Sample records for identify genetic determinants

  1. Identifying novel genetic determinants of hemostatic balance.

    PubMed

    Ginsburg, D

    2005-08-01

    Incomplete penetrance and variable expressivity confound the diagnosis and therapy of most inherited thrombotic and hemorrhagic disorders. For many of these diseases, some or most of this variability is determined by genetic modifiers distinct from the primary disease gene itself. Clues toward identifying such modifier genes may come from studying rare Mendelian disorders of hemostasis. Examples include identification of the cause of combined factor V and VIII deficiency as mutations in the ER Golgi intermediate compartment proteins LMAN1 and MCFD2. These proteins form a cargo receptor that facilitates the transport of factors V and VIII, and presumably other proteins, from the ER to the Golgi. A similar positional cloning approach identified ADAMTS-13 as the gene responsible for familial TTP. Along with the work of many other groups, these findings identified VWF proteolysis by ADAMTS-13 as a key regulatory pathway for hemostasis. Recent advances in mouse genetics also provide powerful tools for the identification of novel genes contributing to hemostatic balance. Genetic studies of inbred mouse lines with unusually high and unusually low plasma VWF levels identified polymorphic variation in the expression of a glycosyltransferase gene, Galgt2, as an important determinant of plasma VWF levels in the mouse. Ongoing studies in mice genetically engineered to carry the factor V Leiden mutation may similarly identify novel genes contributing to thrombosis risk in humans.

  2. Combining Quantitative Genetic Footprinting and Trait Enrichment Analysis to Identify Fitness Determinants of a Bacterial Pathogen

    PubMed Central

    Wiles, Travis J.; Norton, J. Paul; Russell, Colin W.; Dalley, Brian K.; Fischer, Kael F.; Mulvey, Matthew A.

    2013-01-01

    Strains of Extraintestinal Pathogenic Escherichia c oli (ExPEC) exhibit an array of virulence strategies and are a major cause of urinary tract infections, sepsis and meningitis. Efforts to understand ExPEC pathogenesis are challenged by the high degree of genetic and phenotypic variation that exists among isolates. Determining which virulence traits are widespread and which are strain-specific will greatly benefit the design of more effective therapies. Towards this goal, we utilized a quantitative genetic footprinting technique known as transposon insertion sequencing (Tn-seq) in conjunction with comparative pathogenomics to functionally dissect the genetic repertoire of a reference ExPEC isolate. Using Tn-seq and high-throughput zebrafish infection models, we tracked changes in the abundance of ExPEC variants within saturated transposon mutant libraries following selection within distinct host niches. Nine hundred and seventy bacterial genes (18% of the genome) were found to promote pathogen fitness in either a niche-dependent or independent manner. To identify genes with the highest therapeutic and diagnostic potential, a novel Trait Enrichment Analysis (TEA) algorithm was developed to ascertain the phylogenetic distribution of candidate genes. TEA revealed that a significant portion of the 970 genes identified by Tn-seq have homologues more often contained within the genomes of ExPEC and other known pathogens, which, as suggested by the first axiom of molecular Koch's postulates, is considered to be a key feature of true virulence determinants. Three of these Tn-seq-derived pathogen-associated genes—a transcriptional repressor, a putative metalloendopeptidase toxin and a hypothetical DNA binding protein—were deleted and shown to independently affect ExPEC fitness in zebrafish and mouse models of infection. Together, the approaches and observations reported herein provide a resource for future pathogenomics-based research and highlight the diversity of

  3. Identifying genetic relatives without compromising privacy

    PubMed Central

    He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-01-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977

  4. Identifying genetic relatives without compromising privacy.

    PubMed

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  5. Genetically determined height and coronary artery disease.

    PubMed

    Nelson, Christopher P; Hamby, Stephen E; Saleheen, Danish; Hopewell, Jenna C; Zeng, Lingyao; Assimes, Themistocles L; Kanoni, Stavroula; Willenborg, Christina; Burgess, Stephen; Amouyel, Phillipe; Anand, Sonia; Blankenberg, Stefan; Boehm, Bernhard O; Clarke, Robert J; Collins, Rory; Dedoussis, George; Farrall, Martin; Franks, Paul W; Groop, Leif; Hall, Alistair S; Hamsten, Anders; Hengstenberg, Christian; Hovingh, G Kees; Ingelsson, Erik; Kathiresan, Sekar; Kee, Frank; König, Inke R; Kooner, Jaspal; Lehtimäki, Terho; März, Winifred; McPherson, Ruth; Metspalu, Andres; Nieminen, Markku S; O'Donnell, Christopher J; Palmer, Colin N A; Peters, Annette; Perola, Markus; Reilly, Muredach P; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Shah, Svati H; Schreiber, Stefan; Siegbahn, Agneta; Thorsteinsdottir, Unnur; Veronesi, Giovani; Wareham, Nicholas; Willer, Cristen J; Zalloua, Pierre A; Erdmann, Jeanette; Deloukas, Panos; Watkins, Hugh; Schunkert, Heribert; Danesh, John; Thompson, John R; Samani, Nilesh J

    2015-04-23

    The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.).

  6. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms.

    PubMed

    McNally, Elizabeth M; Mestroni, Luisa

    2017-09-15

    Nonischemic dilated cardiomyopathy (DCM) often has a genetic pathogenesis. Because of the large number of genes and alleles attributed to DCM, comprehensive genetic testing encompasses ever-increasing gene panels. Genetic diagnosis can help predict prognosis, especially with regard to arrhythmia risk for certain subtypes. Moreover, cascade genetic testing in family members can identify those who are at risk or with early stage disease, offering the opportunity for early intervention. This review will address diagnosis and management of DCM, including the role of genetic evaluation. We will also overview distinct genetic pathways linked to DCM and their pathogenetic mechanisms. Historically, cardiac morphology has been used to classify cardiomyopathy subtypes. Determining genetic variants is emerging as an additional adjunct to help further refine subtypes of DCM, especially where arrhythmia risk is increased, and ultimately contribute to clinical management. © 2017 American Heart Association, Inc.

  7. Genetic modification and genetic determinism

    PubMed Central

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  8. Genetic markers cannot determine Jewish descent

    PubMed Central

    Falk, Raphael

    2015-01-01

    Humans differentiate, classify, and discriminate: social interaction is a basic property of human Darwinian evolution. Presumably inherent differential physical as well as behavioral properties have always been criteria for identifying friend or foe. Yet, biological determinism is a relatively modern term, and scientific racism is, oddly enough, largely a consequence or a product of the Age of Enlightenment and the establishment of the notion of human equality. In recent decades ever-increasing efforts and ingenuity were invested in identifying Biblical Israelite genotypic common denominators by analysing an assortment of phenotypes, like facial patterns, blood types, diseases, DNA-sequences, and more. It becomes overwhelmingly clear that although Jews maintained detectable vertical genetic continuity along generations of socio-religious-cultural relationship, also intensive horizontal genetic relations were maintained both between Jewish communities and with the gentile surrounding. Thus, in spite of considerable consanguinity, there is no Jewish genotype to identify. PMID:25653666

  9. Identifying genetic loci affecting antidepressant drug response in depression using drug–gene interaction models

    PubMed Central

    Noordam, Raymond; Avery, Christy L; Visser, Loes E; Stricker, Bruno H

    2016-01-01

    Antidepressants are often only moderately successful in decreasing the severity of depressive symptoms. In part, antidepressant treatment response in patients with depression is genetically determined. However, although a large number of studies have been conducted aiming to identify genetic variants associated with antidepressant drug response in depression, only a few variants have been repeatedly identified. Within the present review, we will discuss the methodological challenges and limitations of the studies that have been conducted on this topic to date (e.g., ‘treated-only design’, statistical power) and we will discuss how specifically drug–gene interaction models can be used to be better able to identify genetic variants associated with antidepressant drug response in depression. PMID:27248517

  10. Convergence between biological, behavioural and genetic determinants of obesity.

    PubMed

    Ghosh, Sujoy; Bouchard, Claude

    2017-12-01

    Multiple biological, behavioural and genetic determinants or correlates of obesity have been identified to date. Genome-wide association studies (GWAS) have contributed to the identification of more than 100 obesity-associated genetic variants, but their roles in causal processes leading to obesity remain largely unknown. Most variants are likely to have tissue-specific regulatory roles through joint contributions to biological pathways and networks, through changes in gene expression that influence quantitative traits, or through the regulation of the epigenome. The recent availability of large-scale functional genomics resources provides an opportunity to re-examine obesity GWAS data to begin elucidating the function of genetic variants. Interrogation of knockout mouse phenotype resources provides a further avenue to test for evidence of convergence between genetic variation and biological or behavioural determinants of obesity.

  11. Exploring Relationships Among Belief in Genetic Determinism, Genetics Knowledge, and Social Factors

    NASA Astrophysics Data System (ADS)

    Gericke, Niklas; Carver, Rebecca; Castéra, Jérémy; Evangelista, Neima Alice Menezes; Marre, Claire Coiffard; El-Hani, Charbel N.

    2017-12-01

    Genetic determinism can be described as the attribution of the formation of traits to genes, where genes are ascribed more causal power than what scientific consensus suggests. Belief in genetic determinism is an educational problem because it contradicts scientific knowledge, and is a societal problem because it has the potential to foster intolerant attitudes such as racism and prejudice against sexual orientation. In this article, we begin by investigating the very nature of belief in genetic determinism. Then, we investigate whether knowledge of genetics and genomics is associated with beliefs in genetic determinism. Finally, we explore the extent to which social factors such as gender, education, and religiosity are associated with genetic determinism. Methodologically, we gathered and analyzed data on beliefs in genetic determinism, knowledge of genetics and genomics, and social variables using the "Public Understanding and Attitudes towards Genetics and Genomics" (PUGGS) instrument. Our analyses of PUGGS responses from a sample of Brazilian university freshmen undergraduates indicated that (1) belief in genetic determinism was best characterized as a construct built up by two dimensions or belief systems: beliefs concerning social traits and beliefs concerning biological traits; (2) levels of belief in genetic determination of social traits were low, which contradicts prior work; (3) associations between knowledge of genetics and genomics and levels of belief in genetic determinism were low; and (4) social factors such as age and religiosity had stronger associations with beliefs in genetic determinism than knowledge. Although our study design precludes causal inferences, our results raise questions about whether enhancing genetic literacy will decrease or prevent beliefs in genetic determinism.

  12. Genetic determinants of hepatic steatosis in man

    PubMed Central

    Hooper, Amanda J.; Adams, Leon A.; Burnett, John R.

    2011-01-01

    Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD. PMID:21245030

  13. Genetically distinct genogroup IV norovirus strains identified in wastewater.

    PubMed

    Kitajima, Masaaki; Rachmadi, Andri T; Iker, Brandon C; Haramoto, Eiji; Gerba, Charles P

    2016-12-01

    We investigated the prevalence and genetic diversity of genogroup IV norovirus (GIV NoV) strains in wastewater in Arizona, United States, over a 13-month period. Among 50 wastewater samples tested, GIV NoVs were identified in 13 (26 %) of the samples. A total of 47 different GIV NoV strains were identified, which were classified into two genetically distinct clusters: the GIV.1 human cluster and a unique genetic cluster closely related to strains previously identified in Japanese wastewater. The results provide additional evidence of the considerable genetic diversity among GIV NoV strains through the analysis of wastewater containing virus strains shed from all populations.

  14. Genetic and epigenetic effects in sex determination.

    PubMed

    Gunes, Sezgin Ozgur; Metin Mahmutoglu, Asli; Agarwal, Ashok

    2016-12-01

    Sex determination is a complex and dynamic process with multiple genetic and environmental causes, in which germ and somatic cells receive various sex-specific features. During the fifth week of fetal life, the bipotential embryonic gonad starts to develop in humans. In the bipotential gonadal tissue, certain cell groups start to differentiate to form the ovaries or testes. Despite considerable efforts and advances in identifying the mechanisms playing a role in sex determination and differentiation, the underlying mechanisms of the exact functions of many genes, gene-gene interactions, and epigenetic modifications that are involved in different stages of this cascade are not completely understood. This review aims at discussing current data on the genetic effects via genes and epigenetic mechanisms that affect the regulation of sex determination. Birth Defects Research (Part C) 108:321-336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Can we use genetic and genomic approaches to identify candidate animals for targeted selective treatment.

    PubMed

    Laurenson, Yan C S M; Kyriazakis, Ilias; Bishop, Stephen C

    2013-10-18

    Estimated breeding values (EBV) for faecal egg count (FEC) and genetic markers for host resistance to nematodes may be used to identify resistant animals for selective breeding programmes. Similarly, targeted selective treatment (TST) requires the ability to identify the animals that will benefit most from anthelmintic treatment. A mathematical model was used to combine the concepts and evaluate the potential of using genetic-based methods to identify animals for a TST regime. EBVs obtained by genomic prediction were predicted to be the best determinant criterion for TST in terms of the impact on average empty body weight and average FEC, whereas pedigree-based EBVs for FEC were predicted to be marginally worse than using phenotypic FEC as a determinant criterion. Whilst each method has financial implications, if the identification of host resistance is incorporated into a wider genomic selection indices or selective breeding programmes, then genetic or genomic information may be plausibly included in TST regimes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. How Darwinian reductionism refutes genetic determinism.

    PubMed

    Rosoff, Philip M; Rosenberg, Alex

    2006-03-01

    Genetic determinism labels the morally problematical claim that some socially significant traits, traits we care about, such as sexual orientation, gender roles, violence, alcoholism, mental illness, intelligence, are largely the results of the operation of genes and not much alterable by environment, learning or other human intervention. Genetic determinism does not require that genes literally fix these socially significant traits, but rather that they constrain them within narrow channels beyond human intervention. In this essay we analyze genetic determinism in light of what is now known about the inborn error of metabolism phenylketonuria (PKU), which has for so long been the poster child 'simple' argument in favor of some form of genetic determinism. We demonstrate that this case proves the exact opposite of what it has been proposed to support and provides a strong refutation of genetic determinism in all its guises.

  17. Genetic determinants of leucocyte telomere length in children: a neglected and challenging field.

    PubMed

    Stathopoulou, Maria G; Petrelis, Alexandros M; Buxton, Jessica L; Froguel, Philippe; Blakemore, Alexandra I F; Visvikis-Siest, Sophie

    2015-03-01

    Telomere length is associated with a large range of human diseases. Genome-wide association studies (GWAS) have identified genetic variants that are associated with leucocyte telomere length (LTL). However, these studies are limited to adult populations. Nevertheless, childhood is a crucial period for the determination of LTL, and the assessment of age-specific genetic determinants, although neglected, could be of great importance. Our aim was to provide insights and preliminary results on genetic determinants of LTL in children. Healthy children (n = 322, age range = 6.75-17 years) with available GWAS data (Illumina Human CNV370-Duo array) were included. The LTL was measured using multiplex quantitative real-time polymerase chain reaction. Linear regression models adjusted for age, gender, parental age at child's birth, and body mass index were used to test the associations of LTL with polymorphisms identified in adult GWAS and to perform a discovery-only GWAS. The previously GWAS-identified variants in adults were not associated with LTL in our paediatric sample. This lack of association was not due to possible interactions with age or gene × gene interactions. Furthermore, a discovery-only GWAS approach demonstrated six novel variants that reached the level of suggestive association (P ≤ 5 × 10(-5)) and explain a high percentage of children's LTL. The study of genetic determinants of LTL in children may identify novel variants not previously identified in adults. Studies in large-scale children populations are needed for the confirmation of these results, possibly through a childhood consortium that could better handle the methodological challenges of LTL genetic epidemiology field. © 2015 John Wiley & Sons Ltd.

  18. Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging.

    PubMed

    Neuner, Sarah M; Garfinkel, Benjamin P; Wilmott, Lynda A; Ignatowska-Jankowska, Bogna M; Citri, Ami; Orly, Joseph; Lu, Lu; Overall, Rupert W; Mulligan, Megan K; Kempermann, Gerd; Williams, Robert W; O'Connell, Kristen M S; Kaczorowski, Catherine C

    2016-10-01

    An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Genetic determinants of heart failure: facts and numbers.

    PubMed

    Czepluch, Frauke S; Wollnik, Bernd; Hasenfuß, Gerd

    2018-06-01

    The relevance of gene mutations leading to heart diseases and hence heart failure has become evident. The risk for and the course of heart failure depends on genomic variants and mutations underlying the so-called genetic predisposition. Genetic contribution to heart failure is highly heterogenous and complex. For any patient with a likely inherited heart failure syndrome, genetic counselling is recommended and important. In the last few years, novel sequencing technologies (named next-generation sequencing - NGS) have dramatically improved the availability of molecular testing, the efficiency of genetic analyses, and moreover reduced the cost for genetic testing. Due to this development, genetic testing has become increasingly accessible and NGS-based sequencing is now applied in clinical routine diagnostics. One of the most common reasons of heart failure are cardiomyopathies such as the dilated or the hypertrophic cardiomyopathy. Nearly 100 disease-associated genes have been identified for cardiomyopathies. The knowledge of a pathogenic mutation can be used for genetic counselling, risk and prognosis determination, therapy guidance and hence for a more effective treatment. Besides, family cascade screening for a known familial, pathogenic mutation can lead to an early diagnosis in affected individuals. At that timepoint, a preventative intervention could be used to avoid or delay disease onset or delay disease progression. Understanding the cellular basis of genetic heart failure syndromes in more detail may provide new insights into the molecular biology of physiological and impaired cardiac (cell) function. As our understanding of the molecular and genetic pathophysiology of heart failure will increase, this might help to identify novel therapeutic targets and may lead to the development of new and specific treatment options in patients with heart failure. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European

  20. Genetic essentialism: on the deceptive determinism of DNA.

    PubMed

    Dar-Nimrod, Ilan; Heine, Steven J

    2011-09-01

    This article introduces the notion of genetic essentialist biases: cognitive biases associated with essentialist thinking that are elicited when people encounter arguments that genes are relevant for a behavior, condition, or social group. Learning about genetic attributions for various human conditions leads to a particular set of thoughts regarding those conditions: they are more likely to be perceived as (a) immutable and determined, (b) having a specific etiology, (c) homogeneous and discrete, and (d) natural, which can lead to the naturalistic fallacy. There are rare cases of "strong genetic explanation" when such responses to genetic attributions may be appropriate; however, people tend to overweigh genetic attributions compared with competing attributions even in cases of "weak genetic explanation," which are far more common. The authors reviewed research on people's understanding of race, gender, sexual orientation, criminality, mental illness, and obesity through a genetic essentialism lens, highlighting attitudinal, cognitive, and behavioral changes that stem from consideration of genetic attributions as bases of these categories. Scientific and media portrayals of genetic discoveries are discussed with respect to genetic essentialism, as is the role that genetic essentialism has played (and continues to play) in various public policies, legislation, scientific endeavors, and ideological movements in recent history. Last, moderating factors and interventions to reduce the magnitude of genetic essentialism, which identify promising directions to explore in order to reduce these biases, are discussed. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  1. Genetic Essentialism: On the Deceptive Determinism of DNA

    PubMed Central

    Dar-Nimrod, Ilan; Heine, Steven J.

    2012-01-01

    This paper introduces the notion of genetic essentialist biases: cognitive biases associated with essentialist thinking that are elicited when people encounter arguments that genes are relevant for a behavior, condition, or social group. Learning about genetic attributions for various human conditions leads to a particular set of thoughts regarding those conditions: they are more likely to be perceived as a) immutable and determined, b) having a specific etiology, c) homogeneous and discrete, and, d) natural, which can lead to the naturalistic fallacy. There are rare cases of “strong genetic explanation” when such responses to genetic attributions may be appropriate, however people tend to over-weigh genetic attributions compared with competing attributions even in cases of “weak genetic explanation,” which are far more common. Research on people’s understanding of race, gender, sexual orientation, criminality, mental illness and obesity is reviewed through a genetic essentialism lens, highlighting attitudinal, cognitive and behavioral changes that stem from consideration of genetic attributions as bases of these categories. Scientists and media portrayals of genetic discoveries are discussed with respect to genetic essentialism, as is the role that genetic essentialism has played (and continues to play) in various public policies, legislation, scientific endeavors, and ideological movements in recent history. Last, moderating factors and interventions to reduce the magnitude of genetic essentialism are discussed that identify promising directions to explore in order to reduce these biases. PMID:21142350

  2. Human genetics as a tool to identify progranulin regulators.

    PubMed

    Nicholson, Alexandra M; Finch, NiCole A; Rademakers, Rosa

    2011-11-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases.

  3. HUMAN GENETICS AS A TOOL TO IDENTIFY PROGRANULIN REGULATORS

    PubMed Central

    Nicholson, Alexandra M.; Finch, NiCole A.; Rademakers, Rosa

    2012-01-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases. PMID:21626010

  4. The McGill Interactive Pediatric OncoGenetic Guidelines: An approach to identifying pediatric oncology patients most likely to benefit from a genetic evaluation.

    PubMed

    Goudie, Catherine; Coltin, Hallie; Witkowski, Leora; Mourad, Stephanie; Malkin, David; Foulkes, William D

    2017-08-01

    Identifying cancer predisposition syndromes in children with tumors is crucial, yet few clinical guidelines exist to identify children at high risk of having germline mutations. The McGill Interactive Pediatric OncoGenetic Guidelines project aims to create a validated pediatric guideline in the form of a smartphone/tablet application using algorithms to process clinical data and help determine whether to refer a child for genetic assessment. This paper discusses the initial stages of the project, focusing on its overall structure, the methodology underpinning the algorithms, and the upcoming algorithm validation process. © 2017 Wiley Periodicals, Inc.

  5. Nutritional and Genetic Determinants of Early Puberty

    DTIC Science & Technology

    2007-06-01

    AD_________________ Award Number: W81XWH-04-1-0575 TITLE: Nutritional and Genetic Determinants...CONTRACT NUMBER Nutritional and Genetic Determinants of Early Puberty 5b. GRANT NUMBER W81XWH-04-1-0575 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...later in life. Nutritional factors during childhood and puberty, and inherited genetic factors are suspected to interact in modulating these early

  6. Population differences in platinum toxicity as a means to identify novel genetic susceptibility variants

    PubMed Central

    O'Donnell, Peter H.; Gamazon, Eric; Zhang, Wei; Stark, Amy L.; Kistner-Griffin, Emily O.; Huang, R. Stephanie; Dolan, M. Eileen

    2010-01-01

    Objectives Clinical studies show that Asians (ASN) are more susceptible to toxicities associated with platinum-containing regimens. We hypothesized that studying ASN as an `enriched phenotype' population could enable the discovery of novel genetic determinants of platinum susceptibility. Methods Using well-genotyped lymphoblastoid cell lines from the HapMap, we determined cisplatin and carboplatin cytotoxicity phenotypes (IC50s) for ASN, Caucasians (CEU), and Africans (YRI). IC50s were used in genome-wide association studies. Results ASN were most sensitive to platinums, corroborating clinical findings. ASN genome-wide association studies produced 479 single-nucleotide polymorphisms (SNPs) associating with cisplatin susceptibility and 199 with carboplatin susceptibility (P<10−4). Considering only the most significant variants (P< 9.99 × 10−6), backwards elimination was then used to identify reduced-model SNPs, which robustly described the drug phenotypes within ASN. These SNPs comprised highly descriptive genetic signatures of susceptibility, with 12 SNPs explaining more than 95% of the susceptibility phenotype variation for cisplatin, and eight SNPs approximately 75% for carboplatin. To determine the possible function of these variants in ASN, the SNPs were tested for association with differential expression of target genes. SNPs were highly associated with the expression of multiple target genes, and notably, the histone H3 family was implicated for both drugs, suggesting a platinum-class mechanism. Histone H3 has repeatedly been described as regulating the formation of platinum-DNA adducts, but this is the first evidence that specific genetic variants might mediate these interactions in a pharmacogenetic manner. Finally, to determine whether any ASN-identified SNPs might also be important in other human populations, we interrogated all 479/199 SNPs for association with platinum susceptibility in an independent combined CEU/YRI population. Three unique SNPs

  7. Identifying environmental correlates of intraspecific genetic variation.

    PubMed

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution).

  8. Identifying future research needs in landscape genetics: Where to from here?

    Treesearch

    Niko Balkenhol; Felix Gugerli; Sam A. Cushman; Lisette P. Waits; Aurelie Coulon; J. W. Arntzen; Rolf Holderegger; Helene H. Wagner

    2009-01-01

    Landscape genetics is an emerging interdisciplinary field that combines methods and concepts from population genetics, landscape ecology, and spatial statistics. The interest in landscape genetics is steadily increasing, and the field is evolving rapidly. We here outline four major challenges for future landscape genetic research that were identified during an...

  9. Genetic Determinants of Trabecular and Cortical Volumetric Bone Mineral Densities and Bone Microstructure

    PubMed Central

    Kähönen, Mika; Raitakari, Olli; Laaksonen, Marika; Sievänen, Harri; Viikari, Jorma; Lyytikäinen, Leo-Pekka; Mellström, Dan; Karlsson, Magnus; Ljunggren, Östen; Grundberg, Elin; Kemp, John P.; Sayers, Adrian; Nethander, Maria; Evans, David M.; Vandenput, Liesbeth; Tobias, Jon H.; Ohlsson, Claes

    2013-01-01

    Most previous genetic epidemiology studies within the field of osteoporosis have focused on the genetics of the complex trait areal bone mineral density (aBMD), not being able to differentiate genetic determinants of cortical volumetric BMD (vBMD), trabecular vBMD, and bone microstructural traits. The objective of this study was to separately identify genetic determinants of these bone traits as analysed by peripheral quantitative computed tomography (pQCT). Separate GWA meta-analyses for cortical and trabecular vBMDs were performed. The cortical vBMD GWA meta-analysis (n = 5,878) followed by replication (n = 1,052) identified genetic variants in four separate loci reaching genome-wide significance (RANKL, rs1021188, p = 3.6×10−14; LOC285735, rs271170, p = 2.7×10−12; OPG, rs7839059, p = 1.2×10−10; and ESR1/C6orf97, rs6909279, p = 1.1×10−9). The trabecular vBMD GWA meta-analysis (n = 2,500) followed by replication (n = 1,022) identified one locus reaching genome-wide significance (FMN2/GREM2, rs9287237, p = 1.9×10−9). High-resolution pQCT analyses, giving information about bone microstructure, were available in a subset of the GOOD cohort (n = 729). rs1021188 was significantly associated with cortical porosity while rs9287237 was significantly associated with trabecular bone fraction. The genetic variant in the FMN2/GREM2 locus was associated with fracture risk in the MrOS Sweden cohort (HR per extra T allele 0.75, 95% confidence interval 0.60–0.93) and GREM2 expression in human osteoblasts. In conclusion, five genetic loci associated with trabecular or cortical vBMD were identified. Two of these (FMN2/GREM2 and LOC285735) are novel bone-related loci, while the other three have previously been reported to be associated with aBMD. The genetic variants associated with cortical and trabecular bone parameters differed, underscoring the complexity of the genetics of bone parameters. We propose that a genetic

  10. Challenges of Identifying Clinically Actionable Genetic Variants for Precision Medicine

    PubMed Central

    2016-01-01

    Advances in genomic medicine have the potential to change the way we treat human disease, but translating these advances into reality for improving healthcare outcomes depends essentially on our ability to discover disease- and/or drug-associated clinically actionable genetic mutations. Integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a big data infrastructure can provide an efficient and effective way to identify clinically actionable genetic variants for personalized treatments and reduce healthcare costs. We review bioinformatics processing of next-generation sequencing (NGS) data, bioinformatics infrastructures for implementing precision medicine, and bioinformatics approaches for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs. PMID:27195526

  11. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce

    PubMed Central

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444

  12. Genetics of fat intake in the determination of body mass.

    PubMed

    Chmurzynska, Agata; Mlodzik, Monika A

    2017-06-01

    Body mass and fat intake are multifactorial traits that have genetic and environmental components. The gene with the greatest effect on body mass is FTO (fat mass and obesity-associated), but several studies have shown that the effect of FTO (and of other genes) on body mass can be modified by the intake of nutrients. The so-called gene-environment interactions may also be important for the effectiveness of weight-loss strategies. Food choices, and thus fat intake, depend to some extent on individual preferences. The most important biological component of food preference is taste, and the role of fat sensitivity in fat intake has recently been pointed out. Relatively few studies have analysed the genetic components of fat intake or fatty acid sensitivity in terms of their relation to obesity. It has been proposed that decreased oral fatty acid sensitivity leads to increased fat intake and thus increased body mass. One of the genes that affect fatty acid sensitivity is CD36 (cluster of differentiation 36). However, little is known so far about the genetic component of fat sensing. We performed a literature review to identify the state of knowledge regarding the genetics of fat intake and its relation to body-mass determination, and to identify the priorities for further investigations.

  13. Genetic sex determination and extinction.

    PubMed

    Hedrick, Philip W; Gadau, Jürgen; Page, Robert E

    2006-02-01

    Genetic factors can affect the probability of extinction either by increasing the effect of detrimental variants or by decreasing the potential for future adaptive responses. In a recent paper, Zayed and Packer demonstrate that low variation at a specific locus, the complementary sex determination (csd) locus in Hymenoptera (ants, bees and wasps), can result in a sharply increased probability of extinction. Their findings illustrate situations in which there is a feedback process between decreased genetic variation at the csd locus owing to genetic drift and decreased population growth, resulting in an extreme type of extinction vortex for these ecologically important organisms.

  14. Exploring Relationships among Belief in Genetic Determinism, Genetics Knowledge, and Social Factors

    ERIC Educational Resources Information Center

    Gericke, Niklas; Carver, Rebecca; Castéra, Jérémy; Evangelista, Neima Alice Menezes; Marre, Claire Coiffard; El-Hani, Charbel N.

    2017-01-01

    Genetic determinism can be described as the attribution of the formation of traits to genes, where genes are ascribed more causal power than what scientific consensus suggests. Belief in genetic determinism is an educational problem because it contradicts scientific knowledge, and is a societal problem because it has the potential to foster…

  15. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    ERIC Educational Resources Information Center

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  16. Genetic Ancestry for Sleep Research: Leveraging Health Inequalities to Identify Causal Genetic Variants.

    PubMed

    Prasad, Bharati; Saxena, Richa; Goel, Namni; Patel, Sanjay R

    2018-06-01

    Recent evidence has highlighted the health inequalities in sleep behaviors and sleep disorders that adversely affect outcomes in select populations, including African-American and Hispanic-American subjects. Race-related sleep health inequalities are ascribed to differences in multilevel and interlinked health determinants, such as sociodemographic factors, health behaviors, and biology. African-American and Hispanic-American subjects are admixed populations whose genetic inheritance combines two or more ancestral populations originating from different continents. Racial inequalities in admixed populations can be parsed into relevant groups of mediating factors (environmental vs genetic) with the use of measures of genetic ancestry, including the proportion of an individual's genetic makeup that comes from each of the major ancestral continental populations. This review describes sleep health inequalities in African-American and Hispanic-American subjects and considers the potential utility of ancestry studies to exploit these differences to gain insight into the genetic underpinnings of these phenotypes. The inclusion of genetic approaches in future studies of admixed populations will allow greater understanding of the potential biological basis of race-related sleep health inequalities. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  17. Targeted Approach to Identify Genetic Loci Associated with ...

    EPA Pesticide Factsheets

    Extreme tolerance to highly toxic dioxin-like contaminants (DLCs) has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly contaminated urban/industrialized estuaries of the US Atlantic coast. We hypothesized that comparisons among tolerant populations and in contrast to their sensitive neighboring killifish might reveal genetic loci associated with DLC tolerance. Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, we identified single nucleotide polymorphisms (SNPs) from 43 genes associated with the AHR to serve as targeted markers. Wild fish from the four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Consistent with other killifish population genetic analyses, our results revealed strong genetic differentiation among populations, consistent with isolation by distance models. Pairwise comparisons of nearby tolerant and sensitive populations revealed differentiation among these loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP) 1A and 3A30, and the NADH ubiquinone oxidoreductase MLRQ subunit. By grouping tolerant versus sensitive populations, we also identified cytochrome P450 1A and the AHR2 loci as under selection, lend

  18. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution

    PubMed Central

    Boueiz, Adel; Lutz, Sharon M.; Cho, Michael H.; Hersh, Craig P.; Bowler, Russell P.; Washko, George R.; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M.; Beaty, Terri H.; Coxson, Harvey O.; Crapo, James D.; Silverman, Edwin K.; Castaldi, Peter J.

    2017-01-01

    Rationale: Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe–predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. Objectives: To identify the genetic influences of emphysema distribution in non–alpha-1 antitrypsin–deficient smokers. Methods: A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism–, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. Measurements and Main Results: We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. Conclusions: This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings

  19. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution.

    PubMed

    Boueiz, Adel; Lutz, Sharon M; Cho, Michael H; Hersh, Craig P; Bowler, Russell P; Washko, George R; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M; Beaty, Terri H; Coxson, Harvey O; Crapo, James D; Silverman, Edwin K; Castaldi, Peter J; DeMeo, Dawn L

    2017-03-15

    Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe-predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. To identify the genetic influences of emphysema distribution in non-alpha-1 antitrypsin-deficient smokers. A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism-, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings may point to new biologic pathways on which to expand diagnostic and therapeutic

  20. Genetic Determinants of Thrombin Generation and Their Relation to Venous Thrombosis: Results from the GAIT-2 Project

    PubMed Central

    Martin-Fernandez, Laura; Ziyatdinov, Andrey; Carrasco, Marina; Millon, Juan Antonio; Martinez-Perez, Angel; Vilalta, Noelia; Brunel, Helena; Font, Montserrat; Hamsten, Anders; Souto, Juan Carlos; Soria, José Manuel

    2016-01-01

    Background Venous thromboembolism (VTE) is a common disease where known genetic risk factors explain only a small portion of the genetic variance. Then, the analysis of intermediate phenotypes, such as thrombin generation assay, can be used to identify novel genetic risk factors that contribute to VTE. Objectives To investigate the genetic basis of distinct quantitative phenotypes of thrombin generation and its relationship to the risk of VTE. Patients/Methods Lag time, thrombin peak and endogenous thrombin potential (ETP) were measured in the families of the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT-2) Project. This sample consisted of 935 individuals in 35 extended families selected through a proband with idiopathic thrombophilia. We performed also genome wide association studies (GWAS) with thrombin generation phenotypes. Results The results showed that 67% of the variation in the risk of VTE is attributable to genetic factors. The heritabilities of lag time, thrombin peak and ETP were 49%, 54% and 52%, respectively. More importantly, we demonstrated also the existence of positive genetic correlations between thrombin peak or ETP and the risk of VTE. Moreover, the major genetic determinant of thrombin generation was the F2 gene. However, other suggestive signals were observed. Conclusions The thrombin generation phenotypes are strongly genetically determined. The thrombin peak and ETP are significantly genetically correlated with the risk of VTE. In addition, F2 was identified as a major determinant of thrombin generation. We reported suggestive signals that might increase our knowledge to explain the variability of this important phenotype. Validation and functional studies are required to confirm GWAS results. PMID:26784699

  1. Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice.

    PubMed

    Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin

    2016-11-01

    Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice in atherosclerotic lesion formation. 206 female F 2 mice generated from an intercross between the two Apoe -/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F 2 cohort. We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence.

    PubMed

    Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle

    2018-06-25

    Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.

  3. Host genetic determinants of HIV pathogenesis: an immunologic perspective.

    PubMed

    Hunt, Peter W; Carrington, Mary

    2008-05-01

    The purpose of this review is to highlight recent advances in our understanding of host genetic determinants of HIV pathogenesis and to provide a theoretical framework for interpreting these studies in the context of our evolving understanding of HIV immunopathogenesis. The first genome-wide association analysis of host determinants of HIV pathogenesis and other recent studies evaluating the interaction between killer cell immunoglobulin-like receptors and human leukocyte antigen alleles have implicated both adaptive and innate immune responses in the control of HIV replication. Furthermore, genetic variation associated with the expression of CCR5 and its ligand have been strongly associated with both decreased susceptibility to HIV infection and delayed clinical progression, independent of their effects on viral replication, suggesting a potential role for CCR5 inhibitors as immune-based therapies in HIV disease. Host factors associated with the control of HIV replication may help identify important targets for vaccine design, while those associated with delayed clinical progression provide targets for future immune-based therapies against HIV infection.

  4. Full-Genome Sequencing Identifies in the Genetic Background Several Determinants That Modulate the Resistance Phenotype in Methicillin-Resistant Staphylococcus aureus Strains Carrying the Novel mecC Gene

    PubMed Central

    de Lencastre, Hermínia; Tomasz, Alexander

    2017-01-01

    ABSTRACT Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant—the mecC gene—was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant. PMID:28069659

  5. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. [Elucidation of key genes in sex determination in genetics teaching].

    PubMed

    Li, Meng; He, Zhumei

    2014-06-01

    Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.

  7. Identifying Common Genetic Risk Factors of Diabetic Neuropathies

    PubMed Central

    Witzel, Ini-Isabée; Jelinek, Herbert F.; Khalaf, Kinda; Lee, Sungmun; Khandoker, Ahsan H.; Alsafar, Habiba

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a global public health problem of epidemic proportions, with 60–70% of affected individuals suffering from associated neurovascular complications that act on multiple organ systems. The most common and clinically significant neuropathies of T2DM include uremic neuropathy, peripheral neuropathy, and cardiac autonomic neuropathy. These conditions seriously impact an individual’s quality of life and significantly increase the risk of morbidity and mortality. Although advances in gene sequencing technologies have identified several genetic variants that may regulate the development and progression of T2DM, little is known about whether or not the variants are involved in disease progression and how these genetic variants are associated with diabetic neuropathy specifically. Significant missing heritability data and complex disease etiologies remain to be explained. This article is the first to provide a review of the genetic risk variants implicated in the diabetic neuropathies and to highlight potential commonalities. We thereby aim to contribute to the creation of a genetic-metabolic model that will help to elucidate the cause of diabetic neuropathies, evaluate a patient’s risk profile, and ultimately facilitate preventative and targeted treatment for the individual. PMID:26074879

  8. Genetic Factors in Determining Bone Mass

    PubMed Central

    Smith, David M.; Nance, Walter E.; Kang, Ke Won; Christian, Joe C.; Johnston, C. Conrad

    1973-01-01

    This investigation was undertaken to evaluate possible genetic determinants of bone mass with the premise that inheritance of bone mass could be of etiologic importance in osteoporosis. Bone mass and width measurements were made with the photon absorption technique on the right radius of 71 juvenile and 80 adult twin paris. The variance of intrapair differences of bone mass in monozygotic (MZ) juvenile twins was 0.0013 g2/cm2 compared to 0.0052 g2/cm2 in the dizygotic (DZ) twins. For the adult twins the variance of intrapair differences in bone mass was 0.0069 for MZ and 0.0137 for DZ twins. Similar results were obtained for bone width. The significantly larger variation in intrapair differences in DZ twins indicates that these traits have significant genetic determinants. These intrapair differences were found to increase with age, suggesting that genetic-environmental interaction also contributes to the observed variation in bone mass. These data provide evidence that bone mass does have significant genetic factors, which alone or in conjunction with environmental factors may predispose persons to the development of osteoporosis. PMID:4795916

  9. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    PubMed

    Carhuatanta, Kimberly A K; Shea, Chloe J A; Herman, James P; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  10. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    PubMed Central

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior. PMID:25374516

  11. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

    PubMed Central

    Cleynen, Isabelle; Boucher, Gabrielle; Jostins, Luke; Schumm, L Philip; Zeissig, Sebastian; Ahmad, Tariq; Andersen, Vibeke; Andrews, Jane M; Annese, Vito; Brand, Stephan; Brant, Steven R; Cho, Judy H; Daly, Mark J; Dubinsky, Marla; Duerr, Richard H; Ferguson, Lynnette R; Franke, Andre; Gearry, Richard B; Goyette, Philippe; Hakonarson, Hakon; Halfvarson, Jonas; Hov, Johannes R; Huang, Hailang; Kennedy, Nicholas A; Kupcinskas, Limas; Lawrance, Ian C; Lee, James C; Satsangi, Jack; Schreiber, Stephan; Théâtre, Emilie; van der Meulen-de Jong, Andrea E; Weersma, Rinse K; Wilson, David C; Parkes, Miles; Vermeire, Severine; Rioux, John D; Mansfield, John; Silverberg, Mark S; Radford-Smith, Graham; McGovern, Dermot P B; Barrett, Jeffrey C; Lees, Charlie W

    2016-01-01

    Summary Background Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34 819 patients (19 713 with Crohn's disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohn's disease, 12 597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for

  12. The genetics of alcoholism: identifying specific genes through family studies.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2006-09-01

    Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.

  13. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease.

    PubMed

    Cazaly, Emma; Charlesworth, Jac; Dickinson, Joanne L; Holloway, Adele F

    2015-03-26

    The field of epigenetics and our understanding of the mechanisms that regulate the establishment, maintenance and heritability of epigenetic patterns continue to grow at a remarkable rate. This information is providing increased understanding of the role of epigenetic changes in disease, insight into the underlying causes of these epigenetic changes and revealing new avenues for therapeutic intervention. Epigenetic modifiers are increasingly being pursued as therapeutic targets in a range of diseases, with a number of agents targeting epigenetic modifications already proving effective in diseases such as cancer. Although it is well established that DNA mutations and aberrant expression of epigenetic modifiers play a key role in disease, attention is now turning to the interplay between genetic and epigenetic factors in complex disease etiology. The role of genetic variability in determining epigenetic profiles, which can then be modified by environmental and stochastic factors, is becoming more apparent. Understanding the interplay between genetic and epigenetic factors is likely to aid in identifying individuals most likely to benefit from epigenetic therapies. This goal is coming closer to realization because of continual advances in laboratory and statistical tools enabling improvements in the integration of genomic, epigenomic and phenotypic data.

  14. Genetic Determinants of Pubertal Timing in the General Population

    PubMed Central

    Gajdos, Zofia K.Z.; Henderson, Katherine D.; Hirschhorn, Joel N.

    2010-01-01

    Puberty is an important developmental stage during which reproductive capacity is attained. The timing of puberty varies greatly among healthy individuals in the general population and is influenced by both genetic and environmental factors. Although genetic variation is known to influence the normal spectrum of pubertal timing, the specific genes involved remain largely unknown. Genetic analyses have identified a number of genes responsible for rare disorders of pubertal timing such as hypogonadotropic hypogonadism and Kallmann syndrome. Recently, the first loci with common variation reproducibly associated with population variation in the timing of puberty were identified at 6q21 in or near LIN28B and at 9q31.2. However, these two loci explain only a small fraction of the genetic contribution to population variation in pubertal timing, suggesting the need to continue to consider other loci and other types of variants. Here we provide an update of the genes implicated in disorders of puberty, discuss genes and pathways that may be involved in the timing of normal puberty, and suggest additional avenues of investigation to identify genetic regulators of puberty in the general population. PMID:20144687

  15. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer

    PubMed Central

    Shen, Lanlan; Toyota, Minoru; Kondo, Yutaka; Lin, E; Zhang, Li; Guo, Yi; Hernandez, Natalie Supunpong; Chen, Xinli; Ahmed, Saira; Konishi, Kazuo; Hamilton, Stanley R.; Issa, Jean-Pierre J.

    2007-01-01

    Colon cancer has been viewed as the result of progressive accumulation of genetic and epigenetic abnormalities. However, this view does not fully reflect the molecular heterogeneity of the disease. We have analyzed both genetic (mutations of BRAF, KRAS, and p53 and microsatellite instability) and epigenetic alterations (DNA methylation of 27 CpG island promoter regions) in 97 primary colorectal cancer patients. Two clustering analyses on the basis of either epigenetic profiling or a combination of genetic and epigenetic profiling were performed to identify subclasses with distinct molecular signatures. Unsupervised hierarchical clustering of the DNA methylation data identified three distinct groups of colon cancers named CpG island methylator phenotype (CIMP) 1, CIMP2, and CIMP negative. Genetically, these three groups correspond to very distinct profiles. CIMP1 are characterized by MSI (80%) and BRAF mutations (53%) and rare KRAS and p53 mutations (16% and 11%, respectively). CIMP2 is associated with 92% KRAS mutations and rare MSI, BRAF, or p53 mutations (0, 4, and 31% respectively). CIMP-negative cases have a high rate of p53 mutations (71%) and lower rates of MSI (12%) or mutations of BRAF (2%) or KRAS (33%). Clustering based on both genetic and epigenetic parameters also identifies three distinct (and homogeneous) groups that largely overlap with the previous classification. The three groups are independent of age, gender, or stage, but CIMP1 and 2 are more common in proximal tumors. Together, our integrated genetic and epigenetic analysis reveals that colon cancers correspond to three molecularly distinct subclasses of disease. PMID:18003927

  16. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study.

    PubMed

    Cleynen, Isabelle; Boucher, Gabrielle; Jostins, Luke; Schumm, L Philip; Zeissig, Sebastian; Ahmad, Tariq; Andersen, Vibeke; Andrews, Jane M; Annese, Vito; Brand, Stephan; Brant, Steven R; Cho, Judy H; Daly, Mark J; Dubinsky, Marla; Duerr, Richard H; Ferguson, Lynnette R; Franke, Andre; Gearry, Richard B; Goyette, Philippe; Hakonarson, Hakon; Halfvarson, Jonas; Hov, Johannes R; Huang, Hailang; Kennedy, Nicholas A; Kupcinskas, Limas; Lawrance, Ian C; Lee, James C; Satsangi, Jack; Schreiber, Stephan; Théâtre, Emilie; van der Meulen-de Jong, Andrea E; Weersma, Rinse K; Wilson, David C; Parkes, Miles; Vermeire, Severine; Rioux, John D; Mansfield, John; Silverberg, Mark S; Radford-Smith, Graham; McGovern, Dermot P B; Barrett, Jeffrey C; Lees, Charlie W

    2016-01-09

    Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34,819 patients (19,713 with Crohn's disease, 14,683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype-phenotype associations across 156,154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. After quality control, the primary analysis included 29,838 patients (16,902 with Crohn's disease, 12,597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with

  17. Systems Genetics Identifies a Novel Regulatory Domain of Amylose Synthesis1[OPEN

    PubMed Central

    Parween, Sabiha; Samson, Irene; de Guzman, Krishna; Alhambra, Crisline Mae; Misra, Gopal

    2017-01-01

    A deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS) of debranched starch structure from grains of a 320 indica rice diversity panel using genotyping data from the high-density rice array. A systems genetics approach that interrelates starch structure data from GWAS to functional pathways from a gene regulatory network identified known genes with high correlation to the proportion of amylose and amylopectin. An SNP in the promoter region of Granule Bound Starch Synthase I was identified along with seven other SNPs to form haplotypes that discriminate samples into different phenotypic ranges of amylose. A GWAS peak on chromosome 7 between LOC_Os07g11020 and LOC_Os07g11520 indexed by a nonsynonymous SNP mutation on exon 5 of a bHLH transcription factor was found to elevate the proportion of amylose at the expense of reduced short-chain amylopectin. Linking starch structure with starch digestibility by determining the kinetics of cooked grain amylolysis of selected haplotypes revealed strong association of starch structure with estimated digestibility kinetics. Combining all results from grain quality genomics, systems genetics, and digestibility phenotyping, we propose target haplotypes for fine-tuning starch structure in rice through marker-assisted breeding that can be used to alter the digestibility of rice grain, thus offering rice consumers a new diet-based intervention to mitigate the impact of nutrition-related noncommunicable diseases. PMID:27881726

  18. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease.

    PubMed

    Lee, James C; Biasci, Daniele; Roberts, Rebecca; Gearry, Richard B; Mansfield, John C; Ahmad, Tariq; Prescott, Natalie J; Satsangi, Jack; Wilson, David C; Jostins, Luke; Anderson, Carl A; Traherne, James A; Lyons, Paul A; Parkes, Miles; Smith, Kenneth G C

    2017-02-01

    For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself but instead the course that the disease takes over time (prognosis). Prognosis may vary substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants. To better characterize how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with disease prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn's disease is largely independent of the contribution to disease susceptibility and point to a biology of prognosis that could provide new therapeutic opportunities.

  19. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease

    PubMed Central

    Lee, James C.; Biasci, Daniele; Roberts, Rebecca; Gearry, Richard B.; Mansfield, John C.; Ahmad, Tariq; Prescott, Natalie J.; Satsangi, Jack; Wilson, David C.; Jostins, Luke; Anderson, Carl A.; Traherne, James A.; Lyons, Paul A.; Parkes, Miles; Smith, Kenneth G.C.

    2017-01-01

    For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself, but the course the disease takes over time (prognosis)1–3. This varies substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis4–6, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants7–13. To better characterise how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn’s disease is largely independent from the contribution to disease susceptibility, and point to a biology of prognosis that could provide new therapeutic opportunities. PMID:28067912

  20. The Role of Genetic Counseling in Pompe Disease After Patients Are Identified Through Newborn Screening.

    PubMed

    Atherton, Andrea M; Day-Salvatore, Debra

    2017-07-01

    An important part of the coordinated care by experienced health care teams for all Pompe disease patients, whether diagnosed through newborn screening (NBS), clinical diagnosis, or prenatal diagnosis, is genetic counseling. Genetic counseling helps families better understand medical recommendations and options presented by the patient's health care team so they can make informed decisions. In addition to providing important information about the inheritance and genetic risks, genetic counseling also provides information about Pompe disease and available treatments and resources and should be offered to families with an affected child and all adults diagnosed with Pompe disease. Although the need for genetic counseling after a positive newborn screen for Pompe disease is recognized, the role that genetic counseling plays for both families of affected patients and health care teams is not fully understood. Consistent best genetic counseling practices also are lacking. The guidance in this article in the "Newborn Screening, Diagnosis, and Treatment for Pompe Disease" supplement is derived from expert consensus from the Pompe Disease Newborn Screening Working Group. It is intended to help guide genetic counseling efforts and provide a clear understanding of the role for families or carriers of Pompe disease identified through NBS; explain special considerations (eg, diagnosis of late-onset Pompe disease before the appearance of symptoms) and the impact and implications associated with a diagnosis (eg, determination of genetic risk and carrier status and preconception counseling); and provide health care teams caring for patients with a framework for a standardized approach to genetic counseling for patients and at-risk family members. Copyright © 2017 by the American Academy of Pediatrics.

  1. Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters.

    PubMed

    Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C

    2015-01-01

    Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Factor analysis in the Genetics of Asthma International Network family study identifies five major quantitative asthma phenotypes.

    PubMed

    Pillai, S G; Tang, Y; van den Oord, E; Klotsman, M; Barnes, K; Carlsen, K; Gerritsen, J; Lenney, W; Silverman, M; Sly, P; Sundy, J; Tsanakas, J; von Berg, A; Whyte, M; Ortega, H G; Anderson, W H; Helms, P J

    2008-03-01

    Asthma is a clinically heterogeneous disease caused by a complex interaction between genetic susceptibility and diverse environmental factors. In common with other complex diseases the lack of a standardized scheme to evaluate the phenotypic variability poses challenges in identifying the contribution of genes and environments to disease expression. To determine the minimum number of sets of features required to characterize subjects with asthma which will be useful in identifying important genetic and environmental contributors. Methods Probands aged 7-35 years with physician diagnosed asthma and symptomatic siblings were identified in 1022 nuclear families from 11 centres in six countries forming the Genetics of Asthma International Network. Factor analysis was used to identify distinct phenotypes from questionnaire, clinical, and laboratory data, including baseline pulmonary function, allergen skin prick test (SPT). Five distinct factors were identified:(1) baseline pulmonary function measures [forced expiratory volume in 1 s (FEV(1)) and forced vital capacity (FVC)], (2) specific allergen sensitization by SPT, (3) self-reported allergies, (4) symptoms characteristic of rhinitis and (5) symptoms characteristic of asthma. Replication in symptomatic siblings was consistent with shared genetic and/or environmental effects, and was robust across age groups, gender, and centres. Cronbach's alpha ranged from 0.719 to 0.983 suggesting acceptable internal scale consistencies. Derived scales were correlated with serum IgE, methacholine PC(20), age and asthma severity (interrupted sleep). IgE correlated with all three atopy-related factors, the strongest with the SPT factor whereas severity only correlated with baseline lung function, and with symptoms characteristic of rhinitis and of asthma. In children and adolescents with established asthma, five distinct sets of correlated patient characteristics appear to represent important aspects of the disease. Factor scores as

  3. Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records.

    PubMed

    Chen, Chia-Yen; Lee, Phil H; Castro, Victor M; Minnier, Jessica; Charney, Alexander W; Stahl, Eli A; Ruderfer, Douglas M; Murphy, Shawn N; Gainer, Vivian; Cai, Tianxi; Jones, Ian; Pato, Carlos N; Pato, Michele T; Landén, Mikael; Sklar, Pamela; Perlis, Roy H; Smoller, Jordan W

    2018-04-18

    Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-person diagnostic interviews (Castro et al. Am J Psychiatry 172:363-372, 2015). Here, we establish the genetic validity of these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European ancestry were used to estimate SNP-based heritability (h 2 g ) and genetic correlation (r g ) between EHR-based phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency-"coded-strict", "coded-broad", and "coded-broad based on a single clinical encounter" (coded-broad-SV). The analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952 controls. The estimated h 2 g were 0.24 (p = 0.015), 0.09 (p = 0.064), 0.13 (p = 0.003), 0.00 (p = 0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, respectively. The h 2 g for all EHR-based cases combined except coded-broad-SV (excluded due to 0 h 2 g ) was 0.12 (p

  4. Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome.

    PubMed

    Lund, Caroline; Striano, Pasquale; Sorte, Hanne Sørmo; Parisi, Pasquale; Iacomino, Michele; Sheng, Ying; Vigeland, Magnus D; Øye, Anne-Marte; Møller, Rikke Steensbjerre; Selmer, Kaja K; Zara, Federico

    2016-09-01

    Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.

  5. Demographic and genetic consequences of disturbed sex determination.

    PubMed

    Wedekind, Claus

    2017-09-19

    During sex determination, genetic and/or environmental factors determine the cascade of processes of gonad development. Many organisms, therefore, have a developmental window in which their sex determination can be sensitive to, for example, unusual temperatures or chemical pollutants. Disturbed environments can distort population sex ratios and may even cause sex reversal in species with genetic sex determination. The resulting genotype-phenotype mismatches can have long-lasting effects on population demography and genetics. I review the theoretical and empirical work in this context and explore in a simple population model the role of the fitness v yy of chromosomally aberrant YY genotypes that are a consequence of environmentally induced feminization. Low v yy is mostly beneficial for population growth. During feminization, low v yy reduces the proportion of genetic males and hence accelerates population growth, especially at low rates of feminization and at high fitness costs of the feminization itself (i.e. when feminization would otherwise not affect population dynamics much). When sex reversal ceases, low v yy mitigates the negative effects of feminization and can even prevent population extinction. Little is known about v yy in natural populations. The available models now need to be parametrized in order to better predict the long-term consequences of disturbed sex determination.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  6. A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics

    PubMed Central

    Delgado, Fernanda; Umans, Benjamin D.; Gerding, Matthew A.; Davis, Brigid M.

    2016-01-01

    Gram-negative bacteria are notoriously resistant to a variety of high-molecular-weight antibiotics due to the limited permeability of their outer membrane (OM). The basis of OM barrier function and the genetic factors required for its maintenance remain incompletely understood. Here, we employed transposon insertion sequencing to identify genes required for Vibrio cholerae resistance to vancomycin and bacitracin, antibiotics that are thought to be too large to efficiently penetrate the OM. The screen yielded several genes whose protein products are predicted to participate in processes important for OM barrier functions and for biofilm formation. In addition, we identified a novel factor, designated vigA (for vancomycin inhibits growth), that has not previously been characterized or linked to outer membrane function. The vigA open reading frame (ORF) codes for an inner membrane protein, and in its absence, cells became highly sensitive to glycopeptide antibiotics (vancomycin and ramoplanin) and bacitracin but not to other large antibiotics or detergents. In contrast to wild-type (WT) cells, the vigA mutant was stained with fluorescent vancomycin. These observations suggest that VigA specifically prevents the periplasmic accumulation of certain large antibiotics without exerting a general role in the maintenance of OM integrity. We also observed marked interspecies variability in the susceptibilities of Gram-negative pathogens to glycopeptides and bacitracin. Collectively, our findings suggest that the OM barrier is not absolute but rather depends on specific OM-antibiotic interactions. PMID:27216069

  7. Movement of Genetic Counselors from Clinical to Non-clinical Positions: Identifying Driving Forces.

    PubMed

    Cohen, Stephanie A; Tucker, Megan E

    2018-03-05

    A previous study of genetic counselors (GCs) in the state of Indiana identified movement out of clinical positions within the past 2 years. The aims of this study were to determine if this trend is nationwide and identify reasons why GCs are leaving their positions and factors that might help employers attract and retain GCs. An email was sent to members of the American Board of Genetic Counseling with a link to an online confidential survey. There were 939 responses (23.5% response rate). Overall, 52% of GCs report being highly satisfied in their current position, although almost two thirds think about leaving and one third had changed jobs within the past 2 years. Of those who had changed jobs (n = 295), 74.9% had been working in a hospital/clinic setting but only 46.3% currently do, demonstrating a major shift out of the clinic (p < 0.001). The top three reasons cited for leaving a position were work environment/institutional climate, salary/benefits, and a lack of feeling valued/recognized as a professional. These results confirm that GCs are moving out of clinical positions and document elements of job satisfaction. We suggest points for employers to consider when trying to recruit or retain GCs.

  8. Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite

    PubMed Central

    Blake, Damer P.; Billington, Karen J.; Copestake, Susan L.; Oakes, Richard D.; Quail, Michael A.; Wan, Kiew-Lian; Shirley, Martin W.; Smith, Adrian L.

    2011-01-01

    Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective

  9. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    PubMed Central

    Beaumont, Robin N; Warrington, Nicole M; Cavadino, Alana; Tyrrell, Jessica; Nodzenski, Michael; Horikoshi, Momoko; Geller, Frank; Myhre, Ronny; Richmond, Rebecca C; Paternoster, Lavinia; Bradfield, Jonathan P; Kreiner-Møller, Eskil; Huikari, Ville; Metrustry, Sarah; Lunetta, Kathryn L; Painter, Jodie N; Hottenga, Jouke-Jan; Allard, Catherine; Barton, Sheila J; Espinosa, Ana; Marsh, Julie A; Potter, Catherine; Zhang, Ge; Ang, Wei; Berry, Diane J; Bouchard, Luigi; Das, Shikta; Hakonarson, Hakon; Heikkinen, Jani; Helgeland, Øyvind; Hocher, Berthold; Hofman, Albert; Inskip, Hazel M; Jones, Samuel E; Kogevinas, Manolis; Lind, Penelope A; Marullo, Letizia; Medland, Sarah E; Murray, Anna; Murray, Jeffrey C; Njølstad, Pål R; Nohr, Ellen A; Reichetzeder, Christoph; Ring, Susan M; Ruth, Katherine S; Santa-Marina, Loreto; Scholtens, Denise M; Sebert, Sylvain; Sengpiel, Verena; Tuke, Marcus A; Vaudel, Marc; Weedon, Michael N; Willemsen, Gonneke; Wood, Andrew R; Yaghootkar, Hanieh; Muglia, Louis J; Bartels, Meike; Relton, Caroline L; Pennell, Craig E; Chatzi, Leda; Estivill, Xavier; Holloway, John W; Boomsma, Dorret I; Montgomery, Grant W; Murabito, Joanne M; Spector, Tim D; Power, Christine; Järvelin, Marjo-Ritta; Bisgaard, Hans; Grant, Struan F A; Sørensen, Thorkild I A; Jaddoe, Vincent W; Jacobsson, Bo; Melbye, Mads; McCarthy, Mark I; Hattersley, Andrew T; Hayes, M Geoffrey; Frayling, Timothy M; Hivert, Marie-France; Felix, Janine F; Hyppönen, Elina; Lowe, William L; Evans, David M; Lawlor, Debbie A; Feenstra, Bjarke

    2018-01-01

    Abstract Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother–child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10−8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights. PMID:29309628

  10. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.

    PubMed

    Beaumont, Robin N; Warrington, Nicole M; Cavadino, Alana; Tyrrell, Jessica; Nodzenski, Michael; Horikoshi, Momoko; Geller, Frank; Myhre, Ronny; Richmond, Rebecca C; Paternoster, Lavinia; Bradfield, Jonathan P; Kreiner-Møller, Eskil; Huikari, Ville; Metrustry, Sarah; Lunetta, Kathryn L; Painter, Jodie N; Hottenga, Jouke-Jan; Allard, Catherine; Barton, Sheila J; Espinosa, Ana; Marsh, Julie A; Potter, Catherine; Zhang, Ge; Ang, Wei; Berry, Diane J; Bouchard, Luigi; Das, Shikta; Hakonarson, Hakon; Heikkinen, Jani; Helgeland, Øyvind; Hocher, Berthold; Hofman, Albert; Inskip, Hazel M; Jones, Samuel E; Kogevinas, Manolis; Lind, Penelope A; Marullo, Letizia; Medland, Sarah E; Murray, Anna; Murray, Jeffrey C; Njølstad, Pål R; Nohr, Ellen A; Reichetzeder, Christoph; Ring, Susan M; Ruth, Katherine S; Santa-Marina, Loreto; Scholtens, Denise M; Sebert, Sylvain; Sengpiel, Verena; Tuke, Marcus A; Vaudel, Marc; Weedon, Michael N; Willemsen, Gonneke; Wood, Andrew R; Yaghootkar, Hanieh; Muglia, Louis J; Bartels, Meike; Relton, Caroline L; Pennell, Craig E; Chatzi, Leda; Estivill, Xavier; Holloway, John W; Boomsma, Dorret I; Montgomery, Grant W; Murabito, Joanne M; Spector, Tim D; Power, Christine; Järvelin, Marjo-Ritta; Bisgaard, Hans; Grant, Struan F A; Sørensen, Thorkild I A; Jaddoe, Vincent W; Jacobsson, Bo; Melbye, Mads; McCarthy, Mark I; Hattersley, Andrew T; Hayes, M Geoffrey; Frayling, Timothy M; Hivert, Marie-France; Felix, Janine F; Hyppönen, Elina; Lowe, William L; Evans, David M; Lawlor, Debbie A; Feenstra, Bjarke; Freathy, Rachel M

    2018-02-15

    Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights. © The Author(s) 2018. Published by Oxford University Press.

