Sample records for identify genetic mutations

  1. Genetic mutations associated with status epilepticus.

    PubMed

    Bhatnagar, M; Shorvon, S

    2015-08-01

    This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult

  2. Genome-Wide Linkage Analysis to Identify Genetic Modifiers of ALK Mutation Penetrance in Familial Neuroblastoma

    PubMed Central

    Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael

    2011-01-01

    Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404

  3. Dissecting genetic and environmental mutation signatures with model organisms.

    PubMed

    Segovia, Romulo; Tam, Annie S; Stirling, Peter C

    2015-08-01

    Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genetic screening of non-classic CAH females with hyperandrogenemia identifies a novel CYP11B1 gene mutation.

    PubMed

    Shammas, Christos; Byrou, Stefania; Phelan, Marie M; Toumba, Meropi; Stylianou, Charilaos; Skordis, Nicos; Neocleous, Vassos; Phylactou, Leonidas A

    2016-04-01

    Congenital adrenal hyperplasia (CAH) is an endocrine autosomal recessive disorder with various symptoms of diverse severity. Mild hyperandrogenemia is the most commonclinical feature in non-classic CAH patients and 95% of the cases are identified by mutations in the CYP21A2 gene. In the present study, the second most common cause for non-classic CAH (NC-CAH), 11β-hydroxylase deficiency due to mutations in the CYP11B1 gene, is investigated. Screening of the CYP21A2 and CYP11B1 genes by direct sequencing was carried out for the detection of possible genetic defects in patients with suspected CAH. It wasobserved that CYP11B1 variants co-exist only in rare cases along with mutations in CYP21A2 in patients clinically diagnosed with CAH. A total of 23 NC-CAH female patients out of 75 were identified with only one mutation in the CYP21A2 gene. The novel CYP11B1 gene mutation, p.Val484Asp, was identified in a patient with CAH in the heterozygous state. The structural characterization of the novel p.Val484Asp was found to likely cause distortion of the surrounding beta sheet and indirect destabilization of the cavity that occurs on the opposite face of the structural elements, leading to partial impairment of the enzymatic activity. CYP21A2 gene mutations are the most frequent genetic defects in cases of NC-CAH even when these patients are in the heterozygous state. These mutations have a diverse phenotype giving rise to a variable extent of cortisol synthesis impairment; it is also clear that CYP11B1 mutants are a rare type of defects causing CAH.

  5. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics.

    PubMed

    Akiyama, M

    2010-03-01

    Filaggrin is a key protein involved in skin barrier function. Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris and have been shown to be major predisposing factors for atopic eczema (AE), initially in European populations. Subsequently, FLG mutations were identified in Japanese, Chinese, Taiwanese and Korean populations. It was demonstrated that FLG mutations are closely associated with AE in the Japanese population. Notably, the same FLG mutations identified in the European population were rarely found in Asians. These results exemplify differences in filaggrin population genetics between Europe and Asia. For mutation screening, background information needs to be obtained on prevalent FLG mutations for each geographical population. It is therefore important to establish the global population genetics maps for FLG mutations. Mutations at any site within FLG, even mutations in C-terminal imperfect filaggrin repeats, cause significant reductions in amounts of profilaggrin/filaggrin peptide in patient epidermis as the C-terminal region is essential for proper processing of profilaggrin into filaggrin. Thus, no genotype-phenotype correlation has been observed in patients with FLG mutations. A restoration of the barrier function seems a feasible and promising strategy for treatment and prevention in individuals with filaggrin deficiency.

  6. Identification of Germline Genetic Mutations in Pancreatic Cancer Patients

    PubMed Central

    Salo-Mullen, Erin E.; O’Reilly, Eileen; Kelsen, David; Ashraf, Asad M.; Lowery, Maeve; Yu, Kenneth; Reidy, Diane; Epstein, Andrew S.; Lincoln, Anne; Saldia, Amethyst; Jacobs, Lauren M.; Rau-Murthy, Rohini; Zhang, Liying; Kurtz, Robert; Saltz, Leonard; Offit, Kenneth; Robson, Mark; Stadler, Zsofia K.

    2016-01-01

    Background Pancreatic adenocarcinoma (PAC) is part of several cancer predisposition syndromes; however, indications for genetic counseling/testing are not well-defined. We sought to determine mutation prevalence and characteristics that predict for inherited predisposition to PAC. Methods We identified 175 consecutive PAC patients who underwent clinical genetics assessment at Memorial Sloan Kettering between 2011–2014. Clinical data, family history, and germline results were evaluated. Results Among 159 PAC patients who pursued genetic testing, 24 pathogenic mutations were identified (15.1%; 95%CI, 9.5%–20.7%), including BRCA2(n=13), BRCA1(n=4), p16(n=2), PALB2(n=1), and Lynch syndrome(n=4). BRCA1/BRCA2 prevalence was 13.7% in Ashkenazi Jewish(AJ) (n=95) and 7.1% in non-AJ(n=56) patients. In AJ patients with strong, weak, or absent family history of BRCA-associated cancers, mutation prevalence was 16.7%, 15.8%, and 7.4%, respectively. Mean age at diagnosis in all mutation carriers was 58.5y(range 45–75y) compared to 64y(range 27–87y) in non-mutation carriers(P=0.02). Although BRCA2 was the most common mutation identified, no patients with early-onset PAC(≤50y) harbored a BRCA2 mutation and the mean age at diagnosis in BRCA2 carriers was equivalent to non-mutation carriers(P=0.34). Mutation prevalence in early-onset patients(n=21) was 28.6%, including BRCA1(n=2), p16(n=2), MSH2(n=1) and MLH1(n=1). Conclusion Mutations in BRCA2 account for over 50% of PAC patients with an identified susceptibility syndrome. AJ patients had high BRCA1/BRCA2 prevalence regardless of personal/family history, suggesting that ancestry alone indicates a need for genetic evaluation. With the exception of BRCA2-associated PAC, inherited predisposition to PAC is associated with earlier age at PAC diagnosis suggesting that this subset of patients may also represent a population warranting further evaluation. PMID:26440929

  7. Identifying novel genetic determinants of hemostatic balance.

    PubMed

    Ginsburg, D

    2005-08-01

    Incomplete penetrance and variable expressivity confound the diagnosis and therapy of most inherited thrombotic and hemorrhagic disorders. For many of these diseases, some or most of this variability is determined by genetic modifiers distinct from the primary disease gene itself. Clues toward identifying such modifier genes may come from studying rare Mendelian disorders of hemostasis. Examples include identification of the cause of combined factor V and VIII deficiency as mutations in the ER Golgi intermediate compartment proteins LMAN1 and MCFD2. These proteins form a cargo receptor that facilitates the transport of factors V and VIII, and presumably other proteins, from the ER to the Golgi. A similar positional cloning approach identified ADAMTS-13 as the gene responsible for familial TTP. Along with the work of many other groups, these findings identified VWF proteolysis by ADAMTS-13 as a key regulatory pathway for hemostasis. Recent advances in mouse genetics also provide powerful tools for the identification of novel genes contributing to hemostatic balance. Genetic studies of inbred mouse lines with unusually high and unusually low plasma VWF levels identified polymorphic variation in the expression of a glycosyltransferase gene, Galgt2, as an important determinant of plasma VWF levels in the mouse. Ongoing studies in mice genetically engineered to carry the factor V Leiden mutation may similarly identify novel genes contributing to thrombosis risk in humans.

  8. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer

    PubMed Central

    Shen, Lanlan; Toyota, Minoru; Kondo, Yutaka; Lin, E; Zhang, Li; Guo, Yi; Hernandez, Natalie Supunpong; Chen, Xinli; Ahmed, Saira; Konishi, Kazuo; Hamilton, Stanley R.; Issa, Jean-Pierre J.

    2007-01-01

    Colon cancer has been viewed as the result of progressive accumulation of genetic and epigenetic abnormalities. However, this view does not fully reflect the molecular heterogeneity of the disease. We have analyzed both genetic (mutations of BRAF, KRAS, and p53 and microsatellite instability) and epigenetic alterations (DNA methylation of 27 CpG island promoter regions) in 97 primary colorectal cancer patients. Two clustering analyses on the basis of either epigenetic profiling or a combination of genetic and epigenetic profiling were performed to identify subclasses with distinct molecular signatures. Unsupervised hierarchical clustering of the DNA methylation data identified three distinct groups of colon cancers named CpG island methylator phenotype (CIMP) 1, CIMP2, and CIMP negative. Genetically, these three groups correspond to very distinct profiles. CIMP1 are characterized by MSI (80%) and BRAF mutations (53%) and rare KRAS and p53 mutations (16% and 11%, respectively). CIMP2 is associated with 92% KRAS mutations and rare MSI, BRAF, or p53 mutations (0, 4, and 31% respectively). CIMP-negative cases have a high rate of p53 mutations (71%) and lower rates of MSI (12%) or mutations of BRAF (2%) or KRAS (33%). Clustering based on both genetic and epigenetic parameters also identifies three distinct (and homogeneous) groups that largely overlap with the previous classification. The three groups are independent of age, gender, or stage, but CIMP1 and 2 are more common in proximal tumors. Together, our integrated genetic and epigenetic analysis reveals that colon cancers correspond to three molecularly distinct subclasses of disease. PMID:18003927

  9. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development.

    PubMed

    Besnard, Fabrice; Koutsovoulos, Georgios; Dieudonné, Sana; Blaxter, Mark; Félix, Marie-Anne

    2017-08-01

    Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae , a distant relative of the model Caenorhabditis elegans We used this draft to identify the likely causative mutations at the O. tipulae cov -3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13 , and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species. Copyright © 2017 by the Genetics Society of America.

  10. Impact of Clinical Genetics Attendance at a Gynecologic Oncology Tumor Board on Referrals for Genetic Counseling and BRCA Mutation Testing.

    PubMed

    Cohen, Paul A; Nichols, Cassandra B; Schofield, Lyn; Van Der Werf, Steven; Pachter, Nicholas

    2016-06-01

    The objectives of this work were to determine the proportion of eligible patients with ovarian cancer discussed at a gynecologic oncology tumor board who were referred for counseling and BRCA mutation testing; to compare referral rates before genetics attendance at the tumor board to referral rates after genetics attendance; and to ascertain the proportions of women with germline BRCA mutations. Eligible cases were identified from the minutes of the weekly Western Australian gynecologic oncology tumor board from July 1, 2013 to June 30, 2015.Patients with ovarian cancer who met eligibility criteria for genetics referral were identified and checked against the records of the genetic services database to ascertain whether a referral was received. Outcomes including attendance for counseling and results of mutation testing were analyzed. Two hundred sixty-one patients were eligible for referral during the 24-month study period. One hundred six patients (40.6%) were referred for counseling and germline mutation testing. Of the eligible patients, 26.7% were referred in the 12 months before genetics attendance at the tumor board compared to 51.7% of the eligible patients in the 12 months after genetics attendance (P ≤ 0.0001). Ninety-seven patients were offered BRCA mutation testing, and 73 underwent testing with 65 results reported to date. Twenty-two patients (33.8 %) tested positive for a germline BRCA mutation. Patients with ovarian cancer had a high rate of BRCA mutations. Attendance of a genetics service at a tumor board was associated with an improved rate of referral of patients for genetic counseling and BRCA mutation testing.

  11. Genetic mutations in human rectal cancers detected by targeted sequencing.

    PubMed

    Bai, Jun; Gao, Jinglong; Mao, Zhijun; Wang, Jianhua; Li, Jianhui; Li, Wensheng; Lei, Yu; Li, Shuaishuai; Wu, Zhuo; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Lou, Feng; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Huang, Xue F; Chen, Si-Yi; Zhang, Enke

    2015-10-01

    Colorectal cancer (CRC) is widespread with significant mortality. Both inherited and sporadic mutations in various signaling pathways influence the development and progression of the cancer. Identifying genetic mutations in CRC is important for optimal patient treatment and many approaches currently exist to uncover these mutations, including next-generation sequencing (NGS) and commercially available kits. In the present study, we used a semiconductor-based targeted DNA-sequencing approach to sequence and identify genetic mutations in 91 human rectal cancer samples. Analysis revealed frequent mutations in KRAS (58.2%), TP53 (28.6%), APC (16.5%), FBXW7 (9.9%) and PIK3CA (9.9%), and additional mutations in BRAF, CTNNB1, ERBB2 and SMAD4 were also detected at lesser frequencies. Thirty-eight samples (41.8%) also contained two or more mutations, with common combination mutations occurring between KRAS and TP53 (42.1%), and KRAS and APC (31.6%). DNA sequencing for individual cancers is of clinical importance for targeted drug therapy and the advantages of such targeted gene sequencing over other NGS platforms or commercially available kits in sensitivity, cost and time effectiveness may aid clinicians in treating CRC patients in the near future.

  12. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    PubMed

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  13. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy.

    PubMed

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo; Xu, Ge-Zhi

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. We identified two novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype-phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling.

  14. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy

    PubMed Central

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931

  15. G protein-coupled receptor mutations and human genetic disease.

    PubMed

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  16. Identifying mutations in Tunisian families with retinal dystrophy.

    PubMed

    Habibi, Imen; Chebil, Ahmed; Falfoul, Yosra; Allaman-Pillet, Nathalie; Kort, Fedra; Schorderet, Daniel F; El Matri, Leila

    2016-11-22

    Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.

  17. Whole-exome sequencing identifies novel homozygous mutation in NPAS2 in family with nonobstructive azoospermia.

    PubMed

    Ramasamy, Ranjith; Bakırcıoğlu, M Emre; Cengiz, Cenk; Karaca, Ender; Scovell, Jason; Jhangiani, Shalini N; Akdemir, Zeynep C; Bainbridge, Matthew; Yu, Yao; Huff, Chad; Gibbs, Richard A; Lupski, James R; Lamb, Dolores J

    2015-08-01

    To investigate the genetic cause of nonobstructive azoospermia (NOA) in a consanguineous Turkish family through homozygosity mapping followed by targeted exon/whole-exome sequencing to identify genetic variations. Whole-exome sequencing (WES). Research laboratory. Two siblings in a consanguineous family with NOA. Validating all variants passing filter criteria with Sanger sequencing to confirm familial segregation and absence in the control population. Discovery of a mutation that could potentially cause NOA. A novel nonsynonymous mutation in the neuronal PAS-2 domain (NPAS2) was identified in a consanguineous family from Turkey. This mutation in exon 14 (chr2: 101592000 C>G) of NPAS2 is likely a disease-causing mutation as it is predicted to be damaging, it is a novel variant, and it segregates with the disease. Family segregation of the variants showed the presence of the homozygous mutation in the three brothers with NOA and a heterozygous mutation in the mother as well as one brother and one sister who were both fertile. The mutation is not found in the single-nucleotide polymorphism database, the 1000 Genomes Project, the Baylor College of Medicine cohort of 500 Turkish patients (not a population-specific polymorphism), or the matching 50 fertile controls. With the use of WES we identified a novel homozygous mutation in NPAS2 as a likely disease-causing variant in a Turkish family diagnosed with NOA. Our data reinforce the clinical role of WES in the molecular diagnosis of highly heterogeneous genetic diseases for which conventional genetic approaches have previously failed to find a molecular diagnosis. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    PubMed

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  19. Targeted next generation sequencing identifies novel NOTCH3 gene mutations in CADASIL diagnostics patients.

    PubMed

    Maksemous, Neven; Smith, Robert A; Haupt, Larisa M; Griffiths, Lyn R

    2016-11-24

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic, hereditary, small vessel disease of the brain causing stroke and vascular dementia in adults. CADASIL has previously been shown to be caused by varying mutations in the NOTCH3 gene. The disorder is often misdiagnosed due to its significant clinical heterogeneic manifestation with familial hemiplegic migraine and several ataxia disorders as well as the location of the currently identified causative mutations. The aim of this study was to develop a new, comprehensive and efficient single assay strategy for complete molecular diagnosis of NOTCH3 mutations through the use of a custom next-generation sequencing (NGS) panel for improved routine clinical molecular diagnostic testing. Our custom NGS panel identified nine genetic variants in NOTCH3 (p.D139V, p.C183R, p.R332C, p.Y465C, p.C597W, p.R607H, p.E813E, p.C977G and p.Y1106C). Six mutations were stereotypical CADASIL mutations leading to an odd number of cysteine residues in one of the 34 NOTCH3 gene epidermal growth factor (EGF)-like repeats, including three new typical cysteine mutations identified in exon 11 (p.C597W; c.1791C>G); exon 18 (p.C977G; c.2929T>G) and exon 20 (p.Y1106C; c.3317A>G). Interestingly, a novel missense mutation in the CACNA1A gene was also identified in one CADASIL patient. All variants identified (novel and known) were further investigated using in silico bioinformatic analyses and confirmed through Sanger sequencing. NGS provides an improved and effective methodology for the diagnosis of CADASIL. The NGS approach reduced time and cost for comprehensive genetic diagnosis, placing genetic diagnostic testing within reach of more patients.

  20. Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing.

    PubMed

    Stattin, Eva-Lena; Boström, Ida Maria; Winbo, Annika; Cederquist, Kristina; Jonasson, Jenni; Jonsson, Björn-Anders; Diamant, Ulla-Britt; Jensen, Steen M; Rydberg, Annika; Norberg, Anna

    2012-10-25

    Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterised by prolongation of the QT interval on ECG, presence of syncope and sudden death. The symptoms in LQTS patients are highly variable, and genotype influences the clinical course. This study aims to report the spectrum of LQTS mutations in a Swedish cohort. Between March 2006 and October 2009, two hundred, unrelated index cases were referred to the Department of Clinical Genetics, Umeå University Hospital, Sweden, for LQTS genetic testing. We scanned five of the LQTS-susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) for mutations by DHPLC and/or sequencing. We applied MLPA to detect large deletions or duplications in the KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 genes. Furthermore, the gene RYR2 was screened in 36 selected LQTS genotype-negative patients to detect cases with the clinically overlapping disease catecholaminergic polymorphic ventricular tachycardia (CPVT). In total, a disease-causing mutation was identified in 103 of the 200 (52%) index cases. Of these, altered exon copy numbers in the KCNH2 gene accounted for 2% of the mutations, whereas a RYR2 mutation accounted for 3% of the mutations. The genotype-positive cases stemmed from 64 distinct mutations, of which 28% were novel to this cohort. The majority of the distinct mutations were found in a single case (80%), whereas 20% of the mutations were observed more than once. Two founder mutations, KCNQ1 p.Y111C and KCNQ1 p.R518*, accounted for 25% of the genotype-positive index cases. Genetic cascade screening of 481 relatives to the 103 index cases with an identified mutation revealed 41% mutation carriers who were at risk of cardiac events such as syncope or sudden unexpected death. In this cohort of Swedish index cases with suspected LQTS, a disease-causing mutation was identified in 52% of the referred patients. Copy number variations explained 2% of the mutations and 3 of 36 selected cases (8%) harboured a mutation in the

  1. Human genetics as a tool to identify progranulin regulators.

    PubMed

    Nicholson, Alexandra M; Finch, NiCole A; Rademakers, Rosa

    2011-11-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases.

  2. HUMAN GENETICS AS A TOOL TO IDENTIFY PROGRANULIN REGULATORS

    PubMed Central

    Nicholson, Alexandra M.; Finch, NiCole A.; Rademakers, Rosa

    2012-01-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases. PMID:21626010

  3. Hearing loss caused by a P2RX2 mutation identified in a MELAS family with a coexisting mitochondrial 3243AG mutation

    PubMed Central

    Moteki, Hideaki; Azaiez, Hela; Booth, Kevin T; Hattori, Mitsuru; Sato, Ai; Sato, Yoshihiko; Motobayashi, Mitsuo; Sloan, Christina M; Kolbe, Diana L; Shearer, A Eliot; Smith, Richard J H; Usami, Shin-ichi

    2015-01-01

    Objective We present a family with a mitochondrial DNA 3243A>G mutation resulting in MELAS, of which some members have hearing loss where a novel mutation in the P2RX2 gene was identified. Methods One hundred ninety-four (194) Japanese subjects from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known non-syndromic hearing loss genes were performed to identify the genetic causes of hearing loss. Results A novel mutation in the P2RX2 gene, that corresponded to c.601G>A (p.Asp201Tyr) was identified. Two patients carried the mutation, and had severe SNHL, while other members with MELAS (who did not carry the P2RX2 mutation) had normal hearing. Conclusion This is the first case report of a diagnosis of hearing loss caused by P2RX2 mutation in patients with MELAS. A potential explanation is that decreasing ATP production due to MELAS with mitochondrial 3243A>G mutation might suppress activation of P2X2 receptors. We also suggest that hearing loss caused by the P2RX2 mutation might be influenced by the decrease in ATP production due to MELAS, and that nuclear genetic factors may play a modifying role in mitochondrial dysfunction. PMID:25788561

  4. Screening for ATM Mutations in an African-American Population to Identify a Predictor of Breast Cancer Susceptibility

    DTIC Science & Technology

    2006-07-01

    ATM genetic variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for each mutation examined. 15. SUBJECT...women without breast cancer. An additional objective is to determine the functional impact upon the protein encoded by the ATM gene for each mutation ...each ATM variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for mutations identified. Body STATEMENT

  5. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development

    PubMed Central

    Besnard, Fabrice; Koutsovoulos, Georgios; Dieudonné, Sana; Blaxter, Mark; Félix, Marie-Anne

    2017-01-01

    Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae, a distant relative of the model Caenorhabditis elegans. We used this draft to identify the likely causative mutations at the O. tipulae cov-3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13, and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species. PMID:28630114

  6. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.

    PubMed

    Chang, P; Grinband, J; Weinberg, B D; Bardis, M; Khy, M; Cadena, G; Su, M-Y; Cha, S; Filippi, C G; Bota, D; Baldi, P; Poisson, L M; Jain, R; Chow, D

    2018-05-10

    The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 ( IDH1 ) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase ( MGMT ) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training. © 2018 by American Journal of Neuroradiology.

  7. 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration.

    PubMed

    Ran, Xia; Cai, Wei-Jun; Huang, Xiu-Feng; Liu, Qi; Lu, Fan; Qu, Jia; Wu, Jinyu; Jin, Zi-Bing

    2014-01-01

    Inherited retinal degeneration (IRD), a leading cause of human blindness worldwide, is exceptionally heterogeneous with clinical heterogeneity and genetic variety. During the past decades, tremendous efforts have been made to explore the complex heterogeneity, and massive mutations have been identified in different genes underlying IRD with the significant advancement of sequencing technology. In this study, we developed a comprehensive database, 'RetinoGenetics', which contains informative knowledge about all known IRD-related genes and mutations for IRD. 'RetinoGenetics' currently contains 4270 mutations in 186 genes, with detailed information associated with 164 phenotypes from 934 publications and various types of functional annotations. Then extensive annotations were performed to each gene using various resources, including Gene Ontology, KEGG pathways, protein-protein interaction, mutational annotations and gene-disease network. Furthermore, by using the search functions, convenient browsing ways and intuitive graphical displays, 'RetinoGenetics' could serve as a valuable resource for unveiling the genetic basis of IRD. Taken together, 'RetinoGenetics' is an integrative, informative and updatable resource for IRD-related genetic predispositions. Database URL: http://www.retinogenetics.org/. © The Author(s) 2014. Published by Oxford University Press.

  8. Pitfalls in genetic testing: the story of missed SCN1A mutations.

    PubMed

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    2016-07-01

    Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. We sent out a survey to 16 genetic centers performing SCN1A testing. We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

  9. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy

    PubMed Central

    Hershberger, Ray E.; Pinto, Jose Renato; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Cowan, Jason; Morales, Ana; Parvatiyar, Michelle S.; Potter, James D.

    2009-01-01

    Background A key issue for cardiovascular genetic medicine is ascertaining if a putative mutation indeed causes dilated cardiomyopathy (DCM). This is critically important as genetic DCM, usually presenting with advanced, life-threatening disease, may be preventable with early intervention in relatives known to carry the mutation. Methods and Results We recently undertook bidirectional resequencing of TNNT2, the cardiac troponin T gene, in 313 probands with DCM. We identified six TNNT2 protein-altering variants in nine probands, all who had early onset, aggressive disease. Additional family members of mutation carriers were then studied when available. Four of the nine probands had DCM without a family history, and five had familial DCM. Only one mutation (Lys210del) could be attributed as definitively causative from prior reports. Four of the five missense mutations were novel (Arg134Gly, Arg151Cys, Arg159Gln, Arg205Trp), and one was previously reported with hypertrophic cardiomyopathy (Glu244Asp). Based on the clinical, pedigree and molecular genetic data these five mutations were considered possibly or likely disease causing. To further clarify their potential pathophysiologic impact, we undertook functional studies of these mutations in cardiac myocytes reconstituted with mutant troponin T proteins. We observed decreased Ca2+ sensitivity of force development, a hallmark of DCM, in support of the conclusion that these mutations are disease-causing. Conclusions We conclude that the combination of clinical, pedigree, molecular genetic and functional data strengthen the interpretation of TNNT2 mutations in DCM. PMID:20031601

  10. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    PubMed

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Genetic Mutations in Cancer

    Cancer.gov

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  12. Frequency of five disease-causing genetic mutations in a large mixed-breed dog population (2011-2012).

    PubMed

    Zierath, Sharon; Hughes, Angela M; Fretwell, Neale; Dibley, Mark; Ekenstedt, Kari J

    2017-01-01

    A large and growing number of inherited genetic disease mutations are now known in the dog. Frequencies of these mutations are typically examined within the breed of discovery, possibly in related breeds, but nearly always in purebred dogs. No report to date has examined the frequencies of specific genetic disease mutations in a large population of mixed-breed dogs. Further, veterinarians and dog owners typically dismiss inherited/genetic diseases as possibilities for health problems in mixed-breed dogs, assuming hybrid vigor will guarantee that single-gene disease mutations are not a cause for concern. Therefore, the objective of this study was to screen a large mixed-breed canine population for the presence of mutant alleles associated with five autosomal recessive disorders: hyperuricosuria and hyperuricemia (HUU), cystinuria (CYST), factor VII deficiency (FVIID), myotonia congenita (MYC) and phosphofructokinase deficiency (PKFD). Genetic testing was performed in conjunction with breed determination via the commercially-available Wisdom PanelTM test. From a population of nearly 35,000 dogs, homozygous mutant dogs were identified for HUU (n = 57) and FVIID (n = 65). Homozygotes for HUU and FVIID were identified even among dogs with highly mixed breed ancestry. Carriers were identified for all disorders except MYC. HUU and FVIID were of high enough frequency to merit consideration in any mixed-breed dog, while CYST, MYC, and PKFD are vanishingly rare. The assumption that mixed-breed dogs do not suffer from single-gene genetic disorders is shown here to be false. Within the diseases examined, HUU and FVIID should remain on any practitioner's rule-out list, when clinically appropriate, for all mixed-breed dogs, and judicious genetic testing should be performed for diagnosis or screening. Future testing of large mixed-breed dog populations that include additional known canine genetic mutations will refine our knowledge of which genetic diseases can strike mixed

  13. Low incidence of SCN1A genetic mutation in patients with hemiconvulsion-hemiplegia-epilepsy syndrome.

    PubMed

    Kim, Dong Wook; Lim, Byung Chan; Kim, Ki Joong; Chae, Jong Hee; Lee, Ran; Lee, Sang Kun

    2013-10-01

    Genetic mutations in SCN1A account for more than two-thirds of patients with classic Dravet syndrome. A role for SCN1A genetic mutations in the development of hemiconvulsion-hemiplegia-epilepsy (HHE) syndrome was recently suggested based on the observation that HHE syndrome and classic Dravet syndrome share many clinical features. We previously identified a 2 bp-deletion mutation in SCN1A in a Dravet patient, and we found out the patient also had HHE syndrome upon clinical re-evaluation. We subsequently screened 10 additional HHE patients for SCN1A. Among the 11 patients who were diagnosed with HHE syndrome, six patients had no other etiology with the exception of prolonged febrile illness, therefore classified as idiopathic HHE syndrome, whereas five patients were classified as symptomatic HHE syndrome. Direct sequencing of all coding exons and flanking intronic sequences of the SCN1A gene was performed, but we failed to identify additional mutations in 10 patients. The patient with SCN1A mutation had the earliest onset of febrile convulsion and hemiparesis. Our study suggests that SCN1A genetic mutation is only a rare predisposing cause of HHE syndrome. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Novel genetic linkage of rat Sp6 mutation to Amelogenesis imperfecta

    PubMed Central

    2012-01-01

    Background Amelogenesis imperfecta (AI) is an inherited disorder characterized by abnormal formation of tooth enamel. Although several genes responsible for AI have been reported, not all causative genes for human AI have been identified to date. AMI rat has been reported as an autosomal recessive mutant with hypoplastic AI isolated from a colony of stroke-prone spontaneously hypertensive rat strain, but the causative gene has not yet been clarified. Through a genetic screen, we identified the causative gene of autosomal recessive AI in AMI and analyzed its role in amelogenesis. Methods cDNA sequencing of possible AI-candidate genes so far identified using total RNA of day 6 AMI rat molars identified a novel responsible mutation in specificity protein 6 (Sp6). Genetic linkage analysis was performed between Sp6 and AI phenotype in AMI. To understand a role of SP6 in AI, we generated the transgenic rats harboring Sp6 transgene in AMI (Ami/Ami + Tg). Histological analyses were performed using the thin sections of control rats, AMI, and Ami/Ami + Tg incisors in maxillae, respectively. Results We found the novel genetic linkage between a 2-bp insertional mutation of Sp6 gene and the AI phenotype in AMI rats. The position of mutation was located in the coding region of Sp6, which caused frameshift mutation and disruption of the third zinc finger domain of SP6 with 11 cryptic amino acid residues and a stop codon. Transfection studies showed that the mutant protein can be translated and localized in the nucleus in the same manner as the wild-type SP6 protein. When we introduced the CMV promoter-driven wild-type Sp6 transgene into AMI rats, the SP6 protein was ectopically expressed in the maturation stage of ameloblasts associated with the extended maturation stage and the shortened reduced stage without any other phenotypical changes. Conclusion We propose the addition of Sp6 mutation as a new molecular diagnostic criterion for the autosomal recessive AI patients

  15. Exome capture sequencing identifies a novel mutation in BBS4

    PubMed Central

    Wang, Hui; Chen, Xianfeng; Dudinsky, Lynn; Patenia, Claire; Chen, Yiyun; Li, Yumei; Wei, Yue; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard Alan; Lupski, James R.; Mardon, Graeme; Gibbs, Richard A.; Perkins, Brian D.

