovascular examinations were given to the patients and unaffected individuals in the two families. Exclusive linkage mapping was performed for transforming growth factor beta receptor II (TGFBR2) and fibrillin-1 (FBN1) loci in both families. The entire coding region and flanking splice sites of the FBN1 gene were screened for mutations in the two families with Sanger sequencing. The potential mutations of FBN1 were tested in 100 normal controls. Results Lens dislocation was observed in two out of ten patients in the MF1 family and all patients in the MF2 family. However, the MF1 family displayed more severe cardiovascular and skeletal system involvement compared with the MF2 family. The transforming growth factor beta receptor II locus was excluded in both families by linkage analysis. A maximum multipoint lod score score of 2.83 was obtained for marker D15S992 (located in the FBN1 gene) in the MF1 family and 1.51 for the same marker in the MF2 family. Two novel mutations of FBN1, p.C271* and p.C637Y, were identified in the MF1 and MF2 families, respectively. Conclusions Genotype-phenotype correlations in this study indicate that nonsense mutations of FBN1 may correlate with relatively severe systemic phenotypes when compared with cysteine substitutions, the most common type of FBN1 mutations. Genetic diagnosis for patients with Marfan syndrome would help with genetic counseling, clinical intervention, and prognosis. PMID:23592911

  20. Novel mutations in Norrie disease gene in Japanese patients with Norrie disease and familial exudative vitreoretinopathy.

    PubMed

    Kondo, Hiroyuki; Qin, Minghui; Kusaka, Shunji; Tahira, Tomoko; Hasebe, Haruyuki; Hayashi, Hideyuki; Uchio, Eiichi; Hayashi, Kenshi

    2007-03-01

    To search for mutations in the Norrie disease gene (NDP) in Japanese patients with familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND) and to delineate the mutation-associated clinical features. Direct sequencing after polymerase chain reaction of all exons of the NDP gene was performed on blood collected from 62 probands (31 familial and 31 simplex) with FEVR, from 3 probands with ND, and from some of their family members. The clinical symptoms and signs in the patients with mutations were assessed. X-inactivation in the female carriers was examined in three FEVR families by using leukocyte DNA. Four novel mutations-I18K, K54N, R115L, and IVS2-1G-->A-and one reported mutation, R97P, in the NDP gene were identified in six families. The severity of vitreoretinopathy varied among these patients. Three probands with either K54N or R115L had typical features of FEVR, whereas the proband with R97P had those of ND. Families with IVS2-1G-->A exhibited either ND or FEVR characteristics. A proband with I18K presented with significant phenotypic heterogeneity between the two eyes. In addition, affected female carriers in a family harboring the K54N mutation presented with different degrees of vascular abnormalities in the periphery of the retina. X-inactivation profiles indicated that the skewing was not significantly different between affected and unaffected women. These observations indicate that mutations of the NDP gene can cause ND and 6% of FEVR cases in the Japanese population. The X-inactivation assay with leukocytes may not be predictive of the presence of a mutation in affected female carriers.

  1. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals.

    PubMed

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen; Ma, Haoli

    2017-10-08

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three ( Physcomitrella patens ) to 63 ( Glycine max ). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.

  2. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals

    PubMed Central

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen

    2017-01-01

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution. PMID:28991190

  3. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)

    PubMed Central

    Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes. PMID:28742823

  4. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Ma, Jian; Yang, Yujie; Luo, Wei; Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes.

  5. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    PubMed Central

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  6. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.).

    PubMed

    Li, Jun; Hou, Hongmin; Li, Xiaoqin; Xiang, Jiang; Yin, Xiangjing; Gao, Hua; Zheng, Yi; Bassett, Carole L; Wang, Xiping

    2013-09-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be putative targets of MdmiR156. Plant SBPs were classified into eight groups according to the phylogenetic analysis of SBP-domain proteins. Gene structure, gene chromosomal location and synteny analyses of MdSBP genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the SBP-box gene family in apple. Additionally, synteny analysis between apple and Arabidopsis indicated that several paired homologs of MdSBP and AtSPL genes were located in syntenic genomic regions. Tissue-specific expression analysis of MdSBP genes in apple demonstrated their diversified spatiotemporal expression patterns. Most MdmiR156-targeted MdSBP genes, which had relatively high transcript levels in stems, leaves, apical buds and some floral organs, exhibited a more differential expression pattern than most MdmiR156-nontargeted MdSBP genes. Finally, expression analysis of MdSBP genes in leaves upon various plant hormone treatments showed that many MdSBP genes were responsive to different plant hormones, indicating that MdSBP genes may be involved in responses to hormone signaling during stress or in apple development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. In silico genome-wide identification and characterization of the glutathione S-transferase gene family in Vigna radiata.

    PubMed

    Vaish, Swati; Awasthi, Praveen; Tiwari, Siddharth; Tiwari, Shailesh Kumar; Gupta, Divya; Basantani, Mahesh Kumar

    2018-05-01

    Plant glutathione S-transferases (GSTs) are integral to normal plant metabolism and biotic and abiotic stress tolerance. The GST gene family has been characterized in diverse plant species using molecular biology and bioinformatics approaches. In the current study, in silico analysis identified 44 GSTs in Vigna radiata. Of the total 44 GSTs identified, chromosomal locations of 31 GSTs were confirmed. The pI value of GST proteins ranged from 5.10 to 9.40. The predicted molecular weights ranged from 13.12 to 50 kDa. Subcellular localization analysis revealed that all GSTs were predominantly localized in the cytoplasm. The active site amino acids were confirmed to be serine in tau, phi, theta, zeta, and TCHQD; cysteine in lambda, DHAR, and omega; and tyrosine in EF1G. The gene architecture conformed to the two-exon/one-intron and three-exon/two-intron organization in the case of tau and phi classes, respectively. MEME analysis identified 10 significantly conserved motifs with the width of 8-50 amino acids. The motifs identified were either specific to a specific GST class or were shared by multiple GST classes. The results of the current study will be of potential importance in the characterization of the GST gene family in V. radiata, an economically important leguminous crop.

  8. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  9. Neurocognitive Endophenotypes for Bipolar Disorder Identified in Multiplex Multigenerational Families

    PubMed Central

    Glahn, David C.; Almasy, Laura; Barguil, Marcela; Hare, Elizabeth; Peralta, Juan Manuel; Kent, Jack W.; Dassori, Alabana; Contreras, Javier; Pacheco, Adriana; Lanzagorta, Nuria; Nicolini, Humberto; Raventós, Henriette; Escamilla, Michael A.

    2012-01-01

    Context Although genetic influences on bipolar disorder are well established, localization of genes that predispose to the illness has proven difficult. Given that genes predisposing to bipolar disorder may be transmitted without expression of the categorical clinical phenotype, one strategy for identifying risk genes is the use of quantitative endophenotypes. Objective The goal of the current study is to adjudicate neurocognitive endophenotypes for bipolar disorder. Design, Setting, and Participants 709 Latino individuals from the central valley of Costa Rica, Mexico City, Mexico, or San Antonio, Texas participated in the study. 660 of these persons were members of extended pedigrees with at least two siblings diagnosed with bipolar disorder (n=230). The remaining subjects were community controls drawn from each site and without personal or family history of bipolar disorder or schizophrenia. All subjects received psychodiagnostic interviews and comprehensive neurocognitive evaluations. Neurocognitive measures found to be heritable were entered into analyses designed to determine which tests are impaired in affected individuals, sensitive to genetic liability for the illness and genetically correlated with affection status. Main Outcome Measures The main outcome measure was neurocognitive test performance. Results Two of the 21 neurocognitive variables were not significantly heritable and were excluded from subsequent analyses. Patients with bipolar disorder were impaired on 6 of these cognitive measures compared to non-related healthy subjects. Non-bipolar first-degree relatives were impaired on five of these and three tests were genetically correlated with affection status: digit symbol coding, object delayed response, and immediate facial memory. Conclusions This large-scale extended pedigree study of cognitive functioning in bipolar disorder identified measures of processing speed, working memory and declarative (facial) memory as candidate endophenotypes for

  10. Genome-Wide Prediction of the Polymorphic Ser Gene Family in Tetrahymena thermophila Based on Motif Analysis

    PubMed Central

    Ponsuwanna, Patrath; Kümpornsin, Krittikorn; Chookajorn, Thanat

    2014-01-01

    Even though antigenic variation is employed among parasitic protozoa for host immune evasion, Tetrahymena thermophila, a free-living ciliate, can also change its surface protein antigens. These cysteine-rich glycosylphosphatidylinositol (GPI)-linked surface proteins are encoded by a family of polymorphic Ser genes. Despite the availability of T. thermophila genome, a comprehensive analysis of the Ser family is limited by its high degree of polymorphism. In order to overcome this problem, a new approach was adopted by searching for Ser candidates with common motif sequences, namely length-specific repetitive cysteine pattern and GPI anchor site. The candidate genes were phylogenetically compared with the previously identified Ser genes and classified into subtypes. Ser candidates were often found to be located as tandem arrays of the same subtypes on several chromosomal scaffolds. Certain Ser candidates located in the same chromosomal arrays were transcriptionally expressed at specific T. thermophila developmental stages. These Ser candidates selected by the motif analysis approach can form the foundation for a systematic identification of the entire Ser gene family, which will contribute to the understanding of their function and the basis of T. thermophila antigenic variation. PMID:25133747

  11. Identification of AUXIN RESPONSE FACTOR gene family from Prunus sibirica and its expression analysis during mesocarp and kernel development.

    PubMed

    Niu, Jun; Bi, Quanxin; Deng, Shuya; Chen, Huiping; Yu, Haiyan; Wang, Libing; Lin, Shanzhi

    2018-01-24

    Auxin response factors (ARFs) in auxin signaling pathway are an important component that can regulate the transcription of auxin-responsive genes involved in almost all aspects of plant growth and development. To our knowledge, the comprehensive and systematic characterization of ARF genes has never been reported in Prunus sibirica, a novel woody biodiesel feedstock in China. In this study, we identified 14 PsARF genes with a perfect open reading frame (ORF) in P. sibirica by using its previous transcriptomic data. Conserved motif analysis showed that all identified PsARF proteins had typical DNA-binding and ARF domain, but 5 members (PsARF3, 8 10, 16 and 17) lacked the dimerization domain. Phylogenetic analysis of the ARF proteins generated from various plant species indicated that ARFs could be categorized into 4 major groups (Class I, II, III and IV), in which all identified ARFs from P. sibirica showed a closest relationship with those from P. mume. Comparison of the expression profiles of 14 PsARF genes in different developmental stages of Siberian apricot mesocarp (SAM) and kernel (SAK) reflected distinct temporal or spatial expression patterns for PsARF genes. Additionally, based on the expressed data from fruit and seed development of multiple plant species, we identified 1514 ARF-correlated genes using weighted gene co-expression network analysis (WGCNA). And the major portion of ARF-correlated gene was characterized to be involved in protein, nucleic acid and carbohydrate metabolic, transport and regulatory processes. In summary, we systematically and comprehensively analyzed the structure, expression pattern and co-expression network of ARF gene family in P. sibirica. All our findings provide theoretical foundation for the PsARF gene family and will pave the way for elucidating the precise role of PsARF genes in SAM and SAK development.

  12. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    PubMed

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  13. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    PubMed Central

    2011-01-01

    Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive genome-wide transcript

  14. Characterization of Resistance Gene Analogues (RGAs) in Apple (Malus × domestica Borkh.) and Their Evolutionary History of the Rosaceae Family

    PubMed Central

    Baldo, Angela; Righetti, Laura; Bailey, Aubrey; Fontana, Paolo; Velasco, Riccardo; Malnoy, Mickael

    2014-01-01

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden Delicious’. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80%) of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15), and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera. PMID:24505246

  15. Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family.

    PubMed

    Perazzolli, Michele; Malacarne, Giulia; Baldo, Angela; Righetti, Laura; Bailey, Aubrey; Fontana, Paolo; Velasco, Riccardo; Malnoy, Mickael

    2014-01-01

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar 'Golden Delicious'. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80%) of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15), and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera.

  16. Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage.

    PubMed

    Papenfuss, Anthony T; Feng, Zhi-Ping; Krasnec, Katina; Deakin, Janine E; Baker, Michelle L; Miller, Robert D

    2015-07-22

    Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and

  17. Genetic analysis of Chinese families reveals a novel truncation allele of the retinitis pigmentosa GTPase regulator gene

    PubMed Central

    Hu, Fang; Zeng, Xiang-Yun; Liu, Lin-Lin; Luo, Yao-Ling; Jiang, Yi-Ping; Wang, Hui; Xie, Jing; Hu, Cheng-Quan; Gan, Lin; Huang, Liang

    2014-01-01

    AIM To make comprehensive molecular diagnosis for retinitis pigmentosa (RP) patients in a consanguineous Han Chinese family using next generation sequencing based Capture-NGS screen technology. METHODS A five-generation Han Chinese family diagnosed as non-syndromic X-linked recessive RP (XLRP) was recruited, including four affected males, four obligate female carriers and eleven unaffected family members. Capture-NGS was performed using a custom designed capture panel covers 163 known retinal disease genes including 47 RP genes, followed by the validation of detected mutation using Sanger sequencing in all recruited family members. RESULTS Capture-NGS in one affected 47-year-old male reveals a novel mutation, c.2417_2418insG:p.E806fs, in exon ORF15 of RP GTPase regulator (RPGR) gene results in a frameshift change that results in a premature stop codon and a truncated protein product. The mutation was further validated in three of four affected males and two of four female carriers but not in the other unaffected family members. CONCLUSION We have identified a novel mutation, c.2417_2418insG:p.E806fs, in a Han Chinese family with XLRP. Our findings expand the mutation spectrum of RPGR and the phenotypic spectrum of XLRP in Han Chinese families, and confirms Capture-NGS could be an effective and economic approach for the comprehensive molecular diagnosis of RP. PMID:25349787

  18. Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members

    PubMed Central

    2014-01-01

    Background The Maternally expressed gene (Meg) family is a locally-duplicated gene family of maize which encodes cysteine-rich proteins (CRPs). The founding member of the family, Meg1, is required for normal development of the basal endosperm transfer cell layer (BETL) and is involved in the allocation of maternal nutrients to growing seeds. Despite the important roles of Meg1 in maize seed development, the evolutionary history of the Meg cluster and the activities of the duplicate genes are not understood. Results In maize, the Meg gene cluster resides in a 2.3 Mb-long genomic region that exhibits many features of non-centromeric heterochromatin. Using phylogenetic reconstruction and syntenic alignments, we identified the pedigree of the Meg family, in which 11 of its 13 members arose in maize after allotetraploidization ~4.8 mya. Phylogenetic and population-genetic analyses identified possible signatures suggesting recent positive selection in Meg homologs. Structural analyses of the Meg proteins indicated potentially adaptive changes in secondary structure from α-helix to β-strand during the expansion. Transcriptomic analysis of the maize endosperm indicated that 6 Meg genes are selectively activated in the BETL, and younger Meg genes are more active than older ones. In endosperms from B73 by Mo17 reciprocal crosses, most Meg genes did not display parent-specific expression patterns. Conclusions Recently-duplicated Meg genes have different protein secondary structures, and their expressions in the BETL dominate over those of older members. Together with the signs of positive selections in the young Meg genes, these results suggest that the expansion of the Meg family involves potentially adaptive transitions in which new members with novel functions prevailed over older members. PMID:25084677

  19. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress.