  11. Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits.

    PubMed

    Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A

    2017-10-23

    Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the

  12. An Integrative Genetics Approach to Identify Candidate Genes Regulating BMD: Combining Linkage, Gene Expression, and Association

    PubMed Central

    Farber, Charles R; van Nas, Atila; Ghazalpour, Anatole; Aten, Jason E; Doss, Sudheer; Sos, Brandon; Schadt, Eric E; Ingram-Drake, Leslie; Davis, Richard C; Horvath, Steve; Smith, Desmond J; Drake, Thomas A; Lusis, Aldons J

    2009-01-01

    Numerous quantitative trait loci (QTLs) affecting bone traits have been identified in the mouse; however, few of the underlying genes have been discovered. To improve the process of transitioning from QTL to gene, we describe an integrative genetics approach, which combines linkage analysis, expression QTL (eQTL) mapping, causality modeling, and genetic association in outbred mice. In C57BL/6J × C3H/HeJ (BXH) F2 mice, nine QTLs regulating femoral BMD were identified. To select candidate genes from within each QTL region, microarray gene expression profiles from individual F2 mice were used to identify 148 genes whose expression was correlated with BMD and regulated by local eQTLs. Many of the genes that were the most highly correlated with BMD have been previously shown to modulate bone mass or skeletal development. Candidates were further prioritized by determining whether their expression was predicted to underlie variation in BMD. Using network edge orienting (NEO), a causality modeling algorithm, 18 of the 148 candidates were predicted to be causally related to differences in BMD. To fine-map QTLs, markers in outbred MF1 mice were tested for association with BMD. Three chromosome 11 SNPs were identified that were associated with BMD within the Bmd11 QTL. Finally, our approach provides strong support for Wnt9a, Rasd1, or both underlying Bmd11. Integration of multiple genetic and genomic data sets can substantially improve the efficiency of QTL fine-mapping and candidate gene identification. PMID:18767929

  13. Determinism and mass-media portrayals of genetics.

    PubMed Central

    Condit, C M; Ofulue, N; Sheedy, K M

    1998-01-01

    Scholars have expressed concern that the introduction of substantial coverage of "medical genetics" in the mass media during the past 2 decades represents an increase in biological determinism in public discourse. To test this contention, we analyzed the contents of a randomly selected, structured sample of American public newspapers (n=250) and magazines (n=722) published during 1919-95. Three coders, using three measures, all with intercoder reliability >85%, were employed. Results indicate that the introduction of the discourse of medical genetics is correlated with both a statistically significant decrease in the degree to which articles attribute human characteristics to genetic causes (P<.001) and a statistically significant increase in the differentiation of attributions to genetic and other causes among various conditions or outcomes (P<. 016). There has been no statistically significant change in the relative proportions of physical phenomena attributed to genetic causes, but there has been a statistically significant decrease in the number of articles assigning genetic causes to mental (P<.002) and behavioral (P<.000) characteristics. These results suggest that the current discourse of medical genetics is not accurately described as more biologically deterministic than its antecedents. PMID:9529342

  14. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis.

    PubMed

    Alberts, Rudi; de Vries, Elisabeth M G; Goode, Elizabeth C; Jiang, Xiaojun; Sampaziotis, Fotis; Rombouts, Krista; Böttcher, Katrin; Folseraas, Trine; Weismüller, Tobias J; Mason, Andrew L; Wang, Weiwei; Alexander, Graeme; Alvaro, Domenico; Bergquist, Annika; Björkström, Niklas K; Beuers, Ulrich; Björnsson, Einar; Boberg, Kirsten Muri; Bowlus, Christopher L; Bragazzi, Maria C; Carbone, Marco; Chazouillères, Olivier; Cheung, Angela; Dalekos, Georgios; Eaton, John; Eksteen, Bertus; Ellinghaus, David; Färkkilä, Martti; Festen, Eleonora A M; Floreani, Annarosa; Franceschet, Irene; Gotthardt, Daniel Nils; Hirschfield, Gideon M; Hoek, Bart van; Holm, Kristian; Hohenester, Simon; Hov, Johannes Roksund; Imhann, Floris; Invernizzi, Pietro; Juran, Brian D; Lenzen, Henrike; Lieb, Wolfgang; Liu, Jimmy Z; Marschall, Hanns-Ulrich; Marzioni, Marco; Melum, Espen; Milkiewicz, Piotr; Müller, Tobias; Pares, Albert; Rupp, Christian; Rust, Christian; Sandford, Richard N; Schramm, Christoph; Schreiber, Stefan; Schrumpf, Erik; Silverberg, Mark S; Srivastava, Brijesh; Sterneck, Martina; Teufel, Andreas; Vallier, Ludovic; Verheij, Joanne; Vila, Arnau Vich; Vries, Boudewijn de; Zachou, Kalliopi; Chapman, Roger W; Manns, Michael P; Pinzani, Massimo; Rushbrook, Simon M; Lazaridis, Konstantinos N; Franke, Andre; Anderson, Carl A; Karlsen, Tom H; Ponsioen, Cyriel Y; Weersma, Rinse K

    2017-08-04

    Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10 -9 ). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3 , we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. [Rubella virus genetic determinant of attenuation].

    PubMed

    Dmitriev, G V; Borisova, T K; Faizuloev, E B; Desiatskova, R G; Zverev, V V

    2014-01-01

    Vaccination is the most effective and available way to prevent Rubella. Presently, 9 vaccine strains were registered. Nevertheless, the molecular mechanisms of the attenuation were poorly elucidated for the rubella virus. However, the study of these mechanisms identifying genotypic and phenotypic markers of attenuation, which together with sequence analysis could be used for the genetic stability control of vaccine strains, is still of current interest. Common trends of genetic changes in the process of adaptation to cold were found due to comparison of nucleic acid and amino acid sequences of the Russian strain C-77 with corresponding positions of the known rubella virus strains and its wild type progenitors, if available.

  16. The genetic architecture of maize (Zea mays L.) kernel weight determination.

    PubMed

    Alvarez Prado, Santiago; López, César G; Senior, M Lynn; Borrás, Lucas

    2014-09-18

    Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60-0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. Copyright © 2014 Alvarez Prado et al.

  17. Weight Stigma Reduction and Genetic Determinism

    PubMed Central

    Hilbert, Anja

    2016-01-01

    One major approach to weight stigma reduction consists of decreasing beliefs about the personal controllability of—and responsibility for—obesity by educating about its biogenetic causes. Evidence on the efficacy of this approach is mixed, and it remains unclear whether this would create a deterministic view, potentially leading to detrimental side-effects. Two independent studies from Germany using randomized designs with delayed-intervention control groups served to (1) develop and pilot a brief, interactive stigma reduction intervention to educate N = 128 university students on gene × environment interactions in the etiology of obesity; and to (2) evaluate this intervention in the general population (N = 128) and determine mechanisms of change. The results showed (1) decreased weight stigma and controllability beliefs two weeks post-intervention in a student sample; and (2) decreased internal attributions and increased genetic attributions, knowledge, and deterministic beliefs four weeks post-intervention in a population sample. Lower weight stigma was longitudinally predicted by a decrease in controllability beliefs and an increase in the belief in genetic determinism, especially in women. The results underline the usefulness of a brief, interactive intervention promoting an interactionist view of obesity to reduce weight stigma, at least in the short term, lending support to the mechanisms of change derived from attribution theory. The increase in genetic determinism that occurred despite the intervention’s gene × environment focus had no detrimental side-effect on weight stigma, but instead contributed to its reduction. Further research is warranted on the effects of how biogenetic causal information influences weight management behavior of individuals with obesity. PMID:27631384

  18. Weight Stigma Reduction and Genetic Determinism.

    PubMed

    Hilbert, Anja

    2016-01-01

    One major approach to weight stigma reduction consists of decreasing beliefs about the personal controllability of-and responsibility for-obesity by educating about its biogenetic causes. Evidence on the efficacy of this approach is mixed, and it remains unclear whether this would create a deterministic view, potentially leading to detrimental side-effects. Two independent studies from Germany using randomized designs with delayed-intervention control groups served to (1) develop and pilot a brief, interactive stigma reduction intervention to educate N = 128 university students on gene × environment interactions in the etiology of obesity; and to (2) evaluate this intervention in the general population (N = 128) and determine mechanisms of change. The results showed (1) decreased weight stigma and controllability beliefs two weeks post-intervention in a student sample; and (2) decreased internal attributions and increased genetic attributions, knowledge, and deterministic beliefs four weeks post-intervention in a population sample. Lower weight stigma was longitudinally predicted by a decrease in controllability beliefs and an increase in the belief in genetic determinism, especially in women. The results underline the usefulness of a brief, interactive intervention promoting an interactionist view of obesity to reduce weight stigma, at least in the short term, lending support to the mechanisms of change derived from attribution theory. The increase in genetic determinism that occurred despite the intervention's gene × environment focus had no detrimental side-effect on weight stigma, but instead contributed to its reduction. Further research is warranted on the effects of how biogenetic causal information influences weight management behavior of individuals with obesity.

  19. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    PubMed Central

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  20. A genetic evaluation of morphology used to identify harvested Canada geese

    USGS Publications Warehouse

    Pearce, J.M.; Pierson, Barbara J.; Talbot, S.L.; Derksen, D.V.; Kraege, Donald K.; Scribner, K.T.

    2000-01-01

    Using maximum likelihood estimators (in genetic stock identification), we used genetic markers to evaluate the utility of 2 morphological measures (culmen length and plumage color) to correctly identify groups of hunter-harvested dusky (Branta canadensis occidentalis) and dusky-like Canada geese on the wintering grounds within the Pacific Flyway. Significant levels of genetic differentiation were observed across all sampled breeding sites for both nuclear microsatellite loci and mtDNA when analyzed at the sequence level. The ability to discriminate among geese from these sites using genetic markers was further demonstrated using computer simulations. We estimated contributions from the Copper River Delta, the primary breeding area of dusky Canada geese, to groups of hunter-harvested geese classified as dusky Canada geese on the basis of morphology as 50.6 ?? 10.1(SE)% for females and 50.3 ?? 13.0% for males. We also estimated that 16 ?? 8.1% of females classified as dusky Canada geese on the basis of morphology originated from Middleton Island, Alaska; a locale currently managed as a subpopulation of dusky Canada geese, even though the majority of geese from this area possess a unique mtdna haplotype not found on the Copper River Delta. The use of culmen length and plumage color to identify the origin of breeding populations in the harvest provides conservative criteria for management of dusky Canada geese as individuals of other breeding populations are misassigned as dusky Canada geese and birds of the lighter-plumaged dusky-like group did not appear to originate from, breeding sites of the dusky Canada goose. Our analyses demonstrate that genetic markers can accurately estimate the proportion of genetically differentiated areas that comprise an admixed group, but they also raise questions about the management scale of Pacific Flyway Canada geese (e.g., at the subspecies or breeding population level) and the use of morphological and genetic characteristics to

  1. Genetic Structure and Potential Environmental Determinants of Local Genetic Diversity in Japanese Honeybees (Apis cerana japonica)

    PubMed Central

    Nagamitsu, Teruyoshi; Yasuda, Mika; Saito-Morooka, Fuki; Inoue, Maki N.; Nishiyama, Mio; Goka, Koichi; Sugiura, Shinji; Maeto, Kaoru; Okabe, Kimiko; Taki, Hisatomo

    2016-01-01

    Declines in honeybee populations have been a recent concern. Although causes of the declines remain unclear, environmental factors may be responsible. We focused on the potential environmental determinants of local populations of wild honeybees, Apis cerana japonica, in Japan. This subspecies has little genetic variation in terms of its mitochondrial DNA sequences, and genetic variations at nuclear loci are as yet unknown. We estimated the genetic structure and environmental determinants of local genetic diversity in nuclear microsatellite genotypes of fathers and mothers, inferred from workers collected at 139 sites. The genotypes of fathers and mothers showed weak isolation by distance and negligible genetic structure. The local genetic diversity was high in central Japan, decreasing toward the peripheries, and depended on the climate and land use characteristics of the sites. The local genetic diversity decreased as the annual precipitation increased, and increased as the proportion of urban and paddy field areas increased. Positive effects of natural forest area, which have also been observed in terms of forager abundance in farms, were not detected with respect to the local genetic diversity. The findings suggest that A. cerana japonica forms a single population connected by gene flow in its main distributional range, and that climate and landscape properties potentially affect its local genetic diversity. PMID:27898704

  2. Identifying opportunities for collaboration and growth of genetic counseling services in the Asia Region.

    PubMed

    Laurino, Mercy Y; Sternen, Darci L; Thompson, Jennifer K; Leppig, Kathleen A

    2017-07-01

    The Genetic Counseling Pre-Conference Workshop (GCPCW) was held on September 16, 2015, in Hanoi, Vietnam. We report the GCPCW outcomes obtained from pre- and post-conference questionnaires, case-review breakout session, and an open discussion of needs for genetic counseling services in the Asia region. The GCPCW participants completed questionnaires with closed- and open-ended questions regarding the status and needs of providing genetic counseling services in Asia. Utilizing thematic content analysis, common themes shared during the case-review breakout session are summarized and survey results are tabulated. Of the 71 participants, pre- and post-conference questionnaires were returned by 57 (80%) and 44 (62%) individuals, respectively. Of the 42 participants who did not identify themselves as students in training, 36 (86%) stated they are currently providing genetic counseling services. Participants cited that the most useful information obtained during the GCPCW related to the status of genetic counseling services in the region, discovery of shared challenges, professional networking, and the need to establish genetic counseling training programs and its accreditation. The GCPCW provided a collaborative forum to address current challenges and needs of genetic counseling services in the region. Strategies were identified to foster genetic counseling training and clinical service opportunities.

  3. Genetic Testing as a Tool to Identify Horses with or at Risk for Ocular Disorders.

    PubMed

    Bellone, Rebecca R

    2017-12-01

    Advances in equine genetics and genomics resources have enabled the understanding of some inherited ocular disorders and ocular manifestations. These ocular disorders include congenital stationary night blindness, equine recurrent uveitis, multiple congenital ocular anomalies, and squamous cell carcinoma. Genetic testing can identify horses with or at risk for disease and thus can assist in clinical management. In addition, genetic testing can identify horses that are carriers and thus can inform breeding decisions. Use of genetic tests in management and breeding decisions should aid in reducing the incidence of these disorders and improving the outcomes for horses at highest risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  5. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.

    PubMed

    Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-02-03

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10 -10 , maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.

  6. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    PubMed Central

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  7. Genetic regulation of maize flower development and sex determination.

    PubMed

    Li, Qinglin; Liu, Baoshen

    2017-01-01

    The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.

  8. Novel genetic loci underlying human intracranial volume identified through genome-wide association.

    PubMed

    Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura M E; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; Braber, Anouk Den; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco J C; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, W T; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J A; Van Duijn, Cornelia M; Van Haren, Neeltje E M; Van T Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton J M; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-12-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρ genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.

  9. Genetic determination of height-mediated mate choice.

    PubMed

    Tenesa, Albert; Rawlik, Konrad; Navarro, Pau; Canela-Xandri, Oriol

    2016-01-19

    Numerous studies have reported positive correlations among couples for height. This suggests that humans find individuals of similar height attractive. However, the answer to whether the choice of a mate with a similar phenotype is genetically or environmentally determined has been elusive. Here we provide an estimate of the genetic contribution to height choice in mates in 13,068 genotyped couples. Using a mixed linear model we show that 4.1% of the variation in the mate height choice is determined by a person's own genotype, as expected in a model where one's height determines the choice of mate height. Furthermore, the genotype of an individual predicts their partners' height in an independent dataset of 15,437 individuals with 13% accuracy, which is 64% of the theoretical maximum achievable with a heritability of 0.041. Theoretical predictions suggest that approximately 5% of the heritability of height is due to the positive covariance between allelic effects at different loci, which is caused by assortative mating. Hence, the coupling of alleles with similar effects could substantially contribute to the missing heritability of height. These estimates provide new insight into the mechanisms that govern mate choice in humans and warrant the search for the genetic causes of choice of mate height. They have important methodological implications and contribute to the missing heritability debate.

  10. Using Genetic Buffering Relationships Identified in Fission Yeast to Elucidate the Molecular Pathology of Tuberous Sclerosis

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0169 TITLE: Using Genetic Buffering Relationships Identified in Fission Yeast to Elucidate the Molecular Pathology of...DATES COVERED 1 July 2014 - 30 June 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using Genetic Buffering Relationships Identified in Fission Yeast ...SUPPLEMENTARY NOTES 14. ABSTRACT Using the genetically tractable fission yeast as a model, we sought to exploit recent advances in gene interaction

  11. Identifying public expectations of genetic biobanks.

    PubMed

    Critchley, Christine; Nicol, Dianne; McWhirter, Rebekah

    2017-08-01

    Understanding public priorities for biobanks is vital for maximising utility and efficiency of genetic research and maintaining respect for donors. This research directly assessed the relative importance the public place on different expectations of biobanks. Quantitative and qualitative results from a national sample of 800 Australians revealed that the majority attributed more importance to protecting privacy and ethical conduct than maximising new healthcare benefits, which was in turn viewed as more important than obtaining specific consent, benefit sharing, collaborating and sharing data. A latent class analysis identified two distinct classes displaying different patterns of expectations. One placed higher priority on behaviours that respect the donor ( n = 623), the other on accelerating science ( n = 278). Additional expectations derived from qualitative data included the need for biobanks to be transparent and to prioritise their research focus, educate the public and address commercialisation.

  12. Genetic determinants of prepubertal and pubertal growth and development.

    PubMed

    Thomis, Martine A; Towne, Bradford

    2006-12-01

    This article surveys the current general understanding of genetic influences on within- and between-population variation in growth and development in the context of establishing an International Growth Standard for Preadolescent and Adolescent Children. Traditional genetic epidemiologic analysis methods are reviewed, and evidence from family studies for genetic effects on different measures of growth and development is then presented. Findings from linkage and association studies seeking to identify specific genomic locations and allelic variants of genes influencing variation in growth and maturation are then summarized. Special mention is made of the need to study the interactions between genes and environments. At present, specific genes and polymorphisms contributing to variation in growth and maturation are only beginning to be identified. Larger genetic epidemiologic studies are needed in different parts of the world to better explore population differences in gene frequencies and gene-environment interactions. As advances continue to be made in molecular and statistical genetic methods, the genetic architecture of complex processes, including those of growth and development, will become better elucidated. For now, it can only be concluded that although the fundamental genetic underpinnings of the growth and development of children worldwide are likely to be essentially the same, there are also likely to be differences between populations in the frequencies of allelic gene variants that influence growth and maturation and in the nature of gene-environment interactions. This does not necessarily preclude an international growth reference, but it does have important implications for the form that such a reference might ultimately take.

  13. [Application of Multiple Genetic Markers in a Case of Determination of Half Sibling].

    PubMed

    Yang, Xue; Shi, Mei-sen; Yuan, Li; Lu, Di

    2016-02-01

    A case of half sibling was determined with multiple genetic markers, which could be potentially applied for determination of half sibling relationship from same father. Half sibling relationship was detected by 39 autosomal STR genetic markers, 23 Y-chromosomal STR genetic markers and 12 X -chromosomal STR genetic markers among ZHAO -1, ZHAO -2, ZHAO -3, ZHAO -4, and ZHAO-5. According to autosomal STR, Y-STR and X-STR genotyping results, it was determined that ZHAO-4 (alleged half sibling) was unrelated with ZHAO-1 and ZHAO-2; however, ZHAO-3 (alleged half sibling), ZHAO-5 (alleged half sibling) shared same genetic profile with ZHAO-1, and ZHAO-2 from same father. It is reliable to use multiple genetic markers and family gene reconstruction to determine half sibling relationship from same father, but it is difficult to determination by calculating half sibling index with ITO and discriminant functions.

  14. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, Xin-ran; Wang, Xin

    2017-04-01

    When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.

  15. Unconventional P-35S sequence identified in genetically modified maize

    PubMed Central

    Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam

    2014-01-01

    The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan’s markets during the period 2009 and 2012. PMID:24495911

  16. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value.

    PubMed

    Farhat, Maha R; Sultana, Razvan; Iartchouk, Oleg; Bozeman, Sam; Galagan, James; Sisk, Peter; Stolte, Christian; Nebenzahl-Guimaraes, Hanna; Jacobson, Karen; Sloutsky, Alexander; Kaur, Devinder; Posey, James; Kreiswirth, Barry N; Kurepina, Natalia; Rigouts, Leen; Streicher, Elizabeth M; Victor, Tommie C; Warren, Robin M; van Soolingen, Dick; Murray, Megan

    2016-09-01

    The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance-conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs. To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance. We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool. The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci. These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs.

  17. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value

    PubMed Central

    Sultana, Razvan; Iartchouk, Oleg; Bozeman, Sam; Galagan, James; Sisk, Peter; Stolte, Christian; Nebenzahl-Guimaraes, Hanna; Jacobson, Karen; Sloutsky, Alexander; Kaur, Devinder; Posey, James; Kreiswirth, Barry N.; Kurepina, Natalia; Rigouts, Leen; Streicher, Elizabeth M.; Victor, Tommie C.; Warren, Robin M.; van Soolingen, Dick; Murray, Megan

    2016-01-01

    Rationale: The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance–conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs. Objectives: To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance. Methods: We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool. Measurements and Main Results: The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci. Conclusions: These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs. PMID:26910495

  18. AbsIDconvert: An absolute approach for converting genetic identifiers at different granularities

    PubMed Central

    2012-01-01

    Background High-throughput molecular biology techniques yield vast amounts of data, often by detecting small portions of ribonucleotides corresponding to specific identifiers. Existing bioinformatic methodologies categorize and compare these elements using inferred descriptive annotation given this sequence information irrespective of the fact that it may not be representative of the identifier as a whole. Results All annotations, no matter the granularity, can be aligned to genomic sequences and therefore annotated by genomic intervals. We have developed AbsIDconvert, a methodology for converting between genomic identifiers by first mapping them onto a common universal coordinate system using an interval tree which is subsequently queried for overlapping identifiers. AbsIDconvert has many potential uses, including gene identifier conversion, identification of features within a genomic region, and cross-species comparisons. The utility is demonstrated in three case studies: 1) comparative genomic study mapping plasmodium gene sequences to corresponding human and mosquito transcriptional regions; 2) cross-species study of Incyte clone sequences; and 3) analysis of human Ensembl transcripts mapped by Affymetrix®; and Agilent microarray probes. AbsIDconvert currently supports ID conversion of 53 species for a given list of input identifiers, genomic sequence, or genome intervals. Conclusion AbsIDconvert provides an efficient and reliable mechanism for conversion between identifier domains of interest. The flexibility of this tool allows for custom definition identifier domains contingent upon the availability and determination of a genomic mapping interval. As the genomes and the sequences for genetic elements are further refined, this tool will become increasingly useful and accurate. AbsIDconvert is freely available as a web application or downloadable as a virtual machine at: http://bioinformatics.louisville.edu/abid/. PMID:22967011

  19. Genetic Determinants for Promoter Hypermethylation in the Lungs of Smokers: A Candidate Gene-Based Study

    PubMed Central

    Leng, Shuguang; Stidley, Christine A.; Liu, Yushi; Edlund, Christopher K.; Willink, Randall P.; Han, Younghun; Landi, Maria Teresa; Thun, Michael; Picchi, Maria A.; Bruse, Shannon E.; Crowell, Richard E.; Van Den Berg, David; Caporaso, Neil E.; Amos, Christopher I.; Siegfried, Jill M.; Tesfaigzi, Yohannes; Gilliland, Frank D.; Belinsky, Steven A.

    2011-01-01

    The detection of tumor suppressor gene promoter methylation in sputum-derived exfoliated cells predicts early lung cancer. Here we identified genetic determinants for this epigenetic process and examined their biological effects on gene regulation. A two-stage approach involving discovery and replication was employed to assess the association between promoter hypermethylation of a 12-gene panel and common variation in 40 genes involved in carcinogen metabolism, regulation of methylation, and DNA damage response in members of the Lovelace Smokers Cohort (n=1434). Molecular validation of three identified variants was conducted using primary bronchial epithelial cells. Association of study-wide significance (P<8.2×10−5) was identified for rs1641511, rs3730859, and rs1883264 in TP53, LIG1, and BIK, respectively. These SNPs were significantly associated with altered expression of the corresponding genes in primary bronchial epithelial cells. In addition, rs3730859 in LIG1 was also moderately associated with increased risk for lung cancer among Caucasian smokers. Together, our findings suggest that genetic variation in DNA replication and apoptosis pathways impacts the propensity for gene promoter hypermethylation in the aerodigestive tract of smokers. The incorporation of genetic biomarkers for gene promoter hypermethylation with clinical and somatic markers may improve risk assessment models for lung cancer. PMID:22139380

  20. Genetic polymorphism in Leishmania infantum isolates from human and animals determined by nagt PCR-RFLP.

    PubMed

    El Hamouchi, Adil; El Kacem, Sofia; Ejghal, Rajaa; Lemrani, Meryem

    2018-06-14

    Leishmania infantum is the causative agent of human visceral leishmaniasis (VL) and sporadic human cutaneous leishmaniasis (CL) in the Mediterranean region. The genetic variation of the Leishmania parasites may result in different phenotypes that can be associated with the geographical distribution and diversity of the clinical manifestations. The main objective of this study was to explore the genetic polymorphism in L. infantum isolates from human and animal hosts in different regions of Morocco. The intraspecific genetic variability of 40 Moroccan L. infantum MON-1 strains isolated from patients with VL (n = 31) and CL (n = 2) and from dogs (n = 7) was evaluated by PCR-RFLP of nagt, a single-copy gene encoding N-acetylglucosamine-1-phosphate transferase. For a more complete analysis of L. infantum polymorphism, we included the restriction patterns of nagt from 17 strains available in the literature and patterns determined by in-silico digestion of three sequences from the GenBank database. Moroccan L. infantum strains presented a certain level of genetic diversity and six distinct nagt-RFLP genotypes were identified. Three of the six genotypes were exclusively identified in the Moroccan population of L. infantum: variant M1 (15%), variant M2 (7.5%), and variant M3 (2.5%). The most common genotype (65%), variant 2 (2.5%), and variant 4 (7.5%), were previously described in several countries with endemic leishmaniasis. Phylogenetic analysis segregated our L. infantum population into two distinct clusters, whereas variant M2 was clearly distinguished from both cluster I and cluster II. This distribution highlights the degree of genetic variability among the Moroccan L. infantum population. The nagt PCR-RFLP method presented here showed an important genetic heterogeneity among Moroccan L. infantum strains isolated from human and canine reservoirs with 6 genotypes identified. Three of the six Moroccan nagt genotypes, have not been previously described and

  1. Application of genetic algorithms to focal mechanism determination

    NASA Astrophysics Data System (ADS)

    Kobayashi, Reiji; Nakanishi, Ichiro

    1994-04-01

    Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.

  2. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals.

    PubMed

    Charlesworth, Deborah; Mank, Judith E

    2010-09-01

    The ability to identify genetic markers in nonmodel systems has allowed geneticists to construct linkage maps for a diversity of species, and the sex-determining locus is often among the first to be mapped. Sex determination is an important area of study in developmental and evolutionary biology, as well as ecology. Its importance for organisms might suggest that sex determination is highly conserved. However, genetic studies have shown that sex determination mechanisms, and the genes involved, are surprisingly labile. We review studies using genetic mapping and phylogenetic inferences, which can help reveal evolutionary pattern within this lability and potentially identify the changes that have occurred among different sex determination systems. We define some of the terminology, particularly where confusion arises in writing about such a diverse range of organisms, and highlight some major differences between plants and animals, and some important similarities. We stress the importance of studying taxa suitable for testing hypotheses, and the need for phylogenetic studies directed to taxa where the patterns of changes can be most reliably inferred, if the ultimate goal of testing hypotheses regarding the selective forces that have led to changes in such an essential trait is to become feasible.

  3. Young Adults’ Belief in Genetic Determinism, and Knowledge and Attitudes towards Modern Genetics and Genomics: The PUGGS Questionnaire

    PubMed Central

    Carver, Rebecca Bruu; Castéra, Jérémy; Gericke, Niklas; Evangelista, Neima Alice Menezes

    2017-01-01

    In this paper we present the development and validation a comprehensive questionnaire to assess college students’ knowledge about modern genetics and genomics, their belief in genetic determinism, and their attitudes towards applications of modern genetics and genomic-based technologies. Written in everyday language with minimal jargon, the Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) questionnaire is intended for use in research on science education and public understanding of science, as a means to investigate relationships between knowledge, determinism and attitudes about modern genetics, which are to date little understood. We developed a set of core ideas and initial items from reviewing the scientific literature on genetics and previous studies on public and student knowledge and attitudes about genetics. Seventeen international experts from different fields (e.g., genetics, education, philosophy of science) reviewed the initial items and their feedback was used to revise the questionnaire. We validated the questionnaire in two pilot tests with samples of university freshmen students. The final questionnaire contains 45 items, including both multiple choice and Likert scale response formats. Cronbach alpha showed good reliability for each section of the questionnaire. In conclusion, the PUGGS questionnaire is a reliable tool for investigating public understanding and attitudes towards modern genetics and genomic-based technologies. PMID:28114357

  4. Young Adults' Belief in Genetic Determinism, and Knowledge and Attitudes towards Modern Genetics and Genomics: The PUGGS Questionnaire.

    PubMed

    Carver, Rebecca Bruu; Castéra, Jérémy; Gericke, Niklas; Evangelista, Neima Alice Menezes; El-Hani, Charbel N

    2017-01-01

    In this paper we present the development and validation a comprehensive questionnaire to assess college students' knowledge about modern genetics and genomics, their belief in genetic determinism, and their attitudes towards applications of modern genetics and genomic-based technologies. Written in everyday language with minimal jargon, the Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) questionnaire is intended for use in research on science education and public understanding of science, as a means to investigate relationships between knowledge, determinism and attitudes about modern genetics, which are to date little understood. We developed a set of core ideas and initial items from reviewing the scientific literature on genetics and previous studies on public and student knowledge and attitudes about genetics. Seventeen international experts from different fields (e.g., genetics, education, philosophy of science) reviewed the initial items and their feedback was used to revise the questionnaire. We validated the questionnaire in two pilot tests with samples of university freshmen students. The final questionnaire contains 45 items, including both multiple choice and Likert scale response formats. Cronbach alpha showed good reliability for each section of the questionnaire. In conclusion, the PUGGS questionnaire is a reliable tool for investigating public understanding and attitudes towards modern genetics and genomic-based technologies.

  5. Use of toxicogenomics for identifying genetic markers of pulmonary oedema

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balharry, Dominique; Oreffo, Victor; Richards, Roy

    2005-04-15

    This study was undertaken primarily to identify genetic markers of oedema and inflammation. Mild pulmonary injury was induced following the instillation of the oedema-producing agent, bleomycin (0.5 units). Oedema was then confirmed by conventional toxicology (lavage protein levels, free cell counts and lung/body weight ratios) and histology 3 days post-bleomycin instillation.The expression profile of 1176 mRNA species was determined for bleomycin-exposed lung (Clontech Atlas macroarray, n = 9). To obtain pertinent results from these data, it was necessary to develop a simple, effective method for bioinformatic analysis of altered gene expression. Data were log{sub 10} transformed followed by global normalisation.more » Differential gene expression was accepted if: (a) genes were statistically significant (P {<=} 0.05) from a two-tailed t test; (b) genes were consistently outside a two standard deviation (SD) range from control levels. A combination of these techniques identified 31 mRNA transcripts (approximately 3%) which were significantly altered in bleomycin treated tissue. Of these genes, 26 were down-regulated whilst only five were up-regulated. Two distinct clusters were identified, with 17 genes classified as encoding hormone receptors, and nine as encoding ion channels. Both these clusters were consistently down-regulated.The magnitude of the changes in gene expression were quantified and confirmed by Q-PCR (n = 6), validating the macroarray data and the bioinformatic analysis employed.In conclusion, this study has developed a suitable macroarray analysis procedure and provides the basis for a better understanding of the gene expression changes occurring during the early phase of drug-induced pulmonary oedema.« less

  6. Genetic sex determination in Astatotilapia calliptera, a prototype species for the Lake Malawi cichlid radiation.

    PubMed

    Peterson, Erin N; Cline, Maggie E; Moore, Emily C; Roberts, Natalie B; Roberts, Reade B

    2017-06-01

    East African cichlids display extensive variation in sex determination systems. The species Astatotilapia calliptera is one of the few cichlids that reside both in Lake Malawi and in surrounding waterways. A. calliptera is of interest in evolutionary studies as a putative immediate outgroup species for the Lake Malawi species flock and possibly as a prototype ancestor-like species for the radiation. Here, we use linkage mapping to test association of sex in A. calliptera with loci that have been previously associated with genetic sex determination in East African cichlid species. We identify a male heterogametic XY system segregating at linkage group (LG) 7 in an A. calliptera line that originated from Lake Malawi, at a locus previously shown to act as an XY sex determination system in multiple species of Lake Malawi cichlids. Significant association of genetic markers and sex produce a broad genetic interval of approximately 26 megabases (Mb) using the Nile tilapia genome to orient markers; however, we note that the marker with the strongest association with sex is near a gene that acts as a master sex determiner in other fish species. We demonstrate that alleles of the marker are perfectly associated with sex in Metriaclima mbenjii, a species from the rock-dwelling clade of Lake Malawi. While we do not rule out the possibility of other sex determination loci in A. calliptera, this study provides a foundation for fine mapping of the cichlid sex determination gene on LG7 and evolutionary context regarding the origin and persistence of the LG7 XY across diverse, rapidly evolving lineages.

  7. Genetic sex determination in Astatotilapia calliptera, a prototype species for the Lake Malawi cichlid radiation

    NASA Astrophysics Data System (ADS)

    Peterson, Erin N.; Cline, Maggie E.; Moore, Emily C.; Roberts, Natalie B.; Roberts, Reade B.

    2017-06-01

    East African cichlids display extensive variation in sex determination systems. The species Astatotilapia calliptera is one of the few cichlids that reside both in Lake Malawi and in surrounding waterways. A. calliptera is of interest in evolutionary studies as a putative immediate outgroup species for the Lake Malawi species flock and possibly as a prototype ancestor-like species for the radiation. Here, we use linkage mapping to test association of sex in A. calliptera with loci that have been previously associated with genetic sex determination in East African cichlid species. We identify a male heterogametic XY system segregating at linkage group (LG) 7 in an A. calliptera line that originated from Lake Malawi, at a locus previously shown to act as an XY sex determination system in multiple species of Lake Malawi cichlids. Significant association of genetic markers and sex produce a broad genetic interval of approximately 26 megabases (Mb) using the Nile tilapia genome to orient markers; however, we note that the marker with the strongest association with sex is near a gene that acts as a master sex determiner in other fish species. We demonstrate that alleles of the marker are perfectly associated with sex in Metriaclima mbenjii, a species from the rock-dwelling clade of Lake Malawi. While we do not rule out the possibility of other sex determination loci in A. calliptera, this study provides a foundation for fine mapping of the cichlid sex determination gene on LG7 and evolutionary context regarding the origin and persistence of the LG7 XY across diverse, rapidly evolving lineages.

  8. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    PubMed Central

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991

  9. Genomewide Association Study Identifies Novel Genetic Loci That Modify Antiplatelet Effects and Pharmacokinetics of Clopidogrel

    PubMed Central

    Zhong, W‐P; Wu, H; Chen, J‐Y; Li, X‐X; Lin, H‐M; Zhang, B; Zhang, Z‐W; Ma, D‐L; Sun, S; Li, H‐P; Mai, L‐P; He, G‐D; Wang, X‐P; Lei, H‐P; Zhou, H‐K; Tang, L; Liu, S‐W

    2017-01-01

    Genetic variants in the pharmacokinetic (PK) mechanism are the main underlying factors affecting the antiplatelet response to clopidogrel. Using a genomewide association study (GWAS) to identify new genetic loci that modify antiplatelet effects in Chinese patients with coronary heart disease, we identified novel variants in two transporter genes (SLC14A2 rs12456693, ATP‐binding cassette [ABC]A1 rs2487032) and in N6AMT1 (rs2254638) associated with P2Y12 reaction unit (PRU) and plasma active metabolite (H4) concentration. These new variants dramatically improved the predictability of PRU variability to 37.7%. The associations between these loci and PK parameters of clopidogrel and H4 were observed in additional patients, and its function on the activation of clopidogrel was validated in liver S9 fractions (P < 0.05). Rs2254638 was further identified to exert a marginal risk effect for major adverse cardiac events in an independent cohort. In conclusion, new genetic variants were systematically identified as risk factors for the reduced efficacy of clopidogrel treatment. PMID:27981573

  10. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer.

    PubMed

    Starr, Timothy K; Allaei, Raha; Silverstein, Kevin A T; Staggs, Rodney A; Sarver, Aaron L; Bergemann, Tracy L; Gupta, Mihir; O'Sullivan, M Gerard; Matise, Ilze; Dupuy, Adam J; Collier, Lara S; Powers, Scott; Oberg, Ann L; Asmann, Yan W; Thibodeau, Stephen N; Tessarollo, Lino; Copeland, Neal G; Jenkins, Nancy A; Cormier, Robert T; Largaespada, David A

    2009-03-27

    Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.

  11. Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.

    PubMed

    Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico

    2017-01-01

    Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.

  12. A Comparison of Telephone Genetic Counseling and In-Person Genetic Counseling from the Genetic Counselor's Perspective.

    PubMed

    Burgess, Kelly R; Carmany, Erin P; Trepanier, Angela M

    2016-02-01

    Growing demand for and limited geographic access to genetic counseling services is increasing the need for alternative service delivery models (SDM) like telephone genetic counseling (TGC). Little research has been done on genetic counselors' perspectives of the practice of TGC. We created an anonymous online survey to assess whether telephone genetic counselors believed the tasks identified in the ABGC (American Board of Genetic Counseling) Practice Analysis were performed similarly or differently in TGC compared to in person genetic counseling (IPGC). If there were differences noted, we sought to determine the nature of the differences and if additional training might be needed to address them. Eighty eight genetic counselors with experience in TGC completed some or all of the survey. Respondents identified differences in 13 (14.8%) of the 88 tasks studied. The tasks identified as most different in TGC were: "establishing rapport through verbal and nonverbal interactions" (60.2%; 50/83 respondents identified the task as different), "recognizing factors affecting the counseling interaction" (47.8%; 32/67), "assessing client/family emotions, support, etc." (40.1%; 27/66) and "educating clients about basic genetic concepts" (35.6%; 26/73). A slight majority (53.8%; 35/65) felt additional training was needed to communicate information without visual aids and more effectively perform psychosocial assessments. In summary, although a majority of genetic counseling tasks are performed similarly between TGC and IPGC, TGC counselors recognize that specific training in the TGC model may be needed to address the key differences.

  13. Genetic associations with micronutrient levels identified in immune and gastrointestinal networks.

    PubMed

    Morine, Melissa J; Monteiro, Jacqueline Pontes; Wise, Carolyn; Teitel, Candee; Pence, Lisa; Williams, Anna; Ning, Baitang; McCabe-Sellers, Beverly; Champagne, Catherine; Turner, Jerome; Shelby, Beatrice; Bogle, Margaret; Beger, Richard D; Priami, Corrado; Kaput, Jim

    2014-07-01

    The discovery of vitamins and clarification of their role in preventing frank essential nutrient deficiencies occurred in the early 1900s. Much vitamin research has understandably focused on public health and the effects of single nutrients to alleviate acute conditions. The physiological processes for maintaining health, however, are complex systems that depend upon interactions between multiple nutrients, environmental factors, and genetic makeup. To analyze the relationship between these factors and nutritional health, data were obtained from an observational, community-based participatory research program of children and teens (age 6-14) enrolled in a summer day camp in the Delta region of Arkansas. Assessments of erythrocyte S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma homocysteine (Hcy) and 6 organic micronutrients (retinol, 25-hydroxy vitamin D3, pyridoxal, thiamin, riboflavin, and vitamin E), and 1,129 plasma proteins were performed at 3 time points in each of 2 years. Genetic makeup was analyzed with 1 M SNP genotyping arrays, and nutrient status was assessed with 24-h dietary intake questionnaires. A pattern of metabolites (met_PC1) that included the ratio of erythrocyte SAM/SAH, Hcy, and 5 vitamins were identified by principal component analysis. Met_PC1 levels were significantly associated with (1) single-nucleotide polymorphisms, (2) levels of plasma proteins, and (3) multilocus genotypes coding for gastrointestinal and immune functions, as identified in a global network of metabolic/protein-protein interactions. Subsequent mining of data from curated pathway, network, and genome-wide association studies identified genetic and functional relationships that may be explained by gene-nutrient interactions. The systems nutrition strategy described here has thus associated a multivariate metabolite pattern in blood with genes involved in immune and gastrointestinal functions.

  14. Identifying novel members of the Wntless interactome through genetic and candidate gene approaches.

    PubMed

    Petko, Jessica; Tranchina, Trevor; Patel, Goral; Levenson, Robert; Justice-Bitner, Stephanie

    2018-04-01

    Wnt signaling is an important pathway that regulates several aspects of embryogenesis, stem cell maintenance, and neural connectivity. We have recently determined that opioids decrease Wnt secretion, presumably by inhibiting the recycling of the Wnt trafficking protein Wntless (Wls). This effect appears to be mediated by protein-protein interaction between Wls and the mu-opioid receptor (MOR), the primary cellular target of opioid drugs. The goal of this study was to identify novel protein interactors of Wls that are expressed in the brain and may also play a role in reward or addiction. Using genetic and candidate gene approaches, we show that among a variety of protein, Wls interacts with the dopamine transporter (target of cocaine), cannabinoid receptors (target of THC), Adenosine A2A receptor (target of caffeine), and SGIP1 (endocytic regulator of cannabinoid receptors). Our study shows that aside from opioid receptors, Wntless interacts with additional proteins involved in reward and/or addiction. Future studies will determine whether Wntless and WNT signaling play a more universal role in these processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Genetic determinants of financial risk taking.

    PubMed

    Kuhnen, Camelia M; Chiao, Joan Y

    2009-01-01

    Individuals vary in their willingness to take financial risks. Here we show that variants of two genes that regulate dopamine and serotonin neurotransmission and have been previously linked to emotional behavior, anxiety and addiction (5-HTTLPR and DRD4) are significant determinants of risk taking in investment decisions. We find that the 5-HTTLPR s/s allele carriers take 28% less risk than those carrying the s/l or l/l alleles of the gene. DRD4 7-repeat allele carriers take 25% more risk than individuals without the 7-repeat allele. These findings contribute to the emerging literature on the genetic determinants of economic behavior.

  16. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

    PubMed Central

    Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus

    2017-01-01

    BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258

  17. Determining causes of genetic isolation in a large carnivore (Ursus americanus) population to direct contemporary conservation measures

    PubMed Central

    Obbard, Martyn E.; Harnden, Matthew; McConnell, Sabine; Howe, Eric J.; Burrows, Frank G.; White, Bradley N.; Kyle, Christopher J.

    2017-01-01

    The processes leading to genetic isolation influence a population’s local extinction risk, and should thus be identified before conservation actions are implemented. Natural or human-induced circumstances can result in historical or contemporary barriers to gene flow and/or demographic bottlenecks. Distinguishing between these hypotheses can be achieved by comparing genetic diversity and differentiation in isolated vs. continuous neighboring populations. In Ontario, American black bears (Ursus americanus) are continuously distributed, genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the Bruce Peninsula (BP). To identify the processes that led to the genetic isolation of BP black bears, we modelled various levels of historical and contemporary migration and population size reductions using forward simulations. We compared simulation results with empirical genetic indices from Ontario black bear populations under different levels of geographic isolation, and conducted additional simulations to determine if translocations could help achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black bears are warranted because our results show that: i) a recent demographic bottleneck associated with recently reduced migration best explains the low genetic diversity on the BP; and ii) under sustained isolation, BP black bears could lose between 70% and 80% of their rare alleles within 100 years. Although restoring migration corridors would be the most effective method to enhance long-term genetic diversity and prevent inbreeding, it is unrealistic to expect connectivity to be re-established. Current levels of genetic diversity could be maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such regular translocations may be more practical than landscape restoration, because areas connecting the peninsula to nearby mainland black bear populations have been irreversibly modified

  18. Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster

    PubMed Central

    Dobson, Adam J.; Chaston, John M.; Newell, Peter D.; Donahue, Leanne; Hermann, Sara L.; Sannino, David R.; Westmiller, Stephanie; Wong, Adam C.-N.; Clark, Andrew G.; Lazzaro, Brian P.; Douglas, Angela E.

    2015-01-01

    Animals bear communities of gut microorganisms with substantial effects on animal nutrition, but the host genetic basis of these effects is unknown. Here, we use Drosophila to demonstrate substantial among-genotype variation in the effects of eliminating the gut microbiota on five host nutritional indices (weight, and protein, lipid, glucose and glycogen contents); this includes variation in both the magnitude and direction of microbiota-dependent effects. Genome-wide associations to identify the genetic basis of the microbiota-dependent variation reveal polymorphisms in largely non-overlapping sets of genes associated with variation in the nutritional traits, including strong representation of conserved genes functioning in signaling. Key genes identified by the GWA study are validated by loss-of-function mutations that altered microbiota-dependent nutritional effects. We conclude that the microbiota interacts with the animal at multiple points in the signaling and regulatory networks that determine animal nutrition. These interactions with the microbiota are likely conserved across animals, including humans. PMID:25692519

  19. Identifying the species of bats roosting in redwood basal hollows using genetic methods

    Treesearch

    William J. Zielinski; Mary Jo Mazurek; Jan Zinck

    2007-01-01

    Bats frequently use basal hollows in trees to gain access to interior roost sites but it has been challenging to verify which species do so because it is difficult to capture bats or identify bats using acoustic methods at these locations. We employed noninvasive genetic sampling of guano to identify the species of bats that use basal hollows in redwood (...

  20. Incorporating Known Genetic Variants Does Not Improve the Accuracy of PSA Testing to Identify High Risk Prostate Cancer on Biopsy

    PubMed Central

    Gilbert, Rebecca; Martin, Richard M.; Evans, David M.; Tilling, Kate; Davey Smith, George; Kemp, John P.; Lane, J. Athene; Hamdy, Freddie C.; Neal, David E.; Donovan, Jenny L.; Metcalfe, Chris

    2015-01-01

    Introduction Prostate-specific antigen (PSA) testing is a widely accepted screening method for prostate cancer, but with low specificity at thresholds giving good sensitivity. Previous research identified four single nucleotide polymorphisms (SNPs) principally associated with circulating PSA levels rather than with prostate cancer risk (TERT rs2736098, FGFR2 rs10788160, TBX3 rs11067228, KLK3 rs17632542). Removing the genetic contribution to PSA levels may improve the ability of the remaining biologically-determined variation in PSA to discriminate between high and low risk of progression within men with identified prostate cancer. We investigate whether incorporating information on the PSA-SNPs improves the discrimination achieved by a single PSA threshold in men with raised PSA levels. Materials and Methods Men with PSA between 3-10ng/mL and histologically-confirmed prostate cancer were categorised as high or low risk of progression (Low risk: Gleason score≤6 and stage T1-T2a; High risk: Gleason score 7–10 or stage T2C). We used the combined genetic effect of the four PSA-SNPs to calculate a genetically corrected PSA risk score. We calculated the Area under the Curve (AUC) to determine how well genetically corrected PSA risk scores distinguished men at high risk of progression from low risk men. Results The analysis includes 868 men with prostate cancer (Low risk: 684 (78.8%); High risk: 184 (21.2%)). Receiver operating characteristic (ROC) curves indicate that including the 4 PSA-SNPs does not improve the performance of measured PSA as a screening tool for high/low risk prostate cancer (measured PSA level AU C = 59.5% (95% CI: 54.7,64.2) vs additionally including information from the 4 PSA-SNPs AUC = 59.8% (95% CI: 55.2,64.5) (p-value = 0.40)). Conclusion We demonstrate that genetically correcting PSA for the combined genetic effect of four PSA-SNPs, did not improve discrimination between high and low risk prostate cancer in men with raised PSA levels (3-10ng

  1. Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease.

    PubMed

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar

    2014-10-03

    Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.

  2. Identification of Novel Genetic Determinants of Erythrocyte Membrane Fatty Acid Composition among Greenlanders.

    PubMed

    Andersen, Mette Korre; Jørsboe, Emil; Sandholt, Camilla Helene; Grarup, Niels; Jørgensen, Marit Eika; Færgeman, Nils Joakim; Bjerregaard, Peter; Pedersen, Oluf; Moltke, Ida; Hansen, Torben; Albrechtsen, Anders

    2016-06-01

    Fatty acids (FAs) are involved in cellular processes important for normal body function, and perturbation of FA balance has been linked to metabolic disturbances, including type 2 diabetes. An individual's level of FAs is affected by diet, lifestyle, and genetic variation. We aimed to improve the understanding of the mechanisms and pathways involved in regulation of FA tissue levels, by identifying genetic loci associated with inter-individual differences in erythrocyte membrane FA levels. We assessed the levels of 22 FAs in the phospholipid fraction of erythrocyte membranes from 2,626 Greenlanders in relation to single nucleotide polymorphisms genotyped on the MetaboChip or imputed. We identified six independent association signals. Novel loci were identified on chromosomes 5 and 11 showing strongest association with oleic acid (rs76430747 in ACSL6, beta (SE): -0.386% (0.034), p = 1.8x10-28) and docosahexaenoic acid (rs6035106 in DTD1, 0.137% (0.025), p = 6.4x10-8), respectively. For a missense variant (rs80356779) in CPT1A, we identified a number of novel FA associations, the strongest with 11-eicosenoic acid (0.473% (0.035), p = 2.6x10-38), and for variants in FADS2 (rs174570), LPCAT3 (rs2110073), and CERS4 (rs11881630) we replicated known FA associations. Moreover, we observed metabolic implications of the ACSL6 (rs76430747) and CPT1A (rs80356779) variants, which both were associated with altered HbA1c (0.051% (0.013), p = 5.6x10-6 and -0.034% (0.016), p = 3.1x10-4, respectively). The latter variant was also associated with reduced insulin resistance (HOMA-IR, -0.193 (0.050), p = 3.8x10-6), as well as measures of smaller body size, including weight (-2.676 kg (0.523), p = 2.4x10-7), lean mass (-1.200 kg (0.271), p = 1.7x10-6), height (-0.966 cm (0.230), p = 2.0x10-5), and BMI (-0.638 kg/m2 (0.181), p = 2.8x10-4). In conclusion, we have identified novel genetic determinants of FA composition in phospholipids in erythrocyte membranes, and have shown examples of

  3. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma.

    PubMed

    Reznik, Robert; Hendifar, Andrew E; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided.

  4. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  5. Embryonic aneuploidy does not differ among genetic ancestry according to continental origin as determined by ancestry informative markers.

    PubMed

    Franasiak, Jason M; Olcha, Meir; Shastri, Shefali; Molinaro, Thomas A; Congdon, Haley; Treff, Nathan R; Scott, Richard T

    2016-10-01

    Is embryonic aneuploidy, as determined by comprehensive chromosome screening (CCS), related to genetic ancestry, as determined by ancestry informative markers (AIMs)? In this study, when determining continental ancestry utilizing AIMs, genetic ancestry does not have an impact on embryonic aneuploidy. Aneuploidy is one of the best-characterized barriers to ART success and little information exists regarding ethnicity and whole chromosome aneuploidy in IVF. Classifying continental ancestry utilizing genetic profiles from a selected group of single nucleotide polymorphisms, termed AIMs, can determine ancestral origin with more accuracy than self-reported data. This is a retrospective cohort study of patients undergoing their first cycle of IVF with CCS at a single center from 2008 to 2014. There were 2328 patients identified whom had undergone IVF/CCS and AIM genotyping. All patients underwent IVF/ICSI and CCS after trophectoderm biopsy. Patients' serum was genotyped using 32 custom AIMs to identify continental origin. Admixture proportions were determined using Bayesian clustering algorithms. Patients were assigned to the population (European, African, East Asian or Central/South Asian) corresponding to their greatest admixture proportion. The mean number of embryos tested was 5.3 (range = 1-40) and the mode was 1. Patients' ethnic classifications revealed European (n = 1698), African (n = 103), East Asian (n = 206) or Central/South Asian (n = 321). When controlling for age and BMI, aneuploidy rate did not differ by genetic ancestry (P = 0.28). The study type (retrospective) and the ability to classify patients by continental rather than sub-continental origin as well as the predominantly European patient mix may impact generalizability. Post hoc power calculation revealed power to detect a 16.8% difference in embryonic aneuploidy between the two smallest sample size groups. These data do not support differences in embryonic aneuploidy among various genetic

  6. Integrating genetic and toxicogenomic information for determining underlying susceptibility to developmental disorders.

    PubMed

    Robinson, Joshua F; Port, Jesse A; Yu, Xiaozhong; Faustman, Elaine M

    2010-10-01

    To understand the complex etiology of developmental disorders, an understanding of both genetic and environmental risk factors is needed. Human and rodent genetic studies have identified a multitude of gene candidates for specific developmental disorders such as neural tube defects (NTDs). With the emergence of toxicogenomic-based assessments, scientists now also have the ability to compare and understand the expression of thousands of genes simultaneously across strain, time, and exposure in developmental models. Using a systems-based approach in which we are able to evaluate information from various parts and levels of the developing organism, we propose a framework for integrating genetic information with toxicogenomic-based studies to better understand gene-environmental interactions critical for developmental disorders. This approach has allowed us to characterize candidate genes in the context of variables critical for determining susceptibility such as strain, time, and exposure. Using a combination of toxicogenomic studies and complementary bioinformatic tools, we characterize NTD candidate genes during normal development by function (gene ontology), linked phenotype (disease outcome), location, and expression (temporally and strain-dependent). In addition, we show how environmental exposures (cadmium, methylmercury) can influence expression of these genes in a strain-dependent manner. Using NTDs as an example of developmental disorder, we show how simple integration of genetic information from previous studies into the standard microarray design can enhance analysis of gene-environment interactions to better define environmental exposure-disease pathways in sensitive and resistant mouse strains. © Wiley-Liss, Inc.

  7. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.

    PubMed

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand

    2017-10-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society

  8. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    PubMed

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  9. Shared and unique common genetic determinants between pediatric and adult celiac disease.

    PubMed

    Senapati, Sabyasachi; Sood, Ajit; Midha, Vandana; Sood, Neena; Sharma, Suresh; Kumar, Lalit; Thelma, B K

    2016-07-22

    Based on age of presentation, celiac disease (CD) is categorised as pediatric CD and adult CD. It however remains unclear if these are genetically and/or phenotypically distinct disorders or just different spectrum of the same disease. We therefore explored the common genetic components underlying pediatric and adult CD in a well characterized north Indian cohort. A retrospective analysis of children (n = 531) and adult (n = 871) patients with CD between January 2001 and December 2010 was done. The database included basic demographic characteristics, clinical presentations, associated diseases and complications, if any. The genotype dataset was acquired for children (n = 217) and adult CD patients (n = 340) and controls (n = 736) using Immunochip. Association analysis was performed using logistic regression model to identify susceptibility genetic variants. The predominant form of CD was classical CD in both pediatric and adult CD groups. There was remarkable similarity between pediatric and adult CD except for quantitative differences between the two groups such as female preponderance, non-classical presentation, co-occurrence of other autoimmune diseases being more common amongst adult CD. Notably, same HLA-DQ2 and -DQ8 haplotypes were established as the major risk factors in both types of CD. In addition, a few suggestively associated (p < 5 × 10(-4)) non-HLA markers were identified of which only ANK3 (rs4948256-A; rs10994257-T) was found to be shared and explain risk for ~45 % of CD patients with HLA allele. Overall phenotypic similarity between pediatric and adult CD groups can be explained by contribution of same HLA risk alleles. Different non-HLA genes/loci with minor risk seem to play crucial role in disease onset and extra intestinal manifestation of CD. None of the non-HLA risk variants reached genome-wide significance, however most of them were shown to have functional implication to disease pathogenesis. Functional

  10. Adults' perceptions of genetic counseling and genetic testing.

    PubMed

    Houfek, Julia Fisco; Soltis-Vaughan, Brigette S; Atwood, Jan R; Reiser, Gwendolyn M; Schaefer, G Bradley

    2015-02-01

    This study described the perceptions of genetic counseling and testing of adults (N = 116) attending a genetic education program. Understanding perceptions of genetic counseling, including the importance of counseling topics, will contribute to patient-focused care as clinical genetic applications for common, complex disorders evolve. Participants completed a survey addressing: the importance of genetic counseling topics, benefits and negative effects of genetic testing, and sharing test results. Topics addressing practical information about genetic conditions were rated most important; topics involving conceptual genetic/genomic principles were rated least important. The most frequently identified benefit and negative effect of testing were prevention/early detection/treatment and psychological distress. Participants perceived that they were more likely to share test results with first-degree than other relatives. Findings suggest providing patients with practical information about genetic testing and genetic contributions to disease, while also determining whether their self-care abilities would be enhanced by teaching genetic/genomic principles. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum bicolor Seed Element Composition.

    PubMed

    Shakoor, Nadia; Ziegler, Greg; Dilkes, Brian P; Brenton, Zachary; Boyles, Richard; Connolly, Erin L; Kresovich, Stephen; Baxter, Ivan

    2016-04-01

    Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Genetic Determinism in the Genetics Curriculum: An Exploratory Study of the Effects of Mendelian and Weldonian Emphases

    ERIC Educational Resources Information Center

    Jamieson, Annie; Radick, Gregory

    2017-01-01

    Twenty-first-century biology rejects genetic determinism, yet an exaggerated view of the power of genes in the making of bodies and minds remains a problem. What accounts for such tenacity? This article reports an exploratory study suggesting that the common reliance on Mendelian examples and concepts at the start of teaching in basic genetics is…

  13. A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows

    PubMed Central

    Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L

    2016-01-01

    Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323

  14. In-depth Investigation of Genetic Region Identifies Mechanism that Contributes to Cancer Risk

    Cancer.gov

    Investigators in the Laboratory of Translational Genomics have identified a genetic variant in a multi-cancer risk locus at chromosome 5p15.33 that explains, at least in part, the molecular mechanism through which this variant influences cancer risk.

  15. Ethical issues in identifying and recruiting participants for familial genetic research.

    PubMed

    Beskow, Laura M; Botkin, Jeffrey R; Daly, Mary; Juengst, Eric T; Lehmann, Lisa Soleymani; Merz, Jon F; Pentz, Rebecca; Press, Nancy A; Ross, Lainie Friedman; Sugarman, Jeremy; Susswein, Lisa R; Terry, Sharon F; Austin, Melissa A; Burke, Wylie

    2004-11-01

    Family-based research is essential to understanding the genetic and environmental etiology of human disease. The success of family-based research often depends on investigators' ability to identify, recruit, and achieve a high participation rate among eligible family members. However, recruitment of family members raises ethical concerns due to the tension between protecting participants' privacy and promoting research quality, and guidelines for these activities are not well established. The Cancer Genetics Network Bioethics Committee assembled a multidisciplinary group to explore the scientific and ethical issues that arise in the process of family-based recruitment. The group used a literature review as well as expert opinion to develop recommendations about appropriate approaches to identifying, contacting, and recruiting family members. We conclude that there is no single correct approach, but recommend a balanced approach that takes into account the nature of the particular study as well as its recruitment goals. Recruitment of family members should be viewed as part of the research protocol and should require appropriate informed consent of the already-enrolled participant. Investigators should inform prospective participants why they are being contacted, how information about them was obtained, and what will happen to that information if they decide not to participate. The recruitment process should also be sensitive to the fact that some individuals from families at increased genetic risk will have no prior knowledge of their risk status. These recommendations are put forward to promote further discussion about the advantages and disadvantages of various approaches to family-based recruitment. They suggest a framework for considering alternative recruitment strategies and their implications, as well as highlight areas in need of further empirical research. (c) 2004 Wiley-Liss, Inc.