    2011-01-01

    Purpose Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. Methods Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. Results A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. Conclusions This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function. PMID:22219648

  16. Frequency of five disease-causing genetic mutations in a large mixed-breed dog population (2011–2012)

    PubMed Central

    Zierath, Sharon; Hughes, Angela M.; Fretwell, Neale; Dibley, Mark

    2017-01-01

    Background A large and growing number of inherited genetic disease mutations are now known in the dog. Frequencies of these mutations are typically examined within the breed of discovery, possibly in related breeds, but nearly always in purebred dogs. No report to date has examined the frequencies of specific genetic disease mutations in a large population of mixed-breed dogs. Further, veterinarians and dog owners typically dismiss inherited/genetic diseases as possibilities for health problems in mixed-breed dogs, assuming hybrid vigor will guarantee that single-gene disease mutations are not a cause for concern. Therefore, the objective of this study was to screen a large mixed-breed canine population for the presence of mutant alleles associated with five autosomal recessive disorders: hyperuricosuria and hyperuricemia (HUU), cystinuria (CYST), factor VII deficiency (FVIID), myotonia congenita (MYC) and phosphofructokinase deficiency (PKFD). Genetic testing was performed in conjunction with breed determination via the commercially-available Wisdom PanelTM test. Results From a population of nearly 35,000 dogs, homozygous mutant dogs were identified for HUU (n = 57) and FVIID (n = 65). Homozygotes for HUU and FVIID were identified even among dogs with highly mixed breed ancestry. Carriers were identified for all disorders except MYC. HUU and FVIID were of high enough frequency to merit consideration in any mixed-breed dog, while CYST, MYC, and PKFD are vanishingly rare. Conclusions The assumption that mixed-breed dogs do not suffer from single-gene genetic disorders is shown here to be false. Within the diseases examined, HUU and FVIID should remain on any practitioner’s rule-out list, when clinically appropriate, for all mixed-breed dogs, and judicious genetic testing should be performed for diagnosis or screening. Future testing of large mixed-breed dog populations that include additional known canine genetic mutations will refine our knowledge of which

  17. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE PAGES

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric; ...

    2015-03-30

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  18. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  19. Challenges of Identifying Clinically Actionable Genetic Variants for Precision Medicine

    PubMed Central

    2016-01-01

    Advances in genomic medicine have the potential to change the way we treat human disease, but translating these advances into reality for improving healthcare outcomes depends essentially on our ability to discover disease- and/or drug-associated clinically actionable genetic mutations. Integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a big data infrastructure can provide an efficient and effective way to identify clinically actionable genetic variants for personalized treatments and reduce healthcare costs. We review bioinformatics processing of next-generation sequencing (NGS) data, bioinformatics infrastructures for implementing precision medicine, and bioinformatics approaches for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs. PMID:27195526

  20. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations.

    PubMed

    Wardell, Christopher P; Fujita, Masashi; Yamada, Toru; Simbolo, Michele; Fassan, Matteo; Karlic, Rosa; Polak, Paz; Kim, Jaegil; Hatanaka, Yutaka; Maejima, Kazuhiro; Lawlor, Rita T; Nakanishi, Yoshitsugu; Mitsuhashi, Tomoko; Fujimoto, Akihiro; Furuta, Mayuko; Ruzzenente, Andrea; Conci, Simone; Oosawa, Ayako; Sasaki-Oku, Aya; Nakano, Kaoru; Tanaka, Hiroko; Yamamoto, Yujiro; Michiaki, Kubo; Kawakami, Yoshiiku; Aikata, Hiroshi; Ueno, Masaki; Hayami, Shinya; Gotoh, Kunihito; Ariizumi, Shun-Ichi; Yamamoto, Masakazu; Yamaue, Hiroki; Chayama, Kazuaki; Miyano, Satoru; Getz, Gad; Scarpa, Aldo; Hirano, Satoshi; Nakamura, Toru; Nakagawa, Hidewaki

    2018-05-01

    Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. We identified 32 significantly and commonly mutated genes including TP53, KRAS, SMAD4, NF1, ARID1A, PBRM1, and ATR, some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1, BRCA2, RAD51D, MLH1, or MSH2 were detected in 11% (16/146) of BTC patients. BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1. Cell

  1. [Genetic mutation databases: stakes and perspectives for orphan genetic diseases].

    PubMed

    Humbertclaude, V; Tuffery-Giraud, S; Bareil, C; Thèze, C; Paulet, D; Desmet, F-O; Hamroun, D; Baux, D; Girardet, A; Collod-Béroud, G; Khau Van Kien, P; Roux, A-F; des Georges, M; Béroud, C; Claustres, M

    2010-10-01

    New technologies, which constantly become available for mutation detection and gene analysis, have contributed to an exponential rate of discovery of disease genes and variation in the human genome. The task of collecting and documenting this enormous amount of data in genetic databases represents a major challenge for the future of biological and medical science. The Locus Specific Databases (LSDBs) are so far the most efficient mutation databases. This review presents the main types of databases available for the analysis of mutations responsible for genetic disorders, as well as open perspectives for new therapeutic research or challenges for future medicine. Accurate and exhaustive collection of variations in human genomes will be crucial for research and personalized delivery of healthcare. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  2. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    PubMed

    Xu, Zhi; Huo, Xinying; Ye, Hua; Tang, Chuanning; Nandakumar, Vijayalakshmi; Lou, Feng; Zhang, Dandan; Dong, Haichao; Sun, Hong; Jiang, Shouwen; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; He, Yan; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Gu, Dongying; Zhang, Xiaojing; Wu, Xiaomin; Wei, Xiaowei; Hong, Lingzhi; Zhang, Yangmei; Yang, Jinsong; Gong, Yonglin; Tang, Cuiju; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jinfei

    2014-01-01

    Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  3. [Genetic mutation and clinical features of osteogenesis imperfecta type V].

    PubMed

    Guan, Shizhen; Bai, Xue; Wang, Yi; Liu, Zhigang; Ren, Xiuzhi; Zhang, Tianke; Ju, Mingyan; Li, Keqiu; Li, Guang

    2017-12-10

    To explore genetic mutations and clinical features of osteogenesis imperfecta type V. Clinical record of five patients (including one familial case) with osteogenesis imperfecta type V were retrospectively analyzed. Peripheral blood samples of the patients, one family member, as well as healthy controls were collected. Mutation of IFITM5 gene was identified by PCR amplification and Sanger sequencing. A heterozygous mutation (c.-14C>T) in the 5-UTR of the IFITM5 gene was identified in all of the patients and one mother. The clinical findings included frequent fractures and spine and/or extremities deformities, absence of dentinogenesis imperfecta, absence of hearing impairment, and blue sclera in 1 case. Radiographic findings revealed calcification of the interosseous membrane between the radius-ulna in all cases. Hyperplastic callus formation was found in 3 cases. Four had radial-head dislocation. A single heterozygous mutation c.-14C>T was found in the 5-UTR of the IFITM5 gene in 5 patients with osteogensis imperfecta type V. The patients showed specific radiological features including calcification of interosseous membrane, hyperplastic callus formation, and radial-head dislocation.

  4. Clinical and molecular characterization of a novel INS mutation identified in patients with MODY phenotype.

    PubMed

    Piccini, Barbara; Artuso, Rosangela; Lenzi, Lorenzo; Guasti, Monica; Braccesi, Giulia; Barni, Federica; Casalini, Emilio; Giglio, Sabrina; Toni, Sonia

    2016-11-01

    Correct diagnosis of Maturity-Onset Diabetes of the Young (MODY) is based on genetic tests requiring an appropriate subject selection by clinicians. Mutations in the insulin (INS) gene rarely occur in patients with MODY. This study is aimed at determining the genetic background and clinical phenotype in patients with suspected MODY. 34 patients with suspected MODY, negative for mutations in the GCK, HNF1α, HNF4α, HNF1β and PDX1 genes, were screened by next generation sequencing (NGS). A heterozygous INS mutation was identified in 4 members of the same family. First genetic tests performed identified two heterozygous silent nucleotide substitutions in MODY3/HNF1α gene. An ineffective attempt to suspend insulin therapy, administering repaglinide and sulphonylureas, was made. DNA was re-sequenced by NGS investigating a set of 102 genes. Genes implicated in the pathway of pancreatic β-cells, candidate genes for type 2 diabetes mellitus and genes causative of diabetes in mice were selected. A novel heterozygous variant in human preproinsulin INS gene (c.125T > C) was found in the affected family members. The new INS mutation broadens the spectrum of possible INS phenotypes. Screening for INS mutations is warranted not only in neonatal diabetes but also in MODYx patients and in selected patients with type 1 diabetes mellitus negative for autoantibodies. Subjects with complex diseases without a specific phenotype should be studied by NGS because Sanger sequencing is ineffective and time consuming in detecting rare variants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. A reverse genetic approach identifies an ancestral frameshift mutation in RP1 causing recessive progressive retinal degeneration in European cattle breeds.

    PubMed

    Michot, Pauline; Chahory, Sabine; Marete, Andrew; Grohs, Cécile; Dagios, Dimitri; Donzel, Elise; Aboukadiri, Abdelhak; Deloche, Marie-Christine; Allais-Bonnet, Aurélie; Chambrial, Matthieu; Barbey, Sarah; Genestout, Lucie; Boussaha, Mekki; Danchin-Burge, Coralie; Fritz, Sébastien; Boichard, Didier; Capitan, Aurélien

    2016-08-10

    Domestication and artificial selection have resulted in strong genetic drift, relaxation of purifying selection and accumulation of deleterious mutations. As a consequence, bovine breeds experience regular outbreaks of recessive genetic defects which might represent only the tip of the iceberg since their detection depends on the observation of affected animals with distinctive symptoms. Thus, recessive mutations resulting in embryonic mortality or in non-specific symptoms are likely to be missed. The increasing availability of whole-genome sequences has opened new research avenues such as reverse genetics for their investigation. Our aim was to characterize the genetic load of 15 European breeds using data from the 1000 bull genomes consortium and prove that widespread harmful mutations remain to be detected. We listed 2489 putative deleterious variants (in 1923 genes) segregating at a minimal frequency of 5 % in at least one of the breeds studied. Gene enrichment analysis showed major enrichment for genes related to nervous, visual and auditory systems, and moderate enrichment for genes related to cardiovascular and musculoskeletal systems. For verification purposes, we investigated the phenotypic consequences of a frameshift variant in the retinitis pigmentosa-1 gene segregating in several breeds and at a high frequency (27 %) in Normande cattle. As described in certain human patients, clinical and histological examination revealed that this mutation causes progressive degeneration of photoreceptors leading to complete blindness in homozygotes. We established that the deleterious allele was even more frequent in the Normande breed before 1975 (>40 %) and has been progressively counter-selected likely because of its associated negative effect on udder morphology. Finally, using identity-by-descent analysis we demonstrated that this mutation resulted from a unique ancestral event that dates back to ~2800 to 4000 years. We provide a list of mutations that

  6. Molecular genetics of cystinuria: Identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasparini, P.; Bisceglia, L.; Notarangelo, A.

    A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the disease have been described. The frequency of these mutations has been investigated in a large sample of 51 Italian and Spanish cystinuric patients. In addition, to identify new mutated alleles, genomic DNA has been analyzed by an accurate and sensitive method able to detect nucleotide changes. Because of the lack of information available on the genomic structure of rBAT gene, the study was carried out using the sequence data so far obtained by us. More than 70% of the entire coding sequence and 8 intron-exon boundariesmore » have been analyzed. Four new mutations and seven intragenic polymorphisms have been detected. All mutations so far identified in rBAT belong only to cystinuria type I alleles, accounting for {approximately} 44% of all type I cystinuric chromosomes. Mutation M467T is the most common mutated allele in the Italian and Spanish populations. After analysis of 70% of the rBAT coding region, we have detected normal sequences in cystinuria type II and type III chromosomes. The presence of rBAT mutated alleles only in type I chromosomes of homozygous (type I/I) and heterozygous (type I/III) patients provides evidence for genetic heterogeneity where rBAT would be responsible only for type I cystinuria and suggests a complementation mechanism to explain the intermediate type I/type III phenotype. 25 refs., 1 fig., 3 tabs.« less

  7. The population genetics of mutations: good, bad and indifferent

    PubMed Central

    Loewe, Laurence; Hill, William G.

    2010-01-01

    Population genetics is fundamental to our understanding of evolution, and mutations are essential raw materials for evolution. In this introduction to more detailed papers that follow, we aim to provide an oversight of the field. We review current knowledge on mutation rates and their harmful and beneficial effects on fitness and then consider theories that predict the fate of individual mutations or the consequences of mutation accumulation for quantitative traits. Many advances in the past built on models that treat the evolution of mutations at each DNA site independently, neglecting linkage of sites on chromosomes and interactions of effects between sites (epistasis). We review work that addresses these limitations, to predict how mutations interfere with each other. An understanding of the population genetics of mutations of individual loci and of traits affected by many loci helps in addressing many fundamental and applied questions: for example, how do organisms adapt to changing environments, how did sex evolve, which DNA sequences are medically important, why do we age, which genetic processes can generate new species or drive endangered species to extinction, and how should policy on levels of potentially harmful mutagens introduced into the environment by humans be determined? PMID:20308090

  8. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa.

    PubMed

    Méndez-Vidal, Cristina; González-Del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud; Antiñolo, Guillermo

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data

  9. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa

    PubMed Central

    Méndez-Vidal, Cristina; González-del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J.; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud

    2013-01-01

    Purpose Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. Methods We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Results Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Conclusions Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with

  10. Genetic screens for mutations affecting development of Xenopus tropicalis.

    PubMed

    Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B

    2006-06-01

    We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.

  11. Mediterranean Founder Mutation Database (MFMD): Taking Advantage from Founder Mutations in Genetics Diagnosis, Genetic Diversity and Migration History of the Mediterranean Population.

    PubMed

    Charoute, Hicham; Bakhchane, Amina; Benrahma, Houda; Romdhane, Lilia; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Abdelhak, Sonia; Lenaers, Guy; Barakat, Abdelhamid

    2015-11-01

    The Mediterranean basin has been the theater of migration crossroads followed by settlement of several societies and cultures in prehistoric and historical times, with important consequences on genetic and genomic determinisms. Here, we present the Mediterranean Founder Mutation Database (MFMD), established to offer web-based access to founder mutation information in the Mediterranean population. Mutation data were collected from the literature and other online resources and systematically reviewed and assembled into this database. The information provided for each founder mutation includes DNA change, amino-acid change, mutation type and mutation effect, as well as mutation frequency and coalescence time when available. Currently, the database contains 383 founder mutations found in 210 genes related to 219 diseases. We believe that MFMD will help scientists and physicians to design more rapid and less expensive genetic diagnostic tests. Moreover, the coalescence time of founder mutations gives an overview about the migration history of the Mediterranean population. MFMD can be publicly accessed from http://mfmd.pasteur.ma. © 2015 WILEY PERIODICALS, INC.

  12. Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome.

    PubMed

    Lund, Caroline; Striano, Pasquale; Sorte, Hanne Sørmo; Parisi, Pasquale; Iacomino, Michele; Sheng, Ying; Vigeland, Magnus D; Øye, Anne-Marte; Møller, Rikke Steensbjerre; Selmer, Kaja K; Zara, Federico

    2016-09-01

    Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.

  13. Comparative analysis of primary versus relapse/refractory DLBCL identifies shifts in mutation spectrum.

    PubMed

    Greenawalt, Danielle M; Liang, Winnie S; Saif, Sakina; Johnson, Justin; Todorov, Petar; Dulak, Austin; Enriquez, Daniel; Halperin, Rebecca; Ahmed, Ambar; Saveliev, Vladislav; Carpten, John; Craig, David; Barrett, J Carl; Dougherty, Brian; Zinda, Michael; Fawell, Stephen; Dry, Jonathan R; Byth, Kate

    2017-11-21

    Current understanding of the mutation spectrum of relapsed/refractory (RR) tumors is limited. We performed whole exome sequencing (WES) on 47 diffuse large B cell lymphoma (DLBCL) tumors that persisted after R-CHOP treatment, 8 matched to primary biopsies. We compared genomic alterations from the RR cohort against two treatment-naïve DLBCL cohorts (n=112). While the overall number and types of mutations did not differ significantly, we identified frequency changes in DLBCL driver genes. The overall frequency of MYD88 mutant samples increased (12% to 19%), but we noted a decrease in p.L265P (8% to 4%) and increase in p.S219C mutations (2% to 6%). CARD11 p.D230N, PIM1 p.K115N and CD79B p.Y196C mutations were not observed in the RR cohort, although these mutations were prominent in the primary DLBCL samples. We observed an increase in BCL2 mutations (21% to 38% of samples), BCL2 amplifications (3% to 6% of samples) and CREBBP mutations (31% to 42% of samples) in the RR cohort, supported by acquisition of mutations in these genes in relapsed compared to diagnostic biopsies from the same patient. These increases may reflect the genetic characteristics of R-CHOP RR tumors expected to be enriched for during clinical trial enrollment. These findings hold significance for a number of emerging targeted therapies aligned to genetic targets and biomarkers in DLBCL, reinforcing the importance of time-of-treatment biomarker screening during DLBCL therapy selection.

  14. Comparative analysis of primary versus relapse/refractory DLBCL identifies shifts in mutation spectrum

    PubMed Central

    Greenawalt, Danielle M.; Liang, Winnie S.; Saif, Sakina; Johnson, Justin; Todorov, Petar; Dulak, Austin; Enriquez, Daniel; Halperin, Rebecca; Ahmed, Ambar; Saveliev, Vladislav; Carpten, John; Craig, David; Barrett, J. Carl; Dougherty, Brian; Zinda, Michael; Fawell, Stephen; Dry, Jonathan R.; Byth, Kate

    2017-01-01

    Current understanding of the mutation spectrum of relapsed/refractory (RR) tumors is limited. We performed whole exome sequencing (WES) on 47 diffuse large B cell lymphoma (DLBCL) tumors that persisted after R-CHOP treatment, 8 matched to primary biopsies. We compared genomic alterations from the RR cohort against two treatment-naïve DLBCL cohorts (n=112). While the overall number and types of mutations did not differ significantly, we identified frequency changes in DLBCL driver genes. The overall frequency of MYD88 mutant samples increased (12% to 19%), but we noted a decrease in p.L265P (8% to 4%) and increase in p.S219C mutations (2% to 6%). CARD11 p.D230N, PIM1 p.K115N and CD79B p.Y196C mutations were not observed in the RR cohort, although these mutations were prominent in the primary DLBCL samples. We observed an increase in BCL2 mutations (21% to 38% of samples), BCL2 amplifications (3% to 6% of samples) and CREBBP mutations (31% to 42% of samples) in the RR cohort, supported by acquisition of mutations in these genes in relapsed compared to diagnostic biopsies from the same patient. These increases may reflect the genetic characteristics of R-CHOP RR tumors expected to be enriched for during clinical trial enrollment. These findings hold significance for a number of emerging targeted therapies aligned to genetic targets and biomarkers in DLBCL, reinforcing the importance of time-of-treatment biomarker screening during DLBCL therapy selection. PMID:29245897

  15. Mutations in FUS are the most frequent genetic cause in juvenile sporadic ALS patients of Chinese origin.

    PubMed

    Zou, Zhang-Yu; Liu, Ming-Sheng; Li, Xiao-Guang; Cui, Li-Ying

    2016-01-01

    Juvenile onset ALS is a very rare form of motor neuron disease, with the first symptoms of motor neuron degeneration manifested before 25 years of age. Mutations in the alsin (ALS2), senataxin (SETX), and spatacsin (SPG11) genes have been associated with familial ALS with juvenile onset and slow progression, whereas the genetic architecture of sporadic juvenile ALS remains unclear. We screened mutations in C9orf72, SOD1, FUS, TARDBP, ANG, VCP and PFN1 in 16 juvenile sporadic ALS patients. Four cases (25%) carrying FUS mutations and one individual (6%) harbouring a SOD1 mutation were identified. All cases had an aggressive disease course. Our results suggest that FUS mutations are the most frequent genetic cause in early-onset sporadic ALS patients of Chinese origin. Genetic testing of FUS should be performed in early-onset ALS patients especially those with an aggressive disease course.

  16. Next-generation sequencing identifies a novel compound heterozygous mutation in MYO7A in a Chinese patient with Usher Syndrome 1B.

    PubMed

    Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin

    2012-11-20

    Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Results after laparoscopic partial splenectomy for children with hereditary spherocytosis: Are outcomes influenced by genetic mutation?

    PubMed

    Pugi, Jakob; Carcao, Manuel; Drury, Luke J; Langer, Jacob C

    2018-05-01

    Laparoscopic partial splenectomy (LPS) theoretically maintains long-term splenic immune function for children with hereditary spherocytosis (HS). Our goal was to review our results after LPS and to determine if specific genetic mutations influence outcome. All children with HS undergoing LPS between 2005 and 2016 were reviewed. Thirty-one children underwent LPS (16 male) at a median age of 9 (range 2-18) years. All experienced an increase in hemoglobin and decrease in reticulocyte count early after LPS and at last follow-up. Twenty-two were sent for genetic analysis. Mutations in α-spectrin, β-spectrin, and Ankyrin were identified in 6, 5, and 11 patients, respectively. Gene mutation was not correlated with complications, perioperative transfusion, length of hospital stay, or median hemoglobin, platelet, or reticulocyte counts. Three children required completion splenectomy at 10.9, 6.9, and 3.2years post-LPS, each with a different gene mutation. LPS is effective in reversing anemia and reducing reticulocytosis. So far less than 10% have required completion splenectomy, and those children did benefit from delaying the risks of asplenia. In this preliminary analysis, genetic mutation did not influence outcome after LPS. A larger multicenter study is necessary to further investigate potential correlations with specific genetic mutations. Prognosis Study. IV. Copyright © 2018. Published by Elsevier Inc.

  18. Molecular Genetics of the Usher Syndrome in Lebanon: Identification of 11 Novel Protein Truncating Mutations by Whole Exome Sequencing

    PubMed Central

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Background Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Methods Whole exome sequencing followed by expanded familial validation by Sanger sequencing. Results We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Conclusion Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes. PMID:25211151

  19. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    PubMed

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Whole exome sequencing followed by expanded familial validation by Sanger sequencing. We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  20. BRCA mutation genetic testing implications in the United States.

    PubMed

    Bayraktar, Soley; Arun, Banu

    2017-02-01

    BRCA mutation carriers have a very high risk of breast and ovarian cancer by age 70, in the ranges 47%-66% and 40%-57%, respectively. Additionally, women with BRCA mutation-associated breast cancer also have an elevated risk of other or secondary malignancies. Fortunately, the breast and ovarian cancer outcome for BRCA1/2 mutation carriers is at least as good as for non-carriers with chemoprevention, prophylactic surgeries and appropriate use of therapies. Therefore, identification of those who might have a mutation is important so that genetic counseling, testing, screening and prevention strategies can be applied in a timely manner. This article reviews the impact of genetic testing in general, timing of genetic testing after diagnosis and prior knowledge of mutation status in BRCA carriers with newly diagnosed breast cancer. Additionally, risk-reducing surgeries including the prophylactic contralateral mastectomy, and bilateral salpingo-oophorectomy and the sensitivity of BRCA-defective breast cancer cell lines to differential chemotherapeutic agents will be discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling.

    PubMed

    Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San

    2017-01-01

    Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic

  2. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling

    PubMed Central

    Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San

    2017-01-01

    Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic

  3. Whole Exome Sequencing Identifies RAI1 Mutation in a Morbidly Obese Child Diagnosed With ROHHAD Syndrome

    PubMed Central

    Esteves, Kristyn M.; Towne, Meghan C.; Brownstein, Catherine A.; James, Philip M.; Crowley, Laura; Hirschhorn, Joel N.; Elsea, Sarah H.; Beggs, Alan H.; Picker, Jonathan

    2015-01-01

    Context: The current obesity epidemic is attributed to complex interactions between genetic and environmental factors. However, a limited number of cases, especially those with early-onset severe obesity, are linked to single gene defects. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is one of the syndromes that presents with abrupt-onset extreme weight gain with an unknown genetic basis. Objective: To identify the underlying genetic etiology in a child with morbid early-onset obesity, hypoventilation, and autonomic and behavioral disturbances who was clinically diagnosed with ROHHAD syndrome. Design/Setting/Intervention: The index patient was evaluated at an academic medical center. Whole-exome sequencing was performed on the proband and his parents. Genetic variants were validated by Sanger sequencing. Results: We identified a novel de novo nonsense mutation, c.3265 C>T (p.R1089X), in the retinoic acid-induced 1 (RAI1) gene in the proband. Mutations in the RAI1 gene are known to cause Smith-Magenis syndrome (SMS). On further evaluation, his clinical features were not typical of either SMS or ROHHAD syndrome. Conclusions: This study identifies a de novo RAI1 mutation in a child with morbid obesity and a clinical diagnosis of ROHHAD syndrome. Although extreme early-onset obesity, autonomic disturbances, and hypoventilation are present in ROHHAD, several of the clinical findings are consistent with SMS. This case highlights the challenges in the diagnosis of ROHHAD syndrome and its potential overlap with SMS. We also propose RAI1 as a candidate gene for children with morbid obesity. PMID:25781356

  4. Whole exome sequencing identifies RAI1 mutation in a morbidly obese child diagnosed with ROHHAD syndrome.

    PubMed

    Thaker, Vidhu V; Esteves, Kristyn M; Towne, Meghan C; Brownstein, Catherine A; James, Philip M; Crowley, Laura; Hirschhorn, Joel N; Elsea, Sarah H; Beggs, Alan H; Picker, Jonathan; Agrawal, Pankaj B

    2015-05-01

    The current obesity epidemic is attributed to complex interactions between genetic and environmental factors. However, a limited number of cases, especially those with early-onset severe obesity, are linked to single gene defects. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is one of the syndromes that presents with abrupt-onset extreme weight gain with an unknown genetic basis. To identify the underlying genetic etiology in a child with morbid early-onset obesity, hypoventilation, and autonomic and behavioral disturbances who was clinically diagnosed with ROHHAD syndrome. Design/Setting/Intervention: The index patient was evaluated at an academic medical center. Whole-exome sequencing was performed on the proband and his parents. Genetic variants were validated by Sanger sequencing. We identified a novel de novo nonsense mutation, c.3265 C>T (p.R1089X), in the retinoic acid-induced 1 (RAI1) gene in the proband. Mutations in the RAI1 gene are known to cause Smith-Magenis syndrome (SMS). On further evaluation, his clinical features were not typical of either SMS or ROHHAD syndrome. This study identifies a de novo RAI1 mutation in a child with morbid obesity and a clinical diagnosis of ROHHAD syndrome. Although extreme early-onset obesity, autonomic disturbances, and hypoventilation are present in ROHHAD, several of the clinical findings are consistent with SMS. This case highlights the challenges in the diagnosis of ROHHAD syndrome and its potential overlap with SMS. We also propose RAI1 as a candidate gene for children with morbid obesity.

  5. Target enrichment and high-throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond-Blackfan anaemia.

    PubMed

    Gerrard, Gareth; Valgañón, Mikel; Foong, Hui En; Kasperaviciute, Dalia; Iskander, Deena; Game, Laurence; Müller, Michael; Aitman, Timothy J; Roberts, Irene; de la Fuente, Josu; Foroni, Letizia; Karadimitris, Anastasios

    2013-08-01

    Diamond-Blackfan anaemia (DBA) is caused by inactivating mutations in ribosomal protein (RP) genes, with mutations in 13 of the 80 RP genes accounting for 50-60% of cases. The remaining 40-50% cases may harbour mutations in one of the remaining RP genes, but the very low frequencies render conventional genetic screening as challenging. We, therefore, applied custom enrichment technology combined with high-throughput sequencing to screen all 80 RP genes. Using this approach, we identified and validated inactivating mutations in 15/17 (88%) DBA patients. Target enrichment combined with high-throughput sequencing is a robust and improved methodology for the genetic diagnosis of DBA. © 2013 John Wiley & Sons Ltd.

  6. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  7. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis☆

    PubMed Central

    Pangrazio, Alessandra; Puddu, Alessandro; Oppo, Manuela; Valentini, Maria; Zammataro, Luca; Vellodi, Ashok; Gener, Blanca; Llano-Rivas, Isabel; Raza, Jamal; Atta, Irum; Vezzoni, Paolo; Superti-Furga, Andrea; Villa, Anna; Sobacchi, Cristina

    2014-01-01

    Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by “intermediate osteopetrosis”, which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions. PMID:24269275

  8. Detecting novel genetic mutations in Chinese Usher syndrome families using next-generation sequencing technology.

    PubMed

    Qu, Ling-Hui; Jin, Xin; Xu, Hai-Wei; Li, Shi-Ying; Yin, Zheng-Qin

    2015-02-01

    Usher syndrome (USH) is the most common cause of combined blindness and deafness inherited in an autosomal recessive mode. Molecular diagnosis is of great significance in revealing the molecular pathogenesis and aiding the clinical diagnosis of this disease. However, molecular diagnosis remains a challenge due to high phenotypic and genetic heterogeneity in USH. This study explored an approach for detecting disease-causing genetic mutations in candidate genes in five index cases from unrelated USH families based on targeted next-generation sequencing (NGS) technology. Through systematic data analysis using an established bioinformatics pipeline and segregation analysis, 10 pathogenic mutations in the USH disease genes were identified in the five USH families. Six of these mutations were novel: c.4398G > A and EX38-49del in MYO7A, c.988_989delAT in USH1C, c.15104_15105delCA and c.6875_6876insG in USH2A. All novel variations segregated with the disease phenotypes in their respective families and were absent from ethnically matched control individuals. This study expanded the mutation spectrum of USH and revealed the genotype-phenotype relationships of the novel USH mutations in Chinese patients. Moreover, this study proved that targeted NGS is an accurate and effective method for detecting genetic mutations related to USH. The identification of pathogenic mutations is of great significance for elucidating the underlying pathophysiology of USH.

  9. Splice site mutations in GH1 detected in previously (Genetically) undiagnosed families with congenital isolated growth hormone deficiency type II.

    PubMed

    Kempers, M J E; van der Crabben, S N; de Vroede, M; Alfen-van der Velden, J; Netea-Maier, R T; Duim, R A J; Otten, B J; Losekoot, M; Wit, J M

    2013-01-01

    Congenital isolated growth hormone deficiency (IGHD) is a rare endocrine disorder that presents with severe proportionate growth failure. Dominant (type II) IGHD is usually caused by heterozygous mutations of GH1. The presentation of newly affected family members in 3 families with dominant IGHD in whom previous genetic testing had not demonstrated a GH1 mutation or had not been performed, prompted us to identify the underlying genetic cause. GH1 was sequenced in 3 Caucasian families with a clinical autosomal dominant IGHD. All affected family members had severe growth hormone (GH) deficiency that became apparent in the first 2 years of life. GH treatment led to a marked increase in height SDS. So far, no other pituitary dysfunctions have become apparent. In the first family a novel splice site mutation in GH1 was identified (c.172-1G>C, IVS2-1G>C). In two other families a previously reported splice site mutation (c.291+1G>A, IVS3+1G>A) was found. These data show that several years after negative genetic testing it was now possible to make a genetic diagnosis in these families with a well-defined, clearly heritable, autosomal dominant IGHD. This underscores the importance of clinical and genetic follow-up in a multidisciplinary setting. It also shows that even without a positive family history, genetic testing should be considered if the phenotype is strongly suggestive for a genetic syndrome. Identification of pathogenic mutations, like these GH1 mutations, has important clinical implications for the surveillance and genetic counseling of patients and expands our knowledge on the genotype-phenotype correlation. © 2013 S. Karger AG, Basel.