    PubMed

    Xu, Yingchun; Wang, Yanjie; Mattson, Neil; Yang, Liu; Jin, Qijiang

    2017-12-01

    Trehalose-6-phosphate synthase (TPS) serves important functions in plant desiccation tolerance and response to environmental stimuli. At present, a comprehensive analysis, i.e. functional classification, molecular evolution, and expression patterns of this gene family are still lacking in Solanum tuberosum (potato). In this study, a comprehensive analysis of the TPS gene family was conducted in potato. A total of eight putative potato TPS genes (StTPSs) were identified by searching the latest potato genome sequence. The amino acid identity among eight StTPSs varied from 59.91 to 89.54%. Analysis of d N /d S ratios suggested that regions in the TPP (trehalose-6-phosphate phosphatase) domains evolved faster than the TPS domains. Although the sequence of the eight StTPSs showed high similarity (2571-2796 bp), their gene length is highly differentiated (3189-8406 bp). Many of the regulatory elements possibly related to phytohormones, abiotic stress and development were identified in different TPS genes. Based on the phylogenetic tree constructed using TPS genes of potato, and four other Solanaceae plants, TPS genes could be categorized into 6 distinct groups. Analysis revealed that purifying selection most likely played a major role during the evolution of this family. Amino acid changes detected in specific branches of the phylogenetic tree suggests relaxed constraints might have contributed to functional divergence among groups. Moreover, StTPSs were found to exhibit tissue and treatment specific expression patterns upon analysis of transcriptome data, and performing qRT-PCR. This study provides a reference for genome-wide identification of the potato TPS gene family and sets a framework for further functional studies of this important gene family in development and stress response.

  20. Genome-Wide Comparative Analysis of the Phospholipase D Gene Families among Allotetraploid Cotton and Its Diploid Progenitors

    PubMed Central

    Tang, Kai; Dong, Chun-Juan; Liu, Jin-Yuan

    2016-01-01

    In this study, 40 phospholipase D (PLD) genes were identified from allotetraploid cotton Gossypium hirsutum, and 20 PLD genes were examined in diploid cotton Gossypium raimondii. Combining with 19 previously identified Gossypium arboreum PLD genes, a comparative analysis was performed among the PLD gene families among allotetraploid and two diploid cottons. Based on the orthologous relationships, we found that almost each G. hirsutum PLD had a corresponding homolog in the G. arboreum and G. raimondii genomes, except for GhPLDβ3A, whose homolog GaPLDβ3 may have been lost during the evolution of G. arboreum after the interspecific hybridization. Phylogenetic analysis showed that all of the cotton PLDs were unevenly classified into six numbered subgroups: α, β/γ, δ, ε, ζ and φ. An N-terminal C2 domain was found in the α, β/γ, δ and ε subgroups, while phox homology (PX) and pleckstrin homology (PH) domains were identified in the ζ subgroup. The subgroup φ possessed a single peptide instead of a functional domain. In each phylogenetic subgroup, the PLDs showed high conservation in gene structure and amino acid sequences in functional domains. The expansion of GhPLD and GrPLD gene families were mainly attributed to segmental duplication and partly attributed to tandem duplication. Furthermore, purifying selection played a critical role in the evolution of PLD genes in cotton. Quantitative RT-PCR documented that allotetraploid cotton PLD genes were broadly expressed and each had a unique spatial and developmental expression pattern, indicating their functional diversification in cotton growth and development. Further analysis of cis-regulatory elements elucidated transcriptional regulations and potential functions. Our comparative analysis provided valuable information for understanding the putative functions of the PLD genes in cotton fiber. PMID:27213891

  1. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    PubMed

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  2. Genome-wide comparative analysis of papain-like cysteine protease family genes in castor bean and physic nut.

    PubMed

    Zou, Zhi; Huang, Qixing; Xie, Guishui; Yang, Lifu

    2018-01-10

    Papain-like cysteine proteases (PLCPs) are a class of proteolytic enzymes involved in many plant processes. Compared with the extensive research in Arabidopsis thaliana, little is known in castor bean (Ricinus communis) and physic nut (Jatropha curcas), two Euphorbiaceous plants without any recent whole-genome duplication. In this study, a total of 26 or 23 PLCP genes were identified from the genomes of castor bean and physic nut respectively, which can be divided into nine subfamilies based on the phylogenetic analysis: RD21, CEP, XCP, XBCP3, THI, SAG12, RD19, ALP and CTB. Although most of them harbor orthologs in Arabidopsis, several members in subfamilies RD21, CEP, XBCP3 and SAG12 form new groups or subgroups as observed in other species, suggesting specific gene loss occurred in Arabidopsis. Recent gene duplicates were also identified in these two species, but they are limited to the SAG12 subfamily and were all derived from local duplication. Expression profiling revealed diverse patterns of different family members over various tissues. Furthermore, the evolution characteristics of PLCP genes were also compared and discussed. Our findings provide a useful reference to characterize PLCP genes and investigate the family evolution in Euphorbiaceae and species beyond.

  3. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken.

    PubMed

    Pinheiro, Pedro L C; Cardoso, João C R; Gomes, Ana S; Fuentes, Juan; Power, Deborah M; Canário, Adelino V M

    2010-12-01

    Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken. The PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in Xenopus and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from Xenopus to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34) region of PTH, PTHrP and PTH-L in Xenopus and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors. The parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2), PTH (2) and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L), the exception is placental mammals which have 2 genes and lack PTH-L. It is hypothesized that

  4. Molecular analysis of the NDP gene in two families with Norrie disease.

    PubMed

    Rivera-Vega, M Refugio; Chiñas-Lopez, Silvet; Vaca, Ana Luisa Jimenez; Arenas-Sordo, M Luz; Kofman-Alfaro, Susana; Messina-Baas, Olga; Cuevas-Covarrubias, Sergio Alberto

    2005-04-01

    To describe the molecular defects in the Norrie disease protein (NDP) gene in two families with Norrie disease (ND). We analysed two families with ND at molecular level through polymerase chain reaction, DNA sequence analysis and GeneScan. Two molecular defects found in the NDP gene were: a missense mutation (265C > G) within codon 97 that resulted in the interchange of arginine by proline, and a partial deletion in the untranslated 3' region of exon 3 of the NDP gene. Clinical findings were more severe in the family that presented the partial deletion. We also diagnosed the carrier status of one daughter through GeneScan; this method proved to be a useful tool for establishing female carriers of ND. Here we report two novel mutations in the NDP gene in Mexican patients and propose that GeneScan is a viable mean of establishing ND carrier status.

  5. Genome-wide characterization of GRAS family genes in Medicago truncatula reveals their evolutionary dynamics and functional diversification

    PubMed Central

    Zhang, Hailing; Cao, Yingping; Shang, Chen; Li, Jikai; Wang, Jianli; Wu, Zhenying; Ma, Lichao; Qi, Tianxiong; Fu, Chunxiang; Hu, Baozhong

    2017-01-01

    The GRAS gene family is a large plant-specific family of transcription factors that are involved in diverse processes during plant development. Medicago truncatula is an ideal model plant for genetic research in legumes, and specifically for studying nodulation, which is crucial for nitrogen fixation. In this study, 59 MtGRAS genes were identified and classified into eight distinct subgroups based on phylogenetic relationships. Motifs located in the C-termini were conserved across the subgroups, while motifs in the N-termini were subfamily specific. Gene duplication was the main evolutionary force for MtGRAS expansion, especially proliferation of the LISCL subgroup. Seventeen duplicated genes showed strong effects of purifying selection and diverse expression patterns, highlighting their functional importance and diversification after duplication. Thirty MtGRAS genes, including NSP1 and NSP2, were preferentially expressed in nodules, indicating possible roles in the process of nodulation. A transcriptome study, combined with gene expression analysis under different stress conditions, suggested potential functions of MtGRAS genes in various biological pathways and stress responses. Taken together, these comprehensive analyses provide basic information for understanding the potential functions of GRAS genes, and will facilitate further discovery of MtGRAS gene functions. PMID:28945786

  6. Genomic structure and expression of STM2, the chromosome 1 familial Alzheimer disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy-Lahad, E.; Wang, Kai; Fu, Ying Hui

    1996-06-01

    Mutations in the gene STM2 result in autosomal dominant familial Alzheimer disease. To screen for mutations and to identify regulatory elements for this gene, the genomic DNA sequence and intron-exon structure were determined. Twelve exons including 10 coding exons were identified in a genomic region spanning 23, 737 bp. The first 2 exons encode the 5{prime}-untranslated region. Expression analysis of STM2 indicates that two transcripts of 2.4 and 2.8 kb are found in skeletal muscle, pancreas, and heart. In addition, a splice variant of the 2.4-kb transcript was identified that is the result of the use of an alternative splicemore » acceptor site located in exon 10. The use of this site results in a transcript lacking a single glutamate. The promotor for this gene and the alternatively spliced exons leading to the 2.8-kb form of the gene remain to be identified. Expression of STM2 was high in skeletal muscle and pancreas, with comparatively low levels observed in brain. This expression pattern is intriguing since in Alzheimer disease, pathology and degeneration are observed only in the central nervous system. 19 refs., 2 figs., 3 tabs.« less

  7. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    PubMed Central

    Shao, Ya-Ming; Dong, Ke; Zhang, Chuan-Xi

    2007-01-01

    Background Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance. Results We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5. Conclusion B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family. PMID:17868469

  8. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes

    PubMed Central

    2013-01-01

    Background Several β-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins. The phloem fibres of flax (Linum usitatissimum) have gelatinous-type cell walls that are rich in crystalline cellulose and depend on β-galactosidase activity for their normal development. In this study, we investigate the transcript expression patterns and inferred evolutionary relationships of the complete set of flax GH35 genes, to better understand the functions of these genes in flax and other species. Results Using the recently published flax genome assembly, we identified 43 β-galactosidase-like (BGAL) genes, based on the presence of a GH35 domain. Phylogenetic analyses of their protein sequences clustered them into eight sub-families. Sub-family B, whose members in other species were known to be expressed in developing flowers and pollen, was greatly under represented in flax (p-value < 0.01). Sub-family A5, whose sole member from arabidopsis has been described as its primary xyloglucan BGAL, was greatly expanded in flax (p-value < 0.01). A number of flax BGALs were also observed to contain non-consensus GH35 active sites. Expression patterns of the flax BGALs were investigated using qRT-PCR and publicly available microarray data. All predicted flax BGALs showed evidence of expression in at least one tissue. Conclusion Flax has a large number of BGAL genes, which display a distinct distribution among the BGAL sub-families, in comparison to other closely related species with available whole genome assemblies. Almost every flax BGAL was expressed in fibres, the majority of which expressed predominately in fibres as compared to other tissues, suggesting an important role for the expansion of this gene family in the development of this species as a fibre crop. Variations displayed in the canonical GH35 active site suggest a variety of roles

  9. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes.

    PubMed

    Hobson, Neil; Deyholos, Michael K

    2013-05-23

    Several β-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins. The phloem fibres of flax (Linum usitatissimum) have gelatinous-type cell walls that are rich in crystalline cellulose and depend on β-galactosidase activity for their normal development. In this study, we investigate the transcript expression patterns and inferred evolutionary relationships of the complete set of flax GH35 genes, to better understand the functions of these genes in flax and other species. Using the recently published flax genome assembly, we identified 43 β-galactosidase-like (BGAL) genes, based on the presence of a GH35 domain. Phylogenetic analyses of their protein sequences clustered them into eight sub-families. Sub-family B, whose members in other species were known to be expressed in developing flowers and pollen, was greatly under represented in flax (p-value < 0.01). Sub-family A5, whose sole member from arabidopsis has been described as its primary xyloglucan BGAL, was greatly expanded in flax (p-value < 0.01). A number of flax BGALs were also observed to contain non-consensus GH35 active sites. Expression patterns of the flax BGALs were investigated using qRT-PCR and publicly available microarray data. All predicted flax BGALs showed evidence of expression in at least one tissue. Flax has a large number of BGAL genes, which display a distinct distribution among the BGAL sub-families, in comparison to other closely related species with available whole genome assemblies. Almost every flax BGAL was expressed in fibres, the majority of which expressed predominately in fibres as compared to other tissues, suggesting an important role for the expansion of this gene family in the development of this species as a fibre crop. Variations displayed in the canonical GH35 active site suggest a variety of roles unique to flax, which will require

  10. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  11. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    PubMed

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  12. msh/Msx gene family in neural development.

    PubMed

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  13. Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber

    PubMed Central

    2014-01-01

    Background Auxin signaling has a vital function in the regulation of plant growth and development, both which are known to be mediated by auxin-responsive genes. So far, significant progress has been made toward the identification and characterization of auxin-response genes in several model plants, while no systematic analysis for these families was reported in cucumber (Cucumis sativus L.), a reference species for Cucurbitaceae crops. The comprehensive analyses will help design experiments for functional validation of their precise roles in plant development and stress responses. Results A genome-wide search for auxin-response gene homologues identified 16 auxin-response factors (ARFs), 27 auxin/indole acetic acids (Aux/IAAs), 10 Gretchen Hagen 3 (GH3s), 61 small auxin-up mRNAs (SAURs), and 39 lateral organ boundaries (LBDs) in cucumber. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of these five auxin-related family members. The distribution and density of auxin response-related genes on chromosomes were not uniform. Evolutionary analysis showed that the chromosomal segment duplications mainly contributed to the expansion of the CsARF, CsIAA, CsGH3, and CsLBD gene families. Quantitative real-time RT-PCR analysis demonstrated that many ARFs, AUX/IAAs, GH3s, SAURs, and LBD genes were expressed in diverse patterns within different organs/tissues and during different development stages. They were also implicated in IAA, methyl jasmonic acid, or salicylic acid response, which is consistent with the finding that a great number of diverse cis-elements are present in their promoter regions involving a variety of signaling transduction pathways. Conclusion Genome-wide comparative analysis of auxin response-related family genes and their expression analysis provide new evidence for the potential role of auxin in development and hormone response of plants. Our data imply that the auxin response genes may be

  14. Identifying gene networks underlying the neurobiology of ethanol and alcoholism.

    PubMed

    Wolen, Aaron R; Miles, Michael F

    2012-01-01

    For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.

  15. Exome sequencing identifies titin mutations causing hereditary myopathy with early respiratory failure (HMERF) in families of diverse ethnic origins.

    PubMed

    Toro, Camilo; Olivé, Montse; Dalakas, Marinos C; Sivakumar, Kumaraswami; Bilbao, Juan M; Tyndel, Felix; Vidal, Noemí; Farrero, Eva; Sambuughin, Nyamkhishig; Goldfarb, Lev G

    2013-03-20

    Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin.