  16. Genetic determinism of anatomical and hydraulic traits within an apple progeny.

    PubMed

    Lauri, Pierre-Éric; Gorza, Olivier; Cochard, Hervé; Martinez, Sébastien; Celton, Jean-Marc; Ripetti, Véronique; Lartaud, Marc; Bry, Xavier; Trottier, Catherine; Costes, Evelyne

    2011-08-01

    The apple tree is known to have an isohydric behaviour, maintaining rather constant leaf water potential in soil with low water status and/or under high evaporative demand. However, little is known on the xylem water transport from roots to leaves from the two perspectives of efficiency and safety, and on its genetic variability. We analysed 16 traits related to hydraulic efficiency and safety, and anatomical traits in apple stems, and the relationships between them. Most variables were found heritable, and we investigated the determinism underlying their genetic control through a quantitative trait loci (QTL) analysis on 90 genotypes from the same progeny. Principal component analysis (PCA) revealed that all traits related to efficiency, whether hydraulic conductivity, vessel number and area or wood area, were included in the first PC, whereas the second PC included the safety variables, thus confirming the absence of trade-off between these two sets of traits. Our results demonstrated that clustered variables were characterized by common genomic regions. Together with previous results on the same progeny, our study substantiated that hydraulic efficiency traits co-localized with traits identified for tree growth and fruit production. © 2011 Blackwell Publishing Ltd.

  17. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    PubMed Central

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  18. Genetic determinants and stroke in children with sickle cell disease.

    PubMed

    Rodrigues, Daniela O W; Ribeiro, Luiz C; Sudário, Lysla C; Teixeira, Maria T B; Martins, Marina L; Pittella, Anuska M O L; Junior, Irtis de O Fernandes

    To verify genetic determinants associated with stroke in children with sickle cell disease (SCD). Prospective cohort with 110 children submitted to neonatal screening by the Neonatal Screening Program, between 1998 and 2007, with SCD diagnosis, followed at a regional reference public service for hemoglobinopathies. The analyzed variables were type of hemoglobinopathy, gender, coexistence with alpha thalassemia (α-thal), haplotypes of the beta globin chain cluster, and stroke. The final analysis was conducted with 66 children with sickle cell anemia (SCA), using the chi-squared test in the program SPSS ® version 14.0. Among children with SCD, 60% had SCA. The prevalence of coexistence with α-thal was 30.3% and the Bantu haplotype (CAR) was identified in 89.2%. The incidence of stroke was significantly higher in those with SCA (27.3% vs. 2.3%; p=0.001) and males (24.1% vs. 9.6%; p=0.044). The presence of α-thal (p=0.196), the CAR haplotype (p=0.543), and socioeconomic factors were not statistically significant in association with the occurrence of stroke. There is a high incidence of stroke in male children and in children with SCA. Coexistence with α-thal and haplotypes of the beta globin chain cluster did not show any significant association with stroke. The heterogeneity between previously evaluated populations, the non-reproducibility between studies, and the need to identify factors associated with stroke in patients with SCA indicate the necessity of conducting further research to demonstrate the relevance of genetic factors in stroke related to SCD. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

    PubMed Central

    Puffenberger, Erik G.; Jinks, Robert N.; Sougnez, Carrie; Cibulskis, Kristian; Willert, Rebecca A.; Achilly, Nathan P.; Cassidy, Ryan P.; Fiorentini, Christopher J.; Heiken, Kory F.; Lawrence, Johnny J.; Mahoney, Molly H.; Miller, Christopher J.; Nair, Devika T.; Politi, Kristin A.; Worcester, Kimberly N.; Setton, Roni A.; DiPiazza, Rosa; Sherman, Eric A.; Eastman, James T.; Francklyn, Christopher; Robey-Bond, Susan; Rider, Nicholas L.; Gabriel, Stacey; Morton, D. Holmes; Strauss, Kevin A.

    2012-01-01

    The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data. PMID:22279524

  20. High degree of genetic diversity of non-polio enteroviruses identified in Georgia by environmental and clinical surveillance, 2002-2005.

    PubMed

    Khetsuriani, N; Kutateladze, T; Zangaladze, E; Shutkova, T; Peñaranda, S; Nix, W A; Pallansch, M A; Oberste, M S

    2010-11-01

    Enterovirus surveillance data are useful for establishing temporal and geographical patterns of circulation and for virus characterization to determine phylogenetic relationships between strains. Almost no information is available on circulating enteroviruses in Georgia and the surrounding region. To describe enterovirus circulation in Georgia, determine relationships with previously characterized strains and assess the role of environmental and clinical enterovirus surveillance, this study analysed a total of 112 non-polio enterovirus isolates identified during 2002-2005 from sewage and human stool samples. Viruses were isolated in cell culture using standard methods and typed by partial sequencing of the VP1 gene. A total of 20 different non-polio enterovirus serotypes were identified over the 4-year period. The most commonly detected enteroviruses included echovirus (E) 6 (21 isolates; 18.8 %), E20, E3 and E7 (11 isolates each; 9.8 %), E11, coxsackievirus (CV) B4 and CVB5 (seven isolates each; 6.3 %), and E13, E19 and E30 (six isolates each; 5.4 %). Phylogenetic analysis showed that many serotypes were represented by more than one genetic lineage. The present study showed a very high degree of enterovirus diversity in Georgia and demonstrated the added value of environmental enterovirus surveillance, particularly in settings with limited clinical surveillance. Several serotypes would not have been detected without having both clinical and environmental surveillance in place. Several serotypes detected in Georgia were among those rarely reported in the USA and Europe (e.g. E3, E20 and E19). As the emergence of new genetic lineages of enterovirus in a particular area is often associated with large-scale outbreaks, continued monitoring of enterovirus strains by both environmental and clinical surveillance and genetic characterization should be encouraged.

  1. Patterns and Mechanisms of Evolutionary Transitions between Genetic Sex-Determining Systems

    PubMed Central

    Sander van Doorn, G.

    2014-01-01

    The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population–genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes. PMID:24993578

  2. Genetic variants are major determinants of CSF antibody levels in multiple sclerosis

    PubMed Central

    Pauwels, Ine; Gustavsen, Marte W.; van Son, Brechtje; Hilven, Kelly; Bos, Steffan D.; Celius, Elisabeth Gulowsen; Berg-Hansen, Pål; Aarseth, Jan; Myhr, Kjell-Morten; D’Alfonso, Sandra; Barizzone, Nadia; Leone, Maurizio A.; Martinelli Boneschi, Filippo; Sorosina, Melissa; Liberatore, Giuseppe; Kockum, Ingrid; Olsson, Tomas; Hillert, Jan; Alfredsson, Lars; Bedri, Sahl Khalid; Hemmer, Bernhard; Buck, Dorothea; Berthele, Achim; Knier, Benjamin; Biberacher, Viola; van Pesch, Vincent; Sindic, Christian; Bang Oturai, Annette; Søndergaard, Helle Bach; Sellebjerg, Finn; Jensen, Poul Erik H.; Comabella, Manuel; Montalban, Xavier; Pérez-Boza, Jennifer; Malhotra, Sunny; Lechner-Scott, Jeannette; Broadley, Simon; Slee, Mark; Taylor, Bruce; Kermode, Allan G.; Gourraud, Pierre-Antoine; Sawcer, Stephen J.; Andreassen, Bettina Kullle; Dubois, Bénédicte; Harbo, Hanne F.

    2015-01-01

    as female gender, age at onset and severity. This is the largest study population so far investigated for the genetic influence on antibody levels in the cerebrospinal fluid in multiple sclerosis, including 6950 patients. We confirm that genetic factors underlie these antibody levels and identify both the major histocompatibility complex and immunoglobulin heavy chain region as major determinants. PMID:25616667

  3. Genetic Determinants of High-Level Oxacillin Resistance in Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Pardos de la Gandara, Maria; Borges, Vitor; Chung, Marilyn; Milheiriço, Catarina; Gomes, João Paulo; de Lencastre, Herminia; Tomasz, Alexander

    2018-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains carry either a mecA - or a mecC -mediated mechanism of resistance to beta-lactam antibiotics, and the phenotypic expression of resistance shows extensive strain-to-strain variation. In recent communications, we identified the genetic determinants associated with the stringent stress response that play a major role in the antibiotic resistant phenotype of the historically earliest "archaic" clone of MRSA and in the mecC -carrying MRSA strain LGA251. Here, we sought to test whether or not the same genetic determinants also contribute to the resistant phenotype of highly and homogeneously resistant (H*R) derivatives of a major contemporary MRSA clone, USA300. We found that the resistance phenotype was linked to six genes ( fruB , gmk , hpt , purB , prsA , and relA ), which were most frequently targeted among the analyzed 20 H*R strains (one mutation per clone in 19 of the 20 H*R strains). Besides the strong parallels with our previous findings (five of the six genes matched), all but one of the repeatedly targeted genes were found to be linked to guanine metabolism, pointing to the key role that this pathway plays in defining the level of antibiotic resistance independent of the clonal type of MRSA. Copyright © 2018 American Society for Microbiology.

  4. Beliefs in genetic determinism and attitudes towards psychiatric genetic research: psychometric scale properties, construct associations, demographic correlates, and cross-cultural comparisons.

    PubMed

    Voracek, Martin; Swami, Viren; Loibl, Lisa Mariella; Furnham, Adrian

    2007-12-01

    Using two new scales, this study examined beliefs in genetic determinism and attitudes towards psychiatric genetic research in student samples from Austria, Malaysia, Romania, and the United Kingdom. For both constructs, effects of culture were detectable, whereas those related to key demographics were either small and inconsistent across samples (political orientation and religiosity) or zero (sex and age). Judged from factorial dimensionality and internal consistency, the psychometric properties of both scales were satisfactory. Belief in genetic determinism had lower prevalence and corresponded only modestly to positive attitudes towards psychiatric genetic research which had higher prevalence. The correlations of both constructs with a preference of inequality among social groups (social dominance orientation) were modest and inconsistent across samples. Both scales appear appropriate for cross-cultural applications, in particular for research into lay theories and public perceptions regarding genetic vs environmental effects on human behavior, mental disorders, and behavioral and psychiatric genetic research related to these.

  5. Expectation and futurity: The remarkable success of genetic determinism.

    PubMed

    Esposito, Maurizio

    2017-04-01

    Genetic determinism is nowadays largely questioned and widely criticized. However, if we look at the history of biology in the last one hundred years, we realize that genetic determinism has always been controversial. Why, then, did it acquire such relevance in the past despite facing longstanding criticism? Through the analysis of some of the ambitious expectations of future scientific applications, this article explores the possibility that part of the historical success of genetic determinism lies in the powerful rhetorical strategies that have connected the germinal matter with alluring bio-technological visions. Indeed, in drawing on the recent perspectives of "expectation studies" in science and technology, it will be shown that there has been an interesting historical relationship between reductionist notions of the gene as a hereditary unit, coded information or functional DNA segment, and startling prophecies of what controlling such an entity might achieve. It will also be suggested that the well-known promissory nature of genomics is far older than the emergence of biotechnology in the 1970s. At least from the time of the bio-utopias predicted by J.B.S. Haldane and J. S. Huxley, the gene has often been surrounded by what I call the "rhetoric of futurity": a promissory rhetoric that, despite momentous changes in the life sciences throughout the 20th century, has remained relatively consistent over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genetic identity of Thamnophis sp. using microsatellite genetic markers

    USGS Publications Warehouse

    Sloss, Brian L.

    2011-01-01

    Butler’s gartersnake (Thamnophis butleri) was previously listed by the Wisconsin Department of Natural Resources as a state threatened species. Several key questions associated with species identity, integrity, and hybridization with other gartersnake species needed to be addressed to further refi ne the management plan for this species. The objectives of this research were: 1) to determine if genetic markers developed in the initial phase of research could identify discrete genetic groups of Wisconsin gartersnakes, 2) to determine if any or all genetic groups delineated in objective one were consistent with Butler’s gartersnake, plains gartersnake (T. radix), and/or common gartersnake (T. sirtalis), and 3) to determine if any of the genetic data were consistent with hybridization occurring between gartersnakes in Wisconsin. Snakes were sampled from various Midwestern locations with a focus on sites in Wisconsin. All snakes were photo-vouchered, morphological landmarks were taken, and a tail snip was collected for genetic analysis. Genetic data from previously developed microsatellite markers discriminated three genetic groups from a composite 13-locus dataset (N=815) using the Bayesian admixture analysis in STRUCTURE v2.3.3. These units were highly consistent with species-groups based on the membership of a small number of known snakes from areas where the species are not thought to co-occur. Using a threshold q-value (proportional genotype) of ≥80%, 498 Butler’s gartersnakes, 93 plains gartersnakes, and 107 common gartersnakes were identifi ed in Wisconsin samples; putative hybrid snakes of Butler’s gartersnake x plain gartersnake (34), Butler’s gartersnake x common gartersnake (8), and a single ambiguous snake were also identifi ed in Wisconsin samples. Levels of divergence among the species groups from Wisconsin were lower than between species groups from other states consistent with either larger than expected Wisconsin population sizes or signifi

  7. Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping.

    PubMed

    Otto, Lars-Gernot; Mondal, Prodyut; Brassac, Jonathan; Preiss, Susanne; Degenhardt, Jörg; He, Sang; Reif, Jochen Christoph; Sharbel, Timothy Francis

    2017-08-10

    Chamomile (Matricaria recutita L.) has a long history of use in herbal medicine with various applications, and the flower heads contain numerous secondary metabolites which are medicinally active. In the major crop plants, next generation sequencing (NGS) approaches are intensely applied to exploit genetic resources, to develop genomic resources and to enhance breeding. Here, genotyping-by-sequencing (GBS) has been used in the non-model medicinal plant chamomile to evaluate the genetic structure of the cultivated varieties/populations, and to perform genome wide association study (GWAS) focusing on genes with large effect on flowering time and the medicinally important alpha-bisabolol content. GBS analysis allowed the identification of 6495 high-quality SNP-markers in our panel of 91 M. recutita plants from 33 origins (2-4 genotypes each) and 4 M. discoidea plants as outgroup, grown in the greenhouse in Gatersleben, Germany. M. recutita proved to be clearly distinct from the outgroup, as was demonstrated by different cluster and principal coordinate analyses using the SNP-markers. Chamomile genotypes from the same origin were mostly genetically similar. Model-based cluster analysis revealed one large group of tetraploid genotypes with low genetic differentiation including 39 plants from 14 origins. Tetraploids tended to display lower genetic diversity than diploids, probably reflecting their origin by artificial polyploidisation from only a limited set of genetic backgrounds. Analyses of flowering time demonstrated that diploids generally flowered earlier than tetraploids, and the analysis of alpha-bisabolol identified several tetraploid genotypes with a high content. GWAS identified highly significant (P < 0.01) SNPs for flowering time (9) and alpha-bisabolol (71). One sequence harbouring SNPs associated with flowering time was described to play a role in self-pollination in Arabidopsis thaliana, whereas four sequences harbouring SNPs associated with alpha

  8. Genetic Determinism in the Genetics Curriculum. An Exploratory Study of the Effects of Mendelian and Weldonian Emphases

    NASA Astrophysics Data System (ADS)

    Jamieson, Annie; Radick, Gregory

    2017-12-01

    Twenty-first-century biology rejects genetic determinism, yet an exaggerated view of the power of genes in the making of bodies and minds remains a problem. What accounts for such tenacity? This article reports an exploratory study suggesting that the common reliance on Mendelian examples and concepts at the start of teaching in basic genetics is an eliminable source of support for determinism. Undergraduate students who attended a standard `Mendelian approach' university course in introductory genetics on average showed no change in their determinist views about genes. By contrast, students who attended an alternative course which, inspired by the work of a critic of early Mendelism, W. F. R. Weldon (1860-1906), replaced an emphasis on Mendel's peas with an emphasis on developmental contexts and their role in bringing about phenotypic variability, were less determinist about genes by the end of teaching. Improvements in both the new Weldonian curriculum and the study design are in view for the future.

  9. A RAD-Based Genetic Map for Anchoring Scaffold Sequences and Identifying QTLs in Bitter Gourd (Momordica charantia)

    PubMed Central

    Cui, Junjie; Luo, Shaobo; Niu, Yu; Huang, Rukui; Wen, Qingfang; Su, Jianwen; Miao, Nansheng; He, Weiming; Dong, Zhensheng; Cheng, Jiaowen; Hu, Kailin

    2018-01-01

    Genetic mapping is a basic tool necessary for anchoring assembled scaffold sequences and for identifying QTLs controlling important traits. Though bitter gourd (Momordica charantia) is both consumed and used as a medicinal, research on its genomics and genetic mapping is severely limited. Here, we report the construction of a restriction site associated DNA (RAD)-based genetic map for bitter gourd using an F2 mapping population comprising 423 individuals derived from two cultivated inbred lines, the gynoecious line ‘K44’ and the monoecious line ‘Dali-11.’ This map comprised 1,009 SNP markers and spanned a total genetic distance of 2,203.95 cM across the 11 linkage groups. It anchored a total of 113 assembled scaffolds that covered about 251.32 Mb (85.48%) of the 294.01 Mb assembled genome. In addition, three horticulturally important traits including sex expression, fruit epidermal structure, and immature fruit color were evaluated using a combination of qualitative and quantitative data. As a result, we identified three QTL/gene loci responsible for these traits in three environments. The QTL/gene gy/fffn/ffn, controlling sex expression involved in gynoecy, first female flower node, and female flower number was detected in the reported region. Particularly, two QTLs/genes, Fwa/Wr and w, were found to be responsible for fruit epidermal structure and white immature fruit color, respectively. This RAD-based genetic map promotes the assembly of the bitter gourd genome and the identified genetic loci will accelerate the cloning of relevant genes in the future. PMID:29706980

  10. Determining Risk of Barrett's Esophagus and Esophageal Adenocarcinoma Based on Epidemiologic Factors and Genetic Variants.

    PubMed

    Dong, Jing; Buas, Matthew F; Gharahkhani, Puya; Kendall, Bradley J; Onstad, Lynn; Zhao, Shanshan; Anderson, Lesley A; Wu, Anna H; Ye, Weimin; Bird, Nigel C; Bernstein, Leslie; Chow, Wong-Ho; Gammon, Marilie D; Liu, Geoffrey; Caldas, Carlos; Pharoah, Paul D; Risch, Harvey A; Iyer, Prasad G; Reid, Brian J; Hardie, Laura J; Lagergren, Jesper; Shaheen, Nicholas J; Corley, Douglas A; Fitzgerald, Rebecca C; Whiteman, David C; Vaughan, Thomas L; Thrift, Aaron P

    2018-04-01

    We developed comprehensive models to determine risk of Barrett's esophagus (BE) or esophageal adenocarcinoma (EAC) based on genetic and non-genetic factors. We used pooled data from 3288 patients with BE, 2511 patients with EAC, and 2177 individuals without either (controls) from participants in the international Barrett's and EAC consortium as well as the United Kingdom's BE gene study and stomach and esophageal cancer study. We collected data on 23 genetic variants associated with risk for BE or EAC, and constructed a polygenic risk score (PRS) for cases and controls by summing the risk allele counts for the variants weighted by their natural log-transformed effect estimates (odds ratios) extracted from genome-wide association studies. We also collected data on demographic and lifestyle factors (age, sex, smoking, body mass index, use of nonsteroidal anti-inflammatory drugs) and symptoms of gastroesophageal reflux disease (GERD). Risk models with various combinations of non-genetic factors and the PRS were compared for their accuracy in identifying patients with BE or EAC using the area under the receiver operating characteristic curve (AUC) analysis. Individuals in the highest quartile of risk, based on genetic factors (PRS), had a 2-fold higher risk of BE (odds ratio, 2.22; 95% confidence interval, 1.89-2.60) or EAC (odds ratio, 2.46; 95% confidence interval, 2.07-2.92) than individual in the lowest quartile of risk based on PRS. Risk models developed based on only demographic or lifestyle factors or GERD symptoms identified patients with BE or EAC with AUC values ranging from 0.637 to 0.667. Combining data on demographic or lifestyle factors with data on GERD symptoms identified patients with BE with an AUC of 0.793 and patients with EAC with an AUC of 0.745. Including PRSs with these data only minimally increased the AUC values for BE (to 0.799) and EAC (to 0.754). Including the PRSs in the model developed based on non-genetic factors resulted in a net

  11. Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing

    PubMed Central

    Wang, Yimin; Du, Xiaonan; Bin, Rao; Yu, Shanshan; Xia, Zhezhi; Zheng, Guo; Zhong, Jianmin; Zhang, Yunjian; Jiang, Yong-hui; Wang, Yi

    2017-01-01

    Genetic factors play a major role in the etiology of epilepsy disorders. Recent genomics studies using next generation sequencing (NGS) technique have identified a large number of genetic variants including copy number (CNV) and single nucleotide variant (SNV) in a small set of genes from individuals with epilepsy. These discoveries have contributed significantly to evaluate the etiology of epilepsy in clinic and lay the foundation to develop molecular specific treatment. However, the molecular basis for a majority of epilepsy patients remains elusive, and furthermore, most of these studies have been conducted in Caucasian children. Here we conducted a targeted exome-sequencing of 63 trios of Chinese epilepsy families using a custom-designed NGS panel that covers 412 known and candidate genes for epilepsy. We identified pathogenic and likely pathogenic variants in 15 of 63 (23.8%) families in known epilepsy genes including SCN1A, CDKL5, STXBP1, CHD2, SCN3A, SCN9A, TSC2, MBD5, POLG and EFHC1. More importantly, we identified likely pathologic variants in several novel candidate genes such as GABRE, MYH1, and CLCN6. Our results provide the evidence supporting the application of custom-designed NGS panel in clinic and indicate a conserved genetic susceptibility for epilepsy between Chinese and Caucasian children. PMID:28074849

  12. Incidence, prevalence and genetic determinants of neonatal diabetes mellitus: a systematic review and meta-analysis protocol.

    PubMed

    Nansseu, Jobert Richie N; Ngo-Um, Suzanne S; Balti, Eric V

    2016-11-10

    In the absence of existing data, the present review intends to determine the incidence, prevalence and/or genetic determinants of neonatal diabetes mellitus (NDM), with expected contribution to disease characterization. We will include cross-sectional, cohort or case-control studies which have reported the incidence, prevalence and/or genetic determinants of NDM between January 01, 2000 and May 31, 2016, published in English or French languages and without any geographical limitation. PubMed and EMBASE will be extensively screened to identify potentially eligible studies, completed by manual search. Two authors will independently screen, select studies, extract data, and assess the risk of bias; disagreements will be resolved by consensus. Clinical heterogeneity will be investigated by examining the design and setting (including geographic region), procedure used for genetic testing, calculation of incidence or prevalence, and outcomes in each study. Studies found to be clinically homogeneous will be pooled together through a random effects meta-analysis. Statistical heterogeneity will be assessed using the chi-square test of homogeneity and quantified using the I 2 statistic. In case of substantial heterogeneity, subgroup analyses will be undertaken. Publication bias will be assessed with funnel plots, complemented with the use of Egger's test of bias. This systematic review and meta-analysis is expected to draw a clear picture of phenotypic and genotypic presentations of NDM in order to better understand the condition and adequately address challenges in respect with its management. PROSPERO CRD42016039765.

  13. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function.

    PubMed

    Davies, Gail; Lam, Max; Harris, Sarah E; Trampush, Joey W; Luciano, Michelle; Hill, W David; Hagenaars, Saskia P; Ritchie, Stuart J; Marioni, Riccardo E; Fawns-Ritchie, Chloe; Liewald, David C M; Okely, Judith A; Ahola-Olli, Ari V; Barnes, Catriona L K; Bertram, Lars; Bis, Joshua C; Burdick, Katherine E; Christoforou, Andrea; DeRosse, Pamela; Djurovic, Srdjan; Espeseth, Thomas; Giakoumaki, Stella; Giddaluru, Sudheer; Gustavson, Daniel E; Hayward, Caroline; Hofer, Edith; Ikram, M Arfan; Karlsson, Robert; Knowles, Emma; Lahti, Jari; Leber, Markus; Li, Shuo; Mather, Karen A; Melle, Ingrid; Morris, Derek; Oldmeadow, Christopher; Palviainen, Teemu; Payton, Antony; Pazoki, Raha; Petrovic, Katja; Reynolds, Chandra A; Sargurupremraj, Muralidharan; Scholz, Markus; Smith, Jennifer A; Smith, Albert V; Terzikhan, Natalie; Thalamuthu, Anbupalam; Trompet, Stella; van der Lee, Sven J; Ware, Erin B; Windham, B Gwen; Wright, Margaret J; Yang, Jingyun; Yu, Jin; Ames, David; Amin, Najaf; Amouyel, Philippe; Andreassen, Ole A; Armstrong, Nicola J; Assareh, Amelia A; Attia, John R; Attix, Deborah; Avramopoulos, Dimitrios; Bennett, David A; Böhmer, Anne C; Boyle, Patricia A; Brodaty, Henry; Campbell, Harry; Cannon, Tyrone D; Cirulli, Elizabeth T; Congdon, Eliza; Conley, Emily Drabant; Corley, Janie; Cox, Simon R; Dale, Anders M; Dehghan, Abbas; Dick, Danielle; Dickinson, Dwight; Eriksson, Johan G; Evangelou, Evangelos; Faul, Jessica D; Ford, Ian; Freimer, Nelson A; Gao, He; Giegling, Ina; Gillespie, Nathan A; Gordon, Scott D; Gottesman, Rebecca F; Griswold, Michael E; Gudnason, Vilmundur; Harris, Tamara B; Hartmann, Annette M; Hatzimanolis, Alex; Heiss, Gerardo; Holliday, Elizabeth G; Joshi, Peter K; Kähönen, Mika; Kardia, Sharon L R; Karlsson, Ida; Kleineidam, Luca; Knopman, David S; Kochan, Nicole A; Konte, Bettina; Kwok, John B; Le Hellard, Stephanie; Lee, Teresa; Lehtimäki, Terho; Li, Shu-Chen; Liu, Tian; Koini, Marisa; London, Edythe; Longstreth, Will T; Lopez, Oscar L; Loukola, Anu; Luck, Tobias; Lundervold, Astri J; Lundquist, Anders; Lyytikäinen, Leo-Pekka; Martin, Nicholas G; Montgomery, Grant W; Murray, Alison D; Need, Anna C; Noordam, Raymond; Nyberg, Lars; Ollier, William; Papenberg, Goran; Pattie, Alison; Polasek, Ozren; Poldrack, Russell A; Psaty, Bruce M; Reppermund, Simone; Riedel-Heller, Steffi G; Rose, Richard J; Rotter, Jerome I; Roussos, Panos; Rovio, Suvi P; Saba, Yasaman; Sabb, Fred W; Sachdev, Perminder S; Satizabal, Claudia L; Schmid, Matthias; Scott, Rodney J; Scult, Matthew A; Simino, Jeannette; Slagboom, P Eline; Smyrnis, Nikolaos; Soumaré, Aïcha; Stefanis, Nikos C; Stott, David J; Straub, Richard E; Sundet, Kjetil; Taylor, Adele M; Taylor, Kent D; Tzoulaki, Ioanna; Tzourio, Christophe; Uitterlinden, André; Vitart, Veronique; Voineskos, Aristotle N; Kaprio, Jaakko; Wagner, Michael; Wagner, Holger; Weinhold, Leonie; Wen, K Hoyan; Widen, Elisabeth; Yang, Qiong; Zhao, Wei; Adams, Hieab H H; Arking, Dan E; Bilder, Robert M; Bitsios, Panos; Boerwinkle, Eric; Chiba-Falek, Ornit; Corvin, Aiden; De Jager, Philip L; Debette, Stéphanie; Donohoe, Gary; Elliott, Paul; Fitzpatrick, Annette L; Gill, Michael; Glahn, David C; Hägg, Sara; Hansell, Narelle K; Hariri, Ahmad R; Ikram, M Kamran; Jukema, J Wouter; Vuoksimaa, Eero; Keller, Matthew C; Kremen, William S; Launer, Lenore; Lindenberger, Ulman; Palotie, Aarno; Pedersen, Nancy L; Pendleton, Neil; Porteous, David J; Räikkönen, Katri; Raitakari, Olli T; Ramirez, Alfredo; Reinvang, Ivar; Rudan, Igor; Dan Rujescu; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter W; Schofield, Peter R; Starr, John M; Steen, Vidar M; Trollor, Julian N; Turner, Steven T; Van Duijn, Cornelia M; Villringer, Arno; Weinberger, Daniel R; Weir, David R; Wilson, James F; Malhotra, Anil; McIntosh, Andrew M; Gale, Catharine R; Seshadri, Sudha; Mosley, Thomas H; Bressler, Jan; Lencz, Todd; Deary, Ian J

    2018-05-29

    General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10 -8 ) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.

  14. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, X. R.; Wang, X.

    2016-03-01

    When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.

  15. Methods for determining the genetic affinity of microorganisms and viruses

    NASA Technical Reports Server (NTRS)

    Fox, George E. (Inventor); Willson, III, Richard C. (Inventor); Zhang, Zhengdong (Inventor)

    2012-01-01

    Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred. A hybridization signal can comprise fluorescence, chemiluminescence, or isotopic labeling, etc.; or sequences in a sample can be detected by direct means, e.g. mass spectrometry. The method's characteristic sequences can also be used to design specific PCR primers. The method uniquely identifies the phylogenetic affinity of an unknown organism without requiring prior knowledge of what is present in the sample. Even if the organism has not been previously encountered, the method still provides useful information about which phylogenetic tree bifurcation nodes encompass the organism.

  16. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes.

    PubMed

    Rohde, Palle Duun; Demontis, Ditte; Cuyabano, Beatriz Castro Dias; Børglum, Anders D; Sørensen, Peter

    2016-08-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case-control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and immunological responses, which previously have been implicated with schizophrenia based on experimental and observational studies. Copyright © 2016 by the Genetics Society of America.

  17. Genetic Determinism and the Innate-Acquired Distinction in Medicine

    PubMed Central

    2009-01-01

    This article illustrates in which sense genetic determinism is still part of the contemporary interactionist consensus in medicine. Three dimensions of this consensus are discussed: kinds of causes, a continuum of traits ranging from monogenetic diseases to car accidents, and different kinds of determination due to different norms of reaction. On this basis, this article explicates in which sense the interactionist consensus presupposes the innate–acquired distinction. After a descriptive Part 1, Part 2 reviews why the innate–acquired distinction is under attack in contemporary philosophy of biology. Three arguments are then presented to provide a limited and pragmatic defense of the distinction: an epistemic, a conceptual, and a historical argument. If interpreted in a certain manner, and if the pragmatic goals of prevention and treatment (ideally specifying what medicine and health care is all about) are taken into account, then the innate–acquired distinction can be a useful epistemic tool. It can help, first, to understand that genetic determination does not mean fatalism, and, second, to maintain a system of checks and balances in the continuing nature–nurture debates. PMID:20234831

  18. Genetic Determinism in School Textbooks: A Comparative Study Conducted among Sixteen Countries

    ERIC Educational Resources Information Center

    Castera, Jeremy; Clement, Pierre; Abrougui, Mondher; Nisiforou, Olympia; Valanides, Nicos; Turcinaviciene, Jurga; Sarapuu, Tago; Agorram, Boujemaa; Calado, Florbela; Bogner, Franz; Carvalho, Graca

    2008-01-01

    Genetic concepts have significantly evolved over the last ten years, and are now less connected to innate ideas and reductionism. Unique reference to genetic determinism has been replaced by the interaction between the genes and their environment (epigenetics). Our analyses relate to how current school biology textbooks present this new paradigm…

  19. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmain, Allan; Song, Ihn Young

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularlymore » when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.« less

  20. Imaging Biomarkers for Adult Medulloblastomas: Genetic Entities May Be Identified by Their MR Imaging Radiophenotype.

    PubMed

    Keil, V C; Warmuth-Metz, M; Reh, C; Enkirch, S J; Reinert, C; Beier, D; Jones, D T W; Pietsch, T; Schild, H H; Hattingen, E; Hau, P

    2017-10-01

    The occurrence of medulloblastomas in adults is rare; nevertheless, these tumors can be subdivided into genetic and histologic entities each having distinct prognoses. This study aimed to identify MR imaging biomarkers to classify these entities and to uncover differences in MR imaging biomarkers identified in pediatric medulloblastomas. Eligible preoperative MRIs from 28 patients (11 women; 22-53 years of age) of the Multicenter Pilot-study for the Therapy of Medulloblastoma of Adults (NOA-7) cohort were assessed by 3 experienced neuroradiologists. Lesions and perifocal edema were volumetrized and multiparametrically evaluated for classic morphologic characteristics, location, hydrocephalus, and Chang criteria. To identify MR imaging biomarkers, we correlated genetic entities sonic hedgehog ( SHH ) TP53 wild type, wingless ( WNT ), and non -WNT/ non -SHH medulloblastomas (in adults, Group 4), and histologic entities were correlated with the imaging criteria. These MR imaging biomarkers were compared with corresponding data from a pediatric study. There were 19 SHH TP53 wild type (69%), 4 WNT -activated (14%), and 5 Group 4 (17%) medulloblastomas. Six potential MR imaging biomarkers were identified, 3 of which, hydrocephalus ( P = .03), intraventricular macrometastases ( P = .02), and hemorrhage ( P = .04), when combined, could identify WNT medulloblastoma with 100% sensitivity and 88.3% specificity (95% CI, 39.8%-100.0% and 62.6%-95.3%). WNT -activated nuclear β-catenin accumulating medulloblastomas were smaller than the other entities (95% CI, 5.2-22.3 cm 3 versus 35.1-47.6 cm 3 ; P = .03). Hemorrhage was exclusively present in non -WNT/ non -SHH medulloblastomas ( P = .04; n = 2/5). MR imaging biomarkers were all discordant from those identified in the pediatric cohort. Desmoplastic/nodular medulloblastomas were more rarely in contact with the fourth ventricle (4/15 versus 7/13; P = .04). MR imaging biomarkers can help distinguish histologic and genetic

  1. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    PubMed Central

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  2. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    PubMed

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  3. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial

  4. Genetically determined ancestry is more informative than self-reported race in HIV-infected and -exposed children

    PubMed Central

    Spector, Stephen A.; Brummel, Sean S.; Nievergelt, Caroline M.; Maihofer, Adam X.; Singh, Kumud K.; Purswani, Murli U.; Williams, Paige L.; Hazra, Rohan; Van Dyke, Russell; Seage, George R.

    2016-01-01

    Abstract The Pediatric HIV/AIDS Cohort Study (PHACS), the largest ongoing longitudinal study of perinatal HIV-infected (PHIV) and HIV-exposed, uninfected (PHEU) children in the United States, comprises the Surveillance Monitoring of Antiretroviral Therapy [ART] Toxicities (SMARTT) Study in PHEU children and the Adolescent Master Protocol (AMP) that includes PHIV and PHEU children ≥7 years. Although race/ethnicity is often used to assess health outcomes, this approach remains controversial and may fail to accurately reflect the backgrounds of ancestry-diverse populations as represented in the PHACS participants. In this study, we compared genetically determined ancestry (GDA) and self-reported race/ethnicity (SRR) in the PHACS cohort. GDA was estimated using a highly discriminative panel of 41 single nucleotide polymorphisms and compared to SRR. Because SRR was similar between the PHIV and PHEU, and between the AMP and SMARTT cohorts, data for all unique 1958 participants were combined. According to SRR, 63% of study participants identified as Black/African-American, 27% White, and 34% Hispanic. Using the highest percentage of ancestry/ethnicity to identify GDA, 9.5% of subjects were placed in the incorrect superpopulation based on SRR. When ≥50% or ≥75% GDA of a given superpopulation was required, 12% and 25%, respectively, of subjects were placed in the incorrect superpopulation based on SRR, and the percent of subjects classified as multiracial increased. Of 126 participants with unidentified SRR, 71% were genetically identified as Eurasian. GDA provides a more robust assessment of race/ethnicity when compared to self-report, and study participants with unidentified SRR could be assigned GDA using genetic markers. In addition, identification of continental ancestry removes the taxonomic identification of race as a variable when identifying risk for clinical outcomes. PMID:27603370

  5. Novel Genetic Loci Identified for the Pathophysiology of Childhood Obesity in the Hispanic Population

    PubMed Central

    Comuzzie, Anthony G.; Cole, Shelley A.; Laston, Sandra L.; Voruganti, V. Saroja; Haack, Karin; Gibbs, Richard A.; Butte, Nancy F.

    2012-01-01

    Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association study (GWAS) entailed genotyping 1.1 million single nucleotide polymorphisms (SNPs) using the Illumina Infinium technology in 815 children. Measured genotype analysis was performed between genetic markers and obesity-related traits i.e., anthropometry, body composition, growth, metabolites, hormones, inflammation, diet, energy expenditure, substrate utilization and physical activity. Identified genome-wide significant loci: 1) corroborated genes implicated in other studies (MTNR1B, ZNF259/APOA5, XPA/FOXE1 (TTF-2), DARC, CCR3, ABO); 2) localized novel genes in plausible biological pathways (PCSK2, ARHGAP11A, CHRNA3); and 3) revealed novel genes with unknown function in obesity pathogenesis (MATK, COL4A1). Salient findings include a nonsynonymous SNP (rs1056513) in INADL (p = 1.2E-07) for weight; an intronic variant in MTNR1B associated with fasting glucose (p = 3.7E-08); variants in the APOA5-ZNF259 region associated with triglycerides (p = 2.5-4.8E-08); an intronic variant in PCSK2 associated with total antioxidants (p = 7.6E-08); a block of 23 SNPs in XPA/FOXE1 (TTF-2) associated with serum TSH (p = 5.5E-08 to 1.0E-09); a nonsynonymous SNP (p = 1.3E-21), an intronic SNP (p = 3.6E-13) in DARC identified for MCP-1; an intronic variant in ARHGAP11A associated with sleep duration (p = 5.0E-08); and, after adjusting for body weight, variants in MATK for total energy expenditure (p = 2.7E-08) and in CHRNA3 for sleeping energy expenditure (p = 6.0E-08). Unprecedented phenotyping and high-density SNP genotyping enabled localization of novel genetic loci associated with the pathophysiology of childhood obesity. PMID:23251661

  6. Genetic methods improve accuracy of gender determination in beaver

    USGS Publications Warehouse

    Williams, C.L.; Breck, S.W.; Baker, B.W.

    2004-01-01

    Gender identification of sexually monomorphic mammals can be difficult. We used analysis of zinc-finger protein (Zfx and Zfy) DNA regions to determine gender of 96 beavers (Castor canadensis) from 3 areas and used these results to verify gender determined in the field. Gender was correctly determined for 86 (89.6%) beavers. Incorrect assignments were not attributed to errors in any one age or sex class. Although methods that can be used in the field (such as morphological methods) can provide reasonably accurate gender assignments in beavers, the genetic method might be preferred in certain situations.

  7. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish.

    PubMed

    Mei, Jie; Gui, Jian-Fang

    2015-02-01

    Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field.

  8. Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-iMfolozi Park, South Africa)

    PubMed Central

    Russo, Isa-Rita M.; Sole, Catherine L.; Barbato, Mario; von Bramann, Ullrich; Bruford, Michael W.

    2016-01-01

    Small mammals provide ecosystem services, acting, for example, as pollinators and seed dispersers. In addition, they are also disease reservoirs that can be detrimental to human health and they can also act as crop pests. Knowledge of their dispersal preferences is therefore useful for population management and landscape planning. Genetic data were used alongside landscape data to examine the influence of the landscape on the demographic connectedness of the Natal multimammate mouse (Mastomys natalensis) and to identify landscape characteristics that influence the genetic structure of this species across a spatially and temporally varying environment. The most significant landscape features shaping gene flow were aspect, vegetation cover, topographic complexity (TC) and rivers, with western facing slopes, topographic complexity and rivers restricting gene flow. In general, thicket vegetation was correlated with increased gene flow. Identifying features of the landscape that facilitate movement/dispersal in M. natalensis potentially has application for other small mammals in similar ecosystems. As the primary reservoir host of the zoonotic Lassa virus, a landscape genetics approach may have applications in determining areas of high disease risk to humans. Identifying these landscape features may also be important in crop management due to damage by rodent pests. PMID:27406468

  9. Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-iMfolozi Park, South Africa).

    PubMed

    Russo, Isa-Rita M; Sole, Catherine L; Barbato, Mario; von Bramann, Ullrich; Bruford, Michael W

    2016-07-13

    Small mammals provide ecosystem services, acting, for example, as pollinators and seed dispersers. In addition, they are also disease reservoirs that can be detrimental to human health and they can also act as crop pests. Knowledge of their dispersal preferences is therefore useful for population management and landscape planning. Genetic data were used alongside landscape data to examine the influence of the landscape on the demographic connectedness of the Natal multimammate mouse (Mastomys natalensis) and to identify landscape characteristics that influence the genetic structure of this species across a spatially and temporally varying environment. The most significant landscape features shaping gene flow were aspect, vegetation cover, topographic complexity (TC) and rivers, with western facing slopes, topographic complexity and rivers restricting gene flow. In general, thicket vegetation was correlated with increased gene flow. Identifying features of the landscape that facilitate movement/dispersal in M. natalensis potentially has application for other small mammals in similar ecosystems. As the primary reservoir host of the zoonotic Lassa virus, a landscape genetics approach may have applications in determining areas of high disease risk to humans. Identifying these landscape features may also be important in crop management due to damage by rodent pests.

  10. Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes.

    PubMed

    Parsons, Kevin J; Concannon, Moira; Navon, Dina; Wang, Jason; Ea, Ilene; Groveas, Kiran; Campbell, Calum; Albertson, R Craig

    2016-12-01

    Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F 3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long-standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential. © 2016 John Wiley & Sons Ltd.

  11. Genetic determinants of aggression and impulsivity in humans.

    PubMed

    Pavlov, Konstantin A; Chistiakov, Dimitry A; Chekhonin, Vladimir P

    2012-02-01

    . In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.

  12. Teachers' Conceptions About the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    NASA Astrophysics Data System (ADS)

    Castéra, Jérémy; Clément, Pierre

    2014-02-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed teachers' conceptions. This illustrates that innatism is present in two distinct ways: in relation to individuals (e.g. genetic determinism to justify intellectual likeness between individuals such as twins) or in relation to groups of humans (e.g. genetic determinism to justify gender differences or the superiority of some human ethnic groups). A between-factor analysis discriminates between countries, showing very significant differences. There is more innatism among teachers' conceptions in African countries and Lebanon than in European countries, Brazil and Australia. Among the other controlled parameters, only two are significantly independent of the country: the level of training and the level of knowledge of biology. A co-inertia analysis shows a strong correlation between non-citizen attitudes towards and innatist conceptions of genetic determinism regarding human groups. We discuss these findings and their implications for education.

  13. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.

    PubMed

    Snijders, Antoine M; Marchetti, Francesco; Bhatnagar, Sandhya; Duru, Nadire; Han, Ju; Hu, Zhi; Mao, Jian-Hua; Gray, Joe W; Wyrobek, Andrew J

    2012-01-01

    High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, <10 cGy) exposures remain highly uncertain. We explored a systems approach that compared LD-induced chromosome damage and transcriptional responses in strains of mice with genetic differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (p<0.0001). There is concordant direction of expression in the LD-exposed sensitive mouse strain, in biomarkers of human DCIS and in biomarkers of human breast tumors. Our findings support the hypothesis that genetic mechanisms that determine susceptibility to LD radiation induced mammary cancer in mice are similar to the tissue mechanisms that determine poor-survival in breast cancer patients. We observed non-linearity of the LD responses providing molecular evidence against the LNT risk model and obtained new evidence that LD responses are strongly

  14. Resistance to hepatitis C virus: potential genetic and immunological determinants.

    PubMed

    Mina, Michael M; Luciani, Fabio; Cameron, Barbara; Bull, Rowena A; Beard, Michael R; Booth, David; Lloyd, Andrew R

    2015-04-01

    Studies of individuals who were highly exposed but seronegative (HESN) for HIV infection led to the discovery that homozygosity for the Δ32 deletion mutation in the CCR5 gene prevents viral entry into target cells, and is associated with resistance to infection. Additionally, evidence for protective immunity has been noted in some HESN groups, such as sex workers in The Gambia. Population studies of individuals at high risk for hepatitis C virus infection suggest that an HESN phenotype exists. The body of evidence, which suggests that protective immunity allows clearance of hepatitis C virus without seroconversion is growing. Furthermore, proof-of-principle evidence from in-vitro studies shows that genetic polymorphisms can confer resistance to establishment of infection. This Review discusses the possibility that genetic mutations confer resistance against hepatitis C virus, and also explores evidence for protective immunity, including via genetically programmed variations in host responses. The data generally strengthens the notion that investigations of naturally arising polymorphisms within the hepatitis C virus interactome, and genetic association studies of well characterised HESN individuals, could identify potential targets for vaccine design and inform novel therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Estimating genetic effects and quantifying missing heritability explained by identified rare-variant associations.

    PubMed

    Liu, Dajiang J; Leal, Suzanne M

    2012-10-05

    Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner's curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner's curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Vertebrate sex-determining genes play musical chairs

    PubMed Central

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H.; Schartl, Manfred; Guiguen, Yann

    2017-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. PMID:27291506

  17. Genetic Algorithm for Initial Orbit Determination with Too Short Arc

    NASA Astrophysics Data System (ADS)

    Li, X. R.; Wang, X.

    2016-01-01

    The sky surveys of space objects have obtained a huge quantity of too-short-arc (TSA) observation data. However, the classical method of initial orbit determination (IOD) can hardly get reasonable results for the TSAs. The IOD is reduced to a two-stage hierarchical optimization problem containing three variables for each stage. Using the genetic algorithm, a new method of the IOD for TSAs is established, through the selection of optimizing variables as well as the corresponding genetic operator for specific problems. Numerical experiments based on the real measurements show that the method can provide valid initial values for the follow-up work.

  18. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis

    PubMed Central

    van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M; McLaughlin, Russell L; Diekstra, Frank P; Pulit, Sara L; van der Spek, Rick A A; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R; Yang, Jian; Fogh, Isabella; van Doormaal, Perry TC; Tazelaar, Gijs H P; Koppers, Max; Blokhuis, Anna M; Sproviero, William; Jones, Ashley R; Kenna, Kevin P; van Eijk, Kristel R; Harschnitz, Oliver; Schellevis, Raymond D; Brands, William J; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E; Shaw, Pamela J; Hardy, John; Orrell, Richard W; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A; Staats, Kim A; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; Van Deerlin, Vivianna M; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Basak, A Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A M; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M; van der Kooi, Anneke J; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E; Smith, Bradley N; Pansarasa, Orietta; Cereda, Cristina; Bo, Roberto Del; Comi, Giacomo P; D’Alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P; Fifita, Jennifer A; Nicholson, Garth A; Rowe, Dominic B; Pamphlett, Roger; Kiernan, Matthew C; Grosskreutz, Julian; Witte, Otto W; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A; Leigh, P Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C; Weishaupt, Jochen H; Robberecht, Wim; Van Damme, Philip; Franke, Lude; Pers, Tune H; Brown, Robert H; Glass, Jonathan D; Landers, John E; Hardiman, Orla; Andersen, Peter M; Corcia, Philippe; Vourc’h, Patrick; Silani, Vincenzo; Wray, Naomi R; Visscher, Peter M; de Bakker, Paul I W; van Es, Michael A; Pasterkamp, R Jeroen; Lewis, Cathryn M; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan H

    2017-01-01

    To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1–10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk. PMID:27455348

  19. Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease.

    PubMed

    Dilliott, Allison A; Farhan, Sali M K; Ghani, Mahdi; Sato, Christine; Liang, Eric; Zhang, Ming; McIntyre, Adam D; Cao, Henian; Racacho, Lemuel; Robinson, John F; Strong, Michael J; Masellis, Mario; Bulman, Dennis E; Rogaeva, Ekaterina; Lang, Anthony; Tartaglia, Carmela; Finger, Elizabeth; Zinman, Lorne; Turnbull, John; Freedman, Morris; Swartz, Rick; Black, Sandra E; Hegele, Robert A

    2018-04-04

    Next-generation sequencing (NGS) is quickly revolutionizing how research into the genetic determinants of constitutional disease is performed. The technique is highly efficient with millions of sequencing reads being produced in a short time span and at relatively low cost. Specifically, targeted NGS is able to focus investigations to genomic regions of particular interest based on the disease of study. Not only does this further reduce costs and increase the speed of the process, but it lessens the computational burden that often accompanies NGS. Although targeted NGS is restricted to certain regions of the genome, preventing identification of potential novel loci of interest, it can be an excellent technique when faced with a phenotypically and genetically heterogeneous disease, for which there are previously known genetic associations. Because of the complex nature of the sequencing technique, it is important to closely adhere to protocols and methodologies in order to achieve sequencing reads of high coverage and quality. Further, once sequencing reads are obtained, a sophisticated bioinformatics workflow is utilized to accurately map reads to a reference genome, to call variants, and to ensure the variants pass quality metrics. Variants must also be annotated and curated based on their clinical significance, which can be standardized by applying the American College of Medical Genetics and Genomics Pathogenicity Guidelines. The methods presented herein will display the steps involved in generating and analyzing NGS data from a targeted sequencing panel, using the ONDRISeq neurodegenerative disease panel as a model, to identify variants that may be of clinical significance.

  20. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations

    PubMed Central

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R.; Servin, Bertrand

    2017-01-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. PMID:28978774

  1. Promoter Hypermethylation Profiling Identifies Subtypes of Head and Neck Cancer with Distinct Viral, Environmental, Genetic and Survival Characteristics

    PubMed Central

    Choudhury, Javed Hussain; Ghosh, Sankar Kumar

    2015-01-01

    Background Epigenetic and genetic alteration plays a major role to the development of head and neck squamous cell carcinoma (HNSCC). Consumption of tobacco (smoking/chewing) and human papilloma virus (HPV) are also associated with an increase the risk of HNSCC. Promoter hypermethylation of the tumor suppression genes is related with transcriptional inactivation and loss of gene expression. We investigated epigenetic alteration (promoter methylation of tumor-related genes/loci) in tumor tissues in the context of genetic alteration, viral infection, and tobacco exposure and survival status. Methodology The study included 116 tissue samples (71 tumor and 45 normal tissues) from the Northeast Indian population. Methylation specific polymerase chain reaction (MSP) was used to determine the methylation status of 10 tumor-related genes/loci (p16, DAPK, RASSF1, BRAC1, GSTP1, ECAD, MLH1, MINT1, MINT2 and MINT31). Polymorphisms of CYP1A1, GST (M1 & T1), XRCC1and XRCC2 genes were studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiplex-PCR respectively. Principal Findings Unsupervised hierarchical clustering analysis based on methylation pattern had identified two tumor clusters, which significantly differ by CpG island methylator phenotype (CIMP), tobacco, GSTM1, CYP1A1, HPV and survival status. Analyzing methylation of genes/loci individually, we have found significant higher methylation of DAPK, RASSF1, p16 and MINT31genes (P = 0.031, 0.013, 0.031 and 0.015 respectively) in HPV (+) cases compared to HPV (-). Furthermore, a CIMP-high and Cluster-1 characteristic was also associated with poor survival. Conclusions Promoter methylation profiles reflecting a correlation with tobacco, HPV, survival status and genetic alteration and may act as a marker to determine subtypes and patient outcome in HNSCC. PMID:26098903

  2. A better coefficient of determination for genetic profile analysis.

    PubMed

    Lee, Sang Hong; Goddard, Michael E; Wray, Naomi R; Visscher, Peter M

    2012-04-01

    Genome-wide association studies have facilitated the construction of risk predictors for disease from multiple Single Nucleotide Polymorphism markers. The ability of such "genetic profiles" to predict outcome is usually quantified in an independent data set. Coefficients of determination (R(2) ) have been a useful measure to quantify the goodness-of-fit of the genetic profile. Various pseudo-R(2) measures for binary responses have been proposed. However, there is no standard or consensus measure because the concept of residual variance is not easily defined on the observed probability scale. Unlike other nongenetic predictors such as environmental exposure, there is prior information on genetic predictors because for most traits there are estimates of the proportion of variation in risk in the population due to all genetic factors, the heritability. It is this useful ability to benchmark that makes the choice of a measure of goodness-of-fit in genetic profiling different from that of nongenetic predictors. In this study, we use a liability threshold model to establish the relationship between the observed probability scale and underlying liability scale in measuring R(2) for binary responses. We show that currently used R(2) measures are difficult to interpret, biased by ascertainment, and not comparable to heritability. We suggest a novel and globally standard measure of R(2) that is interpretable on the liability scale. Furthermore, even when using ascertained case-control studies that are typical in human disease studies, we can obtain an R(2) measure on the liability scale that can be compared directly to heritability. © 2012 Wiley Periodicals, Inc.

  3. 75 FR 20560 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by Syngenta Biotechnology, Inc... Biotechnology, Inc., in its petition for a determination of nonregulated status, our analysis of other...

  4. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes.

    PubMed

    Driver, John P; Chen, Yi-Guang; Mathews, Clayton E

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.

  5. Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets.

    PubMed

    Krastev, Dragomir B; Pettitt, Stephen J; Campbell, James; Song, Feifei; Tanos, Barbara E; Stoynov, Stoyno S; Ashworth, Alan; Lord, Christopher J

    2018-05-22

    Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.

  6. Determination of nonlinear genetic architecture using compressed sensing.

    PubMed

    Ho, Chiu Man; Hsu, Stephen D H

    2015-01-01

    One of the fundamental problems of modern genomics is to extract the genetic architecture of a complex trait from a data set of individual genotypes and trait values. Establishing this important connection between genotype and phenotype is complicated by the large number of candidate genes, the potentially large number of causal loci, and the likely presence of some nonlinear interactions between different genes. Compressed Sensing methods obtain solutions to under-constrained systems of linear equations. These methods can be applied to the problem of determining the best model relating genotype to phenotype, and generally deliver better performance than simply regressing the phenotype against each genetic variant, one at a time. We introduce a Compressed Sensing method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. Our method uses L1-penalized regression applied to nonlinear functions of the sensing matrix. The computational and data resource requirements for our method are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using simulated human genomes and the small amount of currently available real data. A phase transition (i.e., dramatic and qualitative change) in the behavior of the algorithm indicates when sufficient data is available for its successful application. Our results indicate

  7. Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia

    PubMed Central

    Aguilar-Salinas, Carlos A.; Tusie-Luna, Teresa; Pajukanta, Päivi

    2014-01-01

    Here, we discuss potential explanations for the higher prevalence of hypertriglyceridemia in populations with an Amerindian background. Although environmental factors are the triggers, the search for the ethnic related factors that explains the increased susceptibility of the Amerindians is a promising area for research. The study of the genetics of hypertriglyceridemia in Hispanic populations faces several challenges. Ethnicity could be a major confounding variable to prove genetic associations. Despite that, the study of hypertriglyceridemia in Hispanics has resulted in significant contributions. Two GWAS reports have exclusively included Mexican mestizos. Fifty percent of the associations reported in Caucasians could be generalized to the Mexicans, but in many cases the Mexican lead SNP was different than that reported in Europeans. Both reports included new associations with apo B or triglycerides concentrations. The frequency of susceptibility alleles in Mexicans is higher than that found in Europeans for several of the genes with the greatest effect on triglycerides levels. An example is the SNP rs964184 in APOA5. The same trend was observed for ANGPTL3 and TIMD4 variants. In summary, we postulate that the study of the genetic determinants of hypertriglyceridemia in Amerindian populations which have major changes in their lifestyle, may prove to be a great resource to identify new genes and pathways associated with hypertriglyceridemia. PMID:24768220

  8. Genetic Diversity, Rather than Cultivar Type, Determines Relative Grain Cd Accumulation in Hybrid Rice

    PubMed Central

    Sun, Liang; Xu, Xiaxu; Jiang, Youru; Zhu, Qihong; Yang, Fei; Zhou, Jieqiang; Yang, Yuanzhu; Huang, Zhiyuan; Li, Aihong; Chen, Lianghui; Tang, Wenbang; Zhang, Guoyu; Wang, Jiurong; Xiao, Guoying; Huang, Daoyou; Chen, Caiyan

    2016-01-01

    Cadmium (Cd) is a toxic element, and rice is known to be a leading source of dietary Cd for people who consume rice as their main caloric resource. Hybrid rice has dominated rice production in southern China and has been adopted worldwide. The characteristics of high yield heterosis of rice hybrids makes the public think intuitively that the hybrid rice accumulates more Cd in grain than do inbred cultivars. A detailed understanding of the genetic basis of grain Cd accumulation in hybrids and developing Cd-safe rice are one of the top priorities for hybrid rice breeders at present. In this study, we investigated genetic diversity and grain Cd levels in 617 elite rice hybrids collected from the middle and lower Yangtze River Valley in China and 68 inbred cultivars from around the world. We found that there are large variations in grain Cd accumulation in both the hybrids and their inbred counterparts. However, we found grain Cd levels in the rice hybrids to be similar to the levels in indica rice inbreds, suggesting that the hybrids do not accumulate more Cd than do the inbred rice cultivars. Further analysis revealed that the high heritability of Cd accumulation in the grain and the single indica population structure increases the risk of Cd over-accumulation in hybrid rice. The genetic effects of Cd-related QTLs, which have been identified in related Cd-QTL mapping studies, were also determined in the hybrid rice population. Four QTLs were identified as being associated with the variation in grain Cd levels; three of these loci exhibited obvious indica-japonica differentiations. Our study will provide a better understanding of grain Cd accumulations in hybrid rice, and pave the way toward effective breeding for high-yielding, low grain-Cd hybrids in the future. PMID:27708659

  9. Spatial and temporal determinants of genetic structure in Gentianella bohemica

    PubMed Central

    Königer, Julia; Rebernig, Carolin A; Brabec, Jiří; Kiehl, Kathrin; Greimler, Josef

    2012-01-01

    The biennial plant Gentianella bohemica is a subendemic of the Bohemian Massif, where it occurs in seminatural grasslands. It has become rare in recent decades as a result of profound changes in land use. Using amplified fragment length polymorphisms (AFLP) fingerprint data, we investigated the genetic structure within and among populations of G. bohemica in Bavaria, the Czech Republic, and the Austrian border region. The aim of our study was (1) to analyze the genetic structure among populations and to discuss these findings in the context of present and historical patterns of connectivity and isolation of populations, (2) to analyze genetic structure among consecutive generations (cohorts of two consecutive years), and (3) to investigate relationships between intrapopulational diversity and effective population size (Ne) as well as plant traits. (1) The German populations were strongly isolated from each other (pairwise FST= 0.29–0.60) and from all other populations (FST= 0.24–0.49). We found a pattern of near panmixis among the latter (FST= 0.15–0.35) with geographical distance explaining only 8% of the genetic variance. These results were congruent with a principal coordinate analysis (PCoA) and analysis using STRUCTURE to identify genetically coherent groups. These findings are in line with the strong physical barrier and historical constraints, resulting in separation of the German populations from the others. (2) We found pronounced genetic differences between consecutive cohorts of the German populations (pairwise FST= 0.23 and 0.31), which can be explained by local population history (land use, disturbance). (3) Genetic diversity within populations (Shannon index, HSh) was significantly correlated with Ne (RS= 0.733) and reflected a loss of diversity due to several demographic bottlenecks. Overall, we found that the genetic structure in G. bohemica is strongly influenced by historical periods of high connectivity and isolation as well as by marked

  10. Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kohen, Hamid

    1997-01-01

    This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.

  11. Age-Based Differences in the Genetic Determinants of Glycemic Control: A Case of FOXO3 Variations.

    PubMed

    Sun, Liang; Hu, Caiyou; Qian, Yu; Zheng, Chenguang; Liang, Qinghua; Lv, Zeping; Huang, Zezhi; Qi, Keyan; Huang, Jin; Zhou, Qin; Yang, Ze

    2015-01-01

    Glucose homeostasis is a trait of healthy ageing and is crucial to the elderly, but less consideration has been given to the age composition in most studies involving genetics and hyperglycemia. Seven variants in FOXO3 were genotyped in three cohorts (n = 2037; LLI, MI_S and MI_N; mean age: 92.5 ± 3.6, 45.9 ± 8.2 and 46.8 ± 10.3, respectively) to compare the contribution of FOXO3 to fasting hyperglycemia (FH) between long-lived individuals (LLI, aged over 90 years) and middle-aged subjects (aged from 35-65 years). A different genetic predisposition of FOXO3 alleles to FH was observed between LLI and both of two middle-aged cohorts. In the LLI cohort, the longevity beneficial alleles of three variants with the haplotype "AGGC" in block 1 were significantly protective to FH, fasting glucose, hemoglobin A1C and HOMA-IR. Notably, combining multifactor dimensionality reduction and logistic regression, we identified a significant 3-factor interaction model (rs2802288, rs2802292 and moderate physical activity) associated with lower FH risk. However, not all of the findings were replicated in the two middle-aged cohorts. Our data provides a novel insight into the inconsistent genetic determinants between middle-aged and LLI subjects. FOXO3 might act as a shared genetic predisposition to hyperglycemia and lifespan.