  10. A Semantic Web-based System for Mining Genetic Mutations in Cancer Clinical Trials.

    PubMed

    Priya, Sambhawa; Jiang, Guoqian; Dasari, Surendra; Zimmermann, Michael T; Wang, Chen; Heflin, Jeff; Chute, Christopher G

    2015-01-01

    Textual eligibility criteria in clinical trial protocols contain important information about potential clinically relevant pharmacogenomic events. Manual curation for harvesting this evidence is intractable as it is error prone and time consuming. In this paper, we develop and evaluate a Semantic Web-based system that captures and manages mutation evidences and related contextual information from cancer clinical trials. The system has 2 main components: an NLP-based annotator and a Semantic Web ontology-based annotation manager. We evaluated the performance of the annotator in terms of precision and recall. We demonstrated the usefulness of the system by conducting case studies in retrieving relevant clinical trials using a collection of mutations identified from TCGA Leukemia patients and Atlas of Genetics and Cytogenetics in Oncology and Haematology. In conclusion, our system using Semantic Web technologies provides an effective framework for extraction, annotation, standardization and management of genetic mutations in cancer clinical trials.

  11. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing.

    PubMed

    Patiño, Liliana Catherine; Beau, Isabelle; Carlosama, Carolina; Buitrago, July Constanza; González, Ronald; Suárez, Carlos Fernando; Patarroyo, Manuel Alfonso; Delemer, Brigitte; Young, Jacques; Binart, Nadine; Laissue, Paul

    2017-07-01

    Is it possible to identify new mutations potentially associated with non-syndromic primary ovarian insufficiency (POI) via whole-exome sequencing (WES)? WES is an efficient tool to study genetic causes of POI as we have identified new mutations, some of which lead to protein destablization potentially contributing to the disease etiology. POI is a frequently occurring complex pathology leading to infertility. Mutations in only few candidate genes, mainly identified by Sanger sequencing, have been definitively related to the pathogenesis of the disease. This is a retrospective cohort study performed on 69 women affected by POI. WES and an innovative bioinformatics analysis were used on non-synonymous sequence variants in a subset of 420 selected POI candidate genes. Mutations in BMPR1B and GREM1 were modeled by using fragment molecular orbital analysis. Fifty-five coding variants in 49 genes potentially related to POI were identified in 33 out of 69 patients (48%). These genes participate in key biological processes in the ovary, such as meiosis, follicular development, granulosa cell differentiation/proliferation and ovulation. The presence of at least two mutations in distinct genes in 42% of the patients argued in favor of a polygenic nature of POI. It is possible that regulatory regions, not analyzed in the present study, carry further variants related to POI. WES and the in silico analyses presented here represent an efficient approach for mapping variants associated with POI etiology. Sequence variants presented here represents potential future genetic biomarkers. This study was supported by the Universidad del Rosario and Colciencias (Grants CS/CIGGUR-ABN062-2016 and 672-2014). Colciencias supported Liliana Catherine Patiño´s work (Fellowship: 617, 2013). The authors declare no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For

  12. Eight Mutations of Three Genes (EDA, EDAR, and WNT10A) Identified in Seven Hypohidrotic Ectodermal Dysplasia Patients.

    PubMed

    Zeng, Binghui; Xiao, Xue; Li, Sijie; Lu, Hui; Lu, Jiaxuan; Zhu, Ling; Yu, Dongsheng; Zhao, Wei

    2016-09-19

    Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.

  13. Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis.

    PubMed

    Rajagopal, Abbhirami; Braslavsky, Débora; Lu, James T; Kleppe, Soledad; Clément, Florencia; Cassinelli, Hamilton; Liu, David S; Liern, Jose Miguel; Vallejo, Graciela; Bergadá, Ignacio; Gibbs, Richard A; Campeau, Phillipe M; Lee, Brendan H

    2014-11-01

    Two Argentinean siblings (a boy and a girl) from a nonconsanguineous family presented with hypercalcemia, hypercalciuria, hypophosphatemia, low parathyroid hormone (PTH), and nephrocalcinosis. The goal of this study was to identify genetic causes of the clinical findings in the two siblings. Whole exome sequencing was performed to identify disease-causing mutations in the youngest sibling, and a candidate variant was screened in other family members by Sanger sequencing. In vitro experiments were conducted to determine the effects of the mutation that was identified. Affected siblings (2 y.o. female and 10 y.o male) and their parents were included in the study. Informed consent was obtained for genetic studies. A novel homozygous mutation in the gene encoding the renal sodium-dependent phosphate transporter SLC34A1 was identified in both siblings (c.1484G>A, p.Arg495His). In vitro studies showed that the p.Arg495His mutation resulted in decreased phosphate uptake when compared to wild-type SLC34A1. The homozygous G>A transition that results in the substitution of histidine for arginine at position 495 of the renal sodium-dependent phosphate transporter, SLC34A1, is involved in disease pathogenesis in these patients. Our report of the second family with two mutated SLC34A1 alleles expands the known phenotype of this rare condition.

  14. Clinical impact of endometrial cancer stratified by genetic mutational profiles, POLE mutation, and microsatellite instability.

    PubMed

    Haruma, Tomoko; Nagasaka, Takeshi; Nakamura, Keiichiro; Haraga, Junko; Nyuya, Akihiro; Nishida, Takeshi; Goel, Ajay; Masuyama, Hisashi; Hiramatsu, Yuji

    2018-01-01

    The molecular characterization of endometrial cancer (EC) can facilitate identification of various tumor subtypes. Although EC patients with POLE mutations reproducibly demonstrate better prognosis, the outcome of patients with microsatellite instability (MSI) remains controversial. This study attempted to interrogate whether genetic stratification of EC can identify distinct subsets with prognostic significance. A cohort of 138 EC patients who underwent surgical resection with curative intent was enrolled. Sanger sequencing was used to evaluate mutations in the POLE and KRAS genes. MSI analysis was performed using four mononucleotide repeat markers and methylation status of the MLH1 promoter was measured by a fluorescent bisulfite polymerase chain reaction (PCR). Protein expression for mismatch repair (MMR) proteins was evaluated by immunohistochemistry (IHC). Extensive hypermethylation of the MLH1 promoter was observed in 69.6% ECs with MLH1 deficiency and 3.5% with MMR proficiency, but in none of the ECs with loss of other MMR genes (P < .0001). MSI-positive and POLE mutations were found in 29.0% and 8.7% EC patients, respectively. Our MSI analysis showed a sensitivity of 92.7% for EC patients with MMR deficiency, and a specificity of 97.9% for EC patients with MMR proficiency. In univariate and multivariate analyses, POLE mutations and MSI status was significantly associated with progression-free survival (P = 0.0129 and 0.0064, respectively) but not with endometrial cancer-specific survival. This study provides significant evidence that analyses of proofreading POLE mutations and MSI status based on mononucleotide repeat markers are potentially useful biomarkers to identify EC patients with better prognosis.

  15. Mitochondria: A Common Target for Genetic Mutations and Environmental Toxicants in Parkinson’s Disease

    PubMed Central

    Helley, Martin P.; Pinnell, Jennifer; Sportelli, Carolina; Tieu, Kim

    2017-01-01

    Parkinson’s disease (PD) is a devastating neurological movement disorder. Since its first discovery 200 years ago, genetic and environmental factors have been identified to play a role in PD development and progression. Although genetic studies have been the predominant driving force in PD research over the last few decades, currently only a small fraction of PD cases can be directly linked to monogenic mutations. The remaining cases have been attributed to other risk associated genes, environmental exposures and gene–environment interactions, making PD a multifactorial disorder with a complex etiology. However, enormous efforts from global research have yielded significant insights into pathogenic mechanisms and potential therapeutic targets for PD. This review will highlight mitochondrial dysfunction as a common pathway involved in both genetic mutations and environmental toxicants linked to PD. PMID:29204154

  16. Identify mutation in amyotrophic lateral sclerosis cases using HaloPlex target enrichment system.

    PubMed

    Liu, Zhi-Jun; Li, Hong-Fu; Tan, Guo-He; Tao, Qing-Qing; Ni, Wang; Cheng, Xue-Wen; Xiong, Zhi-Qi; Wu, Zhi-Ying

    2014-12-01

    To date, at least 18 causative genes have been identified in amyotrophic lateral sclerosis (ALS). Because of the clinical and genetic heterogeneity, molecular diagnosis for ALS faces great challenges. HaloPlex target enrichment system is a new targeted sequencing approach, which can detect already known mutations or candidate genes. We performed this approach to screen 18 causative genes of ALS, including SOD1, SETX, FUS, ANG, TARDBP, ALS2, FIG4, VAPB, OPTN, DAO, VCP, UBQLN2, SPG11, SIGMAR1, DCTN1, SQSTM1, PFN1, and CHMP2B in 8 ALS probands. Using this approach, we got an average of 9.5 synonymous or missense mutations per sample. After validation by Sanger sequencing, we identified 3 documented SOD1 mutations (p.F21C, p.G148D, and p.C147R) and 1 novel DCTN1 p.G59R mutation in 4 probands. The novel DCTN1 mutation appeared to segregate with the disease in the pedigree and was absent in 200 control subjects. The high throughput and efficiency of this approach indicated that it could be applied to diagnose ALS and other inherited diseases with multiple causative genes in clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Prevalence of BRCA1/BRCA2 mutations in a Brazilian population sample at-risk for hereditary breast cancer and characterization of its genetic ancestry

    PubMed Central

    Paula, André E.; Pereira, Rui; Andrade, Carlos E.; Felicio, Paula S.; Souza, Cristiano P.; Mendes, Deise R.P.; Volc, Sahlua; Berardinelli, Gustavo N.; Grasel, Rebeca S.; Sabato, Cristina S.; Viana, Danilo V.; Machado, José Carlos; Costa, José Luis; Mauad, Edmundo C.; Scapulatempo-Neto, Cristovam; Arun, Banu; Reis, Rui M.; Palmero, Edenir I.

    2016-01-01

    Background There are very few data about the mutational profile of families at-risk for hereditary breast and ovarian cancer (HBOC) from Latin America (LA) and especially from Brazil, the largest and most populated country in LA. Results Of the 349 probands analyzed, 21.5% were BRCA1/BRCA2 mutated, 65.3% at BRCA1 and 34.7% at BRCA2 gene. The mutation c.5266dupC (former 5382insC) was the most frequent alteration, representing 36.7% of the BRCA1 mutations and 24.0% of all mutations identified. Together with the BRCA1 c.3331_3334delCAAG mutation, these mutations constitutes about 35% of the identified mutations and more than 50% of the BRCA1 pathogenic mutations. Interestingly, six new mutations were identified. Additionally, 39 out of the 44 pathogenic mutations identified were not previously reported in the Brazilian population. Besides, 36 different variants of unknown significance (VUS) were identified. Regarding ancestry, average ancestry proportions were 70.6% European, 14.5% African, 8.0% Native American and 6.8% East Asian. Materials and methods This study characterized 349 Brazilian families at-risk for HBOC regarding their germline BRCA1/BRCA2 status and genetic ancestry. Conclusions This is the largest report of BRCA1/BRCA2 assessment in an at-risk HBOC Brazilian population. We identified 21.5% of patients harboring BRCA1/BRCA2 mutations and characterized the genetic ancestry of a sample group at-risk for hereditary breast cancer showing once again how admixed is the Brazilian population. No association was found between genetic ancestry and mutational status. The knowledge of the mutational profile in a population can contribute to the definition of more cost-effective strategies for the identification of HBOC families. PMID:27741520

  18. Genetic Screening for OPA1 and OPA3 Mutations in Patients with Suspected Inherited Optic Neuropathies

    PubMed Central

    Yu-Wai-Man, Patrick; Shankar, Suma P.; Biousse, Valérie; Miller, Neil R.; Bean, Lora J.H.; Coffee, Bradford; Hegde, Madhuri; Newman, Nancy J.

    2010-01-01

    Purpose Autosomal-dominant optic atrophy (DOA) is one of the most common inherited optic neuropathies, and it is genetically heterogeneous, with mutations in both OPA1 and OPA3 known to cause disease. About 60% of cases harbor OPA1 mutations, whereas OPA3 mutations have only been reported in two pedigrees with DOA and premature cataracts. The aim of this study was to determine the yield of OPA1 and OPA3 screening in a cohort of presumed DOA cases referred to a tertiary diagnostic laboratory. Design Retrospective case series. Participants One hundred and eighty-eight probands with bilateral optic atrophy referred for molecular genetic investigations at a tertiary diagnostic facility: 38 patients with an autosomal-dominant pattern of inheritance and 150 sporadic cases. Methods OPA1 and OPA3 genetic testing was initially performed using PCR-based sequencing methods. The presence of large-scale OPA1 and OPA3 genomic rearrangements was further assessed with a targeted comparative genomic hybridization (CGH) microarray platform. The three primary Leber hereditary optic neuropathy (LHON) mutations, m.3460G>A, m.11778G>A, and m.14484T>C, were also screened in all patients. Main Outcome Measures The proportion of patients with OPA1 and OPA3 pathogenic mutations. The clinical profile observed in molecularly confirmed DOA cases. Results We found 21 different OPA1 mutations in 27 of the 188 (14.4%) probands screened. The mutations included six novel pathogenic variants and the first reported OPA1 initiation codon mutation at c.1A>T. An OPA1 missense mutation, c.239A>G (p.Y80C), was identified in an 11-year-old African-American girl with optic atrophy and peripheral sensori-motor neuropathy in her lower limbs. The OPA1 detection rate was significantly higher among individuals with a positive family history of visual failure (50.0%) compared with sporadic cases (5.3%). The primary LHON screen was negative in our patient cohort, and additional molecular investigations did not

  19. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis.

    PubMed

    Pangrazio, Alessandra; Puddu, Alessandro; Oppo, Manuela; Valentini, Maria; Zammataro, Luca; Vellodi, Ashok; Gener, Blanca; Llano-Rivas, Isabel; Raza, Jamal; Atta, Irum; Vezzoni, Paolo; Superti-Furga, Andrea; Villa, Anna; Sobacchi, Cristina

    2014-02-01

    Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by "intermediate osteopetrosis", which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  1. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  2. Clinical and genetic characteristics of 15 families with hereditary hypophosphatemia: Novel Mutations in PHEX and SLC34A3.

    PubMed

    Acar, Sezer; BinEssa, Huda A; Demir, Korcan; Al-Rijjal, Roua A; Zou, Minjing; Çatli, Gönül; Anık, Ahmet; Al-Enezi, Anwar F; Özışık, Seçil; Al-Faham, Manar S A; Abacı, Ayhan; Dündar, Bumin; Kattan, Walaa E; Alsagob, Maysoon; Kavukçu, Salih; Tamimi, Hamdi E; Meyer, Brian F; Böber, Ece; Shi, Yufei

    2018-01-01

    Hereditary hypophosphatemia is a group of rare renal phosphate wasting disorders. The diagnosis is based on clinical, radiological, and biochemical features, and may require genetic testing to be confirmed. Clinical features and mutation spectrum were investigated in patients with hereditary hypophosphatemia. Genomic DNA of 23 patients from 15 unrelated families were screened sequentially by PCR-sequencing analysis for mutations in the following genes: PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC34A3 and SLC34A1. CytoScan HD Array was used to identify large deletions. Genetic evaluation resulted in the identification of an additional asymptomatic but intermittent hypophosphatemic subject. Mutations were detected in 21 patients and an asymptomatic sibling from 13 families (86.6%, 13/15). PHEX mutations were identified in 20 patients from 12 families. Six of them were novel mutations present in 9 patients: c.983_987dupCTACC, c.1586+2T>G, c.1206delA, c.436+1G>T, c.1217G>T, and g.22,215,887-22,395,767del (179880 bp deletion including exon 16-22 and ZNF645). Six previously reported mutations were found in 11 patients. Among 12 different PHEX mutations, 6 were de novo mutations. Patients with de novo PHEX mutations often had delayed diagnosis and significantly shorter in height than those who had inherited PHEX mutations. Novel compound heterozygous mutations in SLC34A3 were found in one patient and his asymptomatic sister: c.1335+2T>A and c.1639_1652del14. No mutation was detected in two families. This is the largest familial study on Turkish patients with hereditary hypophosphatemia. PHEX mutations, including various novel and de novo variants, are the most common genetic defect. More attention should be paid to hypophosphatemia by clinicians since some cases remain undiagnosed both during childhood and adulthood.

  3. Exome Sequencing Identifies a Novel Homozygous Mutation in the Phosphate Transporter SLC34A1 in Hypophosphatemia and Nephrocalcinosis

    PubMed Central

    Rajagopal, Abbhirami; Braslavsky, Débora; Lu, James T.; Kleppe, Soledad; Clément, Florencia; Cassinelli, Hamilton; Liu, David S.; Liern, Jose Miguel; Vallejo, Graciela; Bergadá, Ignacio; Gibbs, Richard A.; Campeau, Phillipe M.

    2014-01-01

    Context: Two Argentinean siblings (a boy and a girl) from a nonconsanguineous family presented with hypercalcemia, hypercalciuria, hypophosphatemia, low parathyroid hormone (PTH), and nephrocalcinosis. Objective: The goal of this study was to identify genetic causes of the clinical findings in the two siblings. Design: Whole exome sequencing was performed to identify disease-causing mutations in the youngest sibling, and a candidate variant was screened in other family members by Sanger sequencing. In vitro experiments were conducted to determine the effects of the mutation that was identified. Patients and Other Participants: Affected siblings (2 y.o. female and 10 y.o male) and their parents were included in the study. Informed consent was obtained for genetic studies. Results: A novel homozygous mutation in the gene encoding the renal sodium-dependent phosphate transporter SLC34A1 was identified in both siblings (c.1484G>A, p.Arg495His). In vitro studies showed that the p.Arg495His mutation resulted in decreased phosphate uptake when compared to wild-type SLC34A1. Conclusions: The homozygous G>A transition that results in the substitution of histidine for arginine at position 495 of the renal sodium-dependent phosphate transporter, SLC34A1, is involved in disease pathogenesis in these patients. Our report of the second family with two mutated SLC34A1 alleles expands the known phenotype of this rare condition. PMID:25050900

  4. A novel DCC mutation and genetic heterogeneity in congenital mirror movements.

    PubMed

    Depienne, C; Cincotta, M; Billot, S; Bouteiller, D; Groppa, S; Brochard, V; Flamand, C; Hubsch, C; Meunier, S; Giovannelli, F; Klebe, S; Corvol, J C; Vidailhet, M; Brice, A; Roze, E

    2011-01-18

    DCC is the receptor for netrin, a protein that guides axon migration of developing neurons across the body's midline. Mutations in the DCC gene were recently identified in 2 families with congenital mirror movements (MM). The objective was to study clinical and genetic characteristics of 3 European families with MM and to test whether this disorder is genetically homogeneous. We studied 3 MM families with a total of 13 affected subjects. Each patient had a standardized interview and neurologic examination, focusing on the phenomenology and course of the MM. The severity of MM was also assessed. Molecular analysis of DCC was performed in the index cases. In addition, linkage analysis of the DCC locus was performed in a large French family. The clinical expression and course of MM were very similar in all the affected subjects, regardless of DCC mutational status. However, slight intersubject variability in the severity of MM was noted within each family. Onset always occurred in infancy or early childhood, and MM did not deteriorate over time. Motor disability due to MM was mild and restricted to activities that require independent movements of the 2 hands. We found a novel mutation in the DCC gene in an Italian family with MM associated with abnormal ipsilateral corticospinal projection. The DCC locus was excluded in the French family. DCC has a crucial role in the development of corticospinal tracts in humans. Congenital MM is genetically heterogeneous, despite its clinical homogeneity.

  5. [Views of Icelandic women towards genetic counseling - and testing of BRCA2 mutations].

    PubMed

    Jonsdottir, Thordis; Valdimarsdottir, Heiddis; Tryggvadottir, Laufey; Lund, Sigrun Helga; Thordardottir, Marianna; Magnusson, Magnus Karl; Valdimarsdottir, Unnur

    2018-01-01

    Introduction The aim of this study was to explore the attitudes of Icelandic women towards existing genetic information, genetic counseling and genetic testing for BRCA mutations which dramatically increase risk for aggressive cancers. Materials and methods Women attending the cancer prevention clinic in Reykjavik, capital of Iceland, from October 12th until November 20th 2015 received an invitation to participate. Participation involved answering a short online questionnaire about background, family history of cancer as well as attitudes towards genetic counseling, BRCA testing and preventive use of such information. Descriptive statistics and chi-square tests were used to describe differences in attitudes towards those questions between subgroups of women. Results 1129 women (69% response rate) answered the questionnaire. Mean age was 47 years (span 21-76 years). Around half (47%) had heard fairly much about the mutations. Independent of family history of cancer, the majority of women were positive towards receiving genetic counseling (79%) and to undergo genetic testing (83%) for BRCA mutation with younger women being more interested than older women. On the other hand, only 4% of the women had already received genetic counseling and 7% undergone genetic testing. Women with family history of cancer were more knowledgeable about BRCA mutations (p<0.0001) and were less afraid of the consequence of being a mutation carrier (p<0.0001) compared to those with little or no family history. Regardless of family history, half (49%) worried that results from genetic testing could influence their health insurance. Almost all, or 97% of the women, were positive or very positive toward using existing genetic information obtained through scientific work, to inform affected indi-viduals of their mutation status. Conclusion Icelandic women are positive towards genetic counseling and testing for BRCA mutations although half of them worry that a positive result might affect their

  6. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis.

    PubMed

    Adam, Ronja; Spier, Isabel; Zhao, Bixiao; Kloth, Michael; Marquez, Jonathan; Hinrichsen, Inga; Kirfel, Jutta; Tafazzoli, Aylar; Horpaopan, Sukanya; Uhlhaas, Siegfried; Stienen, Dietlinde; Friedrichs, Nicolaus; Altmüller, Janine; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Kayser, Katrin; Thiele, Holger; Holinski-Feder, Elke; Marra, Giancarlo; Kristiansen, Glen; Nöthen, Markus M; Büttner, Reinhard; Möslein, Gabriela; Betz, Regina C; Brieger, Angela; Lifton, Richard P; Aretz, Stefan

    2016-08-04

    In ∼30% of families affected by colorectal adenomatous polyposis, no germline mutations have been identified in the previously implicated genes APC, MUTYH, POLE, POLD1, and NTHL1, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, we performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. We identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1G>A, c.2760delC, and c.3001-2A>C) was indicated at the RNA and protein levels. Analysis of the diseased individuals' tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the LoF effect and causal relevance of the mutations. The pedigrees, genotypes, and frequency of MSH3 mutations in the general population are consistent with an autosomal-recessive mode of inheritance. Both index persons have an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing constitutional mismatch-repair deficiency. Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study, we identified biallelic germline MSH3 mutations in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.

    PubMed

    Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto

    2015-10-01

    CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  8. Genetic mutations of young patients admitted to an emergency department for syncope during sport practice.

    PubMed

    Gómez Alcaraz, Jorge; Bustamante, José; Corral, Ervigio; Casado Florez, Maria Isabel; Vivas, David; Cañadas-Godoy, Victoria; González Del Castillo, Juan; González Armengol, Juan Jorge; López-Farré, Antonio; Martín Sánchez, Francisco Javier

    2018-04-25

    To study the frequency of genetic mutations related to genetic heart disease among young patients admitted for syncope during sport practice. A case series study that included patients≤45 years admitted for syncope during sport practice during 2010-2011. We collected demographic and clinical variables, genetic tests mutations and final clinical diagnosis. A genetic test was performed in 46 (76.7%) of 60 patients evaluated. The genetic test was positive in 12 (26%; 95% CI 15.6-40.3) patients; 10 (21.7%) had PKP2 mutation related to arrhythmogenic right ventricular dysplasia mutation, one (2.2%) KCNQ1 mutation and one (2.2%) SCN5A mutation related to channelopathies. The genetic test was positive in 11 (35.5%) cases of undetermined syncope and one (50%) case of cardiac syncope, being negative in all cases with neuromediated syncopes (P=.037). Gene mutations are common in young patients suffering from syncope during sports, especially in those with cardiac or undetermined aetiology. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  9. BRCA1 genetic mutation and its link to ovarian cancer: implications for advanced practice nurses.

    PubMed

    Brunsvold, Amy N; Wung, Shu-Fen; Merkle, Carrie J

    2005-12-01

    The purpose of this paper is to review (a) the linkage between the BRCA1 gene and ovarian cancer and (b) BRCA1 testing and its related issues. This review is aimed for nurse practitioners (NPs), who may be in positions to identify those at risk for BRCA1-associated ovarian cancer and to assist patients with related issues. Data sources include reviews and original research from scholarly journals and Internet sites. Ovarian cancer is a deadly disease. Identification of those at risk because of BRCA1 mutation is possible through genetic testing. Testing for BRCA1 gene mutations has many implications whether results are positive or negative. Those with positive results will be faced with decisions regarding the best management strategies. Negative results do not completely eliminate ovarian cancer risk. Current management options for carriers of the BRCA1 mutation include taking no action, increasing surveillance for ovarian cancer, and chemoprevention with oral contraceptives or prophylactic oophorectomy for those who have completed childbearing. It is essential that NPs have knowledge underlying the issues and concerns of patients and their families at risk for BRCA1-associated ovarian cancer. NPs are in a unique position to help identify BRCA1 mutation carriers and to assist them and their families with the complex issues involving genetic testing and management options. Understanding these issues will allow NPs to give appropriate care that may include making appropriate referrals to certified genetic counselors and having balanced discussions on treatment options. Such measurements may improve early diagnosis of ovarian cancer and increase survival from this disease.

  10. Diagnostic genetic testing for patients with bilateral optic neuropathy and comparison of clinical features according to OPA1 mutation status.

    PubMed

    Gaier, Eric D; Boudreault, Katherine; Nakata, Isao; Janessian, Maria; Skidd, Philip; DelBono, Elizabeth; Allen, Keri F; Pasquale, Louis R; Place, Emily; Cestari, Dean M; Stacy, Rebecca C; Rizzo, Joseph F; Wiggs, Janey L

    2017-01-01

    Inherited optic neuropathy is genetically heterogeneous, and genetic testing has an important role in risk assessment and counseling. The purpose of this study is to determine the prevalence and spectrum of mutations in a group of patients referred for genetic testing to a tertiary center in the United States. In addition, we compared the clinical features of patients with and without mutations in OPA1 , the gene most commonly involved in dominantly inherited optic atrophy. Clinical data and genetic testing results were reviewed for 74 unrelated, consecutive patients referred with a history of insidious, relatively symmetric, bilateral visual loss secondary to an optic neuropathy. Patients were evaluated for disease-causing variants in OPA1 , OPA3 , WFS1 , and the entire mitochondrial genome with DNA sequencing and copy number variation (CNV) testing. Pathogenic DNA variants were found in 25 cases, with the majority (24 patients) located in OPA1 . Demographics, clinical history, and clinical features for the group of patients with mutations in OPA1 were compared to those without disease-causing variants. Compared to the patients without mutations, cases with mutations in OPA1 were more likely to have a family history of optic nerve disease (p = 0.027); however, 30.4% of patients without a family history of disease also had mutations in OPA1 . OPA1 mutation carriers had less severe mean deviation and pattern standard deviation on automated visual field testing than patients with optic atrophy without mutations in OPA1 (p<0.005). Other demographic and ocular features were not statistically significantly different between the two groups, including the fraction of patients with central scotomas (42.9% of OPA1 mutation positive and 66.0% of OPA1 mutation negative). Genetic testing identified disease-causing mutations in 34% of referred cases, with the majority of these in OPA1. Patients with mutations in OPA1 were more likely to have a family history of disease; however

  11. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  12. Mutation screening of X-chromosomal neuroligin genes: no mutations in 196 autism probands.

    PubMed

    Vincent, John B; Kolozsvari, Debbie; Roberts, Wendy S; Bolton, Patrick F; Gurling, Hugh M D; Scherer, Stephen W

    2004-08-15

    Autism, a childhood neuropsychiatric disorder with a strong genetic component, is currently the focus of considerable attention within the field of human genetics as well many other medical-related disciplines. A recent study has implicated two X-chromosomal neuroligin genes, NLGN3 and NLGN4, as having an etiological role in autism, having identified a frameshift mutation in one gene and a substitution mutation in the other, segregating in multiplex autism spectrum families (Jamain et al. [2003: Nat Genet 34:27-29]). The function of neuroligin as a trigger for synapse formation would suggest that such mutations would likely result in some form of pathological manifestation. Our own study, screening a larger sample of 196 autism probands, failed to identify any mutations that would affect the coding regions of these genes. Our findings suggest that mutations in these two genes are infrequent in autism. Copyright 2004 Wiley-Liss, Inc.

  13. Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns.

    PubMed

    Riera, Marina; Wert, Ana; Nieto, Isabel; Pomares, Esther

    2017-11-01

    Microphthalmia and anophthalmia (MA) are congenital eye abnormalities that show an extremely high clinical and genetic complexity. In this study, we evaluated the implementation of whole exome sequencing (WES) for the genetic analysis of MA patients. This approach was used to investigate three unrelated families in which previous single-gene analyses failed to identify the molecular cause. A total of 47 genes previously associated with nonsyndromic MA were included in our panel. WES was performed in one affected patient from each family using the AmpliSeq TM Exome technology and the Ion Proton TM platform. A novel heterozygous OTX2 missense mutation was identified in a patient showing bilateral anophthalmia who inherited the variant from a parent who was a carrier, but showed no sign of the condition. We also describe a new PAX6 missense variant in an autosomal-dominant pedigree affected by mild bilateral microphthalmia showing high intrafamiliar variability, with germline mosaicism determined to be the most plausible molecular cause of the disease. Finally, a heterozygous missense mutation in RBP4 was found to be responsible in an isolated case of bilateral complex microphthalmia. This study highlights that panel-based WES is a reliable and effective strategy for the genetic diagnosis of MA. Furthermore, using this technique, the mutational spectrum of these diseases was broadened, with novel variants identified in each of the OTX2, PAX6, and RBP4 genes. Moreover, we report new cases of reduced penetrance, mosaicism, and variable phenotypic expressivity associated with MA, further demonstrating the heterogeneity of such disorders. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  14. Identification of three novel mutations by studying the molecular genetics of Maple Syrup Urine Disease (MSUD) in the Lebanese population.

    PubMed

    Tabbouche, Omar; Saker, Amer; Mountain, Harry

    2014-01-01

    Maple Syrup Urine Disease (MSUD) is a genetically heterogeneous metabolic disorder that is transmitted in an autosomal recessive manner. According to clinical data, MSUD prevalence in Lebanon is expected to be higher than the International prevalence because of consanguineous marriage. Novel mutations are still getting detected by using DNA sequencing for mutation analysis in MSUD patients. In the current study, we have extracted DNA from Lebanese MSUD patients in order to amplify the exonic and flanking intronic regions of the genes implicated in MSUD ( BCKDHA , BCKDHB , and DBT ) and sequenced the resultant amplified products to assess the molecular genetics of MSUD in the Lebanese population studied. All of the mutations identified occurred in the homozygous state, which reflects the high rate of consanguineous marriage in Lebanon. In the current study, we have identified one previously cited mutation and three novel mutations not previously described in the scientific literature. The identified mutations were distributed as follows: three patients (60%) had two nucleotide substitutions in the DBT gene (c.224G>A and c.1430T>G), one patient (20%) had a gross deletion in the BCKDHA gene (c.488_1167+3del), and one patient (20%) had a small deletion in the BCKDHB gene (c.92_102del). The majority of the mutations identified in the Lebanese MSUD patients occurred in the DBT gene. Consanguineous marriage is a major risk factor for the prevalence of MSUD in Lebanon.