  16. Gene expression profiles of breast biopsies from healthy women identify a group with claudin-low features

    PubMed Central

    2011-01-01

    Background Increased understanding of the variability in normal breast biology will enable us to identify mechanisms of breast cancer initiation and the origin of different subtypes, and to better predict breast cancer risk. Methods Gene expression patterns in breast biopsies from 79 healthy women referred to breast diagnostic centers in Norway were explored by unsupervised hierarchical clustering and supervised analyses, such as gene set enrichment analysis and gene ontology analysis and comparison with previously published genelists and independent datasets. Results Unsupervised hierarchical clustering identified two separate clusters of normal breast tissue based on gene-expression profiling, regardless of clustering algorithm and gene filtering used. Comparison of the expression profile of the two clusters with several published gene lists describing breast cells revealed that the samples in cluster 1 share characteristics with stromal cells and stem cells, and to a certain degree with mesenchymal cells and myoepithelial cells. The samples in cluster 1 also share many features with the newly identified claudin-low breast cancer intrinsic subtype, which also shows characteristics of stromal and stem cells. More women belonging to cluster 1 have a family history of breast cancer and there is a slight overrepresentation of nulliparous women in cluster 1. Similar findings were seen in a separate dataset consisting of histologically normal tissue from both breasts harboring breast cancer and from mammoplasty reductions. Conclusion This is the first study to explore the variability of gene expression patterns in whole biopsies from normal breasts and identified distinct subtypes of normal breast tissue. Further studies are needed to determine the specific cell contribution to the variation in the biology of normal breasts, how the clusters identified relate to breast cancer risk and their possible link to the origin of the different molecular subtypes of breast

  17. Gene expression profiles of breast biopsies from healthy women identify a group with claudin-low features.

    PubMed

    Haakensen, Vilde D; Lingjaerde, Ole Christian; Lüders, Torben; Riis, Margit; Prat, Aleix; Troester, Melissa A; Holmen, Marit M; Frantzen, Jan Ole; Romundstad, Linda; Navjord, Dina; Bukholm, Ida K; Johannesen, Tom B; Perou, Charles M; Ursin, Giske; Kristensen, Vessela N; Børresen-Dale, Anne-Lise; Helland, Aslaug

    2011-11-01

    Increased understanding of the variability in normal breast biology will enable us to identify mechanisms of breast cancer initiation and the origin of different subtypes, and to better predict breast cancer risk. Gene expression patterns in breast biopsies from 79 healthy women referred to breast diagnostic centers in Norway were explored by unsupervised hierarchical clustering and supervised analyses, such as gene set enrichment analysis and gene ontology analysis and comparison with previously published genelists and independent datasets. Unsupervised hierarchical clustering identified two separate clusters of normal breast tissue based on gene-expression profiling, regardless of clustering algorithm and gene filtering used. Comparison of the expression profile of the two clusters with several published gene lists describing breast cells revealed that the samples in cluster 1 share characteristics with stromal cells and stem cells, and to a certain degree with mesenchymal cells and myoepithelial cells. The samples in cluster 1 also share many features with the newly identified claudin-low breast cancer intrinsic subtype, which also shows characteristics of stromal and stem cells. More women belonging to cluster 1 have a family history of breast cancer and there is a slight overrepresentation of nulliparous women in cluster 1. Similar findings were seen in a separate dataset consisting of histologically normal tissue from both breasts harboring breast cancer and from mammoplasty reductions. This is the first study to explore the variability of gene expression patterns in whole biopsies from normal breasts and identified distinct subtypes of normal breast tissue. Further studies are needed to determine the specific cell contribution to the variation in the biology of normal breasts, how the clusters identified relate to breast cancer risk and their possible link to the origin of the different molecular subtypes of breast cancer.

  18. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype.

    PubMed

    Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul

    2016-01-01

    To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  19. 20 ans après: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition.

    PubMed

    Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis

    2014-06-01

    Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene-environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients.

  20. The Insect SNMP Gene Family

    DTIC Science & Technology

    2009-01-01

    The insect SNMP gene family Richard G. Vogt a,*,1, Natalie E. Miller a, Rachel Litvack a, Richard A. Fandino a, Jackson Sparks a, Jon Staples a...Wallace Beltsville Agricultural Research Center Plant Sciences Institute, Invasive Insect Biocontrol and Behavior Laboratory, Bldg. 007, Rm. 030...keywords: Pheromone Receptors Olfactory Gustatory Chemosensory Gustatory Mosquito Fly a b s t r a c t SNMPs are membrane proteins observed to associate with

  1. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family.

    PubMed

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta; Wissinger, Bernd

    2014-01-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression

  2. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family

    PubMed Central

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta

    2014-01-01

    Purpose: Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. Methods: We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. Results: The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. Conclusion: We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease

  3. Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes

    PubMed Central

    Yockteng, Roxana; Marthey, Sylvain; Chiapello, Hélène; Gendrault, Annie; Hood, Michael E; Rodolphe, François; Devier, Benjamin; Wincker, Patrick; Dossat, Carole; Giraud, Tatiana

    2007-01-01

    Background The basidiomycete fungus Microbotryum violaceum is responsible for the anther-smut disease in many plants of the Caryophyllaceae family and is a model in genetics and evolutionary biology. Infection is initiated by dikaryotic hyphae produced after the conjugation of two haploid sporidia of opposite mating type. This study describes M. violaceum ESTs corresponding to nuclear genes expressed during conjugation and early hyphal production. Results A normalized cDNA library generated 24,128 sequences, which were assembled into 7,765 unique genes; 25.2% of them displayed significant similarity to annotated proteins from other organisms, 74.3% a weak similarity to the same set of known proteins, and 0.5% were orphans. We identified putative pheromone receptors and genes that in other fungi are involved in the mating process. We also identified many sequences similar to genes known to be involved in pathogenicity in other fungi. The M. violaceum EST database, MICROBASE, is available on the Web and provides access to the sequences, assembled contigs, annotations and programs to compare similarities against MICROBASE. Conclusion This study provides a basis for cloning the mating type locus, for further investigation of pathogenicity genes in the anther smut fungi, and for comparative genomics. PMID:17692127

  4. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns.

    PubMed

    Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong

    2015-04-01

    Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Whole Wiskott‑Aldrich syndrome protein gene deletion identified by high throughput sequencing.

    PubMed

    He, Xiangling; Zou, Runying; Zhang, Bing; You, Yalan; Yang, Yang; Tian, Xin

    2017-11-01

    Wiskott‑Aldrich syndrome (WAS) is a rare X‑linked recessive immunodeficiency disorder, characterized by thrombocytopenia, small platelets, eczema and recurrent infections associated with increased risk of autoimmunity and malignancy disorders. Mutations in the WAS protein (WASP) gene are responsible for WAS. To date, WASP mutations, including missense/nonsense, splicing, small deletions, small insertions, gross deletions, and gross insertions have been identified in patients with WAS. In addition, WASP‑interacting proteins are suspected in patients with clinical features of WAS, in whom the WASP gene sequence and mRNA levels are normal. The present study aimed to investigate the application of next generation sequencing in definitive diagnosis and clinical therapy for WAS. A 5 month‑old child with WAS who displayed symptoms of thrombocytopenia was examined. Whole exome sequence analysis of genomic DNA showed that the coverage and depth of WASP were extremely low. Quantitative polymerase chain reaction indicated total WASP gene deletion in the proband. In conclusion, high throughput sequencing is useful for the verification of WAS on the genetic profile, and has implications for family planning guidance and establishment of clinical programs.

  6. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice.

    PubMed

    Yin, Hengfu; Gao, Peng; Liu, Chengwu; Yang, Jun; Liu, Zhongchi; Luo, Da

    2013-01-01

    In vascular plants, the regulation of stem cell niche determines development of aerial shoot which consists of stems and lateral organs. Intercalary meristem (IM) controls internode elongation in rice and other grasses, however little attention has been paid to the underlying mechanism of stem cell maintenance. Here, we investigated the stem development in rice and showed that the Shortened Uppermost Internode 1 (SUI1) family of genes are pivotal for development of rice stems. We demonstrated that SUI-family genes regulate the development of IM for internode elongation and also the cell expansion of the panicle stem rachis in rice. The SUI-family genes encoded base-exchange types of phosphatidylserine synthases (PSSs), which possessed enzymatic activity in a yeast complementary assay. Overexpression of SUI1 and SUI2 caused outgrowths of internodes during vegetative development, and we showed that expression patterns of Oryza Sativa Homeobox 15 (OSH15) and Histone4 were impaired. Furthermore, genome-wide gene expression analysis revealed that overexpression and RNA knockdown of SUI-family genes affected downstream gene expression related to phospholipid metabolic pathways. Moreover, using Ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry, we analyzed PS contents in different genetic backgrounds of rice and showed that the quantity of very long chain fatty acids PS is affected by transgene of SUI-family genes. Our study reveals a new mechanism conveyed by the SUI1 pathway and provides evidence to link lipid metabolism with plant stem cell maintenance.

  7. Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates

    PubMed Central

    Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin

    2014-01-01

    The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579

  8. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls

    PubMed Central

    2014-01-01

    Background Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families. Results Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, β-1,4-galactan β-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families. Conclusions Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other

  9. Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network.

    PubMed

    Chen, Xi; Wang, Qiao-Ling; Zhang, Meng-Hui

    2017-10-01

    The current study aimed to identify key genes in glaucoma based on a benchmarked dataset and gene regulatory network (GRN). Local and global noise was added to the gene expression dataset to produce a benchmarked dataset. Differentially-expressed genes (DEGs) between patients with glaucoma and normal controls were identified utilizing the Linear Models for Microarray Data (Limma) package based on benchmarked dataset. A total of 5 GRN inference methods, including Zscore, GeneNet, context likelihood of relatedness (CLR) algorithm, Partial Correlation coefficient with Information Theory (PCIT) and GEne Network Inference with Ensemble of Trees (Genie3) were evaluated using receiver operating characteristic (ROC) and precision and recall (PR) curves. The interference method with the best performance was selected to construct the GRN. Subsequently, topological centrality (degree, closeness and betweenness) was conducted to identify key genes in the GRN of glaucoma. Finally, the key genes were validated by performing reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 176 DEGs were detected from the benchmarked dataset. The ROC and PR curves of the 5 methods were analyzed and it was determined that Genie3 had a clear advantage over the other methods; thus, Genie3 was used to construct the GRN. Following topological centrality analysis, 14 key genes for glaucoma were identified, including IL6 , EPHA2 and GSTT1 and 5 of these 14 key genes were validated by RT-qPCR. Therefore, the current study identified 14 key genes in glaucoma, which may be potential biomarkers to use in the diagnosis of glaucoma and aid in identifying the molecular mechanism of this disease.

  10. Identification of potential platelet alloantigens in the Equidae family by comparison of gene sequences encoding major platelet membrane glycoproteins.

    PubMed

    Boudreaux, Mary K; Humphries, Drew M

    2013-12-01

    Platelet alloantigens in horses may play an important role in the development of neonatal alloimmune thrombocytopenia (NAIT). The objective of this study was to evaluate genes encoding major platelet glycoproteins within the Equidae family in an effort to identify potential alloantigens. DNA was isolated from blood samples obtained from Equidae family members, including a Holsteiner-Oldenburg cross, a Quarter horse, a donkey, and a Plains zebra (Equus burchelli). Gene sequences encoding equine platelet membrane glycoproteins IIb, IIIa (integrin subunits αIIb and β3), Ia (integrin subunit α2), and Ibα were determined using PCR. Gene sequences were compared to the equine genome available on GenBank. Polymorphisms that would be predicted to result in amino acid changes on platelet surfaces were documented and compared with known alloantigenic sites documented on human platelets. Amino acid differences were predicted based on nucleotide sequences for all 4 genes. Nine differences were documented for αIIb, 5 differences were documented for β3, 7 differences were documented for α2, and 16 differences were documented for Ibα outside the macroglycopeptide region. This study represents the first effort at identifying potential platelet alloantigens in members of the Equidae Family based on evaluation of gene sequences. The data obtained form the groundwork for identifying potential platelet alloantigens involved in transfusion reactions and neonatal alloimmune thrombocytopenia (NAIT). More work is required to determine whether the predicted amino acid differences documented in this study play a role in alloimmunity, and whether other polymorphisms not detected in this study are present that may result in alloimmunity. © 2013 American Society for Veterinary Clinical Pathology.

  11. Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis.

    PubMed

    Dinckan, N; Du, R; Petty, L E; Coban-Akdemir, Z; Jhangiani, S N; Paine, I; Baugh, E H; Erdem, A P; Kayserili, H; Doddapaneni, H; Hu, J; Muzny, D M; Boerwinkle, E; Gibbs, R A; Lupski, J R; Uyguner, Z O; Below, J E; Letra, A

    2018-01-01

    Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.

  12. A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease.

    PubMed

    Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian; Xia, Kun

    2010-12-08

    Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband's extended family. The proband's computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene.

  13. A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease

    PubMed Central

    Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian

    2010-01-01

    Purpose Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. Methods We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband’s extended family. Results The proband’s computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Conclusions Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene. PMID:21179243

  14. Mutations in the RS1 gene in a Chinese family with X-linked juvenile retinoschisis.

    PubMed

    Hou, Qiaofang; Chu, Yan; Guo, Qiannan; Wu, Dong; Liao, Shixiu

    2012-02-01

    The purpose of our study was to identify the mutations in the retinoschisis 1 (RS1) gene, which was associated with X-linked retinoschisis (XLRS) in a four-generation Chinese family, and to provide the theoretical basis for gene diagnosis and gene therapy. Genomic DNA was extracted from peripheral leukocytes. All six exons and flanking intronic regions were amplified by polymerase chain reaction (PCR), followed by direct sequencing. Through our genetic analysis, one frameshift 573delG mutation was identified in the patients of this four-generation pedigree; however, this mutation was absent in normal or non-carrier subjects. In conclusion, this 573delG mutation is reported in the Chinese population for the first time. This mutation widens the mutational spectrum of RS1 in Asians. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.

  15. A novel deletion mutation in RS1 gene caused X-linked juvenile retinoschisis in a Chinese family.

    PubMed

    Huang, Y; Mei, L; Gui, B; Su, W; Liang, D; Wu, L; Pan, Q

    2014-11-01

    X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. This study aimed to identify the underlying genetic defect in a Chinese family with XLRS. The proband underwent complete ophthalmic examinations, including fundus examination, fundus autofluorescence, and optical coherence tomography. DNA extracted from proband and his younger brother was screened for mutations in RS1 gene. The detected RS1 mutation was tested in all available family members and 200 healthy controls. Reduced visual acuity, spoke-wheel pattern at the fovea, and split retina were observed in the proband. A novel frameshift mutation c.206-207delTG in the RS1 gene, leading to a truncated protein (p.L69fs16X), was identified in the proband and his younger brother. This mutation was not found in any unaffected member or in the healthy controls. The mother of the proband was hemizygous for this mutant allele. We identified a novel causative mutation of RS1 in a Chinese family with XLRS. This finding expands the mutation spectrum of RS1 and provides evidence for a phenotype-genotype study in XLRS.