  12. Age-Based Differences in the Genetic Determinants of Glycemic Control: A Case of FOXO3 Variations

    PubMed Central

    Sun, Liang; Hu, Caiyou; Qian, Yu; Zheng, Chenguang; Liang, Qinghua; Lv, Zeping; Huang, Zezhi; Qi, Keyan; Huang, Jin; Zhou, Qin; Yang, Ze

    2015-01-01

    Background Glucose homeostasis is a trait of healthy ageing and is crucial to the elderly, but less consideration has been given to the age composition in most studies involving genetics and hyperglycemia. Methods Seven variants in FOXO3 were genotyped in three cohorts (n = 2037; LLI, MI_S and MI_N; mean age: 92.5±3.6, 45.9±8.2 and 46.8±10.3, respectively) to compare the contribution of FOXO3 to fasting hyperglycemia (FH) between long-lived individuals (LLI, aged over 90 years) and middle-aged subjects (aged from 35–65 years). Results A different genetic predisposition of FOXO3 alleles to FH was observed between LLI and both of two middle-aged cohorts. In the LLI cohort, the longevity beneficial alleles of three variants with the haplotype “AGGC” in block 1 were significantly protective to FH, fasting glucose, hemoglobin A1C and HOMA-IR. Notably, combining multifactor dimensionality reduction and logistic regression, we identified a significant 3-factor interaction model (rs2802288, rs2802292 and moderate physical activity) associated with lower FH risk. However, not all of the findings were replicated in the two middle-aged cohorts. Conclusion Our data provides a novel insight into the inconsistent genetic determinants between middle-aged and LLI subjects. FOXO3 might act as a shared genetic predisposition to hyperglycemia and lifespan. PMID:25993007

  13. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas.

    PubMed

    Zhang, Jinghui; Wu, Gang; Miller, Claudia P; Tatevossian, Ruth G; Dalton, James D; Tang, Bo; Orisme, Wilda; Punchihewa, Chandanamali; Parker, Matthew; Qaddoumi, Ibrahim; Boop, Fredrick A; Lu, Charles; Kandoth, Cyriac; Ding, Li; Lee, Ryan; Huether, Robert; Chen, Xiang; Hedlund, Erin; Nagahawatte, Panduka; Rusch, Michael; Boggs, Kristy; Cheng, Jinjun; Becksfort, Jared; Ma, Jing; Song, Guangchun; Li, Yongjin; Wei, Lei; Wang, Jianmin; Shurtleff, Sheila; Easton, John; Zhao, David; Fulton, Robert S; Fulton, Lucinda L; Dooling, David J; Vadodaria, Bhavin; Mulder, Heather L; Tang, Chunlao; Ochoa, Kerri; Mullighan, Charles G; Gajjar, Amar; Kriwacki, Richard; Sheer, Denise; Gilbertson, Richard J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Baker, Suzanne J; Ellison, David W

    2013-06-01

    The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.

  14. Genetic Algorithm for Initial Orbit Determination with Too Short Arc

    NASA Astrophysics Data System (ADS)

    Li, Xin-ran; Wang, Xin

    2017-01-01

    A huge quantity of too-short-arc (TSA) observational data have been obtained in sky surveys of space objects. However, reasonable results for the TSAs can hardly be obtained with the classical methods of initial orbit determination (IOD). In this paper, the IOD is reduced to a two-stage hierarchical optimization problem containing three variables for each stage. Using the genetic algorithm, a new method of the IOD for TSAs is established, through the selections of the optimized variables and the corresponding genetic operators for specific problems. Numerical experiments based on the real measurements show that the method can provide valid initial values for the follow-up work.

  15. Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans

    PubMed Central

    Baker, Christi; Antonovics, Janis

    2012-01-01

    Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology. PMID:22242158

  16. Gene networks associated with conditional fear in mice identified using a systems genetics approach

    PubMed Central

    2011-01-01

    Background Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP) with high mapping resolution. Results A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes. Conclusion Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior. PMID:21410935

  17. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.

    PubMed

    Smith, Justin D; Suresh, Sundari; Schlecht, Ulrich; Wu, Manhong; Wagih, Omar; Peltz, Gary; Davis, Ronald W; Steinmetz, Lars M; Parts, Leopold; St Onge, Robert P

    2016-03-08

    Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets. Our results establish a powerful functional and chemical genomics screening method and provide guidelines for designing effective gRNAs, which consider chromatin state and position relative to the target gene TSS. These findings will enable effective library design and genome-wide programmable gene repression in many genetic backgrounds.

  18. Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome

    PubMed Central

    Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing; O’Connor, Timothy D.; Abecasis, Gonçalo R.; Wojcik, Genevieve L; Gignoux, Christopher R.; Gourraud, Pierre-Antoine; Lizee, Antoine; Hansen, Mark; Genuario, Rob; Bullis, Dave; Lawley, Cindy; Kenny, Eimear E.; Bustamante, Carlos; Beaty, Terri H.; Mathias, Rasika A.; Barnes, Kathleen C.; Qin, Zhaohui S.; Preethi Boorgula, Meher; Campbell, Monica; Chavan, Sameer; Ford, Jean G.; Foster, Cassandra; Gao, Li; Hansel, Nadia N.; Horowitz, Edward; Huang, Lili; Ortiz, Romina; Potee, Joseph; Rafaels, Nicholas; Ruczinski, Ingo; Scott, Alan F.; Taub, Margaret A.; Vergara, Candelaria; Levin, Albert M.; Padhukasahasram, Badri; Williams, L. Keoki; Dunston, Georgia M.; Faruque, Mezbah U.; Gietzen, Kimberly; Deshpande, Aniket; Grus, Wendy E.; Locke, Devin P.; Foreman, Marilyn G.; Avila, Pedro C.; Grammer, Leslie; Kim, Kwang-Youn A.; Kumar, Rajesh; Schleimer, Robert; De La Vega, Francisco M.; Shringarpure, Suyash S.; Musharoff, Shaila; Burchard, Esteban G.; Eng, Celeste; Hernandez, Ryan D.; Pino-Yanes, Maria; Torgerson, Dara G.; Szpiech, Zachary A.; Torres, Raul; Nicolae, Dan L.; Ober, Carole; Olopade, Christopher O; Olopade, Olufunmilayo; Oluwole, Oluwafemi; Arinola, Ganiyu; Song, Wei; Correa, Adolfo; Musani, Solomon; Wilson, James G.; Lange, Leslie A.; Akey, Joshua; Bamshad, Michael; Chong, Jessica; Fu, Wenqing; Nickerson, Deborah; Reiner, Alexander; Hartert, Tina; Ware, Lorraine B.; Bleecker, Eugene; Meyers, Deborah; Ortega, Victor E.; Maul, Pissamai; Maul, Trevor; Watson, Harold; Ilma Araujo, Maria; Riccio Oliveira, Ricardo; Caraballo, Luis; Marrugo, Javier; Martinez, Beatriz; Meza, Catherine; Ayestas, Gerardo; Francisco Herrera-Paz, Edwin; Landaverde-Torres, Pamela; Erazo, Said Omar Leiva; Martinez, Rosella; Mayorga, Alvaro; Mayorga, Luis F.; Mejia-Mejia, Delmy-Aracely; Ramos, Hector; Saenz, Allan; Varela, Gloria; Marina Vasquez, Olga; Ferguson, Trevor; Knight-Madden, Jennifer; Samms-Vaughan, Maureen; Wilks, Rainford J.; Adegnika, Akim; Ateba-Ngoa, Ulysse; Yazdanbakhsh, Maria

    2017-01-01

    A primary goal of The Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to develop an ‘African Diaspora Power Chip’ (ADPC), a genotyping array consisting of tagging SNPs, useful in comprehensively identifying African specific genetic variation. This array is designed based on the novel variation identified in 642 CAAPA samples of African ancestry with high coverage whole genome sequence data (~30× depth). This novel variation extends the pattern of variation catalogued in the 1000 Genomes and Exome Sequencing Projects to a spectrum of populations representing the wide range of West African genomic diversity. These individuals from CAAPA also comprise a large swath of the African Diaspora population and incorporate historical genetic diversity covering nearly the entire Atlantic coast of the Americas. Here we show the results of designing and producing such a microchip array. This novel array covers African specific variation far better than other commercially available arrays, and will enable better GWAS analyses for researchers with individuals of African descent in their study populations. A recent study cataloging variation in continental African populations suggests this type of African-specific genotyping array is both necessary and valuable for facilitating large-scale GWAS in populations of African ancestry. PMID:28429804

  19. Developmental and genetic determinants of leadership role occupancy among women.

    PubMed

    Arvey, Richard D; Zhang, Zhen; Avolio, Bruce J; Krueger, Robert F

    2007-05-01

    The genetic and developmental influences on leadership role occupancy were investigated using a sample of 178 fraternal and 214 identical female twins. Two general developmental factors were identified, one involving formal work experiences and the other a family experiences factor hypothesized to influence whether women move into positions of leadership in organizations. Results indicated that 32% of the variance in leadership role occupancy was associated with heritability. The 2 developmental factors also showed significant correlations with leadership role occupancy. However, after genetic factors were partialed out, only the work experience factor was significantly related to leadership role occupancy. Results are discussed in terms of prior life events and experiences that may trigger leadership development and the limitations of this study. 2007 APA, all rights reserved

  20. Vertebrate sex-determining genes play musical chairs.

    PubMed

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann

    2016-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. Copyright © 2016 Académie des sciences. All rights reserved.

  1. Microarray-based SNP genotyping to identify genetic risk factors of triple-negative breast cancer (TNBC) in South Indian population.

    PubMed

    Aravind Kumar, M; Singh, Vineeta; Naushad, Shaik Mohammad; Shanker, Uday; Lakshmi Narasu, M

    2018-05-01

    In the view of aggressive nature of Triple-Negative Breast cancer (TNBC) due to the lack of receptors (ER, PR, HER2) and high incidence of drug resistance associated with it, a case-control association study was conducted to identify the contributing genetic risk factors for Triple-negative breast cancer (TNBC). A total of 30 TNBC patients and 50 age and gender-matched controls of Indian origin were screened for 9,00,000 SNP markers using microarray-based SNP genotyping approach. The initial PLINK association analysis (p < 0.01, MAF 0.14-0.44, OR 10-24) identified 28 non-synonymous SNPs and one stop gain mutation in the exonic region as possible determinants of TNBC risk. All the 29 SNPs were annotated using ANNOVAR. The interactions between these markers were evaluated using Multifactor dimensionality reduction (MDR) analysis. The interactions were in the following order: exm408776 > exm1278309 > rs316389 > rs1651654 > rs635538 > exm1292477. Recursive partitioning analysis (RPA) was performed to construct decision tree useful in predicting TNBC risk. As shown in this analysis, rs1651654 and exm585172 SNPs are found to be determinants of TNBC risk. Artificial neural network model was used to generate the Receiver operating characteristic curves (ROC), which showed high sensitivity and specificity (AUC-0.94) of these markers. To conclude, among the 9,00,000 SNPs tested, CCDC42 exm1292477, ANXA3 exm408776, SASH1 exm585172 are found to be the most significant genetic predicting factors for TNBC. The interactions among exm408776, exm1278309, rs316389, rs1651654, rs635538, exm1292477 SNPs inflate the risk for TNBC further. Targeted analysis of these SNPs and genes alone also will have similar clinical utility in predicting TNBC.

  2. Representing genetic variation as continuous surfaces: An approach for identifying spatial dependency in landscape genetic studies

    Treesearch

    Melanie A. Murphy; Jeffrey S. Evans; Samuel A. Cushman; Andrew Storfer

    2008-01-01

    Landscape genetics, an emerging field integrating landscape ecology and population genetics, has great potential to influence our understanding of habitat connectivity and distribution of organisms. Whereas typical population genetics studies summarize gene flow as pairwise measures between sampling localities, landscape characteristics that influence population...

  3. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...

  4. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease.

    PubMed

    Johnson, Michael R; Shkura, Kirill; Langley, Sarah R; Delahaye-Duriez, Andree; Srivastava, Prashant; Hill, W David; Rackham, Owen J L; Davies, Gail; Harris, Sarah E; Moreno-Moral, Aida; Rotival, Maxime; Speed, Doug; Petrovski, Slavé; Katz, Anaïs; Hayward, Caroline; Porteous, David J; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Starr, John M; Liewald, David C; Visconti, Alessia; Falchi, Mario; Bottolo, Leonardo; Rossetti, Tiziana; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Grote, Alexander; Helmstaedter, Christoph; Becker, Albert J; Kaminski, Rafal M; Deary, Ian J; Petretto, Enrico

    2016-02-01

    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease-associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

  5. Identifying Multimodal Intermediate Phenotypes between Genetic Risk Factors and Disease Status in Alzheimer’s Disease

    PubMed Central

    Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Zhang, Daoqiang; Shen, Li

    2016-01-01

    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer’s disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494

  6. Measuring Awareness and Identifying Misconceptions About Genetic Counseling Services and Utilizing Television to Educate

    NASA Astrophysics Data System (ADS)

    Goldberg, Dena

    Understanding awareness and perceptions of genetic counseling (GC) is important in identifying and overcoming potential barriers to GC services. However, there are relatively few empirical data regarding these factors among US-based populations. To address this, we attended various community events for the general public, disability community, and new parents and recruited participants for a survey-based study comprising demographic questions, closed-ended knowledge-based and awareness questions, and open text sections. We applied descriptive statistics to responses about demographics, awareness of GC, purposes of GC, and perceptions of GC practice. In total, 320 individuals participated, including 69 from the general public, 209 from the disability community, and 42 from the new parent community. Slightly more than half of respondents (n =173, 54%) had heard of GC. Risk assessment and counseling were among the most frequently cited activities attributed to genetic counselors; a few felt that GC was related to eugenics. Respondents thought that GC aims to prevent genetic disorders (n=82, 74%), helps people find their ethnic origins and understand their ancestry (n=176, 55%), advises people whether to have children (n=140, 44%), and helps couples have children with desirable characteristics (n=126, 39%). Our data showed the majority of participants preferred to watch a medical thriller involving genetic counseling, followed by documentary series; comedy was rated the lowest. These data revealed gaps in awareness of GC and misperceptions about its purpose and can be useful in devising targeted interventions by developing entertainment-based education to improve public knowledge of genetic health and the roles of GCs.

  7. Identifying rare variants for genetic risk through a combined pedigree and phenotype approach: application to suicide and asthma.

    PubMed

    Darlington, T M; Pimentel, R; Smith, K; Bakian, A V; Jerominski, L; Cardon, J; Camp, N J; Callor, W B; Grey, T; Singleton, M; Yandell, M; Renshaw, P F; Yurgelun-Todd, D A; Gray, D; Coon, H

    2014-10-21

    Suicidal behavior is a complex disorder, with evidence for genetic risk independent of other genetic risk factors including psychiatric disorders. Since 1996, over 3000 DNA samples from Utah suicide decedents have been collected and banked for research use through the Utah Medical Examiner. In addition, over 12,000 Utah suicides were identified through examination of death certificates back to 1904. By linking this data with the Utah Population Database, we have identified multiple extended pedigrees with increased risk for suicide completion. A number of medical conditions co-occur with suicide, including asthma, and this study was undertaken to identify genetic risk common to asthma and suicide. This study tests the hypothesis that a particular comorbid condition may identify a more homogeneous genetic subgroup, facilitating the identification of specific genetic risk factors in that group. From pedigrees at increased risk for suicide, we identified three pedigrees also at significantly increased familial risk for asthma. Five suicide decedents from each of these pedigrees, plus an additional three decedents not from these pedigrees with diagnosed asthma, and 10 decedents with close relatives with asthma were genotyped. Results were compared with 183 publicly available unaffected control exomes from 1000 Genomes and CEPH (Centre d'etude du polymorphisme humain) samples genotyped on the same platform. A further 432 suicide decedents were also genotyped as non-asthma suicide controls. Genotyping was done using the Infinium HumanExome BeadChip. For analysis, we used the pedigree extension of Variant Annotation, Analysis and Search Tool (pVAAST) to calculate the disease burden of each gene. The Phenotype Driven Variant Ontological Re-ranking tool (Phevor) then re-ranked our pVAAST results in context of the phenotype. Using asthma as a seed phenotype, Phevor traversed biomedical ontologies and identified genes with similar biological properties to those known to

  8. Identifying rare variants for genetic risk through a combined pedigree and phenotype approach: application to suicide and asthma

    PubMed Central

    Darlington, T M; Pimentel, R; Smith, K; Bakian, A V; Jerominski, L; Cardon, J; Camp, N J; Callor, W B; Grey, T; Singleton, M; Yandell, M; Renshaw, P F; Yurgelun-Todd, D A; Gray, D; Coon, H

    2014-01-01

    Suicidal behavior is a complex disorder, with evidence for genetic risk independent of other genetic risk factors including psychiatric disorders. Since 1996, over 3000 DNA samples from Utah suicide decedents have been collected and banked for research use through the Utah Medical Examiner. In addition, over 12 000 Utah suicides were identified through examination of death certificates back to 1904. By linking this data with the Utah Population Database, we have identified multiple extended pedigrees with increased risk for suicide completion. A number of medical conditions co-occur with suicide, including asthma, and this study was undertaken to identify genetic risk common to asthma and suicide. This study tests the hypothesis that a particular comorbid condition may identify a more homogeneous genetic subgroup, facilitating the identification of specific genetic risk factors in that group. From pedigrees at increased risk for suicide, we identified three pedigrees also at significantly increased familial risk for asthma. Five suicide decedents from each of these pedigrees, plus an additional three decedents not from these pedigrees with diagnosed asthma, and 10 decedents with close relatives with asthma were genotyped. Results were compared with 183 publicly available unaffected control exomes from 1000 Genomes and CEPH (Centre d'etude du polymorphisme humain) samples genotyped on the same platform. A further 432 suicide decedents were also genotyped as non-asthma suicide controls. Genotyping was done using the Infinium HumanExome BeadChip. For analysis, we used the pedigree extension of Variant Annotation, Analysis and Search Tool (pVAAST) to calculate the disease burden of each gene. The Phenotype Driven Variant Ontological Re-ranking tool (Phevor) then re-ranked our pVAAST results in context of the phenotype. Using asthma as a seed phenotype, Phevor traversed biomedical ontologies and identified genes with similar biological properties to those known to

  9. A Multinational Arab Genome-Wide Association Study Identifies New Genetic Associations for Rheumatoid Arthritis.

    PubMed

    Saxena, Richa; Plenge, Robert M; Bjonnes, Andrew C; Dashti, Hassan S; Okada, Yukinori; Gad El Haq, Wessam; Hammoudeh, Mohammed; Al Emadi, Samar; Masri, Basel K; Halabi, Hussein; Badsha, Humeira; Uthman, Imad W; Margolin, Lauren; Gupta, Namrata; Mahfoud, Ziyad R; Kapiri, Marianthi; Dargham, Soha R; Aranki, Grace; Kazkaz, Layla A; Arayssi, Thurayya

    2017-05-01

    Genetic factors underlying susceptibility to rheumatoid arthritis (RA) in Arab populations are largely unknown. This genome-wide association study (GWAS) was undertaken to explore the generalizability of previously reported RA loci to Arab subjects and to discover new Arab-specific genetic loci. The Genetics of Rheumatoid Arthritis in Some Arab States Study was designed to examine the genetics and clinical features of RA patients from Jordan, the Kingdom of Saudi Arabia, Lebanon, Qatar, and the United Arab Emirates. In total, >7 million single-nucleotide polymorphisms (SNPs) were tested for association with RA overall and with seropositive or seronegative RA in 511 RA cases and 352 healthy controls. In addition, replication of 15 signals was attempted in 283 RA cases and 221 healthy controls. A genetic risk score of 68 known RA SNPs was also examined in this study population. Three loci (HLA region, intergenic 5q13, and 17p13 at SMTNL2/GGT6) reached genome-wide significance in the analyses of association with RA and with seropositive RA, and for all 3 loci, evidence of independent replication was demonstrated. Consistent with the findings in European and East Asian populations, the association of RA with HLA-DRB1 amino acid position 11 conferred the strongest effect (P = 4.8 × 10 -16 ), and a weighted genetic risk score of previously associated RA loci was found to be associated with RA (P = 3.41 × 10 -5 ) and with seropositive RA (P = 1.48 × 10 -6 ) in this population. In addition, 2 novel associations specific to Arab populations were found at the 5q13 and 17p13 loci. This first RA GWAS in Arab populations confirms that established HLA-region and known RA risk alleles contribute strongly to the risk and severity of disease in some Arab groups, suggesting that the genetic architecture of RA is similar across ethnic groups. Moreover, this study identified 2 novel RA risk loci in Arabs, offering further population-specific insights into the

  10. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  11. Environmental versus geographical determinants of genetic structure in two subalpine conifers.

    PubMed

    Mosca, Elena; González-Martínez, Santiago C; Neale, David B

    2014-01-01

    Alpine ecosystems are facing rapid human-induced environmental changes, and so more knowledge about tree adaptive potential is needed. This study investigated the relative role of isolation by distance (IBD) versus isolation by adaptation (IBA) in explaining population genetic structure in Abies alba and Larix decidua, based on 231 and 233 single nucleotide polymorphisms (SNPs) sampled across 36 and 22 natural populations, respectively, in the Alps and Apennines. Genetic structure was investigated for both geographical and environmental groups, using analysis of molecular variance (AMOVA). For each species, nine environmental groups were defined using climate variables selected from a multiple factor analysis. Complementary methods were applied to identify outliers based on these groups, and to test for IBD versus IBA. AMOVA showed weak but significant genetic structure for both species, with higher values in L. decidua. Among the potential outliers detected, up to two loci were found for geographical groups and up to seven for environmental groups. A stronger effect of IBD than IBA was found in both species; nevertheless, once spatial effects had been removed, temperature and soil in A. alba, and precipitation in both species, were relevant factors explaining genetic structure. Based on our findings, in the Alpine region, genetic structure seems to be affected by both geographical isolation and environmental gradients, creating opportunities for local adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes.

    PubMed

    Wong, John K L; Campbell, Desmond; Ngo, Ngoc Diem; Yeung, Fanny; Cheng, Guo; Tang, Clara S M; Chung, Patrick H Y; Tran, Ngoc Son; So, Man-Ting; Cherny, Stacey S; Sham, Pak C; Tam, Paul K; Garcia-Barcelo, Maria-Mercè

    2016-12-12

    Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted. We aim to identify genetic risk factors by a "trio-based" exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients. Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p < 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p < 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients. Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD.

  13. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.

    PubMed

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C; Souza, Milena M; Cirillo, Cintia A; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.

  14. 76 FR 63278 - Bayer CropScience LP; Determination of Nonregulated Status for Cotton Genetically Engineered for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... for Cotton Genetically Engineered for Insect Resistance and Herbicide Tolerance AGENCY: Animal and... determination that a genetically engineered cotton developed by Bayer CropScience LP, designated as TwinLink TM cotton (events T304-40 and GHB119), which has been genetically engineered to be tolerant to the herbicide...

  15. Genetically identified spinal interneurons integrating tactile afferents for motor control

    PubMed Central

    Panek, Izabela; Farah, Carl

    2015-01-01

    Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867

  16. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects

    PubMed Central

    Johnson, Ben; Lowe, Gillian C.; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A.; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J.; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula HB; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E.; Watson, Steve P.; Morgan, Neil V.

    2016-01-01

    Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×109/L to 186×109/L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified “pathogenic” or “likely pathogenic” variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. PMID:27479822

  17. Determinants of Virulence and In Vitro Development Colocalize on a Genetic Map of Setosphaeria turcica.

    PubMed

    Mideros, Santiago X; Chung, Chia-Lin; Wiesner-Hanks, Tyr; Poland, Jesse A; Wu, Dongliang; Fialko, Ariel A; Turgeon, B Gillian; Nelson, Rebecca J

    2018-02-01

    Generating effective and stable strategies for resistance breeding requires an understanding of the genetics of host-pathogen interactions and the implications for pathogen dynamics and evolution. Setosphaeria turcica causes northern leaf blight (NLB), an important disease of maize for which major resistance genes have been deployed. Little is known about the evolutionary dynamics of avirulence (AVR) genes in S. turcica. To test the hypothesis that there is a genetic association between avirulence and in vitro development traits, we (i) created a genetic map of S. turcica, (ii) located candidate AVRHt1 and AVRHt2 regions, and (iii) identified genetic regions associated with several in vitro development traits. A cross was generated between a race 1 and a race 23N strain, and 221 progeny were isolated. Genotyping by sequencing was used to score 2,078 single-nucleotide polymorphism markers. A genetic map spanning 1,981 centimorgans was constructed, consisting of 21 linkage groups. Genetic mapping extended prior evidence for the location and identity of the AVRHt1 gene and identified a region of interest for AVRHt2. The genetic location of AVRHt2 colocalized with loci influencing radial growth and mycelial abundance. Our data suggest a trade-off between virulence on Ht1 and Ht2 and the pathogen's vegetative growth rate. In addition, in-depth analysis of the genotypic data suggests the presence of significant duplication in the genome of S. turcica.

  18. Genetic Determinism of Primary Early-Onset Osteoarthritis.

    PubMed

    Aury-Landas, Juliette; Marcelli, Christian; Leclercq, Sylvain; Boumédiene, Karim; Baugé, Catherine

    2016-01-01

    Osteoarthritis (OA) is the most common joint disease worldwide. A minority of cases correspond to familial presentation characterized by early-onset forms which are genetically heterogeneous. This review brings a new point of view on the molecular basis of OA by focusing on gene mutations causing early-onset OA (EO-OA). Recently, thanks to whole-exome sequencing, a gain-of-function mutation in the TNFRSF11B gene was identified in two distant family members with EO-OA, opening new therapeutic perspectives for OA. Indeed, unraveling the molecular basis of rare Mendelian OA forms will improve our understanding of molecular processes involved in OA pathogenesis and will contribute to better patient diagnosis, management, and therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 78 FR 13302 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by the Syngenta Biotechnology... evaluation of data submitted by Syngenta Biotechnology, Inc., in its petition for a determination of...

  20. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  1. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  2. Meta-analysis of genome-wide association studies identifies genetic risk factors for stroke in African-Americans

    PubMed Central

    Carty, Cara L.; Keene, Keith L.; Cheng, Yu-Ching; Meschia, James F.; Chen, Wei-Min; Nalls, Mike; Bis, Joshua C.; Kittner, Steven J.; Rich, Stephen S.; Tajuddin, Salman; Zonderman, Alan B.; Evans, Michele K.; Langefeld, Carl D.; Gottesman, Rebecca; Mosley, Thomas H.; Shahar, Eyal; Woo, Daniel; Yaffe, Kristine; Liu, YongMei; Sale, Michèle M.; Dichgans, Martin; Malik, Rainer; Longstreth, WT; Mitchell, Braxton D.; Psaty, Bruce M.; Kooperberg, Charles; Reiner, Alexander; Worrall, Bradford B.; Fornage, Myriam

    2015-01-01

    Background and Purpose The majority of genome-wide association studies (GWAS) of stroke have focused on European-ancestry populations; however, none has been conducted in African-Americans despite the disproportionately high burden of stroke in this population. The Consortium of Minority Population genome-wide Association Studies of Stroke (COMPASS) was established to identify stroke susceptibility loci in minority populations. Methods Using METAL, we conducted meta-analyses of GWAS in 14,746 African-Americans (1,365 ischemic and 1,592 total stroke cases) from COMPASS, and tested SNPs with P<10−6 for validation in METASTROKE, a consortium of ischemic stroke genetic studies in European-ancestry populations. We also evaluated stroke loci previously identified in European-ancestry populations. Results The 15q21.3 locus linked with lipid levels and hypertension was associated with total stroke (rs4471613, P=3.9×10−8) in African-Americans. Nominal associations (P<10−6) for total or ischemic stroke were observed for 18 variants in or near genes implicated in cell cycle/ mRNA pre-splicing (PTPRG, CDC5L), platelet function (HPS4), blood-brain barrier permeability (CLDN17), immune response (ELTD1, WDFY4, IL1F10-IL1RN), and histone modification (HDAC9). Two of these loci achieved nominal significance in METASTROKE: 5q35.2 (P=0.03), and 1p31.1 (P=0.018). Four of 7 previously reported ischemic stroke loci (PITX2, HDAC9, CDKN2A/CDKN2B and ZFHX3) were nominally associated (P<0.05) with stroke in COMPASS. Conclusions We identified a novel SNP associated with total stroke in African-Americans and found that ischemic stroke loci identified in European-ancestry populations may also be relevant for African-Americans. Our findings support investigation of diverse populations to identify and characterize genetic risk factors, and the importance of shared genetic risk across populations. PMID:26089329

  3. Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits

    PubMed Central

    Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Del-Aguila, Jorge L.; Fernandez, Maria Victoria; Carrell, David; Black, Kathleen; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Bailey, Matthew; Ridge, Perry G.; Hefti, Franz; Fillit, Howard; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Carrillo, Maria; Fleisher, Adam; Reeder, Stephanie; Trncic, Nadira; Burke, Anna; Tariot, Pierre; Reiman, Eric M.; Chen, Kewei; Sabbagh, Marwan N.; Beiden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Green, Robert C.; Marshall, Gad; Johnson, Keith A.; Sperling, Reisa A.; Snyder, Peter; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Bernick, Charles; Munic, Donna; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Relkin, Norman; Chaing, Gloria; Ravdin, Lisa; Paul, Steven; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Friedl, Karl; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Borges-Neto, Salvador; James, Olga; Wong, Terence; Coleman, Edward; Schwartz, Adam; Cellar, Janet S.; Levey, Allan L.; Lah, James J.; Behan, Kelly; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Farlow, Martin R.; Saykin, Andrew J.; Foroud, Tatiana M.; Shen, Li; Faber, Kelly; Kim, Sungeun; Nho, Kwangsik; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Petersen, Ronald; Jack, Clifford R.; Bernstein, Matthew; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Chertkow, Howard; Hosein, Chris; Mintzer, Jacob; Spicer, Kenneth; Bachman, David; Grossman, Hillel; Mitsis, Effie; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Potter, William; Buckholtz, Neil; Hsiao, John; Kittur, Smita; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Johnson, Nancy; Chuang-Kuo; Kerwin, Diana; Bonakdarpour, Borna; Weintraub, Sandra; Grafman, Jordan; Lipowski, Kristine; Mesulam, Marek-Marsel; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Borrie, Michael; Lee, T-Y; Bartha, Rob; Martinez, Walter; Villena, Teresa; Sadowsky, Carl; Khachaturian, Zaven; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Frank, Richard; Fleischman, Debra; Arfanakis, Konstantinos; Shah, Raj C.; deToledo-Morrell, Leyla; Sorensen, Greg; Finger, Elizabeth; Pasternack, Stephen; Rachinsky, Irina; Drost, Dick; Rogers, John; Kertesz, Andrew; Furst, Ansgar J.; Chad, Stevan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Mudge, Benita; Assaly, Michele; Fox, Nick; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Ekstam Smith, Karen; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Natelson Love, Marissa; DeCarli, Charles; Carmichael, Owen; Olichney, John; Maillard, Pauline; Fletcher, Evan; Nguyen, Dana; Preda, Andrian; Potkin, Steven; Mulnard, Ruth A.; Thai, Gaby; McAdams-Ortiz, Catherine; Landau, Susan; Jagust, William; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Thompson, Paul; Donohue, Michael; Thomas, Ronald G.; Walter, Sarah; Gessert, Devon; Brewer, James; Vanderswag, Helen; Sather, Tamie; Jiminez, Gus; Balasubramanian, Archana B.; Mason, Jennifer; Sim, Iris; Aisen, Paul; Davis, Melissa; Morrison, Rosemary; Harvey, Danielle; Thal, Lean; Beckett, Laurel; Neylan, Thomas; Finley, Shannon; Weiner, Michael W.; Hayes, Jacqueline; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Massoglia, Dino; Brawman-Mentzer, Olga; Schuff, Norbert; Smith, Charles D.; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Koeppe, Robert A.; Lord, Joanne L.; Heidebrink, Judith L.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Clark, Christopher M.; Trojanowki, John Q.; Shaw, Leslie M.; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Foster, Norm; Montine, Tom; Fruehling, J. Jay; Harding, Sandra; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Petrie, Eric C.; Peskind, Elaine; Li, Gail; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Smith, Amanda; Ashok Raj, Balebail; Fargher, Kristin; Kuller, Lew; Mathis, Chet; Ann Oakley, Mary; Lopez, Oscar L.; Simpson, Donna M.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Cairns, Nigel J.; Raichle, Marc; Morris, John C.; Householder, Erin; Taylor-Reinwald, Lisa; Holtzman, David; Ances, Beau; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Varma, Pradeep; MacAvoy, Martha G.; Carson, Richard E.; van Dyck, Christopher H.; Davies, Peter; Holtzman, David; Morris, John C.; Bales, Kelly; Pickering, Eve H.; Lee, Jin-Moo; Heitsch, Laura; Kauwe, John; Goate, Alison; Piccio, Laura; Cruchaga, Carlos

    2016-01-01

    Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes, and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r, and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects, and complex disease associations in the same locus.

  4. Pelvic incidence variation among individuals: functional influence versus genetic determinism.

    PubMed

    Chen, Hong-Fang; Zhao, Chang-Qing

    2018-03-20

    Pelvic incidence has become one of the most important sagittal parameters in spinal surgery. Despite its great importance, pelvic incidence can vary from 33° to 85° in the normal population. The reasons for this great variability in pelvic incidence remain unexplored. The objective of this article is to present some possible interpretations for the great variability in pelvic incidence under both normal and pathological conditions and to further understand the determinants of pelvic incidence from the perspective of the functional requirements for bipedalism and genetic backgrounds via a literature review. We postulate that both pelvic incidence and pelvic morphology may be genetically predetermined, and a great variability in pelvic incidence may already exist even before birth. This great variability may also serve as a further reminder that the sagittal profile, bipedal locomotion mode, and genetic background of every individual are unique and specific, and clinicians should avoid making universally applying broad generalizations of pelvic incidence. Although PI is an important parameter and there are many theories behind its variability, we still do not have clear mechanistic answers.

  5. Diversity Outbred Mice Identify Population-Based Exposure Thresholds and Genetic Factors that Influence Benzene-Induced Genotoxicity

    PubMed Central

    Gatti, Daniel M.; Morgan, Daniel L.; Kissling, Grace E.; Shockley, Keith R.; Knudsen, Gabriel A.; Shepard, Kim G.; Price, Herman C.; King, Deborah; Witt, Kristine L.; Pedersen, Lars C.; Munger, Steven C.; Svenson, Karen L.; Churchill, Gary A.

    2014-01-01

    Background Inhalation of benzene at levels below the current exposure limit values leads to hematotoxicity in occupationally exposed workers. Objective We sought to evaluate Diversity Outbred (DO) mice as a tool for exposure threshold assessment and to identify genetic factors that influence benzene-induced genotoxicity. Methods We exposed male DO mice to benzene (0, 1, 10, or 100 ppm; 75 mice/exposure group) via inhalation for 28 days (6 hr/day for 5 days/week). The study was repeated using two independent cohorts of 300 animals each. We measured micronuclei frequency in reticulocytes from peripheral blood and bone marrow and applied benchmark concentration modeling to estimate exposure thresholds. We genotyped the mice and performed linkage analysis. Results We observed a dose-dependent increase in benzene-induced chromosomal damage and estimated a benchmark concentration limit of 0.205 ppm benzene using DO mice. This estimate is an order of magnitude below the value estimated using B6C3F1 mice. We identified a locus on Chr 10 (31.87 Mb) that contained a pair of overexpressed sulfotransferases that were inversely correlated with genotoxicity. Conclusions The genetically diverse DO mice provided a reproducible response to benzene exposure. The DO mice display interindividual variation in toxicity response and, as such, may more accurately reflect the range of response that is observed in human populations. Studies using DO mice can localize genetic associations with high precision. The identification of sulfotransferases as candidate genes suggests that DO mice may provide additional insight into benzene-induced genotoxicity. Citation French JE, Gatti DM, Morgan DL, Kissling GE, Shockley KR, Knudsen GA, Shepard KG, Price HC, King D, Witt KL, Pedersen LC, Munger SC, Svenson KL, Churchill GA. 2015. Diversity Outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity. Environ Health Perspect 123:237

  6. 76 FR 5780 - Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ...] Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the Herbicide Glyphosate... for tolerance to the herbicide glyphosate based on APHIS' final environmental impact statement. FOR... regulated status of alfalfa genetically engineered for tolerance to the herbicide glyphosate based on an...

  7. Genetic Determinants of Parkinson's Disease: Can They Help to Stratify the Patients Based on the Underlying Molecular Defect?

    PubMed Central

    Redenšek, Sara; Trošt, Maja; Dolžan, Vita

    2017-01-01

    Parkinson's disease (PD) is a sporadic progressive neurodegenerative brain disorder with a relatively strong genetic background. We have reviewed the current literature about the genetic factors that could be indicative of pathophysiological pathways of PD and their applications in everyday clinical practice. Information on novel risk genes is coming from several genome-wide association studies (GWASs) and their meta-analyses. GWASs that have been performed so far enabled the identification of 24 loci as PD risk factors. These loci take part in numerous cellular processes that may contribute to PD pathology: protein aggregation, protein, and membrane trafficking, lysosomal autophagy, immune response, synaptic function, endocytosis, inflammation, and metabolic pathways are among the most important ones. The identified single nucleotide polymorphisms are usually located in the non-coding regions and their functionality remains to be determined, although they presumably influence gene expression. It is important to be aware of a very low contribution of a single genetic risk factor to PD development; therefore, novel prognostic indices need to account for the cumulative nature of genetic risk factors. A better understanding of PD pathophysiology and its genetic background will help to elucidate the underlying pathological processes. Such knowledge may help physicians to recognize subjects with the highest risk for the development of PD, and provide an opportunity for the identification of novel potential targets for neuroprotective treatment. Moreover, it may enable stratification of the PD patients according to their genetic fingerprint to properly personalize their treatment as well as supportive measures. PMID:28239348

  8. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus

    PubMed Central

    Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico

    2015-01-01

    Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886

  9. Release of genetically engineered insects: a framework to identify potential ecological effects

    PubMed Central

    David, Aaron S; Kaser, Joe M; Morey, Amy C; Roth, Alexander M; Andow, David A

    2013-01-01

    Genetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density. We review potential effects of a rapid change in insect density related to population outbreaks, biological control, invasive species, and other GE organisms to identify a comprehensive list of potential ecological and evolutionary effects of GE insect releases. We apply this framework to the Anopheles gambiae mosquito – a malaria vector being engineered to suppress the wild mosquito population – to identify effects that may occur during the transitory and steady state phases after release. Our methodology reveals many potential effects in each phase, perhaps most notably those dealing with immunity in the transitory phase, and with pathogen and vector evolution in the steady state phase. Importantly, this framework identifies knowledge gaps in mosquito ecology. Identifying effects in the transitory and steady state phases allows more rigorous identification of the potential ecological effects of GE insect release. PMID:24198955

  10. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics

    PubMed Central

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C.; Souza, Milena M.; Cirillo, Cintia A.; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S.; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K.

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88– 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10−13, r2 = 8.9%, β = −0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with—but is statistically distinct from—the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10−37, r2 = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception. PMID:23966204

  11. Genetic analysis of emerald ash borer to determine the point of origin of Michigan infestations

    Treesearch

    Alicia M. Bray; Leah S. Bauer; Robert A. Haack; James J. Smith

    2005-01-01

    Emerald ash borer (EAB) was first detected in Michigan and Canada in 2002. Efforts to eradicate this destructive pest by federal and state regulatory agencies continue. Knowledge of EAB genetics will be useful in understanding the invasion dynamics of the beetle and to help identify geographic localities of potential biocontrol agents. Genetic techniques, such as mtDNA...

  12. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects.

    PubMed

    Johnson, Ben; Lowe, Gillian C; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula Hb; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E; Watson, Steve P; Morgan, Neil V

    2016-10-01

    Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×10 9 /L to 186×10 9 /L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified "pathogenic" or "likely pathogenic" variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. Copyright© Ferrata Storti Foundation.

  13. How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases

    PubMed Central

    Strynatka, Katherine A.; Gurrola-Gal, Michelle C.; Berman, Jason N.; McMaster, Christopher R.

    2018-01-01

    Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases. PMID:29487144

  14. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes

    PubMed Central

    Liu, Qiaozhen; Yang, Rui; Huang, Xiuzhen; Zhang, Hui; He, Lingjuan; Zhang, Libo; Tian, Xueying; Nie, Yu; Hu, Shengshou; Yan, Yan; Zhang, Li; Qiao, Zengyong; Wang, Qing-Dong; Lui, Kathy O; Zhou, Bin

    2016-01-01

    Cardiac cells marked by c-Kit or Kit, dubbed cardiac stem cells (CSCs), are in clinical trials to investigate their ability to stimulate cardiac regeneration and repair. These studies were initially motivated by the purported cardiogenic activity of these cells. Recent lineage tracing studies using Kit promoter to drive expression of the inducible Cre recombinase showed that these CSCs had highly limited cardiogenic activity, inadequate to support efficient cardiac repair. Here we reassess the lineage tracing data by investigating the identity of cells immediately after Cre labeling. Our instant lineage tracing approach identifies Kit-expressing cardiomyocytes, which are labeled immediately after tamoxifen induction. In combination with long-term lineage tracing experiments, these data reveal that the large majority of long-term labeled cardiomyocytes are pre-existing Kit-expressing cardiomyocytes rather than cardiomyocytes formed de novo from CSCs. This study presents a new interpretation for the contribution of Kit+ cells to cardiomyocytes and shows that Kit genetic lineage tracing over-estimates the cardiogenic activity of Kit+ CSCs. PMID:26634606

  15. Diagnosing kidney disease in the genetic era.

    PubMed

    Prakash, Sindhuri; Gharavi, Ali G

    2015-07-01

    Recent technological improvements have increased the use of genetic testing in the clinic. This review serves to summarize the many practical benefits of genetic testing, discusses various methodologies that can be used clinically, and exemplifies ways in which genetics is propelling the field forward in nephrology. The advent of next-generation sequencing and microarray technologies has heralded an unprecedented number of discoveries in the field of nephrology, providing many opportunities for incorporating genomic diagnostics into clinical care. The use of genetic testing, particularly in pediatrics, can provide accurate diagnoses in puzzling cases, resolve misclassification of disease, and identify subsets of individuals with treatable conditions. Genetic testing may have broad benefits for patients and their families. Knowing the precise molecular etiology of disease can help clinicians determine the exact therapeutic course, and counsel patients and their families about prognosis. Genetic discoveries can also improve the classification of kidney disease and identify new targets for therapy.

  16. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  17. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  18. A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models.

    PubMed

    Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C

    2017-07-01

    Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous-time Markov processes. © 2016 Society for Risk Analysis.

  19. How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases.

    PubMed

    Strynatka, Katherine A; Gurrola-Gal, Michelle C; Berman, Jason N; McMaster, Christopher R

    2018-03-01

    Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases. Copyright © 2018 by the Genetics Society of America.

  20. Alzheimer's Disease in the Latino Community: Intersection of Genetics and Social Determinants of Health.

    PubMed

    Vega, Irving E; Cabrera, Laura Y; Wygant, Cassandra M; Velez-Ortiz, Daniel; Counts, Scott E

    2017-01-01

    Alzheimer's disease (AD) is the most common type of dementia among individuals 65 or older. There are more than 5 million diagnosed cases in the US alone and this number is expected to triple by 2050. Therefore, AD has reached epidemic proportions with significant socioeconomic implications. While aging in general is the greatest risk factor for AD, several additional demographic factors that have contributed to the rise in AD in the US are under study. One such factor is associated with the relatively fast growth of the Latino population. Several reports indicate that AD is more prevalent among blacks and Latinos. However, the reason for AD disparity among different ethnic groups is still poorly understood and highly controversial. The Latino population is composed of different groups based on nationality, namely South and Central America, Mexico, and Caribbean Hispanics. This diversity among the Latino population represents an additional challenge since there are distinct characteristics associated with AD and comorbidities. In this review, we aim to bring attention to the intersection between social determinants of health and genetic factors associated with AD within the Latino community. We argue that understanding the interplay between identified social determinants of health, co-morbidities, and genetic factors could lead to community empowerment and inclusiveness in research and healthcare services, contributing to improved diagnosis and treatment of AD patients. Lastly, we propose that inserting a neuroethics perspective could help understand key challenges that influence healthcare disparities and contribute to increased risk of AD among Latinos.

  1. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    PubMed

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. © 2014 John Wiley & Sons Ltd.

  2. Genome-wide association studies identify genetic loci for low von Willebrand factor levels

    PubMed Central

    van Loon, Janine; Dehghan, Abbas; Weihong, Tang; Trompet, Stella; McArdle, Wendy L; Asselbergs, Folkert F W; Chen, Ming-Huei; Lopez, Lorna M; Huffman, Jennifer E; Leebeek, Frank W G; Basu, Saonli; Stott, David J; Rumley, Ann; Gansevoort, Ron T; Davies, Gail; Wilson, James J F; Witteman, Jacqueline C M; Cao, Xiting; de Craen, Anton J M; Bakker, Stephan J L; Psaty, Bruce M; Starr, John M; Hofman, Albert; Wouter Jukema, J; Deary, Ian J; Hayward, Caroline; van der Harst, Pim; Lowe, Gordon D O; Folsom, Aaron R; Strachan, David P; Smith, Nicolas; de Maat, Moniek P M; O'Donnell, Christopher

    2016-01-01

    Low von Willebrand factor (VWF) levels are associated with bleeding symptoms and are a diagnostic criterion for von Willebrand disease, the most common inherited bleeding disorder. To date, it is unclear which genetic loci are associated with reduced VWF levels. Therefore, we conducted a meta-analysis of genome-wide association studies to identify genetic loci associated with low VWF levels. For this meta-analysis, we included 31 149 participants of European ancestry from 11 community-based studies. From all participants, VWF antigen (VWF:Ag) measurements and genome-wide single-nucleotide polymorphism (SNP) scans were available. Each study conducted analyses using logistic regression of SNPs on dichotomized VWF:Ag measures (lowest 5% for blood group O and non-O) with an additive genetic model adjusted for age and sex. An inverse-variance weighted meta-analysis was performed for VWF:Ag levels. A total of 97 SNPs exceeded the genome-wide significance threshold of 5 × 10−8 and comprised five loci on four different chromosomes: 6q24 (smallest P-value 5.8 × 10−10), 9q34 (2.4 × 10−64), 12p13 (5.3 × 10−22), 12q23 (1.2 × 10−8) and 13q13 (2.6 × 10−8). All loci were within or close to genes, including STXBP5 (Syntaxin Binding Protein 5) (6q24), STAB5 (stabilin-5) (12q23), ABO (9q34), VWF (12p13) and UFM1 (ubiquitin-fold modifier 1) (13q13). Of these, UFM1 has not been previously associated with VWF:Ag levels. Four genes that were previously associated with VWF levels (VWF, ABO, STXBP5 and STAB2) were also associated with low VWF levels, and, in addition, we identified a new gene, UFM1, that is associated with low VWF levels. These findings point to novel mechanisms for the occurrence of low VWF levels. PMID:26486471

  3. A population genetics perspective on the determinants of intra-tumor heterogeneity

    PubMed Central

    Hu, Zheng; Sun, Ruping; Curtis, Christina

    2017-01-01

    Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. PMID:28274726

  4. Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya

    PubMed Central

    2014-01-01

    Background The relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and clinical phenomena such as primaquine-sensitivity and protection from severe malaria remains poorly defined, with past association studies yielding inconsistent and conflicting results. One possibility is that examination of a single genetic variant might underestimate the presence of true effects in the presence of unrecognized functional allelic diversity. Methods We systematically examined this possibility in Kenya, conducting a fine-mapping association study of erythrocyte G6PD activity in 1828 Kenyan children across 30 polymorphisms at or around the G6PD locus. Results We demonstrate a strong functional role for c.202G>A (rs1050828), which accounts for the majority of variance in enzyme activity observed (P=1.5×10−200, additive model). Additionally, we identify other common variants that exert smaller, intercorrelated effects independent of c.202G>A, and haplotype analyses suggest that each variant tags one of two haplotype motifs that are opposite in sequence identity and effect direction. We posit that these effects are of biological and possible clinical significance, specifically noting that c.376A>G (rs1050829) augments 202AG heterozygote risk for deficiency trait by two-fold (OR = 2.11 [1.12 - 3.84], P=0.014). Conclusions Our results suggest that c.202G>A is responsible for the majority of the observed prevalence of G6PD deficiency trait in Kenya, but also identify a novel role for c.376A>G as a genetic modifier which marks a common haplotype that augments the risk conferred to 202AG heterozygotes, suggesting that variation at both loci merits consideration in genetic association studies probing G6PD deficiency-associated clinical phenotypes. PMID:25201310

  5. Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya.

    PubMed

    Shah, Shivang S; Macharia, Alex; Makale, Johnstone; Uyoga, Sophie; Kivinen, Katja; Craik, Rachel; Hubbart, Christina; Wellems, Thomas E; Rockett, Kirk A; Kwiatkowski, Dominic P; Williams, Thomas N

    2014-09-09

    The relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and clinical phenomena such as primaquine-sensitivity and protection from severe malaria remains poorly defined, with past association studies yielding inconsistent and conflicting results. One possibility is that examination of a single genetic variant might underestimate the presence of true effects in the presence of unrecognized functional allelic diversity. We systematically examined this possibility in Kenya, conducting a fine-mapping association study of erythrocyte G6PD activity in 1828 Kenyan children across 30 polymorphisms at or around the G6PD locus. We demonstrate a strong functional role for c.202G>A (rs1050828), which accounts for the majority of variance in enzyme activity observed (P=1.5×10⁻²⁰⁰, additive model). Additionally, we identify other common variants that exert smaller, intercorrelated effects independent of c.202G>A, and haplotype analyses suggest that each variant tags one of two haplotype motifs that are opposite in sequence identity and effect direction. We posit that these effects are of biological and possible clinical significance, specifically noting that c.376A>G (rs1050829) augments 202AG heterozygote risk for deficiency trait by two-fold (OR = 2.11 [1.12 - 3.84], P=0.014). Our results suggest that c.202G>A is responsible for the majority of the observed prevalence of G6PD deficiency trait in Kenya, but also identify a novel role for c.376A>G as a genetic modifier which marks a common haplotype that augments the risk conferred to 202AG heterozygotes, suggesting that variation at both loci merits consideration in genetic association studies probing G6PD deficiency-associated clinical phenotypes.

  6. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    PubMed

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  7. Comparison of French and Estonian Students' Conceptions in Genetic Determinism of Human Behaviours

    ERIC Educational Resources Information Center

    Castera, Jeremy; Sarapuu, Tago; Clement, Pierre

    2013-01-01

    Innatism is the belief that most of the human personality can be determined by genes. This ideology is dangerous, especially when it claims to be scientific. The present study investigates conceptions of 1060 students from Estonia and France related to genetic determinism of some human behaviours. Factors taken into account included students'…

  8. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    PubMed

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  9. Integrating Genetic, Transcriptional, and Functional Analyses to Identify Five Novel Genes for Atrial Fibrillation

    PubMed Central

    Sinner, Moritz F.; Tucker, Nathan R.; Lunetta, Kathryn L.; Ozaki, Kouichi; Smith, J. Gustav; Trompet, Stella; Bis, Joshua C.; Lin, Honghuang; Chung, Mina K.; Nielsen, Jonas B.; Lubitz, Steven A.; Krijthe, Bouwe P.; Magnani, Jared W.; Ye, Jiangchuan; Gollob, Michael H.; Tsunoda, Tatsuhiko; Müller-Nurasyid, Martina; Lichtner, Peter; Peters, Annette; Dolmatova, Elena; Kubo, Michiaki; Smith, Jonathan D.; Psaty, Bruce M.; Smith, Nicholas L.; Jukema, J. Wouter; Chasman, Daniel I.; Albert, Christine M.; Ebana, Yusuke; Furukawa, Tetsushi; MacFarlane, Peter; Harris, Tamara B.; Darbar, Dawood; Dörr, Marcus; Holst, Anders G.; Svendsen, Jesper H.; Hofman, Albert; Uitterlinden, Andre G.; Gudnason, Vilmundur; Isobe, Mitsuaki; Malik, Rainer; Dichgans, Martin; Rosand, Jonathan; Van Wagoner, David R.; Benjamin, Emelia J.; Milan, David J.; Melander, Olle; Heckbert, Susan R.; Ford, Ian; Liu, Yongmei; Barnard, John; Olesen, Morten S.; Stricker, Bruno H.C.; Tanaka, Toshihiro; Kääb, Stefan; Ellinor, Patrick T.

    2014-01-01

    Background Atrial fibrillation (AF) affects over 30 million individuals worldwide and is associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the genetic basis for the arrhythmia remains incompletely understood. Methods & Results To identify new AF-related genes, we utilized a multifaceted approach, combining large-scale genotyping in two ethnically distinct populations, cis-eQTL mapping, and functional validation. Four novel loci were identified in individuals of European descent near the genes NEURL (rs12415501, RR=1.18, 95%CI 1.13 – 1.23, p=6.5×10−16), GJA1 (rs13216675, RR=1.10, 95%CI 1.06 – 1.14, p=2.2×10−8), TBX5 (rs10507248, RR=1.12, 95%CI 1.08 – 1.16, p=5.7×10−11), and CAND2 (rs4642101, RR=1.10, 95%CI 1.06 – 1.14, p=9.8×10−9). In Japanese, novel loci were identified near NEURL (rs6584555, RR=1.32, 95%CI 1.26–1.39, p=2.0×10−25) and CUX2 (rs6490029, RR=1.12, 95%CI 1.08–1.16, p=3.9×10−9). The top SNPs or their proxies were identified as cis-eQTLs for the genes CAND2 (p=2.6×10−19), GJA1 (p=2.66×10−6), and TBX5 (p=1.36×10−05). Knockdown of the zebrafish orthologs of NEURL and CAND2 resulted in prolongation of the atrial action potential duration (17% and 45%, respectively). Conclusions We have identified five novel loci for AF. Our results further expand the diversity of genetic pathways implicated in AF and provide novel molecular targets for future biological and pharmacological investigation. PMID:25124494

  10. Mapping eQTLs in the Norfolk Island Genetic Isolate Identifies Candidate Genes for CVD Risk Traits

    PubMed Central

    Benton, Miles C.; Lea, Rod A.; Macartney-Coxson, Donia; Carless, Melanie A.; Göring, Harald H.; Bellis, Claire; Hanna, Michelle; Eccles, David; Chambers, Geoffrey K.; Curran, Joanne E.; Harper, Jacquie L.; Blangero, John; Griffiths, Lyn R.

    2013-01-01

    Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10−7) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations. PMID:24314549

  11. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.

    PubMed

    Wray, Naomi R; Ripke, Stephan; Mattheisen, Manuel; Trzaskowski, Maciej; Byrne, Enda M; Abdellaoui, Abdel; Adams, Mark J; Agerbo, Esben; Air, Tracy M; Andlauer, Till M F; Bacanu, Silviu-Alin; Bækvad-Hansen, Marie; Beekman, Aartjan F T; Bigdeli, Tim B; Binder, Elisabeth B; Blackwood, Douglas R H; Bryois, Julien; Buttenschøn, Henriette N; Bybjerg-Grauholm, Jonas; Cai, Na; Castelao, Enrique; Christensen, Jane Hvarregaard; Clarke, Toni-Kim; Coleman, Jonathan I R; Colodro-Conde, Lucía; Couvy-Duchesne, Baptiste; Craddock, Nick; Crawford, Gregory E; Crowley, Cheynna A; Dashti, Hassan S; Davies, Gail; Deary, Ian J; Degenhardt, Franziska; Derks, Eske M; Direk, Nese; Dolan, Conor V; Dunn, Erin C; Eley, Thalia C; Eriksson, Nicholas; Escott-Price, Valentina; Kiadeh, Farnush Hassan Farhadi; Finucane, Hilary K; Forstner, Andreas J; Frank, Josef; Gaspar, Héléna A; Gill, Michael; Giusti-Rodríguez, Paola; Goes, Fernando S; Gordon, Scott D; Grove, Jakob; Hall, Lynsey S; Hannon, Eilis; Hansen, Christine Søholm; Hansen, Thomas F; Herms, Stefan; Hickie, Ian B; Hoffmann, Per; Homuth, Georg; Horn, Carsten; Hottenga, Jouke-Jan; Hougaard, David M; Hu, Ming; Hyde, Craig L; Ising, Marcus; Jansen, Rick; Jin, Fulai; Jorgenson, Eric; Knowles, James A; Kohane, Isaac S; Kraft, Julia; Kretzschmar, Warren W; Krogh, Jesper; Kutalik, Zoltán; Lane, Jacqueline M; Li, Yihan; Li, Yun; Lind, Penelope A; Liu, Xiaoxiao; Lu, Leina; MacIntyre, Donald J; MacKinnon, Dean F; Maier, Robert M; Maier, Wolfgang; Marchini, Jonathan; Mbarek, Hamdi; McGrath, Patrick; McGuffin, Peter; Medland, Sarah E; Mehta, Divya; Middeldorp, Christel M; Mihailov, Evelin; Milaneschi, Yuri; Milani, Lili; Mill, Jonathan; Mondimore, Francis M; Montgomery, Grant W; Mostafavi, Sara; Mullins, Niamh; Nauck, Matthias; Ng, Bernard; Nivard, Michel G; Nyholt, Dale R; O'Reilly, Paul F; Oskarsson, Hogni; Owen, Michael J; Painter, Jodie N; Pedersen, Carsten Bøcker; Pedersen, Marianne Giørtz; Peterson, Roseann E; Pettersson, Erik; Peyrot, Wouter J; Pistis, Giorgio; Posthuma, Danielle; Purcell, Shaun M; Quiroz, Jorge A; Qvist, Per; Rice, John P; Riley, Brien P; Rivera, Margarita; Saeed Mirza, Saira; Saxena, Richa; Schoevers, Robert; Schulte, Eva C; Shen, Ling; Shi, Jianxin; Shyn, Stanley I; Sigurdsson, Engilbert; Sinnamon, Grant B C; Smit, Johannes H; Smith, Daniel J; Stefansson, Hreinn; Steinberg, Stacy; Stockmeier, Craig A; Streit, Fabian; Strohmaier, Jana; Tansey, Katherine E; Teismann, Henning; Teumer, Alexander; Thompson, Wesley; Thomson, Pippa A; Thorgeirsson, Thorgeir E; Tian, Chao; Traylor, Matthew; Treutlein, Jens; Trubetskoy, Vassily; Uitterlinden, André G; Umbricht, Daniel; Van der Auwera, Sandra; van Hemert, Albert M; Viktorin, Alexander; Visscher, Peter M; Wang, Yunpeng; Webb, Bradley T; Weinsheimer, Shantel Marie; Wellmann, Jürgen; Willemsen, Gonneke; Witt, Stephanie H; Wu, Yang; Xi, Hualin S; Yang, Jian; Zhang, Futao; Arolt, Volker; Baune, Bernhard T; Berger, Klaus; Boomsma, Dorret I; Cichon, Sven; Dannlowski, Udo; de Geus, E C J; DePaulo, J Raymond; Domenici, Enrico; Domschke, Katharina; Esko, Tõnu; Grabe, Hans J; Hamilton, Steven P; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Kendler, Kenneth S; Kloiber, Stefan; Lewis, Glyn; Li, Qingqin S; Lucae, Susanne; Madden, Pamela F A; Magnusson, Patrik K; Martin, Nicholas G; McIntosh, Andrew M; Metspalu, Andres; Mors, Ole; Mortensen, Preben Bo; Müller-Myhsok, Bertram; Nordentoft, Merete; Nöthen, Markus M; O'Donovan, Michael C; Paciga, Sara A; Pedersen, Nancy L; Penninx, Brenda W J H; Perlis, Roy H; Porteous, David J; Potash, James B; Preisig, Martin; Rietschel, Marcella; Schaefer, Catherine; Schulze, Thomas G; Smoller, Jordan W; Stefansson, Kari; Tiemeier, Henning; Uher, Rudolf; Völzke, Henry; Weissman, Myrna M; Werge, Thomas; Winslow, Ashley R; Lewis, Cathryn M; Levinson, Douglas F; Breen, Gerome; Børglum, Anders D; Sullivan, Patrick F

    2018-05-01

    Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.

  12. Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain.

    PubMed

    Zeng, Quan; Cui, Zhouqi; Wang, Jie; Childs, Kevin L; Sundin, George W; Cooley, Daniel R; Yang, Ching-Hong; Garofalo, Elizabeth; Eaton, Alan; Huntley, Regan B; Yuan, Xiaochen; Schultes, Neil P

    2018-07-01

    Erwinia amylovora is the causal agent of fire blight, one of the most devastating diseases of apple and pear. Erwinia amylovora is thought to have originated in North America and has now spread to at least 50 countries worldwide. An understanding of the diversity of the pathogen population and the transmission to different geographical regions is important for the future mitigation of this disease. In this research, we performed an expanded comparative genomic study of the Spiraeoideae-infecting (SI) E. amylovora population in North America and Europe. We discovered that, although still highly homogeneous, the genetic diversity of 30 E. amylovora genomes examined was about 30 times higher than previously determined. These isolates belong to four distinct clades, three of which display geographical clustering and one of which contains strains from various geographical locations ('Widely Prevalent' clade). Furthermore, we revealed that strains from the Widely Prevalent clade displayed a higher level of recombination with strains from a clade strictly from the eastern USA, which suggests that the Widely Prevalent clade probably originated from the eastern USA before it spread to other locations. Finally, we detected variations in virulence in the SI E. amylovora strains on immature pear, and identified the genetic basis of one of the low-virulence strains as being caused by a single nucleotide polymorphism in hfq, a gene encoding an important virulence regulator. Our results provide insights into the population structure, distribution and evolution of SI E. amylovora in North America and Europe. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  13. Identifying Support Functions in Developmental Relationships: A Self-Determination Perspective

    ERIC Educational Resources Information Center

    Janssen, Suzanne; van Vuuren, Mark; de Jong, Menno D. T.