  15. Two novel AGXT mutations identified in primary hyperoxaluria type-1 and distinct morphological and structural difference in kidney stones

    PubMed Central

    Wang, Cui; Lu, Jingru; Lang, Yanhua; Liu, Ting; Wang, Xiaoling; Zhao, Xiangzhong; Shao, Leping

    2016-01-01

    Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive oxalate accumulation in plasma and urine, resulting in various phenotypes because of allelic and clinical heterogeneity. This study aimed to detect disease-associated genetic mutations in three PH1 patients in a Chinese family. All AGXT exons and 3 common polymorphisms which might synergistically interact with mutations, including P11L, I340 M and IVSI+74 bp were analyzed by direct sequencing in all family members. It demonstrated that in each of three patients, a previously reported nonsense mutation p.R333* was in cis with a novel missense mutation p.M49L in the minor allele characterized by the polymorphism of 74-bp duplication in intron 1, while the other novel missense mutation p.N72I was in trans with both p.R333* and P.M49L in the major allele. Kidney stones from two sibling patients were also observed though stereomicroscopic examination and scanning electron microscopy. Distinct morphological and inner-structure differences in calculi were noticed, suggesting clinical heterozygosity of PH1 to a certain extent. In brief, two novel missense mutations were identified probably in association with PH1, a finding which should provide an accurate tool for prenatal diagnosis, genetic counseling and screening for potential presymptomatic individuals. PMID:27644547

  16. Two novel AGXT mutations identified in primary hyperoxaluria type-1 and distinct morphological and structural difference in kidney stones.

    PubMed

    Wang, Cui; Lu, Jingru; Lang, Yanhua; Liu, Ting; Wang, Xiaoling; Zhao, Xiangzhong; Shao, Leping

    2016-09-20

    Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive oxalate accumulation in plasma and urine, resulting in various phenotypes because of allelic and clinical heterogeneity. This study aimed to detect disease-associated genetic mutations in three PH1 patients in a Chinese family. All AGXT exons and 3 common polymorphisms which might synergistically interact with mutations, including P11L, I340 M and IVSI+74 bp were analyzed by direct sequencing in all family members. It demonstrated that in each of three patients, a previously reported nonsense mutation p.R333(*) was in cis with a novel missense mutation p.M49L in the minor allele characterized by the polymorphism of 74-bp duplication in intron 1, while the other novel missense mutation p.N72I was in trans with both p.R333(*) and P.M49L in the major allele. Kidney stones from two sibling patients were also observed though stereomicroscopic examination and scanning electron microscopy. Distinct morphological and inner-structure differences in calculi were noticed, suggesting clinical heterozygosity of PH1 to a certain extent. In brief, two novel missense mutations were identified probably in association with PH1, a finding which should provide an accurate tool for prenatal diagnosis, genetic counseling and screening for potential presymptomatic individuals.

  17. Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders.

    PubMed

    Neerman-Arbez, Marguerite; de Moerloose, Philippe; Casini, Alessandro

    2016-06-01

    Congenital fibrinogen disorders are classified into two types of plasma fibrinogen defects: type I (quantitative fibrinogen deficiencies), that is, hypofibrinogenemia or afibrinogenemia, in which there are low or absent plasma fibrinogen antigen levels, respectively, and type II (qualitative fibrinogen deficiencies), that is, dysfibrinogenemia or hypodysfibrinogenemia, in which there are normal or reduced antigen levels associated with disproportionately low functional activity. These disorders are caused by mutations in the three fibrinogen-encoding genes FGA, FGB, and FGG. Afibrinogenemia is associated with mild to severe bleeding, whereas hypofibrinogenemia is often asymptomatic. For these quantitative disorders, the majority of mutations prevent protein production. However, in some cases, missense or late-truncating nonsense mutations allow synthesis of the mutant fibrinogen chain, but intracellular fibrinogen assembly and/or secretion are impaired. Qualitative fibrinogen disorders are associated with bleeding, thrombosis, or both thrombosis and bleeding, but many dysfibrinogenemias are asymptomatic. The majority of cases are caused by heterozygous missense mutations. Here, we review the laboratory and genetic diagnosis of fibrinogen gene anomalies with an updated discussion of causative mutations identified. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Ultra-sensitive Sequencing Identifies High Prevalence of Clonal Hematopoiesis-Associated Mutations throughout Adult Life.

    PubMed

    Acuna-Hidalgo, Rocio; Sengul, Hilal; Steehouwer, Marloes; van de Vorst, Maartje; Vermeulen, Sita H; Kiemeney, Lambertus A L M; Veltman, Joris A; Gilissen, Christian; Hoischen, Alexander

    2017-07-06

    Clonal hematopoiesis results from somatic mutations in hematopoietic stem cells, which give an advantage to mutant cells, driving their clonal expansion and potentially leading to leukemia. The acquisition of clonal hematopoiesis-driver mutations (CHDMs) occurs with normal aging and these mutations have been detected in more than 10% of individuals ≥65 years. We aimed to examine the prevalence and characteristics of CHDMs throughout adult life. We developed a targeted re-sequencing assay combining high-throughput with ultra-high sensitivity based on single-molecule molecular inversion probes (smMIPs). Using smMIPs, we screened more than 100 loci for CHDMs in more than 2,000 blood DNA samples from population controls between 20 and 69 years of age. Loci screened included 40 regions known to drive clonal hematopoiesis when mutated and 64 novel candidate loci. We identified 224 somatic mutations throughout our cohort, of which 216 were coding mutations in known driver genes (DNMT3A, JAK2, GNAS, TET2, and ASXL1), including 196 point mutations and 20 indels. Our assay's improved sensitivity allowed us to detect mutations with variant allele frequencies as low as 0.001. CHDMs were identified in more than 20% of individuals 60 to 69 years of age and in 3% of individuals 20 to 29 years of age, approximately double the previously reported prevalence despite screening a limited set of loci. Our findings support the occurrence of clonal hematopoiesis-associated mutations as a widespread mechanism linked with aging, suggesting that mosaicism as a result of clonal evolution of cells harboring somatic mutations is a universal mechanism occurring at all ages in healthy humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast.

    PubMed

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L; Hallström, Björn M; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N; Andersson-Svahn, Helene; Nielsen, Jens

    2015-08-25

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.

  20. Clinical and genetic characteristics of 15 families with hereditary hypophosphatemia: Novel Mutations in PHEX and SLC34A3

    PubMed Central

    Demir, Korcan; Al-Rijjal, Roua A.; Zou, Minjing; Çatli, Gönül; Anık, Ahmet; Al-Enezi, Anwar F.; Özışık, Seçil; Al-Faham, Manar S. A.; Abacı, Ayhan; Dündar, Bumin; Kattan, Walaa E.; Alsagob, Maysoon; Kavukçu, Salih; Tamimi, Hamdi E.; Meyer, Brian F.; Böber, Ece

    2018-01-01

    Background Hereditary hypophosphatemia is a group of rare renal phosphate wasting disorders. The diagnosis is based on clinical, radiological, and biochemical features, and may require genetic testing to be confirmed. Methodology Clinical features and mutation spectrum were investigated in patients with hereditary hypophosphatemia. Genomic DNA of 23 patients from 15 unrelated families were screened sequentially by PCR-sequencing analysis for mutations in the following genes: PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC34A3 and SLC34A1. CytoScan HD Array was used to identify large deletions. Results Genetic evaluation resulted in the identification of an additional asymptomatic but intermittent hypophosphatemic subject. Mutations were detected in 21 patients and an asymptomatic sibling from 13 families (86.6%, 13/15). PHEX mutations were identified in 20 patients from 12 families. Six of them were novel mutations present in 9 patients: c.983_987dupCTACC, c.1586+2T>G, c.1206delA, c.436+1G>T, c.1217G>T, and g.22,215,887–22,395,767del (179880 bp deletion including exon 16–22 and ZNF645). Six previously reported mutations were found in 11 patients. Among 12 different PHEX mutations, 6 were de novo mutations. Patients with de novo PHEX mutations often had delayed diagnosis and significantly shorter in height than those who had inherited PHEX mutations. Novel compound heterozygous mutations in SLC34A3 were found in one patient and his asymptomatic sister: c.1335+2T>A and c.1639_1652del14. No mutation was detected in two families. Conclusions This is the largest familial study on Turkish patients with hereditary hypophosphatemia. PHEX mutations, including various novel and de novo variants, are the most common genetic defect. More attention should be paid to hypophosphatemia by clinicians since some cases remain undiagnosed both during childhood and adulthood. PMID:29505567

  1. Identifying pathways affected by cancer mutations.

    PubMed

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  3. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    PubMed

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  4. PIK3CA mutations in non-small cell lung cancer (NSCLC): genetic heterogeneity, prognostic impact and incidence of prior malignancies.

    PubMed

    Scheffler, Matthias; Bos, Marc; Gardizi, Masyar; König, Katharina; Michels, Sebastian; Fassunke, Jana; Heydt, Carina; Künstlinger, Helen; Ihle, Michaela; Ueckeroth, Frank; Albus, Kerstin; Serke, Monika; Gerigk, Ulrich; Schulte, Wolfgang; Töpelt, Karin; Nogova, Lucia; Zander, Thomas; Engel-Riedel, Walburga; Stoelben, Erich; Ko, Yon-Dschun; Randerath, Winfried; Kaminsky, Britta; Panse, Jens; Becker, Carolin; Hellmich, Martin; Merkelbach-Bruse, Sabine; Heukamp, Lukas C; Büttner, Reinhard; Wolf, Jürgen

    2015-01-20

    Somatic mutations of the PIK3CA gene have been described in non-small cell lung cancer (NSCLC), but limited data is available on their biological relevance. This study was performed to characterize PIK3CA-mutated NSCLC clinically and genetically. Tumor tissue collected consecutively from 1144 NSCLC patients within a molecular screening network between March 2010 and March 2012 was analyzed for PIK3CA mutations using dideoxy-sequencing and next-generation sequencing (NGS). Clinical, pathological, and genetic characteristics of PIK3CA-mutated patients are described and compared with a control group of PIK3CA-wildtype patients. Among the total cohort of 1144 patients we identified 42 (3.7%) patients with PIK3CA mutations in exon 9 and exon 20. These mutations were found with a higher frequency in sqamous cell carcinoma (8.9%) compared to adenocarcinoma (2.9%, p<0.001). The most common PIK3CA mutation was exon 9 E545K. The majority of patients (57.1%) had additional oncogenic driver aberrations. With the exception of EGFR-mutated patients, non of the genetically defined subgroups in this cohort had a significantly better median overall survival. Further, PIK3CA-mutated patients had a significantly higher incidence of malignancy prior to lung cancer (p<0.001). PIK3CA-mutated NSCLC represents a clinically and genetically heterogeneous subgroup in adenocarcinomas as well as in squamous cell carcinomas with a higher prevalence of these mutations in sqamous cell carcinoma. PIK3CA mutations have no negative impact on survival after surgery or systemic therapy. However, PIK3CA mutated lung cancer frequently develops in patients with prior malignancies.

  5. A General Population Genetic Framework for Antagonistic Selection That Accounts for Demography and Recurrent Mutation

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2012-01-01

    Antagonistic selection—where alleles at a locus have opposing effects on male and female fitness (“sexual antagonism”) or between components of fitness (“antagonistic pleiotropy”)—might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range—a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The “efficacy” of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (Nes >> 1, where Ne is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection. PMID:22298707

  6. A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2012-04-01

    Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.

  7. Selected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria

    PubMed Central

    2011-01-01

    Background Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagnosis of presymptomatic patients as well as for prenatal diagnosis in the affected families. Methods Polymerase chain reaction/Restriction Fragment Length Polymorphism, were used to detect the four mutations in the AGXT gene in DNA samples from 57 patients belonging to 40 families. Results Two mutations causing PH1 were detected in 24 patients (42.1%), with a predominance of the I244T mutation (68% of patients) and 33_34insC (in the remaining 32%). In 92% of cases, mutated alleles were in homozygous state. The presented clinical features were similar for the two mutations. The age of onset was heterogeneous with a higher frequency of the pediatric age. In 58.3% of cases, the presentation corresponded to advanced renal disease which occurred early (< 5 years) in the two mutations. In adolescents, only the I244T mutation was detected (41.1%). I244T and 33_34insC mutations were observed in adult patients, with 17.6% and 12.5% respectively. Conclusion Limited mutation analysis can provide a useful first line investigation for PH1. I244T and 33_34insC presented 28.2% of identified mutations causing disease in our cohort. This identification could provide an accurate tool for prenatal diagnosis in the affected families, for genetic counselling and for detection of presymptomatic individuals. PMID:21612638

  8. Selected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria.

    PubMed

    Benhaj Mbarek, Ibtihel; Abroug, Saoussen; Omezzine, Asma; Zellama, Dorsaf; Achour, Abdellatif; Harbi, Abdelaziz; Bouslama, Ali

    2011-05-25

    Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagnosis of presymptomatic patients as well as for prenatal diagnosis in the affected families. Polymerase chain reaction/Restriction Fragment Length Polymorphism, were used to detect the four mutations in the AGXT gene in DNA samples from 57 patients belonging to 40 families. Two mutations causing PH1 were detected in 24 patients (42.1%), with a predominance of the I244T mutation (68% of patients) and 33_34insC (in the remaining 32%). In 92% of cases, mutated alleles were in homozygous state. The presented clinical features were similar for the two mutations. The age of onset was heterogeneous with a higher frequency of the pediatric age. In 58.3% of cases, the presentation corresponded to advanced renal disease which occurred early (< 5 years) in the two mutations. In adolescents, only the I244T mutation was detected (41.1%). I244T and 33_34insC mutations were observed in adult patients, with 17.6% and 12.5% respectively. Limited mutation analysis can provide a useful first line investigation for PH1. I244T and 33_34insC presented 28.2% of identified mutations causing disease in our cohort. This identification could provide an accurate tool for prenatal diagnosis in the affected families, for genetic counselling and for detection of presymptomatic individuals.

  9. Genetic screening for PRA-associated mutations in multiple dog breeds shows that PRA is heterogeneous within and between breeds.

    PubMed

    Downs, Louise M; Hitti, Rebekkah; Pregnolato, Silvia; Mellersh, Cathryn S

    2014-03-01

    To assess the extent of progressive retinal atrophy (PRA) genetic heterogeneity within and between domestic dog breeds. DNA from 231 dogs with PRA, representing 36 breeds, was screened for 17 mutations previously associated with PRA in at least one breed of dog. Screening methods included amplified fragment size discrimination using gel electrophoresis or detection of fluorescence, (TaqMan(®) ; Life Technologies, Carlsbad, CA, USA) allelic discrimination, and Sanger sequencing. Of the 231 dogs screened, 129 were homozygous for a PRA-associated mutation, 29 dogs were carriers, and 73 were homozygous for the wild-type allele at all loci tested. In two of the 129 dogs, homozygous mutations were identified that had not previously been observed in the respective breeds: one Chinese Crested dog was homozygous for the RCD3-associated mutation usually found in the Cardigan Welsh Corgi, and one Standard Poodle was homozygous for the RCD4-associated mutation previously reported to segregate in Gordon and Irish Setters. In the majority of the breeds (15/21) in which a PRA-associated mutation is known to segregate, cases were identified that did not carry any of the known PRA-associated mutations. Progressive retinal atrophy in the dog displays significant genetic heterogeneity within as well as between breeds. There are also several instances where PRA-associated mutations segregate among breeds with no known close ancestry. © 2013 American College of Veterinary Ophthalmologists.

  10. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B.; Rudolph, Anja; Schmutzler, Rita K.; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A.; Easton, Douglas F.; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A.; Schmidt, Marjanka K; van der Baan, Frederieke H.; Spurdle, Amanda B.; Walker, Logan C.; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B.; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K.; Miron, Alex; Southey, Melissa C.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Neuhausen, Susan L.; Hansen, Thomas V. O.; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E.; Blazer, Kathleen R.; Weitzel, Jeffrey N.; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E.; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth R.; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V.; Ellis, Steve; Cole, Trevor; Godwin, Andrew K.; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M.; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L.; Rodriguez, Gustavo C.; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A.M.; Meijers-Heijboer, Hanne E.J.; van der Hout, Annemarie H.; Vreeswijk, Maaike P.G.; Hoogerbrugge, Nicoline; Ausems, Margreet G.E.M.; van Doorn, Helena C.; Collée, J. Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R.; Olswold, Curtis; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Szabo, Csilla I.; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E.; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M.; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L.; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D.P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Friedman, Eitan

    2014-01-01

    Background BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and non-genetic modifying factors. In this study we evaluated the putative role of variants in many candidate modifier genes. Methods Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n=3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. Results The observed p-values of association ranged between 0.005-1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. Conclusion There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Impact Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. PMID:25336561

  11. A Genotypic-Oriented View of CFTR Genetics Highlights Specific Mutational Patterns Underlying Clinical Macrocategories of Cystic Fibrosis

    PubMed Central

    Lucarelli, Marco; Bruno, Sabina Maria; Pierandrei, Silvia; Ferraguti, Giampiero; Stamato, Antonella; Narzi, Fabiana; Amato, Annalisa; Cimino, Giuseppe; Bertasi, Serenella; Quattrucci, Serena; Strom, Roberto

    2015-01-01

    Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype–phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype–phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype–phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway. PMID:25910067

  12. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  13. Genetic counseling in Usher syndrome: linkage and mutational analysis of 10 Colombian families.

    PubMed

    Tamayo, M L; Lopez, G; Gelvez, N; Medina, D; Kimberling, W J; Rodríguez, V; Tamayo, G E; Bernal, J E

    2008-01-01

    Usher Syndrome (US), an autosomal recessive disease, is characterized by retinitis pigmentosa (RP), vestibular dysfunction, and congenital sensorineural deafness. There are three recognized clinical types of the disorder. In order to improve genetic counseling for affected families, we conducted linkage analysis and DNA sequencing in 10 Colombian families with confirmed diagnosis of US (4 type I and 6 type II). Seventy-five percent of the US1 families showed linkage to locus USH1B, while the remaining 25% showed linkage to loci USH1B and USH1C. Among families showing linkage to USH1B we found two different mutations in the MYO7A gene: IVS42-26insTTGAG in exon 43 (heterozygous state) and R634X (CGA-TGA) in exon 16 (homozygous state). All six US2 families showed linkage to locus USH2A. Of them, 4 had c.2299delG mutation (1 homozygote state and 3 heterozygous); in the remaining 2 we did not identify any pathologic DNA variant. USH2A individuals with a 2299delG mutation presented a typical and homogeneous retinal phenotype with bilateral severe hearing loss, except for one individual with a heterozygous 2299delG mutation, whose hearing loss was asymmetric, but more profound than in the other cases. The study of these families adds to the genotype-phenotype characterization of the different types and subtypes of US and facilitates genetic counseling in these families. We would like to emphasize the need to perform DNA studies as a prerequisite for genetic counseling in affected families.

  14. Mild CFTR mutations and genetic predisposition to lactase persistence in cystic fibrosis

    PubMed Central

    Mądry, Edyta; Fidler, Ewa; Sobczyńska-Tomaszewska, Agnieszka; Lisowska, Aleksandra; Krzyżanowska, Patrycja; Pogorzelski, Andrzej; Minarowski, Łukasz; Oralewska, Beata; Mojs, Ewa; Sapiejka, Ewa; Marciniak, Ryszard; Sands, Dorota; Korzon-Burakowska, Anna; Kwiecień, Jarosław; Walkowiak, Jarosław

    2011-01-01

    Taking into account the reported incidence of hypolactasia in cystic fibrosis (CF) and the possible impact of milk products on nutritional status we aimed to assess the genetic predisposition to adult-type hypolactasia (ATH) and its incidence in CF. Single nucleotide polymorphism upstream of the lactase gene (LCT) was assessed in 289 CF patients. In subject with −13910C/C genotype (C/C) predisposing to ATH, hydrogen-methane breath test (BT) with lactose loading was conducted and clinical symptoms typical for lactose malabsorption were assessed. The percentage of CF patients with C/C was similar to that observed in healthy subjects (HS) (31.5 vs 32.5% ). Eleven out of 52 (24.5%) CF C/C patients had abnormal BT results. The recalculated frequency of lactose malabsorption was similar for the entire CF and HS populations (6.9 vs 7.2%). Similarly as in the control group, few CF patients have identified and linked to lactose consumption clinical symptoms. The frequency of LCT polymorphic variants in CF patients having and not having severe mutations of CFTR gene showed significant differences. The C allele was more frequent in homozygotes of the severe mutations than in patients carrying at least one mild/unknown mutation (P<0.0028) and in patients with at least one mild mutation (P<0.0377). In conclusion, CF patients carrying mild CFTR mutations seem to have lower genetic predisposition to ATH. Lactose malabsorption due to ATH in CF is not more frequent than in the general population. Symptomatic assessment of lactose malabsorption in CF is not reliable. PMID:21407263

  15. E-cadherin germline mutation carriers: clinical management and genetic implications.

    PubMed

    Corso, Giovanni; Figueiredo, Joana; Biffi, Roberto; Trentin, Chiara; Bonanni, Bernardo; Feroce, Irene; Serrano, Davide; Cassano, Enrico; Annibale, Bruno; Melo, Soraia; Seruca, Raquel; De Lorenzi, Francesca; Ferrara, Francesco; Piagnerelli, Riccardo; Roviello, Franco; Galimberti, Viviana

    2014-12-01

    Hereditary diffuse gastric cancer is an autosomic dominant syndrome associated with E-cadherin protein (CDH1) gene germline mutations. Clinical criteria for genetic screening were revised in 2010 by the International Gastric Cancer Linkage Consortium at the Cambridge meeting. About 40 % of families fulfilling clinical criteria for this inherited disease present deleterious CDH1 germline mutations. Lobular breast cancer is a neoplastic condition associated with hereditary diffuse gastric cancer syndrome. E-cadherin constitutional mutations have been described in both settings, in gastric and breast cancers. The management of CDH1 asymptomatic mutation carriers requires a multidisciplinary approach; the only life-saving procedure is the prophylactic total gastrectomy after thorough genetic counselling. Several prophylactic gastrectomies have been performed to date; conversely, no prophylactic mastectomies have been described in CDH1 mutant carriers. However, the recent discovery of novel germline alterations in pedigree clustering only for lobular breast cancer opens up a new debate in the management of these individuals. In this critical review, we describe the clinical management of CDH1 germline mutant carriers providing specific recommendations for genetic counselling, clinical criteria, surveillance and/ or prophylactic surgery.

  16. Colon tumor mutations and epigenetic changes associated with genetic polymorphism: Insight into disease pathways

    PubMed Central

    Slattery, Martha L.; Wolff, Roger K.; Curtin, Karen; Fitzpatrick, Frank; Herrick, Jennifer; Potter, John D.; Caan, Bette J.; Samowitz, Wade S.

    2010-01-01

    Variation in genes associated with serum levels of proteins may be useful for examining specific disease pathways. Using data from a large study of colon cancer, we examine genetic variants in insulin, inflammation, estrogen, metabolizing enzymes, and energy homeostasis genes to explore associations with microsatellite instability (MSI), CpG Island methylator phenotype (CIMP), mutations of p53 in exons 5 through 8, and mutations in codons 12 and 13 of Ki-ras. Insulin-related genes were associated with CIMP positive and MSI tumors, with the strongest associations among aspirin users. The Fok1 Vitamin D Receptor (VDR) polymorphism was associated with CIMP positive/Ki-ras mutated tumors; the Poly A and CDX2 VDR polymorphisms were associated only with Ki-ras mutated tumors. NAT2 was associated with CIMP positive/Ki-ras mutated tumors but not with MSI tumors. The TCF7L2 rs7903146 polymorphism was associated with p53 mutated tumors. Most associations varied by recent aspirin/NSAID use: IL6 rs1800796 and rs1800795 polymorphisms were associated inversely with tumor mutations in the presence of aspirin/NSAIDs; POMC significantly reduced risk of Ki-ras- mutated tumors when aspirin/NSAIDs were not used; the TCF7L2 rs7903146 was associated with reduced risk of Ki-ras-mutated tumors in the presence of aspirin and increased risk in the absence of aspirin. These data, although exploratory, identify specific tumor subsets that may be associated with specific exposures/polymorphism combinations. The important modifying effects of aspirin/NSAIDs on associations with genetic polymorphisms reinforce the underlying role of inflammation in the etiology of colon cancer. PMID:18992263

  17. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    PubMed Central

    2010-01-01

    Background Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. Results A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. Conclusions This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. PMID:20846421

  18. Dominant ER Stress-Inducing WFS1 Mutations Underlie a Genetic Syndrome of Neonatal/Infancy-Onset Diabetes, Congenital Sensorineural Deafness, and Congenital Cataracts.

    PubMed

    De Franco, Elisa; Flanagan, Sarah E; Yagi, Takuya; Abreu, Damien; Mahadevan, Jana; Johnson, Matthew B; Jones, Garan; Acosta, Fernanda; Mulaudzi, Mphele; Lek, Ngee; Oh, Vera; Petz, Oliver; Caswell, Richard; Ellard, Sian; Urano, Fumihiko; Hattersley, Andrew T

    2017-07-01

    Neonatal diabetes is frequently part of a complex syndrome with extrapancreatic features: 18 genes causing syndromic neonatal diabetes have been identified to date. There are still patients with neonatal diabetes who have novel genetic syndromes. We performed exome sequencing in a patient and his unrelated, unaffected parents to identify the genetic etiology of a syndrome characterized by neonatal diabetes, sensorineural deafness, and congenital cataracts. Further testing was performed in 311 patients with diabetes diagnosed before 1 year of age in whom all known genetic causes had been excluded. We identified 5 patients, including the initial case, with three heterozygous missense mutations in WFS1 (4/5 confirmed de novo). They had diabetes diagnosed before 12 months (2 before 6 months) (5/5), sensorineural deafness diagnosed soon after birth (5/5), congenital cataracts (4/5), and hypotonia (4/5). In vitro studies showed that these WFS1 mutations are functionally different from the known recessive Wolfram syndrome-causing mutations, as they tend to aggregate and induce robust endoplasmic reticulum stress. Our results establish specific dominant WFS1 mutations as a cause of a novel syndrome including neonatal/infancy-onset diabetes, congenital cataracts, and sensorineural deafness. This syndrome has a discrete pathophysiology and differs genetically and clinically from recessive Wolfram syndrome. © 2017 by the American Diabetes Association.

  19. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder.

    PubMed

    Tang, Fengzhu; Ma, Dengke; Wang, Yulan; Qiu, Yuecai; Liu, Fei; Wang, Qingqing; Lu, Qiutian; Shi, Min; Xu, Liang; Liu, Min; Liang, Jianping

    2017-03-23

    Many hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood. A total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype. Well-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region. Two mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These

  20. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream

  1. Genetic evolution of nevus of Ota reveals clonal heterogeneity acquiring BAP1 and TP53 mutations.

    PubMed

    Vivancos, Ana; Caratú, Ginevra; Matito, Judit; Muñoz, Eva; Ferrer, Berta; Hernández-Losa, Javier; Bodet, Domingo; Pérez-Alea, Mileidys; Cortés, Javier; Garcia-Patos, Vicente; Recio, Juan A

    2016-03-01

    Melanoma presents molecular alterations based on its anatomical location and exposure to environmental factors. Due to its intrinsic genetic heterogeneity, a simple snapshot of a tumor's genetic alterations does not reflect the tumor clonal complexity or specific gene-gene cooperation. Here, we studied the genetic alterations and clonal evolution of a unique patient with a Nevus of Ota that developed into a recurring uveal-like dermal melanoma. The Nevus of Ota and ulterior lesions contained GNAQ mutations were c-KIT positive, and tumors showed an increased RAS pathway activity during progression. Whole-exome sequencing of these lesions revealed the acquisition of BAP1 and TP53 mutations during tumor evolution, thereby unmasking clonal heterogeneity and allowing the identification of cooperating genes within the same tumor. Our results highlight the importance of studying tumor genetic evolution to identify cooperating mechanisms and delineate effective therapies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Prevalence of the AMHR2 mutation in Miniature Schnauzers and genetic investigation of a Belgian Malinois with persistent Müllerian duct syndrome.

    PubMed

    Smit, M M; Ekenstedt, K J; Minor, K M; Lim, C K; Leegwater, Paj; Furrow, E

    2018-04-01

    Persistent Müllerian duct syndrome (PMDS) is a sex-limited disorder in which males develop portions of the female reproductive tract. Important consequences of PMDS are cryptorchidism and its sequelae of infertility and increased risk of testicular cancer. Anti-Müllerian hormone (AMH) and its receptor (AMHR2) induce the regression of the Müllerian ducts in male embryos. In Miniature Schnauzer dogs, the genetic basis has been identified as an autosomal recessive nonsense mutation in AMHR2, but the allele frequency of the mutation is unknown. Thus, the primary objective of this study was to estimate the prevalence of the AMHR2 mutation in North American Miniature Schnauzers, in order to ascertain the value of genetic testing in this breed. An additional objective was to determine whether mutations in AMH or AMHR2 were responsible for PMDS in a Belgian Malinois; this would aid development of a genetic test for the Belgian Malinois breed. Genomic DNA from 216 Miniature Schnauzers (including one known PMDS case) was genotyped for the AMHR2 mutation, and DNA from a single PMDS-affected Belgian Malinois was sequenced for all coding exons of AMH and AMHR2. The Miniature Schnauzer cohort had an AMHR2 mutation allele frequency of 0.16 and a carrier genotypic frequency of 0.27. The genetic basis for PMDS in the Belgian Malinois was not determined, as no coding or splicing mutations were identified in either AMH or AMHR2. These findings support a benefit to AMHR2 mutation testing Miniature Schnauzers used for breeding or with cryptorchidism. © 2017 Blackwell Verlag GmbH.

  3. Genetic counseling for a three-generation Chinese family with Waardenburg syndrome type II associated with a rare SOX10 mutation.

    PubMed

    Chen, Kaitian; Zong, Ling; Zhan, Yuan; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2015-05-01

    Waardenburg syndrome is clinically and genetically heterogeneous. The SOX10 mutation related with Waardenburg syndrome type II is rare in Chinese. This study aimed to uncover the genetic causes of Waardenburg syndrome type II in a three-generation family to improve genetic counseling. Complete clinical and molecular evaluations were conducted in a three-generation Han Chinese family with Waardenburg syndrome type II. Targeted genetic counseling was provided to this family. We identified a rare heterozygous dominant mutation c.621C>A (p.Y207X) in SOX10 gene in this family. The premature termination codon occurs in exon 4, 27 residues downstream of the carboxyl end of the high mobility group box. Bioinformatics prediction suggested this variant to be disease-causing, probably due to nonsense-mediated mRNA decay. Useful genetic counseling was given to the family for prenatal guidance. Identification of a rare dominant heterozygous SOX10 mutation c.621C>A in this family provided an efficient way to understand the causes of Waardenburg syndrome type II and improved genetic counseling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. mRNA-based detection of rare CFTR mutations improves genetic diagnosis of cystic fibrosis in populations with high genetic heterogeneity.