  16. A novel deletion mutation in RS1 gene caused X-linked juvenile retinoschisis in a Chinese family

    PubMed Central

    Huang, Y; Mei, L; Gui, B; Su, W; Liang, D; Wu, L; Pan, Q

    2014-01-01

    Purpose X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. This study aimed to identify the underlying genetic defect in a Chinese family with XLRS. Methods The proband underwent complete ophthalmic examinations, including fundus examination, fundus autofluorescence, and optical coherence tomography. DNA extracted from proband and his younger brother was screened for mutations in RS1 gene. The detected RS1 mutation was tested in all available family members and 200 healthy controls. Results Reduced visual acuity, spoke-wheel pattern at the fovea, and split retina were observed in the proband. A novel frameshift mutation c.206-207delTG in the RS1 gene, leading to a truncated protein (p.L69fs16X), was identified in the proband and his younger brother. This mutation was not found in any unaffected member or in the healthy controls. The mother of the proband was hemizygous for this mutant allele. Conclusions We identified a novel causative mutation of RS1 in a Chinese family with XLRS. This finding expands the mutation spectrum of RS1 and provides evidence for a phenotype–genotype study in XLRS. PMID:25168411

  17. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae.

    PubMed

    Mameaux, Sabine; Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Jack, Peter; Werner, Peter; Gray, John C; Greenland, Andy J; Powell, Wayne

    2012-01-01

    The genomes of cereals such as wheat (Triticum aestivum) and barley (Hordeum vulgare) are large and therefore problematic for the map-based cloning of agronomicaly important traits. However, comparative approaches within the Poaceae permit transfer of molecular knowledge between species, despite their divergence from a common ancestor sixty million years ago. The finding that null variants of the rice gene cytokinin oxidase/dehydrogenase 2 (OsCKX2) result in large yield increases provides an opportunity to explore whether similar gains could be achieved in other Poaceae members. Here, phylogenetic, molecular and comparative analyses of CKX families in the sequenced grass species rice, brachypodium, sorghum, maize and foxtail millet, as well as members identified from the transcriptomes/genomes of wheat and barley, are presented. Phylogenetic analyses define four Poaceae CKX clades. Comparative analyses showed that CKX phylogenetic groupings can largely be explained by a combination of local gene duplication, and the whole-genome duplication event that predates their speciation. Full-length OsCKX2 homologues in barley (HvCKX2.1, HvCKX2.2) and wheat (TaCKX2.3, TaCKX2.4, TaCKX2.5) are characterized, with comparative analysis at the DNA, protein and genetic/physical map levels suggesting that true CKX2 orthologs have been identified. Furthermore, our analysis shows CKX2 genes in barley and wheat have undergone a Triticeae-specific gene-duplication event. Finally, by identifying ten of the eleven CKX genes predicted to be present in barley by comparative analyses, we show that next-generation sequencing approaches can efficiently determine the gene space of large-genome crops. Together, this work provides the foundation for future functional investigation of CKX family members within the Poaceae. © 2011 National Institute of Agricultural Botany (NIAB). Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell

  18. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli.

    PubMed

    Gao, Jie; Lan, Ting

    2016-01-19

    Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.

  19. XPC gene mutations in families with xeroderma pigmentosum from Pakistan; prevalent founder effect.

    PubMed

    Ijaz, Ambreen; Basit, Sulman; Gul, Ajab; Batool, Lilas; Hussain, Abrar; Afzal, Sibtain; Ramzan, Khushnooda; Ahmad, Jamil; Wali, Abdul

    2018-03-23

    Xeroderma pigmentosum (XP) is a rare autosomal recessive skin disorder characterized by hyperpigmentation, premature skin aging, ocular and cutaneous photosensitivity, and increased risk of skin carcinoma. We investigated seven consanguineous XP families with nine patients from Pakistan. All the Patients exhibited typical clinical symptoms of XP since first year of life. Whole genome SNP genotyping identified a 14 Mb autozygous region segregating with the disease phenotype on chromosome 3p25.1. DNA sequencing of XPC gene revealed a founder homozygous splice site mutation (c.2251-1G>C) in patients from six families (A-F) and a homozygous nonsense mutation (c.1399C>T; p.Gln467*) in patients of family G. This is the first report of XPC mutations, underlying XP phenotype, in Pakistani population. © 2018 Japanese Teratology Society.

  20. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica)

    PubMed Central

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-01-01

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238

  1. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica).

    PubMed

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-02-09

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple.

  2. Rapid Expansion of Immune-Related Gene Families in the House Fly, Musca domestica

    PubMed Central

    Lazzaro, Brian P.; Clark, Andrew G.

    2017-01-01

    Abstract The house fly, Musca domestica, occupies an unusual diversity of potentially septic niches compared with other sequenced Dipteran insects and is a vector of numerous diseases of humans and livestock. In the present study, we apply whole-transcriptome sequencing to identify genes whose expression is regulated in adult flies upon bacterial infection. We then combine the transcriptomic data with analysis of rates of gene duplication and loss to provide insight into the evolutionary dynamics of immune-related genes. Genes up-regulated after bacterial infection are biased toward being evolutionarily recent innovations, suggesting the recruitment of novel immune components in the M. domestica or ancestral Dipteran lineages. In addition, using new models of gene family evolution, we show that several different classes of immune-related genes, particularly those involved in either pathogen recognition or pathogen killing, are duplicating at a significantly accelerated rate on the M. domestica lineage relative to other Dipterans. Taken together, these results suggest that the M. domestica immune response includes an elevated diversity of genes, perhaps as a consequence of its lifestyle in septic environments. PMID:28087775

  3. A novel APOC2 gene mutation identified in a Chinese patient with severe hypertriglyceridemia and recurrent pancreatitis.

    PubMed

    Jiang, Jingjing; Wang, Yuhui; Ling, Yan; Kayoumu, Abudurexiti; Liu, George; Gao, Xin

    2016-01-16

    The severe forms of hypertriglyceridemia are usually caused by genetic defects. In this study, we described a Chinese female with severe hypertriglyceridemia caused by a novel homozygous mutation in the APOC2 gene. Lipid profiles of the pedigree were studied in detail. LPL and HL activity were also measured. The coding regions of 5 candidate genes (namely LPL, APOC2, APOA5, LMF1, and GPIHBP1) were sequenced using genomic DNA from peripheral leucocytes. The ApoE gene was also genotyped. Serum triglyceride level was extremely high in the proband, compared with other family members. Plasma LPL activity was also significantly reduced in the proband. Serum ApoCII was very low in the proband as well as in the heterozygous mutation carriers. A novel mutation (c.86A > CC) was identified on exon 3 [corrected] of the APOC2 gene, which converted the Asp [corrected] codon at position 29 into Ala, followed by a termination codon (TGA). This study presented the first case of ApoCII deficiency in the Chinese population, with a novel mutation c.86A > CC in the APOC2 gene identified. Serum ApoCII protein might be a useful screening test for identifying mutation carriers.

  4. Analysis of the Na+/Ca2+ Exchanger Gene Family within the Phylum Nematoda

    PubMed Central

    He, Chao; O'Halloran, Damien M.

    2014-01-01

    Na+/Ca2+ exchangers are low affinity, high capacity transporters that rapidly transport calcium at the plasma membrane, mitochondrion, endoplasmic (and sarcoplasmic) reticulum, and the nucleus. Na+/Ca2+ exchangers are widely expressed in diverse cell types where they contribute homeostatic balance to calcium levels. In animals, Na+/Ca2+ exchangers are divided into three groups based upon stoichiometry: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers (NCKX), and Ca2+/Cation exchangers (CCX). In mammals there are three NCX genes, five NCKX genes and one CCX (NCLX) gene. The genome of the nematode Caenorhabditis elegans contains ten Na+/Ca2+ exchanger genes: three NCX; five CCX; and two NCKX genes. Here we set out to characterize structural and taxonomic specializations within the family of Na+/Ca2+ exchangers across the phylum Nematoda. In this analysis we identify Na+/Ca2+ exchanger genes from twelve species of nematodes and reconstruct their phylogenetic and evolutionary relationships. The most notable feature of the resulting phylogenies was the heterogeneous evolution observed within exchanger subtypes. Specifically, in the case of the CCX exchangers we did not detect members of this class in three Clade III nematodes. Within the Caenorhabditis and Pristionchus lineages we identify between three and five CCX representatives, whereas in other Clade V and also Clade IV nematode taxa we only observed a single CCX gene in each species, and in the Clade III nematode taxa that we sampled we identify NCX and NCKX encoding genes but no evidence of CCX representatives using our mining approach. We also provided re-annotation for predicted CCX gene structures from Heterorhabditis bacteriophora and Caenorhabditis japonica by RT-PCR and sequencing. Together, these findings reveal a complex picture of Na+/Ca2+ transporters in nematodes that suggest an incongruent evolutionary history of proteins that provide central control of calcium dynamics. PMID:25397810

  5. Diametrical clustering for identifying anti-correlated gene clusters.

    PubMed

    Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman

    2003-09-01

    Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.

  6. New mutations in BBS genes in small consanguineous families with Bardet-Biedl syndrome: Detection of candidate regions by homozygosity mapping

    PubMed Central

    Pereiro, Ines; Piñeiro-Gallego, Teresa; Baiget, Montserrat; Borrego, Salud; Ayuso, Carmen; Searby, Charles; Nishimura, Darryl

    2010-01-01

    Purpose Bardet-Biedl syndrome (BBS, OMIM 209900) is a rare multi-organ disorder in which BBS patients manifest a variable phenotype that includes retinal dystrophy, polydactyly, mental delay, obesity, and also reproductive tract and renal abnormalities. Mutations in 14 genes (BBS1–BBS14) are found in 70% of the patients, indicating that additional mutations in known and new BBS genes remain to be identified. Therefore, the molecular diagnosis of this complex disorder is a challenging task. Methods In this study we show the use of the genome-wide homozygosity mapping strategy in the mutation detection of nine Caucasian BBS families, eight of them consanguineous and one from the same geographic area with no proven consanguinity. Results We identified the disease-causing mutation in six of the families studied, five of which had novel sequence variants in BBS3, BBS6, and BBS12. This is the first null mutation reported in BBS3. Furthermore, this approach defined homozygous candidate regions that could harbor potential candidate genes for BBS in three of the families. Conclusions These findings further underline the importance of homozygosity mapping as a useful technology for diagnosis in small consanguineous families with a complex disease like BBS. PMID:20142850

  7. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees

    PubMed Central

    Ramírez, Santiago R.

    2017-01-01

    Abstract Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. PMID:28854688

  8. Exome Sequence Analysis of 14 Families With High Myopia.

    PubMed

    Kloss, Bethany A; Tompson, Stuart W; Whisenhunt, Kristina N; Quow, Krystina L; Huang, Samuel J; Pavelec, Derek M; Rosenberg, Thomas; Young, Terri L

    2017-04-01

    To identify causal gene mutations in 14 families with autosomal dominant (AD) high myopia using exome sequencing. Select individuals from 14 large Caucasian families with high myopia were exome sequenced. Gene variants were filtered to identify potential pathogenic changes. Sanger sequencing was used to confirm variants in original DNA, and to test for disease cosegregation in additional family members. Candidate genes and chromosomal loci previously associated with myopic refractive error and its endophenotypes were comprehensively screened. In 14 high myopia families, we identified 73 rare and 31 novel gene variants as candidates for pathogenicity. In seven of these families, two of the novel and eight of the rare variants were within known myopia loci. A total of 104 heterozygous nonsynonymous rare variants in 104 genes were identified in 10 out of 14 probands. Each variant cosegregated with affection status. No rare variants were identified in genes known to cause myopia or in genes closest to published genome-wide association study association signals for refractive error or its endophenotypes. Whole exome sequencing was performed to determine gene variants implicated in the pathogenesis of AD high myopia. This study provides new genes for consideration in the pathogenesis of high myopia, and may aid in the development of genetic profiling of those at greatest risk for attendant ocular morbidities of this disorder.

  9. Genomewide association study for susceptibility genes contributing to familial Parkinson disease

    PubMed Central

    Pankratz, Nathan; Wilk, Jemma B.; Latourelle, Jeanne C.; DeStefano, Anita L.; Halter, Cheryl; Pugh, Elizabeth W.; Doheny, Kimberly F.; Gusella, James F.; Nichols, William C.

    2009-01-01

    Five genes have been identified that contribute to Mendelian forms of Parkinson disease (PD); however, mutations have been found in fewer than 5% of patients, suggesting that additional genes contribute to disease risk. Unlike previous studies that focused primarily on sporadic PD, we have performed the first genomewide association study (GWAS) in familial PD. Genotyping was performed with the Illumina HumanCNV370Duo array in 857 familial PD cases and 867 controls. A logistic model was employed to test for association under additive and recessive modes of inheritance after adjusting for gender and age. No result met genomewide significance based on a conservative Bonferroni correction. The strongest association result was with SNPs in the GAK/DGKQ region on chromosome 4 (additive model: p = 3.4 × 10−6; OR = 1.69). Consistent evidence of association was also observed to the chromosomal regions containing SNCA (additive model: p = 5.5 × 10−5; OR = 1.35) and MAPT (recessive model: p = 2.0 × 10−5; OR = 0.56). Both of these genes have been implicated previously in PD susceptibility; however, neither was identified in previous GWAS studies of PD. Meta-analysis was performed using data from a previous case–control GWAS, and yielded improved p values for several regions, including GAK/DGKQ (additive model: p = 2.5 × 10−7) and the MAPT region (recessive model: p = 9.8 × 10−6; additive model: p = 4.8 × 10−5). These data suggest the identification of new susceptibility alleles for PD in the GAK/DGKQ region, and also provide further support for the role of SNCA and MAPT in PD susceptibility. PMID:18985386

  10. Identification of the gene for fly non-muscle myosin heavy chain: Drosophila myosin heavy chains are encoded by a gene family.

    PubMed Central

    Kiehart, D P; Lutz, M S; Chan, D; Ketchum, A S; Laymon, R A; Nguyen, B; Goldstein, L S

    1989-01-01

    In contrast to vertebrate species Drosophila has a single myosin heavy chain gene that apparently encodes all sarcomeric heavy chain polypeptides. Flies also contain a cytoplasmic myosin heavy chain polypeptide that by immunological and peptide mapping criteria is clearly different from the major thoracic muscle isoform. Here, we identify the gene that encodes this cytoplasmic isoform and demonstrate that it is distinct from the muscle myosin heavy chain gene. Thus, fly myosin heavy chains are the products of a gene family. Our data suggest that the contractile function required to power myosin based movement in non-muscle cells requires myosin diversity beyond that available in a single heavy chain gene. In addition, we show, that accumulation of cytoplasmic myosin transcripts is regulated in a developmental stage specific fashion, consistent with a key role for this protein in the movements of early embryogenesis. Images PMID:2498088

  11. De novo dominant mutation of SOX10 gene in a Chinese family with Waardenburg syndrome type II.

    PubMed

    Chen, Kaitian; Zong, Ling; Liu, Min; Zhan, Yuan; Wu, Xuan; Zou, Wenting; Jiang, Hongyan

    2014-06-01

    Waardenburg syndrome is a rare genetic disorder, inherited as an autosomal dominant trait. The condition is characterized by sensorineural hearing loss and pigment disturbances of the hair, skin, and iris. The de novo mutation in the SOX10 gene, responsible for Waardenburg syndrome type II, is rarely seen. The present study aimed to identify the genetic causes of Waardenburg syndrome type II in a Chinese family. Clinical and molecular evaluations were conducted in a Chinese family with Waardenburg syndrome type II. A novel SOX10 heterozygous c.259-260delCT mutation was identified. Heterozygosity was not observed in the parents and sister of the proband, indicating that the mutation has arisen de novo. The novel frameshift mutation, located in exon 3 of the SOX10 gene, disrupted normal amino acid coding from Leu87, leading to premature termination at nucleotide 396 (TGA). The high mobility group domain of SOX10 was inferred to be partially impaired. The novel heterozygous c.259-260delCT mutation in the SOX10 gene was considered to be the cause of Waardenburg syndrome in the proband. The clinical and genetic characterization of this family would help elucidate the genetic heterogeneity of SOX10 in Waardenburg syndrome type II. Moreover, the de novo pattern expanded the mutation data of SOX10. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Microarray identifies ADAM family members as key responders to TGF-beta1 in alveolar epithelial cells.