    2013-01-01

    This study examines the content of developmental networks from the perspective of self-determination theory. We qualitatively examine 18 proteges' constellations of developmental relationships to identify specific types of developmental support functions. Our study shows that the adoption of self-determination theory leads to a theory-based…

  14. Genetics of nonsyndromic obesity.

    PubMed

    Lee, Yung Seng

    2013-12-01

    Common obesity is widely regarded as a complex, multifactorial trait influenced by the 'obesogenic' environment, sedentary behavior, and genetic susceptibility contributed by common and rare genetic variants. This review describes the recent advances in understanding the role of genetics in obesity. New susceptibility loci and genetic variants are being uncovered, but the collective effect is relatively small and could not explain most of the BMI heritability. Yet-to-be identified common and rare variants, epistasis, and heritable epigenetic changes may account for part of the 'missing heritability'. Evidence is emerging about the role of epigenetics in determining obesity susceptibility, mediating developmental plasticity, which confers obesity risk from early life experiences. Genetic prediction scores derived from selected genetic variants, and also differential DNA methylation levels and methylation scores, have been shown to correlate with measures of obesity and response to weight loss intervention. Genetic variants, which confer susceptibility to obesity-related morbidities like nonalcoholic fatty liver disease, were also discovered recently. We can expect discovery of more rare genetic variants with the advent of whole exome and genome sequencing, and also greater understanding of epigenetic mechanisms by which environment influences genetic expression and which mediate the gene-environment interaction.

  15. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleiman, Norman Jay

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiationmore » exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1

  16. Genetics of Opioid Dependence: A Review of the Genetic Contribution to Opioid Dependence

    PubMed Central

    Mistry, Chetna J; Bawor, Monica; Desai, Dipika; Marsh, David C; Samaan, Zainab

    2014-01-01

    This narrative review aims to provide an overview of the impact of opioid dependence and the contribution of genetics to opioid dependence. Epidemiological data demonstrate that opioid dependence is a global trend with far-reaching effects on the social, economic, and health care systems. A review of classical genetic studies of opioid use suggests significant heritability of drug use behavior, however the evidence from molecular genetic studies is inconclusive. Nonetheless, certain genetic variants are important to consider given their role in the pathophysiology of addictive behavior. We undertook a literature review to identify the current state of knowledge regarding the role of genes in opioid dependence. Determining the association of genetic markers could change the current understanding of the various factors contributing to opioid dependence and therefore may improve recognition of individuals at risk for the disorder and prevention and treatment strategies. PMID:25242908

  17. Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project.

    PubMed

    Cutting, Elizabeth M; Overby, Casey L; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R; Beitelshees, Amber L

    Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease.

  18. Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project

    PubMed Central

    Cutting, Elizabeth M.; Overby, Casey L.; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R.; Beitelshees, Amber L.

    2015-01-01

    Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease. PMID:26958179

  19. Identifying Genetic Sources of Phenotypic Heterogeneity in Orofacial Clefts by Targeted Sequencing.

    PubMed

    Carlson, Jenna C; Taub, Margaret A; Feingold, Eleanor; Beaty, Terri H; Murray, Jeffrey C; Marazita, Mary L; Leslie, Elizabeth J

    2017-07-17

    Orofacial clefts (OFCs), including nonsyndromic cleft lip with or without cleft palate (NSCL/P), are common birth defects. NSCL/P is highly heterogeneous with multiple phenotypic presentations. Two common subtypes of NSCL/P are cleft lip (CL) and cleft lip with cleft palate (CLP) which have different population prevalence. Similarly, NSCL/P can be divided into bilateral and unilateral clefts, with unilateral being the most common. Individuals with unilateral NSCL/P are more likely to be affected on the left side of the upper lip, but right side affection also occurs. Moreover, NSCL/P is twice as common in males as in females. The goal of this study is to discover genetic variants that have different effects in case subgroups. We conducted both common variant and rare variant analyses in 1034 individuals of Asian ancestry with NSCL/P, examining four sources of heterogeneity within CL/P: cleft type, sex, laterality, and side. We identified several regions associated with subtype differentiation: cleft type differences in 8q24 (p = 1.00 × 10 -4 ), laterality differences in IRF6, a gene previously implicated with wound healing (p = 2.166 × 10 -4 ), sex differences and side of unilateral CL differences in FGFR2 (p = 3.00 × 10 -4 ; p = 6.00 × 10 -4 ), and sex differences in VAX1 (p < 1.00 × 10 -4 ) among others. Many of the regions associated with phenotypic modification were either adjacent to or overlapping functional elements based on ENCODE chromatin marks and published craniofacial enhancers. We have identified multiple common and rare variants as potential phenotypic modifiers of NSCL/P, and suggest plausible elements responsible for phenotypic heterogeneity, further elucidating the complex genetic architecture of OFCs. Birth Defects Research 109:1030-1038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  1. Determination of Genetic Diversity in Chilo partellus, Busseola fusca, and Spodoptera frugiperda Infesting Sugarcane in Southern Malawi Using DNA Barcodes.

    PubMed

    Kasambala Donga, Trust; Meadow, Richard

    2018-06-22

    Sugarcane is one of the most valuable crops in the world. Native and exotic Lepidopteran stemborers significantly limit sugarcane production. However, the identity and genetic diversity of stemborers infesting sugarcane in Malawi is unknown. The main objectives for this study were to identify and determine genetic diversity in stemborers infesting sugarcane in Malawi. We conducted field surveys between June 2016 and March 2017 in the Lower Shire Valley district of Chikwawa and Nsanje, southern Malawi. Molecular identification was based amplification the partial cytochrome oxidase subunit I (COI) gene region. Phylogenetic trees for sequences were generated and published GenBank accessions for each species were constructed. We found that Malawi Busseola fusca (Lepidoptera: Noctuidae) specimens belonged to clade II, Spodoptera frugiperda sp. 1 (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Crambidae) were infesting sugarcane. Interspecific divergence ranged from 8.7% to 15.3%. Intraspecific divergence was highest for B. fusca , 3.6%. There were eight haplotypes for B. fusca , three for S. frugiperda and three for C. partellus . The importance of accurate species identification and genetic diversity on stemborer management is presented.

  2. Identifying genetic variants that affect viability in large cohorts

    PubMed Central

    Berisa, Tomaz; Day, Felix R.; Perry, John R. B.

    2017-01-01

    A number of open questions in human evolutionary genetics would become tractable if we were able to directly measure evolutionary fitness. As a step towards this goal, we developed a method to examine whether individual genetic variants, or sets of genetic variants, currently influence viability. The approach consists in testing whether the frequency of an allele varies across ages, accounting for variation in ancestry. We applied it to the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and to the parents of participants in the UK Biobank. Across the genome, we found only a few common variants with large effects on age-specific mortality: tagging the APOE ε4 allele and near CHRNA3. These results suggest that when large, even late-onset effects are kept at low frequency by purifying selection. Testing viability effects of sets of genetic variants that jointly influence 1 of 42 traits, we detected a number of strong signals. In participants of the UK Biobank of British ancestry, we found that variants that delay puberty timing are associated with a longer parental life span (P~6.2 × 10−6 for fathers and P~2.0 × 10−3 for mothers), consistent with epidemiological studies. Similarly, variants associated with later age at first birth are associated with a longer maternal life span (P~1.4 × 10−3). Signals are also observed for variants influencing cholesterol levels, risk of coronary artery disease (CAD), body mass index, as well as risk of asthma. These signals exhibit consistent effects in the GERA cohort and among participants of the UK Biobank of non-British ancestry. We also found marked differences between males and females, most notably at the CHRNA3 locus, and variants associated with risk of CAD and cholesterol levels. Beyond our findings, the analysis serves as a proof of principle for how upcoming biomedical data sets can be used to learn about selection effects in contemporary humans. PMID:28873088

  3. Prediction for Intravenous Immunoglobulin Resistance by Using Weighted Genetic Risk Score Identified From Genome-Wide Association Study in Kawasaki Disease.

    PubMed

    Kuo, Ho-Chang; Wong, Henry Sung-Ching; Chang, Wei-Pin; Chen, Ben-Kuen; Wu, Mei-Shin; Yang, Kuender D; Hsieh, Kai-Sheng; Hsu, Yu-Wen; Liu, Shih-Feng; Liu, Xiao; Chang, Wei-Chiao

    2017-10-01

    Intravenous immunoglobulin (IVIG) is the treatment of choice in Kawasaki disease (KD). IVIG is used to prevent cardiovascular complications related to KD. However, a proportion of KD patients have persistent fever after IVIG treatment and are defined as IVIG resistant. To develop a risk scoring system based on genetic markers to predict IVIG responsiveness in KD patients, a total of 150 KD patients (126 IVIG responders and 24 IVIG nonresponders) were recruited for this study. A genome-wide association analysis was performed to compare the 2 groups and identified risk alleles for IVIG resistance. A weighted genetic risk score was calculated by the natural log of the odds ratio multiplied by the number of risk alleles. Eleven single-nucleotide polymorphisms were identified by genome-wide association study. The KD patients were categorized into 3 groups based on their calculated weighted genetic risk score. Results indicated a significant association between weighted genetic risk score (groups 3 and 4 versus group 1) and the response to IVIG (Fisher's exact P value 4.518×10 - 03 and 8.224×10 - 10 , respectively). This is the first weighted genetic risk score study based on a genome-wide association study in KD. The predictive model integrated the additive effects of all 11 single-nucleotide polymorphisms to provide a prediction of the responsiveness to IVIG. © 2017 The Authors.

  4. Racial and genetic determinants of plasma factor XIII activity.

    PubMed

    Saha, N; Aston, C E; Low, P S; Kamboh, M I

    2000-12-01

    Factor XIII (F XIII), a plasma transglutaminase, is essential for normal hemostasis and fibrinolysis. Plasma F XIII consists of two catalytic A (F XIIIA) and two non-catalytic B (F XIIIB) subunits. Activated F XIII is involved in the formation of fibrin gel by covalently crosslinking fibrin monomers. As the characteristics of the fibrin gel structure have been shown to be associated with the risk of coronary heart disease (CHD), F XIII activity may play a seminal role in its etiology. In this investigation, we determined plasma F XIII activity in two racial groups, including Asian Indians (n = 258) and Chinese (n = 385). Adjusted plasma F XIII activity was significantly higher in Indian men (142 vs. 110%; P<0.0001) and women (158 vs. 111%; P<0.0001) than their Chinese counterparts. As compared to Indians where the distribution of F XIII activity was almost normal, in Chinese it was skewed towards low activity. In both racial groups, bivariate and multivariate analyses showed strong correlation of F XIII activity with plasma fibrinogen and plasminogen levels. Race explained about 25% of the variation in F XIII activity even after the adjustment of significant correlates. We also determined the contribution of common genetic polymorphisms in the F XIIIA and F XIIIB genes in affecting plasma F XIII activity. Both loci showed significant and independent effects on plasma F XIII activity in Indians (F XIIIA, P< 0.01; F XIIIB, P<0.05) and Chinese (F XIIIA, P<0.0001; F XIIIB, P<0.13) in a gene dosage fashion. This study shows that both racial and genetic components play a significant role in determining plasma F XIII activity, and consequently it may affect the quantitative risk of CHD. Copyright 2000 Wiley-Liss, Inc.

  5. Genetic Determination of Serum Levels of Diabetes-Associated Adipokines

    PubMed Central

    Schleinitz, Dorit

    2015-01-01

    Adipose tissue secretes an abundance of proteins. Some of these proteins are known as adipokines and adipose-derived hormones which have been linked with metabolic disorders, including type 2 diabetes, and even with cancer. Variance in serum adipokine concentration is often closely associated with an increase (obesity) or decrease (lipodystrophy) in fat tissue mass, and it is affected by age, gender, and localization of the adipose tissue. However, there may be genetic variants which, in consequence, influence the serum concentration of a certain adipokine, and thereby promote metabolic disturbances or, with regard to the “protective” allele, exert beneficial effects. This review focuses on the genetic determination of serum levels of the following adipokines: adiponectin, chemerin, leptin, progranulin, resistin, retinol binding protein 4, vaspin, adipsin, apelin, and omentin. The article reports on the latest findings from genome-wide association studies (GWAS) and candidate gene studies, showing variants located in/nearby the adipokine genes and other (non-receptor) genes. An extra chapter highlights adipokine-receptor variants. Epigenetic studies on adipokines are also addressed. PMID:26859657

  6. Harnessing genomics to identify environmental determinants of heritable disease

    EPA Science Inventory

    De novo mutation is increasingly being recognized as the cause for a range of human genetic diseases and disorders. Important examples of this include inherited genetic disorders such as autism, schizophrenia, mental retardation, epilepsy, and a broad range of adverse reproductiv...

  7. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines

    PubMed Central

    Cotesta, Simona; Perruccio, Francesca; Knapp, Britta; Fu, Yue; Studer, Christian; Pries, Verena; Riedl, Ralph; Helliwell, Stephen B.; Petrovic, Katarina T.; Movva, N. Rao; Sanglard, Dominique; Tao, Jianshi; Hoepfner, Dominic

    2016-01-01

    Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point. PMID:27855158

  8. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype

    PubMed Central

    Ceccarelli, Fulvia; Perricone, Carlo; Borgiani, Paola; Ciccacci, Cinzia; Rufini, Sara; Cipriano, Enrica; Alessandri, Cristiano; Spinelli, Francesca Romana; Sili Scavalli, Antonio; Novelli, Giuseppe; Valesini, Guido; Conti, Fabrizio

    2015-01-01

    Genetic factors exert an important role in determining Systemic Lupus Erythematosus (SLE) susceptibility, interplaying with environmental factors. Several genetic studies in various SLE populations have identified numerous susceptibility loci. From a clinical point of view, SLE is characterized by a great heterogeneity in terms of clinical and laboratory manifestations. As widely demonstrated, specific laboratory features are associated with clinical disease subset, with different severity degree. Similarly, in the last years, an association between specific phenotypes and genetic variants has been identified, allowing the possibility to elucidate different mechanisms and pathways accountable for disease manifestations. However, except for Lupus Nephritis (LN), no studies have been designed to identify the genetic variants associated with the development of different phenotypes. In this review, we will report data currently known about this specific association. PMID:26798662

  9. Genetic and environmental determinants of violence risk in psychotic disorders: a multivariate quantitative genetic study of 1.8 million Swedish twins and siblings

    PubMed Central

    Sariaslan, A; Larsson, H; Fazel, S

    2016-01-01

    Patients diagnosed with psychotic disorders (for example, schizophrenia and bipolar disorder) have elevated risks of committing violent acts, particularly if they are comorbid with substance misuse. Despite recent insights from quantitative and molecular genetic studies demonstrating considerable pleiotropy in the genetic architecture of these phenotypes, there is currently a lack of large-scale studies that have specifically examined the aetiological links between psychotic disorders and violence. Using a sample of all Swedish individuals born between 1958 and 1989 (n=3 332 101), we identified a total of 923 259 twin-sibling pairs. Patients were identified using the National Patient Register using validated algorithms based on International Classification of Diseases (ICD) 8–10. Univariate quantitative genetic models revealed that all phenotypes (schizophrenia, bipolar disorder, substance misuse, and violent crime) were highly heritable (h2=53–71%). Multivariate models further revealed that schizophrenia was a stronger predictor of violence (r=0.32; 95% confidence interval: 0.30–0.33) than bipolar disorder (r=0.23; 0.21–0.25), and large proportions (51–67%) of these phenotypic correlations were explained by genetic factors shared between each disorder, substance misuse, and violence. Importantly, we found that genetic influences that were unrelated to substance misuse explained approximately a fifth (21% 20–22%) of the correlation with violent criminality in bipolar disorder but none of the same correlation in schizophrenia (Pbipolar disorder<0.001; Pschizophrenia=0.55). These findings highlight the problems of not disentangling common and unique sources of covariance across genetically similar phenotypes as the latter sources may include aetiologically important clues. Clinically, these findings underline the importance of assessing risk of different phenotypes together and integrating interventions for psychiatric disorders, substance misuse, and

  10. Genetic and environmental determinants of violence risk in psychotic disorders: a multivariate quantitative genetic study of 1.8 million Swedish twins and siblings.

    PubMed

    Sariaslan, A; Larsson, H; Fazel, S

    2016-09-01

    Patients diagnosed with psychotic disorders (for example, schizophrenia and bipolar disorder) have elevated risks of committing violent acts, particularly if they are comorbid with substance misuse. Despite recent insights from quantitative and molecular genetic studies demonstrating considerable pleiotropy in the genetic architecture of these phenotypes, there is currently a lack of large-scale studies that have specifically examined the aetiological links between psychotic disorders and violence. Using a sample of all Swedish individuals born between 1958 and 1989 (n=3 332 101), we identified a total of 923 259 twin-sibling pairs. Patients were identified using the National Patient Register using validated algorithms based on International Classification of Diseases (ICD) 8-10. Univariate quantitative genetic models revealed that all phenotypes (schizophrenia, bipolar disorder, substance misuse, and violent crime) were highly heritable (h(2)=53-71%). Multivariate models further revealed that schizophrenia was a stronger predictor of violence (r=0.32; 95% confidence interval: 0.30-0.33) than bipolar disorder (r=0.23; 0.21-0.25), and large proportions (51-67%) of these phenotypic correlations were explained by genetic factors shared between each disorder, substance misuse, and violence. Importantly, we found that genetic influences that were unrelated to substance misuse explained approximately a fifth (21%; 20-22%) of the correlation with violent criminality in bipolar disorder but none of the same correlation in schizophrenia (Pbipolar disorder<0.001; Pschizophrenia=0.55). These findings highlight the problems of not disentangling common and unique sources of covariance across genetically similar phenotypes as the latter sources may include aetiologically important clues. Clinically, these findings underline the importance of assessing risk of different phenotypes together and integrating interventions for psychiatric disorders, substance misuse, and violence.

  11. An unbiased approach to identify genes involved in development in a turtle with temperature-dependent sex determination.

    PubMed

    Chojnowski, Jena L; Braun, Edward L

    2012-07-15

    Many reptiles exhibit temperature-dependent sex determination (TSD). The initial cue in TSD is incubation temperature, unlike genotypic sex determination (GSD) where it is determined by the presence of specific alleles (or genetic loci). We used patterns of gene expression to identify candidates for genes with a role in TSD and other developmental processes without making a priori assumptions about the identity of these genes (ortholog-based approach). We identified genes with sexually dimorphic mRNA accumulation during the temperature sensitive period of development in the Red-eared slider turtle (Trachemys scripta), a turtle with TSD. Genes with differential mRNA accumulation in response to estrogen (estradiol-17β; E(2)) exposure and developmental stages were also identified. Sequencing 767 clones from three suppression-subtractive hybridization libraries yielded a total of 581 unique sequences. Screening a macroarray with a subset of those sequences revealed a total of 26 genes that exhibited differential mRNA accumulation: 16 female biased and 10 male biased. Additional analyses revealed that C16ORF62 (an unknown gene) and MALAT1 (a long noncoding RNA) exhibited increased mRNA accumulation at the male producing temperature relative to the female producing temperature during embryonic sexual development. Finally, we identified four genes (C16ORF62, CCT3, MMP2, and NFIB) that exhibited a stage effect and five genes (C16ORF62, CCT3, MMP2, NFIB and NOTCH2) showed a response to E(2) exposure. Here we report a survey of genes identified using patterns of mRNA accumulation during embryonic development in a turtle with TSD. Many previous studies have focused on examining the turtle orthologs of genes involved in mammalian development. Although valuable, the limitations of this approach are exemplified by our identification of two genes (MALAT1 and C16ORF62) that are sexually dimorphic during embryonic development. MALAT1 is a noncoding RNA that has not been implicated

  12. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    PubMed Central

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N.; Jones, Byron C.; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses. PMID:29674951

  13. Genetic determinants of drug responsiveness and drug interactions.

    PubMed

    Caraco, Y

    1998-10-01

    Six cytochrome P450 enzymes mediate the oxidative metabolism of most drugs in common use: CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. These enzymes have selective substrate specificity, and their activity is characterized by marked interindividual variation. Some of these systems (CYP2C19, CYP2D6) are polymorphically distributed; thus, a subset of the population may be genetically deficient in enzyme activity. Phenotyping procedures designed to identify subjects with impaired metabolism who may be at increased risk for drug toxicity have been developed and validated. This has been supplemented in recent years by the availability of genetic analysis and the identification of specific alleles that are associated with altered (i.e., reduced, deficient, or increased) enzyme activity. The potential of genotyping to predict pharmacodynamics holds great promise for the future because it does not involve the administration of exogenous compound and is not confounded by drug therapy. Drug interactions caused by the inhibition or induction of oxidative drug metabolism may be of great clinical importance because they may result in drug toxicity or therapeutic failure. Further understanding of cytochrome P450 complexity may allow, through a combined in vitro-in vivo approach, the reliable prediction and possible prevention of deleterious drug interactions.

  14. Determination of Slope Safety Factor with Analytical Solution and Searching Critical Slip Surface with Genetic-Traversal Random Method

    PubMed Central

    2014-01-01

    In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679

  15. Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements.

    PubMed

    Castède, Sophie; Campoy, José Antonio; García, José Quero; Le Dantec, Loïck; Lafargue, Maria; Barreneche, Teresa; Wenden, Bénédicte; Dirlewanger, Elisabeth

    2014-04-01

    The present study investigated the genetic determinism of flowering date (FD), dissected into chilling (CR) and heat (HR) requirements. Elucidation of the genetic determinism of flowering traits is crucial to anticipate the increasing of ecological misalignment of adaptative traits with novel climate conditions in most temperate-fruit species. CR and HR were evaluated over 3 yr and FD over 5 yr in an intraspecific sweet cherry (Prunus avium) F1 progeny, and FD over 6 yr in a different F1 progeny. One quantitative trait locus (QTL) with major effect and high stability between years of evaluation was detected for CR and FD in the same region of linkage group (LG) 4. For HR, no stable QTL was detected. Candidate genes underlying the major QTL on LG4 were investigated and key genes were identified for CR and FD. Phenotypic dissection of FD and year repetitions allowed us to identify CR as the high heritable component of FD and a high genotype × environment interaction for HR. QTLs for CR reported in this study are the first described in this species. Our results provide a foundation for the identification of genes involved in CR and FD in sweet cherry which could be used to develop ideotypes adapted to future climatic conditions. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  16. Presenilin-Based Genetic Screens in Drosophila melanogaster Identify Novel Notch Pathway Modifiers

    PubMed Central

    Mahoney, Matt B.; Parks, Annette L.; Ruddy, David A.; Tiong, Stanley Y. K.; Esengil, Hanife; Phan, Alexander C.; Philandrinos, Panos; Winter, Christopher G.; Chatterjee, Runa; Huppert, Kari; Fisher, William W.; L'Archeveque, Lynn; Mapa, Felipa A.; Woo, Wendy; Ellis, Michael C.; Curtis, Daniel

    2006-01-01

    Presenilin is the enzymatic component of γ-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for γ-tubulin in the pathway. PMID:16415372

  17. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers.

    PubMed

    Mahoney, Matt B; Parks, Annette L; Ruddy, David A; Tiong, Stanley Y K; Esengil, Hanife; Phan, Alexander C; Philandrinos, Panos; Winter, Christopher G; Chatterjee, Runa; Huppert, Kari; Fisher, William W; L'Archeveque, Lynn; Mapa, Felipa A; Woo, Wendy; Ellis, Michael C; Curtis, Daniel

    2006-04-01

    Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.

  18. Association of genetic and non-genetic risk factors with the development of prostate cancer in Malaysian men.

    PubMed

    Munretnam, Khamsigan; Alex, Livy; Ramzi, Nurul Hanis; Chahil, Jagdish Kaur; Kavitha, I S; Hashim, Nikman Adli Nor; Lye, Say Hean; Velapasamy, Sharmila; Ler, Lian Wee

    2014-01-01

    There is growing global interest to stratify men into different levels of risk to developing prostate cancer, thus it is important to identify common genetic variants that confer the risk. Although many studies have identified more than a dozen common genetic variants which are highly associated with prostate cancer, none have been done in Malaysian population. To determine the association of such variants in Malaysian men with prostate cancer, we evaluated a panel of 768 SNPs found previously associated with various cancers which also included the prostate specific SNPs in a population based case control study (51 case subjects with prostate cancer and 51 control subjects) in Malaysian men of Malay, Chinese and Indian ethnicity. We identified 21 SNPs significantly associated with prostate cancer. Among these, 12 SNPs were strongly associated with increased risk of prostate cancer while remaining nine SNPs were associated with reduced risk. However, data analysis based on ethnic stratification led to only five SNPs in Malays and 3 SNPs in Chinese which remained significant. This could be due to small sample size in each ethnic group. Significant non-genetic risk factors were also identified for their association with prostate cancer. Our study is the first to investigate the involvement of multiple variants towards susceptibility for PC in Malaysian men using genotyping approach. Identified SNPs and non-genetic risk factors have a significant association with prostate cancer.

  19. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes.

    PubMed

    Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I

    2015-10-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P<5×10(-8)) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations.

  20. Genome-wide Association Study Identifies HLA 8.1 Ancestral Haplotype Alleles as Major Genetic Risk Factors for Myositis Phenotypes

    PubMed Central

    Miller, Frederick W.; Chen, Wei; O’Hanlon, Terrance P.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy R.; Isenberg, David A.; Chinoy, Hector; Ollier, William E.R.; Scheet, Paul; Peng, Bo; Lee, Annette; Byun, Jinyoung; Lamb, Janine A.; Gregersen, Peter K.; Amos, Christopher I.

    2016-01-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis; 473 juvenile dermatomyositis; 532 polymyositis; and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P < 5 × 10−8) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1haplotype comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations. PMID:26291516

  1. Genetic Evaluation of Short Stature

    PubMed Central

    Rosenfeld, Ron G.

    2014-01-01

    Context: Genetics plays a major role in determining an individual's height. Although there are many monogenic disorders that lead to perturbations in growth and result in short stature, there is still no consensus as to the role that genetic diagnostics should play in the evaluation of a child with short stature. Evidence Acquisition: A search of PubMed was performed, focusing on the genetic diagnosis of short stature as well as on specific diagnostic subgroups included in this article. Consensus guidelines were reviewed. Evidence Synthesis: There are a multitude of rare genetic causes of severe short stature. There is no high-quality evidence to define the optimal approach to the genetic evaluation of short stature. We review genetic etiologies of a number of diagnostic subgroups and propose an algorithm for genetic testing based on these subgroups. Conclusion: Advances in genomic technologies are revolutionizing the diagnostic approach to short stature. Endocrinologists must become facile with the use of genetic testing in order to identify the various monogenic disorders that present with short stature. PMID:24915122

  2. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES).

    PubMed

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong

    2018-03-05

    BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10^-4). CONCLUSIONS This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.

  3. Identifying Candidate Chemical-Disease Linkages (Environmental and Epigenetic Determinants of IBD)

    EPA Science Inventory

    Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This h...

  4. Identifying Genetic Traces of Historical Expansions: Phoenician Footprints in the Mediterranean

    PubMed Central

    Zalloua, Pierre A.; Platt, Daniel E.; El Sibai, Mirvat; Khalife, Jade; Makhoul, Nadine; Haber, Marc; Xue, Yali; Izaabel, Hassan; Bosch, Elena; Adams, Susan M.; Arroyo, Eduardo; López-Parra, Ana María; Aler, Mercedes; Picornell, Antònia; Ramon, Misericordia; Jobling, Mark A.; Comas, David; Bertranpetit, Jaume; Wells, R. Spencer; Tyler-Smith, Chris

    2008-01-01

    The Phoenicians were the dominant traders in the Mediterranean Sea two thousand to three thousand years ago and expanded from their homeland in the Levant to establish colonies and trading posts throughout the Mediterranean, but then they disappeared from history. We wished to identify their male genetic traces in modern populations. Therefore, we chose Phoenician-influenced sites on the basis of well-documented historical records and collected new Y-chromosomal data from 1330 men from six such sites, as well as comparative data from the literature. We then developed an analytical strategy to distinguish between lineages specifically associated with the Phoenicians and those spread by geographically similar but historically distinct events, such as the Neolithic, Greek, and Jewish expansions. This involved comparing historically documented Phoenician sites with neighboring non-Phoenician sites for the identification of weak but systematic signatures shared by the Phoenician sites that could not readily be explained by chance or by other expansions. From these comparisons, we found that haplogroup J2, in general, and six Y-STR haplotypes, in particular, exhibited a Phoenician signature that contributed > 6% to the modern Phoenician-influenced populations examined. Our methodology can be applied to any historically documented expansion in which contact and noncontact sites can be identified. PMID:18976729

  5. Genetic service delivery: infrastructure, assessment and information.

    PubMed

    Kaye, C I

    2012-01-01

    Identification of genomic determinants of complex disorders such as cancer, diabetes and cardiovascular disease has prompted public health systems to focus on genetic service delivery for prevention of these disorders, adding to their previous efforts in birth defects prevention and newborn screening. This focus is consistent with previously identified obligations of the public health system as well as the core functions of public health identified by the Institute of Medicine. Models of service delivery include provision of services by the primary care provider in conjunction with subspecialists, provision of services through the medical home with co-management by genetics providers, provision of services in conjunction with disorder-specific treatment centers, and provision of services through a network of genetics clinics linked to medical homes. Whatever the model for provision of genetic services, tools to assist providers include facilities for outreach and telemedicine, information technology, just-in-time management plans, and emergency management tools. Assessment tools to determine which care is best are critical for quality improvement and development of best practices. Because the workforce of genetics providers is not keeping pace with the need for services, an understanding of the factors contributing to this lag is important, as is the development of an improved knowledge base in genomics for primary care providers. Copyright © 2012 S. Karger AG, Basel.

  6. Silent genetic alterations identified by targeted next-generation sequencing in pheochromocytoma/paraganglioma: A clinicopathological correlations.

    PubMed

    Pillai, Suja; Gopalan, Vinod; Lo, Chung Y; Liew, Victor; Smith, Robert A; Lam, Alfred King Y

    2017-02-01

    The goal of this pilot study was to develop a customized, cost-effective amplicon panel (Ampliseq) for target sequencing in a cohort of patients with sporadic phaeochromocytoma/paraganglioma. Phaeochromocytoma/paragangliomas from 25 patients were analysed by targeted next-generation sequencing approach using an Ion Torrent PGM instrument. Primers for 15 target genes (NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, MAX, MEN1, KIF1Bβ, EPAS1, CDKN2 & PHD2) were designed using ion ampliseq designer. Ion Reporter software and Ingenuity® Variant Analysis™ software (www.ingenuity.com/variants) from Ingenuity Systems were used to analysis these results. Overall, 713 variants were identified. The variants identified from the Ion Reporter ranged from 64 to 161 per patient. Single nucleotide variants (SNV) were the most common. Further annotation with the help of Ingenuity variant analysis revealed 29 of these 713variants were deletions. Of these, six variants were non-pathogenic and four were likely to be pathogenic. The remaining 19 variants were of uncertain significance. The most frequently altered gene in the cohort was KIF1B followed by NF1. Novel KIF1B pathogenic variant c.3375+1G>A was identified. The mutation was noted in a patient with clinically confirmed neurofibromatosis. Chromosome 1 showed the presence of maximum number of variants. Use of targeted next-generation sequencing is a sensitive method for the detecting genetic changes in patients with phaeochromocytoma/paraganglioma. The precise detection of these genetic changes helps in understanding the pathogenesis of these tumours. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    PubMed

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  8. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    PubMed

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Genome-wide identification of genetic determinants for the cytotoxicity of perifosine

    PubMed Central

    2008-01-01

    Perifosine belongs to the class of alkylphospholipid analogues, which act primarily at the cell membrane, thereby targeting signal transduction pathways. In phase I/II clinical trials, perifosine has induced tumour regression and caused disease stabilisation in a variety of tumour types. The genetic determinants responsible for its cytotoxicity have not been comprehensively studied, however. We performed a genome-wide analysis to identify genes whose expression levels or genotypic variation were correlated with the cytotoxicity of perifosine, using public databases on the US National Cancer Institute (NCI)-60 human cancer cell lines. For demonstrating drug specificity, the NCI Standard Agent Database (including 171 drugs acting through a variety of mechanisms) was used as a control. We identified agents with similar cytotoxicity profiles to that of perifosine in compounds used in the NCI drug screen. Furthermore, Gene Ontology and pathway analyses were carried out on genes more likely to be perifosine specific. The results suggested that genes correlated with perifosine cytotoxicity are connected by certain known pathways that lead to the mitogen-activated protein kinase signalling pathway and apoptosis. Biological processes such as 'response to stress', 'inflammatory response' and 'ubiquitin cycle' were enriched among these genes. Three single nucleotide polymorphisms (SNPs) located in CACNA2DI and EXOC4 were found to be correlated with perifosine cytotoxicity. Our results provided a manageable list of genes whose expression levels or genotypic variation were strongly correlated with the cytotoxcity of perifosine. These genes could be targets for further studies using candidate-gene approaches. The results also provided insights into the pharmacodynamics of perifosine. PMID:19129090

  10. Genetical Toxicogenomics in Drosophila Identifies Master Modulatory Loci that are Regulated by Developmental Exposure to Lead

    PubMed Central

    Ruden, Douglas M.; Chen, Lang; Possidente, Debra; Possidente, Bernard; Rasouli, Parsa; Wang, Luan; Lu, Xiangyi; Garfinkel, Mark D.; Hirsch, Helmut V. B.; Page, Grier P.

    2009-01-01

    The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression quantitative trait loci (eQTLs). So-called “genetical genomics” studies have identified locally-acting eQTLs (cis-eQTLs) for genes that show differences in steady state RNA levels. These studies have also identified distantly-acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts (hotspots or transbands). We expand on these studies by performing genetical genomics experiments in two environments in order to identify trans-eQTL that might be regulated by developmental exposure to the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food (made with 250 µM sodium acetate), or lead-treated food (made with 250 µM lead acetate, PbAc). RNA expression analyses of whole adult male flies (5–10 days old) were performed with Affymetrix DrosII whole genome arrays (18,952 probesets). Among the 1,389 genes with cis-eQTL, there were 405 genes unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in both samples). There are 2,396 genes with trans-eQTL which mapped to 12 major transbands with greater than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the total number of eQTL and the number of transbands are more important criteria for validation than the size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two environments, we found that variation at two different loci are required for optimal effects on lead-induced expression. PMID:19737576

  11. A Specific Pathway Can Be Identified between Genetic Characteristics and Behaviour Profiles in Prader-Willi Syndrome via Cognitive, Environmental and Physiological Mechanisms

    ERIC Educational Resources Information Center

    Woodcock, K. A.; Oliver, C.; Humphreys, G. W.

    2009-01-01

    Background: Behavioural phenotypes associated with genetic syndromes have been extensively investigated in order to generate rich descriptions of phenomenology, determine the degree of specificity of behaviours for a particular syndrome, and examine potential interactions between genetic predispositions for behaviour and environmental influences.…

  12. Association between genetic determinants of peak height velocity during puberty and predisposition to adolescent idiopathic scoliosis.

    PubMed

    Mao, Saihu; Xu, Leilei; Zhu, Zezhang; Qian, Bangping; Qiao, Jun; Yi, Long; Qiu, Yong

    2013-05-20

    An association study to comprehensively clarify variations of genetic determinants of peak height velocity (PHV) during puberty in adolescent idiopathic scoliosis (AIS). To investigate whether the genetic determinants of timing and magnitude of PHV during puberty are associated with the susceptibility or curve progression of the female patients with AIS. An involvement of abnormal pubertal growth pattern in the etiopathogenesis of AIS has been implicated in previous studies. However, there is no clear consensus on the anthropometric variations of stature or growth rate. The recent advance in the longitudinally identified genetic determinants of PHV offers new opportunities to facilitate analysis of the association of pubertal growth with the susceptibility or curve severity of AIS. A gene-based association study was conducted using 9 single nucleotide polymorphisms (SNPs) in or near SOCS2, SF3B4/SV2A, C17orf67, CABLES1, DOT1L, CDK6, C6orf106, and LIN28B with confirmed association with PHV, peak growth age, or adult height. A total of 500 patients with AIS and 494 age-matched healthy controls were genotyped using the PCR-based Invader assay. Case-control study and case-only study were performed to define the contribution of the 9 SNPs to predisposition and curve severity of AIS. Strong associations between rs12459350 in DOT1L, rs4794665 in C17orf67, and susceptibility of AIS were found, with the PHV increasing allele G of rs12459350 and PHV/adult height increasing allele A of rs4794665 both being significant predisposition alleles of AIS (P = 0.001 for rs12459350, odds ratio = 1.16, 95% confidence interval = 1.06-1.27; P = 0.006 for rs4794665, odd ratio = 1.33, 95% confidence interval = 1.09-1.62). None of the genotyped SNPs was associated with curve severity in patients with AIS. Polymorphisms of the rs4794665 in C17orf67 and rs12459350 in DOT1L were associated with combined predisposition to AIS susceptibility and higher pubertal PHV, which strongly mirrored the

  13. Determinism and Underdetermination in Genetics: Implications for Students' Engagement in Argumentation and Epistemic Practices

    NASA Astrophysics Data System (ADS)

    Jiménez-Aleixandre, María Pilar

    2014-02-01

    In the last two decades science studies and science education research have shifted from an interest in products (of science or of learning), to an interest in processes and practices. The focus of this paper is on students' engagement in epistemic practices (Kelly in Teaching scientific inquiry: Recommendations for research and implementation. Sense Publishers, Rotterdam, pp 99-117, 2008), or on their practical epistemologies (Wickman in Sci Educ 88(3):325-344, 2004). In order to support these practices in genetics classrooms we need to take into account domain-specific features of the epistemology of genetics, in particular issues about determinism and underdetermination. I suggest that certain difficulties may be related to the specific nature of causality in genetics, and in particular to the correspondence between a given set of factors and a range of potential effects, rather than a single one. The paper seeks to bring together recent developments in the epistemology of biology and of genetics, on the one hand, with science education approaches about epistemic practices, on the other. The implications of these perspectives for current challenges in learning genetics are examined, focusing on students' engagement in epistemic practices, as argumentation, understood as using evidence to evaluate knowledge claims. Engaging in argumentation in genetics classrooms is intertwined with practices such as using genetics models to build explanations, or framing genetics issues in their social context. These challenges are illustrated with studies making part of our research program in the USC.

  14. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis

    PubMed Central

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2016-01-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  15. Genome-wide meta-analysis identifies novel determinants of circulating serum progranulin.

    PubMed

    Tönjes, Anke; Scholz, Markus; Krüger, Jacqueline; Krause, Kerstin; Schleinitz, Dorit; Kirsten, Holger; Gebhardt, Claudia; Marzi, Carola; Grallert, Harald; Ladenvall, Claes; Heyne, Henrike; Laurila, Esa; Kriebel, Jennifer; Meisinger, Christa; Rathmann, Wolfgang; Gieger, Christian; Groop, Leif; Prokopenko, Inga; Isomaa, Bo; Beutner, Frank; Kratzsch, Jürgen; Fischer-Rosinsky, Antje; Pfeiffer, Andreas; Krohn, Knut; Spranger, Joachim; Thiery, Joachim; Blüher, Matthias; Stumvoll, Michael; Kovacs, Peter

    2018-02-01

    Progranulin is a secreted protein with important functions in processes including immune and inflammatory response, metabolism and embryonic development. The present study aimed at identification of genetic factors determining progranulin concentrations. We conducted a genome-wide association meta-analysis for serum progranulin in three independent cohorts from Europe: Sorbs (N = 848) and KORA (N = 1628) from Germany and PPP-Botnia (N = 335) from Finland (total N = 2811). Single nucleotide polymorphisms (SNPs) associated with progranulin levels were replicated in two additional German cohorts: LIFE-Heart Study (Leipzig; N = 967) and Metabolic Syndrome Berlin Potsdam (Berlin cohort; N = 833). We measured mRNA expression of genes in peripheral blood mononuclear cells (PBMC) by micro-arrays and performed mRNA expression quantitative trait and expression-progranulin association studies to functionally substantiate identified loci. Finally, we conducted siRNA silencing experiments in vitro to validate potential candidate genes within the associated loci. Heritability of circulating progranulin levels was estimated at 31.8% and 26.1% in the Sorbs and LIFE-Heart cohort, respectively. SNPs at three loci reached study-wide significance (rs660240 in CELSR2-PSRC1-MYBPHL-SORT1, rs4747197 in CDH23-PSAP and rs5848 in GRN) explaining 19.4%/15.0% of the variance and 61%/57% of total heritability in the Sorbs/LIFE-Heart Study. The strongest evidence for association was at rs660240 (P = 5.75 × 10-50), which was also associated with mRNA expression of PSRC1 in PBMC (P = 1.51 × 10-21). Psrc1 knockdown in murine preadipocytes led to a consecutive 30% reduction in progranulin secretion. In conclusion, the present meta-GWAS combined with mRNA expression identified three loci associated with progranulin and supports the role of PSRC1 in the regulation of progranulin secretion. © The Author(s) 2017. Published by Oxford University Press. All rights

  16. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail

    PubMed Central

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  17. Determinants of genetic structure in a nonequilibrium metapopulation of the plant Silene latifolia.

    PubMed

    Fields, Peter D; Taylor, Douglas R

    2014-01-01

    Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, Silene latifolia, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase FST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. FST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.

  18. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES)

    PubMed Central

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong

    2018-01-01

    Background Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. Material/Methods Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. Results From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10−4). Conclusions This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations. PMID:29505555

  19. Polygenic sex determination in the cichlid fish Astatotilapia burtoni.

    PubMed

    Roberts, Natalie B; Juntti, Scott A; Coyle, Kaitlin P; Dumont, Bethany L; Stanley, M Kaitlyn; Ryan, Allyson Q; Fernald, Russell D; Roberts, Reade B

    2016-10-26

    The East African riverine cichlid species Astatotilapia burtoni serves as an important laboratory model for sexually dimorphic physiology and behavior, and also serves as an outgroup species for the explosive adaptive radiations of cichlid species in Lake Malawi and Lake Victoria. An astounding diversity of genetic sex determination systems have been revealed within the adaptive radiation of East African cichlids thus far, including polygenic sex determination systems involving the epistatic interaction of multiple, independently segregating sex determination alleles. However, sex determination has remained unmapped in A. burtoni. Here we present mapping results supporting the presence of multiple, novel sex determination alleles, and thus the presence of polygenic sex determination in A. burtoni. Using mapping in small families in conjunction with restriction-site associated DNA sequencing strategies, we identify associations with sex at loci on linkage group 13 and linkage group 5-14. Inheritance patterns support an XY sex determination system on linkage group 5-14 (a chromosome fusion relative to other cichlids studied), and an XYW system on linkage group 13, and these associations are replicated in multiple families. Additionally, combining our genetic data with comparative genomic analysis identifies another fusion that is unassociated with sex, with linkage group 8-24 and linkage group 16-21 fused in A. burtoni relative to other East African cichlid species. We identify genetic signals supporting the presence of three previously unidentified sex determination alleles at two loci in the species A. burtoni, strongly supporting the presence of polygenic sex determination system in the species. These results provide a foundation for future mapping of multiple sex determination genes and their interactions. A better understanding of sex determination in A. burtoni provides important context for their use in behavioral studies, as well as studies of the evolution

  20. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats.

    PubMed

    Decano, Julius L; Pasion, Khristine A; Black, Nicole; Giordano, Nicholas J; Herrera, Victoria L; Ruiz-Opazo, Nelson

    2016-01-11

    Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and

  1. Genetic determinants of cardiometabolic risk factors in rural families in Brazil.

    PubMed

    Pena, Geórgia G; Martinez-Perez, Angel; Dutra, Míriam Santos; Gazzinelli, Andrea; Corrêa-Oliveira, Rodrigo; Soria, José M; Velasquez-Melendez, Gustavo

    2016-09-10

    The purpose of this study was to estimate the heritability of genetic and environmental correlations between cardiometabolic risk factors in extended pedigrees. The Jequitinhonha Community Family Study Cohort (JCFSC) consists of individuals aged ≥18 years living in rural villages. Family pedigrees were constructed of the cohort. The following data were collected: demographic and socioeconomic status, lifestyle variables, anthropometrics, and lipid traits. The JCFSC consists of 931 individuals distributed into 69 pedigrees with 4,907 members in total. The heritabilities were 0.47 for total cholesterol (TC), 0.44 for triglycerides (TG) and 0.42 for high-density lipoprotein cholesterol (HDLc), 0.49 for metabolic syndrome, approximately 0.60 for anthropometric traits and 0.30 for blood pressure/hypertension. Significant genetic correlations (ρg ) were found mainly between TG and TC (ρg  = 0.58) and hypertension and TG (ρg  = 0.52). Systolic blood pressure (SBP) was correlated with TG (ρg  = 0.39) and HDLc (ρg  = -0.30). Diastolic blood pressures correlated with TG (ρg =0.56) and TC (ρg =0.30). Genetic correlations were also found between anthropometric traits, including: body mass index (BMI) and TG (ρg =0.34), waist circumference (WC) and TG (ρg =0.42), and WC and HDLc (ρg =-0.33). Household effects were found for HDLc (c(2) = 0.19), SBP (c(2)  = 0.14) and Hypertension (c(2) = 0.14). To some phenotypes, including lipids, hypertension, blood pressure, and anthropometric traits, genetic contribution is important in the determination of cardiometabolic risk factors. This study provides a foundation for future studies. These will mainly focus on rare variants that could describe the genetic mechanisms influencing cardiometabolic risk. Am. J. Hum. Biol. 28:619-626, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses

    PubMed Central

    Derringer, Jaime; Gratten, Jacob; Lee, James J; Liu, Jimmy Z; de Vlaming, Ronald; Ahluwalia, Tarunveer S; Buchwald, Jadwiga; Cavadino, Alana; Frazier-Wood, Alexis C; Davies, Gail; Furlotte, Nicholas A; Garfield, Victoria; Geisel, Marie Henrike; Gonzalez, Juan R; Haitjema, Saskia; Karlsson, Robert; van der Laan, Sander W; Ladwig, Karl-Heinz; Lahti, Jari; van der Lee, Sven J; Miller, Michael B; Lind, Penelope A; Liu, Tian; Matteson, Lindsay; Mihailov, Evelin; Minica, Camelia C; Nolte, Ilja M; Mook-Kanamori, Dennis O; van der Most, Peter J; Oldmeadow, Christopher; Qian, Yong; Raitakari, Olli; Rawal, Rajesh; Realo, Anu; Rueedi, Rico; Schmidt, Börge; Smith, Albert V; Stergiakouli, Evie; Tanaka, Toshiko; Taylor, Kent; Thorleifsson, Gudmar; Wedenoja, Juho; Wellmann, Juergen; Westra, Harm-Jan; Willems, Sara M; Zhao, Wei; Amin, Najaf; Bakshi, Andrew; Bergmann, Sven; Bjornsdottir, Gyda; Boyle, Patricia A; Cherney, Samantha; Cox, Simon R; Davis, Oliver S P; Ding, Jun; Direk, Nese; Eibich, Peter; Emeny, Rebecca T; Fatemifar, Ghazaleh; Faul, Jessica D; Ferrucci, Luigi; Forstner, Andreas J; Gieger, Christian; Gupta, Richa; Harris, Tamara B; Harris, Juliette M; Holliday, Elizabeth G; Hottenga, Jouke-Jan; De Jager, Philip L; Kaakinen, Marika A; Kajantie, Eero; Karhunen, Ville; Kolcic, Ivana; Kumari, Meena; Launer, Lenore J; Franke, Lude; Li-Gao, Ruifang; Liewald, David C; Koini, Marisa; Loukola, Anu; Marques-Vidal, Pedro; Montgomery, Grant W; Mosing, Miriam A; Paternoster, Lavinia; Pattie, Alison; Petrovic, Katja E; Pulkki-Råback, Laura; Quaye, Lydia; Räikkönen, Katri; Rudan, Igor; Scott, Rodney J; Smith, Jennifer A; Sutin, Angelina R; Trzaskowski, Maciej; Vinkhuyzen, Anna E; Yu, Lei; Zabaneh, Delilah; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Boomsma, Dorret I; Snieder, Harold; Chang, Shun-Chiao; Cucca, Francesco; Deary, Ian J; van Duijn, Cornelia M; Eriksson, Johan G; Bültmann, Ute; de Geus, Eco J C; Groenen, Patrick J F; Gudnason, Vilmundur; Hansen, Torben; Hartman, Catharine A; Haworth, Claire M A; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Hyppönen, Elina; Iacono, William G; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Keltikangas-Järvinen, Liisa; Kraft, Peter; Kubzansky, Laura D; Lehtimäki, Terho; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Mills, Melinda; de Mutsert, Renée; Oldehinkel, Albertine J; Pasterkamp, Gerard; Pedersen, Nancy L; Plomin, Robert; Polasek, Ozren; Power, Christine; Rich, Stephen S; Rosendaal, Frits R; den Ruijter, Hester M; Schlessinger, David; Schmidt, Helena; Svento, Rauli; Schmidt, Reinhold; Alizadeh, Behrooz Z; Sørensen, Thorkild I A; Spector, Tim D; Starr, John M; Stefansson, Kari; Steptoe, Andrew; Terracciano, Antonio; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Uitterlinden, André G; Vollenweider, Peter; Wagner, Gert G; Weir, David R; Yang, Jian; Conley, Dalton C; Smith, George Davey; Hofman, Albert; Johannesson, Magnus; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Pickrell, Joseph K; Esko, Tõnu; Krueger, Robert F; Beauchamp, Jonathan P; Koellinger, Philipp D; Benjamin, Daniel J; Bartels, Meike; Cesarini, David

    2016-01-01

    We conducted genome-wide association studies of three phenotypes: subjective well-being (N = 298,420), depressive symptoms (N = 161,460), and neuroticism (N = 170,910). We identified three variants associated with subjective well-being, two with depressive symptoms, and eleven with neuroticism, including two inversion polymorphisms. The two depressive symptoms loci replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings, and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal/pancreas tissues are strongly enriched for association. PMID:27089181

  3. A reverse genetics approach identifies novel mutants in light responses and anthocyanin metabolism in petunia.

    PubMed

    Berenschot, Amanda S; Quecini, Vera

    2014-01-01

    Flower color and plant architecture are important commercially valuable features for ornamental petunias (Petunia x hybrida Vilm.). Photoperception and light signaling are the major environmental factors controlling anthocyanin and chlorophyll biosynthesis and shade-avoidance responses in higher plants. The genetic regulators of these processes were investigated in petunia by in silico analyses and the sequence information was used to devise a reverse genetics approach to probe mutant populations. Petunia orthologs of photoreceptor, light-signaling components and anthocyanin metabolism genes were identified and investigated for functional conservation by phylogenetic and protein motif analyses. The expression profiles of photoreceptor gene families and of transcription factors regulating anthocyanin biosynthesis were obtained by bioinformatic tools. Two mutant populations, generated by an alkalyting agent and by gamma irradiation, were screened using a phenotype-independent, sequence-based method by high-throughput PCR-based assay. The strategy allowed the identification of novel mutant alleles for anthocyanin biosynthesis (CHALCONE SYNTHASE) and regulation (PH4), and for light signaling (CONSTANS) genes.

  4. Identifying Needs: a Qualitative Study of women's Experiences Regarding Rapid Genetic Testing for Hereditary Breast and Ovarian Cancer in the DNA BONus Study.

    PubMed

    Augestad, Mirjam Tonheim; Høberg-Vetti, Hildegunn; Bjorvatn, Cathrine; Sekse, Ragnhild Johanne Tveit

    2017-02-01

    Genetic testing for hereditary breast and ovarian cancer is increasingly being offered in newly diagnosed breast and ovarian cancer patients. This genetic information may influence treatment decisions. However, there are some concerns that genetic testing offered in an already vulnerable situation might be an extra burden to these women. The aim of this study was to explore the experiences of women who had been offered and accepted genetic testing when newly diagnosed with breast or ovarian cancer. Four semi-structured focus-group interviews were conducted with 17 women recruited from a Norwegian multicenter study. The material was condensed, and conventional qualitative analysis was used to identify patterns in the participants' descriptions. Three core themes were identified: 1) being "beside oneself" 2) altruism and ethical dilemmas 3) the need for support and counselling to assist the decision process. The present study indicates that women who are offered genetic testing when newly diagnosed with breast or ovarian cancer want a consultation with a health professional. Personalized support and counselling might empower women to improve their ability to manage and comprehend this overwhelming situation, and find meaning in this experience.

  5. Chemical genetic screening identifies a novel inhibitor of parallel alignment of cortical microtubules and cellulose microfibrils.

    PubMed

    Yoneda, Arata; Higaki, Takumi; Kutsuna, Natsumaro; Kondo, Yoichi; Osada, Hiroyuki; Hasezawa, Seiichiro; Matsui, Minami

    2007-10-01

    It is a well-known hypothesis that cortical microtubules control the direction of cellulose microfibril deposition, and that the parallel cellulose microfibrils determine anisotropic cell expansion and plant cell morphogenesis. However, the molecular mechanism by which cortical microtubules regulate the orientation of cellulose microfibrils is still unclear. To investigate this mechanism, chemical genetic screening was performed. From this screening, 'SS compounds' were identified that induced a spherical swelling phenotype in tobacco BY-2 cells. The SS compounds could be categorized into three classes: those that disrupted the cortical microtubules; those that reduced cellulose microfibril content; and thirdly those that had neither of these effects. In the last class, a chemical designated 'cobtorin' was found to induce the spherical swelling phenotype at the lowest concentration, suggesting strong binding activity to the putative target. Examining cellulose microfibril regeneration using taxol-treated protoplasts revealed that the cobtorin compound perturbed the parallel alignment of pre-existing cortical microtubules and nascent cellulose microfibrils. Thus, cobtorin could be a novel inhibitor and an attractive tool for further investigation of the mechanism that enables cortical microtubules to guide the parallel deposition of cellulose microfibrils.

  6. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies

    PubMed Central

    2014-01-01

    Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the

  7. Identifying determinants of care for tailoring implementation in chronic diseases: an evaluation of different methods.

    PubMed

    Krause, Jane; Van Lieshout, Jan; Klomp, Rien; Huntink, Elke; Aakhus, Eivind; Flottorp, Signe; Jaeger, Cornelia; Steinhaeuser, Jost; Godycki-Cwirko, Maciek; Kowalczyk, Anna; Agarwal, Shona; Wensing, Michel; Baker, Richard

    2014-08-12

    The tailoring of implementation interventions includes the identification of the determinants of, or barriers to, healthcare practice. Different methods for identifying determinants have been used in implementation projects, but which methods are most appropriate to use is unknown. The study was undertaken in five European countries, recommendations for a different chronic condition being addressed in each country: Germany (polypharmacy in multimorbid patients); the Netherlands (cardiovascular risk management); Norway (depression in the elderly); Poland (chronic obstructive pulmonary disease--COPD); and the United Kingdom (UK) (obesity). Using samples of professionals and patients in each country, three methods were compared directly: brainstorming amongst health professionals, interviews of health professionals, and interviews of patients. The additional value of discussion structured through reference to a checklist of determinants in addition to brainstorming, and determinants identified by open questions in a questionnaire survey, were investigated separately. The questionnaire, which included closed questions derived from a checklist of determinants, was administered to samples of health professionals in each country. Determinants were classified according to whether it was likely that they would inform the design of an implementation intervention (defined as plausibly important determinants). A total of 601 determinants judged to be plausibly important were identified. An additional 609 determinants were judged to be unlikely to inform an implementation intervention, and were classified as not plausibly important. Brainstorming identified 194 of the plausibly important determinants, health professional interviews 152, patient interviews 63, and open questions 48. Structured group discussion identified 144 plausibly important determinants in addition to those already identified by brainstorming. Systematic methods can lead to the identification of large

  8. Genetic overlap between type 2 diabetes and major depressive disorder identified by bioinformatics analysis.

    PubMed

    Ji, Hong-Fang; Zhuang, Qi-Shuai; Shen, Liang

    2016-04-05

    Our study investigated the shared genetic etiology underlying type 2 diabetes (T2D) and major depressive disorder (MDD) by analyzing large-scale genome wide association studies statistics. A total of 496 shared SNPs associated with both T2D and MDD were identified at p-value ≤ 1.0E-07. Functional enrichment analysis showed that the enriched pathways pertained to immune responses (Fc gamma R-mediated phagocytosis, T cell and B cell receptors signaling), cell signaling (MAPK, Wnt signaling), lipid metabolism, and cancer associated pathways. The findings will have potential implications for future interventional studies of the two diseases.

  9. Genetics, epidemiology, and cancer disparities: is it black and white?

    PubMed

    Rebbeck, Timothy R; Halbert, Chanita Hughes; Sankar, Pamela

    2006-05-10

    Epidemiologic studies attempt to understand the distribution and determinants of human disease. Epidemiologic research often incorporates information about race, ethnicity, or ancestry, usually as a self-identified race or ethnicity (SIRE) variable. Differences in the distribution and determinants of disease on the basis of SIRE may be identified in these studies. In addition, genetic and other biologic differences according to SIRE are frequently reported. If these differences are real and meaningful, they may have value in identifying disease-causative or -preventive factors, and thus may be beneficial to human health. However, the concepts of race, ethnicity, or ancestry are often poorly considered or crudely applied, particularly in genetic studies of disease etiology or outcome. Consequently, results suggesting genetic differences with respect to disease etiology or outcome across SIRE groups may not be meaningful; in fact, these differences may prove harmful if they propagate stereotypes or spurious differences. Therefore, it is critical to properly consider the meaning, definitions, and use of race, ethnicity, or ancestry in molecular epidemiologic studies.

  10. Comparative analysis of Edwardsiella isolates from fish in the eastern United States identifies two distinct genetic taxa amongst organisms phenotypically classified as E. tarda

    USGS Publications Warehouse

    Griffin, Matt J.; Quiniou, Sylvie M.; Cody, Theresa; Tabuchi, Maki; Ware, Cynthia; Cipriano, Rocco C.; Mauel, Michael J.; Soto, Esteban

    2013-01-01

    Edwardsiella tarda, a Gram-negative member of the family Enterobacteriaceae, has been implicated in significant losses in aquaculture facilities worldwide. Here, we assessed the intra-specific variability of E. tarda isolates from 4 different fish species in the eastern United States. Repetitive sequence mediated PCR (rep-PCR) using 4 different primer sets (ERIC I & II, ERIC II, BOX, and GTG5) and multi-locus sequence analysis of 16S SSU rDNA, groEl, gyrA, gyrB, pho, pgi, pgm, and rpoA gene fragments identified two distinct genotypes of E. tarda (DNA group I; DNA group II). Isolates that fell into DNA group II demonstrated more similarity to E. ictaluri than DNA group I, which contained the reference E. tarda strain (ATCC #15947). Conventional PCR analysis using published E. tarda-specific primer sets yielded variable results, with several primer sets producing no observable amplification of target DNA from some isolates. Fluorometric determination of G + C content demonstrated 56.4% G + C content for DNA group I, 60.2% for DNA group II, and 58.4% for E. ictaluri. Surprisingly, these isolates were indistinguishable using conventional biochemical techniques, with all isolates demonstrating phenotypic characteristics consistent with E. tarda. Analysis using two commercial test kits identified multiple phenotypes, although no single metabolic characteristic could reliably discriminate between genetic groups. Additionally, anti-microbial susceptibility and fatty acid profiles did not demonstrate remarkable differences between groups. The significant genetic variation (<90% similarity at gyrA, gyrB, pho, phi and pgm; <40% similarity by rep-PCR) between these groups suggests organisms from DNA group II may represent an unrecognized, genetically distinct taxa of Edwardsiella that is phenotypically indistinguishable from E. tarda.

  11. Genetics of preeclampsia: what are the challenges?

    PubMed

    Bernard, Nathalie; Giguère, Yves

    2003-07-01

    Despite recent efforts to identify susceptibility genes of preeclampsia, the genetic determinants of the condition remain ill-defined, as is the situation for most disorders of complex inheritance patterns. The angiotensinogen, factor V, and methylenetetrahydrofolate reductase genes have been investigated in different populations, as have other genes involved in blood pressure, vascular volume control, thrombophilia, lipid metabolism, oxidative stress, and endothelial dysfunction. The study of the genetics of complex traits is faced with both methodological and genetic issues; these include adequate sample size to allow for the identification of modest genetic effects, of gene-gene and gene-environment interactions, the study of adequate quantitative traits and extreme phenotypes, haplotype analyses, statistical genetics, genome-wide (hypothesis-free) versus candidate-gene (hypothesis-driven) approaches, and the validation of positive associations. The use of genetically well-characterized populations showing a founder effect, such as the French-Canadian population of Quebec, in genetic association studies, may help to unravel the susceptibility genes of disorders showing complex inheritance, such as preeclampsia. It is necessary to better evaluate the role of the fetal genome in the resulting predisposition to preeclampsia and its complications. Eventually, we may be able to integrate genetic information to better identify the women at risk of developing preeclampsia, and to improve the management of those suffering from this condition.

  12. Historical and ecological determinants of genetic structure in arctic canids.

    PubMed

    Carmichael, L E; Krizan, J; Nagy, J A; Fuglei, E; Dumond, M; Johnson, D; Veitch, A; Berteaux, D; Strobeck, C

    2007-08-01

    Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.