    PubMed

    Felício, V; Ramalho, A S; Igreja, S; Amaral, M D

    2017-03-01

    Even with advent of next generation sequencing complete sequencing of large disease-associated genes and intronic regions is economically not feasible. This is the case of cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible for cystic fibrosis (CF). Yet, to confirm a CF diagnosis, proof of CFTR dysfunction needs to be obtained, namely by the identification of two disease-causing mutations. Moreover, with the advent of mutation-based therapies, genotyping is an essential tool for CF disease management. There is, however, still an unmet need to genotype CF patients by fast, comprehensive and cost-effective approaches, especially in populations with high genetic heterogeneity (and low p.F508del incidence), where CF is now emerging with new diagnosis dilemmas (Brazil, Asia, etc). Herein, we report an innovative mRNA-based approach to identify CFTR mutations in the complete coding and intronic regions. We applied this protocol to genotype individuals with a suspicion of CF and only one or no CFTR mutations identified by routine methods. It successfully detected multiple intronic mutations unlikely to be detected by CFTR exon sequencing. We conclude that this is a rapid, robust and inexpensive method to detect any CFTR coding/intronic mutation (including rare ones) that can be easily used either as primary approach or after routine DNA analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Frequent somatic TERT promoter mutations and CTNNB1 mutations in hepatocellular carcinoma.

    PubMed

    Lee, Seung Eun; Chang, Seong-Hwan; Kim, Wook Youn; Lim, So Dug; Kim, Wan Seop; Hwang, Tea Sook; Han, Hye Seung

    2016-10-25

    Genetic alterations of TERT and CTNNB1 have been documented in hepatocellular carcinoma. TERT promoter mutations are the earliest genetic events in the multistep process of hepatocarcinogenesis related to cirrhosis. However, analyses of TERT promoter and CTNNB1 mutations in hepatocellular carcinoma tumor samples have not been performed in the Korean population, where hepatitis B virus-related hepatocellular carcinoma is prevalent. In order to identify the role of TERT promoter and CTNNB1 mutations in the hepatocarcinogenesis and pathogenesis of recurrent hepatocellular carcinoma, we performed the sequence analyses in 140 hepatocellular nodules (including 107 hepatocellular carcinomas), and 8 pairs of matched primary and relapsed hepatocellular carcinomas. TERT promoter and CTNNB1 mutations were only observed in hepatocellular carcinomas but not in precursor lesions. Of 109 patients with hepatocellular carcinoma, 41 (39.0%) and 15 (14.6%) harbored TERT and CTNNB1 mutations, respectively. TERT promotermutations were significantly more frequent in hepatocellular carcinomas related to hepatitis C virus infection (5/6; 83.3%) compared to tumors of other etiologies (P = 0.001). In two cases, discordance in TERT promoter mutation status was observed between the primary and the corresponding recurrent hepatocellular carcinoma. The two patients with discordant cases had early relapses. In conclusion, we identified TERT promoter and CTNNB1 mutations as the most frequent somatic genetic alterations observed in hepatocellular carcinoma, indicating its pivotal role in hepatocarcinogenesis. Furthermore, we suggest the possibility of intratumoral genetic heterogeneity of TERT promoter mutations in hepatocellular carcinoma as indicated by the discordance in TERT promoter mutations between primary and corresponding recurrent hepatocellular carcinoma.

  6. A novel APOC2 gene mutation identified in a Chinese patient with severe hypertriglyceridemia and recurrent pancreatitis.

    PubMed

    Jiang, Jingjing; Wang, Yuhui; Ling, Yan; Kayoumu, Abudurexiti; Liu, George; Gao, Xin

    2016-01-16

    The severe forms of hypertriglyceridemia are usually caused by genetic defects. In this study, we described a Chinese female with severe hypertriglyceridemia caused by a novel homozygous mutation in the APOC2 gene. Lipid profiles of the pedigree were studied in detail. LPL and HL activity were also measured. The coding regions of 5 candidate genes (namely LPL, APOC2, APOA5, LMF1, and GPIHBP1) were sequenced using genomic DNA from peripheral leucocytes. The ApoE gene was also genotyped. Serum triglyceride level was extremely high in the proband, compared with other family members. Plasma LPL activity was also significantly reduced in the proband. Serum ApoCII was very low in the proband as well as in the heterozygous mutation carriers. A novel mutation (c.86A > CC) was identified on exon 3 [corrected] of the APOC2 gene, which converted the Asp [corrected] codon at position 29 into Ala, followed by a termination codon (TGA). This study presented the first case of ApoCII deficiency in the Chinese population, with a novel mutation c.86A > CC in the APOC2 gene identified. Serum ApoCII protein might be a useful screening test for identifying mutation carriers.

  7. A genetic cluster of patients with variant xeroderma pigmentosum with two different founder mutations.

    PubMed

    Munford, V; Castro, L P; Souto, R; Lerner, L K; Vilar, J B; Quayle, C; Asif, H; Schuch, A P; de Souza, T A; Ienne, S; Alves, F I A; Moura, L M S; Galante, P A F; Camargo, A A; Liboredo, R; Pena, S D J; Sarasin, A; Chaibub, S C; Menck, C F M

    2017-05-01

    Xeroderma pigmentosum (XP) is a rare human syndrome associated with hypersensitivity to sunlight and a high frequency of skin tumours at an early age. We identified a community in the state of Goias (central Brazil), a sunny and tropical region, with a high incidence of XP (17 patients among approximately 1000 inhabitants). To identify gene mutations in the affected community and map the distribution of the affected alleles, correlating the mutations with clinical phenotypes. Functional analyses of DNA repair capacity and cell-cycle responses after ultraviolet exposure were investigated in cells from local patients with XP, allowing the identification of the mutated gene, which was then sequenced to locate the mutations. A specific assay was designed for mapping the distribution of these mutations in the community. Skin primary fibroblasts showed normal DNA damage removal but abnormal DNA synthesis after ultraviolet irradiation and deficient expression of the Polη protein, which is encoded by POLH. We detected two different POLH mutations: one at the splice donor site of intron 6 (c.764 +1 G>A), and the other in exon 8 (c.907 C>T, p.Arg303X). The mutation at intron 6 is novel, whereas the mutation at exon 8 has been previously described in Europe. Thus, these mutations were likely brought to the community long ago, suggesting two founder effects for this rare disease. This work describes a genetic cluster involving POLH, and, particularly unexpected, with two independent founder mutations, including one that likely originated in Europe. © 2016 British Association of Dermatologists.

  8. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.

    PubMed

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-03-03

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.

  9. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma

    PubMed Central

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-01-01

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603

  10. Spectrum of mutations in leiomyosarcomas identified by clinical targeted next-generation sequencing.

    PubMed

    Lee, Paul J; Yoo, Naomi S; Hagemann, Ian S; Pfeifer, John D; Cottrell, Catherine E; Abel, Haley J; Duncavage, Eric J

    2017-02-01

    Recurrent genomic mutations in uterine and non-uterine leiomyosarcomas have not been well established. Using a next generation sequencing (NGS) panel of common cancer-associated genes, 25 leiomyosarcomas arising from multiple sites were examined to explore genetic alterations, including single nucleotide variants (SNV), small insertions/deletions (indels), and copy number alterations (CNA). Sequencing showed 86 non-synonymous, coding region somatic variants within 151 gene targets in 21 cases, with a mean of 4.1 variants per case; 4 cases had no putative mutations in the panel of genes assayed. The most frequently altered genes were TP53 (36%), ATM and ATRX (16%), and EGFR and RB1 (12%). CNA were identified in 85% of cases, with the most frequent copy number losses observed in chromosomes 10 and 13 including PTEN and RB1; the most frequent gains were seen in chromosomes 7 and 17. Our data show that deletions in canonical cancer-related genes are common in leiomyosarcomas. Further, the spectrum of gene mutations observed shows that defects in DNA repair and chromosomal maintenance are central to the biology of leiomyosarcomas, and that activating mutations observed in other common cancer types are rare in leiomyosarcomas. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy

    PubMed Central

    Imani, Saber; Cheng, Jingliang; Shasaltaneh, Marzieh Dehghan; Wei, Chunli; Yang, Lisha; Fu, Shangyi; Zou, Hui; Khan, Md. Asaduzzaman; Zhang, Xianqin; Chen, Hanchun; Zhang, Dianzheng; Duan, Chengxia; Lv, Hongbin; Li, Yumei; Chen, Rui; Fu, Junjiang

    2018-01-01

    Stargardt disease-4 (STGD4) is an autosomal dominant complex, genetically heterogeneous macular degeneration/dystrophy (MD) disorder. In this paper, we used targeted next generation sequencing and multiple molecular dynamics analyses to identify and characterize a disease-causing genetic variant in four generations of a Chinese family with STGD4-like MD. We found a novel heterozygous missense mutation, c.734T>C (p.L245P) in the PROM1 gene. Structurally, this mutation most likely impairs PROM1 protein stability, flexibility, and amino acid interaction network after changing the amino acid residue Leucine into Proline in the basic helix-loop-helix leucine zipper domain. Molecular dynamic simulation and principal component analysis provide compelling evidence that this PROM1 mutation contributes to disease causativeness or susceptibility variants in patients with STGD4-like MD. Thus, this finding defines new approaches in genetic characterization, accurate diagnosis, and prevention of STGD4-like MD. PMID:29416601

  12. Genetics of steroid-resistant nephrotic syndrome: a review of mutation spectrum and suggested approach for genetic testing.

    PubMed

    Joshi, S; Andersen, R; Jespersen, B; Rittig, S

    2013-09-01

    Identification of genes, associated mutations and genotype-phenotype correlations in steroid-resistant nephrotic syndrome (SRNS) is being translated to clinical practice through genetic testing. This review provides an update on the genes and mutations associated with SRNS along with a suggested approach for genetic testing in patients with SRNS. The number of indentified genes associated with SRNS is increasing along with our understanding of their impact on treatment response and risk of recurrence. A systematic approach to genetic testing in patients with SRNS might aid the physician in selecting appropriate treatment. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  13. Exome Sequencing Identifies Truncating Mutations in Human SERPINF1 in Autosomal-Recessive Osteogenesis Imperfecta

    PubMed Central

    Becker, Jutta; Semler, Oliver; Gilissen, Christian; Li, Yun; Bolz, Hanno Jörn; Giunta, Cecilia; Bergmann, Carsten; Rohrbach, Marianne; Koerber, Friederike; Zimmermann, Katharina; de Vries, Petra; Wirth, Brunhilde; Schoenau, Eckhard; Wollnik, Bernd; Veltman, Joris A.; Hoischen, Alexander; Netzer, Christian

    2011-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and susceptibility to fractures after minimal trauma. After mutations in all known OI genes had been excluded by Sanger sequencing, we applied next-generation sequencing to analyze the exome of a single individual who has a severe form of the disease and whose parents are second cousins. A total of 26,922 variations from the human reference genome sequence were subjected to several filtering steps. In addition, we extracted the genotypes of all dbSNP130-annotated SNPs from the exome sequencing data and used these 299,494 genotypes as markers for the genome-wide identification of homozygous regions. A single homozygous truncating mutation, affecting SERPINF1 on chromosome 17p13.3, that was embedded into a homozygous stretch of 2.99 Mb remained. The mutation was also homozygous in the affected brother of the index patient. Subsequently, we identified homozygosity for two different truncating SERPINF1 mutations in two unrelated patients with OI and parental consanguinity. All four individuals with SERPINF1 mutations have severe OI. Fractures of long bones and severe vertebral compression fractures with resulting deformities were observed as early as the first year of life in these individuals. Collagen analyses with cultured dermal fibroblasts displayed no evidence for impaired collagen folding, posttranslational modification, or secretion. SERPINF1 encodes pigment epithelium-derived factor (PEDF), a secreted glycoprotein of the serpin superfamily. PEDF is a multifunctional protein and one of the strongest inhibitors of angiogenesis currently known in humans. Our data provide genetic evidence for PEDF involvement in human bone homeostasis. PMID:21353196

  14. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta.

    PubMed

    Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-01-01

    The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.

  15. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance

    PubMed Central

    Bellido, Fernando; Pineda, Marta; Aiza, Gemma; Valdés-Mas, Rafael; Navarro, Matilde; Puente, Diana A.; Pons, Tirso; González, Sara; Iglesias, Silvia; Darder, Esther; Piñol, Virginia; Soto, José Luís; Valencia, Alfonso; Blanco, Ignacio; Urioste, Miguel; Brunet, Joan; Lázaro, Conxi; Capellá, Gabriel; Puente, Xose S.; Valle, Laura

    2016-01-01

    Purpose: Germ-line mutations in the exonuclease domains of POLE and POLD1 have been recently associated with polyposis and colorectal cancer (CRC) predisposition. Here, we aimed to gain a better understanding of the phenotypic characteristics of this syndrome to establish specific criteria for POLE and POLD1 mutation screening and to help define the clinical management of mutation carriers. Genet Med 18 4, 325–332. Methods: The exonuclease domains of POLE and POLD1 were studied in 529 kindred, 441 with familial nonpolyposis CRC and 88 with polyposis, by using pooled DNA amplification and massively parallel sequencing. Genet Med 18 4, 325–332. Results: Seven novel or rare genetic variants were identified. In addition to the POLE p.L424V recurrent mutation in a patient with polyposis, CRC and oligodendroglioma, six novel or rare POLD1 variants (four of them, p.D316H, p.D316G, p.R409W, and p.L474P, with strong evidence for pathogenicity) were identified in nonpolyposis CRC families. Phenotypic data from these and previously reported POLE/POLD1 carriers point to an associated phenotype characterized by attenuated or oligo-adenomatous colorectal polyposis, CRC, and probably brain tumors. In addition, POLD1 mutations predispose to endometrial and breast tumors. Genet Med 18 4, 325–332. Conclusion: Our results widen the phenotypic spectrum of the POLE/POLD1-associated syndrome and identify novel pathogenic variants. We propose guidelines for genetic testing and surveillance recommendations. Genet Med 18 4, 325–332. PMID:26133394

  16. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  17. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  18. Clinical and genetic analyses reveal novel pathogenic ABCA4 mutations in Stargardt disease families

    PubMed Central

    Lin, Bing; Cai, Xue-Bi; Zheng, Zhi-Li; Huang, Xiu-Feng; Liu, Xiao-Ling; Qu, Jia; Jin, Zi-Bing

    2016-01-01

    Stargardt disease (STGD1) is a juvenile macular degeneration predominantly inherited in an autosomal recessive pattern, characterized by decreased central vision in the first 2 decades of life. The condition has a genetic basis due to mutation in the ABCA4 gene, and arises from the deposition of lipofuscin-like substance in the retinal pigmented epithelium (RPE) with secondary photoreceptor cell death. In this study, we describe the clinical and genetic features of Stargardt patients from four unrelated Chinese cohorts. The targeted exome sequencing (TES) was carried out in four clinically confirmed patients and their family members using a gene panel comprising 164 known causative inherited retinal dystrophy (IRD) genes. Genetic analysis revealed eight ABCA4 mutations in all of the four pedigrees, including six mutations in coding exons and two mutations in adjacent intronic areas. All the affected individuals showed typical manifestations consistent with the disease phenotype. We disclose two novel ABCA4 mutations in Chinese patients with STGD disease, which will expand the existing spectrum of disease-causing variants and will further aid in the future mutation screening and genetic counseling, as well as in the understanding of phenotypic and genotypic correlations. PMID:27739528

  19. Genetic mutations in Gorlin-Goltz syndrome.

    PubMed

    Daneswari, Muthumula; Reddy, Mutjumula Swamy Ranga

    2013-07-01

    Gorlin-Goltz syndrome is a rare multisystemic disease inherited in a dominant autosomal at a high level of penetrance and variable expressiveness. It is mainly characterized by basal cell carcinoma, odontogenic keratocyst and skeletal anomalies. Diagnosis is based upon established major and minor clinical and radiographic criteria and gene mutation analysis. This article presents a case of Gorlin-Goltz syndrome, its genetic predisposition, diagnosis and management.

  20. The McGill Interactive Pediatric OncoGenetic Guidelines: An approach to identifying pediatric oncology patients most likely to benefit from a genetic evaluation.

    PubMed

    Goudie, Catherine; Coltin, Hallie; Witkowski, Leora; Mourad, Stephanie; Malkin, David; Foulkes, William D

    2017-08-01

    Identifying cancer predisposition syndromes in children with tumors is crucial, yet few clinical guidelines exist to identify children at high risk of having germline mutations. The McGill Interactive Pediatric OncoGenetic Guidelines project aims to create a validated pediatric guideline in the form of a smartphone/tablet application using algorithms to process clinical data and help determine whether to refer a child for genetic assessment. This paper discusses the initial stages of the project, focusing on its overall structure, the methodology underpinning the algorithms, and the upcoming algorithm validation process. © 2017 Wiley Periodicals, Inc.

  1. Portal Vein Embolization: Impact of Chemotherapy and Genetic Mutations.

    PubMed

    Deipolyi, Amy R; Zhang, Yu Shrike; Khademhosseini, Ali; Naidu, Sailendra; Borad, Mitesh; Sahin, Burcu; Mathur, Amit K; Oklu, Rahmi

    2017-03-01

    We characterized the effect of systemic therapy given after portal vein embolization (PVE) and before hepatectomy on hepatic tumor and functional liver remnant (FLR) volumes. All 76 patients who underwent right PVE from 2002-2016 were retrospectively studied. Etiologies included colorectal cancer ( n = 44), hepatocellular carcinoma ( n = 17), cholangiocarcinoma ( n = 10), and other metastases ( n = 5). Imaging before and after PVE was assessed. Chart review revealed systemic therapy administration, SNaPshot genetic profiling, and comorbidities. Nine patients received systemic therapy; 67 did not. Tumor volume increased 28% in patients who did not receive and decreased -24% in patients who did receive systemic therapy ( p = 0.026), with no difference in FLR growth (28% vs. 34%; p = 0.645). Among 30 patients with genetic profiling, 15 were wild type and 15 had mutations. Mutations were an independent predictor of tumor growth ( p = 0.049), but did not impact FLR growth (32% vs. 28%; p = 0.93). Neither cirrhosis, hepatic steatosis, nor diabetes impacted changes in tumor or FLR volume ( p > 0.20). Systemic therapy administered after PVE before hepatic lobectomy had no effect on FLR growth; however, it was associated with decreasing tumor volumes. Continuing systemic therapy until hepatectomy may be warranted, particularly in patients with genetic mutations.

  2. Statistical Methods for Identifying Sequence Motifs Affecting Point Mutations

    PubMed Central

    Zhu, Yicheng; Neeman, Teresa; Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs. We demonstrate the performance of these methods by analyzing mutation processes in human germline and malignant melanoma. We recapitulate the known CpG effect, and identify novel motifs, including a highly significant motif associated with A→G mutations. We show that major effects of neighbors on germline mutation lie within ±2 of the mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution of the different point mutations). We show the spectra vary significantly between autosomes and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma confirmed reported characteristic features of this cancer, including statistically significant strand asymmetry, and markedly different neighboring influences. The methods we present are made freely available as a Python library https://bitbucket.org/pycogent3/mutationmotif. PMID:27974498

  3. A genetic screen of the mutations in the Korean patients with early-onset Alzheimer’s disease

    PubMed Central

    An, Seong Soo; Park, Sun Ah; Bagyinszky, Eva; Bae, Sun Oh; Kim, Yoon-Jeong; Im, Ji Young; Park, Kyung Won; Park, Kee Hyung; Kim, Eun-Joo; Jeong, Jee Hyang; Kim, Jong Hun; Han, Hyun Jeong; Choi, Seong Hye; Kim, SangYun

    2016-01-01

    Early-onset Alzheimer’s disease (EOAD) has distinct clinical characteristics in comparison to late-onset Alzheimer’s disease (LOAD). The genetic contribution is suggested to be more potent in EOAD. However, the frequency of causative mutations in EOAD could be variable depending on studies. Moreover, no mutation screening study has been performed yet employing large population in Korea. Previously, we reported that the rate of family history of dementia in EOAD patients was 18.7% in a nationwide hospital-based cohort study, the Clinical Research Center for Dementia of South Korea (CREDOS) study. This rate is much lower than in other countries and is even comparable to the frequency of LOAD patients in our country. To understand the genetic characteristics of EOAD in Korea, we screened the common Alzheimer’s disease (AD) mutations in the consecutive EOAD subjects from the CREDOS study from April 2012 to February 2014. We checked the sequence of APP (exons 16–17), PSEN1 (exons 3–12), and PSEN2 (exons 3–12) genes. We identified different causative or probable pathogenic AD mutations, PSEN1 T116I, PSEN1 L226F, and PSEN2 V214L, employing 24 EOAD subjects with a family history and 80 without a family history of dementia. PSEN1 T116I case demonstrated autosomal dominant trait of inheritance, with at least 11 affected individuals over 2 generations. However, there was no family history of dementia within first-degree relation in PSEN1 L226F and PSEN2 V214L cases. Approximately, 55.7% of the EOAD subjects had APOE ε4 allele, while none of the mutation-carrying subjects had the allele. The frequency of genetic mutation in this study is lower compared to the studies from other countries. The study design that was based on nationwide cohort, which minimizes selection bias, is thought to be one of the contributors to the lower frequency of genetic mutation. However, the possibility of the greater likeliness of earlier onset of sporadic AD in Korea cannot be

  4. [Clinical classification and genetic mutation study of two pedigrees with type II Waardenburg syndrome].

    PubMed

    Chen, Yong; Yang, Fuwei; Zheng, Hexin; Zhu, Ganghua; Hu, Peng; Wu, Weijing

    2015-12-01

    To explore the molecular etiology of two pedigrees affected with type II Waardenburg syndrome (WS2) and to provide genetic diagnosis and counseling. Blood samples were collected from the proband and his family members. Following extraction of genomic DNA, the coding sequences of PAX3, MITF, SOX10 and SNAI2 genes were amplified with PCR and subjected to DNA sequencing to detect potential mutations. A heterozygous deletional mutation c.649_651delAGA in exon 7 of the MITF gene has been identified in all patients from the first family, while no mutation was found in the other WS2 related genes including PAX3, MITF, SOX10 and SNAI2. The heterozygous deletion mutation c.649_651delAGA in exon 7 of the MITF gene probably underlies the disease in the first family. It is expected that other genes may also underlie WS2.

  5. Mutation screening of Chinese Treacher Collins syndrome patients identified novel TCOF1 mutations.

    PubMed

    Chen, Ying; Guo, Luo; Li, Chen-Long; Shan, Jing; Xu, Hai-Song; Li, Jie-Ying; Sun, Shan; Hao, Shao-Juan; Jin, Lei; Chai, Gang; Zhang, Tian-Yu

    2018-04-01

    Treacher Collins syndrome (TCS) (OMIM 154500) is a rare congenital craniofacial disorder with an autosomal dominant manner of inheritance in most cases. To date, three pathogenic genes (TCOF1, POLR1D and POLR1C) have been identified. In this study, we conducted mutational analysis on Chinese TCS patients to reveal a mutational spectrum of known causative genes and show phenotype-genotype data to provide more information for gene counselling and future studies on the pathogenesis of TCS. Twenty-two TCS patients were recruited from two tertiary referral centres, and Sanger sequencing for the coding exons and exon-intron boundaries of TCOF1, POLR1D and POLR1C was performed. For patients without small variants, further copy number variations (CNVs) analysis was conducted using high-density SNP array platforms. The Sanger sequencing overall mutation detection rate was as high as 86.3% (19/22) for our cohort. Fifteen TCOF1 pathogenic variants, including ten novel mutations, were identified in nineteen patients. No causative mutations in POLR1D and POLR1C genes and no CNVs mutations were detected. A suspected autosomal dominant inheritance case that implies germinal mosaicism was described. Our study confirmed that TCOF1 was the main disease-causing gene for the Chinese TCS population and revealed its mutation spectrum. We also addressed the need for more studies of mosaicism in TCS cases, which could explain the mechanism of autosomal dominant inheritance in TCS cases and benefit the prevention of TCS.

  6. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    PubMed Central

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI. PMID:28659819

  7. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    PubMed

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  8. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics.

    PubMed

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-03-18

    Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Prospective analysis. 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype-phenotype analyses. All analyses were performed in a large German laboratory specialised in genetic diagnostics. 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype-phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position.

  9. ELANE Mutations in Cyclic and Severe Congenital Neutropenia—Genetics and Pathophysiology

    PubMed Central

    Horwitz, Marshall S.; Corey, Seth J.; Grimes, H. Leighton; Tidwell, Timothy

    2012-01-01

    There are two main forms of hereditary neutropenia: cyclic and severe congenital neutropenia (SCN). Cyclic neutropenia is an autosomal dominant disorder in which neutrophil counts fluctuate between nearly normal levels and close to zero with 21-day periodicity. In contrast, SCN, also known as Kostmann syndrome, consists of chronic and profound neutropenia, with a characteristic promyelocytic maturation arrest in the bone marrow. Unlike cyclic neutropenia, SCN displays frequent acquisition of somatic mutations in the gene, CSF3R, encoding the Granulocyte Colony-Stimulating Factor Receptor (G-CSFR), and a strong predisposition to developing myelodysplasia (MDS) and/or acute myeloid leukemia (AML). Cyclic neutropenia is caused by heterozygous mutations in the gene, ELANE (formerly known as ELA2), encoding the neutrophil granule serine protease, neutrophil elastase. SCN is genetically heterogeneous, but it is most frequently associated with ELANE mutations. While some of the different missense mutations in ELANE exhibit phenotype-genotype correlation, the same mutations are sometimes found in patients with either form of inherited neutropenia. The mutations lead to production of a mutant polypeptide, but no common biochemical abnormality, including effects on proteolysis, has been identified. Two non-mutually exclusive theories have been advanced to explain how the mutations might produce neutropenia. The mislocalization hypothesis states that mutations within neutrophil elastase or involving other proteins responsible for its intracellular trafficking cause neutrophil elastase to accumulate in inappropriate subcellular compartments. The misfolding hypothesis proposes that mutations prevent the protein from properly folding, thereby inducing the stress response pathway within the endoplasmic reticulum (ER). We discuss how the mutations themselves provide clues into pathogenesis, describe supporting and contradictory observations for both theories, and highlight

  10. Clinical Significance of Epigenetic Alterations in Human Hepatocellular Carcinoma and Its Association with Genetic Mutations.

    PubMed

    Nishida, Naoshi; Kudo, Masatoshi

    Accumulation of genetic and epigenetic alterations is a hallmark of cancer genomes, including those in hepatocellular carcinoma (HCC). Particularly, in human HCC, epigenetic changes are more frequently observed than genetic changes in a variety of cancer-related genes, suggesting a potential role for epigenetic alterations during hepatocarcinogenesis. Several environmental factors, such as inflammation, obesity, and steatosis, are reported to affect the epigenetic status in hepatocytes, which could play a role in HCC development. In addition, genetic mutations in histone modulators and chromatin regulators would be critical for the acceleration of epigenetic alteration. It is also possible that major genetic mutations of HCC, such as TP53 and CNTTB1 mutations, are associated with the disturbance of epigenetic integrity. For example, specific TP53 mutations frequently induced by aflatoxin B1 exposure might affect histone modifiers and nucleosome remodelers. Generally, epigenetic alteration is reversible, because of which dysregulation of transcription takes place, without affecting protein structure. Therefore, differentiation therapy is one of the potential approaches for HCC with advanced epigenetic alterations. On the other hand, a tumor carrying an accumulation of genetic mutations would result in many abnormal proteins that could be recognized as non-self and could be targets for immune reactions; thus, immune-checkpoint blockers should be effective for HCCs with genetic hypermutation. Although the emergence of genetic and epigenetic alterations could be linked to each other and there could be some crossover or convergence between these cancer pathways, characterization of the mutation spectrum of genetic and epigenetic alterations could influence future HCC treatment. © 2016 S. Karger AG, Basel.

  11. The genetic spectrum and the evaluation of CADASIL screening scale in Chinese patients with NOTCH3 mutations.

    PubMed

    Liu, Xiao; Zuo, Yuehuan; Sun, Wei; Zhang, Wei; Lv, He; Huang, Yining; Xiao, Jiangxi; Yuan, Yun; Wang, Zhaoxia

    2015-07-15

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small artery disease caused by NOTCH3 gene mutation. Here we report clinical, pathological and genetic profiles of 29 newly-diagnosed CADASIL patients, evaluation of the CADASIL scale in Chinese CADASIL patients, and reanalysis of all reported mainland Chinese patients with identified NOTCH3 gene mutation. We found two novel mutations (p.C134G and p.C291Y) and 13 reported NOTCH3 mutations in the newly-diagnosed group. CADASIL scale score was less than the cutoff score in 19 of 53 Chinese patients with NOTCH3 mutation, generating only a sensitivity of 64.1%. At the time of study, the total number of genetically confirmed CADASIL cases reached 158 from 97 unrelated mainland Chinese families, with 9/97 (9.3%) sporadic patients. The NOTCH3 gene mutation profile showed 43 mutations, with hotspots in exon 4, followed by exon 3. The considerable variability in onset age and CADASIL scale score in patients carrying the same NOTCH3 missense mutation suggested no obvious phenotype-genotype correlation. In conclusion, we report two novel mutations which expand the NOTCH3 mutational spectrum. Exons 4 and 3 are hotspots in mainland Chinese patients with NOTCH3 mutation. The low sensitivity of CADASIL scale in our patients group indicated that the CADASIL scale should be refined according to the clinical characteristics of Chinese CADASIL patients when used in Chinese populations. Copyright © 2015. Published by Elsevier B.V.

  12. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer

    PubMed Central

    Leder, Kevin; Riester, Markus; Iwasa, Yoh; Lengauer, Christoph; Michor, Franziska

    2015-01-01

    The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such “driver” mutations from innocuous “passenger” events is critical for prioritizing the validation of candidate mutations in disease-relevant models. We design a novel statistical index, called the Hitchhiking Index, which reflects the probability that any observed candidate gene is a passenger alteration, given the frequency of alterations in a cross-sectional cancer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology is based upon a population dynamics model of mutation accumulation and selection in colorectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can be used to aid in the prioritization of candidate mutations for functional validation and contributes to the process of drug discovery. PMID:26379039

  13. Estimation of the frequency of occult mutations for an autosomal recessive disease in the presence of genetic heterogeneity: application to genetic hearing loss disorders.