    PubMed

    Keating, Dominic T; Sadlier, Denise M; Patricelli, Andrea; Smith, Sinead M; Walls, Dermot; Egan, Jim J; Doran, Peter P

    2006-09-01

    The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-beta1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-beta1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  13. Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize

    PubMed Central

    Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu

    2011-01-01

    Background Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Conclusions Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development. PMID:22164299

  14. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize.

    PubMed

    Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu

    2011-01-01

    Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development.

  15. A novel c.240_241insGG mutation in NDP gene in a family with Norrie disease.

    PubMed

    Andarva, Monavvar; Jamshidi, Javad; Ghaedi, Hamid; Daftarian, Narsis; Emamalizadeh, Babak; Alehabib, Elham; Taghavi, Shaghyegh; Pouriran, Ramin; Darvish, Hossein

    2018-03-01

    Norrie disease (ND) is a rare, X-linked recessive disorder with the main characteristic of early childhood blindness. The aim of the present study was to identify the genetic cause of the disease and the phenotypic characteristics of the patients in an Iranian family with four affected males with ND. Norrie disease pseudoglioma (NDP) gene was sequenced and clinical examination was performed on patients. A GG dinucleotide insertion in exon 3 (c.240_241insGG) of NDP was detected in all patients. The mutation caused a frameshift and an early stop codon (p.Phe81Glyfs*23). A novel mutation was found in the NDP gene in the affected males of the family. As the mutation was absent in the normal male members of the family, it should be the genetic cause of the disease. © 2017 Optometry Australia.

  16. Haplotype analysis of sucrose synthase gene family in three Saccharum species

    PubMed Central

    2013-01-01

    Background Sugarcane is an economically important crop contributing about 80% and 40% to the world sugar and ethanol production, respectively. The complicated genetics consequential to its complex polyploid genome, however, have impeded efforts to improve sugar yield and related important agronomic traits. Modern sugarcane cultivars are complex hybrids derived mainly from crosses among its progenitor species, S. officinarum and S. spontanuem, and to a lesser degree, S. robustom. Atypical of higher plants, sugarcane stores its photoassimilates as sucrose rather than as starch in its parenchymous stalk cells. In the sugar biosynthesis pathway, sucrose synthase (SuSy, UDP-glucose: D-fructose 2-a-D-glucosyltransferase, EC 2.4.1.13) is a key enzyme in the regulation of sucrose accumulation and partitioning by catalyzing the reversible conversion of sucrose and UDP into UDP-glucose and fructose. However, little is known about the sugarcane SuSy gene family members and hence no definitive studies have been reported regarding allelic diversity of SuSy gene families in Saccharum species. Results We identified and characterized a total of five sucrose synthase genes in the three sugarcane progenitor species through gene annotation and PCR haplotype analysis by analyzing 70 to 119 PCR fragments amplified from intron-containing target regions. We detected all but one (i.e. ScSuSy5) of ScSuSy transcripts in five tissue types of three Saccharum species. The average SNP frequency was one SNP per 108 bp, 81 bp, and 72 bp in S. officinarum, S. robustom, and S. spontanuem respectively. The average shared SNP is 15 between S. officinarum and S. robustom, 7 between S. officinarum and S. spontanuem , and 11 between S. robustom and S. spontanuem. We identified 27, 35, and 32 haplotypes from the five ScSuSy genes in S. officinarum, S. robustom, and S. spontanuem respectively. Also, 12, 11, and 9 protein sequences were translated from the haplotypes in S. officinarum, S. robustom, S

  17. Haplotype analysis of sucrose synthase gene family in three Saccharum species.

    PubMed

    Zhang, Jisen; Arro, Jie; Chen, Youqiang; Ming, Ray

    2013-05-10

    Sugarcane is an economically important crop contributing about 80% and 40% to the world sugar and ethanol production, respectively. The complicated genetics consequential to its complex polyploid genome, however, have impeded efforts to improve sugar yield and related important agronomic traits. Modern sugarcane cultivars are complex hybrids derived mainly from crosses among its progenitor species, S. officinarum and S. spontanuem, and to a lesser degree, S. robustom. Atypical of higher plants, sugarcane stores its photoassimilates as sucrose rather than as starch in its parenchymous stalk cells. In the sugar biosynthesis pathway, sucrose synthase (SuSy, UDP-glucose: D-fructose 2-a-D-glucosyltransferase, EC 2.4.1.13) is a key enzyme in the regulation of sucrose accumulation and partitioning by catalyzing the reversible conversion of sucrose and UDP into UDP-glucose and fructose. However, little is known about the sugarcane SuSy gene family members and hence no definitive studies have been reported regarding allelic diversity of SuSy gene families in Saccharum species. We identified and characterized a total of five sucrose synthase genes in the three sugarcane progenitor species through gene annotation and PCR haplotype analysis by analyzing 70 to 119 PCR fragments amplified from intron-containing target regions. We detected all but one (i.e. ScSuSy5) of ScSuSy transcripts in five tissue types of three Saccharum species. The average SNP frequency was one SNP per 108 bp, 81 bp, and 72 bp in S. officinarum, S. robustom, and S. spontanuem respectively. The average shared SNP is 15 between S. officinarum and S. robustom, 7 between S. officinarum and S. spontanuem , and 11 between S. robustom and S. spontanuem. We identified 27, 35, and 32 haplotypes from the five ScSuSy genes in S. officinarum, S. robustom, and S. spontanuem respectively. Also, 12, 11, and 9 protein sequences were translated from the haplotypes in S. officinarum, S. robustom, S. spontanuem

  18. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Novel mutations in CRB1 gene identified in a chinese pedigree with retinitis pigmentosa by targeted capture and next generation sequencing

    PubMed Central

    Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang

    2016-01-01

    PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333

  20. Synthesis, antimicrobial activity and gene structure of a novel member of the dermaseptin B family.

    PubMed

    Fleury, Y; Vouille, V; Beven, L; Amiche, M; Wróblewski, H; Delfour, A; Nicolas, P

    1998-03-09

    Dermaseptins are a family of cationic (Lys-rich) antimicrobial peptides that are abundant in the skin secretions of the arboreal frogs Phyllomedusa bicolor and P. sauvagii. In vitro, these peptides are microbicidal against a wide variety of microorganisms including Gram-positive and Gram-negative bacteria, yeasts, protozoa and fungi. To date, 6 dermaseptin B mature peptides, 24-34 residues long, 2 dermaseptin B cDNAs and 2 gene sequences have been identified in P. bicolor. To assess dermaseptin related genes further, we screened a P. bicolor genomic library with 32P-labeled cDNAs coding either for prepro-dermaseptins B1 or B2 (adenoregulin). A gene sequence was identified that coded a novel dermaseptin B, termed Drg3, which exhibits 23-42% amino acids identities with other members of the family. Analysis of the cDNAs coding precursors for several opioid and antimicrobial peptides originating from the skin of various amphibian species revealed that the 25-residue preproregion of these preproforms are all encoded by conserved nucleotides encompassed by the first coding exon of the Drg3 gene. Synthetic dermaseptin Drg3 exhibited a bactericidal activity towards several species of mollicutes (wall-less eubacteria), firmicutes (Gram-positive eubacteria), and gracilicutes (Gram-negative eubacteria), with minimal inhibitory concentrations (MICs) ranging from 6.25 to 100 microM. Experiments performed on Acholeplasma laidlawii cells revealed that this peptide is membranotropic and that if efficiently depolarizes the plasma membrane.

  1. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation.

    PubMed

    Shaw, Lindsay M; McIntyre, C Lynne; Gresshoff, Peter M; Xue, Gang-Ping

    2009-11-01

    DNA binding with One Finger (Dof) protein is a plant-specific transcription factor implicated in the regulation of many important plant-specific processes, including photosynthesis and carbohydrate metabolism. This study has identified 31 Dof genes (TaDof) in bread wheat through extensive analysis of current nucleotide databases. Phylogenetic analysis suggests that the TaDof family can be divided into four clades. Expression analysis of the TaDof family across all major organs using quantitative RT-PCR and searches of the wheat genome array database revealed that the majority of TaDof members were predominately expressed in vegetative organs. A large number of TaDof members were down-regulated by drought and/or were responsive to the light and dark cycle. Further expression analysis revealed that light up-regulated TaDof members were highly correlated in expression with a number of genes that are involved in photosynthesis or sucrose transport. These data suggest that the TaDof family may have an important role in light-mediated gene regulation, including involvement in the photosynthetic process.

  2. Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean

    PubMed Central

    Wang, Ning; Zhong, Xiujuan; Cong, Yahui; Wang, Tingting; Yang, Songnan; Li, Yan; Gai, Junyi

    2016-01-01

    Phosphoenolpyruvate carboxylase (PEPC) plays an important role in assimilating atmospheric CO2 during C4 and crassulacean acid metabolism photosynthesis, and also participates in various non-photosynthetic processes, including fruit ripening, stomatal opening, supporting carbon–nitrogen interactions, seed formation and germination, and regulation of plant tolerance to stresses. However, a comprehensive analysis of PEPC family in Glycine max has not been reported. Here, a total of ten PEPC genes were identified in soybean and denominated as GmPEPC1-GmPEPC10. Based on the phylogenetic analysis of the PEPC proteins from 13 higher plant species including soybean, PEPC family could be classified into two subfamilies, which was further supported by analyses of their conserved motifs and gene structures. Nineteen cis-regulatory elements related to phytohormones, abiotic and biotic stresses were identified in the promoter regions of GmPEPC genes, indicating their roles in soybean development and stress responses. GmPEPC genes were expressed in various soybean tissues and most of them responded to the exogenously applied phytohormones. GmPEPC6, GmPEPC8 and GmPEPC9 were significantly induced by aluminum toxicity, cold, osmotic and salt stresses. In addition, the enzyme activities of soybean PEPCs were also up-regulated by these treatments, suggesting their potential roles in soybean response to abiotic stresses. PMID:27924923

  3. Origin and Evolution of the Sponge Aggregation Factor Gene Family

    PubMed Central

    Grice, Laura F.; Gauthier, Marie E.A.; Roper, Kathrein E.; Fernàndez-Busquets, Xavier; Degnan, Sandie M.

    2017-01-01

    Although discriminating self from nonself is a cardinal animal trait, metazoan allorecognition genes do not appear to be homologous. Here, we characterize the Aggregation Factor (AF) gene family, which encodes putative allorecognition factors in the demosponge Amphimedon queenslandica, and trace its evolution across 24 sponge (Porifera) species. The AF locus in Amphimedon is comprised of a cluster of five similar genes that encode Calx-beta and Von Willebrand domains and a newly defined Wreath domain, and are highly polymorphic. Further AF variance appears to be generated through individualistic patterns of RNA editing. The AF gene family varies between poriferans, with protein sequences and domains diagnostic of the AF family being present in Amphimedon and other demosponges, but absent from other sponge classes. Within the demosponges, AFs vary widely with no two species having the same AF repertoire or domain organization. The evolution of AFs suggests that their diversification occurs via high allelism, and the continual and rapid gain, loss and shuffling of domains over evolutionary time. Given the marked differences in metazoan allorecognition genes, we propose the rapid evolution of AFs in sponges provides a model for understanding the extensive diversification of self–nonself recognition systems in the animal kingdom. PMID:28104746

  4. ENU Mutagenesis in Mice Identifies Candidate Genes For Hypogonadism

    PubMed Central

    Weiss, Jeffrey; Hurley, Lisa A.; Harris, Rebecca M.; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A.; Moran, Jennifer L.; Beier, David R.; Mason, Christopher; Jameson, J. Larry

    2012-01-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low density genome-wide SNP arrays. Ten of the fifteen lines were pursued further using higher resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility. PMID:22258617

  5. Novel mutations in CRB1 and ABCA4 genes cause Leber congenital amaurosis and Stargardt disease in a Swedish family

    PubMed Central

    Jonsson, Frida; Burstedt, Marie S; Sandgren, Ola; Norberg, Anna; Golovleva, Irina

    2013-01-01

    This study aimed to identify genetic mechanisms underlying severe retinal degeneration in one large family from northern Sweden, members of which presented with early-onset autosomal recessive retinitis pigmentosa and juvenile macular dystrophy. The clinical records of affected family members were analysed retrospectively and ophthalmological and electrophysiological examinations were performed in selected cases. Mutation screening was initially performed with microarrays, interrogating known mutations in the genes associated with recessive retinitis pigmentosa, Leber congenital amaurosis and Stargardt disease. Searching for homozygous regions with putative causative disease genes was done by high-density SNP-array genotyping, followed by segregation analysis of the family members. Two distinct phenotypes of retinal dystrophy, Leber congenital amaurosis and Stargardt disease were present in the family. In the family, four patients with Leber congenital amaurosis were homozygous for a novel c.2557C>T (p.Q853X) mutation in the CRB1 gene, while of two cases with Stargardt disease, one was homozygous for c.5461-10T>C in the ABCA4 gene and another was carrier of the same mutation and a novel ABCA4 mutation c.4773+3A>G. Sequence analysis of the entire ABCA4 gene in patients with Stargardt disease revealed complex alleles with additional sequence variants, which were evaluated by bioinformatics tools. In conclusion, presence of different genetic mechanisms resulting in variable phenotype within the family is not rare and can challenge molecular geneticists, ophthalmologists and genetic counsellors. PMID:23443024

  6. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  7. Point mutation in the MITF gene causing Waardenburg syndrome type II in a three-generation Indian family.

    PubMed

    Lalwani, A K; Attaie, A; Randolph, F T; Deshmukh, D; Wang, C; Mhatre, A; Wilcox, E

    1998-12-04

    Waardenburg syndrome (WS) is an autosomal-dominant neural crest cell disorder phenotypically characterized by hearing impairment and disturbance of pigmentation. A presence of dystopia canthorum is indicative of WS type 1, caused by loss of function mutation in the PAX3 gene. In contrast, type 2 WS (WS2) is characterized by normally placed medial canthi and is genetically heterogeneous; mutations in MITF (microphthalmia associated transcription factor) associated with WS2 have been identified in some but not all affected families. Here, we report on a three-generation Indian family with a point mutation in the MITF gene causing WS2. This mutation, initially reported in a Northern European family, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking the HLH-Zip or Zip structure necessary for normal interaction with its target DNA motif. Comparison of the phenotype between the two families demonstrates a significant difference in pigmentary disturbance of the eye. This family, with the first documented case of two unrelated WS2 families harboring identical mutations, provides additional evidence for the importance of genetic background on the clinical phenotype.

  8. Quantifying family dissemination and identifying barriers to communication of risk information in Australian BRCA families.