  13. Conserved genetic determinant of motor organ identity in Medicago truncatula and related legumes

    PubMed Central

    Chen, Jianghua; Moreau, Carol; Liu, Yu; Kawaguchi, Masayoshi; Hofer, Julie; Ellis, Noel; Chen, Rujin

    2012-01-01

    Plants exhibit various kinds of movements that have fascinated scientists and the public for centuries. Physiological studies in plants with the so-called motor organ or pulvinus suggest that cells at opposite sides of the pulvinus mediate leaf or leaflet movements by swelling and shrinking. How motor organ identity is determined is unknown. Using a genetic approach, we isolated a mutant designated elongated petiolule1 (elp1) from Medicago truncatula that fails to fold its leaflets in the dark due to loss of motor organs. Map-based cloning indicated that ELP1 encodes a putative plant-specific LOB domain transcription factor. RNA in situ analysis revealed that ELP1 is expressed in primordial cells that give rise to the motor organ. Ectopic expression of ELP1 resulted in dwarf plants with petioles and rachises reduced in length, and the epidermal cells gained characteristics of motor organ epidermal cells. By identifying ELP1 orthologs from other legume species, namely pea (Pisum sativum) and Lotus japonicus, we show that this motor organ identity is regulated by a conserved molecular mechanism. PMID:22689967

  14. A Genetic Approach to Identifying Signal Transduction Mechanisms Initiated by Receptors for TGF-B-Related Factors.

    DTIC Science & Technology

    1998-10-01

    resistant to TGF-ß-induced growth arrest suggest that both types of receptors are required for signaling (Boyd and Massague, 1989; Laiho et ah, 1990...II in TGF-ß- resistant cell mutants implicates both receptor types in signal transduction. J. Biol. Chem. 265, 18518-18524. Lechleider, R. J., de...I-1 « -J AD GRANT NUMBER DAMD17-94-J-4339 TITLE: A Genetic Approach to Identifying Signal Transduction Mechanisms Initiated by Receptors

  15. Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Ryles, April B; Kohannim, Omid; Jahanshad, Neda; Medland, Sarah E; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Martin, Nicholas G; Wright, Margaret J; Saykin, Andrew J; Jack, Clifford R; Weiner, Michael W; Toga, Arthur W; Thompson, Paul M

    2013-06-01

    Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (P MA  = 4.79 × 10(-8)). This commonly-carried genetic variant accounted for 2.68 % and 0.84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.

  16. Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer.

    PubMed

    Bar-Peled, Liron; Kemper, Esther K; Suciu, Radu M; Vinogradova, Ekaterina V; Backus, Keriann M; Horning, Benjamin D; Paul, Thomas A; Ichu, Taka-Aki; Svensson, Robert U; Olucha, Jose; Chang, Max W; Kok, Bernard P; Zhu, Zhou; Ihle, Nathan T; Dix, Melissa M; Jiang, Ping; Hayward, Matthew M; Saez, Enrique; Shaw, Reuben J; Cravatt, Benjamin F

    2017-10-19

    The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ethical and professional challenges posed by patients with genetic concerns: a report of focus group discussions with genetic counselors, physicians, and nurses.

    PubMed

    Veach, P M; Bartels, D M; LeRoy, B S

    2001-04-01

    Ninety-seven physicians, nurses, and genetic counselors from four regions within the United States participated in focus groups to identify the types of ethical and professional challenges that arise when their patients have genetic concerns. Responses were taped and transcribed and then analyzed using the Hill et al. (1997, Counsel Psychol 25:517-522) Consensual Qualitative Research method of analysis. Sixteen major ethical and professional domains and 63 subcategories were identified. Major domains are informed consent; withholding information; facing uncertainty; resource allocation; value conflicts, directiveness/nondirectiveness; determining the primary patient; professional identity issues; emotional responses; diversity issues; confidentiality; attaining/maintaining proficiency; professional misconduct; discrimination; colleague error; and documentation. Implications for practitioners who deal with genetic issues and recommendations for additional research are given.

  18. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture

    PubMed Central

    Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C.P.G.M.; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R.; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce BJ; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia MT; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent

    2016-01-01

    SUMMARY The extent to which low-frequency (minor allele frequency [MAF] between 1–5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is largely unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic fractures and has been previously associated with common genetic variants1–8, and rare, population-specific, coding variants9. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n=2,882 from UK10K), whole-exome sequencing (n= 3,549), deep imputation of genotyped samples using a combined UK10K/1000Genomes reference panel (n=26,534), and de-novo replication genotyping (n= 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size 4-fold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20 standard deviations [SD], Pmeta = 2×10−14), which was also associated with a decreased risk of fracture (OR = 0.85; P = 2×10−11; ncases = 98,742 and ncontrols = 409,511). Using an En1Cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, likely as a consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817[T], MAF = 1.1%, replication effect size = +0.39 SD, Pmeta = 1×10−11). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of

  19. What determines blood vessel structure? Genetic prespecification vs. hemodynamics.

    PubMed

    Jones, Elizabeth A V; le Noble, Ferdinand; Eichmann, Anne

    2006-12-01

    Vascular network remodeling, angiogenesis, and arteriogenesis play an important role in the pathophysiology of ischemic cardiovascular diseases and cancer. Based on recent studies of vascular network development in the embryo, several novel aspects to angiogenesis have been identified as crucial to generate a functional vascular network. These aspects include specification of arterial and venous identity in vessels and network patterning. In early embryogenesis, vessel identity and positioning are genetically hardwired and involve neural guidance genes expressed in the vascular system. We demonstrated that, during later stages of embryogenesis, blood flow plays a crucial role in regulating vessel identity and network remodeling. The flow-evoked remodeling process is dynamic and involves a high degree of vessel plasticity. The open question in the field is how genetically predetermined processes in vessel identity and patterning balance with the contribution of blood flow in shaping a functional vascular architecture. Although blood flow is essential, it remains unclear to what extent flow is able to act on the developing cardiovascular system. There is significant evidence that mechanical forces created by flowing blood are biologically active within the embryo and that the level of mechanical forces and the type of flow patterns present in the embryo are able to affect gene expression. Here, we highlight the pivotal role for blood flow and physical forces in shaping the cardiovascular system.

  20. Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment

    PubMed Central

    Globa, Evgenia; Zelinska, Nataliya; Mackay, Deborah J.G.; Temple, Karen I.; Houghton, Jayne A.L.; Hattersley, Andrew T.; Flanagan, Sarah E.; Ellard, Sian

    2016-01-01

    Background Neonatal diabetes has not been previously studied in Ukraine. We investigated the genetic etiology in patients with onset of diabetes during the first 9 months of life. Methods We established a Pediatric Diabetes Register to identify patients diagnosed with diabetes before 9 months of age. Genetic testing was undertaken for 42 patients with permanent or transient diabetes diagnosed within the first 6 months of life (n=22) or permanent diabetes diagnosed between 6 and 9 months (n=20). Results We determined the genetic etiology in 23 of 42 (55%) patients; 86% of the patients diagnosed before 6 months and 20% diagnosed between 6 and 9 months. The incidence of neonatal diabetes in Ukraine was calculated to be 1 in 126,397 live births. Conclusions Genetic testing for patients identified through the Ukrainian Pediatric Diabetes Register identified KCNJ11 and ABCC8 mutations as the most common cause (52%) of neonatal diabetes. Transfer to sulfonylureas improved glycemic control in all 11 patients. PMID:26208381

  1. Psychosocial aspects of genetic testing.

    PubMed

    Cameron, Linda D; Muller, Cecile

    2009-03-01

    With rapid advances in genetic testing for disease susceptibility, behavioral medicine faces significant challenges in identifying likely patterns of use, how individuals interpret test results, and psychosocial and health impacts of testing. We review recent research on these psychosocial aspects of genetic testing for disease risk. Individuals exhibit limited sensitivity in their perceptions of genetic risk information, and mental representations of disease risk appear to guide testing perceptions and behavioral responses. Motivations to undergo testing are complex, and efforts to develop decision aids are underway. Findings on psychological and behavioral impacts of genetic testing vary markedly, with some evidence of minimal or positive effects and other evidence indicating negative consequences that may be undetectable using common measures of general well being. Recent evidence suggests that genetic risk information can motivate health behavior change. Research demonstrates wide-ranging influences of testing on family dynamics, and use of genetic testing with children is of increasing concern. More research is needed to determine how to structure health communications and counseling to motivate informed use, promote positive responses, and optimize behavior change. Given the ramifications of genetic information for families, personalized genomics will demand a shift toward a family-based healthcare model.

  2. Environmental enrichment imparts disease-modifying and transgenerational effects on genetically-determined epilepsy and anxiety.

    PubMed

    Dezsi, Gabi; Ozturk, Ezgi; Salzberg, Michael R; Morris, Margaret; O'Brien, Terence J; Jones, Nigel C

    2016-09-01

    The absence epilepsies are presumed to be caused by genetic factors, but the influence of environmental exposures on epilepsy development and severity, and whether this influence is transmitted to subsequent generations, is not well known. We assessed the effects of environmental enrichment on epilepsy and anxiety outcomes in multiple generations of GAERS - a genetic rat model of absence epilepsy that manifests comorbid elevated anxiety-like behaviour. GAERS were exposed to environmental enrichment or standard housing beginning either prior to, or after epilepsy onset, and underwent EEG recordings and anxiety testing. Then, we exposed male GAERS to early enrichment or standard housing and generated F1 progeny, which also underwent EEG recordings. Hippocampal CRH mRNA expression and DNA methylation were assessed using RT-PCR and pyrosequencing, respectively. Early environmental enrichment delayed the onset of epilepsy in GAERS, and resulted in fewer seizures in adulthood, compared with standard housed GAERS. Enrichment also reduced the frequency of seizures when initiated in adulthood. Anxiety levels were reduced by enrichment, and these anti-epileptogenic and anxiolytic effects were heritable into the next generation. We also found reduced expression of CRH mRNA in GAERS exposed to enrichment, but this was not due to changes in DNA methylation. Environmental enrichment produces disease-modifying effects on genetically determined absence epilepsy and anxiety, and these beneficial effects are transferable to the subsequent generation. Reduced CRH expression was associated with these phenotypic improvements. Environmental stimulation holds promise as a naturalistic therapy for genetically determined epilepsy which may benefit subsequent generations. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. 75 FR 32356 - Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status for Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2007-0156] Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status for Genetically Engineered High-oleic Soybeans AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are...

  4. Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy.

    PubMed

    Brinkmeyer-Langford, Candice; Balog-Alvarez, Cynthia; Cai, James J; Davis, Brian W; Kornegay, Joe N

    2016-08-22

    Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes.

  5. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome.

    PubMed

    Spigler, R B; Lewers, K S; Main, D S; Ashman, T-L

    2008-12-01

    The evolution of separate sexes (dioecy) from hermaphroditism is one of the major evolutionary transitions in plants, and this transition can be accompanied by the development of sex chromosomes. Studies in species with intermediate sexual systems are providing unprecedented insight into the initial stages of sex chromosome evolution. Here, we describe the genetic mechanism of sex determination in the octoploid, subdioecious wild strawberry, Fragaria virginiana Mill., based on a whole-genome simple sequence repeat (SSR)-based genetic map and on mapping sex determination as two qualitative traits, male and female function. The resultant total map length is 2373 cM and includes 212 markers on 42 linkage groups (mean marker spacing: 14 cM). We estimated that approximately 70 and 90% of the total F. virginiana genetic map resides within 10 and 20 cM of a marker on this map, respectively. Both sex expression traits mapped to the same linkage group, separated by approximately 6 cM, along with two SSR markers. Together, our phenotypic and genetic mapping results support a model of gender determination in subdioecious F. virginiana with at least two linked loci (or gene regions) with major effects. Reconstruction of parental genotypes at these loci reveals that both female and hermaphrodite heterogamety exist in this species. Evidence of recombination between the sex-determining loci, an important hallmark of incipient sex chromosomes, suggest that F. virginiana is an example of the youngest sex chromosome in plants and thus a novel model system for the study of sex chromosome evolution.

  6. Breast cancer: determining the genetic profile from ultrasound-guided percutaneous biopsy specimens obtained during the diagnostic workups.

    PubMed

    López Ruiz, J A; Zabalza Estévez, I; Mieza Arana, J A

    2016-01-01

    To evaluate the possibility of determining the genetic profile of primary malignant tumors of the breast from specimens obtained by ultrasound-guided percutaneous biopsies during the diagnostic imaging workup. This is a retrospective study in 13 consecutive patients diagnosed with invasive breast cancer by B-mode ultrasound-guided 12 G core needle biopsy. After clinical indication, the pathologist decided whether the paraffin block specimens seemed suitable (on the basis of tumor size, validity of the sample, and percentage of tumor cells) before sending them for genetic analysis with the MammaPrint® platform. The size of the tumors on ultrasound ranged from 0.6cm to 5cm. In 11 patients the preserved specimen was considered valid and suitable for use in determining the genetic profile. In 1 patient (with a 1cm tumor) the pathologist decided that it was necessary to repeat the core biopsy to obtain additional samples. In 1 patient (with a 5cm tumor) the specimen was not considered valid by the genetic laboratory. The percentage of tumor cells in the samples ranged from 60% to 70%. In 11/13 cases (84.62%) it was possible to do the genetic analysis on the previously diagnosed samples. In most cases, regardless of tumor size, it is possible to obtain the genetic profile from tissue specimens obtained with ultrasound-guided 12 G core biopsy preserved in paraffin blocks. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  7. Evolving Attractive Faces Using Morphing Technology and a Genetic Algorithm: A New Approach to Determining Ideal Facial Aesthetics

    PubMed Central

    Wong, Brian J. F.; Karmi, Koohyar; Devcic, Zlatko; McLaren, Christine E.; Chen, Wen-Pin

    2013-01-01

    Objectives The objectives of this study were to: 1) determine if a genetic algorithm in combination with morphing software can be used to evolve more attractive faces; and 2) evaluate whether this approach can be used as a tool to define or identify the attributes of the ideal attractive face. Study Design Basic research study incorporating focus group evaluations. Methods Digital images were acquired of 250 female volunteers (18–25 y). Randomly selected images were used to produce a parent generation (P) of 30 synthetic faces using morphing software. Then, a focus group of 17 trained volunteers (18–25 y) scored each face on an attractiveness scale ranging from 1 (unattractive) to 10 (attractive). A genetic algorithm was used to select 30 new pairs from the parent generation, and these were morphed using software to produce a new first generation (F1) of faces. The F1 faces were scored by the focus group, and the process was repeated for a total of four iterations of the algorithm. The algorithm mimics natural selection by using the attractiveness score as the selection pressure; the more attractive faces are more likely to morph. All five generations (P-F4) were then scored by three focus groups: a) surgeons (n = 12), b) cosmetology students (n = 44), and c) undergraduate students (n = 44). Morphometric measurements were made of 33 specific features on each of the 150 synthetic faces, and correlated with attractiveness scores using univariate and multivariate analysis. Results The average facial attractiveness scores increased with each generation and were 3.66 (+0.60), 4.59 (±0.73), 5.50 (±0.62), 6.23 (±0.31), and 6.39 (±0.24) for P and F1–F4 generations, respectively. Histograms of attractiveness score distributions show a significant shift in the skew of each curve toward more attractive faces with each generation. Univariate analysis identified nasal width, eyebrow arch height, and lip thickness as being significantly correlated with attractiveness

  8. Evolving attractive faces using morphing technology and a genetic algorithm: a new approach to determining ideal facial aesthetics.

    PubMed

    Wong, Brian J F; Karimi, Koohyar; Devcic, Zlatko; McLaren, Christine E; Chen, Wen-Pin

    2008-06-01

    The objectives of this study were to: 1) determine if a genetic algorithm in combination with morphing software can be used to evolve more attractive faces; and 2) evaluate whether this approach can be used as a tool to define or identify the attributes of the ideal attractive face. Basic research study incorporating focus group evaluations. Digital images were acquired of 250 female volunteers (18-25 y). Randomly selected images were used to produce a parent generation (P) of 30 synthetic faces using morphing software. Then, a focus group of 17 trained volunteers (18-25 y) scored each face on an attractiveness scale ranging from 1 (unattractive) to 10 (attractive). A genetic algorithm was used to select 30 new pairs from the parent generation, and these were morphed using software to produce a new first generation (F1) of faces. The F1 faces were scored by the focus group, and the process was repeated for a total of four iterations of the algorithm. The algorithm mimics natural selection by using the attractiveness score as the selection pressure; the more attractive faces are more likely to morph. All five generations (P-F4) were then scored by three focus groups: a) surgeons (n = 12), b) cos-metology students (n = 44), and c) undergraduate students (n = 44). Morphometric measurements were made of 33 specific features on each of the 150 synthetic faces, and correlated with attractiveness scores using univariate and multivariate analysis. The average facial attractiveness scores increased with each generation and were 3.66 (+0.60), 4.59 (+/-0.73), 5.50 (+/-0.62), 6.23 (+/-0.31), and 6.39 (+/-0.24) for P and F1-F4 generations, respectively. Histograms of attractiveness score distributions show a significant shift in the skew of each curve toward more attractive faces with each generation. Univariate analysis identified nasal width, eyebrow arch height, and lip thickness as being significantly correlated with attractiveness scores. Multivariate analysis identified a

  9. Genetic Essentialism: On the Deceptive Determinism of DNA

    ERIC Educational Resources Information Center

    Dar-Nimrod, Ilan; Heine, Steven J.

    2011-01-01

    This article introduces the notion of genetic essentialist biases: cognitive biases associated with essentialist thinking that are elicited when people encounter arguments that genes are relevant for a behavior, condition, or social group. Learning about genetic attributions for various human conditions leads to a particular set of thoughts…

  10. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    PubMed

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  11. Phylogeography of Pogonomyrmex barbatus and P. rugosus harvester ants with genetic and environmental caste determination

    USDA-ARS?s Scientific Manuscript database

    Here we present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into...

  12. An update on the genetic architecture of hyperuricemia and gout.

    PubMed

    Merriman, Tony R

    2015-04-10

    Genome-wide association studies that scan the genome for common genetic variants associated with phenotype have greatly advanced medical knowledge. Hyperuricemia is no exception, with 28 loci identified. However, genetic control of pathways determining gout in the presence of hyperuricemia is still poorly understood. Two important pathways determining hyperuricemia have been confirmed (renal and gut excretion of uric acid with glycolysis now firmly implicated). Major urate loci are SLC2A9 and ABCG2. Recent studies show that SLC2A9 is involved in renal and gut excretion of uric acid and is implicated in antioxidant defense. Although etiological variants at SLC2A9 are yet to be identified, it is clear that considerable genetic complexity exists at the SLC2A9 locus, with multiple statistically independent genetic variants and local epistatic interactions. The positions of implicated genetic variants within or near chromatin regions involved in transcriptional control suggest that this mechanism (rather than structural changes in SLC2A9) is important in regulating the activity of SLC2A9. ABCG2 is involved primarily in extra-renal uric acid under-excretion with the etiological variant influencing expression. At the other 26 loci, probable causal genes can be identified at three (PDZK1, SLC22A11, and INHBB) with strong candidates at a further 10 loci. Confirmation of the causal gene will require a combination of re-sequencing, trans-ancestral mapping, and correlation of genetic association data with expression data. As expected, the urate loci associate with gout, although inconsistent effect sizes for gout require investigation. Finally, there has been no genome-wide association study using clinically ascertained cases to investigate the causes of gout in the presence of hyperuricemia. In such a study, use of asymptomatic hyperurcemic controls would be expected to increase the ability to detect genetic associations with gout.

  13. FABP4 plasma concentrations are determined by acquired metabolic derangements rather than genetic determinants.

    PubMed

    Ibarretxe, D; Girona, J; Plana, N; Cabré, A; Heras, M; Ferré, R; Merino, J; Vallvé, J C; Masana, L

    2015-09-01

    Circulating FABP4 is strongly associated with metabolic and cardiovascular risk (CVR) and has been proposed as a new risk biomarker. Several FABP4 gene polymorphisms have been associated with protein expression in vitro and metabolic and vascular alterations in vivo. The aim of this study is to evaluate the impact of FABP4 polymorphisms on FABP4 plasma levels and subclinical arteriosclerosis in patients with obesity, metabolic syndrome (MS) or type 2 diabetes (T2DM). We studied 440 individuals with obesity, MS, T2DM or other cardiovascular risk conditions who attended the vascular medicine and metabolism unit of our hospital. Anamnesis, physical examination and anthropometry data were recorded. Standard biochemical parameters were determined. Plasma FABP4 concentrations were measured. Carotid intima-media thickness (cIMT) was assessed using ultrasonography. The following FABP4 gene single-nucleotide polymorphisms (SNPs) were analyzed: rs3834363, rs16909233, rs1054135, rs77878271, rs10808846 and rs8192688. None of the studied gene allele variants were hyper-represented in patients grouped according the presence of metabolic alterations nor were they associated with the FABP4 concentration. The FABP4 gene variants did not determine cIMT differences between the groups. In a multivariate analysis, gender and BMI, but not gene variants, significantly determined plasma FABP4 concentrations. In clinical settings, the circulating FABP4 levels are determined by the acquired metabolic derangements and not genetic variation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome.

    PubMed

    Dato, Serena; Rose, Giuseppina; Crocco, Paolina; Monti, Daniela; Garagnani, Paolo; Franceschi, Claudio; Passarino, Giuseppe

    2017-07-01

    Approximately one-quarter of the variation in lifespan in developed countries can be attributed to genetic factors. However, even large population based studies investigating genetic influence on human lifespan have been disappointing, identifying only a few genes accounting for genetic susceptibility to longevity. Some environmental and lifestyle determinants associated with longevity have been identified, which interplay with genetic factors in an intricate way. The study of gene-environment and gene-gene interactions can significantly improve our chance to disentangle this complex scenario. In this review, we first describe the most recent approaches for genetic studies of longevity, from those enriched with health parameters and frailty measures to pathway-based and SNP-SNP interaction analyses. Then, we go deeper into the concept of "environmental influences" in human aging and longevity, focusing on the contribution of life style changes, social and cultural influences, as important determinants of survival differences among individuals in a population. Finally, we discuss the contribution of the microbiome in human longevity, as an example of complex interaction between organism and environment. In conclusion, evidences collected from the latest studies on human longevity provide a support for the collection of life-long genetic and environmental/lifestyle variables with beneficial or detrimental effects on health, to improve our understanding of the determinants of human lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Genetic diversity for Russian wheat aphid resistance as determined by genome-wide association mapping and inheritance in progeny

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA) is an increasing problem on barley throughout the world. Genetic resistance has been identified and used to create barley germplasm and cultivars adapted to the US. Several mapping studies have been conducted to identify loci associated with resistance, but questions remain...

  16. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?

    PubMed

    Veturi, Yogasudha; Ritchie, Marylyn D

    2018-01-01

    Transcriptome-wide association studies (TWAS) have recently been employed as an approach that can draw upon the advantages of genome-wide association studies (GWAS) and gene expression studies to identify genes associated with complex traits. Unlike standard GWAS, summary level data suffices for TWAS and offers improved statistical power. Two popular TWAS methods include either (a) imputing the cis genetic component of gene expression from smaller sized studies (using multi-SNP prediction or MP) into much larger effective sample sizes afforded by GWAS - TWAS-MP or (b) using summary-based Mendelian randomization - TWAS-SMR. Although these methods have been effective at detecting functional variants, it remains unclear how extensive variability in the genetic architecture of complex traits and diseases impacts TWAS results. Our goal was to investigate the different scenarios under which these methods yielded enough power to detect significant expression-trait associations. In this study, we conducted extensive simulations based on 6000 randomly chosen, unrelated Caucasian males from Geisinger's MyCode population to compare the power to detect cis expression-trait associations (within 500 kb of a gene) using the above-described approaches. To test TWAS across varying genetic backgrounds we simulated gene expression and phenotype using different quantitative trait loci per gene and cis-expression /trait heritability under genetic models that differentiate the effect of causality from that of pleiotropy. For each gene, on a training set ranging from 100 to 1000 individuals, we either (a) estimated regression coefficients with gene expression as the response using five different methods: LASSO, elastic net, Bayesian LASSO, Bayesian spike-slab, and Bayesian ridge regression or (b) performed eQTL analysis. We then sampled with replacement 50,000, 150,000, and 300,000 individuals respectively from the testing set of the remaining 5000 individuals and conducted GWAS on each

  17. Exploration of genetically determined resistance against hepatitis C infection in high-risk injecting drug users.

    PubMed

    Sugden, P B; Cameron, B; Luciani, F; Lloyd, A R

    2014-08-01

    Genetic resistance to specific infections is well recognized. In hepatitis C virus (HCV) infection, genetic polymorphisms in IL-28B and the killer cell immunoglobulin-like receptors (KIR) and their HLA class I ligands have been shown to affect clearance of the virus following infection. There are limited data regarding resistance to established HCV infection. Reliable quantification of repeated exposure in high-risk populations, such as injecting drug users (IDU), is a key limitation of previous studies of resistance. Behavioural data and DNA from IDU (n = 210) in the Hepatitis C Incidence and Transmission Study in prisons (HITS-p) cohort were genotyped for polymorphisms in: IL-28B, peptidyl-prolyl isomerase A (PPIA), HLA-C and KIR2. To quantify risk, a composite risk index based on factors predictive of incident HCV infection was derived. Logistic regression analysis revealed the risk index was strongly associated with incident HCV infection (P < 0.0001). The upper tertile of the uninfected individuals had risk indices comparable to the incident cases, but remained uninfected. There were no significant differences in the frequencies of IL-28B or PPIA polymorphisms between these exposed-uninfected cases, or in the frequencies of KIR2-DL3, HLA-C1, or their combination. A framework for the investigation of genetic determinants of resistance to HCV infection has been developed. Several candidate gene associations were investigated and excluded. Further investigation of genetic determinants of resistance to HCV infection is warranted. © 2014 John Wiley & Sons Ltd.

  18. Visual Tuning Properties of Genetically Identified Layer 2/3 Neuronal Types in the Primary Visual Cortex of Cre-Transgenic Mice

    PubMed Central

    Zariwala, Hatim A.; Madisen, Linda; Ahrens, Kurt F.; Bernard, Amy; Lein, Edward S.; Jones, Allan R.; Zeng, Hongkui

    2011-01-01

    The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(−) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies. PMID:21283555

  19. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer.

    PubMed

    Kerns, Sarah L; Dorling, Leila; Fachal, Laura; Bentzen, Søren; Pharoah, Paul D P; Barnes, Daniel R; Gómez-Caamaño, Antonio; Carballo, Ana M; Dearnaley, David P; Peleteiro, Paula; Gulliford, Sarah L; Hall, Emma; Michailidou, Kyriaki; Carracedo, Ángel; Sia, Michael; Stock, Richard; Stone, Nelson N; Sydes, Matthew R; Tyrer, Jonathan P; Ahmed, Shahana; Parliament, Matthew; Ostrer, Harry; Rosenstein, Barry S; Vega, Ana; Burnet, Neil G; Dunning, Alison M; Barnett, Gillian C; West, Catharine M L

    2016-08-01

    Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity) and single nucleotide polymorphism (SNP) associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08-4.69, p-value 4.16×10(-8)) and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90-3.86, p-value=3.21×10(-8)). These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling. Copyright © 2016 The Ohio State University Wexner Medical Center. Published by Elsevier B.V. All rights reserved.

  20. "What is this genetics, anyway?" Understandings of genetics, illness causality and inheritance among British Pakistani users of genetic services.

    PubMed

    Shaw, Alison; Hurst, Jane A

    2008-08-01

    Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.

  1. Genetic Determinants Influencing Human Serum Metabolome among African Americans

    PubMed Central

    Yu, Bing; Zheng, Yan; Alexander, Danny; Morrison, Alanna C.; Coresh, Josef; Boerwinkle, Eric

    2014-01-01

    Phenotypes proximal to gene action generally reflect larger genetic effect sizes than those that are distant. The human metabolome, a result of multiple cellular and biological processes, are functional intermediate phenotypes proximal to gene action. Here, we present a genome-wide association study of 308 untargeted metabolite levels among African Americans from the Atherosclerosis Risk in Communities (ARIC) Study. Nineteen significant common variant-metabolite associations were identified, including 13 novel loci (p<1.6×10−10). These loci were associated with 7–50% of the difference in metabolite levels per allele, and the variance explained ranged from 4% to 20%. Fourteen genes were identified within the nineteen loci, and four of them contained non-synonymous substitutions in four enzyme-encoding genes (KLKB1, SIAE, CPS1, and NAT8); the other significant loci consist of eight other enzyme-encoding genes (ACE, GATM, ACY3, ACSM2B, THEM4, ADH4, UGT1A, TREH), a transporter gene (SLC6A13) and a polycystin protein gene (PKD2L1). In addition, four potential disease-associated paths were identified, including two direct longitudinal predictive relationships: NAT8 with N-acetylornithine, N-acetyl-1-methylhistidine and incident chronic kidney disease, and TREH with trehalose and incident diabetes. These results highlight the value of using endophenotypes proximal to gene function to discover new insights into biology and disease pathology. PMID:24625756

  2. Eugenics and genetic testing.

    PubMed

    Holtzman, N A

    1998-01-01

    Pressures to lower health-care costs remain an important stimulus to eugenic approaches. Prenatal diagnosis followed by abortion of affected fetuses has replaced sterilization as the major eugenic technique. Voluntary acceptance has replaced coercion, but subtle pressures undermine personal autonomy. The failure of the old eugenics to accurately predict who will have affected offspring virtually disappears when prenatal diagnosis is used to predict Mendelian disorders. However, when prenatal diagnosis is used to detect inherited susceptibilities to adult-onset, common, complex disorders, considerable uncertainty is inherent in the prediction. Intolerance and the resurgence of genetic determinism are current pressures for a eugenic approach. The increasing use of carrier screening (to identify those at risk of having affected offspring) and of prenatal diagnosis could itself generate intolerance for those who refuse the procedures. Genetic determinism deflects society from social action that would reduce the burden of disease far more than even the maximum use of eugenics.

  3. Performance Analysis of Combined Methods of Genetic Algorithm and K-Means Clustering in Determining the Value of Centroid

    NASA Astrophysics Data System (ADS)

    Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna

    2017-12-01

    The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.

  4. Use of a twin dataset to identify AMD-related visual patterns controlled by genetic factors

    NASA Astrophysics Data System (ADS)

    Quellec, Gwénolé; Abràmoff, Michael D.; Russell, Stephen R.

    2010-03-01

    The mapping of genotype to the phenotype of age-related macular degeneration (AMD) is expected to improve the diagnosis and treatment of the disease in a near future. In this study, we focused on the first step to discover this mapping: we identified visual patterns related to AMD which seem to be controlled by genetic factors, without explicitly relating them to the genes. For this purpose, we used a dataset of eye fundus photographs from 74 twin pairs, either monozygotic twins, who have the same genotype, or dizygotic twins, whose genes responsible for AMD are less likely to be identical. If we are able to differentiate monozygotic twins from dizygotic twins, based on a given visual pattern, then this pattern is likely to be controlled by genetic factors. The main visible consequence of AMD is the apparition of drusen between the retinal pigment epithelium and Bruch's membrane. We developed two automated drusen detectors based on the wavelet transform: a shape-based detector for hard drusen, and a texture- and color- based detector for soft drusen. Forty visual features were evaluated at the location of the automatically detected drusen. These features characterize the texture, the shape, the color, the spatial distribution, or the amount of drusen. A distance measure between twin pairs was defined for each visual feature; a smaller distance should be measured between monozygotic twins for visual features controlled by genetic factors. The predictions of several visual features (75.7% accuracy) are comparable or better than the predictions of human experts.

  5. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    PubMed

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies

    PubMed Central

    Dworkin, Ian; Wagner, Aaron P.

    2014-01-01

    Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847

  7. Determination of the Genetic Architecture Underlying Short Wavelength Sensitivity in Lake Malawi Cichlids.

    PubMed

    Nandamuri, Sri Pratima; Dalton, Brian E; Carleton, Karen L

    2017-06-01

    African cichlids are an exemplary system to study organismal diversity and rapid speciation. Species differ in external morphology including jaw shape and body coloration, but also differ in sensory systems including vision. All cichlids have 7 cone opsin genes with species differing broadly in which opsins are expressed. The differential opsin expression results in closely related species with substantial differences in spectral sensitivity of their photoreceptors. In this work, we take a first step in determining the genetic basis of opsin expression in cichlids. Using a second generation cross between 2 species with different opsin expression patterns, we make a conservative estimate that short wavelength opsin expression is regulated by a few loci. Genetic mapping in 96 F2 hybrids provides clear evidence of a cis-regulatory region for SWS1 opsin that explains 34% of the variation in expression between the 2 species. Additionally, in situ hybridization has shown that SWS1 and SWS2B opsins are coexpressed in individual single cones in the retinas of F2 progeny. Results from this work will contribute to a better understanding of the genetic architecture underlying opsin expression. This knowledge will help answer long-standing questions about the evolutionary processes fundamental to opsin expression variation and how this contributes to adaptive cichlid divergence. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Genetic determinants of cardiometabolic risk: a proposed model for phenotype association and interaction.

    PubMed

    Blackett, Piers R; Sanghera, Dharambir K

    2013-01-01

    This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes, and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus, it follows that the genetics of dyslipidemia, obesity, and nonalcoholic fatty liver disease are central in triggering progression of the syndrome to overt expression of disease traits and have become a key focus of interest for early detection and for designing prevention and treatments. To support the "birds' eye view" approach, we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacologic targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  9. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  10. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  11. A methodological approach to identify agro-biodiversity hotspots for priority in situ conservation of plant genetic resources

    PubMed Central

    Pacicco, Luca; Bodesmo, Mara; Torricelli, Renzo

    2018-01-01

    Agro-biodiversity is seriously threatened worldwide and strategies to preserve it are dramatically required. We propose here a methodological approach aimed to identify areas with a high level of agro-biodiversity in which to set or enhance in situ conservation of plant genetic resources. These areas are identified using three criteria: Presence of Landrace diversity, Presence of wild species and Agro-ecosystem ecological diversity. A Restrictive and an Additive prioritization strategy has been applied on the entire Italian territory and has resulted in establishing nationwide 53 and 197 agro-biodiversity hotspots respectively. At present the strategies can easily be applied at a European level and can be helpful to develop conservation strategies everywhere. PMID:29856765

  12. Genetic, metabolite and developmental determinism of fruit friction discolouration in pear.

    PubMed

    Saeed, Munazza; Brewer, Lester; Johnston, Jason; McGhie, Tony K; Gardiner, Susan E; Heyes, Julian A; Chagné, David

    2014-09-16

    The unattractive appearance of the surface of pear fruit caused by the postharvest disorder friction discolouration (FD) is responsible for significant consumer dissatisfaction in markets, leading to lower returns to growers. Developing an understanding of the genetic control of FD is essential to enable the full application of genomics-informed breeding for the development of new pear cultivars. Biochemical constituents [phenolic compounds and ascorbic acid (AsA)], polyphenol oxidase (PPO) activity, as well as skin anatomy, have been proposed to play important roles in FD susceptibility in studies on a limited number of cultivars. However, to date there has been no investigation on the biochemical and genetic control of FD, employing segregating populations. In this study, we used 250 seedlings from two segregating populations (POP369 and POP356) derived from interspecific crosses between Asian (Pyrus pyrifolia Nakai and P. bretschneideri Rehd.) and European (P. communis) pears to identify genetic factors associated with susceptibility to FD. Single nucleotide polymorphism (SNP)-based linkage maps suitable for QTL analysis were developed for the parents of both populations. The maps for population POP369 comprised 174 and 265 SNP markers for the male and female parent, respectively, while POP356 maps comprised 353 and 398 SNP markers for the male and female parent, respectively. Phenotypic data for 22 variables were measured over two successive years (2011 and 2012) for POP369 and one year (2011) only for POP356. A total of 221 QTLs were identified that were linked to 22 phenotyped variables, including QTLs associated with FD for both populations that were stable over the successive years. In addition, clear evidence of the influence of developmental factors (fruit maturity) on FD and other variables was also recorded. The QTLs associated with fruit firmness, PPO activity, AsA concentration and concentration of polyphenol compounds as well as FD are the first

  13. Genetic mapping of secretion and functional determinants of the Vibrio cholerae TcpF colonization factor.

    PubMed

    Krebs, Shelly J; Kirn, Thomas J; Taylor, Ronald K

    2009-06-01

    Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization.

  14. Genetic Diversity Analysis of Medicinally Important Horticultural Crop Aegle marmelos by ISSR Markers.

    PubMed

    Mujeeb, Farina; Bajpai, Preeti; Pathak, Neelam; Verma, Smita Rastogi

    2017-01-01

    Inter simple sequence repeat (ISSR) markers help in identifying and determining the extent of genetic diversity in cultivars. Here, we describe their application in determining the genetic diversity of bael (Aegle marmelos Corr.). Universal ISSR primers are selected and their marker characteristics such as polymorphism information content, effective multiplex ratio and marker index have been evaluated. ISSR-PCR is then performed using universal ISSR primers to generate polymorphic bands. This information is used to determine the degree of genetic similarity among the bael varieties/accessions by cluster analysis using unweighted pair-group method with arithmetic averages (UPGMA). This technology is valuable for biodiversity conservation and for making an efficient choice of parents in breeding programs.

  15. The Pakistan Risk of Myocardial Infarction Study: a resource for the study of genetic, lifestyle and other determinants of myocardial infarction in South Asia

    PubMed Central

    2009-01-01

    The burden of coronary heart disease (CHD) is increasing at a greater rate in South Asia than in any other region globally, but there is little direct evidence about its determinants. The Pakistan Risk of Myocardial Infarction Study (PROMIS) is an epidemiological resource to enable reliable study of genetic, lifestyle and other determinants of CHD in South Asia. By March 2009, PROMIS had recruited over 5,000 cases of first-ever confirmed acute myocardial infarction (MI) and over 5,000 matched controls aged 30–80 years. For each participant, information has been recorded on demographic factors, lifestyle, medical and family history, anthropometry, and a 12-lead electrocardiogram. A range of biological samples has been collected and stored, including DNA, plasma, serum and whole blood. During its next stage, the study aims to expand recruitment to achieve a total of about 20,000 cases and about 20,000 controls, and, in subsets of participants, to enrich the resource by collection of monocytes, establishment of lymphoblastoid cell lines, and by resurveying participants. Measurements in progress include profiling of candidate biochemical factors, assay of 45,000 variants in 2,100 candidate genes, and a genomewide association scan of over 650,000 genetic markers. We have established a large epidemiological resource for CHD in South Asia. In parallel with its further expansion and enrichment, the PROMIS resource will be systematically harvested to help identify and evaluate genetic and other determinants of MI in South Asia. Findings from this study should advance scientific understanding and inform regionally appropriate disease prevention and control strategies. PMID:19404752

  16. Genetic Variants Related to Height and Risk of Atrial Fibrillation

    PubMed Central

    Rosenberg, Michael A.; Kaplan, Robert C.; Siscovick, David S.; Psaty, Bruce M.; Heckbert, Susan R.; Newton-Cheh, Christopher; Mukamal, Kenneth J.

    2014-01-01

    Increased height is a known independent risk factor for atrial fibrillation (AF). However, whether genetic determinants of height influence risk is uncertain. In this candidate gene study, we examined the association of 209 height-associated single-nucleotide polymorphisms (SNPs) with incident AF in 3,309 persons of European descent from the Cardiovascular Health Study, a prospective cohort study of older adults (aged ≥65 years) enrolled in 1989–1990. After a median follow-up period of 13.2 years, 879 participants developed incident AF. The height-associated SNPs together explained approximately 10% of the variation in height (P = 6.0 × 10−8). Using an unweighted genetic height score, we found a nonsignificant association with risk of AF (per allele, hazard ratio = 1.01, 95% confidence interval: 1.00, 1.02; P = 0.06). In weighted analyses, we found that genetically predicted height was strongly associated with AF risk (per 10 cm, hazard ratio = 1.30, 95% confidence interval: 1.03, 1.64; P = 0.03). Importantly, for all models, the inclusion of actual height completely attenuated the genetic height effect. Finally, we identified 1 nonsynonymous SNP (rs1046934) that was independently associated with AF and may warrant future study. In conclusion, we found that genetic determinants of height appear to increase the risk of AF, primarily via height itself. This approach of examining SNPs associated with an intermediate phenotype should be considered as a method for identifying novel genetic targets. PMID:24944287

  17. A Genome-Wide Linkage Study for Chronic Obstructive Pulmonary Disease in a Dutch Genetic Isolate Identifies Novel Rare Candidate Variants.

    PubMed

    Nedeljkovic, Ivana; Terzikhan, Natalie; Vonk, Judith M; van der Plaat, Diana A; Lahousse, Lies; van Diemen, Cleo C; Hobbs, Brian D; Qiao, Dandi; Cho, Michael H; Brusselle, Guy G; Postma, Dirkje S; Boezen, H M; van Duijn, Cornelia M; Amin, Najaf

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a complex and heritable disease, associated with multiple genetic variants. Specific familial types of COPD may be explained by rare variants, which have not been widely studied. We aimed to discover rare genetic variants underlying COPD through a genome-wide linkage scan. Affected-only analysis was performed using the 6K Illumina Linkage IV Panel in 142 cases clustered in 27 families from a genetic isolate, the Erasmus Rucphen Family (ERF) study. Potential causal variants were identified by searching for shared rare variants in the exome-sequence data of the affected members of the families contributing most to the linkage peak. The identified rare variants were then tested for association with COPD in a large meta-analysis of several cohorts. Significant evidence for linkage was observed on chromosomes 15q14-15q25 [logarithm of the odds (LOD) score = 5.52], 11p15.4-11q14.1 (LOD = 3.71) and 5q14.3-5q33.2 (LOD = 3.49). In the chromosome 15 peak, that harbors the known COPD locus for nicotinic receptors, and in the chromosome 5 peak we could not identify shared variants. In the chromosome 11 locus, we identified four rare (minor allele frequency (MAF) <0.02), predicted pathogenic, missense variants. These were shared among the affected family members. The identified variants localize to genes including neuroblast differentiation-associated protein ( AHNAK ), previously associated with blood biomarkers in COPD, phospholipase C Beta 3 ( PLCB3 ), shown to increase airway hyper-responsiveness, solute carrier family 22-A11 ( SLC22A11 ), involved in amino acid metabolism and ion transport, and metallothionein-like protein 5 ( MTL5 ), involved in nicotinate and nicotinamide metabolism. Association of SLC22A11 and MTL5 variants were confirmed in the meta-analysis of 9,888 cases and 27,060 controls. In conclusion, we have identified novel rare variants in plausible genes related to COPD. Further studies utilizing large sample

  18. 78 FR 37201 - Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status of Maize Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2012-0026] Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status of Maize Genetically Engineered for Herbicide and Insect Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION...

  19. Genetic Determinism of Sensitivity to Corynespora cassiicola Exudates in Rubber Tree (Hevea brasiliensis).

    PubMed

    Tran, Dinh Minh; Clément-Demange, André; Déon, Marine; Garcia, Dominique; Le Guen, Vincent; Clément-Vidal, Anne; Soumahoro, Mouman; Masson, Aurélien; Label, Philippe; Le, Mau Tuy; Pujade-Renaud, Valérie

    2016-01-01

    An indirect phenotyping method was developed in order to estimate the susceptibility of rubber tree clonal varieties to Corynespora Leaf Fall (CLF) disease caused by the ascomycete Corynespora cassiicola. This method consists in quantifying the impact of fungal exudates on detached leaves by measuring the induced electrolyte leakage (EL%). The tested exudates were either crude culture filtrates from diverse C. cassiicola isolates or the purified cassiicolin (Cas1), a small secreted effector protein produced by the aggressive isolate CCP. The test was found to be quantitative, with the EL% response proportional to toxin concentration. For eight clones tested with two aggressive isolates, the EL% response to the filtrates positively correlated to the response induced by conidial inoculation. The toxicity test applied to 18 clones using 13 toxinic treatments evidenced an important variability among clones and treatments, with a significant additional clone x treatment interaction effect. A genetic linkage map was built using 306 microsatellite markers, from the F1 population of the PB260 x RRIM600 family. Phenotyping of the population for sensitivity to the purified Cas1 effector and to culture filtrates from seven C. cassiicola isolates revealed a polygenic determinism, with six QTL detected on five chromosomes and percentages of explained phenotypic variance varying from 11 to 17%. Two common QTL were identified for the CCP filtrate and the purified cassiicolin, suggesting that Cas1 may be the main effector of CCP filtrate toxicity. The CCP filtrate clearly contrasted with all other filtrates. The toxicity test based on Electrolyte Leakage Measurement offers the opportunity to assess the sensitivity of rubber genotypes to C. cassiicola exudates or purified effectors for genetic investigations and early selection, without risk of spreading the fungus in plantations. However, the power of this test for predicting field susceptibility of rubber clones to CLF will have

  20. Genetic Determinism of Sensitivity to Corynespora cassiicola Exudates in Rubber Tree (Hevea brasiliensis)

    PubMed Central

    Tran, Dinh Minh; Clément-Demange, André; Déon, Marine; Garcia, Dominique; Le Guen, Vincent; Clément-Vidal, Anne; Soumahoro, Mouman; Masson, Aurélien; Label, Philippe; Le, Mau Tuy; Pujade-Renaud, Valérie

    2016-01-01

    An indirect phenotyping method was developed in order to estimate the susceptibility of rubber tree clonal varieties to Corynespora Leaf Fall (CLF) disease caused by the ascomycete Corynespora cassiicola. This method consists in quantifying the impact of fungal exudates on detached leaves by measuring the induced electrolyte leakage (EL%). The tested exudates were either crude culture filtrates from diverse C. cassiicola isolates or the purified cassiicolin (Cas1), a small secreted effector protein produced by the aggressive isolate CCP. The test was found to be quantitative, with the EL% response proportional to toxin concentration. For eight clones tested with two aggressive isolates, the EL% response to the filtrates positively correlated to the response induced by conidial inoculation. The toxicity test applied to 18 clones using 13 toxinic treatments evidenced an important variability among clones and treatments, with a significant additional clone x treatment interaction effect. A genetic linkage map was built using 306 microsatellite markers, from the F1 population of the PB260 x RRIM600 family. Phenotyping of the population for sensitivity to the purified Cas1 effector and to culture filtrates from seven C. cassiicola isolates revealed a polygenic determinism, with six QTL detected on five chromosomes and percentages of explained phenotypic variance varying from 11 to 17%. Two common QTL were identified for the CCP filtrate and the purified cassiicolin, suggesting that Cas1 may be the main effector of CCP filtrate toxicity. The CCP filtrate clearly contrasted with all other filtrates. The toxicity test based on Electrolyte Leakage Measurement offers the opportunity to assess the sensitivity of rubber genotypes to C. cassiicola exudates or purified effectors for genetic investigations and early selection, without risk of spreading the fungus in plantations. However, the power of this test for predicting field susceptibility of rubber clones to CLF will have

  1. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    PubMed

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.

  2. The real maccoyii: identifying tuna sushi with DNA barcodes--contrasting characteristic attributes and genetic distances.

    PubMed

    Lowenstein, Jacob H; Amato, George; Kolokotronis, Sergios-Orestis

    2009-11-18

    The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of "white tuna" were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. The Convention on International Trade Endangered Species (CITES) requires that listed species must be

  3. Feline Genetics: Clinical Applications and Genetic Testing

    PubMed Central

    Lyons, Leslie A.

    2010-01-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately thirty-three genes contain fifty mutations that cause feline health problems or alterations in the cat’s appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab using a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat’s internal genome. PMID:21147473

  4. Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an MRL/MpJ x SM/J intercross.

    PubMed

    Leduc, Magalie S; Blair, Rachael Hageman; Verdugo, Ricardo A; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A; Paigen, Beverly

    2012-06-01

    A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.

  5. Genome-Wide Linkage Analysis to Identify Genetic Modifiers of ALK Mutation Penetrance in Familial Neuroblastoma

    PubMed Central

    Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael

    2011-01-01

    Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404

  6. Genetic analysis identifies the region of origin of smuggled peach palm seeds.

    PubMed

    Cristo-Araújo, Michelly; Molles, David Bronze; Rodrigues, Doriane Picanço; Clement, Charles R

    2017-04-01

    Seeds of a plant, supposedly a palm tree known popularly as peach palm (Bactris gasipaes), were seized by the Federal Police in the state of Pará, Brazil, without documentation of legal origin to authorize transportation and marketing in Brazil. They were alleged to be from the western part of Amazonas, Brazil, near the frontier with Peru and Colombia, justifying the lack of documentation. The species was confirmed to be peach palm. To determine the likely place of origin, a genetic analysis was performed to determine the relationship between the seized seeds and representative populations of peach palm from all of Amazonia, maintained in the Peach palm Core Collection, at the National Research Institute for Amazonia, using nine microsatellite loci. Reynolds' coancestry analysis showed a strong relationship between the seeds and the Pampa Hermosa landrace, around Yurimaguas, Peru. The Structure program, used to infer the probability of an individual belonging to a given population, showed that most seeds grouped with populations close to Yurimaguas, Peru, corroborating the coancestry analysis. The Pampa Hermosa landrace is the main source of spineless peach palm seeds used in the Brazilian heart-of-palm agribusiness, which motivated the smugglers to attempt this biopiracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development.

    PubMed

    Besnard, Fabrice; Koutsovoulos, Georgios; Dieudonné, Sana; Blaxter, Mark; Félix, Marie-Anne

    2017-08-01

    Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae , a distant relative of the model Caenorhabditis elegans We used this draft to identify the likely causative mutations at the O. tipulae cov -3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13 , and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species. Copyright © 2017 by the Genetics Society of America.

  8. Protocol for investigating genetic determinants of posttraumatic stress disorder in women from the Nurses' Health Study II

    PubMed Central

    Koenen, Karestan C; DeVivo, Immaculata; Rich-Edwards, Janet; Smoller, Jordan W; Wright, Rosalind J; Purcell, Shaun M

    2009-01-01

    Background One in nine American women will meet criteria for the diagnosis of posttraumatic stress disorder (PTSD) in their lifetime. Although twin studies suggest genetic influences account for substantial variance in PTSD risk, little progress has been made in identifying variants in specific genes that influence liability to this common, debilitating disorder. Methods and design We are using the unique resource of the Nurses Health Study II, a prospective epidemiologic cohort of 68,518 women, to conduct what promises to be the largest candidate gene association study of PTSD to date. The entire cohort will be screened for trauma exposure and PTSD; 3,000 women will be selected for PTSD diagnostic interviews based on the screening data. Our nested case-control study will genotype1000 women who developed PTSD following a history of trauma exposure; 1000 controls will be selected from women who experienced similar traumas but did not develop PTSD. The primary aim of this study is to detect genetic variants that predict the development of PTSD following trauma. We posit inherited vulnerability to PTSD is mediated by genetic variation in three specific neurobiological systems whose alterations are implicated in PTSD etiology: the hypothalamic-pituitary-adrenal axis, the locus coeruleus/noradrenergic system, and the limbic-frontal neuro-circuitry of fear. The secondary, exploratory aim of this study is to dissect genetic influences on PTSD in the broader genetic and environmental context for the candidate genes that show significant association with PTSD in detection analyses. This will involve: conducting conditional tests to identify the causal genetic variant among multiple correlated signals; testing whether the effect of PTSD genetic risk variants is moderated by age of first trauma, trauma type, and trauma severity; and exploring gene-gene interactions using a novel gene-based statistical approach. Discussion Identification of liability genes for PTSD would

  9. Pulmonary arterial hypertension: Specialists’ knowledge, practices, and attitudes of genetic counseling and genetic testing in the USA

    PubMed Central

    Jacher, Joseph E.; Martin, Lisa J.; Chung, Wendy K.; Loyd, James E.; Nichols, William C.

    2017-01-01

    Pulmonary arterial hypertension (PAH) is characterized by obstruction of pre-capillary pulmonary arteries, which leads to sustained elevation of pulmonary arterial pressure. Identifying those at risk through early interventions, such as genetic testing, may mitigate disease course. Current practice guidelines recommend genetic counseling and offering genetic testing to individuals with heritable PAH, idiopathic PAH, and their family members. However, it is unclear if PAH specialists follow these recommendations. Thus, our research objective was to determine PAH specialists’ knowledge, utilization, and perceptions about genetic counseling and genetic testing. A survey was designed and distributed to PAH specialists who primarily work in the USA to assess their knowledge, practices, and attitudes about the genetics of PAH. Participants’ responses were analyzed using parametric and non-parametric statistics and groups were compared using the Wilcoxon rank sum test. PAH specialists had low perceived and actual knowledge of the genetics of PAH, with 13.2% perceiving themselves as knowledgeable and 27% actually being knowledgeable. Although these specialists had positive or ambivalent attitudes about genetic testing and genetic counseling, they had poor utilization of these genetic services, with almost 80% of participants never or rarely ordering genetic testing or referring their patients with PAH for genetic counseling. Physicians were more knowledgeable, but had lower perceptions of the value of genetic testing and genetic counseling compared to non-physicians (P < 0.05). The results suggest that increased education and awareness is needed about the genetics of PAH as well as the benefits of genetic testing and genetic counseling for individuals who treat patients with PAH. PMID:28597770

  10. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone.

    PubMed

    Cooke, Georgina M; Landguth, Erin L; Beheregaray, Luciano B

    2014-07-01

    Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. Molecular and genetic ecotoxicologic approaches to aquatic environmental bioreporting.

    PubMed Central

    Beaty, B J; Black, W C; Carlson, J O; Clements, W H; DuTeau, N; Harrahy, E; Nuckols, J; Kenneth, E; Olson, K E; Rayms-Keller, A

    1998-01-01

    Molecular and population genetic ecotoxicologic approaches are being developed for the utilization of arthropods as bioreporters of heavy metal mixtures in the environment. The explosion of knowledge in molecular biology, molecular genetics, and biotechnology provides an unparalleled opportunity to use arthropods as bioreporter organisms. Interspecific differences in aquatic arthropod populations have been previously demonstrated in response to heavy metal insult in the Arkansas River (AR) California Gulch Superfund site (CGSS). Population genetic analyses were conducted on the mayfly Baetis tricaudatus. Genetic polymorphisms were detected in polymerase chain reaction amplified 16S mitochondrial rDNA (a selectively neutral gene) of B tricaudatus using single-strand conformation polymorphism analysis. Genetic differences may have resulted from impediments to gene flow in the population caused by mortality arising from exposure to heavy metal mixture pollution. In laboratory studies a candidate metal-responsive mucinlike gene, which is metal and dose specific, has been identified in Chironomus tentans and other potential AR-CGSS bioreporter species. Population genetic analyses using the mucinlike gene may provide insight into the role of this selectable gene in determining the breeding structure of B. tricaudatus in the AR-CGSS and may provide mechanistic insight into determinants of aquatic arthropod response to heavy metal insult. Metal-responsive (MR) genes and regulatory sequences are being isolated, characterized, and assayed for differential gene expression in response to heavy metal mixture pollution in the AR-CGSS. Identified promoter sequences can then be engineered into previously developed MR constructs to provide sensitive in vitro assays for environmental bioreporting of heavy metal mixtures. The results of the population genetic studies are being entered into an AR geographic information system that contains substantial biological, chemical, and

  12. High-Density Genetic Mapping Identifies New Susceptibility Variants in Sarcoidosis Phenotypes and Shows Genomic-driven Phenotypic Differences

    PubMed Central

    Ronninger, Marcus; Shchetynsky, Klementy; Franke, Andre; Nöthen, Markus M.; Müller-Quernheim, Joachim; Schreiber, Stefan; Adrianto, Indra; Karakaya, Bekir; van Moorsel, Coline H. M.; Navratilova, Zdenka; Kolek, Vitezslav; Rybicki, Benjamin A.; Iannuzzi, Michael C.; Petrek, Martin; Grutters, Jan C.; Montgomery, Courtney; Fischer, Annegret; Eklund, Anders; Padyukov, Leonid; Grunewald, Johan

    2016-01-01

    Rationale: Sarcoidosis is a multisystem disease of unknown cause. Löfgren’s syndrome (LS) is a characteristic subgroup of sarcoidosis that is associated with a good prognosis in sarcoidosis. However, little is known about its genetic architecture or its broader phenotype, non-LS sarcoidosis. Objectives: To address the genetic architecture of sarcoidosis phenotypes, LS and non-LS. Methods: An association study in a white Swedish cohort of 384 LS, 664 non-LS, and 2,086 control subjects, totaling 3,134 subjects using a fine-mapping genotyping platform was conducted. Replication was performed in four independent cohorts, three of white European descent (Germany, n = 4,975; the Netherlands, n = 613; and Czech Republic, n = 521), and one of black African descent (United States, n = 1,657), totaling 7,766 subjects. Measurements and Main Results: A total of 727 LS-associated variants expanding throughout the extended major histocompatibility complex (MHC) region and 68 non-LS–associated variants located in the MHC class II region were identified and confirmed. A shared overlap between LS and non-LS defined by 17 variants located in the MHC class II region was found. Outside the MHC region, two LS-associated loci, in ADCY3 and between CSMD1 and MCPH1, were observed and replicated. Conclusions: Comprehensive and integrative analyses of genetics, transcription, and pathway modeling on LS and non-LS indicates that these sarcoidosis phenotypes have different genetic susceptibility, genomic distributions, and cellular activities, suggesting distinct molecular mechanisms in pathways related to immune response with a common region. PMID:26651848

  13. Identifying Novel Regulators of Vacuolar Trafficking by Combining Fluorescence Imaging-Based Forward Genetic Screening and In Vitro Pollen Germination.

    PubMed

    Feng, Qiang-Nan; Zhang, Yan

    2017-01-01

    Subcellular targeting of vacuolar proteins depends on cellular machinery regulating vesicular trafficking. Plant-specific vacuolar trafficking routes have been reported. However, regulators mediating these processes are obscure. By combining a fluorescence imaging-based forward genetic approach and in vitro pollen germination system, we show an efficient protocol of identifying regulators of plant-specific vacuolar trafficking routes.

  14. 76 FR 37767 - Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status for Corn Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2010-0041] Pioneer Hi-Bred International, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered To Produce Male Sterile/Female Inbred Plants AGENCY: Animal and Plant Health Inspection Service, USDA...

  15. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  16. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    ERIC Educational Resources Information Center

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-01-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about…

  17. HLA-DRB1 Analysis Identified a Genetically Unique Subset within Rheumatoid Arthritis and Distinct Genetic Background of Rheumatoid Factor Levels from Anticyclic Citrullinated Peptide Antibodies.

    PubMed

    Hiwa, Ryosuke; Ikari, Katsunori; Ohmura, Koichiro; Nakabo, Shuichiro; Matsuo, Keitaro; Saji, Hiroh; Yurugi, Kimiko; Miura, Yasuo; Maekawa, Taira; Taniguchi, Atsuo; Yamanaka, Hisashi; Matsuda, Fumihiko; Mimori, Tsuneyo; Terao, Chikashi

    2018-04-01

    HLA-DRB1 is the most important locus associated with rheumatoid arthritis (RA) and anticitrullinated protein antibodies (ACPA). However, fluctuations of rheumatoid factor (RF) over the disease course have made it difficult to define fine subgroups according to consistent RF positivity for the analyses of genetic background and the levels of RF. A total of 2873 patients with RA and 2008 healthy controls were recruited. We genotyped HLA-DRB1 alleles for the participants and collected consecutive data of RF in the case subjects. In addition to RF+ and RF- subsets, we classified the RF+ subjects into group 1 (constant RF+) and group 2 (seroconversion). We compared HLA-DRB1 alleles between the RA subsets and controls and performed linear regression analysis to identify HLA-DRB1 alleles associated with maximal RF levels. Omnibus tests were conducted to assess important amino acid positions. RF positivity was 88%, and 1372 and 970 RF+ subjects were classified into groups 1 and 2, respectively. RF+ and RF- showed similar genetic associations to ACPA+ and ACPA- RA, respectively. We found that shared epitope (SE) was more enriched in group 2 than 1, p = 2.0 × 10 -5 , and that amino acid position 11 showed a significant association between 1 and 2, p = 2.7 × 10 -5 . These associations were independent of ACPA positivity. SE showed a tendency to be negatively correlated with RF titer (p = 0.012). HLA-DRB1*09:01, which reduces ACPA titer, was not associated with RF levels (p = 0.70). The seroconversion group was shown to have distinct genetic characteristics. The genetic architecture of RF levels is different from that of ACPA.

  18. Host genetics and dengue fever.

    PubMed

    Xavier-Carvalho, Caroline; Cardoso, Cynthia Chester; de Souza Kehdy, Fernanda; Pacheco, Antonio Guilherme; Moraes, Milton Ozório

    2017-12-01

    Dengue is a major worldwide problem in tropical and subtropical areas; it is caused by four different viral serotypes, and it can manifest as asymptomatic, mild, or severe. Many factors interact to determine the severity of the disease, including the genetic profile of the infected patient. However, the mechanisms that lead to severe disease and eventually death have not been determined, and a great challenge is the early identification of patients who are more likely to progress to a worse health condition. Studies performed in regions with cyclic outbreaks such as Cuba, Brazil, and Colombia have demonstrated that African ancestry confers protection against severe dengue. Highlighting the host genetics as an important factor in infectious diseases, a large number of association studies between genetic polymorphisms and dengue outcomes have been published in the last two decades. The most widely used approach involves case-control studies with candidate genes, such as the HLA locus and genes for receptors, cytokines, and other immune mediators. Additionally, a Genome-Wide Association Study (GWAS) identified SNPs associated with African ethnicity that had not previously been identified in case-control studies. Despite the increasing number of publications in America, Africa, and Asia, the results are quite controversial, and a meta-analysis is needed to assess the consensus among the studies. SNPs in the MICB, TNF, CD209, FcγRIIA, TPSAB1, CLEC5A, IL10 and PLCE1 genes are associated with the risk or protection of severe dengue, and the findings have been replicated in different populations. A thorough understanding of the viral, human genetic, and immunological mechanisms of dengue and how they interact is essential for effectively preventing dengue, but also managing and treating patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genetically Modified Foods and Consumer Perspective.