    PubMed

    Kimberling, William J

    2005-11-01

    The routine testing for pathologic mutation(s) in a patient's DNA has become the foundation of modern molecular genetic diagnosis. It is especially valuable when the phenotype shows genetic heterogeneity, and its importance will grow as treatments become genotype specific. However, the technology of mutation detection is imperfect and mutations are often missed. This can be especially troublesome when dealing with a recessive disorder where the combination of genetic heterogeneity and missed mutation creates an imprecision in the genotypic assessment of individuals who do not appear to have the expected complement of two pathologic mutations. This article describes a statistical approach to the estimation of the likelihood of a genetic diagnosis under these conditions. In addition to providing a means of testing for missed mutations, it also provides a method of estimating and testing for the presence of genetic heterogeneity in the absence of linkage data. Gene frequencies as well as estimates of sensitivity and specificity can be obtained as well. The test is applied to GJB2 recessive nonsyndromic deafness, Usher syndrome types Ib and IIa, and Pendred-enlarged vestibular aqueduct syndrome. Copyright 2005 Wiley-Liss, Inc.

  14. Targeted exome sequencing identifies novel compound heterozygous mutations in P3H1 in a fetus with osteogenesis imperfecta type VIII.

    PubMed

    Huang, Yanru; Mei, Libin; Lv, Weigang; Li, Haoxian; Zhang, Rui; Pan, Qian; Tan, Hu; Guo, Jing; Luo, Xiaomei; Chen, Chen; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Osteogenesis imperfecta (OI) is a highly clinically and genetically heterogeneous group of disorders. It is difficult to identify severe OI in the perinatal period. Here, a Chinese woman with a suspected history of fetal OI was referred to our institution at 19weeks of gestation, due to ultrasound inspection during antenatal screening, which revealed bulbous metaphyses, short humeri, and short thick bent femora in the fetus. Using targeted exome sequencing of 248 genes known to be involved in skeletal system diseases, we identified novel compound heterozygous mutation in the P3H1 gene in the fetus with OI type VIII: c.105_120del (p.D36Rfs*16) and c.2164C>T (p.Q722*). These two mutations were inherited from the father and mother, respectively. The mRNA level of P3H1 wasn't changed suggested that mRNA with this mutation escaped from nonsense-mediated RNA decay. Besides, the level of P3H1 was absence while the CRTAP was mildly decreased. In conclusion, our findings imply this novel compound heterozygous mutation as the molecular pathogenetic in a Chinese fetus with OI type VIII, and demonstrate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia with genetic and clinical heterogeneity, especially for autosomal recessive skeletal disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Clinical and genetic characterization of a founder PKHD1 mutation in Afrikaners with ARPKD.

    PubMed

    Lambie, Lindsay; Amin, Rasheda; Essop, Fahmida; Cnaan, Avital; Krause, Amanda; Guay-Woodford, Lisa M

    2015-02-01

    Autosomal recessive polycystic kidney disease (ARPKD; MIM 263200) occurs in 1:20,000 live births. Disease expression is widely variable, with approximately 30 % of affected neonates dying perinatally, while others survive to adulthood. Mutations at the PKHD1 locus are responsible for all typical presentations. The objectives of this study were to define the clinical and genetic characteristics in a cohort of South African patients of Afrikaner origin, a population with a high prevalence of ARPKD. DNA from the cohort was analyzed for background haplotypes and the p.M627K mutation previously identified in two unrelated Afrikaner patients. The clinical phenotype of the homozygous group was characterized. Analysis of 36 Afrikaner families revealed that 27 patients, from 24 (67 %) families, were homozygous for the p.M627K substitution, occurring on a common haplotype. The clinical phenotype of the homozygous individuals was variable. Our data provide strong evidence that the p.M627K substitution is a founder mutation in the Afrikaner population and can be used for streamlined diagnostic testing for at-risk pregnancies. The observed clinical variability suggests that disease expression is modulated by other genetic loci or by gene-environment interactions.

  16. Induced mutations in mice and genetic risk assessment in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, P.B.

    1980-01-01

    In studies on mice, in contrast to studies on humans, it is possible to perform carefully controlled experiments with the exposures one desires. The necessity for having separate mammalian tests for looking at the induction of gene mutations and small deficiencies, and at the induction of chromosomal aberrations, is obvious. Mutagens can differ as to which of these types of damage they are more likely to cause. The reason for focusing attention on the mouse in a discussion of hazard from induced gene mutations and small deficiencies is the existence of techniques in this mammal for readily studying the inductionmore » of such genetic effects. Many mutations at the molecular level cause no apparent changes at the gene-product level and many mutations that cause changes at the gene-product level cause no detectable phenotypic changes in heterozygotes. Many dominant mutations that change the phenotype cause no serious handicap. For these reasons, risk estimation for important chemicals must rely heavily on studies on the induction of those germinal mutations in mammals that are easily related to human dominant disorders, such as skeletal and cataract mutations. Molecular or enzyme studies cannot provide definitive answers about risk. The specific-locus method should help greatly in assessing the genetic risks to humans from chemicals. The new sensitive-indicator method should complement it in providing a tool for attacking the question of what treatments induce gene mutations and small deficiencies and for approximating first-generation damage to the skeleton. (ERB)« less

  17. Diagnostic Genetics at a Distance: Von Hippel-Lindau Disease and a Novel Mutation

    PubMed Central

    Prosser, Debra O.; Love, Jennifer M.; Gardner, R. J. McKinlay; Love, Donald R.

    2013-01-01

    Genetic testing at a distance is commonplace where members of a family with a segregating germline mutation are geographically separated. For the most part, this challenge is addressed through the intervention of health professionals in taking and/or processing blood samples for subsequent couriering of DNA to a referral laboratory. In some circumstances, however, the collecting of pivotal clinical material may involve direct patient involvement. We describe such a situation where noninvasive saliva samples were provided by members of a family manifesting Von Hippel-Lindau (VHL) disease. The analysis identified a novel mutation in the VHL gene that was used to exclude other family members as being at risk of VHL disease. PMID:24062953

  18. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    PubMed

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  19. How genetically heterogeneous is Kabuki syndrome?: MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum.

    PubMed

    Banka, Siddharth; Veeramachaneni, Ratna; Reardon, William; Howard, Emma; Bunstone, Sancha; Ragge, Nicola; Parker, Michael J; Crow, Yanick J; Kerr, Bronwyn; Kingston, Helen; Metcalfe, Kay; Chandler, Kate; Magee, Alex; Stewart, Fiona; McConnell, Vivienne P M; Donnelly, Deirdre E; Berland, Siren; Houge, Gunnar; Morton, Jenny E; Oley, Christine; Revencu, Nicole; Park, Soo-Mi; Davies, Sally J; Fry, Andrew E; Lynch, Sally Ann; Gill, Harinder; Schweiger, Susann; Lam, Wayne W K; Tolmie, John; Mohammed, Shehla N; Hobson, Emma; Smith, Audrey; Blyth, Moira; Bennett, Christopher; Vasudevan, Pradeep C; García-Miñaúr, Sixto; Henderson, Alex; Goodship, Judith; Wright, Michael J; Fisher, Richard; Gibbons, Richard; Price, Susan M; C de Silva, Deepthi; Temple, I Karen; Collins, Amanda L; Lachlan, Katherine; Elmslie, Frances; McEntagart, Meriel; Castle, Bruce; Clayton-Smith, Jill; Black, Graeme C; Donnai, Dian

    2012-04-01

    MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.

  20. Genetic mutations in Gorlin-Goltz syndrome

    PubMed Central

    Daneswari, Muthumula; Reddy, Mutjumula Swamy Ranga

    2013-01-01

    Gorlin-Goltz syndrome is a rare multisystemic disease inherited in a dominant autosomal at a high level of penetrance and variable expressiveness. It is mainly characterized by basal cell carcinoma, odontogenic keratocyst and skeletal anomalies. Diagnosis is based upon established major and minor clinical and radiographic criteria and gene mutation analysis. This article presents a case of Gorlin-Goltz syndrome, its genetic predisposition, diagnosis and management. PMID:24339558

  1. Genetic drift and mutational hazard in the evolution of salamander genomic gigantism.

    PubMed

    Mohlhenrich, Erik Roger; Mueller, Rachel Lockridge

    2016-12-01

    Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational-hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long-term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein-coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  2. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: Application for diagnosis, genetic counseling, and therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiort, O.; Huang, Q.; Sinnecker, G.H.G.

    Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis andmore » direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.« less

  3. Influence of a Small Fraction of Individuals with Enhanced Mutations on a Population Genetic Pool

    NASA Astrophysics Data System (ADS)

    Cebrat, S.; Stauffer, D.

    It has been observed that a higher mutation load could be introduced into the genomes of children conceived by assisted reproduction technology (fertilization in-vitro). This generates two effects — slightly higher mutational pressure on the whole genetic pool of population and inhomogeneity of mutation distributions in the genetic pool. Computer simulations of the Penna ageing model suggest that already a small fraction of births with enhanced number of new mutations can negatively influence the whole population.

  4. Clinical and molecular genetic characterization of two patients with mutations in the phosphoglucomutase 1 (PGM1) gene.

    PubMed

    Ding, Yu; Li, Niu; Chang, Gouying; Li, Juan; Yao, Ruen; Shen, Yiping; Wang, Jian; Huang, Xiaodong; Wang, Xiumin

    2018-06-02

    The phosphoglucomutase 1 (PGM1) enzyme plays a central role in glucose homeostasis by catalyzing the inter-conversion of glucose 1-phosphate and glucose 6-phosphate. Recently, PGM1 deficiency has been recognized as a cause of the congenital disorders of glycosylation (CDGs). Two Chinese Han pediatric patients with recurrent hypoglycemia, hepatopathy and growth retardation are described in this study. Targeted gene sequencing (TGS) was performed to screen for causal genetic variants in the genome of the patients and their parents to determine the genetic basis of the phenotype. DNA sequencing identified three variations of the PGM1 gene (NM_002633.2). Patient 1 had a novel homozygous mutation (c.119delT, p.Ile40Thrfs*28). In patient 2, we found a compound heterozygous mutation of c.1172G>T(p.Gly391Val) (novel) and c.1507C>T(p.Arg503*) (known pathogenic). This report deepens our understanding of the clinical features of PGM1 mutation. The early molecular genetic analysis and multisystem assessment were here found to be essential to the diagnosis of PGM1-CDG and the provision of timely and proper treatment.

  5. Phenotypes of Recessive Pediatric Cataract in a Cohort of Children with Identified Homozygous Gene Mutations (An American Ophthalmological Society Thesis)

    PubMed Central

    Khan, Arif O.; Aldahmesh, Mohammed A.; Alkuraya, Fowzan S.

    2015-01-01

    Purpose: To assess for phenotype-genotype correlations in families with recessive pediatric cataract and identified gene mutations. Methods: Retrospective review (2004 through 2013) of 26 Saudi Arabian apparently nonsyndromic pediatric cataract families referred to one of the authors (A.O.K.) and for which recessive gene mutations were identified. Results: Fifteen different homozygous recessive gene mutations were identified in the 26 consanguineous families; two genes and five families are novel to this study. Ten families had a founder CRYBB1 deletion (all with bilateral central pulverulent cataract), two had the same missense mutation in CRYAB (both with bilateral juvenile cataract with marked variable expressivity), and two had different mutations in FYCO1 (both with bilateral posterior capsular abnormality). The remaining 12 families each had mutations in 12 different genes (CRYAA, CRYBA1, AKR1E2, AGK, BFSP2, CYP27A1, CYP51A1, EPHA2, GCNT2, LONP1, RNLS, WDR87) with unique phenotypes noted for CYP27A1 (bilateral juvenile fleck with anterior and/or posterior capsular cataract and later cerebrotendinous xanthomatosis), EPHA2 (bilateral anterior persistent fetal vasculature), and BFSP2 (bilateral flecklike with cloudy cortex). Potential carrier signs were documented for several families. Conclusions: In this recessive pediatric cataract case series most identified genes are noncrystallin. Recessive pediatric cataract phenotypes are generally nonspecific, but some notable phenotypes are distinct and associated with specific gene mutations. Marked variable expressivity can occur from a recessive missense CRYAB mutation. Genetic analysis of apparently isolated pediatric cataract can sometimes uncover mutations in a syndromic gene. Some gene mutations seem to be associated with apparent heterozygous carrier signs. PMID:26622071

  6. [Genetic Mutation Accumulation and Clinical Outcome of Immune Checkpoint Blockade Therapy].

    PubMed

    Takahashi, Masanobu

    2016-06-01

    Immune checkpoint blockade therapy has recently attracted great attention in the area of oncology. In Japan, since 2014, an anti-PD-1 antibody nivolumab and anti-CTLA-4 antibody ipilimumab have been available for the treatment of patients with malignant melanoma, and nivolumab has been available for patients with non-small cell lung cancer. Clinical trials using these drugs and other immune checkpoint inhibitors are currently in progress worldwide. The immune checkpoint blockade therapy is a promising new cancer therapy; however, not all patients with cancer can benefit from this therapy. Recent evidence shows that markers reflecting the extent of genetic mutation accumulation, including mutation burden, non-synonymous mutation that produces neoantigen, and microsatellite instability, possibly serve as promising marker to predict who can benefit from the immune checkpoint blockade therapy. Here, I introduce the recent evidence and discuss the correlation between genetic mutation accumulation and clinical outcome of immune checkpoint blockade therapy.

  7. Genetic analysis of inherited bone marrow failure syndromes from one prospective, comprehensive and population-based cohort and identification of novel mutations.

    PubMed

    Tsangaris, E; Klaassen, R; Fernandez, C V; Yanofsky, R; Shereck, E; Champagne, J; Silva, M; Lipton, J H; Brossard, J; Michon, B; Abish, S; Steele, M; Ali, K; Dower, N; Athale, U; Jardine, L; Hand, J P; Odame, I; Canning, P; Allen, C; Carcao, M; Beyene, J; Roifman, C M; Dror, Y

    2011-09-01

    Inherited bone marrow failure syndromes (IBMFSs) often have substantial phenotypic overlap, thus genotyping is often critical for establishing a diagnosis. To determine the genetic characteristics and mutation profiles of IBMFSs, a comprehensive population-based study that prospectively enrols all typical and atypical cases without bias is required. The Canadian Inherited Marrow Failure Study is such a study, and was used to extract clinical and genetic information for patients enrolled up to May 2010. Among the 259 primary patients with IBMFS enrolled in the study, the most prevalent categories were Diamond-Blackfan anaemia (44 patients), Fanconi anaemia (39) and Shwachman-Diamond syndrome (35). The estimated incidence of the primary IBMFSs was 64.5 per 10(6) births, with Fanconi anaemia having the highest incidence (11.4 cases per 10(6) births). A large number of patients (70) had haematological and non-haematological features that did not fulfil the diagnostic criteria of any specific IBMFS category. Disease-causing mutations were identified in 53.5% of the 142 patients tested, and in 16 different genes. Ten novel mutations in SBDS, RPL5, FANCA, FANCG, MPL and G6PT were identified. The most common mutations were nonsense (31 alleles) and splice site (28). Genetic heterogeneity of most IBMFSs was evident; however, the most commonly mutated gene was SBDS, followed by FANCA and RPS19. From this the largest published comprehensive cohort of IBMFSs, it can be concluded that recent advances have led to successful genotyping of about half of the patients. Establishing a genetic diagnosis is still challenging and there is a critical need to develop novel diagnostic tools.

  8. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer.

    PubMed

    Starr, Timothy K; Allaei, Raha; Silverstein, Kevin A T; Staggs, Rodney A; Sarver, Aaron L; Bergemann, Tracy L; Gupta, Mihir; O'Sullivan, M Gerard; Matise, Ilze; Dupuy, Adam J; Collier, Lara S; Powers, Scott; Oberg, Ann L; Asmann, Yan W; Thibodeau, Stephen N; Tessarollo, Lino; Copeland, Neal G; Jenkins, Nancy A; Cormier, Robert T; Largaespada, David A

    2009-03-27

    Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.

  9. An autosomal recessive mutation in SCL24A4 causing enamel hypoplasia in Samoyed and its relationship to breed-wide genetic diversity.

    PubMed

    Pedersen, Niels C; Shope, Bonnie; Liu, Hongwei

    2017-01-01

    Pure breeding of dogs has led to over 700 heritable disorders, of which almost 300 are Mendelian in nature. Seventy percent of the characterized mutations have an autosomal recessive mode of inheritance, indicative of positive selection during bouts of inbreeding primarily for new desired conformational traits. Samoyed suffer from several common complex genetic disorders, but up to this time only two X-linked and one autosomal dominant disorder have been identified. Previous studies based on pedigrees and SNP arrays have concluded that Samoyed breeders have done a good job in maintaining genetic diversity and avoiding excessive inbreeding. This may explain why autosomal recessive disorders have not occurred to the extent observed in many other breeds. However, an enamel hypoplasia analogous to a form of autosomal recessive amelogenesis imperfecta (ARAI) in humans has been recently characterized in Samoyed, although the causative mutation appears to have existed for three or more decades. The rise of such a mutation indicates that bouts of inbreeding for desired conformational traits are still occurring despite an old and well-defined breed standard. Therefore, the present study has two objectives: 1) measure genetic diversity in the breed using DNA and short tandem repeats (STR), and 2) identify the exact mutation responsible for enamel hypoplasia in the breed, possible explanations for its recent spread, and the effect of eliminating the mutation on existing genetic diversity. The recent discovery of an autosomal recessive amelogenesis imperfecta (ARAI) in Samoyed provides an opportunity to study the mutation as well as genetic factors that favored its occurrence and subsequent spread. The first step in the study was to use 33 short tandem repeat (STR) loci on 25/38 autosomes and seven STRs across the dog leukocyte antigen (DLA) class I and II regions on CFA12 to determine the DNA-based genetic profile of 182 individuals from North America, Europe and Australia

  10. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B; Rudolph, Anja; Schmutzler, Rita K; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A; Easton, Douglas F; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A; Schmidt, Marjanka K; van der Baan, Frederieke H; Spurdle, Amanda B; Walker, Logan C; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B; Olopade, Olufunmilayo I; Nussbaum, Robert L; Nathanson, Katherine L; Domchek, Susan M; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K; Miron, Alex; Southey, Melissa C; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Ding, Yuan Chun; Neuhausen, Susan L; Hansen, Thomas V O; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E; Blazer, Kathleen R; Weitzel, Jeffrey N; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D Gareth R; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E; Kennedy, M John; Rogers, Mark T; Porteous, Mary E; Morrison, Patrick J; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V; Ellis, Steve; Cole, Trevor; Godwin, Andrew K; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L; Rodriguez, Gustavo C; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A M; Meijers-Heijboer, Hanne E J; van der Hout, Annemarie H; Vreeswijk, Maaike P G; Hoogerbrugge, Nicoline; Ausems, Margreet G E M; van Doorn, Helena C; Collée, J Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R; Olswold, Curtis; Couch, Fergus J; Lindor, Noralane M; Wang, Xianshu; Szabo, Csilla I; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D P; Chenevix-Trench, Georgia; Antoniou, Antonis C; Friedman, Eitan

    2015-01-01

    BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In this study, we evaluated the putative role of variants in many candidate modifier genes. Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n = 3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. The observed P values of association ranged between 0.005 and 1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. ©2014 American Association for Cancer Research.

  11. Frequency of rare mutations and common genetic variations in severe hypertriglyceridemia in the general population of Spain.

    PubMed

    Lamiquiz-Moneo, Itziar; Blanco-Torrecilla, Cristian; Bea, Ana M; Mateo-Gallego, Rocío; Pérez-Calahorra, Sofía; Baila-Rueda, Lucía; Cenarro, Ana; Civeira, Fernando; de Castro-Orós, Isabel

    2016-04-23

    Hypertriglyceridemia (HTG) is a common complex metabolic trait that results of the accumulation of relatively common genetic variants in combination with other modifier genes and environmental factors resulting in increased plasma triglyceride (TG) levels. The majority of severe primary hypertriglyceridemias is diagnosed in adulthood and their molecular bases have not been fully defined yet. The prevalence of HTG is highly variable among populations, possibly caused by differences in environmental factors and genetic background. However, the prevalence of very high TG and the frequency of rare mutations causing HTG in a whole non-selected population have not been previously studied. The total of 23,310 subjects over 18 years from a primary care-district in a middle-class area of Zaragoza (Spain) with TG >500 mg/dL were selected to establish HTG prevalence. Those affected of primary HTG were considered for further genetic analysis. The promoters, coding regions and exon-intron boundaries of LPL, LMF1, APOC2, APOA5, APOE and GPIHBP1 genes were sequenced. The frequency of rare variants identified was studied in 90 controls. One hundred ninety-four subjects (1.04%) had HTG and 90 subjects (46.4%) met the inclusion criteria for primary HTG. In this subgroup, nine patients (12.3%) were carriers of 7 rare variants in LPL, LMF1, APOA5, GPIHBP1 or APOE genes. Three of these mutations are described for the first time in this work. The presence of a rare pathogenic mutation did not confer a differential phenotype or a higher family history of HTG. The prevalence of rare mutations in candidate genes in subjects with primary HTG is low. The low frequency of rare mutations, the absence of a more severe phenotype or the dominant transmission of the HTG would not suggest the use of genetic analysis in the clinical practice in this population.

  12. The CDC Hemophilia B mutation project mutation list: a new online resource.

    PubMed

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  13. Mutation Is a Sufficient and Robust Predictor of Genetic Variation for Mitotic Spindle Traits in Caenorhabditis elegans

    PubMed Central

    Farhadifar, Reza; Ponciano, José Miguel; Andersen, Erik C.; Needleman, Daniel J.; Baer, Charles F.

    2016-01-01

    Different types of phenotypic traits consistently exhibit different levels of genetic variation in natural populations. There are two potential explanations: Either mutation produces genetic variation at different rates or natural selection removes or promotes genetic variation at different rates. Whether mutation or selection is of greater general importance is a longstanding unresolved question in evolutionary genetics. We report mutational variances (VM) for 19 traits related to the first mitotic cell division in Caenorhabditis elegans and compare them to the standing genetic variances (VG) for the same suite of traits in a worldwide collection C. elegans. Two robust conclusions emerge. First, the mutational process is highly repeatable: The correlation between VM in two independent sets of mutation accumulation lines is ∼0.9. Second, VM for a trait is a good predictor of VG for that trait: The correlation between VM and VG is ∼0.9. This result is predicted for a population at mutation–selection balance; it is not predicted if balancing selection plays a primary role in maintaining genetic variation. PMID:27334268

  14. Mutation profile of BBS genes in Iranian patients with Bardet-Biedl syndrome: genetic characterization and report of nine novel mutations in five BBS genes.

    PubMed

    Fattahi, Zohreh; Rostami, Parvin; Najmabadi, Amin; Mohseni, Marzieh; Kahrizi, Kimia; Akbari, Mohammad Reza; Kariminejad, Ariana; Najmabadi, Hossein

    2014-07-01

    Bardet-Biedl syndrome (BBS) is a rare ciliopathy disorder that is clinically and genetically heterogeneous with 18 known genes. This study was performed to characterize responsible genes and mutation spectrum in a cohort of 14 Iranian families with BBS. Sanger sequencing of the most commonly mutated genes (BBS1, BBS2 and BBS10) accounting for ∼50% of BBS patients determined mutations only in BBS2, including three novel mutations. Next, three of the remaining patients were subjected to whole exome sequencing with 96% at 20 × depth of coverage that revealed novel BBS4 mutation. Observation of no mutation in the other patients represents the possible presence of novel genes. Screening of the remaining patients for six other genes (BBS3, BBS4, BBS6, BBS7, BBS9 and BBS12) revealed five novel mutations. This result represents another indication for the genetic heterogeneity of BBS and extends the mutational spectrum of the disease by introducing nine novel mutations in five BBS genes. In conclusion, although BBS1 and BBS10 are among the most commonly mutated genes in other populations like Caucasian, these two seem not to have an important role in Iranian patients. This suggests that a different strategy in molecular genetics diagnostic approaches in Middle Eastern countries such as Iran should be considered.

  15. Genetic heterogeneity of pseudoxanthoma elasticum: the Chinese signature profile of ABCC6 and ENPP1 mutations.

    PubMed

    Jin, Liang; Jiang, Qiujie; Wu, Zhengsheng; Shao, Changxia; Zhou, Yong; Yang, Luting; Uitto, Jouni; Wang, Gang

    2015-05-01

    Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder characterized by ectopic mineralization, is caused by mutations in the ABCC6 gene. We examined clinically 29 Chinese PXE patients from unrelated families, so far the largest cohort of Asian PXE patients. In a subset of 22 patients, we sequenced ABCC6 and another candidate gene, ENPP1, and conducted pathogenicity analyses for each variant. We identified a total of 17 distinct mutations in ABCC6, 15 of them being, to our knowledge, previously unreported, including 5 frameshift and 10 missense variants. In addition, a missense mutation in combination with a recurrent nonsense mutation in ENPP1 was discovered in a pediatric PXE case. No cases with p.R1141X or del23-29 mutations, common in Caucasian patient populations, were identified. The 10 missense mutations in ABCC6 were expressed in the mouse liver via hydrodynamic tail-vein injections. One mutant protein showed cytoplasmic accumulation indicating abnormal subcellular trafficking, while the other nine mutants showed correct plasma membrane location. These nine mutations were further investigated for their pathogenicity using a recently developed zebrafish mRNA rescue assay. Minimal rescue of the morpholino-induced phenotype was achieved with eight of the nine mutant human ABCC6 mRNAs tested, implying pathogenicity. This study demonstrates that the Chinese PXE population harbors unique ABCC6 mutations. These genetic data have implications for allele-specific therapy currently being developed for PXE.

  16. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics

    PubMed Central

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-01-01

    Objectives Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Design Prospective analysis. Patients 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype–phenotype analyses. Setting All analyses were performed in a large German laboratory specialised in genetic diagnostics. Results 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. Conclusions On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype–phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum

  17. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    PubMed Central

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  18. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES).

    PubMed

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong

    2018-03-05

    BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10^-4). CONCLUSIONS This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.

  19. Amplicon Resequencing Identified Parental Mosaicism for Approximately 10% of “de novo” SCN1A Mutations in Children with Dravet Syndrome

    PubMed Central

    Xu, Xiaojing; Yang, Xiaoxu; Wu, Qixi; Liu, Aijie; Yang, Xiaoling; Ye, Adam Yongxin; Huang, August Yue; Li, Jiarui; Wang, Meng; Yu, Zhe; Wang, Sheng; Zhang, Zhichao; Wu, Xiru

    2015-01-01

    ABSTRACT The majority of children with Dravet syndrome (DS) are caused by de novo SCN1A mutations. To investigate the origin of the mutations, we developed and applied a new method that combined deep amplicon resequencing with a Bayesian model to detect and quantify allelic fractions with improved sensitivity. Of 174 SCN1A mutations in DS probands which were considered “de novo” by Sanger sequencing, we identified 15 cases (8.6%) of parental mosaicism. We identified another five cases of parental mosaicism that were also detectable by Sanger sequencing. Fraction of mutant alleles in the 20 cases of parental mosaicism ranged from 1.1% to 32.6%. Thirteen (65% of 20) mutations originated paternally and seven (35% of 20) maternally. Twelve (60% of 20) mosaic parents did not have any epileptic symptoms. Their mutant allelic fractions were significantly lower than those in mosaic parents with epileptic symptoms (P = 0.016). We identified mosaicism with varied allelic fractions in blood, saliva, urine, hair follicle, oral epithelium, and semen, demonstrating that postzygotic mutations could affect multiple somatic cells as well as germ cells. Our results suggest that more sensitive tools for detecting low‐level mosaicism in parents of families with seemingly “de novo” mutations will allow for better informed genetic counseling. PMID:26096185

  20. Homozygous null mutations in ZMPSTE24 in restrictive dermopathy: evidence of genetic heterogeneity.

    PubMed

    Ahmad, Z; Phadke, S R; Arch, E; Glass, J; Agarwal, A K; Garg, A

    2012-02-01

    Restrictive dermopathy (RD) results in stillbirth or early neonatal death. RD is characterized by prematurity, intrauterine growth retardation, fixed facial expression, micrognathia, mouth in the 'o' position, rigid and tense skin with erosions and denudations and multiple joint contractures. Nearly all 25 previously reported neonates with RD had homozygous or compound heterozygous null mutations in the ZMPSTE24 gene. Here, we report three new cases of RD; all died within 3 weeks of birth. One of them had a previously reported homozygous c.1085dupT (p.Leu362PhefsX19) mutation, the second case had a novel homozygous c.1020G>A (p.Trp340X) null mutation in ZMPSTE24, but the third case, a stillborn with features of RD except for the presence of tapering rather than rounded, bulbous digits, harbored no disease-causing mutations in LMNA or ZMPSTE24. In the newborn with a novel ZMPSTE24 mutation, unique features included butterfly-shaped thoracic 5 vertebra and the bulbous appearance of the distal clavicles. Skin biopsies from both the stillborn fetus and the newborn with c.1020G>A ZMPSTE24 mutation showed absence of elastic fibers throughout the dermis. This report provides evidence of genetic heterogeneity among RD and concludes that there may be an additional locus for RD which remains to be identified. © 2010 John Wiley & Sons A/S.

  1. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism

    PubMed Central

    Miraoui, Hichem; Dwyer, Andrew A.; Sykiotis, Gerasimos P.; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H.; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F.; Seminara, Stephanie B.; Quinton, Richard; Hughes, Virginia A.; Kumanov, Philip; Young, Jacques; Yialamas, Maria A.; Hall, Janet E.; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly

    2013-01-01

    Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ∼12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called “FGF8 synexpression” group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382

  2. Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations

    PubMed Central

    Siggs, Owen M.; Miosge, Lisa A.; Roots, Carla M.; Enders, Anselm; Bertram, Edward M.; Crockford, Tanya L.; Whittle, Belinda; Potter, Paul K.; Simon, Michelle M.; Mallon, Ann-Marie; Brown, Steve D. M.; Beutler, Bruce; Goodnow, Christopher C.; Lunter, Gerton; Cornall, Richard J.

    2013-01-01

    Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis. PMID:23382690

  3. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    PubMed

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  4. Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes.

    PubMed

    Wong, John K L; Campbell, Desmond; Ngo, Ngoc Diem; Yeung, Fanny; Cheng, Guo; Tang, Clara S M; Chung, Patrick H Y; Tran, Ngoc Son; So, Man-Ting; Cherny, Stacey S; Sham, Pak C; Tam, Paul K; Garcia-Barcelo, Maria-Mercè

    2016-12-12

    Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted. We aim to identify genetic risk factors by a "trio-based" exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients. Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p < 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p < 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients. Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD.