    PubMed

    Healey, Emma; Taylor, Natalie; Greening, Sian; Wakefield, Claire E; Warwick, Linda; Williams, Rachel; Tucker, Kathy

    2017-12-01

    PurposeRecommendations for BRCA1 and BRCA2 mutation carriers to disseminate information to at-risk relatives pose significant challenges. This study aimed to quantify family dissemination, to explain the differences between fully informed families (all relatives informed verbally or in writing) and partially informed families (at least one relative uninformed), and to identify dissemination barriers.MethodsBRCA1 and BRCA2 mutation carriers identified from four Australian hospitals (n=671) were invited to participate in the study. Distress was measured at consent using the Kessler psychological distress scale (K10). A structured telephone interview was used to assess the informed status of relatives, geographical location of relatives, and dissemination barriers. Family dissemination was quantified, and fully versus partially informed family differences were examined. Dissemination barriers were thematically coded and counted.ResultsA total of 165 families participated. Information had been disseminated to 81.1% of relatives. At least one relative had not been informed in 52.7% of families, 4.3% were first-degree relatives, 27.0% were second-degree relatives, and 62.0% were cousins. Partially informed families were significantly larger than fully informed families, had fewer relatives living in close proximity, and exhibited higher levels of distress. The most commonly recorded barrier to dissemination was loss of contact.ConclusionLarger, geographically diverse families have greater difficulty disseminating BRCA mutation risk information to all relatives. Understanding these challenges can inform future initiatives for communication, follow-up and support.

  9. Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Dong, Cuicui; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-11-01

    Small auxin-up RNA (SAUR) gene family is large, and the members of which can be rapidly induced by auxin and encode highly unstable mRNAs. SAUR genes are involved in various developmental and physiological processes, such as leaf senescence, fruitlet abscission, and hypocotyl development. However, their modes of action in citrus remain unknown. Hereby, a systematic analysis of SAUR gene family in citrus was conducted through a genome-wide search. In this study, a total of 70 SAUR genes, referred to as CitSAURs, have been identified in citrus. The evolutionary relationship and the intro-exon organization were analyzed, revealing strong gene conservation and the expansion of particular functional genes during plant evolution. Expression analysis showed that the major of CitSAUR genes were expressed in at least one tissue and showed distinctive expression levels, indicating the SAUR gene family play important roles in the development and growth of citrus organs. However, there were more than 20 CitSAUR genes such as CitSARU36, CitSAUR37, and CitSAUR54 exhibiting very low expression level in all tissue tested. Twenty-three out of 70 CitSAUR genes were responded to indole-3-acetic acid (IAA) treatment, of which just CitSAUR19 was down-regulated. Additionally, 14 CitSAUR genes exhibited distinct changes during fruitlet abscission, however just 5 of them including CitSAUR06, CitSAUR08, CitSAUR44, CitSAUR61, and CitSAUR64 were associated with fruitlet abscission. The current study provides basic information for the citrus SAUR gene family and will pave the way for deciphering the precise role of SAURs in citrus development and growth as well as fruitlet abscission.

  10. The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress.

    PubMed

    Ye, Jianqiu; Yang, Hai; Shi, Haitao; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Yan, Yan; Luo, Ying; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Li, Kaimian; Zhang, He; Hu, Wei

    2017-11-02

    Mitogen-activated protein kinase kinase kinases (MAPKKKs), an important unit of MAPK cascade, play crucial roles in plant development and response to various stresses. However, little is known concerning the MAPKKK family in the important subtropical and tropical crop cassava. In this study, 62 MAPKKK genes were identified in the cassava genome, and were classified into 3 subfamilies based on phylogenetic analysis. Most of MAPKKKs in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis showed that MAPKKK genes participated in tissue development and response to drought stress. Comparative expression profiles revealed that many MAPKKK genes were activated in cultivated varieties SC124 and Arg7 and the function of MeMAPKKKs in drought resistance may be different between SC124/Arg7 and W14. Expression analyses of the 7 selected MeMAPKKK genes showed that most of them were significantly upregulated by osmotic, salt and ABA treatments, whereas slightly induced by H 2 O 2 and cold stresses. Taken together, this study identified candidate MeMAPKKK genes for genetic improvement of abiotic stress resistance and provided new insights into MAPKKK -mediated cassava resistance to drought stress.

  11. 20 ans après: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition

    PubMed Central

    Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis

    2014-01-01

    Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene–environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients. PMID:24169519

  12. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut.

    PubMed

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  13. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut

    PubMed Central

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement. PMID:27200012

  14. [The Val606Met mutation of human beta myosin heavy chain in a Chinese familial hypertrophic cardiomyopathy family].

    PubMed

    Yuan, Jian-song; Qiao, Shu-bin; Wang, Shu-xia; Teng, Si-yong; You, Shi-jie; Yang, Wei-xian; Gao, Run-lin; Chen, Ji-lin; Yang, Yue-jin

    2008-04-01

    To explore the disease-causing gene mutation in Chinese families with hypertrophic cardiomyopathy (HCM) and to analyze the correlation between the genotype and phenotype. Samples of peripheral blood were collected from three Chinese families with HCM (at least two HCM patients existed/family). The exons in the functional regions of the beta myosin heavy chain gene (MYH7) were amplified with PCR and the products were sequenced. A Val606Met missen mutation was identified in the exon 16 of MYH7 gene in a Chinese family and this mutation was identified in all HCM patients (n = 4) and there was also a 15-years-old young mutation carrier who was not HCM patient now (penetrance of 80%). This mutation was not identified in other healthy family members in this family, in other 2 Chinese familiar HCM families and in 120 non-HCM control patients. The Val606Met missen mutation is closely associated with familiar HCM in a Chinese family which is associated with clinical phenotype with a penetrance of 80%.

  15. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp.

    PubMed

    Zhang, Kai; Han, Yong-Tao; Zhao, Feng-Li; Hu, Yang; Gao, Yu-Rong; Ma, Yan-Fei; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2015-06-30

    Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.

  16. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees.

    PubMed

    Brand, Philipp; Ramírez, Santiago R

    2017-08-01

    Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Whole exome sequencing for familial bicuspid aortic valve identifies putative variants.

    PubMed

    Martin, Lisa J; Pilipenko, Valentina; Kaufman, Kenneth M; Cripe, Linda; Kottyan, Leah C; Keddache, Mehdi; Dexheimer, Phillip; Weirauch, Matthew T; Benson, D Woodrow

    2014-10-01

    Bicuspid aortic valve (BAV) is the most common congenital cardiovascular malformation. Although highly heritable, few causal variants have been identified. The purpose of this study was to identify genetic variants underlying BAV by whole exome sequencing a multiplex BAV kindred. Whole exome sequencing was performed on 17 individuals from a single family (BAV=3; other cardiovascular malformation, 3). Postvariant calling error control metrics were established after examining the relationship between Mendelian inheritance error rate and coverage, quality score, and call rate. To determine the most effective approach to identifying susceptibility variants from among 54 674 variants passing error control metrics, we evaluated 3 variant selection strategies frequently used in whole exome sequencing studies plus extended family linkage. No putative rare, high-effect variants were identified in all affected but no unaffected individuals. Eight high-effect variants were identified by ≥2 of the commonly used selection strategies; however, these were either common in the general population (>10%) or present in the majority of the unaffected family members. However, using extended family linkage, 3 synonymous variants were identified; all 3 variants were identified by at least one other strategy. These results suggest that traditional whole exome sequencing approaches, which assume causal variants alter coding sense, may be insufficient for BAV and other complex traits. Identification of disease-associated variants is facilitated by the use of segregation within families. © 2014 American Heart Association, Inc.

  18. The LDL receptor gene family: signaling functions during development.

    PubMed

    Howell, B W; Herz, J

    2001-02-01

    The traditional views regarding the biological functions of the low-density lipoprotein (LDL) receptor gene family have been revisited recently with new evidence that at least some of the members of this receptor family act as signal-transduction molecules. Known for their role in endocytosis, particularly of their namesake the LDLs, and for their role in the prevention of atherosclerosis, these receptors belong to an ancient family with numerous ligands, effector molecules and functions. Recent evidence implicates this family of receptors in diverse signaling pathways, long-term potentiation and neuronal degeneration.

  19. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  20. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato.

    PubMed

    Ding, Xing; Li, Jinhua; Pan, Yu; Zhang, Yue; Ni, Lei; Wang, Yaling; Zhang, Xingguo

    2018-05-27

    The UGlcAE has the capability of interconverting UDP-d-galacturonic acid and UDP-d-glucuronic acid, and UDP-d-galacturonic acid is an activated precursor for the synthesis of pectins in plants. In this study, we identified nine UGlcAE protein-encoding genes in tomato. The nine UGlcAE genes that were distributed on eight chromosomes in tomato, and the corresponding proteins contained one or two trans-membrane domains. The phylogenetic analysis showed that SlUGlcAE genes could be divided into seven groups, designated UGlcAE1 to UGlcAE6 , of which the UGlcAE2 were classified into two groups. Expression profile analysis revealed that the SlUGlcAE genes display diverse expression patterns in various tomato tissues. Selective pressure analysis indicated that all of the amino acid sites of SlUGlcAE proteins are undergoing purifying selection. Fifteen stress-, hormone-, and development-related elements were identified in the upstream regions (0.5 kb) of these SlUGlcAE genes. Furthermore, we investigated the expression patterns of SlUGlcAE genes in response to three hormones (indole-3-acetic acid (IAA), gibberellin (GA), and salicylic acid (SA)). We detected firmness, pectin contents, and expression levels of UGlcAE family genes during the development of tomato fruit. Here, we systematically summarize the general characteristics of the SlUGlcAE genes in tomato, which could provide a basis for further function studies of tomato UGlcAE genes.

  1. Avirulence gene mapping in the Hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family.

    PubMed

    Zhao, Chaoyang; Shukle, Richard; Navarro-Escalante, Lucio; Chen, Mingshun; Richards, Stephen; Stuart, Jeffrey J

    2016-01-01

    The genetic tractability of the Hessian fly (HF, Mayetiola destructor) provides an opportunity to investigate the mechanisms insects use to induce plant gall formation. Here we demonstrate that capacity using the newly sequenced HF genome by identifying the gene (vH24) that elicits effector-triggered immunity in wheat (Triticum spp.) seedlings carrying HF resistance gene H24. vH24 was mapped within a 230-kb genomic fragment near the telomere of HF chromosome X1. That fragment contains only 21 putative genes. The best candidate vH24 gene in this region encodes a protein containing a secretion signal and a type-2 serine/threonine protein phosphatase (PP2C) domain. This gene has an H24-virulence associated insertion in its promoter that appears to silence transcription of the gene in H24-virulent larvae. Candidate vH24 is a member of a small family of genes that encode secretion signals and PP2C domains. It belongs to the fraction of genes in the HF genome previously predicted to encode effector proteins. Because PP2C proteins are not normally secreted, our results suggest that these are PP2C effectors that HF larvae inject into wheat cells to redirect, or interfere, with wheat signal transduction pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease.

    PubMed

    Neto, Lauro Bücker; de Oliveira, Rafael Rodrigues; Wiebke-Strohm, Beatriz; Bencke, Marta; Weber, Ricardo Luís Mayer; Cabreira, Caroline; Abdelnoor, Ricardo Vilela; Marcelino, Francismar Correa; Zanettini, Maria Helena Bodanese; Passaglia, Luciane Maria Pereira

    2013-07-01

    Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that is phylogenetically related to non-specific lipid transfer proteins. Members of the HyPRP family are involved in basic cellular processes and their expression and activity are modulated by environmental factors. In this study, microarray analysis and real time RT-qPCR were used to identify putative HyPRP genes in the soybean genome and to assess their expression in different plant tissues. Some of the genes were also analyzed by time-course real time RT-qPCR in response to infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. Our findings indicate that the time of induction of a defense pathway is crucial in triggering the soybean resistance response to P. pachyrhizi. This is the first study to identify the soybean HyPRP group B family and to analyze disease-responsive GmHyPRP during infection by P. pachyrhizi.

  3. Transcriptome wide identification and validation of calcium sensor gene family in the developing spikes of finger millet genotypes for elucidating its role in grain calcium accumulation.

    PubMed

    Singh, Uma M; Chandra, Muktesh; Shankhdhar, Shailesh C; Kumar, Anil

    2014-01-01

    In finger millet, calcium is one of the important and abundant mineral elements. The molecular mechanisms involved in calcium accumulation in plants remains poorly understood. Transcriptome sequencing of genetically diverse genotypes of finger millet differing in grain calcium content will help in understanding the trait. In this study, the transcriptome sequencing of spike tissues of two genotypes of finger millet differing in their grain calcium content, were performed for the first time. Out of 109,218 contigs, 78 contigs in case of GP-1 (Low Ca genotype) and out of 120,130 contigs 76 contigs in case of GP-45 (High Ca genotype), were identified as calcium sensor genes. Through in silico analysis all 82 unique calcium sensor genes were classified into eight calcium sensor gene family viz., CaM & CaMLs, CBLs, CIPKs, CRKs, PEPRKs, CDPKs, CaMKs and CCaMK. Out of 82 genes, 12 were found diverse from the rice orthologs. The differential expression analysis on the basis of FPKM value resulted in 24 genes highly expressed in GP-45 and 11 genes highly expressed in GP-1. Ten of the 35 differentially expressed genes could be assigned to three documented pathways involved mainly in stress responses. Furthermore, validation of selected calcium sensor responder genes was also performed by qPCR, in developing spikes of both genotypes grown on different concentration of exogenous calcium. Through de novo transcriptome data assembly and analysis, we reported the comprehensive identification and functional characterization of calcium sensor gene family. The calcium sensor gene family identified and characterized in this study will facilitate in understanding the molecular basis of calcium accumulation and development of calcium biofortified crops. Moreover, this study also supported that identification and characterization of gene family through Illumina paired-end sequencing is a potential tool for generating the genomic information of gene family in non-model species.