    PubMed

    Boccia, Flavio; Sarnacchiaro, Pasquale

    2015-01-01

    Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.

  20. Population stochasticity, random determination of handedness, and the genetic basis of antisymmetry.

    PubMed

    Kamimura, Yoshitaka

    2011-12-07

    Conspicuous lateral asymmetries of organisms are classified into two major categories: antisymmetry (AS), characterized by almost equal frequencies of dextral and sinistral morphs, and directional asymmetry (DA), in which one morph dominates. I compared and characterized two types of genes, both with existing examples, in their roles in the evolutionary transitions between AS and DA for the first time. Handedness genes (HGs) determine the chirality in a strict sense, while randomization genes (RGs) randomize the chirality. A theory predicts that, in an AS population maintained by HGs under negative frequency-dependent selection, RGs harness fluctuation of the morph frequencies as their driving force and thus increase their frequency until half of the population flips the phenotype. These predictions were confirmed by simulations. Consequently, RGs mask the genetic effects of HGs, which provides a possible explanation for the apparent lack of a genetic basis for AS in empirical AS studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    PubMed Central

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing

    2017-01-01

    the natural environment. However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin have not been well identified. This work revealed that gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin in Rhodococcus qingshengii YL-1. The products of bfzBA3A4A1A2C could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and bfzBA3A4A1A2C in the bioremediation of buprofezin contamination. PMID:28710269

  2. Combining population genomics and fitness QTLs to identify the genetics of local adaptation in Arabidopsis thaliana.

    PubMed

    Price, Nicholas; Moyers, Brook T; Lopez, Lua; Lasky, Jesse R; Monroe, J Grey; Mullen, Jack L; Oakley, Christopher G; Lin, Junjiang; Ågren, Jon; Schrider, Daniel R; Kern, Andrew D; McKay, John K

    2018-05-08

    Evidence for adaptation to different climates in the model species Arabidopsis thaliana is seen in reciprocal transplant experiments, but the genetic basis of this adaptation remains poorly understood. Field-based quantitative trait locus (QTL) studies provide direct but low-resolution evidence for the genetic basis of local adaptation. Using high-resolution population genomic approaches, we examine local adaptation along previously identified genetic trade-off (GT) and conditionally neutral (CN) QTLs for fitness between locally adapted Italian and Swedish A. thaliana populations [Ågren J, et al. (2013) Proc Natl Acad Sci USA 110:21077-21082]. We find that genomic regions enriched in high F ST SNPs colocalize with GT QTL peaks. Many of these high F ST regions also colocalize with regions enriched for SNPs significantly correlated to climate in Eurasia and evidence of recent selective sweeps in Sweden. Examining unfolded site frequency spectra across genes containing high F ST SNPs suggests GTs may be due to more recent adaptation in Sweden than Italy. Finally, we collapse a list of thousands of genes spanning GT QTLs to 42 genes that likely underlie the observed GTs and explore potential biological processes driving these trade-offs, from protein phosphorylation, to seed dormancy and longevity. Our analyses link population genomic analyses and field-based QTL studies of local adaptation, and emphasize that GTs play an important role in the process of local adaptation. Copyright © 2018 the Author(s). Published by PNAS.

  3. Genetic Determinants of Cardio-Metabolic Risk: A Proposed Model for Phenotype Association and Interaction

    PubMed Central

    Blackett, Piers R; Sanghera, Dharambir K

    2012-01-01

    This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus it follows that the genetics of dyslipidemia, obesity, and non-alcoholic fatty liver (NAFLD) disease are central in triggering progression of the syndrome to overt expression of disease traits, and have become a key focus of interest for early detection and for designing prevention and treatments. To support the “birds’ eye view” approach we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacological targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. PMID:23351585

  4. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies

    PubMed Central

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-01-01

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. PMID:27172202

  5. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies.

    PubMed

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-07-07

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. Copyright © 2016 Chen et al.

  6. Teachers' Conceptions about the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    ERIC Educational Resources Information Center

    Castéra, Jérémy; Clément, Pierre

    2014-01-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed…

  7. A genetic determinant of the striatal dopamine response to alcohol in men

    PubMed Central

    Ramchandani, Vijay A.; Umhau, John; Pavon, Francisco J.; Ruiz-Velasco, Victor; Margas, Wojciech; Sun, Hui; Damadzic, Ruslan; Eskay, Robert; Schoor, Michael; Thorsell, Annika; Schwandt, Melanie L.; Sommer, Wolfgang H.; George, David T.; Parsons, Loren H.; Herscovitch, Peter; Hommer, Daniel; Heilig, Markus

    2010-01-01

    Excessive alcohol use, a major cause of morbidity and mortality, is less well understood than other addictive disorders. Dopamine release in ventral striatum is a common element of drug reward, but alcohol has an unusually complex pharmacology, and humans vary greatly in their alcohol responses. This variation is related to genetic susceptibility for alcoholism, which contributes more than half of alcoholism risk. Here, we report that a functional OPRM1 A118G polymorphism is a major determinant of striatal dopamine responses to alcohol. Social drinkers recruited based on OPRM1 genotype were challenged in separate sessions with alcohol and placebo under pharmacokinetically controlled conditions, and examined for striatal dopamine release using positron emission tomography and [11C]-raclopride displacement. A striatal dopamine response to alcohol was restricted to carriers of the minor 118G allele. To directly establish the causal role of OPRM1 A118G variation, we generated two humanized mouse lines, carrying the respective human sequence variant. Brain microdialysis showed a four-fold greater peak dopamine response to an alcohol challenge in h/mOPRM1-118GG than in h/mOPRM1-118AA mice. OPRM1 A118G variation is a genetic determinant of dopamine responses to alcohol, a mechanism by which it likely modulates alcohol reward. PMID:20479755

  8. Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiration chambers.

    PubMed

    Jonker, A; Hickey, S M; Rowe, S J; Janssen, P H; Shackell, G; Elmes, S; Bain, W E; Wing, J; Greer, G J; Bryson, B; MacLean, S; Dodds, K G; Pinares-Patiño, C S; Young, E A; Knowler, K; Pickering, N K; McEwan, J C

    2018-05-07

    Methane (CH4) emission traits were previously found to be heritable and repeatable in sheep fed alfalfa pellets in respiration chambers (RC). More rapid screening methods are, however, required to increase genetic progress and to provide a cost effective method to the farming industry for maintaining the generation of breeding values in the future. The objective of the current study was to determine CH4 and carbon dioxide (CO2) emissions using several one-hour portable accumulation chamber (PAC) measurements from lambs and again as ewes, while grazing ryegrass based pasture. Many animals with PAC measurements were also measured in RC while fed alfalfa pellets at 2.0 × maintenance metabolizable energy requirements (MEm). Heritability estimates from mixed models for CH4 and CO2 production (g/d) were 0.19 and 0.16, respectively, when measured using PAC with lambs; 0.20 and 0.27, respectively, when measured using PAC with ewes; and 0.23 and 0.34, respectively, when measured using RC with lambs. For measured gas traits, repeatabilities of measurements collected 14 days apart ranged from 0.33 to 0.55 for PAC (combined lambs and ewes) and were greater at 0.65 to 0.76 for the same traits measured using RC. Genetic correlations (rg) between PAC in lambs and ewes were 0.99 for CH4, 0.93 for CH4+CO2 and 0.85 for CH4/(CH4+CO2), suggesting CH4 emissions in lambs and ewes are the same trait. Genetic correlations between PAC and RC measurements were lower, at 0.62 to 0.67 for CH4 and 0.41 to 0.42 for CH4+CO2, likely reflecting different environmental conditions associated with the protocols used with the two measurement methods. The CH4/(CH4+CO2) ratio was the most similar genetic trait measured using PAC (both lambs and ewes, 63 and 66% selection efficiency, respectively) compared with CH4 yield (g/kg DMI) measured using RC. These results suggest that PAC measurements have considerable value as a rapid low cost method to estimate breeding values for CH4 emissions in sheep.

  9. The importance of genetic verification for determination of Atlantic salmon in north Pacific waters

    USGS Publications Warehouse

    Nielsen, J.L.; Williams, I.; Sage, G.K.; Zimmerman, C.E.

    2003-01-01

    Genetic analyses of two unknown but putative Atlantic salmon Salmo salar captured in the Copper River drainage, Alaska, demonstrated the need for validation of morphologically unusual fishes. Mitochondrial DNA sequences (control region and cytochrome b) and data from two nuclear genes [first internal transcribed spacer (ITS-1) sequence and growth hormone (GH1) amplification product] indicated that the fish caught in fresh water on the Martin River was a coho salmon Oncorhynchus kisutch, while the other fish caught in the intertidal zone of the Copper River delta near Grass Island was an Atlantic salmon. Determination of unusual or cryptic fish based on limited physical characteristics and expected seasonal spawning run timing will add to the controversy over farmed Atlantic salmon and their potential effects on native Pacific species. It is clear that determination of all putative collections of Atlantic salmon found in Pacific waters requires validation. Due to uncertainty of fish identification in the field using plastic morphometric characters, it is recommended that genetic analyses be part of the validation process. ?? 2003 The Fisheries Society of the British Isles.

  10. Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an MRL/MpJ × SM/J intercross[S

    PubMed Central

    Leduc, Magalie S.; Blair, Rachael Hageman; Verdugo, Ricardo A.; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A.; Paigen, Beverly

    2012-01-01

    A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification. PMID:22498810

  11. Behavioral genetics in Polish print news media between 2000 and 2014.

    PubMed

    Domaradzki, Jan

    2016-12-23

    The aim of this paper is to describe how Polish print news media frame relations between genetics and human behaviors and what images of behavioral genetics dominate in press discourse. A content and frame analysis of 72 print news articles about behavioral genetics published between 2000 and 2014 in four major Polish weekly magazines: "Polityka", "Wprost", "Newsweek" and "Przekrój" was conducted. Twenty one different behaviors were mentioned in the sample and six major analytic frames were identified: essentialist, materialistic, deterministic, probabilistic, optimistic and pessimistic. The most common was the tendency to describe human behaviors in terms of genetic essentialism, reductionism and determinism, as almost one half of the articles was focused solely on genetic determinants of human behaviors and lacked any reference to polygenetic and/or environmental conditioning. Although most of the articles were balanced in tone, benefits were stressed more often than potential risks. Stories that confirmed existence of genetic determinants of human behavior were favored over those that did not. One third of the articles stressed the social or ethical consequences of the development of behavioral genetics. The complex and abstract character of genetic knowledge results in a simplistic portrayal of behavioral genetics in the press, which may lead to a misunderstood interpretation of the complicated interplay between behavior, genetics and environment by the public. Consequently, print news media contribute to geneticization of behaviors. It is important to improve the quality of science reporting on behavioral genetics and to educate researchers how to communicate with the media more effectively.

  12. Multi-gene panel testing in Korean patients with common genetic generalized epilepsy syndromes.

    PubMed

    Lee, Cha Gon; Lee, Jeehun; Lee, Munhyang

    2018-01-01

    Genetic heterogeneity of common genetic generalized epilepsy syndromes is frequently considered. The present study conducted a focused analysis of potential candidate or susceptibility genes for common genetic generalized epilepsy syndromes using multi-gene panel testing with next-generation sequencing. This study included patients with juvenile myoclonic epilepsy, juvenile absence epilepsy, and epilepsy with generalized tonic-clonic seizures alone. We identified pathogenic variants according to the American College of Medical Genetics and Genomics guidelines and identified susceptibility variants using case-control association analyses and family analyses for familial cases. A total of 57 patients were enrolled, including 51 sporadic cases and 6 familial cases. Twenty-two pathogenic and likely pathogenic variants of 16 different genes were identified. CACNA1H was the most frequently observed single gene. Variants of voltage-gated Ca2+ channel genes, including CACNA1A, CACNA1G, and CACNA1H were observed in 32% of variants (n = 7/22). Analyses to identify susceptibility variants using case-control association analysis indicated that KCNMA1 c.400G>C was associated with common genetic generalized epilepsy syndromes. Only 1 family (family A) exhibited a candidate pathogenic variant p.(Arg788His) on CACNA1H, as determined via family analyses. This study identified candidate genetic variants in about a quarter of patients (n = 16/57) and an average of 2.8 variants was identified in each patient. The results reinforced the polygenic disorder with very high locus and allelic heterogeneity of common GGE syndromes. Further, voltage-gated Ca2+ channels are suggested as important contributors to common genetic generalized epilepsy syndromes. This study extends our comprehensive understanding of common genetic generalized epilepsy syndromes.

  13. Genetics of alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2014-01-01

    Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD. © 2014 Elsevier B.V. All rights reserved.

  14. Thelytokous parthenogenesis, male clonality and genetic caste determination in the little fire ant: new evidence and insights from the lab.

    PubMed

    Foucaud, J; Estoup, A; Loiseau, A; Rey, O; Orivel, J

    2010-08-01

    Previous studies indicate that some populations of the little fire ant, Wasmannia auropunctata, display an unusual reproduction system polymorphism. Although some populations have a classical haplodiploid reproduction system, in other populations queens are produced by thelytokous parthenogenesis, males are produced by a male clonality system and workers are produced sexually. An atypical genetic caste determination system was also suggested. However, these conclusions were indirectly inferred from genetic studies on field population samples. Here we set up experimental laboratory nests that allow the control of the parental relationships between individuals. The queens heading those nests originated from either putatively clonal or sexual populations. We characterized the male, queen and worker offspring they produced at 12 microsatellite loci. Our results unambiguously confirm the unique reproduction system polymorphism mentioned above and that male clonality is strictly associated with thelytokous parthenogenesis. We also observed direct evidence of the rare production of sexual gynes and arrhenotokous males in clonal populations. Finally, we obtained evidence of a genetic basis for caste determination. The evolutionary significance of the reproduction system polymorphism and genetic caste determination as well as future research opportunities are discussed.

  15. Feline genetics: clinical applications and genetic testing.

    PubMed

    Lyons, Leslie A

    2010-11-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately 33 genes contain 50 mutations that cause feline health problems or alterations in the cat's appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab with a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's internal genome. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Genetics of amyotrophic lateral sclerosis: an update

    PubMed Central

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder involving both upper motor neurons (UMN) and lower motor neurons (LMN). Enormous research has been done in the past few decades in unveiling the genetics of ALS, successfully identifying at least fifteen candidate genes associated with familial and sporadic ALS. Numerous studies attempting to define the pathogenesis of ALS have identified several plausible determinants and molecular pathways leading to motor neuron degeneration, which include oxidative stress, glutamate excitotoxicity, apoptosis, abnormal neurofilament function, protein misfolding and subsequent aggregation, impairment of RNA processing, defects in axonal transport, changes in endosomal trafficking, increased inflammation, and mitochondrial dysfunction. This review is to update the recent discoveries in genetics of ALS, which may provide insight information to help us better understanding of the disease neuropathogenesis. PMID:23941283

  17. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.

    PubMed

    Jiménez-Becerril, María F; Hernández-Delgado, Sanjuana; Solís-Oba, Myrna; González Prieto, Juan M

    2018-01-01

    The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (F ST  = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.

  18. An examination of environmental and genetic contributions to the determinants of suicidal behavior among male twins

    PubMed Central

    Smith, April Rose; Ribeiro, Jessica; Mikolajewski, Amy; Taylor, Jeanette; Joiner, Thomas; Iacono, William G.

    2012-01-01

    The purpose of the present study was to examine the relative association of genetic and environmental factors with individual differences in each of the proximal, jointly necessary, and sufficient causes for suicidal behavior, according to the Interpersonal-Psychological Theory of Suicide (IPTS; Joiner, 2005). We examined data on derived scales measuring acquired capability, belongingness, and burdensomeness (the determinants of suicidal behavior, according to theory) from 348 adolescent male twins. Univariate biometrical models were used to estimate the magnitude of additive genetic (A), non-additive genetic (D), shared environmental (C), and nonshared environmental (E) effects associated with the variance in acquired capability, belongingness, and burdensomeness. The best fitting model for the acquired capability allowed for additive genetic and environmental effects, whereas the best fitting model for burdensomeness and belongingness allowed for shared and nonshared environmental effects. The present research extends prior work by specifying the environmental and genetic contributions to the components of the IPTS, and our findings suggest that belongingness and burdensomeness may be more appropriate targets for clinical intervention than acquired capability as these factors may be more malleable or amenable to change. PMID:22417928

  19. Impact of Clinical Genetics Attendance at a Gynecologic Oncology Tumor Board on Referrals for Genetic Counseling and BRCA Mutation Testing.

    PubMed

    Cohen, Paul A; Nichols, Cassandra B; Schofield, Lyn; Van Der Werf, Steven; Pachter, Nicholas

    2016-06-01

    The objectives of this work were to determine the proportion of eligible patients with ovarian cancer discussed at a gynecologic oncology tumor board who were referred for counseling and BRCA mutation testing; to compare referral rates before genetics attendance at the tumor board to referral rates after genetics attendance; and to ascertain the proportions of women with germline BRCA mutations. Eligible cases were identified from the minutes of the weekly Western Australian gynecologic oncology tumor board from July 1, 2013 to June 30, 2015.Patients with ovarian cancer who met eligibility criteria for genetics referral were identified and checked against the records of the genetic services database to ascertain whether a referral was received. Outcomes including attendance for counseling and results of mutation testing were analyzed. Two hundred sixty-one patients were eligible for referral during the 24-month study period. One hundred six patients (40.6%) were referred for counseling and germline mutation testing. Of the eligible patients, 26.7% were referred in the 12 months before genetics attendance at the tumor board compared to 51.7% of the eligible patients in the 12 months after genetics attendance (P ≤ 0.0001). Ninety-seven patients were offered BRCA mutation testing, and 73 underwent testing with 65 results reported to date. Twenty-two patients (33.8 %) tested positive for a germline BRCA mutation. Patients with ovarian cancer had a high rate of BRCA mutations. Attendance of a genetics service at a tumor board was associated with an improved rate of referral of patients for genetic counseling and BRCA mutation testing.

  20. Identifying future models for delivering genetic services: a nominal group study in primary care

    PubMed Central

    Elwyn, Glyn; Edwards, Adrian; Iredale, Rachel; Davies, Peter; Gray, Jonathon

    2005-01-01

    Background To enable primary care medical practitioners to generate a range of possible service delivery models for genetic counselling services and critically assess their suitability. Methods Modified nominal group technique using in primary care professional development workshops. Results 37 general practitioners in Wales, United Kingdom too part in the nominal group process. The practitioners who attended did not believe current systems were sufficient to meet anticipated demand for genetic services. A wide range of different service models was proposed, although no single option emerged as a clear preference. No argument was put forward for genetic assessment and counselling being central to family practice, neither was there a voice for the view that the family doctor should become skilled at advising patients about predictive genetic testing and be able to counsel patients about the wider implications of genetic testing for patients and their family members, even for areas such as common cancers. Nevertheless, all the preferred models put a high priority on providing the service in the community, and often co-located in primary care, by clinicians who had developed expertise. Conclusion There is a need for a wider debate about how healthcare systems address individual concerns about genetic concerns and risk, especially given the increasing commercial marketing of genetic tests. PMID:15831099

  1. Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires' disease.

    PubMed

    Gomez-Valero, Laura; Rusniok, Christophe; Rolando, Monica; Neou, Mario; Dervins-Ravault, Delphine; Demirtas, Jasmin; Rouy, Zoe; Moore, Robert J; Chen, Honglei; Petty, Nicola K; Jarraud, Sophie; Etienne, Jerome; Steinert, Michael; Heuner, Klaus; Gribaldo, Simonetta; Médigue, Claudine; Glöckner, Gernot; Hartland, Elizabeth L; Buchrieser, Carmen

    2014-01-01

    The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires’ disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans. We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains. Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains.

  2. Using the Drosophila Melanogaster Genetics Reference Panel to Identify Toxicity Pathways for Toluene

    EPA Science Inventory

    Mechanistic information is needed to link effects of chemicals at molecular targets in high­ throughput screening assays to adverse outcomes in whole organisms. This study was designed to use the Drosophila Genetic Reference Panel (DGRP), a set of genetically well...

  3. Genetics of Lipid and Lipoprotein Disorders and Traits.

    PubMed

    Dron, Jacqueline S; Hegele, Robert A

    2016-01-01

    Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1 , APOC3 , LDLR , APOA5 , and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.

  4. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis1[W][OPEN

    PubMed Central

    Verslues, Paul E.; Lasky, Jesse R.; Juenger, Thomas E.; Liu, Tzu-Wen; Kumar, M. Nagaraj

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods. PMID:24218491

  5. Genetically Identified Suppressed-by-Contrast Retinal Ganglion Cells Reliably Signal Self-Generated Visual Stimuli

    PubMed Central

    Tien, Nai-Wen; Pearson, James T.; Heller, Charles R.; Demas, Jay

    2015-01-01

    Spike trains of retinal ganglion cells (RGCs) are the sole source of visual information to the brain; and understanding how the ∼20 RGC types in mammalian retinae respond to diverse visual features and events is fundamental to understanding vision. Suppressed-by-contrast (SbC) RGCs stand apart from all other RGC types in that they reduce rather than increase firing rates in response to light increments (ON) and decrements (OFF). Here, we genetically identify and morphologically characterize SbC-RGCs in mice, and target them for patch-clamp recordings under two-photon guidance. We find that strong ON inhibition (glycine > GABA) outweighs weak ON excitation, and that inhibition (glycine > GABA) coincides with decreases in excitation at light OFF. These input patterns explain the suppressive spike responses of SbC-RGCs, which are observed in dim and bright light conditions. Inhibition to SbC-RGC is driven by rectified receptive field subunits, leading us to hypothesize that SbC-RGCs could signal pattern-independent changes in the retinal image. Indeed, we find that shifts of random textures matching saccade-like eye movements in mice elicit robust inhibitory inputs and suppress spiking of SbC-RGCs over a wide range of texture contrasts and spatial frequencies. Similarly, stimuli based on kinematic analyses of mouse blinking consistently suppress SbC-RGC spiking. Receiver operating characteristics show that SbC-RGCs are reliable indicators of self-generated visual stimuli that may contribute to central processing of blinks and saccades. SIGNIFICANCE STATEMENT This study genetically identifies and morphologically characterizes suppressed-by-contrast retinal ganglion cells (SbC-RGCs) in mice. Targeted patch-clamp recordings from SbC-RGCs under two-photon guidance elucidate the synaptic mechanisms mediating spike suppression to contrast steps, and reveal that SbC-RGCs respond reliably to stimuli mimicking saccade-like eye movements and blinks. The similarity of

  6. A genetic screen in Myxococcus xanthus identifies mutants that uncouple outer membrane exchange from a downstream cellular response.

    PubMed

    Dey, Arup; Wall, Daniel

    2014-12-01

    Upon physical contact with sibling cells, myxobacteria transiently fuse their outer membranes (OMs) and exchange OM proteins and lipids. From previous work, TraA and TraB were identified to be essential factors for OM exchange (OME) in donor and recipient cells. To define the genetic complexity of OME, we carried out a comprehensive forward genetic screen. The screen was based on the observation that Myxococcus xanthus nonmotile cells, by a Tra-dependent mechanism, block swarm expansion of motile cells when mixed. Thus, mutants defective in OME or a downstream responsive pathway were readily identified as escape flares from mixed inocula seeded on agar. This screen was surprisingly powerful, as we found >50 mutants defective in OME. Importantly, all of the mutations mapped to the traAB operon, suggesting that there may be few, if any, proteins besides TraA and TraB directly required for OME. We also found a second and phenotypically different class of mutants that exhibited wild-type OME but were defective in a responsive pathway. This pathway is postulated to control inner membrane homeostasis by covalently attaching amino acids to phospholipids. The identified proteins are homologous to the Staphylococcus aureus MprF protein, which is involved in membrane adaptation and antibiotic resistance. Interestingly, we also found that a small number of nonmotile cells were sufficient to block the swarming behavior of a large gliding-proficient population. This result suggests that an OME-derived signal could be amplified from a few nonmotile producers to act on many responder cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends.

    PubMed

    Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda

    2016-04-26

    Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.

  8. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors.

    PubMed

    Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A

    2014-11-15

    Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Genetic Analysis of the Pathogenic Molecular Sub-phenotype Interferon Alpha Identifies Multiple Novel Loci Involved in Systemic Lupus Erythematosus

    PubMed Central

    Kariuki, Silvia N.; Ghodke-Puranik, Yogita; Dorschner, Jessica M.; Chrabot, Beverly S.; Kelly, Jennifer A.; Tsao, Betty P.; Kimberly, Robert P.; Alarcón-Riquelme, Marta E.; Jacob, Chaim O.; Criswell, Lindsey A.; Sivils, Kathy L.; Langefeld, Carl D.; Harley, John B.; Skol, Andrew D.; Niewold, Timothy B.

    2014-01-01

    Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. 40–50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs. low IFN-α in over 1550 SLE cases, including GWAS and replication cohorts. In meta-analysis, the top associations in European ancestry were PRKG1 rs7897633 (PMeta=2.75 × 10−8) and PNP rs1049564 (PMeta=1.24 × 10−7). We also found evidence for cross-ancestral background associations with the ANKRD44 and PLEKHF2 loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic subphenotypes becomes an attractive strategy for genetic discovery in complex disease. PMID:25338677

  10. Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus.

    PubMed

    Vassilakos, Nikon; Simon, Vincent; Tzima, Aliki; Johansen, Elisabeth; Moury, Benoît

    2016-02-01

    In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates with contrasted levels of adaptation to C. annuum showed that the P3 and, to a lower extent, the CI cistron played important roles in infectivity toward C. annuum. The three analytical approaches pinpointed a single nonsynonymous substitution in the P3 and P3N-PIPO cistrons that evolved several times independently and conferred adaptation to C. annuum. In addition to increasing our knowledge of host jumps in plant viruses, this study illustrates also the efficiency of locus-by-locus AMOVA and combined approaches to identify adaptive mutations in the genome of RNA viruses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  12. The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation

    PubMed Central

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O’Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O’Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.; Ostrowski, Mario; Owen, William F.; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M.; Perlmutter, Aaron M.; Pierce, Michael N.; Pincus, Jonathan M.; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C.; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J.; Rhame, Frank S.; Richards, Constance Shamuyarira; Richman, Douglas D.; Robbins, Gregory K.; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C.; Rosenberg, Eric S.; Rosenthal, Daniel; Ross, Polly E.; Rubin, David S.; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R.; Sanchez, William C.; Sanjana, Veeraf M.; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M.; Shalit, Peter; Shay, William; Shirvani, Vivian N.; Silebi, Vanessa I.; Sizemore, James M.; Skolnik, Paul R.; Sokol-Anderson, Marcia; Sosman, James M.; Stabile, Paul; Stapleton, Jack T.; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F. Lisa; Stone, Valerie E.; Stone, David R.; Tambussi, Giuseppe; Taplitz, Randy A.; Tedaldi, Ellen M.; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A.; Trinh, Phuong D.; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J.; Vecino, Isabel; Vega, Vilma M.; Veikley, Wenoah; Wade, Barbara H.; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J.; Warner, Daniel A.; Weber, Robert D.; Webster, Duncan; Weis, Steve; Wheeler, David A.; White, David J.; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G.; Wout, Angelique van’t; Wright, David P.; Yang, Otto O.; Yurdin, David L.; Zabukovic, Brandon W.; Zachary, Kimon C.; Zeeman, Beth; Zhao, Meng

    2011-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598

  13. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    PubMed

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J; Telenti, Amalio; de Bakker, Paul I W; Walker, Bruce D; Ripke, Stephan; Brumme, Chanson J; Pulit, Sara L; Carrington, Mary; Kadie, Carl M; Carlson, Jonathan M; Heckerman, David; Graham, Robert R; Plenge, Robert M; Deeks, Steven G; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L; Vine, Seanna; Addo, Marylyn M; Allen, Todd M; Altfeld, Marcus; Henn, Matthew R; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W; Kuritzkes, Daniel R; Robbins, Gregory K; Shafer, Robert W; Gulick, Roy M; Shikuma, Cecilia M; Haubrich, Richard; Riddler, Sharon; Sax, Paul E; Daar, Eric S; Ribaudo, Heather J; Agan, Brian; Agarwal, Shanu; Ahern, Richard L; Allen, Brady L; Altidor, Sherly; Altschuler, Eric L; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C; Benson, Anne M; Berger, Judith; Bernard, Nicole F; Bernard, Annette M; Birch, Christopher; Bodner, Stanley J; Bolan, Robert K; Boudreaux, Emilie T; Bradley, Meg; Braun, James F; Brndjar, Jon E; Brown, Stephen J; Brown, Katherine; Brown, Sheldon T; Burack, Jedidiah; Bush, Larry M; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H; Carmichael, J Kevin; Casey, Kathleen K; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T; Chez, Nancy; Chirch, Lisa M; Cimoch, Paul J; Cohen, Daniel; Cohn, Lillian E; Conway, Brian; Cooper, David A; Cornelson, Brian; Cox, David T; Cristofano, Michael V; Cuchural, George; Czartoski, Julie L; Dahman, Joseph M; Daly, Jennifer S; Davis, Benjamin T; Davis, Kristine; Davod, Sheila M; DeJesus, Edwin; Dietz, Craig A; Dunham, Eleanor; Dunn, Michael E; Ellerin, Todd B; Eron, Joseph J; Fangman, John J W; Farel, Claire E; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A; French, Neel K; Fuchs, Jonathan D; Fuller, Jon D; Gaberman, Jonna; Gallant, Joel E; Gandhi, Rajesh T; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C; Gaultier, Cyril R; Gebre, Wondwoosen; Gilman, Frank D; Gilson, Ian; Goepfert, Paul A; Gottlieb, Michael S; Goulston, Claudia; Groger, Richard K; Gurley, T Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W David; Harrigan, P Richard; Hawkins, Trevor N; Heath, Sonya; Hecht, Frederick M; Henry, W Keith; Hladek, Melissa; Hoffman, Robert P; Horton, James M; Hsu, Ricky K; Huhn, Gregory D; Hunt, Peter; Hupert, Mark J; Illeman, Mark L; Jaeger, Hans; Jellinger, Robert M; John, Mina; Johnson, Jennifer A; Johnson, Kristin L; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C; Kauffman, Carol A; Khanlou, Homayoon; Killian, Robert K; Kim, Arthur Y; Kim, David D; Kinder, Clifford A; Kirchner, Jeffrey T; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P Todd; Kurisu, Wayne; Kwon, Douglas S; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M; Lee, David M; Lee, Jean M L; Lee, Marah J; Lee, Edward T Y; Lemoine, Janice; Levy, Jay A; Llibre, Josep M; Liguori, Michael A; Little, Susan J; Liu, Anne Y; Lopez, Alvaro J; Loutfy, Mono R; Loy, Dawn; Mohammed, Debbie Y; Man, Alan; Mansour, Michael K; Marconi, Vincent C; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N; Martin, Harold L; Mayer, Kenneth Hugh; McElrath, M Juliana; McGhee, Theresa A; McGovern, Barbara H; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X; Menezes, Prema; Mesa, Greg; Metroka, Craig E; Meyer-Olson, Dirk; Miller, Andy O; Montgomery, Kate; Mounzer, Karam C; Nagami, Ellen H; Nagin, Iris; Nahass, Ronald G; Nelson, Margret O; Nielsen, Craig; Norene, David L; O'Connor, David H; Ojikutu, Bisola O; Okulicz, Jason; Oladehin, Olakunle O; Oldfield, Edward C; Olender, Susan A; Ostrowski, Mario; Owen, William F; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M; Perlmutter, Aaron M; Pierce, Michael N; Pincus, Jonathan M; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J; Rhame, Frank S; Richards, Constance Shamuyarira; Richman, Douglas D; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C; Rosenberg, Eric S; Rosenthal, Daniel; Ross, Polly E; Rubin, David S; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R; Sanchez, William C; Sanjana, Veeraf M; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M; Shalit, Peter; Shay, William; Shirvani, Vivian N; Silebi, Vanessa I; Sizemore, James M; Skolnik, Paul R; Sokol-Anderson, Marcia; Sosman, James M; Stabile, Paul; Stapleton, Jack T; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F Lisa; Stone, Valerie E; Stone, David R; Tambussi, Giuseppe; Taplitz, Randy A; Tedaldi, Ellen M; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A; Trinh, Phuong D; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J; Vecino, Isabel; Vega, Vilma M; Veikley, Wenoah; Wade, Barbara H; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J; Warner, Daniel A; Weber, Robert D; Webster, Duncan; Weis, Steve; Wheeler, David A; White, David J; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G; van't Wout, Angelique; Wright, David P; Yang, Otto O; Yurdin, David L; Zabukovic, Brandon W; Zachary, Kimon C; Zeeman, Beth; Zhao, Meng

    2010-12-10

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.

  14. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  15. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.

    PubMed

    Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F

    2017-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x

  16. Disruption of the Aortic Elastic Lamina and Medial Calcification Share Genetic Determinants in Mice

    PubMed Central

    Wang, Susanna S.; Martin, Lisa J.; Schadt, Eric E.; Meng, Haijin; Wang, Xuping; Zhao, Wei; Ingram-Drake, Leslie; Nebohacova, Martina; Mehrabian, Margarete; Drake, Thomas A.; Lusis, Aldons J.

    2010-01-01

    Background Disruption of the elastic lamina, as an early indicator of aneurysm formation, and vascular calcification frequently occur together in atherosclerotic lesions of humans. Methods and Results We now report evidence of shared genetic basis for disruption of the elastic lamina (medial disruption) and medial calcification in an F2 mouse intercross between C57BL/6J and C3H/HeJ on a hyperlipidemic apolipoprotein E (ApoE−/−) null background. We identified 3 quantitative trait loci (QTLs) on chromosomes 6, 13, and 18, which are common to both traits, and 2 additional QTLs for medial calcification on chromosomes 3 and 7. Medial disruption, including severe disruptions leading to aneurysm formation, and medial calcification were highly correlated and occurred concomitantly in the cross. The chromosome 18 locus showed a striking male sex-specificity for both traits. To identify candidate genes, we integrated data from microarray analysis, genetic segregation, and clinical traits. The chromosome 7 locus contains the Abcc6 gene, known to mediate myocardial calcification. Using transgenic complementation, we show that Abcc6 also contributes to aortic medial calcification. Conclusions Our data indicate that calcification, though possibly contributory, does not always lead to medial disruption and that in addition to aneurysm formation, medial disruption may be the precursor to calcification. PMID:20031637

  17. Coupling Genetics and Proteomics To Identify Aphid Proteins Associated with Vector-Specific Transmission of Polerovirus (Luteoviridae)▿

    PubMed Central

    Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668

  18. Genetic and Environmental Determinants of Otitis Media in an Indigenous Filipino Population.

    PubMed

    Santos-Cortez, Regie Lyn P; Reyes-Quintos, Ma Rina T; Tantoco, Ma Leah C; Abbe, Izoduwa; Llanes, Erasmo Gonzalo D V; Ajami, Nadim J; Hutchinson, Diane S; Petrosino, Joseph F; Padilla, Carmencita D; Villarta, Romeo L; Gloria-Cruz, Teresa Luisa; Chan, Abner L; Cutiongco-de la Paz, Eva Maria; Chiong, Charlotte M; Leal, Suzanne M; Abes, Generoso T

    2016-11-01

    To identify genetic and environmental risk factors for otitis media in an indigenous Filipino population. Cross-sectional study. Indigenous Filipino community. Clinical history and information on breastfeeding, tobacco smoke exposure, and swimming were obtained from community members. Heads of households were interviewed for family history and personal beliefs on ear health. Height and weight were measured. Otoscopic findings were described for the presence and character of perforation or discharge. An A2ML1 duplication variant that confers otitis media susceptibility was Sanger sequenced in all DNA samples. Co-occurrence of middle ear bacteria detected by 16S rRNA gene sequencing was determined according to A2ML1 genotype and social cluster. The indigenous Filipino population has a ~50% prevalence of otitis media. Young age was associated with otitis media (4 age strata; P = .004); however, age was nonsignificant as a bistratal or continuous variable. There was no association between otitis media and sex, body mass index, breastfeeding, tobacco exposure, or deep swimming. In multivariate analyses, A2ML1 genotype is the strongest predictor of otitis media, with an odds ratio of 3.7 (95% confidence interval: 1.3-10.8; P = .005). When otitis media diagnoses were plotted across ages, otitis media was observed within the first year of life, and chronic otitis media persisted up to adulthood, particularly in A2ML1-variant carriers. Among indigenous Filipinos, A2ML1 genotype is the primary risk factor for otitis media and main determinant of disease progression, although age, the middle ear microbiome, and social clusters might modulate the effect of the A2ML1 genotype. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  19. Genetic and Environmental Determinants of Otitis Media in an Indigenous Filipino Population

    PubMed Central

    Santos-Cortez, Regie Lyn P.; Reyes-Quintos, Ma. Rina T.; Tantoco, Ma. Leah C.; Abbe, Izoduwa; Llanes, Erasmo Gonzalo d.V.; Ajami, Nadim J.; Hutchinson, Diane S.; Petrosino, Joseph F.; Padilla, Carmencita D.; Villarta, Romeo L.; Gloria-Cruz, Teresa Luisa; Chan, Abner L.; Cutiongco-de la Paz, Eva Maria; Chiong, Charlotte M.; Leal, Suzanne M.; Abes, Generoso T.

    2016-01-01

    Objective To identify genetic and environmental risk factors for otitis media in an indigenous Filipino population Study Design Cross-sectional study Setting Indigenous Filipino community Subjects and Methods Clinical history and information on breastfeeding, tobacco smoke exposure and swimming were obtained from community members. Heads of households were interviewed for family history and personal beliefs on ear health. Height and weight were measured. Otoscopic findings were described for presence and character of perforation or discharge. An A2ML1 duplication variant that confers otitis media susceptibility was Sanger-sequenced in all DNA samples. Co-occurrence of middle ear bacteria detected by 16S rRNA gene sequencing was determined according to A2ML1 genotype and social cluster. Results The indigenous Filipino population has a ~50% prevalence of otitis media. Young age was associated with otitis media (4 age strata; p=0.004), however age was non-significant as a bi-stratal or continuous variable. There was no association between otitis media and gender, body mass index, breastfeeding, tobacco exposure or deep swimming. In multivariate analyses, A2ML1 genotype is the strongest predictor of otitis media, with an odds ratio of 3.7 (95%CI: 1.3, 10.8; p=0.005). When otitis media diagnoses were plotted across ages, otitis media was observed within the first year of life and chronic otitis media persisted up to adulthood, particularly in A2ML1 variant carriers. Conclusion Among indigenous Filipinos, A2ML1 genotype is the primary risk factor for otitis media and main determinant of disease progression, although age, the middle ear microbiome and social clusters might modulate the effect of the A2ML1 genotype. PMID:27484237

  20. Genetically determined heterogeneity of lung disease in a mouse model of airway mucus obstruction

    PubMed Central

    Grubb, Barbara R.; Kelly, Elizabeth J.; Wilkinson, Kristen J.; Yang, Huifang; Geiser, Marianne; Randell, Scott H.; Boucher, Richard C.; O'Neal, Wanda K.

    2012-01-01

    Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na+ channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na+ absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na+ absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJgenetic context and timing of airway innate immune dysfunction critically determines lung disease phenotype. These mouse strains may be useful to identify key modifier genes and pathways. PMID:22395316

  1. The Real maccoyii: Identifying Tuna Sushi with DNA Barcodes – Contrasting Characteristic Attributes and Genetic Distances

    PubMed Central

    Lowenstein, Jacob H.; Amato, George; Kolokotronis, Sergios-Orestis

    2009-01-01

    Background The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. Methodology/Principal Findings Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of “white tuna” were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. Conclusions/Significance The Convention on International Trade

  2. Genetic diversity and population structure of South African smallholder farmer sheep breeds determined using the OvineSNP50 beadchip.

    PubMed

    Molotsi, Annelin H; Taylor, Jeremy F; Cloete, Schalk W P; Muchadeyi, Farai; Decker, Jared E; Whitacre, Lynsey K; Sandenbergh, Lise; Dzama, Kennedy

    2017-12-01

    A population structure study was performed in South African ovine populations using the OvineSNP50 beadchip. Blood samples were obtained from 295 sheep of which 172 had been identified as smallholder Dorpers, 4 smallholder White Dorpers, 46 purebred Dorpers, 26 purebred South African Mutton Merinos and 47 purebred Namaqua Afrikaners. Blood from the latter three breeds were obtained from a resource flock maintained on the Nortier research farm. Genetic diversity was estimated using allelic richness (A r ), observed heterozygosity (H o ), expected heterozygosity (H e ) and inbreeding coefficient (F). Population structure analysis was performed using fastSTRUCTURE to determine the breed composition of each genotyped individual. The Namaqua Afrikaner had the lowest H e of 0.280 ± 0.18 while the H e of smallholder Dorper, Dorper and South African Mutton Merino did not differ and were 0.364 ± 0.13, 0.332 ± 0.16 and 0.329 ± 0.17, respectively. The average inbreeding coefficient was highest for the pure breeds, Namaqua Afrikaner, Dorper and South African Mutton Merino compared to the average inbreeding coefficient for the smallholder Dorper population. The smallholder Dorper were introgressed with Namaqua Afrikaner, South African Mutton Merino and White Dorpers. Similarly, the smallholder Dorper population was more genetically diverse than the purebred Dorper, South African Mutton Merino and Namaqua Afrikaner from the research farm. The higher genetic diversity among the smallholder sheep may be advantageous for their fitness and can be used to facilitate selective breeding.

  3. Breast cancer genetic counseling among Dutch patients from Turkish and Moroccan descent: participation determinants and perspectives of patients and healthcare professionals.

    PubMed

    Baars, J E; van Dulmen, A M; Velthuizen, M E; van Riel, E; Ausems, M G E M

    2017-04-01

    Lower participation rates in cancer genetic counseling are observed among different ethnic minorities. The goal of our study is to gain insight into determinants of Turkish and Moroccan patients' participation in breast cancer genetic counseling and DNA testing, from the point of view of healthcare professionals and patients. Questionnaire-based telephone interviews about awareness, perceptions, and reasons for (non-) participation in cancer genetic counseling were conducted with 78 Dutch breast cancer patients from Turkish and Moroccan descent. The interviews were held in Arabic, Berber, Turkish, or Dutch by bilingual research assistants. Additionally, 14 breast cancer patients participated in one of two focus group meetings, and two focus groups were held with 11 healthcare professionals. SPSS and QSR Nvivo were used to examine the quantitative and qualitative data, respectively. Half of the total group of patients (N = 78) and 79% of patients eligible for genetic counseling and testing (N = 33) were aware of the possibility of genetic counseling. The most important determinants for nonparticipation in genetic counseling were experienced difficulties in patient-doctor communication, cultural factors (e.g., social norms), limited health literacy, limited knowledge of the family cancer history, and anxiety about cancer. Religious beliefs and knowing personal and family members' breast cancer risks were motives to obtain genetic counseling. Despite the fact that our study showed that Moroccan and Turkish women reported several personal motives to obtain genetic counseling and testing (GCT), patients and healthcare professionals experience significant language and health literacy difficulties, which make it harder to fully access health care such as genetic counseling and testing.

  4. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method

    PubMed Central

    Rietveld, Cornelius A.; Esko, Tõnu; Davies, Gail; Pers, Tune H.; Turley, Patrick; Benyamin, Beben; Chabris, Christopher F.; Emilsson, Valur; Johnson, Andrew D.; Lee, James J.; de Leeuw, Christiaan; Marioni, Riccardo E.; Medland, Sarah E.; Miller, Michael B.; Rostapshova, Olga; van der Lee, Sven J.; Vinkhuyzen, Anna A. E.; Amin, Najaf; Conley, Dalton; Derringer, Jaime; van Duijn, Cornelia M.; Fehrmann, Rudolf; Franke, Lude; Glaeser, Edward L.; Hansell, Narelle K.; Hayward, Caroline; Iacono, William G.; Ibrahim-Verbaas, Carla; Jaddoe, Vincent; Karjalainen, Juha; Laibson, David; Lichtenstein, Paul; Liewald, David C.; Magnusson, Patrik K. E.; Martin, Nicholas G.; McGue, Matt; McMahon, George; Pedersen, Nancy L.; Pinker, Steven; Porteous, David J.; Posthuma, Danielle; Rivadeneira, Fernando; Smith, Blair H.; Starr, John M.; Tiemeier, Henning; Timpson, Nicholas J.; Trzaskowski, Maciej; Uitterlinden, André G.; Verhulst, Frank C.; Ward, Mary E.; Wright, Margaret J.; Davey Smith, George; Deary, Ian J.; Johannesson, Magnus; Plomin, Robert; Visscher, Peter M.; Benjamin, Daniel J.; Koellinger, Philipp D.

    2014-01-01

    We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. PMID:25201988

  5. DETERMINATION OF GENETIC DIVERSITY AND PATERNITY IN THE GRAY-TAILED VOLE (MICROTUS CANICAUDUS) BY RAPD-PCR

    EPA Science Inventory

    Genetic relatedness of gray-tailed voles (Microtus canicaudus) was determined by random amplified polymorphic DNA (RAPD). This work is the first reported use of the RAPD method for pedigree analysis of M. canicaudus and demonstrates the feasibility of RAPD for assessing paternity...

  6. Determinants of public attitudes to genetically modified salmon.

    PubMed

    Amin, Latifah; Azad, Md Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah

    2014-01-01

    The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country.

  7. Determinants of Public Attitudes to Genetically Modified Salmon

    PubMed Central

    Amin, Latifah; Azad, Md. Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah

    2014-01-01

    The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country. PMID:24489695

  8. Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers.

    PubMed

    Sigrist, M S; Pinheiro, J B; Filho, J A Azevedo; Zucchi, M I

    2011-03-09

    Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, and Pará. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (São Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from São Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.

  9. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    PubMed

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  10. Merits and pitfalls of genetic testing in a hypertrophic cardiomyopathy clinic.

    PubMed

    Arad, Michael; Monserrat, Lorenzo; Haron-Khun, Shiraz; Seidman, Jonathan G; Seidman, Christine E; Arbustini, Eloisa; Glikson, Michael; Freimark, Dov

    2014-11-01

    Hypertrophic cardiomyopathy (HCM) is a familial disease with autosomal dominant inheritance and age-dependent penetrance, caused primarily by mutations of sarcomere genes. Because the clinical variability of HCM is related to its genetic heterogeneity, genetic studies may improve the diagnosis and prognostic evaluation in HCM. To analyze the impact of genetic diagnosis on the clinical management of HCM. Genetic studies were performed for either research or clinical reasons. Once the disease-causing mutation was identified, the management plan was reevaluated. Family members were invited to receive genetic counseling and encouraged to be tested for the mutation. Ten mutations in sarcomere protein genes were identified in 9 probands: 2 novel and 8 previously described. Advanced heart failure or sudden death in a young person prompted the genetic study in 8 of the 9 families. Of 98 relatives available for genotyping, only 53 (54%) agreed to be tested. The compliance was higher in families with sudden death and lower in what appeared to be sporadic HCM or elderly-onset disease. Among the healthy we identified 9 carriers and 19 non-carriers. In 6 individuals the test result resolved an uncertainty about "possible HCM." In several cases the genetic result was also used for family planning and played a role in decisions on cardioverter-defibrillator implantation. Recurrence of a same mutation in different families created an opportunity to apply the information from the literature for risk stratification of individual patients. We suggest that the clinical context determines the indication for genetic testing and interpretation of the results.

  11. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies.

    PubMed

    Taylor, Robert W; Pyle, Angela; Griffin, Helen; Blakely, Emma L; Duff, Jennifer; He, Langping; Smertenko, Tania; Alston, Charlotte L; Neeve, Vivienne C; Best, Andrew; Yarham, John W; Kirschner, Janbernd; Schara, Ulrike; Talim, Beril; Topaloglu, Haluk; Baric, Ivo; Holinski-Feder, Elke; Abicht, Angela; Czermin, Birgit; Kleinle, Stephanie; Morris, Andrew A M; Vassallo, Grace; Gorman, Grainne S; Ramesh, Venkateswaran; Turnbull, Douglass M; Santibanez-Koref, Mauro; McFarland, Robert; Horvath, Rita; Chinnery, Patrick F

    2014-07-02

    Mitochondrial disorders have emerged as a common cause of inherited disease, but their diagnosis remains challenging. Multiple respiratory chain complex defects are particularly difficult to diagnose at the molecular level because of the massive number of nuclear genes potentially involved in intramitochondrial protein synthesis, with many not yet linked to human disease. To determine the molecular basis of multiple respiratory chain complex deficiencies. We studied 53 patients referred to 2 national centers in the United Kingdom and Germany between 2005 and 2012. All had biochemical evidence of multiple respiratory chain complex defects but no primary pathogenic mitochondrial DNA mutation. Whole-exome sequencing was performed using 62-Mb exome enrichment, followed by variant prioritization using bioinformatic prediction tools, variant validation by Sanger sequencing, and segregation of the variant with the disease phenotype in the family. Presumptive causal variants were identified in 28 patients (53%; 95% CI, 39%-67%) and possible causal variants were identified in 4 (8%; 95% CI, 2%-18%). Together these accounted for 32 patients (60% 95% CI, 46%-74%) and involved 18 different genes. These included recurrent mutations in RMND1, AARS2, and MTO1, each on a haplotype background consistent with a shared founder allele, and potential novel mutations in 4 possible mitochondrial disease genes (VARS2, GARS, FLAD1, and PTCD1). Distinguishing clinical features included deafness and renal involvement associated with RMND1 and cardiomyopathy with AARS2 and MTO1. However, atypical clinical features were present in some patients, including normal liver function and Leigh syndrome (subacute necrotizing encephalomyelopathy) seen in association with TRMU mutations and no cardiomyopathy with founder SCO2 mutations. It was not possible to confidently identify the underlying genetic basis in 21 patients (40%; 95% CI, 26%-54%). Exome sequencing enhances the ability to identify

  12. 'The genetic analysis of functional connectomics in Drosophila'

    PubMed Central

    Meinertzhagen, Ian A.; Lee, Chi-Hon

    2014-01-01

    Fly and vertebrate nervous systems share many organization characteristics, such as layers, columns and glomeruli, and utilize similar synaptic components, such ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly’s connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental computation mechanisms that underlie behaviour. PMID:23084874

  13. Molecular mechanism and genetic determinants of buprofezin degradation.

    PubMed

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-07-14

    . However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin has not been well identified. This work revealed that gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin in R. qingshengii YL-1. The products of bfzBA3A4A1A2C could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and bfzBA3A4A1A2C in the bioremediation of buprofezin contamination. Copyright © 2017 American Society for Microbiology.

  14. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  15. A high-resolution genetic map of yellow monkeyflower identifies chemical defense QTLs and recombination rate variation.

    PubMed

    Holeski, Liza M; Monnahan, Patrick; Koseva, Boryana; McCool, Nick; Lindroth, Richard L; Kelly, John K

    2014-03-13

    Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes. Copyright © 2014 Holeski et al.

  16. Identifying transposon insertions and their effects from RNA-sequencing data.

    PubMed

    de Ruiter, Julian R; Kas, Sjors M; Schut, Eva; Adams, David J; Koudijs, Marco J; Wessels, Lodewyk F A; Jonkers, Jos

    2017-07-07

    Insertional mutagenesis using engineered transposons is a potent forward genetic screening technique used to identify cancer genes in mouse model systems. In the analysis of these screens, transposon insertion sites are typically identified by targeted DNA-sequencing and subsequently assigned to predicted target genes using heuristics. As such, these approaches provide no direct evidence that insertions actually affect their predicted targets or how transcripts of these genes are affected. To address this, we developed IM-Fusion, an approach that identifies insertion sites from gene-transposon fusions in standard single- and paired-end RNA-sequencing data. We demonstrate IM-Fusion on two separate transposon screens of 123 mammary tumors and 20 B-cell acute lymphoblastic leukemias, respectively. We show that IM-Fusion accurately identifies transposon insertions and their true target genes. Furthermore, by combining the identified insertion sites with expression quantification, we show that we can determine the effect of a transposon insertion on its target gene(s) and prioritize insertions that have a significant effect on expression. We expect that IM-Fusion will significantly enhance the accuracy of cancer gene discovery in forward genetic screens and provide initial insight into the biological effects of insertions on candidate cancer genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Genetic sex determination assays in 53 mammalian species: Literature analysis and guidelines for reporting standardization.

    PubMed

    Hrovatin, Karin; Kunej, Tanja

    2018-01-01

    Erstwhile, sex was determined by observation, which is not always feasible. Nowadays, genetic methods are prevailing due to their accuracy, simplicity, low costs, and time-efficiency. However, there is no comprehensive review enabling overview and development of the field. The studies are heterogeneous, lacking a standardized reporting strategy. Therefore, our aim was to collect genetic sexing assays for mammals and assemble them in a catalogue with unified terminology. Publications were extracted from online databases using key words such as sexing and molecular. The collected data were supplemented with species and gene IDs and the type of sex-specific sequence variant (SSSV). We developed a catalogue and graphic presentation of diagnostic tests for molecular sex determination of mammals, based on 58 papers published from 2/1991 to 10/2016. The catalogue consists of five categories: species, genes, SSSVs, methods, and references. Based on the analysis of published literature, we propose minimal requirements for reporting, consisting of: species scientific name and ID, genetic sequence with name and ID, SSSV, methodology, genomic coordinates (e.g., restriction sites, SSSVs), amplification system, and description of detected amplicon and controls. The present study summarizes vast knowledge that has up to now been scattered across databases, representing the first step toward standardization regarding molecular sexing, enabling a better overview of existing tests and facilitating planned designs of novel tests. The project is ongoing; collecting additional publications, optimizing field development, and standardizing data presentation are needed.

  18. Genetics of von Willebrand disease type 1.

    PubMed

    Riddel, James P; Aouizerat, Bradley E

    2006-10-01

    The most common form of von Willebrand disease (VWD) is reported to be type 1, accounting for as much as 80% of reported cases. With prevalence estimates as high as 1.6% in the general population, upwards of 4.5 million Americans may be affected. Unfortunately, VWD type 1 is also the most difficult type to diagnose. Despite the continuing progress in defining the genetic lesions responsible for VWD types 2 and 3, identification of the genetic determinants of VWD type 1 remains elusive. Herein the phenomenon known as VWD is summarized, the challenges associated with the diagnosis of type 1 VWD are described, and the role of genetic research in meeting these challenges is explored. The authors identify key gaps in the current genetics literature and suggest new avenues for future research. Lastly, they explore the role of nurses in this research and clinical endeavor. To the authors'knowledge, this review is the first to address these complex issues in nursing research.

  19. The European Prader-Willi Syndrome Clinical Research Database: An Aid in the Investigation of a Rare Genetically Determined Neurodevelopmental Disorder

    ERIC Educational Resources Information Center

    Holland, A.; Whittington, J.; Cohen, O.; Curfs, L.; Delahaye, F.; Dudley, O.; Horsthemke, B.; Lindgren, A. -C.; Nourissier, C.; Sharma, N.; Vogels, A.

    2009-01-01

    Background: Prader-Willi Syndrome (PWS) is a rare genetically determined neurodevelopmental disorder with a complex phenotype that changes with age. The rarity of the syndrome and the need to control for different variables such as genetic sub-type, age and gender limits clinical studies of sufficient size in any one country. A clinical research…

  20. Informed consent for genetic research.

    PubMed

    Hamvas, Aaron; Madden, Katherine K; Nogee, Lawrence M; Trusgnich, Michelle A; Wegner, Daniel J; Heins, Hillary B; Cole, F Sessions

    2004-06-01

    Rapid technological advances in genetic research and public concern about genetic discrimination have led to anticipatory safeguards in the informed consent process in the absence of legal examples of proven discrimination. Despite federal and state regulations to restrict access to personal health information, including genetic information, institutional review boards have required the addition of language to informed consent documents that warns about the risks of discrimination with participation in genetic research. To determine the reasons that families refused consent for their infant's participation in a study evaluating a genetic cause of respiratory distress syndrome. Survey conducted between February 1, 2002, and March 31, 2003. Academic, tertiary free-standing children's hospital. A convenience sample of 465 families were approached for consent. The 135 families who refused consent were surveyed. Reasons for refusal. Of the nonconsenting families, 79% spontaneously and specifically identified institutionally required language in our consent form concerning the risk of denial of access to health insurance and employment as the primary reason for refusal; 97% indicated that their fears resulted directly from language in our consent form. Only 20% of families who refused consent cited inadequate time to consider the study. The institutionally required description of risk of genetic discrimination due solely to participation in genetic research was the primary reason for refusal to consent in this cohort. Information about federally and institutionally mandated protections for confidentiality of participants in genetic research should be included in the informed consent document to balance the description of hypothetical risks and more accurately inform subjects.

  1. Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples.

    PubMed

    Hernando, Barbara; Ibañez, Maria Victoria; Deserio-Cuesta, Julio Alberto; Soria-Navarro, Raquel; Vilar-Sastre, Inca; Martinez-Cadenas, Conrado

    2018-03-01

    Prediction of human pigmentation traits, one of the most differentiable externally visible characteristics among individuals, from biological samples represents a useful tool in the field of forensic DNA phenotyping. In spite of freckling being a relatively common pigmentation characteristic in Europeans, little is known about the genetic basis of this largely genetically determined phenotype in southern European populations. In this work, we explored the predictive capacity of eight freckle and sunlight sensitivity-related genes in 458 individuals (266 non-freckled controls and 192 freckled cases) from Spain. Four loci were associated with freckling (MC1R, IRF4, ASIP and BNC2), and female sex was also found to be a predictive factor for having a freckling phenotype in our population. After identifying the most informative genetic variants responsible for human ephelides occurrence in our sample set, we developed a DNA-based freckle prediction model using a multivariate regression approach. Once developed, the capabilities of the prediction model were tested by a repeated 10-fold cross-validation approach. The proportion of correctly predicted individuals using the DNA-based freckle prediction model was 74.13%. The implementation of sex into the DNA-based freckle prediction model slightly improved the overall prediction accuracy by 2.19% (76.32%). Further evaluation of the newly-generated prediction model was performed by assessing the model's performance in a new cohort of 212 Spanish individuals, reaching a classification success rate of 74.61%. Validation of this prediction model may be carried out in larger populations, including samples from different European populations. Further research to validate and improve this newly-generated freckle prediction model will be needed before its forensic application. Together with DNA tests already validated for eye and hair colour prediction, this freckle prediction model may lead to a substantially more detailed

  2. Genetic advances of type 2 diabetes in Chinese populations.

    PubMed

    Yu, Weihui; Hu, Cheng; Jia, Weiping

    2012-09-01

    In recent decades, the prevalence of type 2 diabetes in China has increased significantly, underscoring the importance of investigating the etiological mechanisms, including genetic determinants, of the disease in Chinese populations. Numerous loci conferring susceptibility to type 2 diabetes (T2D) have been identified worldwide, with most having been identified in European populations. In terms of ethnic heterogeneity in pathogenesis as well as disease predisposition, it is imperative to explore the specific genetic architecture of T2D in Han Chinese. Replication studies of European-derived susceptibility loci have been performed, validating 11 of 32 loci in Chinese populations. Genetic investigations into heritable traits related to glucose metabolism are expected to provide new insights into the pathogenesis of T2D, and such studies have already inferred some new susceptibility loci. Other than replication studies of European-derived loci, efforts have been made to identify specific susceptibility loci in Chinese populations using methods such as genome-wide association studies. These efforts have identified additional new loci for the disease. Genetic studies can facilitate the prediction of risk for T2D and also promote individualized anti-diabetic treatment. Despite many advances in the field of risk prediction and pharmacogenetics, the pace of clinical application of these findings is rather slow. As a result, more studies into the practical utility of these findings remain necessary. © 2012 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  3. Redefining the genetics of Murine Gammaherpesvirus 68 via transcriptome-based annotation

    PubMed Central

    Johnson, L. Steven; Willert, Erin K.; Virgin, Herbert W.