  5. Key clinical features to identify girls with CDKL5 mutations.

    PubMed

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydeé; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothée; Afenjar, Alexandra; Rio, Marlène; Héron, Delphine; N'guyen Morel, Marie Ange; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-10-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of CDKL5-associated encephalopathy. We screened the entire coding region of CDKL5 for mutations in 183 females with encephalopathy with early seizures by denaturing high liquid performance chromatography and direct sequencing, and we identified in 20 unrelated girls, 18 different mutations including 7 novel mutations. These mutations were identified in eight patients with encephalopathy with RTT-like features, five with infantile spasms and seven with encephalopathy with refractory epilepsy. Early epilepsy with normal interictal EEG and severe hypotonia are the key clinical features in identifying patients likely to have CDKL5 mutations. Our study also indicates that these patients clearly exhibit some RTT features such as deceleration of head growth, stereotypies and hand apraxia and that these RTT features become more evident in older and ambulatory patients. However, some RTT signs are clearly absent such as the so called RTT disease profile (period of nearly normal development followed by regression with loss of acquired fine finger skill in early childhood and characteristic intensive eye communication) and the characteristic evolution of the RTT electroencephalogram. Interestingly, in addition to the overall stereotypical symptomatology (age of onset and evolution of the disease) resulting from CDKL5 mutations, atypical forms of CDKL5-related conditions have also been observed. Our data suggest that phenotypic heterogeneity does not correlate with the nature or the position of the mutations or with the pattern of X-chromosome inactivation, but most probably with the functional transcriptional and/or translational consequences of CDKL5

  6. Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian Familial Adenomatous Polyposis cohort.

    PubMed

    Khan, Nikhat; Lipsa, Anuja; Arunachal, Gautham; Ramadwar, Mukta; Sarin, Rajiv

    2017-05-22

    Colo-Rectal Cancer is a common cancer worldwide with 5-10% cases being hereditary. Familial Adenomatous Polyposis (FAP) syndrome is due to germline mutations in the APC or rarely MUTYH gene. NTHL1, POLD1, POLE have been recently reported in previously unexplained FAP cases. Unlike the Caucasian population, FAP phenotype and its genotypic associations have not been widely studied in several geoethnic groups. We report the first FAP cohort from South Asia and the only non-Caucasian cohort with comprehensive analysis of APC, MUTYH, NTHL1, POLD1, POLE genes. In this cohort of 112 individuals from 53 FAP families, we detected germline APC mutations in 60 individuals (45 families) and biallelic MUTYH mutations in 4 individuals (2 families). No NTHL1, POLD1, POLE mutations were identified. Fifteen novel APC mutations and a new Indian APC mutational hotspot at codon 935 were identified. Eight very rare FAP phenotype or phenotypes rarely associated with mutations outside specific APC regions were observed. APC genotype-phenotype association studies in different geo-ethnic groups can enrich the existing knowledge about phenotypic consequences of distinct APC mutations and guide counseling and risk management in different populations. A stepwise cost-effective mutation screening approach is proposed for genetic testing of south Asian FAP patients.

  7. A novel AMELX mutation causes hypoplastic amelogenesis imperfecta.

    PubMed

    Kim, Young-Jae; Kim, Youn Jung; Kang, Jenny; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Sang-Hoon; Lee, Zang Hee; Kim, Jung-Wook

    2017-04-01

    Amelogenesis imperfecta (AI) is a hereditary genetic defect affecting tooth enamel. AI is heterogeneous in clinical phenotype as well as in genetic etiology. To date, more than 10 genes have been associated with the etiology of AI. Amelogenin is the most abundant enamel matrix protein, most of which is encoded by the amelogenin gene in the X-chromosome (AMELX). More than 16 alternative splicing transcripts have been identified in the murine Amelx gene. The purpose of this study was to identify the genetic cause of an AI family. We recruited a family with hypoplastic AI and performed mutational analysis on the candidate gene based on the clinical phenotype. Mutational analysis revealed a missense mutation in exon 6 (NM_182680.1; c.242C > T), which changes a sequence in a highly conserved amino acid (NP_872621.1; p.Pro81Leu). Furthermore, a splicing assay using a minigene displayed that the mutation changed the mRNA splicing repertory. In this study, we identified a novel AMELX missense mutation causing hypoplastic AI, and this mutation also resulted in altered mRNA splicing. These results will not only expand the mutation spectrum causing AI but also broaden our understanding of the biological mechanism of enamel formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A new mutation identified in SPATA16 in two globozoospermic patients.

    PubMed

    ElInati, Elias; Fossard, Camille; Okutman, Ozlem; Ghédir, Houda; Ibala-Romdhane, Samira; Ray, Pierre F; Saad, Ali; Hennebicq, Sylvianne; Viville, Stéphane

    2016-06-01

    The aim of this study is to identify potential genes involved in human globozoopsermia. Nineteen globozoospermic patients (previously screened for DPY19L2 mutations with no causative mutation) were recruited in this study and screened for mutations in genes implicated in human globozoospermia SPATA16 and PICK1. Using the candidate gene approach and the determination of Spata16 partners by Glutathione S-transferase (GST) pull-down four genes were also selected and screened for mutations. We identified a novel mutation of SPATA16: deletion of 22.6 Kb encompassing the first coding exon in two unrelated Tunisian patients who presented the same deletion breakpoints. The two patients shared the same haplotype, suggesting a possible ancestral founder effect for this new deletion. Four genes were selected using the candidate gene approach and the GST pull-down (GOPC, PICK1, AGFG1 and IRGC) and were screened for mutation, but no variation was identified. The present study confirms the pathogenicity of the SPATA16 mutations. The fact that no variation was detected in the coding sequence of AFGF1, GOPC, PICK1 and IRGC does not mean that they are not involved in human globozoospermia. A larger globozoospermic cohort must be studied in order to accelerate the process of identifying new genes involved in such phenotypes. Until sufficient numbers of patients have been screened, AFGF1, GOPC, PICK1 and IRGC should still be considered as candidate genes.

  9. Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs☆

    PubMed Central

    Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul

    2011-01-01

    In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498

  10. Whole-exome sequencing and digital PCR identified a novel compound heterozygous mutation in the NPHP1 gene in a case of Joubert syndrome and related disorders.

    PubMed

    Koyama, Shingo; Sato, Hidenori; Wada, Manabu; Kawanami, Toru; Emi, Mitsuru; Kato, Takeo

    2017-03-27

    Joubert syndrome and related disorders (JSRD) is a clinically and genetically heterogeneous condition with autosomal recessive or X-linked inheritance, which share a distinctive neuroradiological hallmark, the so-called molar tooth sign. JSRD is classified into six clinical subtypes based on associated variable multiorgan involvement. To date, 21 causative genes have been identified in JSRD, which makes genetic diagnosis difficult. We report here a case of a 28-year-old Japanese woman diagnosed with JS with oculorenal defects with a novel compound heterozygous mutation (p.Ser219*/deletion) in the NPHP1 gene. Whole-exome sequencing (WES) of the patient identified the novel nonsense mutation in an apparently homozygous state. However, it was absent in her mother and heterozygous in her father. A read depth-based copy number variation (CNV) detection algorithm using WES data of the family predicted a large heterozygous deletion mutation in the patient and her mother, which was validated by digital polymerase chain reaction, indicating that the patient was compound heterozygous for the paternal nonsense mutation and the maternal deletion mutation spanning the site of the single nucleotide change. It should be noted that analytical pipelines that focus purely on sequence information cannot distinguish homozygosity from hemizygosity because of its inability to detect large deletions. The ability to detect CNVs in addition to single nucleotide variants and small insertion/deletions makes WES an attractive diagnostic tool for genetically heterogeneous disorders.

  11. Genetic Background and Environment Influence the Effects of Mutations in pykF and Help Reveal Mechanisms Underlying Their Benefit

    DTIC Science & Technology

    2015-08-01

    another trait (Losos 2011). All of these factors make it hard to identify adaptations. Mutations are the ultimate source of genetic variation that is...effects when added to the same evolved background (See Table 2.2 for results of one-way ANOVAs). Genetic background explains most (~ 88%) of the variation ...in fitness whereas the variation explained by different pykF alleles is negligible (~2%) compared to statistical noise (~8%) (Table 2.3). These

  12. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis†

    PubMed Central

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Cave, M. Donald; Ponce de León, Alfredo; Alland, David

    2006-01-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  13. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    PubMed Central

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  14. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    PubMed

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  15. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES)

    PubMed Central

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong

    2018-01-01

    Background Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. Material/Methods Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. Results From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10−4). Conclusions This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations. PMID:29505555

  16. Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations.

    PubMed

    Sanna-Cherchi, Simone; Khan, Kamal; Westland, Rik; Krithivasan, Priya; Fievet, Lorraine; Rasouly, Hila Milo; Ionita-Laza, Iuliana; Capone, Valentina P; Fasel, David A; Kiryluk, Krzysztof; Kamalakaran, Sitharthan; Bodria, Monica; Otto, Edgar A; Sampson, Matthew G; Gillies, Christopher E; Vega-Warner, Virginia; Vukojevic, Katarina; Pediaditakis, Igor; Makar, Gabriel S; Mitrotti, Adele; Verbitsky, Miguel; Martino, Jeremiah; Liu, Qingxue; Na, Young-Ji; Goj, Vinicio; Ardissino, Gianluigi; Gigante, Maddalena; Gesualdo, Loreto; Janezcko, Magdalena; Zaniew, Marcin; Mendelsohn, Cathy Lee; Shril, Shirlee; Hildebrandt, Friedhelm; van Wijk, Joanna A E; Arapovic, Adela; Saraga, Marijan; Allegri, Landino; Izzi, Claudia; Scolari, Francesco; Tasic, Velibor; Ghiggeri, Gian Marco; Latos-Bielenska, Anna; Materna-Kiryluk, Anna; Mane, Shrikant; Goldstein, David B; Lifton, Richard P; Katsanis, Nicholas; Davis, Erica E; Gharavi, Ali G

    2017-11-02

    Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10 -5 for novel LOF, increased to p = 4.1 × 10 -6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10 -7 ). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. A new de novo missense mutation in MYH2 expands clinical and genetic findings in hereditary myosin myopathies.

    PubMed

    D'Amico, A; Fattori, F; Bellacchio, E; Catteruccia, M; Servidei, S; Bertini, E

    2013-05-01

    Congenital myopathy related to mutations in myosin MyHC IIa gene (MYH2) is a rare neuromuscular disease. A single dominant missense mutation has been reported so far in a family in which the affected members had congenital joint contractures at birth, external ophthalmoplegia and proximal muscle weakness. Afterward only additional 4 recessive mutations have been identified in 5 patients presenting a mild non-progressive early-onset myopathy associated with ophthalmoparesis. We report a new de novo MYH2 missense mutation in a baby affected by a congenital myopathy characterized by severe dysphagia, respiratory distress at birth and external ophthalmoplegia. We describe clinical, histopathological and muscle imaging findings expanding the clinical and genetic spectrum of MYH2-related myopathy. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The Mutations Associated with Dilated Cardiomyopathy

    PubMed Central

    Parvari, Ruti; Levitas, Aviva

    2012-01-01

    Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM). The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes. PMID:22830024

  19. The mutations associated with dilated cardiomyopathy.

    PubMed

    Parvari, Ruti; Levitas, Aviva

    2012-01-01

    Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM). The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes.

  20. Molecular-genetic characterization and rescue of a TSFM mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy

    PubMed Central

    Emperador, Sonia; Bayona-Bafaluy, M Pilar; Fernández-Marmiesse, Ana; Pineda, Mercedes; Felgueroso, Blanca; López-Gallardo, Ester; Artuch, Rafael; Roca, Iria; Ruiz-Pesini, Eduardo; Couce, María Luz; Montoya, Julio

    2017-01-01

    Oxidative phosphorylation dysfunction has been found in many different disorders. This biochemical pathway depends on mitochondrial protein synthesis. Thus, mutations in components of the mitochondrial translation system can be responsible for some of these pathologies. We identified a new homozygous missense mutation in the mitochondrial translation elongation factor Ts gene in a patient suffering from slowly progressive childhood ataxia and hypertrophic cardiomyopathy. Using cell, biochemical and molecular-genetic protocols, we confirm it as the etiologic factor of this phenotype. Moreover, as an important functional confirmation, we rescued the normal molecular phenotype by expression of the wild-type TSFM cDNA in patient's fibroblasts. Different TSFM mutations can produce the same or very different clinical phenotypes, going from abortions to moderately severe presentations. On the other hand, the same TSFM mutation can also produce same or different phenotypes within the same range of presentations, therefore suggesting the involvement of unknown factors. PMID:27677415

  1. Genetic Landscape of Congenital Myasthenic Syndromes From Turkey: Novel Mutations and Clinical Insights.

    PubMed

    Yiş, Uluç; Becker, Kerstin; Kurul, Semra Hız; Uyanik, Gökhan; Bayram, Erhan; Haliloğlu, Göknur; Polat, Ayşe İpek; Ayanoğlu, Müge; Okur, Derya; Tosun, Ayşe Fahriye; Serdaroğlu, Gül; Yilmaz, Sanem; Topaloğlu, Haluk; Anlar, Banu; Cirak, Sebahattin; Engel, Andrew G

    2017-07-01

    Congenital myasthenic syndromes are clinically and genetically heterogeneous disorders of neuromuscular transmission. Most are treatable, but certain subtypes worsen with cholinesterase inhibitors. This underlines the importance of genetic diagnosis. Here, the authors report on cases with genetically proven congenital myasthenic syndromes from Turkey. The authors retrospectively reviewed their experience of all patients with congenital myasthenic syndromes, referred over a 5-year period (2011-2016) to the Child Neurology Department of Dokuz Eylül University, Izmir, Turkey. In addition, PubMed was searched for published cases of genetically proven congenital myasthenic syndromes originating from Turkey. In total, the authors identified 43 (8 new patients, 35 recently published patients) cases. Defects in the acetylcholine receptor (n = 15; 35%) were the most common type, followed by synaptic basal-lamina associated (n = 14; 33%) and presynaptic syndromes (n = 10; 23%). The authors had only 3 cases (7%) who had defects in endplate development. One patient had mutation GFPT1 gene (n = 1; 2%). Knowledge on congenital myasthenic syndromes and related genes in Turkey will lead to prompt diagnosis and treatment of these rare neuromuscular disorders.

  2. Identifying genetic relatives without compromising privacy

    PubMed Central

    He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-01-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977

  3. Identifying genetic relatives without compromising privacy.

    PubMed

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  4. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3.

    PubMed

    Eisenberger, Tobias; Slim, Rima; Mansour, Ahmad; Nauck, Markus; Nürnberg, Gudrun; Nürnberg, Peter; Decker, Christian; Dafinger, Claudia; Ebermann, Inga; Bergmann, Carsten; Bolz, Hanno Jörn

    2012-09-02

    Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.

  5. Newly identified CHO ERCC3/XPB mutations and phenotype characterization

    PubMed Central

    Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav

    2010-01-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  6. DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss.

    PubMed

    Hildebrand, Michael S; Morín, Matías; Meyer, Nicole C; Mayo, Fernando; Modamio-Hoybjor, Silvia; Mencía, Angeles; Olavarrieta, Leticia; Morales-Angulo, Carmelo; Nishimura, Carla J; Workman, Heather; DeLuca, Adam P; del Castillo, Ignacio; Taylor, Kyle R; Tompkins, Bruce; Goodman, Corey W; Schrauwen, Isabelle; Wesemael, Maarten Van; Lachlan, K; Shearer, A Eliot; Braun, Terry A; Huygen, Patrick L M; Kremer, Hannie; Van Camp, Guy; Moreno, Felipe; Casavant, Thomas L; Smith, Richard J H; Moreno-Pelayo, Miguel A

    2011-07-01

    The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL. © 2011 Wiley-Liss, Inc.

  7. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways.

    PubMed

    Giacopuzzi, Edoardo; Gennarelli, Massimo; Minelli, Alessandra; Gardella, Rita; Valsecchi, Paolo; Traversa, Michele; Bonvicini, Cristian; Vita, Antonio; Sacchetti, Emilio; Magri, Chiara

    2017-01-01

    Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs) along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171) between genes inside ROHs affected by low frequency functional homozygous variants (107 genes) and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in genetically

  8. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I.

    PubMed

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R; Janecke, Andreas R; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-07

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.

  9. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    PubMed

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  10. Mutations in the autoinflammatory cryopyrin-associated periodic syndrome gene: epidemiological study and lessons from eight years of genetic analysis in France.

    PubMed

    Cuisset, L; Jeru, I; Dumont, B; Fabre, A; Cochet, E; Le Bozec, J; Delpech, M; Amselem, S; Touitou, I

    2011-03-01

    Cryopyrin-associated periodic syndromes (CAPS) consist of a continuum of autoinflammatory diseases caused by a defect in interleukin 1β regulation. Although symptoms may vary widely, the discovery, in 2001, of the gene involved (NLRP3) has dramatically helped diagnosis. To define the spectrum and prevalence of NLRP3 mutations in France and to delineate initial criteria before molecular analysis. Retrospective review (2001-9) of genetic analysis data and request forms of patients living in France with an NLRP3 mutation since the set up of CAPS molecular diagnosis by the three French laboratories providing this test (GenMAI network). Over 800 analyses of this gene have been conducted, identifying 135 cases with an NLRP3 mutation (55 probands; 33 multiplex families); the estimated prevalence in France was equal to 1/360 000. A total of 21 different sequence variants were detected, among which four are common and nine are new mutations. Although the number of NLRP3 test requests has doubled over the past 5 years, genetic screening has not contributed to enhanced detection of new index cases each year. There are two possible reasons for this: (i) no clinical prerequisite for genetic diagnosis and (ii) few new large families are now identified (unlike the initial study based on a selection by linkage). A set of initial clinical criteria have been drawn up which it is recommended should be fulfilled before a patient is tested: at least three recurrent bouts, age at disease onset < 20 years and elevated levels of C-reactive protein, especially in individuals with urticaria and moderate fever.

  11. Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise.

    PubMed

    Giudicessi, John R; Ackerman, Michael J

    2013-01-01

    In this review, we summarize the basic principles governing rare variant interpretation in the heritable cardiac arrhythmia syndromes, focusing on recent advances that have led to disease-specific approaches to the interpretation of positive genetic testing results. Elucidation of the genetic substrates underlying heritable cardiac arrhythmia syndromes has unearthed new arrhythmogenic mechanisms and given rise to a number of clinically meaningful genotype-phenotype correlations. As such, genetic testing for these disorders now carries important diagnostic, prognostic, and therapeutic implications. Recent large-scale systematic studies designed to explore the background genetic 'noise' rate associated with these genetic tests have provided important insights and enhanced how positive genetic testing results are interpreted for these potentially lethal, yet highly treatable, cardiovascular disorders. Clinically available genetic tests for heritable cardiac arrhythmia syndromes allow the identification of potentially at-risk family members and contribute to the risk-stratification and selection of therapeutic interventions in affected individuals. The systematic evaluation of the 'signal-to-noise' ratio associated with these genetic tests has proven critical and essential to assessing the probability that a given variant represents a rare pathogenic mutation or an equally rare, yet innocuous, genetic bystander.

  12. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequentmore » in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.« less

  13. Heterogeneous Phenotype of Long QT Syndrome Caused by the KCNH2-H562R Mutation: Importance of Familial Genetic Testing.

    PubMed

    Muñoz-Esparza, Carmen; García-Molina, Esperanza; Salar-Alcaraz, Mariela; Peñafiel-Verdú, Pablo; Sánchez-Muñoz, Juan J; Martínez Sánchez, Juan; Cabañas-Perianes, Valentín; Valdés Chávarri, Mariano; García Alberola, Arcadio; Gimeno-Blanes, Juan R

    2015-10-01

    Long QT syndrome is an inherited ion channelopathy that leads to syncope and sudden death. Because of the heterogeneous phenotype of this disease, genetic testing is fundamental to detect individuals with concealed long QT syndrome. In this study, we determined the features of a family with 13 carriers of the KCNH2-H562R missense mutation, which affects the pore region of the HERG channel. We identified the KCNH2-H562R mutation in a 65-year-old man with a prolonged QTc interval who had experienced an episode of torsade de pointes. Subsequently, a total of 13 mutation carriers were identified in the family. Carriers (age 48 [26] years; 46% males) underwent clinical evaluation, electrocardiography and echocardiography. The mean (standard deviation) QTc in carriers was 493 (42) ms (3 [23%] showed normal QTc); 6 (46%) had symptoms (4, syncope; 1, sudden death; 1, aborted sudden death [proband]). While under treatment with beta-blockers, 11 of 12 carriers (92%) remained asymptomatic at 5 years of follow-up (1 patient required left cardiac sympathectomy). The QTc shortening with beta-blockers was 50 (37) ms. There was 1 sudden death in a patient who refused treatment. Family study is essential in the interpretation of a genetic testing result. This article describes the heterogeneous and variable phenotype of a large family with the KCNH2-H562R mutation and highlights the role of genetic study for the appropriate identification of at-risk individuals who would benefit from treatment. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Role of genetic mutations in folate-related enzyme genes on Male Infertility

    PubMed Central

    Liu, Kang; Zhao, Ruizhe; Shen, Min; Ye, Jiaxin; Li, Xiao; Huang, Yuan; Hua, Lixin; Wang, Zengjun; Li, Jie

    2015-01-01

    Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility. PMID:26549413

  15. Iron overload in HFE C282Y heterozygotes at first genetic testing: a strategy for identifying rare HFE variants.

    PubMed

    Aguilar-Martinez, Patricia; Grandchamp, Bernard; Cunat, Séverine; Cadet, Estelle; Blanc, François; Nourrit, Marlène; Lassoued, Kaiss; Schved, Jean-François; Rochette, Jacques

    2011-04-01

    Heterozygotes for the p.Cys282Tyr (C282Y) mutation of the HFE gene do not usually express a hemochromatosis phenotype. Apart from the compound heterozygous state for C282Y and the widespread p.His63Asp (H63D) variant allele, other rare HFE mutations can be found in trans on chromosome 6. We performed molecular investigation of the genes implicated in hereditary hemochromatosis in six patients who presented with iron overload but were simple heterozygotes for the HFE C282Y mutation at first genetic testing. Functional impairment of new variants was deduced from computational methods including molecular modeling studies. We identified four rare HFE mutant alleles, three of which have not been previously described. One mutation is a 13-nucleotide deletion in exon 6 (c.1022_1034del13, p.His341_Ala345 > LeufsX119), which is predicted to lead to an elongated and unstable protein. The second one is a substitution of the last nucleotide of exon 2 (c.340G > A, p.Glu114Lys) which modifies the relative solvent accessibility in a loop interface. The third mutation, p.Arg67Cys, also lies in exon 2 and introduces a destabilization of the secondary structure within a loop of the α1 domain. We also found the previously reported c.548T > C (p.Leu183Pro) missense mutation in exon 3. No other known iron genes were mutated. We present an algorithm at the clinical and genetic levels for identifying patients deserving further investigation. Conclusions Our results suggest that additional mutations in HFE may have a clinical impact in C282Y carriers. In conjunction with results from previously described cases we conclude that an elevated transferrin saturation level and elevated hepatic iron index should indicate the utility of searching for further HFE mutations in C282Y heterozygotes prior to other iron gene studies.

  16. Rare Compound Heterozygous Frameshift Mutations in ALMS1 Gene Identified Through Exome Sequencing in a Taiwanese Patient With Alström Syndrome.

    PubMed

    Tsai, Meng-Che; Yu, Hui-Wen; Liu, Tsunglin; Chou, Yen-Yin; Chiou, Yuan-Yow; Chen, Peng-Chieh

    2018-01-01

    Alström syndrome (AS) is a rare autosomal recessive disorder that shares clinical features with other ciliopathy-related diseases. Genetic mutation analysis is often required in making differential diagnosis but usually costly in time and effort using conventional Sanger sequencing. Herein we describe a Taiwanese patient presenting cone-rod dystrophy and early-onset obesity that progressed to diabetes mellitus with marked insulin resistance during adolescence. Whole exome sequencing of the patient's genomic DNA identified a novel frameshift mutation in exons 15 (c.10290_10291delTA, p.Lys3431Serfs * 10) and a rare mutation in 16 (c.10823_10824delAG, p.Arg3609Alafs * 6) of ALMS1 gene. The compound heterozygous mutations were predicted to render truncated proteins. This report highlighted the clinical utility of exome sequencing and extended the knowledge of mutation spectrum in AS patients.

  17. [Analysis of clinical phenotype and genetic mutations of a pedigree of familial hemophagocytic lymphohistiocytosis].

    PubMed

    Sun, Shuwen; Guo, Xia; Zhu, Yiping; Yang, Xue; Li, Qiang; Gao, Ju

    2014-10-01

    To analyze mutations in a pedigree of familial hemophagocytic lymphohistiocytosis (FHLH) from Sichuan and provide genetic counseling for the family. Clinical data of a case with FHLH diagnosed at West China Second Hospital was retrospectively analyzed. Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Eight candidate genes for primary HLH were amplified with PCR and analyzed by direct sequencing. The proband was diagnosed as HLH based on clinical manifestations of recurrent fever for 2 months, hepatosplenomegaly, lymphadenopathy, pancytopenia, hyperferritinemia, and decreased fibrinogen and hemophagocytosis in bone marrow. Genetic testing for primary HLH was carried out considering the relapse of illness after hormone therapy for 8 weeks and the family history. The results of gene sequencing showed that the proband has carried compound heterozygous mutations in PRF1 gene (c.1349C> T in exon 3 and c.445G> A in exon 2). His father has carried a heterozygous mutation (c.445G> A in exon 2) and nonsense mutation (c.900C> T in exon 3), and his mother carried a heterozygous mutation (c.1349C> T in exon 3). Both c.1349C> T and c.445G> A have been previously reported as pathogenic mutations. The family has been diagnosed as familial HLH type 2 based on clinical and laboratory examinations and molecular genetic testing. Gene sequencing has indicated that is was a recessive type familial HLH.

  18. Genetic analysis and literature review of Chinese patients with familial renal glucosuria: Identification of a novel SLC5A2 mutation.

    PubMed

    Wang, Xiaojing; Yu, Miao; Wang, Tong; Zhang, Huabing; Ping, Fan; Zhang, Qian; Xu, Jianping; Feng, Kai; Xiao, Xinhua

    2017-06-01

    Familial renal glucosuria (FRG) is an inherited renal tubular disorder characterized by persistent isolated glucosuria with normal blood glucose. SLC5A2 gene mutation was the causative of FRG. Molecular genetic analysis of SLC5A2 gene by Sanger sequencing was conducted in two unrelated non-consanguineous Chinese families with isolated glucosuria. Extensive laboratory test and physical examination were performed. In silico algorithms were used to explore the potential effect of novel mutation on SGLT2 function. We also summarized the reported SLC5A2 mutations in the Chinese patients with FRG. A novel missense mutation (c.877A>T, p.Ser293Cys) in exon 3 was detected in proband 1 with weight loss accompanying by glucosuria and in her father with normal phenotype. In family 2, a previously reported compound heterozygous mutation (c.229G>C, p.Gly77Arg; c.1540C>T, p.Pro514Ser) was identified, and her healthy parents were heterozygous mutation carriers. The p.S293C mutation was predicted to be pathogenic. No hot spot mutation was found in reported Chinese patients with FRG. The novel pathogenic SLC5A2 mutation p.S293C was responsible for the onset of FRG. Our study further confirmed the co-dominant inheritance trait with variable penetrance and expanded the clinical and genetic spectrum of FRG. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A novel mutation R190H in the AT-hook 1 domain of MeCP2 identified in an atypical Rett syndrome.

    PubMed

    Zhou, Xiao; Liao, Yuangao; Xu, Miaojing; Ji, Zhong; Xu, Yunqi; Zhou, Liang; Wei, Xiaoming; Hu, Peiqian; Han, Peng; Yang, Fanghan; Pan, Suyue; Hu, Yafang

    2017-10-10

    Mutations in Methyl-CpG binding protein 2 ( MECP2 ) have been identified as the disease-causing mutations in Rett Syndrome (RTT). However, no mutation in the AT-hook 1 domain of MECP2 has been reported in RTT yet. The function of AT-hook 1 domain of MECP2 has not been described either. The clinical and radiological features of a girl with progressive hyperactivity and loss of acquired linguistic and motor functions were presented. Next generation sequencing was used to screen the causative gene. Effect of the mutant protein on histone 3 methylation was assessed in vitro experiment. The patient was diagnosed with an atypical RTT at the age of nine. Magnetic resonance imaging revealed a loss of whole-brain volume and abnormal myelination. Genetic analysis identified a de novo novel missense mutation of MECP2 (NM_004992, c.570G->A, p.Arg190His). This mutation is located in the AT-hook 1 domain of MeCP2 protein. Overexpression of the mutant MeCP2 in cultured neuroblastoma cells SH-SY5Y revealed increased level of dimethylated histone 3 lysine 9, a transcriptional repressor marker. A novel missense mutation in AT-hook 1 domain of MeCP2 was identified in a patient with atypical RTT. Clinical data and in vitro experiment result imply that R190H mutation in AT-hook1 may cause dysfunction of MeCP2 and be a pathogenic variant.

  20. Next-Generation Sequencing-based genomic profiling of brain metastases of primary ovarian cancer identifies high number of BRCA-mutations.

    PubMed

    Balendran, S; Liebmann-Reindl, S; Berghoff, A S; Reischer, T; Popitsch, N; Geier, C B; Kenner, L; Birner, P; Streubel, B; Preusser, M

    2017-07-01

    Ovarian cancer represents the most common gynaecological malignancy and has the highest mortality of all female reproductive cancers. It has a rare predilection to develop brain metastases (BM). In this study, we evaluated the mutational profile of ovarian cancer metastases through Next-Generation Sequencing (NGS) with the aim of identifying potential clinically actionable genetic alterations with options for small molecule targeted therapy. Library preparation was conducted using Illumina TruSight Rapid Capture Kit in combination with a cancer specific enrichment kit covering 94 genes. BRCA-mutations were confirmed by using TruSeq Custom Amplicon Low Input Kit in combination with a custom-designed BRCA gene panel. In our cohort all eight sequenced BM samples exhibited a multitude of variant alterations, each with unique molecular profiles. The 37 identified variants were distributed over 22 cancer-related genes (23.4%). The number of mutated genes per sample ranged from 3 to 7 with a median of 4.5. The most commonly altered genes were BRCA1/2, TP53, and ATM. In total, 7 out of 8 samples revealed either a BRCA1 or a BRCA2 pathogenic mutation. Furthermore, all eight BM samples showed mutations in at least one DNA repair gene. Our NGS study of BM of ovarian carcinoma revealed a significant number of BRCA-mutations beside TP53, ATM and CHEK2 mutations. These findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian cancer metastasizing to the brain. Based on these findings, pharmacological PARP inhibition could be one potential targeted therapeutic for brain metastatic ovarian cancer patients.

  1. [Syndrome Leigh caused by mutations in the SURF1 gene: clinical and molecular-genetic characteristics].