  4. Genome-Wide Analysis of the Sucrose Synthase Gene Family in Grape (Vitis vinifera): Structure, Evolution, and Expression Profiles

    PubMed Central

    Zhu, Xudong; Wang, Mengqi; Li, Xiaopeng; Jiu, Songtao; Wang, Chen; Fang, Jinggui

    2017-01-01

    Sucrose synthase (SS) is widely considered as the key enzyme involved in the plant sugar metabolism that is critical to plant growth and development, especially quality of the fruit. The members of SS gene family have been identified and characterized in multiple plant genomes. However, detailed information about this gene family is lacking in grapevine (Vitis vinifera L.). In this study, we performed a systematic analysis of the grape (V. vinifera) genome and reported that there are five SS genes (VvSS1–5) in the grape genome. Comparison of the structures of grape SS genes showed high structural conservation of grape SS genes, resulting from the selection pressures during the evolutionary process. The segmental duplication of grape SS genes contributed to this gene family expansion. The syntenic analyses between grape and soybean (Glycine max) demonstrated that these genes located in corresponding syntenic blocks arose before the divergence of grape and soybean. Phylogenetic analysis revealed distinct evolutionary paths for the grape SS genes. VvSS1/VvSS5, VvSS2/VvSS3 and VvSS4 originated from three ancient SS genes, which were generated by duplication events before the split of monocots and eudicots. Bioinformatics analysis of publicly available microarray data, which was validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct temporal and spatial expression patterns of VvSS genes in various tissues, organs and developmental stages, as well as in response to biotic and abiotic stresses. Taken together, our results will be beneficial for further investigations into the functions of SS gene in the processes of grape resistance to environmental stresses. PMID:28350372

  5. Expansion, retention and loss in the Acyl-CoA synthetase "Bubblegum" (Acsbg) gene family in vertebrate history.

    PubMed

    Lopes-Marques, Mónica; Machado, André M; Ruivo, Raquel; Fonseca, Elza; Carvalho, Estela; Castro, L Filipe C

    2018-07-20

    Fatty acids (FAs) constitute a considerable fraction of all lipid molecules with a fundamental role in numerous physiological processes. In animals, the majority of complex lipid molecules are derived from the transformation of FAs through several biochemical pathways. Yet, for FAs to enroll in these pathways they require an activation step. FA activation is catalyzed by the rate limiting action of Acyl-CoA synthases. Several Acyl-CoA enzyme families have been previously described and classified according to the chain length of FAs they process. Here, we address the evolutionary history of the ACSBG gene family which activates, FAs with >16 carbons. Currently, two different ACSBG gene families, ACSBG1 and ACSBG2, are recognized in vertebrates. We provide evidence that a wider and unequal ACSBG gene repertoire is present in vertebrate lineages. We identify a novel ACSBG-like gene lineage which occurs specifically in amphibians, ray finned fishes, coelacanths and cartilaginous fishes named ACSBG3. Also, we show that the ACSBG2 gene lineage duplicated in the Theria ancestor. Our findings, thus offer a far richer understanding on FA activation in vertebrates and provide key insights into the relevance of comparative and functional analysis to perceive physiological differences, namely those related with lipid metabolic pathways. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Identifying key genes associated with acute myocardial infarction.

    PubMed

    Cheng, Ming; An, Shoukuan; Li, Junquan

    2017-10-01

    This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P < .05 was used as the cutoff for a differentially expressed gene (DEG). The expression data matrices of DEGs were imported in ReactomeFIViz to construct a gene functional interaction (FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21-5p and hsa-miR-30c-5p were obviously decreased in AMI. A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs.

  7. Exome Sequencing Identifies a Novel CEACAM16 Mutation Associated with Autosomal Dominant Nonsyndromic Hearing Loss DFNA4B in a Chinese Family

    PubMed Central

    He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2014-01-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant. PMID:25589040

  8. Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family.

    PubMed

    Wang, Honghan; Wang, Xinwei; He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2015-03-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next-generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild type, suggesting a deleterious effect of the sequence variant.

  9. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.

    PubMed

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-02-23

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. The Origins and Evolution of the p53 Family of Genes

    PubMed Central

    Belyi, Vladimir A.; Ak, Prashanth; Markert, Elke; Wang, Haijian; Hu, Wenwei; Puzio-Kuter, Anna; Levine, Arnold J.

    2010-01-01

    A common ancestor to the three p53 family members of human genes p53, p63, and p73 is first detected in the evolution of modern‐day sea anemones, in which both structurally and functionally it acts to protect the germ line from genomic instabilities in response to stresses. This p63/p73 common ancestor gene is found in almost all invertebrates and first duplicates to produce a p53 gene and a p63/p73 ancestor in cartilaginous fish. Bony fish contain all three genes, p53, p63, and p73, and the functions of these three transcription factors diversify in the higher vertebrates. Thus, this gene family has preserved its structural features and functional activities for over one billion years of evolution. PMID:20516129

  11. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.).

    PubMed

    Malviya, N; Gupta, S; Singh, V K; Yadav, M K; Bisht, N C; Sarangi, B K; Yadav, D

    2015-02-01

    The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes.

  12. The Dynein Gene Family in Chlamydomonas Reinhardtii

    PubMed Central

    Porter, M. E.; Knott, J. A.; Myster, S. H.; Farlow, S. J.

    1996-01-01

    To correlate dynein heavy chain (Dhc) genes with flagellar mutations and gain insight into the function of specific dynein isoforms, we placed eight members of the Dhc gene family on the genetic map of Chlamydomonas. Using a PCR-based strategy, we cloned 11 Dhc genes from Chlamydomonas. Comparisons with other Dhc genes indicate that two clones correspond to genes encoding the alpha and beta heavy chains of the outer dynein arm. Alignment of the predicted amino acid sequences spanning the nucleotide binding site indicates that the remaining nine clones can be subdivided into three groups that are likely to include representatives of the inner-arm Dhc isoforms. Gene-specific probes reveal that each clone represents a single-copy gene that is expressed as a transcript of the appropriate size (>13 kb) sufficient to encode a high molecular weight Dhc polypeptide. The expression of all nine genes is upregulated in response to deflagellation, suggesting a role in axoneme assembly or motility. Restriction fragment length polymorphisms between divergent C. reinhardtii strains have been used to place each Dhc gene on the genetic map of Chlamydomonas. These studies lay the groundwork for correlating defects in different Dhc genes with specific flagellar mutations. PMID:8889521

  13. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  14. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development.

    PubMed

    Gao, Chao; Sun, Jianlei; Wang, Chongqi; Dong, Yumei; Xiao, Shouhua; Wang, Xingjun; Jiao, Zigao

    2017-01-01

    The basic/helix-loop-helix (bHLH) proteins constitute a superfamily of transcription factors that are known to play a range of regulatory roles in eukaryotes. Over the past few decades, many bHLH family genes have been well-characterized in model plants, such as Arabidopsis, rice and tomato. However, the bHLH protein family in peanuts has not yet been systematically identified and characterized. Here, 132 and 129 bHLH proteins were identified from two wild ancestral diploid subgenomes of cultivated tetraploid peanuts, Arachis duranensis (AA) and Arachis ipaensis (BB), respectively. Phylogenetic analysis indicated that these bHLHs could be classified into 19 subfamilies. Distribution mapping results showed that peanut bHLH genes were randomly and unevenly distributed within the 10 AA chromosomes and 10 BB chromosomes. In addition, 120 bHLH gene pairs between the AA-subgenome and BB-subgenome were found to be orthologous and 101 of these pairs were highly syntenic in AA and BB chromosomes. Furthermore, we confirmed that 184 bHLH genes expressed in different tissues, 22 of which exhibited tissue-specific expression. Meanwhile, we identified 61 bHLH genes that may be potentially involved in peanut-specific subterranean. Our comprehensive genomic analysis provides a foundation for future functional dissection and understanding of the regulatory mechanisms of bHLH transcription factors in peanuts.

  15. A genomic approach to identify hybrid incompatibility genes.

    PubMed

    Cooper, Jacob C; Phadnis, Nitin

    2016-07-02

    Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids.

  16. A genomic approach to identify hybrid incompatibility genes

    PubMed Central

    Cooper, Jacob C.; Phadnis, Nitin

    2016-01-01

    ABSTRACT Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids. PMID:27230814

  17. FARVATX: Family-Based Rare Variant Association Test for X-Linked Genes.

    PubMed

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-09-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. © 2016 WILEY PERIODICALS, INC.

  18. FARVATX: FAmily-based Rare Variant Association Test for X-linked genes

    PubMed Central

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H.; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-01-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease (COPD). Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. PMID:27325607

  19. Origin and Evolution of the Sponge Aggregation Factor Gene Family.

    PubMed

    Grice, Laura F; Gauthier, Marie E A; Roper, Kathrein E; Fernàndez-Busquets, Xavier; Degnan, Sandie M; Degnan, Bernard M

    2017-05-01

    Although discriminating self from nonself is a cardinal animal trait, metazoan allorecognition genes do not appear to be homologous. Here, we characterize the Aggregation Factor (AF) gene family, which encodes putative allorecognition factors in the demosponge Amphimedon queenslandica, and trace its evolution across 24 sponge (Porifera) species. The AF locus in Amphimedon is comprised of a cluster of five similar genes that encode Calx-beta and Von Willebrand domains and a newly defined Wreath domain, and are highly polymorphic. Further AF variance appears to be generated through individualistic patterns of RNA editing. The AF gene family varies between poriferans, with protein sequences and domains diagnostic of the AF family being present in Amphimedon and other demosponges, but absent from other sponge classes. Within the demosponges, AFs vary widely with no two species having the same AF repertoire or domain organization. The evolution of AFs suggests that their diversification occurs via high allelism, and the continual and rapid gain, loss and shuffling of domains over evolutionary time. Given the marked differences in metazoan allorecognition genes, we propose the rapid evolution of AFs in sponges provides a model for understanding the extensive diversification of self-nonself recognition systems in the animal kingdom. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution.

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Sundström, Jens F; Moore, David; Lascoux, Martin; Lagercrantz, Ulf

    2011-08-01

    The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms.

  1. The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses.

    PubMed

    He, Peng; Zhao, Peng; Wang, Limin; Zhang, Yuzhou; Wang, Xiaosi; Xiao, Hui; Yu, Jianing; Xiao, Guanghui

    2017-07-03

    Cell elongation and expansion are significant contributors to plant growth and morphogenesis, and are often regulated by environmental cues and endogenous hormones. Auxin is one of the most important phytohormones involved in the regulation of plant growth and development and plays key roles in plant cell expansion and elongation. Cotton fiber cells are a model system for studying cell elongation due to their large size. Cotton is also the world's most utilized crop for the production of natural fibers for textile and garment industries, and targeted expression of the IAA biosynthetic gene iaaM increased cotton fiber initiation. Polar auxin transport, mediated by PIN and AUX/LAX proteins, plays a central role in the control of auxin distribution. However, very limited information about PIN-FORMED (PIN) efflux carriers in cotton is known. In this study, 17 PIN-FORMED (PIN) efflux carrier family members were identified in the Gossypium hirsutum (G. hirsutum) genome. We found that PIN1-3 and PIN2 genes originated from the At subgenome were highly expressed in roots. Additionally, evaluation of gene expression patterns indicated that PIN genes are differentially induced by various abiotic stresses. Furthermore, we found that the majority of cotton PIN genes contained auxin (AuxREs) and salicylic acid (SA) responsive elements in their promoter regions were significantly up-regulated by exogenous hormone treatment. Our results provide a comprehensive analysis of the PIN gene family in G. hirsutum, including phylogenetic relationships, chromosomal locations, and gene expression and gene duplication analyses. This study sheds light on the precise roles of PIN genes in cotton root development and in adaption to stress responses.

  2. [Detection and prenatal diagnosis for RS1 gene mutations in two Chinese families with X-linked juvenile retinoschisis].

    PubMed

    Chu, Yan; Fang, Dong; Hou, Qiao-fang; Wang, Li-ya; Guo, Xi-rang; Wang, Ying-tai; Liao, Shi-xiu

    2013-04-01

    To identify potential mutations of retinoschisis 1 (RS1) gene responsible for X-linked retinoschisis (XLRS) in two Chinese families. The 6 exons and flanking intronic regions were analyzed with PCR and direct sequencing. Two RS1 mutations were identified in the two families, which included 1 frameshift mutation (c.573delG, p.Pro192fs) and 1 missense mutation (c.626G>A, p.Arg209His). Two RS1 mutations have been identified, among which Pro192fs mutation is discovered for the first time in Chinese population. Above results may enrich our understanding of the clinical manifestations of XLRS and facilitated early diagnosis and genetic counseling for the disease.

  3. The Pax gene family: Highlights from cephalopods

    PubMed Central

    Baratte, Sébastien; Andouche, Aude; Bonnaud-Ponticelli, Laure

    2017-01-01

    Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases. The existence of six Pax families (Pax1/9, Pax2/5/8, Pax3/7, Pax4/6, Paxβ, PoxNeuro) was confirmed and the lophotrochozoan Paxβ subfamily was further characterized. Contrary to the pattern reported in chordates, the Pax2/5/8 family is devoid of homeodomain in Lophotrochozoa. Expression patterns of the three main pax classes (pax2/5/8, pax3/7, pax4/6) during Sepia officinalis development showed that Pax roles taken as ancestral and common in metazoans are modified in S. officinalis, most likely due to either the morphological specificities of cephalopods or to their direct development. Some expected expression patterns were missing (e.g. pax6 in the developing retina), and some expressions in unexpected tissues have been found (e.g. pax2/5/8 in dermal tissue and in gills). This study underlines the diversity and functional plasticity of Pax genes and illustrates the difficulty of using probable gene homology as strict indicator of homology between biological structures. PMID:28253300

  4. A Novel Nonsense Mutation in Exon 5 of KIND1 Gene in an Iranian Family with Kindler Syndrome.

    PubMed

    Heidari, Mohammad Mehdi; Khatami, Mehri; Kargar, Saeed; Azari, Mojdeh; Hoseinzadeh, Hassan; Fallah, Hamedeh

    2016-06-01

    Kindler syndrome (KS) is an autosomal recessive skin disease characterized by actual blistering, photosensitivity and a progressive poikiloderma. The disorder results from rare mutations in the KIND1 gene. This gene contains 15 exons and expresses two kindlin-1 isoforms. The aim of this investigation was to analyze mutations in the exons 1 to 15 of KIND1 gene in an Iranian family clinically affected with Kindler syndrome. The mutations analysis of 15 coding exons of KIND1 gene was performed with PCR-SSCP and direct sequencing in 14 subjects from one Iranian family clinically affected with Kindler syndrome. We identified eight new nucleotide changes in KIND1 in this family. These changes were found in g.3892delA, g.3951T>C, g.3962T>G, g.4190G>T, g.7497G>A, g.11076T>C, g.11102C>T and g.13177C>T positions. Among them, the g.13177C>T mutation resulting in the formation of a premature stop codon (Q226X) was detected only in seven affected family individuals as homozygous but was not present in 100 unrelated healthy controls. This study suggests that nonsense mutation may lead to incomplete and non-functional protein products and is pathogenic and has meaningful implications for the diagnosis of patients with Kindler syndrome.

  5. Subcortical laminar heterotopia and lissencephaly in two families: a single X linked dominant gene.

    PubMed Central

    Pinard, J M; Motte, J; Chiron, C; Brian, R; Andermann, E; Dulac, O

    1994-01-01

    Neuronal migration disorders can now be recognised by MRI. This paper reports two families in which the mothers had subcortical laminar heterotopia and four of their children had either similar heterotopia (two girls) or severe pachygyria or lissencephaly (two boys). Laminar heterotopia was more evident on MRI T2 weighted images. The patients had mild to severe epilepsy and mental retardation depending on the extent of cortical abnormalities. In these families, subcortical laminar heterotopia, pachygyria, and lissencephaly seem to share the same X linked or autosomal dominant gene. No chromosomal abnormalities, especially of chromosome 17, could be identified. For appropriate genetic counselling of the family of a child with lissencephaly or subcortical laminar heterotopia, MRI should be performed in parents or siblings with mental retardation or epilepsy. Images PMID:8057113

  6. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family

    PubMed Central

    Lin, Choun-Sea; Chen, Jeremy J. W.; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K.; Wong, Gane Ka-Shu; Albert, Victor A.; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  7. Identification of the 14-3-3 gene family in Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Rosli, Khadijah; Wan, Kiew-Lian

    2018-04-01

    Rafflesia is known to be the largest flower in the world. Due to its size and appearance, it is considered to be very unique. Little is known about the molecular biology of this rare parasitic flowering plant as it is very difficult to locate and has a short life-span as a flower. Physiological activities in plants are regulated by signalling regulators such as the members of the 14-3-3 gene family. The number of members of this gene family varies in plants and there are thirteen known members in Arabidopsis thaliana. Their role is to bind to phosphorylated targets to complete signal transduction processes. Sequence comparison using BLAST of transcriptome data from three different Rafflesia cantleyi floral bud stages against the Swissprot database revealed 27 transcripts annotated as members of this gene family. All of the transcripts were expressed during floral bud stage 1 (S1) while 14 and four transcripts were expressed during floral bud stages 2 (S2) and 3 (S3), respectively. Significant downregulation was recorded for six and nine transcripts at S1 vs. S2 and S2 vs. S3 respectively. This gene family may play a critical role as signalling regulators during the development of Rafflesia floral bud.