    2010-01-01

    Summary Viral genetic studies often focus on large open reading frames (ORFs) identified during genome annotation (ORF-based annotation). Here we provide a tool and software set for defining gene expression by murine gammaherpesvirus 68 (γHV68) nucleotide-by-nucleotide across the 119,450 basepair (bp) genome. These tools allowed us to determine that viral RNA expression was significantly more complex than predicted from ORF-based annotation, including over 73,000 nucleotides of unexpected transcription within 30 expressed genomic regions (EGRs). Approximately 90% of this RNA expression was antisense to genomic regions containing known large ORFs. We verified the existence of novel transcripts in three EGRs using standard methods to validate the approach and determined which parts of the transcriptome depend on protein or viral DNA synthesis. This redefines the genetic map of γHV68, indicates that herpesviruses contain significantly more genetic complexity than predicted from ORF-based genome annotations, and provides new tools and approaches for viral genetic studies. PMID:20542255

  4. Genetic polymorphisms of pharmacogenomic VIP variants in the Yi population from China.

    PubMed

    Yan, Mengdan; Li, Dianzhen; Zhao, Guige; Li, Jing; Niu, Fanglin; Li, Bin; Chen, Peng; Jin, Tianbo

    2018-03-30

    Drug response and target therapeutic dosage are different among individuals. The variability is largely genetically determined. With the development of pharmacogenetics and pharmacogenomics, widespread research have provided us a wealth of information on drug-related genetic polymorphisms, and the very important pharmacogenetic (VIP) variants have been identified for the major populations around the world whereas less is known regarding minorities in China, including the Yi ethnic group. Our research aims to screen the potential genetic variants in Yi population on pharmacogenomics and provide a theoretical basis for future medication guidance. In the present study, 80 VIP variants (selected from the PharmGKB database) were genotyped in 100 unrelated and healthy Yi adults recruited for our research. Through statistical analysis, we made a comparison between the Yi and other 11 populations listed in the HapMap database for significant SNPs detection. Two specific SNPs were subsequently enrolled in an observation on global allele distribution with the frequencies downloaded from ALlele FREquency Database. Moreover, F-statistics (Fst), genetic structure and phylogenetic tree analyses were conducted for determination of genetic similarity between the 12 ethnic groups. Using the χ2 tests, rs1128503 (ABCB1), rs7294 (VKORC1), rs9934438 (VKORC1), rs1540339 (VDR) and rs689466 (PTGS2) were identified as the significantly different loci for further analysis. The global allele distribution revealed that the allele "A" of rs1540339 and rs9934438 were more frequent in Yi people, which was consistent with the most populations in East Asia. F-statistics (Fst), genetic structure and phylogenetic tree analyses demonstrated that the Yi and CHD shared a closest relationship on their genetic backgrounds. Additionally, Yi was considered similar to the Han people from Shaanxi province among the domestic ethnic populations in China. Our results demonstrated significant differences on

  5. CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins

    PubMed Central

    Londin, Eric R.; Keller, Margaret A.; Maista, Cathleen; Smith, Gretchen; Mamounas, Laura A.; Zhang, Ran; Madore, Steven J.; Gwinn, Katrina; Corriveau, Roderick A.

    2010-01-01

    Background Genetic ancestry is known to impact outcomes of genotype-phenotype studies that are designed to identify risk for common diseases in human populations. Failure to control for population stratification due to genetic ancestry can significantly confound results of disease association studies. Moreover, ancestry is a critical factor in assessing lifetime risk of disease, and can play an important role in optimizing treatment. As modern medicine moves towards using personal genetic information for clinical applications, it is important to determine genetic ancestry in an accurate, cost-effective and efficient manner. Self-identified race is a common method used to track and control for population stratification; however, social constructs of race are not necessarily informative for genetic applications. The use of ancestry informative markers (AIMs) is a more accurate method for determining genetic ancestry for the purposes of population stratification. Methodology/Principal Findings Here we introduce a novel panel of 36 microsatellite (MSAT) AIMs that determines continental admixture proportions. This panel, which we have named Continental Ancestry Informative Markers or CoAIMs, consists of MSAT AIMs that were chosen based upon their measure of genetic variance (Fst), allele frequencies and their suitability for efficient genotyping. Genotype analysis using CoAIMs along with a Bayesian clustering method (STRUCTURE) is able to discern continental origins including Europe/Middle East (Caucasians), East Asia, Africa, Native America, and Oceania. In addition to determining continental ancestry for individuals without significant admixture, we applied CoAIMs to ascertain admixture proportions of individuals of self declared race. Conclusion/Significance CoAIMs can be used to efficiently and effectively determine continental admixture proportions in a sample set. The CoAIMs panel is a valuable resource for genetic researchers performing case-control genetic

  6. Individual Differences in Exercise Behavior: Stability and Change in Genetic and Environmental Determinants From Age 7 to 18.

    PubMed

    Huppertz, Charlotte; Bartels, Meike; de Zeeuw, Eveline L; van Beijsterveldt, Catharina E M; Hudziak, James J; Willemsen, Gonneke; Boomsma, Dorret I; de Geus, Eco J C

    2016-09-01

    Exercise behavior during leisure time is a major source of health-promoting physical activity and moderately tracks across childhood and adolescence. This study aims to investigate the absolute and relative contribution of genes and the environment to variance in exercise behavior from age 7 to 18, and to elucidate the stability and change of genetic and shared environmental factors that underlie this behavior. The Netherlands Twin Register collected data on exercise behavior in twins aged approximately 7, 10, 12, 14, 16 and 18 years (N = 27,332 twins; 48 % males; 47 % with longitudinal assessments). Three exercise categories (low, middle, high) were analyzed by means of liability threshold models. First, a univariate model was fitted using the largest available cross-sectional dataset with linear and quadratic effects of age as modifiers on the means and variance components. Second, a simplex model was fitted on the longitudinal dataset. Heritability was low in 7-year-olds (14 % in males and 12 % in females), but gradually increased up to age 18 (79 % in males and 49 % in females), whereas the initially substantial relative influence of the shared environment decreased with age (from 80 to 4 % in males and from 80 to 19 % in females). This decrease was due to a large increase in the genetic variance. The longitudinal model showed the genetic effects in males to be largely stable and to accumulate from childhood to late adolescence, whereas in females, they were marked by both transmission and innovation at all ages. The shared environmental effects tended to be less stable in both males and females. In sum, the clear age-moderation of exercise behavior implies that family-based interventions might be useful to increase this behavior in children, whereas individual-based interventions might be better suited for adolescents. We showed that some determinants of individual differences in exercise behavior are stable across childhood and youth, whereas

  7. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  8. Global search in photoelectron diffraction structure determination using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Viana, M. L.; Díez Muiño, R.; Soares, E. A.; Van Hove, M. A.; de Carvalho, V. E.

    2007-11-01

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 × 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  9. Genetic diversity and genetic structure of an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified agricultural landscape: implications for conservation.

    PubMed

    Sunny, Armando; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Mendoza-Martínez, Germán David; Martínez-Gómez, Daniel

    2015-12-01

    It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.

  10. Genetic studies of stuttering in a founder population.

    PubMed

    Wittke-Thompson, Jacqueline K; Ambrose, Nicoline; Yairi, Ehud; Roe, Cheryl; Cook, Edwin H; Ober, Carole; Cox, Nancy J

    2007-01-01

    Genome-wide linkage and association analyses were conducted to identify genetic determinants of stuttering in a founder population in which 48 individuals affected with stuttering are connected in a single 232-person genealogy. A novel approach was devised to account for all necessary relationships to enable multipoint linkage analysis. Regions with nominal evidence for linkage were found on chromosomes 3 (P=0.013, 208.8 centiMorgans (cM)), 13 (P=0.012, 52.6 cM), and 15 (P=0.02, 100 cM). Regions with nominal evidence for association with stuttering that overlapped with a linkage signal are located on chromosomes 3 (P=0.0047, 195 cM), 9 (P=0.0067, 46.5 cM), and 13 (P=0.0055, 52.6 cM). We also conducted the first meta-analysis for stuttering using results from linkage studies in the Hutterites and The Illinois International Genetics of Stuttering Project and identified regions with nominal evidence for linkage on chromosomes 2 (P=0.013, 180-195 cM) and 5 (P=0.0051, 105-120 cM; P=0.015, 120-135 cM). None of the linkage signals detected in the Hutterite sample alone, or in the meta-analysis, meet genome-wide criteria for significance, although some of the stronger signals overlap linkage mapping signals previously reported for other speech and language disorders. After reading this article, the reader will be able to: (1) summarize information about the background of common disorders and methodology of genetic studies; (2) evaluate the role of genetics in stuttering; (3) discuss the value of using founder populations in genetic studies; (4) articulate the importance of combining several studies in a meta-analysis; (5) discuss the overlap of genetic signals identified in stuttering with other speech and language disorders.

  11. Screening for ATM Mutations in an African-American Population to Identify a Predictor of Breast Cancer Susceptibility

    DTIC Science & Technology

    2006-07-01

    ATM genetic variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for each mutation examined. 15. SUBJECT...women without breast cancer. An additional objective is to determine the functional impact upon the protein encoded by the ATM gene for each mutation ...each ATM variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for mutations identified. Body STATEMENT

  12. INNER EAR EMBRYOGENESIS: GENETIC AND ENVIRONMENTAL DETERMINANTS

    EPA Science Inventory

    The anatomy and developmental molecular genetics of the inner ear from establishment of the otic placode to formation of the definitive cochlea and vestibular apparatus will be reviewed and the complex 3-D structural changes that shape the developing inner ear will be illustrated...

  13. Genetic effects of PDGFRB and MARCH1 identified in GWAS revealing strong associations with semen production traits in Chinese Holstein bulls.

    PubMed

    Liu, Shuli; Yin, Hongwei; Li, Cong; Qin, Chunhua; Cai, Wentao; Cao, Mingyue; Zhang, Shengli

    2017-07-03

    Using a genome-wide association study strategy, our previous study discovered 19 significant single-nucleotide polymorphisms (SNPs) related to semen production traits in Chinese Holstein bulls. Among them, three SNPs were within or close to the phosphodiesterase 3A (PDE3A), membrane associated ring-CH-type finger 1 (MARCH1) and platelet derived growth factor receptor beta (PDGFRB) genes. The present study was designed with the objectives of identifying genetic polymorphism of the PDE3A, PDGFRB and MARCH1 genes and their effects on semen production traits in a Holstein bull population. A total of 20 SNPs were detected and genotyped in 730 bulls. Association analyses using de-regressed estimated breeding values of each semen production trait revealed four statistically significant SNPs for one or more semen production traits (P < 0.05): one SNP was located downstream of PDGFRB and three SNPs were located in the promoter of MARCH1. Interestingly, for MARCH1, haplotype-based analysis revealed significant associations of haplotypes with semen volume per ejaculate. Furthermore, high expression of the MARCH1 gene was observed in sperm cells. One SNP (rs43445726) in the regulatory region of MARCH1 had a significant effect on gene expression. Our study demonstrated the significant associations of genetic variants of the PDGFRB and MARCH1 genes with semen production traits. The identified SNPs may serve as genetic markers to optimize breeding programs for semen production traits in Holstein bull populations.

  14. A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection.

    PubMed

    Riblett, Amber M; Blomen, Vincent A; Jae, Lucas T; Altamura, Louis A; Doms, Robert W; Brummelkamp, Thijn R; Wojcechowskyj, Jason A

    2016-02-01

    Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral agents with activity

  15. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    USGS Publications Warehouse

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  16. Going forward with genetics: recent technological advances and forward genetics in mice.

    PubMed

    Moresco, Eva Marie Y; Li, Xiaohong; Beutler, Bruce

    2013-05-01

    Forward genetic analysis is an unbiased approach for identifying genes essential to defined biological phenomena. When applied to mice, it is one of the most powerful methods to facilitate understanding of the genetic basis of human biology and disease. The speed at which disease-causing mutations can be identified in mutagenized mice has been markedly increased by recent advances in DNA sequencing technology. Creating and analyzing mutant phenotypes may therefore become rate-limiting in forward genetic experimentation. We review the forward genetic approach and its future in the context of recent technological advances, in particular massively parallel DNA sequencing, induced pluripotent stem cells, and haploid embryonic stem cells. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families.

    PubMed

    Glahn, David C; Almasy, Laura; Barguil, Marcela; Hare, Elizabeth; Peralta, Juan Manuel; Kent, Jack W; Dassori, Albana; Contreras, Javier; Pacheco, Adriana; Lanzagorta, Nuria; Nicolini, Humberto; Raventós, Henriette; Escamilla, Michael A

    2010-02-01

    Although genetic influences on bipolar disorder are well established, localization of genes that predispose to the illness has proven difficult. Given that genes predisposing to bipolar disorder may be transmitted without expression of the categorical clinical phenotype, a strategy for identifying risk genes is to identify and map quantitative intermediate phenotypes or endophenotypes. To adjudicate neurocognitive endophenotypes for bipolar disorder. All participants underwent diagnostic interviews and comprehensive neurocognitive evaluations. Neurocognitive measures found to be heritable were entered into analyses designed to determine which test results are impaired in affected individuals, are sensitive to the genetic liability for the illness, and are genetically correlated with affection status. Central valley of Costa Rica; Mexico City, Mexico; and San Antonio, Texas. Seven hundred nine Latino individuals participated in the study. Of these, 660 were members of extended pedigrees with at least 2 siblings diagnosed as having bipolar disorder (n = 230). The remaining subjects were community control subjects drawn from each site who did not have a personal or family history of bipolar disorder or schizophrenia. Neurocognitive test performance. Two of the 22 neurocognitive variables were not significantly heritable and were excluded from subsequent analyses. Patients with bipolar disorder were impaired on 6 cognitive measures compared with nonrelated healthy controls. Nonbipolar first-degree relatives were impaired on 5 of these, and the following 3 tests were genetically correlated with affection status: Digit Symbol Coding Task, Object Delayed Response Task, and immediate facial memory. This large-scale extended pedigree study of cognitive functioning in bipolar disorder identifies measures of processing speed, working memory, and declarative (facial) memory as candidate endophenotypes for bipolar disorder.

  18. Sex determination of Pohnpei Micronesian kingfishers using morphological and molecular genetic techniques

    USGS Publications Warehouse

    Kesler, Dylan C.; Lopes, I.F.; Haig, Susan M.

    2006-01-01

    Conservation-oriented studies of Micronesian Kingfishers (Todiramphus cinnamominus) have been hindered by a lack of basic natural history information, despite the status of the Guam subspecies (T. c. cinnamominus) as one of the most endangered species in the world. We used tissue samples and morphometric measures from museum specimens and wild-captured Pohnpei Micronesian Kingfishers (T. c. reichenbachii) to develop methods for sex determination. We present a modified molecular protocol and a discriminant function that yields the probability that a particular individual is male or female. Our results revealed that females were significantly larger than males, and the discriminant function correctly predicted sex in 73% (30/41) of the individuals. The sex of 86% (18/21) of individuals was correctly assigned when a moderate reliability threshold was set. Sex determination using molecular genetic techniques was more reliable than methods based on morphology. Our results will facilitate recovery efforts for the critically endangered Guam Micronesian Kingfisher and provide a basis for sex determination in the 11 other endangered congeners in the Pacific Basin.

  19. Genetic fatalism and social policy: the implications of behavior genetics research.

    PubMed Central

    Alper, J. S.; Beckwith, J.

    1993-01-01

    Recent advances in molecular genetics methods have provided new means of determining the genetic bases of human behavioral traits. The impetus for the use of these approaches for specific behaviors depends, in large part, on previous familial studies on inheritance of such traits. In the past, a finding of a genetic basis for a trait was often accompanied with the idea that that trait is unchangeable. We discuss the definition of "genetic trait" and heritability and examine the relationship between these concepts and the malleability of traits for both molecular and nonmolecular approaches to behavioral genetics. We argue that the malleability of traits is as much a social and political question as it is a biological one and that whether or not a trait is genetic has little relevance to questions concerning determinism, free will, and individual responsibility for actions. We conclude by noting that "scientific objectivity" should not be used to conceal the social perspectives that underlie proposals regarding social change. PMID:7716971

  20. INTEGRATIVE ANALYSIS OF GENETIC, GENOMIC AND PHENOTYPIC DATA FOR ETHANOL BEHAVIORS: A NETWORK-BASED PIPELINE FOR IDENTIFYING MECHANISMS AND POTENTIAL DRUG TARGETS

    PubMed Central

    Bogenpohl, James W.; Mignogna, Kristin M.; Smith, Maren L.; Miles, Michael F.

    2016-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce non-biased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x

  1. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    PubMed

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  2. A combined proteomic and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced autophagy in Drosophila.

    PubMed

    Köhler, Katja; Brunner, Erich; Guan, Xue Li; Boucke, Karin; Greber, Urs F; Mohanty, Sonali; Barth, Julia M I; Wenk, Markus R; Hafen, Ernst

    2009-10-01

    Autophagy is a lysosomal-mediated degradation process that promotes cell survival during nutrient-limiting conditions. However, excessive autophagy results in cell death. In Drosophila, autophagy is regulated nutritionally, hormonally and developmentally in several tissues, including the fat body, a nutrient-storage organ. Here we use a proteomics approach to identify components of starvation-induced autophagic responses in the Drosophila fat body. Using cICAT labeling and mass spectrometry, differences in protein expression levels of normal compared to starved fat bodies were determined. Candidates were analyzed genetically for their involvement in autophagy in fat bodies deficient for the respective genes. One of these genes, Desat1, encodes a lipid desaturase. Desat1 mutant cells fail to induce autophagy upon starvation. The desat1 protein localizes to autophagic structures after nutrient depletion and is required for fly development. Lipid analyses revealed that Desat1 regulates the composition of lipids in Drosophila. We propose that Desat1 exerts its role in autophagy by controlling lipid biosynthesis and/or signaling necessary for autophagic responses.

  3. Genome-wide association study identifies 74 loci associated with educational attainment

    PubMed Central

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  4. Genome-wide association study identifies 74 loci associated with educational attainment.

    PubMed

    Okbay, Aysu; Beauchamp, Jonathan P; Fontana, Mark Alan; Lee, James J; Pers, Tune H; Rietveld, Cornelius A; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S Fleur W; Oskarsson, Sven; Pickrell, Joseph K; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H; Pina Concas, Maria; Derringer, Jaime; Furlotte, Nicholas A; Galesloot, Tessel E; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M; Harris, Sarah E; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E; Kaasik, Kadri; Kalafati, Ioanna P; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J; deLeeuw, Christiaan; Lind, Penelope A; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B; van der Most, Peter J; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E; Shi, Jianxin; Smith, Albert V; Poot, Raymond A; St Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A; Campbell, Harry; Cappuccio, Francesco P; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans, David M; Faul, Jessica D; Feitosa, Mary F; Forstner, Andreas J; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V; Harris, Tamara B; Heath, Andrew C; Hocking, Lynne J; Holliday, Elizabeth G; Homuth, Georg; Horan, Michael A; Hottenga, Jouke-Jan; de Jager, Philip L; Joshi, Peter K; Jugessur, Astanand; Kaakinen, Marika A; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A L M; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J; Lebreton, Maël P; Levinson, Douglas F; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C M; Loukola, Anu; Madden, Pamela A; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E; Marques-Vidal, Pedro; Meddens, Gerardus A; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W; Myhre, Ronny; Nelson, Christopher P; Nyholt, Dale R; Ollier, William E R; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L; Petrovic, Katja E; Porteous, David J; Räikkönen, Katri; Ring, Susan M; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J; Smith, Blair H; Smith, Jennifer A; Staessen, Jan A; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J A; Venturini, Cristina; Vinkhuyzen, Anna A E; Völker, Uwe; Völzke, Henry; Vonk, Judith M; Vozzi, Diego; Waage, Johannes; Ware, Erin B; Willemsen, Gonneke; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I; Borecki, Ingrid B; Bültmann, Ute; Chabris, Christopher F; Cucca, Francesco; Cusi, Daniele; Deary, Ian J; Dedoussis, George V; van Duijn, Cornelia M; Eriksson, Johan G; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J F; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Lehtimäki, Terho; Lehrer, Steven F; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W J H; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A; Samani, Nilesh J; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I A; Spector, Tim D; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Tung, Joyce Y; Uitterlinden, André G; Vitart, Veronique; Vollenweider, Peter; Weir, David R; Wilson, James F; Wright, Alan F; Conley, Dalton C; Krueger, Robert F; Davey Smith, George; Hofman, Albert; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Yang, Jian; Johannesson, Magnus; Visscher, Peter M; Esko, Tõnu; Koellinger, Philipp D; Cesarini, David; Benjamin, Daniel J

    2016-05-26

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.

  5. The Stability of Genetic Determination from Age 2 to Age 9: A Longitudinal Twin Study.

    ERIC Educational Resources Information Center

    Lytton, Hugh; And Others

    A longitudinal investigation of the social and cognitive development of male twins was conducted when twins were 2.5 years of age, and again when they were 8- to 10-years-old. This study was designed to re-examine the heritability of the traits studied at the earlier age and, thus, to address the question of the stability of genetic determination.…

  6. Measured dose to ovaries and testes from Hodgkin's fields and determination of genetically significant dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niroomand-Rad, A.; Cumberlin, R.

    The purpose of this study was to determine the genetically significant dose from therapeutic radiation exposure with Hodgkin's fields by estimating the doses to ovaries and testes. Phantom measurements were performed to verify estimated doses to ovaries and testes from Hodgkin's fields. Thermoluminescent LiF dosimeters (TLD-100) of 1 x 3 x 3 mm[sup 3] dimensions were embedded in phantoms and exposed to standard mantle and paraaortic fields using Co-60, 4 MV, 6 MV, and 10 MV photon beams. The results show that measured doses to ovaries and testes are about two to five times higher than the corresponding graphically estimatedmore » doses for Co-60 and 4 MVX photon beams as depicted in ICRP publication 44. In addition, the measured doses to ovaries and testes are about 30% to 65% lower for 10 MV photon beams than for their corresponding Co-60 photon beams. The genetically significant dose from Hodgkin's treatment (less than 0.01 mSv) adds about 4% to the genetically significant dose contribution to medical procedures and adds less than 1% to the genetically significant dose from all sources. Therefore, the consequence to society is considered to be very small. The consequences for the individual patient are, likewise, small. 28 refs., 3 figs., 5 tabs.« less

  7. Precise orbit determination using the batch filter based on particle filtering with genetic resampling approach

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Choi, Eun-Jung; Park, Sang-Young; Park, Chandeok; Lim, Hyung-Chul

    2014-09-01

    In this study, genetic resampling (GRS) approach is utilized for precise orbit determination (POD) using the batch filter based on particle filtering (PF). Two genetic operations, which are arithmetic crossover and residual mutation, are used for GRS of the batch filter based on PF (PF batch filter). For POD, Laser-ranging Precise Orbit Determination System (LPODS) and satellite laser ranging (SLR) observations of the CHAMP satellite are used. Monte Carlo trials for POD are performed by one hundred times. The characteristics of the POD results by PF batch filter with GRS are compared with those of a PF batch filter with minimum residual resampling (MRRS). The post-fit residual, 3D error by external orbit comparison, and POD repeatability are analyzed for orbit quality assessments. The POD results are externally checked by NASA JPL’s orbits using totally different software, measurements, and techniques. For post-fit residuals and 3D errors, both MRRS and GRS give accurate estimation results whose mean root mean square (RMS) values are at a level of 5 cm and 10-13 cm, respectively. The mean radial orbit errors of both methods are at a level of 5 cm. For POD repeatability represented as the standard deviations of post-fit residuals and 3D errors by repetitive PODs, however, GRS yields 25% and 13% more robust estimation results than MRRS for post-fit residual and 3D error, respectively. This study shows that PF batch filter with GRS approach using genetic operations is superior to PF batch filter with MRRS in terms of robustness in POD with SLR observations.

  8. A simulation study of mutations in the genetic regulatory hierarchy for butterfly eyespot focus determination.

    PubMed

    Marcus, Jeffrey M; Evans, Travis M

    2008-09-01

    The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci [Evans, T.M., Marcus, J.M., 2006. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol. Dev. 8, 273-283]. The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two slightly modified alternative hierarchies were capable of reproducing all of the known gene expressions patterns. Here we extend the computational models previously implemented in Delphi 2.0 to two mutants derived from the squinting bush brown butterfly (Bicyclus anynana). These two mutants, comet and Cyclops, have aberrantly shaped eyespot foci that are produced by different mechanisms. The comet mutation appears to produce a modified interaction between the wing margin and the eyespot focus that results in a series of comet-shaped eyespot foci. The Cyclops mutation causes the failure of wing vein formation between two adjacent wing-cells and the fusion of two adjacent eyespot foci to form a single large elongated focus in their place. The computational approach to modeling pattern formation in these mutants allows us to make predictions about patterns of gene expression, which are largely unstudied in butterfly mutants. It also suggests a critical experiment that will allow us to distinguish between two hypothesized genetic regulatory hierarchies that may underlie all butterfly eyespot foci.

  9. Genetic screening of non-classic CAH females with hyperandrogenemia identifies a novel CYP11B1 gene mutation.

    PubMed

    Shammas, Christos; Byrou, Stefania; Phelan, Marie M; Toumba, Meropi; Stylianou, Charilaos; Skordis, Nicos; Neocleous, Vassos; Phylactou, Leonidas A

    2016-04-01

    Congenital adrenal hyperplasia (CAH) is an endocrine autosomal recessive disorder with various symptoms of diverse severity. Mild hyperandrogenemia is the most commonclinical feature in non-classic CAH patients and 95% of the cases are identified by mutations in the CYP21A2 gene. In the present study, the second most common cause for non-classic CAH (NC-CAH), 11β-hydroxylase deficiency due to mutations in the CYP11B1 gene, is investigated. Screening of the CYP21A2 and CYP11B1 genes by direct sequencing was carried out for the detection of possible genetic defects in patients with suspected CAH. It wasobserved that CYP11B1 variants co-exist only in rare cases along with mutations in CYP21A2 in patients clinically diagnosed with CAH. A total of 23 NC-CAH female patients out of 75 were identified with only one mutation in the CYP21A2 gene. The novel CYP11B1 gene mutation, p.Val484Asp, was identified in a patient with CAH in the heterozygous state. The structural characterization of the novel p.Val484Asp was found to likely cause distortion of the surrounding beta sheet and indirect destabilization of the cavity that occurs on the opposite face of the structural elements, leading to partial impairment of the enzymatic activity. CYP21A2 gene mutations are the most frequent genetic defects in cases of NC-CAH even when these patients are in the heterozygous state. These mutations have a diverse phenotype giving rise to a variable extent of cortisol synthesis impairment; it is also clear that CYP11B1 mutants are a rare type of defects causing CAH.

  10. Genetic Architectures of Quantitative Variation in RNA Editing Pathways

    PubMed Central

    Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.

    2016-01-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740

  11. Genetic diversity of pomegranate germplasm collection from Spain determined by fruit, seed, leaf and flower characteristics

    PubMed Central

    Melgarejo, Pablo; Legua, Pilar; Garcia-Sanchez, Francisco; Hernández, Francisca

    2016-01-01

    Background. Miguel Hernandez University (Spain) created a germplasm bank of the varieties of pomegranate from different Southeastern Spain localities in order to preserve the crop’s wide genetic diversity. Once this collection was established, the next step was to characterize the phenotype of these varieties to determine the phenotypic variability that existed among all the different pomegranate genotypes, and to understand the degree of polymorphism of the morphometric characteristics among varieties. Methods. Fifty-three pomegranate (Punica granatum L.) accessions were studied in order to determine their degree of polymorphism and to detect similarities in their genotypes. Thirty-one morphometric characteristics were measured in fruits, arils, seeds, leaves and flowers, as well as juice characteristics including content, pH, titratable acidity, total soluble solids and maturity index. ANOVA, principal component analysis, and cluster analysis showed that there was a considerable phenotypic diversity (and presumably genetic). Results. The cluster analysis produced a dendrogram with four main clusters. The dissimilarity level ranged from 1 to 25, indicating that there were varieties that were either very similar or very different from each other, with varieties from the same geographical areas being more closely related. Within each varietal group, different degrees of similarity were found, although there were no accessions that were identical. These results highlight the crop’s great genetic diversity, which can be explained not only by their different geographical origins, but also to the fact that these are native plants that have not come from genetic improvement programs. The geographic origin could be, in the cases where no exchanges of plant material took place, a key criterion for cultivar clustering. Conclusions. As a result of the present study, we can conclude that among all the parameters analyzed, those related to fruit and seed size as well as

  12. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers*

    PubMed Central

    Zhang, Gu-wen; Xu, Sheng-chun; Mao, Wei-hua; Hu, Qi-zan; Gong, Ya-ming

    2013-01-01

    The development of expressed sequence tag-derived simple sequence repeats (EST-SSRs) provided a useful tool for investigating plant genetic diversity. In the present study, 22 polymorphic EST-SSRs from grain soybean were identified and used to assess the genetic diversity in 48 vegetable soybean accessions. Among the 22 EST-SSR loci, tri-nucleotides were the most abundant repeats, accounting for 50.00% of the total motifs. GAA was the most common motif among tri-nucleotide repeats, with a frequency of 18.18%. Polymorphic analysis identified a total of 71 alleles, with an average of 3.23 per locus. The polymorphism information content (PIC) values ranged from 0.144 to 0.630, with a mean of 0.386. Observed heterozygosity (H o) values varied from 0.0196 to 1.0000, with an average of 0.6092, while the expected heterozygosity (H e) values ranged from 0.1502 to 0.6840, with a mean value of 0.4616. Principal coordinate analysis and phylogenetic tree analysis indicated that the accessions could be assigned to different groups based to a large extent on their geographic distribution, and most accessions from China were clustered into the same groups. These results suggest that Chinese vegetable soybean accessions have a narrow genetic base. The results of this study indicate that EST-SSRs from grain soybean have high transferability to vegetable soybean, and that these new markers would be helpful in taxonomy, molecular breeding, and comparative mapping studies of vegetable soybean in the future. PMID:23549845

  13. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction.

    PubMed

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-10-08

    When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs.

  14. Genetic screening of Greek patients with Huntington’s disease phenocopies identifies an SCA8 expansion.

    PubMed

    Koutsis, G; Karadima, G; Pandraud, A; Sweeney, M G; Paudel, R; Houlden, H; Wood, N W; Panas, M

    2012-09-01

    Huntington’s disease (HD) is an autosomal dominant disorder characterized by a triad of chorea, psychiatric disturbance and cognitive decline. Around 1% of patients with HD-like symptoms lack the causative HD expansion and are considered HD phenocopies. Genetic diseases that can present as HD phenocopies include HD-like syndromes such as HDL1, HDL2 and HDL4 (SCA17), some spinocerebellar ataxias (SCAs) and dentatorubral-pallidoluysian atrophy (DRPLA). In this study we screened a cohort of 21 Greek patients with HD phenocopy syndromes formutations causing HDL2, SCA17, SCA1, SCA2, SCA3,SCA8, SCA12 and DRPLA. Fifteen patients (71%) had a positive family history. We identified one patient (4.8% of the total cohort) with an expansion of 81 combined CTA/CTG repeats at the SCA8 locus. This falls within what is believed to be the high-penetrance allele range. In addition to the classic HD triad, the patient had features of dystonia and oculomotor apraxia. There were no cases of HDL2, SCA17, SCA1, SCA2, SCA3, SCA12 or DRPLA. Given the controversy surrounding the SCA8 expansion, the present finding may be incidental. However, if pathogenic, it broadens the phenotype that may be associated with SCA8 expansions. The absence of any other mutations in our cohort is not surprising, given the low probability of reaching a genetic diagnosis in HD phenocopy patients.

  15. Criteria for Identifying and Evaluating Candidate Sites for Open-Field Trials of Genetically Engineered Mosquitoes

    PubMed Central

    Brown, David M.; Alphey, Luke S.; McKemey, Andrew; Beech, Camilla

    2014-01-01

    Abstract Recent laboratory successes in the development of genetically engineered mosquitoes for controlling pathogen transmission have fostered the need for standardized procedures for advancing the technical achievements to practical tools. It is incumbent in many cases for the same scientists doing the in-laboratory discovery research to also take on the initial challenges of developing the pathway that will move the technologies to the field. One of these challenges is having a set of criteria for selecting collaborators and sites for efficacy and safety field trials that combine rigorous science with good ethical and legal practices. Specific site-selection criteria were developed in four categories—Scientific, Regulatory, Community Engagement, and Resources—in anticipation of open-field releases of a transgenic mosquito strain designed to suppress populations of the dengue vector mosquito, Aedes aegypti. The criteria are derived from previous published material, discussions, and personal experiences with the expectation of providing guidance to laboratory scientists for addressing the conceptual and operational considerations for identifying partner researchers and countries with whom to collaborate. These criteria are not intended to be prescriptive nor can they be applied to every circumstance where genetic approaches are proposed for deployment. However, we encourage those involved in the discovery phase of research to consider each criterion during project planning activities, and where appropriate, incorporate them into a “go/no-go” decision-making process for further development and testing of the technologies. PMID:24689963

  16. Genetic Diversity and Geographic Population Structure of Bovine Neospora caninum Determined by Microsatellite Genotyping Analysis

    PubMed Central

    Regidor-Cerrillo, Javier; Díez-Fuertes, Francisco; García-Culebras, Alicia; Moore, Dadín P.; González-Warleta, Marta; Cuevas, Carmen; Schares, Gereon; Katzer, Frank; Pedraza-Díaz, Susana; Mezo, Mercedes; Ortega-Mora, Luis M.

    2013-01-01

    The cyst-forming protozoan parasite Neospora caninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N . caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N . caninum , which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N . caninum -derived reference isolates from around the world and 96 N . caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N . caninum . Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N . caninum samples. Geographic sub-structuring was present in the country populations according to pairwise F ST. Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal

  17. Deep Resequencing Unveils Genetic Architecture of ADIPOQ and Identifies a Novel Low-Frequency Variant Strongly Associated With Adiponectin Variation

    PubMed Central

    Warren, Liling L.; Li, Li; Nelson, Matthew R.; Ehm, Margaret G.; Shen, Judong; Fraser, Dana J.; Aponte, Jennifer L.; Nangle, Keith L.; Slater, Andrew J.; Woollard, Peter M.; Hall, Matt D.; Topp, Simon D.; Yuan, Xin; Cardon, Lon R.; Chissoe, Stephanie L.; Mooser, Vincent; Morris, Andrew D.; Palmer, Colin N.A.; Perry, John R.; Frayling, Timothy M.; Whittaker, John C.; Waterworth, Dawn M.

    2012-01-01

    Increased adiponectin levels have been shown to be associated with a lower risk of type 2 diabetes. To understand the relations between genetic variation at the adiponectin-encoding gene, ADIPOQ, and adiponectin levels, and subsequently its role in disease, we conducted a deep resequencing experiment of ADIPOQ in 14,002 subjects, including 12,514 Europeans, 594 African Americans, and 567 Indian Asians. We identified 296 single nucleotide polymorphisms (SNPs), including 30 amino acid changes, and carried out association analyses in a subset of 3,665 subjects from two independent studies. We confirmed multiple genome-wide association study findings and identified a novel association between a low-frequency SNP (rs17366653) and adiponectin levels (P = 2.2E–17). We show that seven SNPs exert independent effects on adiponectin levels. Together, they explained 6% of adiponectin variation in our samples. We subsequently assessed association between these SNPs and type 2 diabetes in the Genetics of Diabetes Audit and Research in Tayside Scotland (GO-DARTS) study, comprised of 5,145 case and 6,374 control subjects. No evidence of association with type 2 diabetes was found, but we were also unable to exclude the possibility of substantial effects (e.g., odds ratio 95% CI for rs7366653 [0.91–1.58]). Further investigation by large-scale and well-powered Mendelian randomization studies is warranted. PMID:22403302

  18. Molecular genetics of human obesity: A comprehensive review.

    PubMed

    Singh, Rajan Kumar; Kumar, Permendra; Mahalingam, Kulandaivelu

    2017-02-01

    Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  19. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids.

    PubMed

    Bonnafous, Fanny; Fievet, Ghislain; Blanchet, Nicolas; Boniface, Marie-Claude; Carrère, Sébastien; Gouzy, Jérôme; Legrand, Ludovic; Marage, Gwenola; Bret-Mestries, Emmanuelle; Munos, Stéphane; Pouilly, Nicolas; Vincourt, Patrick; Langlade, Nicolas; Mangin, Brigitte

    2018-02-01

    This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.

  20. Genetic population structure of muskellunge in the Great Lakes

    USGS Publications Warehouse

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  1. Determination of the Spatial Distribution in Hydraulic Conductivity Using Genetic Algorithm Optimization

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Lee, J. H.; Kitanidis, P. K.

    2016-12-01

    Heterogeneity in hydraulic conductivity (K) impacts the transport and fate of contaminants in subsurface as well as design and operation of managed aquifer recharge (MAR) systems. Recently, improvements in computational resources and availability of big data through electrical resistivity tomography (ERT) and remote sensing have provided opportunities to better characterize the subsurface. Yet, there is need to improve prediction and evaluation methods in order to obtain information from field measurements for better field characterization. In this study, genetic algorithm optimization, which has been widely used in optimal aquifer remediation designs, was used to determine the spatial distribution of K. A hypothetical 2 km by 2 km aquifer was considered. A genetic algorithm library, PGAPack, was linked with a fast Fourier transform based random field generator as well as a groundwater flow and contaminant transport simulation model (BIO2D-KE). The objective of the optimization model was to minimize the total squared error between measured and predicted field values. It was assumed measured K values were available through ERT. Performance of genetic algorithm in predicting the distribution of K was tested for different cases. In the first one, it was assumed that observed K values were evaluated using the random field generator only as the forward model. In the second case, as well as K-values obtained through ERT, measured head values were incorporated into evaluation in which BIO2D-KE and random field generator were used as the forward models. Lastly, tracer concentrations were used as additional information in the optimization model. Initial results indicated enhanced performance when random field generator and BIO2D-KE are used in combination in predicting the spatial distribution in K.

  2. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture.

    PubMed

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik

    2013-05-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.

  3. Understanding of research, genetics and genetic research in a rapid ethical assessment in north west Cameroon

    PubMed Central

    Kengne-Ouafo, Jonas A.; Millard, James D.; Nji, Theobald M.; Tantoh, William F.; Nyoh, Doris N.; Tendongfor, Nicholas; Enyong, Peter A.; Newport, Melanie J.; Davey, Gail; Wanji, Samuel

    2016-01-01

    Background There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon. Methods Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012. Results Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research. Conclusion We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research. PMID:25969503

  4. [Difficulties of genetic counselling in rare, mainly neurogenetic disorders].

    PubMed

    Horváth, Emese; Nagy, Nikoletta; Széll, Márta

    2014-08-03

    In recent decades methods used for the investigation of the genetic background of rare diseases showed a great improvement. The aim of the authors was to demonstrate difficulties of genetic counselling and investigations in case of five rare, mainly neurogenetic diseases. During pre-test genetic counselling, the disease suspected from the clinical symptoms and the available genetic tests were considered. During post-test genetic counselling, the results of the genetic tests were discussed. In three of the five cases genetic tests identified the disease-causing genetic abnormalities, while in two cases the causative abnormalities were not identified. Despite a great improvement of the available genetic methods, the causative genetic abnormalities cannot be identified in some cases. The genetic counsellor has a key role in the assessment and interpretation of the results and in helping the family planning.

  5. Genetic effects on gene expression across human tissues

    PubMed Central

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease. PMID:29022597

  6. Genetic effects on gene expression across human tissues.

    PubMed

    Battle, Alexis; Brown, Christopher D; Engelhardt, Barbara E; Montgomery, Stephen B

    2017-10-11

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

  7. Genetic conservation and paddlefish propagation

    USGS Publications Warehouse

    Sloss, Brian L.; Klumb, Robert A.; Heist, Edward J.

    2009-01-01

    The conservation of genetic diversity of our natural resources is overwhelmingly one of the central foci of 21st century management practices. Three recommendations related to the conservation of paddlefish Polyodon spathula genetic diversity are to (1) identify genetic diversity at both nuclear and mitochondrial DNA loci using a suggested list of 20 sampling locations, (2) use genetic diversity estimates to develop genetic management units, and (3) identify broodstock sources to minimize effects of supplemental stocking on the genetic integrity of native paddlefish populations. We review previous genetic work on paddlefish and described key principles and concepts associated with maintaining genetic diversity within and among paddlefish populations and also present a genetic case study of current paddlefish propagation at the U.S. Fish and Wildlife Service Gavins Point National Fish Hatchery. This study confirmed that three potential sources of broodfish were genetically indistinguishable at the loci examined, allowing the management agencies cooperating on this program flexibility in sampling gametes. This study also showed significant bias in the hatchery occurred in terms of male reproductive contribution, which resulted in a shift in the genetic diversity of progeny compared to the broodfish. This shift was shown to result from differential male contributions, partially attributed to the mode of egg fertilization. Genetic insights enable implementation of a paddlefish propagation program within an adaptive management strategy that conserves inherent genetic diversity while achieving demographic goals.

  8. Genetic mutations associated with status epilepticus.

    PubMed

    Bhatnagar, M; Shorvon, S

    2015-08-01

    This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult

  9. The social and economic origins of genetic determinism: a case history of the American Eugenics Movement, 1900-1940 and its lessons for today.

    PubMed

    Allen, G E

    1997-01-01

    Eugenics, the attempt to improve the genetic quality of the human species by 'better breeding', developed as a worldwide movement between 1900 and 1940. It was particularly prominent in the United States, Britain and Germany, and in those countries was based on the then-new science of Mendelian genetics. Eugenicists developed research programs to determine the degree in which traits such as Huntington's chorea, blindness, deafness, mental retardation (feeblemindedness), intelligence, alcoholism, schizophrenia, manic depression, rebelliousness, nomadism, prostitution and feeble inhibition were genetically determined. Eugenicists were also active in the political arena, lobbying in the United States for immigration restriction and compulsory sterilization laws for those deemed genetically unfit; in Britain they lobbied for incarceration of genetically unfit and in Germany for sterilization and eventually euthanasia. In all these countries one of the major arguments was that of efficiency: that it was inefficient to allow genetic defects to be multiplied and then have to try and deal with the consequences of state care for the offspring. National socialists called genetically defective individuals 'useless eaters' and argued for sterilization or euthanasia on economic grounds. Similar arguments appeared in the United States and Britain as well. At the present time (1997) much research and publicity is being given to claims about a genetic basis for all the same behaviors (alcoholism, manic depression, etc.), again in an economic context--care for people with such diseases is costing too much. There is an important lesson to learn from the past: genetic arguments are put forward to mask the true--social and economic--causes of human behavioral defects.

  10. Conservation of Sex-Linked Markers among Conspecific Populations of a Viviparous Skink, Niveoscincus ocellatus, Exhibiting Genetic and Temperature-Dependent Sex Determination

    PubMed Central

    Burridge, Christopher P; Ezaz, Tariq; Wapstra, Erik

    2018-01-01

    Abstract Sex determination systems are exceptionally diverse and have undergone multiple and independent evolutionary transitions among species, particularly reptiles. However, the mechanisms underlying these transitions have not been established. Here, we tested for differences in sex-linked markers in the only known reptile that is polymorphic for sex determination system, the spotted snow skink, Niveoscincus ocellatus, to quantify the genomic differences that have accompanied this transition. In a highland population, sex is determined genetically, whereas in a lowland population, offspring sex ratio is influenced by temperature. We found a similar number of sex-linked loci in each population, including shared loci, with genotypes consistent with male heterogamety (XY). However, population-specific linkage disequilibrium suggests greater differentiation of sex chromosomes in the highland population. Our results suggest that transitions between sex determination systems can be facilitated by subtle genetic differences. PMID:29659810

  11. Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries

    PubMed Central

    Guo, Xiuqing; Franceschini, Nora; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K.; Li, Changwei; Schwander, Karen; Richard, Melissa A.; Noordam, Raymond; Aschard, Hugues; Bartz, Traci M.; Bielak, Lawrence F.; Dorajoo, Rajkumar; Fisher, Virginia; Hartwig, Fernando P.; Horimoto, Andrea R. V. R.; Lohman, Kurt K.; Manning, Alisa K.; Rankinen, Tuomo; Smith, Albert V.; Wojczynski, Mary K.; Alver, Maris; Boissel, Mathilde; Cai, Qiuyin; Divers, Jasmin; Gao, Chuan; Goel, Anuj; Harris, Sarah E.; He, Meian; Hsu, Fang-Chi; Jackson, Anne U.; Kähönen, Mika; Kasturiratne, Anuradhani; Komulainen, Pirjo; Kühnel, Brigitte; Laguzzi, Federica; Luan, Jian'an; Nolte, Ilja M.; Padmanabhan, Sandosh; Robino, Antonietta; Scott, Robert A.; Sofer, Tamar; Stančáková, Alena; Takeuchi, Fumihiko; Tayo, Bamidele O.; Varga, Tibor V.; Vitart, Veronique; Wang, Yajuan; Warren, Helen R.; Wen, Wanqing; Yanek, Lisa R.; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Amin, Najaf; Arking, Dan E.; Aung, Tin; Boerwinkle, Eric; Borecki, Ingrid; Broeckel, Ulrich; Brown, Morris; Brumat, Marco; Burke, Gregory L.; Chakravarti, Aravinda; Charumathi, Sabanayagam; Ida Chen, Yii-Der; Connell, John M.; Correa, Adolfo; de las Fuentes, Lisa; de Mutsert, Renée; de Silva, H. Janaka; Deng, Xuan; Ding, Jingzhong; Duan, Qing; Eaton, Charles B.; Ehret, Georg; Eppinga, Ruben N.; Faul, Jessica D.; Felix, Stephan B.; Forouhi, Nita G.; Forrester, Terrence; Franco, Oscar H.; Friedlander, Yechiel; Gandin, Ilaria; Gao, He; Ghanbari, Mohsen; Gigante, Bruna; Gu, C. Charles; Gu, Dongfeng; Hagenaars, Saskia P.; Hallmans, Göran; Harris, Tamara B.; He, Jiang; Heng, Chew-Kiat; Hirata, Makoto; Howard, Barbara V.; Ikram, M. Arfan; John, Ulrich; Katsuya, Tomohiro; Khor, Chiea Chuen; Kilpeläinen, Tuomas O.; Koh, Woon-Puay; Krieger, José E.; Kritchevsky, Stephen B.; Kubo, Michiaki; Kuusisto, Johanna; Lakka, Timo A.; Langefeld, Carl D.; Langenberg, Claudia; Launer, Lenore J.; Lehne, Benjamin; Lewis, Cora E.; Li, Yize; Lin, Shiow; Liu, Jianjun; Liu, Jingmin; Loh, Marie; Louie, Tin; Mägi, Reedik; McKenzie, Colin A.; Meitinger, Thomas; Milaneschi, Yuri; Milani, Lili; Mohlke, Karen L.; Momozawa, Yukihide; Nalls, Mike A.; Nelson, Christopher P.; Sotoodehnia, Nona; Norris, Jill M.; O'Connell, Jeff R.; Palmer, Nicholette D.; Perls, Thomas; Pedersen, Nancy L.; Peters, Annette; Peyser, Patricia A.; Poulter, Neil; Raffel, Leslie J.; Raitakari, Olli T.; Roll, Kathryn; Rose, Lynda M.; Rosendaal, Frits R.; Rotter, Jerome I.; Schmidt, Carsten O.; Schreiner, Pamela J.; Schupf, Nicole; Scott, William R.; Shi, Yuan; Sidney, Stephen; Sims, Mario; Sitlani, Colleen M.; Smith, Jennifer A.; Snieder, Harold; Starr, John M.; Strauch, Konstantin; Stringham, Heather M.; Tan, Nicholas Y. Q.; Tang, Hua; Taylor, Kent D.; Teo, Yik Ying; Tham, Yih Chung; Turner, Stephen T.; Uitterlinden, André G.; Vollenweider, Peter; Waldenberger, Melanie; Wang, Lihua; Wang, Ya Xing; Wei, Wen Bin; Williams, Christine; Yao, Jie; Yu, Caizheng; Yuan, Jian-Min; Zhao, Wei; Zonderman, Alan B.; Becker, Diane M.; Boehnke, Michael; Bowden, Donald W.; Chambers, John C.; Deary, Ian J.; Esko, Tõnu; Farrall, Martin; Franks, Paul W.; Freedman, Barry I.; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Kamatani, Yoichiro; Kato, Norihiro; Kooner, Jaspal S.; Kutalik, Zoltán; Laakso, Markku; Laurie, Cathy C.; Leander, Karin; Lehtimäki, Terho; Study, Lifelines Cohort; Magnusson, Patrik K. E.; Oldehinkel, Albertine J.; Penninx, Brenda W. J. H.; Polasek, Ozren; Porteous, David J.; Rauramaa, Rainer; Samani, Nilesh J.; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E.; Watkins, Hugh; Weir, David R.; Wickremasinghe, Ananda R.; Wu, Tangchun; Zheng, Wei; Bouchard, Claude; Christensen, Kaare; Evans, Michele K.; Gudnason, Vilmundur; Horta, Bernardo L.; Kardia, Sharon L. R.; Liu, Yongmei; Pereira, Alexandre C.; Psaty, Bruce M.; Ridker, Paul M.; van Dam, Rob M.; Gauderman, W. James; Zhu, Xiaofeng; Mook-Kanamori, Dennis O.; Fornage, Myriam; Rotimi, Charles N.; Cupples, L. Adrienne; Kelly, Tanika N.; Fox, Ervin R.; Hayward, Caroline; van Duijn, Cornelia M.; Tai, E Shyong; Wong, Tien Yin; Kooperberg, Charles; Palmas, Walter; Morrison, Alanna C.; Caulfield, Mark J.; Munroe, Patricia B.; Rao, Dabeeru C.; Province, Michael A.; Levy, Daniel

    2018-01-01

    Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10−5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10−8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10−8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension. PMID:29912962

  12. Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries.

    PubMed

    Feitosa, Mary F; Kraja, Aldi T; Chasman, Daniel I; Sung, Yun J; Winkler, Thomas W; Ntalla, Ioanna; Guo, Xiuqing; Franceschini, Nora; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K; Li, Changwei; Bentley, Amy R; Brown, Michael R; Schwander, Karen; Richard, Melissa A; Noordam, Raymond; Aschard, Hugues; Bartz, Traci M; Bielak, Lawrence F; Dorajoo, Rajkumar; Fisher, Virginia; Hartwig, Fernando P; Horimoto, Andrea R V R; Lohman, Kurt K; Manning, Alisa K; Rankinen, Tuomo; Smith, Albert V; Tajuddin, Salman M; Wojczynski, Mary K; Alver, Maris; Boissel, Mathilde; Cai, Qiuyin; Campbell, Archie; Chai, Jin Fang; Chen, Xu; Divers, Jasmin; Gao, Chuan; Goel, Anuj; Hagemeijer, Yanick; Harris, Sarah E; He, Meian; Hsu, Fang-Chi; Jackson, Anne U; Kähönen, Mika; Kasturiratne, Anuradhani; Komulainen, Pirjo; Kühnel, Brigitte; Laguzzi, Federica; Luan, Jian'an; Matoba, Nana; Nolte, Ilja M; Padmanabhan, Sandosh; Riaz, Muhammad; Rueedi, Rico; Robino, Antonietta; Said, M Abdullah; Scott, Robert A; Sofer, Tamar; Stančáková, Alena; Takeuchi, Fumihiko; Tayo, Bamidele O; van der Most, Peter J; Varga, Tibor V; Vitart, Veronique; Wang, Yajuan; Ware, Erin B; Warren, Helen R; Weiss, Stefan; Wen, Wanqing; Yanek, Lisa R; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Amin, Najaf; Amini, Marzyeh; Arking, Dan E; Aung, Tin; Boerwinkle, Eric; Borecki, Ingrid; Broeckel, Ulrich; Brown, Morris; Brumat, Marco; Burke, Gregory L; Canouil, Mickaël; Chakravarti, Aravinda; Charumathi, Sabanayagam; Ida Chen, Yii-Der; Connell, John M; Correa, Adolfo; de Las Fuentes, Lisa; de Mutsert, Renée; de Silva, H Janaka; Deng, Xuan; Ding, Jingzhong; Duan, Qing; Eaton, Charles B; Ehret, Georg; Eppinga, Ruben N; Evangelou, Evangelos; Faul, Jessica D; Felix, Stephan B; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Friedlander, Yechiel; Gandin, Ilaria; Gao, He; Ghanbari, Mohsen; Gigante, Bruna; Gu, C Charles; Gu, Dongfeng; Hagenaars, Saskia P; Hallmans, Göran; Harris, Tamara B; He, Jiang; Heikkinen, Sami; Heng, Chew-Kiat; Hirata, Makoto; Howard, Barbara V; Ikram, M Arfan; John, Ulrich; Katsuya, Tomohiro; Khor, Chiea Chuen; Kilpeläinen, Tuomas O; Koh, Woon-Puay; Krieger, José E; Kritchevsky, Stephen B; Kubo, Michiaki; Kuusisto, Johanna; Lakka, Timo A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lehne, Benjamin; Lewis, Cora E; Li, Yize; Lin, Shiow; Liu, Jianjun; Liu, Jingmin; Loh, Marie; Louie, Tin; Mägi, Reedik; McKenzie, Colin A; Meitinger, Thomas; Metspalu, Andres; Milaneschi, Yuri; Milani, Lili; Mohlke, Karen L; Momozawa, Yukihide; Nalls, Mike A; Nelson, Christopher P; Sotoodehnia, Nona; Norris, Jill M; O'Connell, Jeff R; Palmer, Nicholette D; Perls, Thomas; Pedersen, Nancy L; Peters, Annette; Peyser, Patricia A; Poulter, Neil; Raffel, Leslie J; Raitakari, Olli T; Roll, Kathryn; Rose, Lynda M; Rosendaal, Frits R; Rotter, Jerome I; Schmidt, Carsten O; Schreiner, Pamela J; Schupf, Nicole; Scott, William R; Sever, Peter S; Shi, Yuan; Sidney, Stephen; Sims, Mario; Sitlani, Colleen M; Smith, Jennifer A; Snieder, Harold; Starr, John M; Strauch, Konstantin; Stringham, Heather M; Tan, Nicholas Y Q; Tang, Hua; Taylor, Kent D; Teo, Yik Ying; Tham, Yih Chung; Turner, Stephen T; Uitterlinden, André G; Vollenweider, Peter; Waldenberger, Melanie; Wang, Lihua; Wang, Ya Xing; Wei, Wen Bin; Williams, Christine; Yao, Jie; Yu, Caizheng; Yuan, Jian-Min; Zhao, Wei; Zonderman, Alan B; Becker, Diane M; Boehnke, Michael; Bowden, Donald W; Chambers, John C; Deary, Ian J; Esko, Tõnu; Farrall, Martin; Franks, Paul W; Freedman, Barry I; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Jonas, Jost Bruno; Kamatani, Yoichiro; Kato, Norihiro; Kooner, Jaspal S; Kutalik, Zoltán; Laakso, Markku; Laurie, Cathy C; Leander, Karin; Lehtimäki, Terho; Study, Lifelines Cohort; Magnusson, Patrik K E; Oldehinkel, Albertine J; Penninx, Brenda W J H; Polasek, Ozren; Porteous, David J; Rauramaa, Rainer; Samani, Nilesh J; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E; Wareham, Nicholas J; Watkins, Hugh; Weir, David R; Wickremasinghe, Ananda R; Wu, Tangchun; Zheng, Wei; Bouchard, Claude; Christensen, Kaare; Evans, Michele K; Gudnason, Vilmundur; Horta, Bernardo L; Kardia, Sharon L R; Liu, Yongmei; Pereira, Alexandre C; Psaty, Bruce M; Ridker, Paul M; van Dam, Rob M; Gauderman, W James; Zhu, Xiaofeng; Mook-Kanamori, Dennis O; Fornage, Myriam; Rotimi, Charles N; Cupples, L Adrienne; Kelly, Tanika N; Fox, Ervin R; Hayward, Caroline; van Duijn, Cornelia M; Tai, E Shyong; Wong, Tien Yin; Kooperberg, Charles; Palmas, Walter; Rice, Kenneth; Morrison, Alanna C; Elliott, Paul; Caulfield, Mark J; Munroe, Patricia B; Rao, Dabeeru C; Province, Michael A; Levy, Daniel

    2018-01-01

    Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.

  13. Genetics and child psychiatry: I Advances in quantitative and molecular genetics.

    PubMed

    Rutter, M; Silberg, J; O'Connor, T; Simonoff, E

    1999-01-01

    Advances in quantitative psychiatric genetics as a whole are reviewed with respect to conceptual and methodological issues in relation to statistical model fitting, new genetic designs, twin and adoptee studies, definition of the phenotype, pervasiveness of genetic influences, pervasiveness of environmental influences, shared and nonshared environmental effects, and nature-nurture interplay. Advances in molecular genetics are discussed in relation to the shifts in research strategies to investigate multifactorial disorders (affected relative linkage designs, association strategies, and quantitative trait loci studies); new techniques and identified genetic mechanisms (expansion of trinucleotide repeats, genomic imprinting, mitochondrial DNA, fluorescent in-situ hybridisation, behavioural phenotypes, and animal models); and the successful localisation of genes.

  14. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    ERIC Educational Resources Information Center

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  15. Genetic association study identifies a functional CNV in the WWOX gene contributes to the risk of intracranial aneurysms.

    PubMed

    Fan, Jin; Sun, Wen; Lin, Min; Yu, Ke; Wang, Jian; Duan, Dan; Zheng, Bo; Yang, Zhenghui; Wang, Qingsong

    2016-03-29

    Intracranial aneurysms (IAs) accounts for 85% of hemorrhagic stroke. Genetic factors have been known to play an important role in the development of IAs. A functional CNV (CNV-67048) of human WW domain-containing oxidoreductase (WWOX), which has been identified as a tumor suppressor gene in multiple cancers, was identified to be associated with gliomas risk previously. Here, we hypothesized that the CNV-67048 could also affect susceptibility of IAs. Based on a two-stage, case- control study with a total of 976 patients of IAs and 1,200 matched healthy controls, we found the effect size for per copy deletion was 1.35 (95% CI = 1.16-1.57; Ptrend = 1.18 × 10-4). Compared with the individuals having no deletion, significantly higher risk of IAs was detected for both subjects carrying 1 copy deletion (OR = 1.24, 95% CI = 1.02-1.52) and subjects carrying 2 copy deletion (OR = 1.77, 95% CI = 1.24-2.53). Real-time PCR was used to confirm the abnormal expression of WWOX in tissues of IA patients and influence of genotypes of CNV-67048. The expression level of WWOX in IA tissues was significantly lower than that in corresponding normal tissues (P = 0.004), and the deletion genotypes of CNV-67048 have lower WWOX mRNA levels in both tumor tissues and border tissues (P < 0.01). Our data suggests that the deletion genotypes of CNV-67048 in WWOX predispose their carriers to IAs, which might be a genetic biomarker to predict risk of IAs in Chinese.

  16. Genetic dissection and fine mapping of a novel dt gene associated with determinate growth habit in sesame.

    PubMed

    Zhang, Yanxin; Wang, Linhai; Gao, Yuan; Li, Donghua; Yu, Jingyin; Zhou, Rong; Zhang, Xiurong

    2018-06-14

    As an important oil crop, growth habit of sesame (Sesamum indicum L.) is naturally indeterminate, which brings about asynchronous maturity of capsules and causes loss of yield. The genetic basis of determinate growth habit in sesame was investigated by classical genetic analysis through multiple populations, results revealed that it was controlled by an unique recessive gene. The genotyping by sequencing (GBS) approach was employed for high-throughput SNP identification and genotyping in the F 2 population, then a high density bin map was constructed, the map was 1086.403 cM in length, which consisted of 1184 bins (13,679 SNPs), with an average of 0.918 cM between adjacent bins. Based on bin mapping in conjunction with SSR markers analysis in targeted region, the novel sesame determinacy gene was mapped on LG09 in a genome region of 41 kb. This study dissected genetic basis of determinate growth habit in sesame, constructed a new high-density bin map and mapped a novel determinacy gene. Results of this study demonstrate that we employed an optimized approach to get fine-accuracy, high-resolution and high-efficiency mapping result in sesame. The findings provided important foundation for sesame determinacy gene cloning and were expected to be applied in breeding for cultivars suited to mechanized production.

  17. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture

    PubMed Central

    Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  18. Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China.

    PubMed

    Hu, Li-Jiang; Uchiyama, Kentaro; Shen, Hai-Long; Saito, Yoko; Tsuda, Yoshiaki; Ide, Yuji

    2008-08-01

    The widely accepted paradigm that the modern genetic structure of plant species in the northern hemisphere has been largely determined by recolonization from refugia after the last glacial maximum fails to explain the presence of cold-tolerant species at intermediate latitudes. Another generally accepted paradigm is that mountain ridges act as important barriers causing genetic isolation of species, but this too has been challenged in recent studies. The aims of the work reported here were to determine the genetic diversity and distribution patterns of extant natural populations of an endangered cool temperate species, Faxinus mandshurica, and to examine whether these two paradigms are appropriate when applied to this species over a wide geographical scale. 1435 adult individuals were sampled from 30 natural populations across the main and central range of the species, covering major mountain ranges across North-east China (NEC). Genetic variation was estimated based on nine polymorphic nuclear microsatellite loci. Phylogeographical analyses were employed using various approaches, including Bayesian clustering, spatial analysis of molecular variance, Monmonier's algorithm, neighbor-joining trees, principal co-ordinate analysis and isolation by distance. Genetic diversity within populations was relatively high, and no significant recent bottlenecks were detected in any of the populations. A significant negative correlation between intra-population genetic diversity and latitude was identified. In contrast, genetic differentiation among all the populations examined was extremely low and no clear geographic genetic structure was identified, with the exception of one distinct population. The modern genetic structure in this species can be explained by extensive gene flow, an absence of mountains acting as barriers, and the presence of a wide refuge across NEC rather than multiple small refugia. Intra-population genetic variation along latitudes is probably associated

  19. Data Mining and Pattern Recognition Models for Identifying Inherited Diseases: Challenges and Implications.

    PubMed

    Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K

    2016-01-01

    Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.

  20. Genetic Recombination Between Stromal and Cancer Cells Results in Highly Malignant Cells Identified by Color-Coded Imaging in a Mouse Lymphoma Model.

    PubMed

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-12-01

    The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.