  8. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses

    PubMed Central

    Grimplet, Jérôme; Agudelo-Romero, Patricia; Teixeira, Rita T.; Martinez-Zapater, Jose M.; Fortes, Ana M.

    2016-01-01

    GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits. PMID:27065316

  9. Genome-Wide Analysis and Expression Profiling of the SUC and SWEET Gene Families of Sucrose Transporters in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Jian, Hongju; Lu, Kun; Yang, Bo; Wang, Tengyue; Zhang, Li; Zhang, Aoxiang; Wang, Jia; Liu, Liezhao; Qu, Cunmin; Li, Jiana

    2016-01-01

    Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers) and SWEETs (Sugars Will Eventually be Exported Transporters) play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported. In our study, 22 and 68 members of the SUT/SUCs and SWEET gene families, respectively, were identified in the oilseed rape (Brassica napus) genome through homology searches. An analysis of the chromosomal distribution, phylogenetic relationships, gene structures, motifs and the cis-acting regulatory elements in the promoters of BnSUC and BnSWEET genes were analyzed. Furthermore, we examined the expression of the 18 BnSUC and 16 BnSWEET genes in different tissues of “ZS11” and the expression of 9 BnSUC and 7 BnSWEET genes in “ZS11” under various conditions, including biotic stress (Sclerotinia sclerotiorum), abiotic stresses (drought, salt and heat), and hormone treatments (abscisic acid, auxin, cytokinin, brassinolide, gibberellin, and salicylic acid). In conclusion, our study provides the first comprehensive analysis of the oilseed rape SUC and SWEET gene families. Information regarding the phylogenetic relationships, gene structure and expression profiles of the SUC and SWEET genes in the different tissues of oilseed rape helps to identify candidates with potential roles in specific developmental processes. Our study advances our understanding of the important roles of sucrose transport in oilseed rape. PMID:27733861

  10. Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates.

    PubMed

    Bao, Yongbo; Xu, Fei; Shimeld, Sebastian M

    2017-04-01

    The gain and loss of genes encoding transcription factors is of importance to understanding the evolution of gene regulatory complexity. The basic helix-loop-helix (bHLH) genes encode a large superfamily of transcription factors. We systematically classify the bHLH genes from five mollusc, two annelid and one brachiopod genomes, tracing the pattern of bHLH gene evolution across these poorly studied Phyla. In total, 56-88 bHLH genes were identified in each genome, with most identifiable as members of previously described bilaterian families, or of new families we define. Of such families only one, Mesp, appears lost by all these species. Additional duplications have also played a role in the evolution of the bHLH gene repertoire, with many new lophotrochozoan-, mollusc-, bivalve-, or gastropod-specific genes defined. Using a combination of transcriptome mining, RT-PCR, and in situ hybridization we compared the expression of several of these novel genes in tissues and embryos of the molluscs Crassostrea gigas and Patella vulgata, finding both conserved expression and evidence for neofunctionalization. We also map the positions of the genes across these genomes, identifying numerous gene linkages. Some reflect recent paralog divergence by tandem duplication, others are remnants of ancient tandem duplications dating to the lophotrochozoan or bilaterian common ancestors. These data are built into a model of the evolution of bHLH genes in molluscs, showing formidable evolutionary stasis at the family level but considerable within-family diversification by tandem gene duplication. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development. PMID:27630648

  12. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume.

    PubMed

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  13. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family.

    PubMed

    Zhang, Zhongbao; Li, Xianglong; Yu, Rong; Han, Meng; Wu, Zhongyi

    2015-10-01

    TIFY, previously known as ZIM, comprises a plant-specific family annotated as transcription factors that might play important roles in stress response. Despite TIFY proteins have been reported in Arabidopsis and rice, a comprehensive and systematic survey of ZmTIFY genes has not yet been conducted. To investigate the functions of ZmTIFY genes in this family, we isolated and characterized 30 ZmTIFY (1 TIFY, 3 ZML, and 26 JAZ) genes in an analysis of the maize (Zea mays L.) genome in this study. The 30 ZmTIFY genes were distributed over eight chromosomes. Multiple alignment and motif display results indicated that all ZmTIFY proteins share two conserved TIFY and Jas domains. Phylogenetic analysis revealed that the ZmTIFY family could be divided into two groups. Putative cis-elements, involved in abiotic stress response, phytohormones, pollen grain, and seed development, were detected in the promoters of maize TIFY genes. Microarray data showed that the ZmTIFY genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results indicated that ZmTIFY4, 5, 8, 26, and 28 were induced, while ZmTIFY16, 13, 24, 27, 18, and 30 were suppressed, by drought stress in the maize inbred lines Han21 and Ye478. ZmTIFY1, 19, and 28 were upregulated after infection by three pathogens, whereas ZmTIFY4, 13, 21, 23, 24, and 26 were suppressed. These results indicate that the ZmTIFY family may have vital roles in response to abiotic and biotic stresses. The data presented in this work provide vital clues for further investigating the functions of the genes in the ZmTIFY family.

  14. Mutation in Pyrroline-5-Carboxylate Reductase 1 Gene in Families with Cutis Laxa Type 2

    PubMed Central

    Guernsey, Duane L.; Jiang, Haiyan; Evans, Susan C.; Ferguson, Meghan; Matsuoka, Makoto; Nightingale, Mathew; Rideout, Andrea L.; Provost, Sylvie; Bedard, Karen; Orr, Andrew; Dubé, Marie-Pierre; Ludman, Mark; Samuels, Mark E.

    2009-01-01

    Autosomal-recessive cutis laxa type 2 (ARCL2) is a multisystem disorder characterized by the appearance of premature aging, wrinkled and lax skin, joint laxity, and a general developmental delay. Cutis laxa includes a family of clinically overlapping conditions with confusing nomenclature, generally requiring molecular analyses for definitive diagnosis. Six genes are currently known to mutate to yield one of these related conditions. We ascertained a cohort of typical ARCL2 patients from a subpopulation isolate within eastern Canada. Homozygosity mapping with high-density SNP genotyping excluded all six known genes, and instead identified a single homozygous region near the telomere of chromosome 17, shared identically by state by all genotyped affected individuals from the families. A putative pathogenic variant was identified by direct DNA sequencing of genes within the region. The single nucleotide change leads to a missense mutation adjacent to a splice junction in the gene encoding pyrroline-5-carboxylate reductase 1 (PYCR1). Bioinformatic analysis predicted a pathogenic effect of the variant on splice donor site function. Skipping of the associated exon was confirmed in RNA from blood lymphocytes of affected homozygotes and heterozygous mutation carriers. Exon skipping leads to deletion of the reductase functional domain-coding region and an obligatory downstream frameshift. PYCR1 plays a critical role in proline biosynthesis. Pathogenicity of the genetic variant in PYCR1 is likely, given that a similar clinical phenotype has been documented for mutation carriers of another proline biosynthetic enzyme, pyrroline-5-carboxylate synthase. Our results support a significant role for proline in normal development. PMID:19576563

  15. 24 CFR 572.110 - Identifying and selecting eligible families for homeownership.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... families for homeownership. 572.110 Section 572.110 Housing and Urban Development Regulations Relating to... FAMILY HOMES PROGRAM (HOPE 3) Homeownership Program Requirements-Implementation Grants § 572.110 Identifying and selecting eligible families for homeownership. (a) Selection procedures. (1) Recipients must...

  16. Evolution of the chalcone synthase gene family in the genus Ipomoea.

    PubMed Central

    Durbin, M L; Learn, G H; Huttley, G A; Clegg, M T

    1995-01-01

    The evolution of the chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing), EC 2.3.1.74] multigene family in the genus Ipomoea is explored. Thirteen CHS genes from seven Ipomoea species (family Convolvulaceae) were sequenced--three from genomic clones and the remainder from PCR amplification with primers designed from the 5' flanking region and the end of the 3' coding region of Ipomoea purpurea Roth. Analysis of the data indicates a duplication of CHS that predates the divergence of the Ipomoea species in this study. The Ipomoea CHS genes are among the most rapidly evolving of the CHS genes sequenced to date. The CHS genes in this study are most closely related to the Petunia CHS-B gene, which is also rapidly evolving and highly divergent from the rest of the Petunia CHS sequences. PMID:7724563

  17. Novel variants in PAX6 gene caused congenital aniridia in two Chinese families.

    PubMed

    Zhang, R; Linpeng, S; Wei, X; Li, H; Huang, Y; Guo, J; Wu, Q; Liang, D; Wu, L

    2017-06-01

    PurposeTo reveal the underlying genetic defect in two four-generation Chinese families with aniridia and explore the pathologic mechanism.MethodsFull ophthalmic examinations were performed in two families with aniridia. The PAX6 gene was directly sequenced in patients of two families, and the detected variants were screened in unaffected family members and two hundred unrelated healthy controls. Real-time quantitative PCR was used to explore pathologic mechanisms of the two variants.ResultsAniridia, cataract, and oscillatory nystagmus were observed in patients of the two families. In addition, we observed corneal opacity and microphthalmus in family 1, and strabismus, left ectopia lentis, microphthalmus, and microcornea in family 2. Sanger sequencing detected a novel 1-bp duplication (c.50dupA) in family 1 and a novel 2-bp splice site deletion (c.765+1_765+2delGT) in family 2. Sequencing of cDNA indicated skipping of exon 9 caused by the splice site deletion, being predicted to cause a premature stop codon, as well as the duplication. The PAX6 mRNA significantly lower in patients with aniridia than in unaffected family members in both families, suggesting that the duplication and splice site deletion caused nonsense-mediated mRNA decay.ConclusionsOur study identified two novel PAX6 variants in two families with aniridia and revealed the pathogenicity of the variants; this would expand the variant spectrum of PAX6 and help us better understand the molecular basis of aniridia, thus facilitating genetic counseling.

  18. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses.

    PubMed

    Pascual, Ma Belén; Cánovas, Francisco M; Ávila, Concepción

    2015-10-24

    NAC transcription factors comprise a large plant-specific gene family involved in the regulation of diverse biological processes. Despite the growing number of studies on NAC transcription factors in various species, little information is available about this family in conifers. The goal of this study was to identify the NAC transcription family in maritime pine (Pinus pinaster), to characterize ATAF-like genes in response to various stresses and to study their molecular regulation. We have isolated two maritime pine NAC genes and using a transient expression assay in N. benthamiana leaves estudied the promoter jasmonate response. In this study, we identified 37 NAC genes from maritime pine and classified them into six main subfamilies. The largest group includes 12 sequences corresponding to stress-related genes. Two of these NAC genes, PpNAC2 and PpNAC3, were isolated and their expression profiles were examined at various developmental stages and in response to various types of stress. The expression of both genes was strongly induced by methyl jasmonate (MeJA), mechanical wounding, and high salinity. The promoter regions of these genes were shown to contain cis-elements involved in the stress response and plant hormonal regulation, including E-boxes, which are commonly found in the promoters of genes that respond to jasmonate, and binding sites for bHLH proteins. Using a transient expression assay in N. benthamiana leaves, we found that the promoter of PpNAC3 was rapidly induced upon MeJA treatment, while this response disappeared in plants in which the transcription factor NbbHLH2 was silenced. Our results suggest that PpNAC2 and PpNAC3 encode stress-responsive NAC transcription factors involved in the jasmonate response in pine. Furthermore, these data also suggest that the jasmonate signaling pathway is conserved between angiosperms and gymnosperms. These findings may be useful for engineering stress tolerance in pine via biotechnological approaches.

  19. Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis.

    PubMed

    Matus, David Q; Pang, Kevin; Daly, Meg; Martindale, Mark Q

    2007-01-01

    Pax genes are a family of homeodomain transcription factors that have been isolated from protostomes (e.g., eight in Drosophilia) and deuterostomes (e.g., nine in vertebrates) as well as outside the Bilateria, from sponges, a placozoan, and several classes of cnidarians. The genome of an anthozoan cnidarian, the starlet sea anemone, Nematostella vectensis, has been surveyed by both degenerate polymerase chain reaction and in silico for the presence of Pax genes. N. vectensis possesses seven Pax genes, which are orthologous to cnidarian Pax genes (A,B,C, and D) previously identified in another anthozoan, a coral, Acropora millepora. Phylogenetic analyses including data from nonchordate deuterostomes indicates that there were five Pax gene classes in the protostome-deuterostome ancestor, but only three in the cnidarian-bilaterian ancestor, with PaxD class genes lost in medusozoan cnidarians. Pax genes play diverse roles in bilaterians, including eye formation (e.g., Pax6), segmentation (e.g., Pax3/7 class genes), and neural patterning (e.g., Pox-neuro, Pax2/5/8). We show the first expression data for members of all four Pax classes in a single species of cnidarian. N. vectensis Pax genes are expressed in both a cell-type and region-specific manner during embryogenesis, and likely play a role in patterning specific components of the cnidarian ectodermal nerve net. The results of these patterns are discussed with respect to Pax gene evolution in the Bilateria.

  20. Common founder mutation in the LDL receptor gene causing familial hypercholesterolaemia in the Icelandic population.

    PubMed

    Gudnason, V; Sigurdsson, G; Nissen, H; Humphries, S E

    1997-01-01

    Haplotype analysis in 18 apparently unrelated families with familial hypercholesterolaemia (FH) in Iceland has identified at least five different chromosomes cosegregating with hypercholesterolaemia. The most common haplotype was identified in 11 of the 18 families, indicating a responsible for FH in the Icelandic population. By using single-strand conformation polymorphism (SSCP) and direct sequencing of amplified DNA, we identified a novel mutation (a T to a C) in the second nucleotide in the 5' part of intron 4 in the LDL receptor gene. This mutation was present in approximately 60% of the FH families (10/18), supporting the prediction of a common founder. These families could be traced to a common ancestor in half of the cases by going back no further than the eighteenth century. The mutation was predicted to affect correct splicing of exon 4, and analysis at the cellular level demonstrated an abnormal mRNA containing intron 4 sequence in lymphoblastoid cells from a patient carrying this mutation. Translation of the mRNA would lead to a premature stop codon and a truncated nonfunctional protein of 285 amino acids. The novel sequence change created a new restriction site for the restriction endonuclease NlaIII, and using this assay, 29 unrelated individuals with possible FH attending a lipid clinic for treatment were examined for this mutation. Two individuals in this group of patients were found to be carriers of this mutation, supporting the suggestion of a founder mutation. Using this assay for the detection of FH in the Icelandic population should identify > 60% of these individuals.