    PubMed

    Tsygankova, P G; Mikhaĭlova, S V; Zakharova, E Iu; Pichkur, N A; Il'ina, E S; Nikolaeva, E A; Rudenskaia, G E; Dadali, E L; Kolpakchi, L M; Fedoniuk, I D; Matiushchenko, G N

    2010-01-01

    Syndrome Leigh (SL) or subacute necrotizing encephalomyelopathy - is a rare hereditary genetically heterogeneous disease from the group of mitochondrial encephalomyopathies. Twenty-seven children with SL were examined using clinical, laboratory (measuring lactate levels), MRI and molecular-genetic (polymerase chain reaction genotyping of 9 exons of the SURF1 gene) studies. The mean age of manifestation was 11,6 months. The main manifestations of SL were: delay of psychomotor development, diffuse muscle hypertonic, cerebellar syndrome, ophthalmoparesis, hypertrichosis. The disease had a progressive course with the loss of acquired skills. The blood lactate concentration was increased on average up to 3,1 mM/ml (from 1,9 to 5,1 mM/ml) compared to normal values (1,8 mM/ml). Brain MRI revealed the subcortical and cortical atrophy (80% of cases), symmetrical distinctly delineated hyperintense lesions on T2-weighted images (demyelization) in the basal ganglia and the brain stem (50%), as well as in the cerebellum (25%). Genotyping identified 7 different mutations. The most frequent (64,8%) was the deletion of 2 nucleotides (845delCT) in exon 8 that was in line with early data of Polish researchers thus indicating the Slavic origin of this mutation. Other mutations (574-575insCTGT, 311-321del10insAT and IVS8-1G>) were also frequent in the Russian population.

  2. Recurrent mutation testing of BRCA1 and BRCA2 in Asian breast cancer patients identify carriers in those with presumed low risk by family history.

    PubMed

    Kang, Peter Choon Eng; Phuah, Sze Yee; Sivanandan, Kavitta; Kang, In Nee; Thirthagiri, Eswary; Liu, Jian Jun; Hassan, Norhashimah; Yoon, Sook-Yee; Thong, Meow Keong; Hui, Miao; Hartman, Mikael; Yip, Cheng Har; Mohd Taib, Nur Aishah; Teo, Soo Hwang

    2014-04-01

    Although the breast cancer predisposition genes BRCA1 and BRCA2 were discovered more than 20 years ago, there remains a gap in the availability of genetic counselling and genetic testing in Asian countries because of cost, access and inaccurate reporting of family history of cancer. In order to improve access to testing, we developed a rapid test for recurrent mutations in our Asian populations. In this study, we designed a genotyping assay with 55 BRCA1 and 44 BRCA2 mutations previously identified in Asian studies, and validated this assay in 267 individuals who had previously been tested by full sequencing. We tested the prevalence of these mutations in additional breast cancer cases. Using this genotyping approach, we analysed recurrent mutations in 533 Malaysian breast cancer cases with <10 % a priori risk, and found 1 BRCA1 (0.2 %) and 5 BRCA2 (0.9 %) carriers. Testing in a hospital-based unselected cohort of 532 Singaporean breast cancer cases revealed 6 BRCA1 (1.1 %) and 3 BRCA2 (0.6 %) carriers. Overall, 2 recurrent BRCA1 and 1 BRCA2 mutations in Malays, 3 BRCA1 and 2 BRCA2 mutations in Chinese and 1 BRCA1 mutation in Indians account for 60, 24 and 20 % of carrier families, respectively. By contrast, haplotype analyses suggest that a recurrent BRCA2 mutation (c.262_263delCT) found in 5 unrelated Malay families has at least 3 distinct haplotypes. Taken together, our data suggests that panel testing may help to identify carriers, particularly Asian BRCA2 carriers, who do not present with a priori strong family history characteristics.

  3. Whole exome sequencing identifies a POLRID mutation segregating in a father and two daughters with findings of Klippel-Feil and Treacher Collins syndromes.

    PubMed

    Giampietro, Philip F; Armstrong, Linlea; Stoddard, Alex; Blank, Robert D; Livingston, Janet; Raggio, Cathy L; Rasmussen, Kristen; Pickart, Michael; Lorier, Rachel; Turner, Amy; Sund, Sarah; Sobrera, Nara; Neptune, Enid; Sweetser, David; Santiago-Cornier, Alberto; Broeckel, Ulrich

    2015-01-01

    We report on a father and his two daughters diagnosed with Klippel-Feil syndrome (KFS) but with craniofacial differences (zygomatic and mandibular hypoplasia and cleft palate) and external ear abnormalities suggestive of Treacher Collins syndrome (TCS). The diagnosis of KFS was favored, given that the neck anomalies were the predominant manifestations, and that the diagnosis predated later recognition of the association between spinal segmentation abnormalities and TCS. Genetic heterogeneity and the rarity of large families with KFS have limited the ability to identify mutations by traditional methods. Whole exome sequencing identified a nonsynonymous mutation in POLR1D (subunit of RNA polymerase I and II): exon2:c.T332C:p.L111P. Mutations in POLR1D are present in about 5% of individuals diagnosed with TCS. We propose that this mutation is causal in this family, suggesting a pathogenetic link between KFS and TCS. © 2014 Wiley Periodicals, Inc.

  4. Assessment of canine BEST1 variations identifies new mutations and establishes an independent bestrophinopathy model (cmr3)

    PubMed Central

    Wickström, Kaisa; Slavik, Julianna; Lindauer, Sarah J.; Ahonen, Saija; Schelling, Claude; Lohi, Hannes; Guziewicz, Karina E.; Aguirre, Gustavo D.

    2010-01-01

    novel cmr3 mutation is predicted to be based on a distinctly different molecular mechanism. So far cmr2 and cmr3 are exclusive to a single dog breed each. In contrast, cmr1 is found in multiple related breeds. Additional sequence alterations identified in exon 10 of cBEST1 in other breeds exhibit potential disease-causing features. The inherent genetic and phenotypic variation observed with retinal disorders in canines is complicated further by cmr3 being one of four distinct genetic retinal traits found to segregate in LH. Thus, a combination of phenotypic, molecular, and population analysis is required to establish a strong phenotype–genotype association. These results indicate that cmr has a larger impact on the general dog population than was initially suspected. The complexity of these models further confirms the similarity to human bestrophinopathies. Moreover, analyses of multiple canine models will provide additional insight into the molecular basis underlying diseases caused by mutations in BEST1. PMID:21197113

  5. Hepatitis B virus genetic mutations and evolution in liver diseases

    PubMed Central

    Shen, Tao; Yan, Xin-Min

    2014-01-01

    Hepatitis B virus (HBV) belongs to the genus Orthohepadnavirus of the Hepadnaviridae family and is approximately 3.2 kb in length. Owing to a lack of proofreading capacity during reverse transcription and a high replication rate, HBV exhibits as quasispecies. To detect the genetic mutations of HBV, many methods with different sensitivities and throughputs were developed. According to documentary records, HBV mutation and evolution were important vial parameters in predicting disease progression and therapeutic outcome. In this review, we separately discussed the correlation between HBV genomic mutations in four open reading frames and liver disease progression. Since some of the results were controversial from different laboratories, it remains to be seen whether functional analyses will confirm their role in modifying the course of infection. PMID:24833874

  6. Genetic testing for oculocutaneous albinism type 1 and 2 and Hermansky-Pudlak syndrome type 1 and 3 mutations in Puerto Rico.

    PubMed

    Santiago Borrero, Pedro J; Rodríguez-Pérez, Yolanda; Renta, Jessicca Y; Izquierdo, Natalio J; Del Fierro, Laura; Muñoz, Daniel; Molina, Norma López; Ramírez, Sonia; Pagán-Mercado, Glorivee; Ortíz, Idith; Rivera-Caragol, Enid; Spritz, Richard A; Cadilla, Carmen L

    2006-01-01

    Hermansky-Pudlak syndrome (HPS) (MIM #203300) is a heterogeneous group of autosomal recessive disorders characterized by oculocutaneous albinism (OCA), bleeding tendency, and lysosomal dysfunction. HPS is very common in Puerto Rico (PR), particularly in the northwest part of the island, with a frequency of approximately 1:1,800. Two HPS genes and mutations have been identified in PR, a 16-base pair (bp) duplication in HPS1 and a 3,904-bp deletion in HPS3. In Puerto Ricans with more typical OCA, the most common mutation of the tyrosinase (TYR) (human tyrosinase (OCA1) gene) gene was G47D. We describe screening 229 Puerto Rican OCA patients for these mutations, and for mutations in the OCA2 gene. We found the HPS1 mutation in 42.8% of cases, the HPS3 deletion in 17%, the TYR G47D mutation in 3.0%, and a 2.4-kb deletion of the OCA2 gene in 1.3%. Among Puerto Rican newborns, the frequency of the HPS1 mutation is highest in northwest PR (1:21; 4.8%) and lower in central PR (1:64; 1.6%). The HPS3 gene deletion is most frequent in central PR (1:32; 3.1%). Our findings provide insights into the genetics of albinism and HPS in PR, and provide the basis for genetic screening for these disorders in this minority population.

  7. Reproductive Endocrinologists’ Utilization of Genetic Counselors for Oncofertility and Preimplantation Genetic Diagnosis (PGD) Treatment of BRCA1/2 Mutation Carriers

    PubMed Central

    Goetsch, Allison L.; Wicklund, Catherine; Clayman, Marla L.; Woodruff, Teresa K.

    2016-01-01

    Genetic counselors believe fertility preservation and preimplantation genetic diagnosis (PGD) discussions to be a part of their role when counseling BRCA1/2 mutation-positive patients. This study is the first to explore reproductive endocrinologists’ (REI) practices and attitudes regarding involvement of genetic counselors in the care of BRCA1/2 mutation carriers seeking fertility preservation and PGD. A survey was mailed to 1000 REIs from Reproductive Endocrinology & Infertility (SREI), an American Society for Reproductive Medicine (ASRM) affiliate group. A 14.5 % response rate was achieved; data was analyzed using SPSS software. The majority of participating REIs were found to recommend genetic counseling to cancer patients considering fertility preservation (82 %) and consult with a genetic counselor regarding PGD for hereditary cancer syndromes (92 %). Additionally, REIs consult genetic counselors regarding PGD patient counseling (88 %), genetic testing (78 %), and general genetics questions (66 %). Two areas genetic counselors may further aid REIs are: elicitation of family history, which is useful to determine fertility preservation and PGD intervention timing (32 % of REIs utilize a cancer family history to determine intervention timing); and, interpretation of variants of uncertain significance (VOUS) as cancer panel genetic testing becomes more common (36 % of REIs are unfamiliar with VOUS). Given our findings, the Oncofertility Consortium® created an online resource for genetic counselors focused on fertility preservation education and communication strategies. PMID:26567039

  8. Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.

    PubMed

    Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G

    2015-07-01

    Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96

  9. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.

    PubMed

    Comino-Méndez, Iñaki; Gracia-Aznárez, Francisco J; Schiavi, Francesca; Landa, Iñigo; Leandro-García, Luis J; Letón, Rocío; Honrado, Emiliano; Ramos-Medina, Rocío; Caronia, Daniela; Pita, Guillermo; Gómez-Graña, Alvaro; de Cubas, Aguirre A; Inglada-Pérez, Lucía; Maliszewska, Agnieszka; Taschin, Elisa; Bobisse, Sara; Pica, Giuseppe; Loli, Paola; Hernández-Lavado, Rafael; Díaz, José A; Gómez-Morales, Mercedes; González-Neira, Anna; Roncador, Giovanna; Rodríguez-Antona, Cristina; Benítez, Javier; Mannelli, Massimo; Opocher, Giuseppe; Robledo, Mercedes; Cascón, Alberto

    2011-06-19

    Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.

  10. CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations.

    PubMed

    Guernet, Alexis; Mungamuri, Sathish Kumar; Cartier, Dorthe; Sachidanandam, Ravi; Jayaprakash, Anitha; Adriouch, Sahil; Vezain, Myriam; Charbonnier, Françoise; Rohkin, Guy; Coutant, Sophie; Yao, Shen; Ainani, Hassan; Alexandre, David; Tournier, Isabelle; Boyer, Olivier; Aaronson, Stuart A; Anouar, Youssef; Grumolato, Luca

    2016-08-04

    Intratumor genetic heterogeneity underlies the ability of tumors to evolve and adapt to different environmental conditions. Using CRISPR/Cas9 technology and specific DNA barcodes, we devised a strategy to recapitulate and trace the emergence of subpopulations of cancer cells containing a mutation of interest. We used this approach to model different mechanisms of lung cancer cell resistance to EGFR inhibitors and to assess effects of combined drug therapies. By overcoming intrinsic limitations of current approaches, CRISPR-barcoding also enables investigation of most types of genetic modifications, including repair of oncogenic driver mutations. Finally, we used highly complex barcodes inserted at a specific genome location as a means of simultaneously tracing the fates of many thousands of genetically labeled cancer cells. CRISPR-barcoding is a straightforward and highly flexible method that should greatly facilitate the functional investigation of specific mutations, in a context that closely mimics the complexity of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3

    PubMed Central

    2012-01-01

    Background Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Methods Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Results Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Conclusion Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis. PMID:22938382

  12. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    PubMed

    Paulo, Paula; Maia, Sofia; Pinto, Carla; Pinto, Pedro; Monteiro, Augusta; Peixoto, Ana; Teixeira, Manuel R

    2018-04-01

    Considering that mutations in known prostate cancer (PrCa) predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS) in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  13. Stargardt macular dystrophy: common ABCA4 mutations in South Africa—establishment of a rapid genetic test and relating risk to patients

    PubMed Central

    Nossek, Christel A.; Greenberg, L. Jacquie; Ramesar, Rajkumar S.

    2012-01-01

    Purpose Based on the previous indications of founder ATP-binding cassette sub-family A member 4 gene (ABCA4) mutations in a South African subpopulation, the purpose was to devise a mechanism for identifying common disease-causing mutations in subjects with ABCA4-associated retinopathies (AARs). Facilitating patient access to this data and determining the frequencies of the mutations in the South African population would enhance the current molecular diagnostic service offered. Methods The majority of subjects in this study were of Caucasian ancestry and affected with Stargardt macular dystrophy. The initial cohort consisted of DNA samples from 181 patients, and was screened using the ABCR400 chip. An assay was then designed to screen a secondary cohort of 72 patients for seven of the most commonly occurring ABCA4 mutations in this population. A total of 269 control individuals were also screened for the seven ABCA4 mutations. Results Microarray screening results from a cohort of 181 patients affected with AARs revealed that seven ABCA4 mutations (p.Arg152*, c.768G>T, p.Arg602Trp, p.Gly863Ala, p.Cys1490Tyr, c.5461–10T>C, and p.Leu2027Phe) occurred at a relatively high frequency. The newly designed genetic assay identified two of the seven disease-associated mutations in 28/72 patients in a secondary patient cohort. In the control cohort, 12/269 individuals were found to be heterozygotes, resulting in an estimated background frequency of these mutations in this particular population of 4.46 per 100 individuals. Conclusions The relatively high detection rate of seven ABCA4 mutations in the primary patient cohort led to the design and subsequent utility of a multiplex assay. This assay can be used as a viable screening tool and to reduce costs and laboratory time. The estimated background frequency of the seven ABCA4 mutations, together with the improved diagnostic service, could be used by counselors to facilitate clinical and genetic management of South African

  14. A novel NOTCH3 mutation identified in patients with oral cancer by whole exome sequencing.

    PubMed

    Yi, Yanjun; Tian, Zhuowei; Ju, Houyu; Ren, Guoxin; Hu, Jingzhou

    2017-06-01

    Oral cancer is a serious disease caused by environmental factors and/or susceptible genes. In the present study, in order to identify useful genetic biomarkers for cancer prediction and prevention, and for personalized treatment, we detected somatic mutations in 5 pairs of oral cancer tissues and blood samples using whole exome sequencing (WES). Finally, we confirmed a novel nonsense single-nucleotide polymorphism (SNP; chr19:15288426A>C) in the NOTCH3 gene with sanger sequencing, which resulted in a N1438T mutation in the protein sequence. Using multiple in silico analyses, this variant was found to mildly damaging effects on the NOTCH3 gene, which was supported by the results from analyses using PANTHER, SNAP and SNPs&GO. However, further analysis using Mutation Taster revealed that this SNP had a probability of 0.9997 to be 'disease causing'. In addition, we performed 3D structure simulation analysis and the results suggested that this variant had little effect on the solubility and hydrophobicity of the protein and thus on its function; however, it decreased the stability of the protein by increasing the total energy following minimization (-1,051.39 kcal/mol for the mutant and -1,229.84 kcal/mol for the native) and decreasing one stabilizing residue of the protein. Less stability of the N1438T mutant was also supported by analysis using I-Mutant with a DDG value of -1.67. Overall, the present study identified and confirmed a novel mutation in the NOTCH3 gene, which may decrease the stability of NOTCH3, and may thus prove to be helpful in cancer prognosis.

  15. Coding Sequence Mutations Identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 Patients with Familial or Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Hershberger, Ray E.; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Jakobs, Petra; Nauman, Deirdre; Burgess, Donna; Partain, Julie; Litt, Michael

    2008-01-01

    Abstract Background: More than 20 genes have been reported to cause idiopathic and familial dilated cardiomyopathy (IDC/FDC), but the frequency of genetic causation remains poorly understood. Methods and Results: Blood samples were collected and DNA prepared from 313 patients, 183 with FDC and 130 with IDC. Genomic DNA underwent bidirectional sequencing of six genes, and mutation carriers were followed up by evaluation of additional family members. We identified in 36 probands, 31 unique protein‐altering variants (11.5% overall) that were not identified in 253 control subjects (506 chromosomes). These included 13 probands (4.2%) with 12 β‐myosin heavy chain (MYH7) mutations, nine probands (2.9%) with six different cardiac troponin T (TNNT2) mutations, eight probands (2.6%) carrying seven different cardiac sodium channel (SCN5A) mutations, three probands (1.0%) with three titin‐cap or telethonin (TCAP) mutations, three probands (1.0%) with two LIM domain binding 3 (LDB3) mutations, and one proband (0.3%) with a muscle LIM protein (CSRP3) mutation. Four nucleotide changes did not segregate with phentoype and/or did not alter a conserved amino acid and were therefore considered unlikely to be disease‐causing. Mutations in 11 probands were assessed as likely disease‐causing, and in 21 probands were considered possibly disease‐causing. These 32 probands included 14 of the 130 with IDC (10.8%) and 18 of the 183 with FDC (9.8%) Conclusions: Mutations of these six genes each account for a small fraction of the genetic cause of FDC/IDC. The frequency of possible or likely disease‐causing mutations in these genes is similar for IDC and FDC. PMID:19412328

  16. [Characterization of genetic alterations in primary human melanomas carrying BRAF or NRAS mutation].

    PubMed

    Lázár, Viktória

    2013-06-01

    Human malignant melanoma is one of the most aggressive forms of skin cancer with an exceptionally bad prognosis. Melanoma often displays constitutively activated MAPK pathway through BRAF or NRAS mutations. It is also known that these mutations are almost never simultaneously present and that they appear at early stages and preserved throughout tumor progression, although it is proved that these alterations alone are insufficient to cause tumor progression. Therefore the first aim of our study was to evaluate those distinct genetic alterations which can properly differentiate the three important molecular subtypes of primary melanomas with a) BRAF, b) NRAS mutation and c) WT (wild type for both loci). High-resolution array comparative genomic hybridization (array CGH) was used to assess genome-wide analysis of DNA copy number alterations. Primary melanomas with BRAF mutation more frequently exhibited losses on 10q23-10q26 and gains on chromosome 7 and 1q23-1q25 compared to melanomas with NRAS mutation. Loss on the 11q23-11q25 sequence was found mainly in conjunction with NRAS mutation. Based on these results, we proved the existence of marked differences in the genetic pattern of the BRAF and NRAS mutated melanoma subgroups, which might suggest that these mutations contribute to the development of malignant melanoma in conjunction with distinct cooperating oncogenic events. In general, it is an interesting phenomenon suggesting that these mutations provide probably the "guiding force" for these tumors and it also suggests that there are alternative genetic pathways to melanoma. These additional oncogenic events which are associated with BRAF or NRAS mutations can provide rational additional targets for a combination therapy with kinase inhibitors. In this study we also investigated the specific dynamic activities among different signalling pathways highlighting the frequent alterations of genes involved in the signalling interactions between the MAPK-JAK pathways

  17. Genetic characterization and antiretroviral resistance mutations among treatment-naive HIV-infected individuals in Jiaxing, China.

    PubMed

    Guo, Jinlei; Yan, Yong; Zhang, Jiafeng; Ji, Jimei; Ge, Zhijian; Ge, Rui; Zhang, Xiaofei; Wang, Henghui; Chen, Zhongwen; Luo, Jianyong

    2017-03-14

    The aim of this study was to characterize HIV-1 genotypes and antiretroviral resistance mutations among treatment-naive HIV-infected individuals in Jiaxing, China. The HIV-1 partial polymerase (pol) genes in 93 of the 99 plasma samples were successfully amplified and analyzed. Phylogenetic analysis revealed the existence of five HIV-1 genotypes, of which the most prevalent genotype was CRF01_AE (38.7%), followed by CRF07_BC (34.4%), CRF08_BC (16.1%), subtype B/B' (5.4%), and CRF55_01B (2.1%). Besides, three types of unique recombination forms (URFs) were also observed, including C/F2/A1, CRF01_AE/B, and CRF08_BC/CRF07_BC. Among 93 amplicons, 46.2% had drug resistance-associated mutations, including 23.7% for protease inhibitors (PIs) mutations, 1.1% for nucleoside reverse transcriptase inhibitors (NRTIs) mutations, and 20.4% for non-nucleoside reverse transcriptase inhibitors (NNRTIs) mutations. Six (6.5%) out of 93 treatment-naive subjects were identified to be resistant to one or more NNRTIs, while resistance to NRTIs or PIs was not observed. Our study showed the genetic diversity of HIV-1 strains circulating in Jiaxing and a relative high proportion of antiretroviral resistance mutations among treatment-naive patients, indicating a serious challenge for HIV prevention and treatment program.

  18. Targeted High-Throughput Sequencing Identifies Mutations in atlastin-1 as a Cause of Hereditary Sensory Neuropathy Type I

    PubMed Central

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M.; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M.; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R.; Janecke, Andreas R.; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-01

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders. PMID:21194679

  19. G20210A prothrombin gene mutation identified in patients with venous leg ulcers.

    PubMed

    Jebeleanu, G; Procopciuc, L

    2001-01-01

    The G20210A mutation variant of prothrombin gene is the second most frequent mutation identified in patients with deep venous thrombosis, after factor V Leiden. The risk for developing deep venous thrombosis is high in patients identified as heterozygous for G20210A mutation. In order to identify this polymorphism in the gene coding prothrombin, the 345bp fragment in the 3'- untranslated region of the prothrombin gene was amplified using amplification by polymerase chain reaction and enzymatic digestion by HindIII (restriction endonuclease enzyme). The products of amplification and enzymatic's digestion were analized using agarose gel electrophoresis. We investigated 20 patients with venous leg ulcers and we found 2 heterozygous (10%) for G20210A mutation. None of the patients in the control group had G20210A mutation. Our study confirms the presence of G20210A mutation in the Romanian population. Our study also shows the link between venous leg ulcers and this polymorphism in the prothrombin gene.

  20. Systematic reconstruction of autism biology from massive genetic mutation profiles

    PubMed Central

    Zhang, Chaolin; Jiang, Yong-hui

    2018-01-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3′,5′-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein–coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity. PMID:29651456

  1. Systematic reconstruction of autism biology from massive genetic mutation profiles.

    PubMed

    Luo, Weijun; Zhang, Chaolin; Jiang, Yong-Hui; Brouwer, Cory R

    2018-04-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.

  2. De novo mutations in regulatory elements in neurodevelopmental disorders

    PubMed Central

    Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.

    2018-01-01

    We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236

  3. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients.

    PubMed

    Bonnet, Crystel; Riahi, Zied; Chantot-Bastaraud, Sandra; Smagghe, Luce; Letexier, Mélanie; Marcaillou, Charles; Lefèvre, Gaëlle M; Hardelin, Jean-Pierre; El-Amraoui, Aziz; Singh-Estivalet, Amrit; Mohand-Saïd, Saddek; Kohl, Susanne; Kurtenbach, Anne; Sliesoraityte, Ieva; Zobor, Ditta; Gherbi, Souad; Testa, Francesco; Simonelli, Francesca; Banfi, Sandro; Fakin, Ana; Glavač, Damjan; Jarc-Vidmar, Martina; Zupan, Andrej; Battelino, Saba; Martorell Sampol, Loreto; Claveria, Maria Antonia; Catala Mora, Jaume; Dad, Shzeena; Møller, Lisbeth B; Rodriguez Jorge, Jesus; Hawlina, Marko; Auricchio, Alberto; Sahel, José-Alain; Marlin, Sandrine; Zrenner, Eberhart; Audo, Isabelle; Petit, Christine

    2016-12-01

    Usher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods.

  4. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients

    PubMed Central

    Bonnet, Crystel; Riahi, Zied; Chantot-Bastaraud, Sandra; Smagghe, Luce; Letexier, Mélanie; Marcaillou, Charles; Lefèvre, Gaëlle M; Hardelin, Jean-Pierre; El-Amraoui, Aziz; Singh-Estivalet, Amrit; Mohand-Saïd, Saddek; Kohl, Susanne; Kurtenbach, Anne; Sliesoraityte, Ieva; Zobor, Ditta; Gherbi, Souad; Testa, Francesco; Simonelli, Francesca; Banfi, Sandro; Fakin, Ana; Glavač, Damjan; Jarc-Vidmar, Martina; Zupan, Andrej; Battelino, Saba; Martorell Sampol, Loreto; Claveria, Maria Antonia; Catala Mora, Jaume; Dad, Shzeena; Møller, Lisbeth B; Rodriguez Jorge, Jesus; Hawlina, Marko; Auricchio, Alberto; Sahel, José-Alain; Marlin, Sandrine; Zrenner, Eberhart; Audo, Isabelle; Petit, Christine

    2016-01-01

    Usher syndrome (USH), the most prevalent cause of hereditary deafness–blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1–3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods. PMID:27460420

  5. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations.

    PubMed

    Sandberg, Troy E; Pedersen, Margit; LaCroix, Ryan A; Ebrahim, Ali; Bonde, Mads; Herrgard, Markus J; Palsson, Bernhard O; Sommer, Morten; Feist, Adam M

    2014-10-01

    Adaptive laboratory evolution (ALE) has emerged as a valuable method by which to investigate microbial adaptation to a desired environment. Here, we performed ALE to 42 °C of ten parallel populations of Escherichia coli K-12 MG1655 grown in glucose minimal media. Tightly controlled experimental conditions allowed selection based on exponential-phase growth rate, yielding strains that uniformly converged toward a similar phenotype along distinct genetic paths. Adapted strains possessed as few as 6 and as many as 55 mutations, and of the 144 genes that mutated in total, 14 arose independently across two or more strains. This mutational recurrence pointed to the key genetic targets underlying the evolved fitness increase. Genome engineering was used to introduce the novel ALE-acquired alleles in random combinations into the ancestral strain, and competition between these engineered strains reaffirmed the impact of the key mutations on the growth rate at 42 °C. Interestingly, most of the identified key gene targets differed significantly from those found in similar temperature adaptation studies, highlighting the sensitivity of genetic evolution to experimental conditions and ancestral genotype. Additionally, transcriptomic analysis of the ancestral and evolved strains revealed a general trend for restoration of the global expression state back toward preheat stressed levels. This restorative effect was previously documented following evolution to metabolic perturbations, and thus may represent a general feature of ALE experiments. The widespread evolved expression shifts were enabled by a comparatively scant number of regulatory mutations, providing a net fitness benefit but causing suboptimal expression levels for certain genes, such as those governing flagellar formation, which then became targets for additional ameliorating mutations. Overall, the results of this study provide insight into the adaptation process and yield lessons important for the future

  6. Monoallelic mutation analysis (MAMA) for identifying germline mutations.

    PubMed

    Papadopoulos, N; Leach, F S; Kinzler, K W; Vogelstein, B

    1995-09-01

    Dissection of germline mutations in a sensitive and specific manner presents a continuing challenge. In dominantly inherited diseases, mutations occur in only one allele and are often masked by the normal allele. Here we report the development of a sensitive and specific diagnostic strategy based on somatic cell hybridization termed MAMA (monoallelic mutation analysis). We have demonstrated the utility of this strategy in two different hereditary colorectal cancer syndromes, one caused by a defective tumour suppressor gene on chromosome 5 (familial adenomatous polyposis, FAP) and the other caused by a defective mismatch repair gene on chromosome 2 (hereditary non-polyposis colorectal cancer, HNPCC).

  7. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas: Mutational signature associated with MUTYH deficiency in cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. However, specific mutational signatures associated with base excision repair (BER) defects remain to be characterized. Here, by analysing a series of colorectal cancers (CRCs) using exome sequencing, we identified a particular spectrum of somatic mutations characterized by an enrichment of C > A transversions in NpCpA or NpCpT contexts in three tumours from a MUTYH-associated polyposis (MAP) patient and in two cases harbouring pathogenic germline MUTYH mutations. In two series of adrenocortical carcinomas (ACCs), we identified four tumours with a similar signaturemore » also presenting germline MUTYH mutations. Altogether, these findings demonstrate that MUTYH inactivation results in a particular mutational signature, which may serve as a useful marker of BER-related genomic instability in new cancer types.« less

  8. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas: Mutational signature associated with MUTYH deficiency in cancers

    DOE PAGES

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.; ...

    2017-03-29

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. However, specific mutational signatures associated with base excision repair (BER) defects remain to be characterized. Here, by analysing a series of colorectal cancers (CRCs) using exome sequencing, we identified a particular spectrum of somatic mutations characterized by an enrichment of C > A transversions in NpCpA or NpCpT contexts in three tumours from a MUTYH-associated polyposis (MAP) patient and in two cases harbouring pathogenic germline MUTYH mutations. In two series of adrenocortical carcinomas (ACCs), we identified four tumours with a similar signaturemore » also presenting germline MUTYH mutations. Altogether, these findings demonstrate that MUTYH inactivation results in a particular mutational signature, which may serve as a useful marker of BER-related genomic instability in new cancer types.« less

  9. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges

    PubMed Central

    Marangi, Giuseppe; Traynor, Bryan J.

    2018-01-01

    The genetic architecture of amyotrophic lateral sclerosis (ALS) is being increasingly understood. In this far-reaching review, we examine what is currently known about ALS genetics and how these genes were initially identified. We also discuss the various types of mutations that might underlie this fatal neurodegenerative condition and outline some of the strategies that might be useful in untangling them. These include expansions of short repeat sequences, common and low-frequency genetic variations, de novo mutations, epigenetic changes, somatic mutations, epistasis, oligogenic and polygenic hypotheses. PMID:25316630

  10. Can mutation-mediated effects occurring early in development cause long-term seizure susceptibility in genetic generalized epilepsies?

    PubMed

    Reid, Christopher Alan; Rollo, Ben; Petrou, Steven; Berkovic, Samuel F

    2018-05-01

    Epilepsy has a strong genetic component, with an ever-increasing number of disease-causing genes being discovered. Most epilepsy-causing mutations are germ line and thus present from conception. These mutations are therefore well positioned to have a deleterious impact during early development. Here we review studies that investigate the role of genetic lesions within the early developmental window, specifically focusing on genetic generalized epilepsy (GGE). Literature on the potential pathogenic role of sub-mesoscopic structural changes in GGE is also reviewed. Evidence from rodent models of genetic epilepsy support the idea that functional and structural changes can occur in early development, leading to altered seizure susceptibility into adulthood. Both animal and human studies suggest that sub-mesoscopic structural changes occur in GGE. The existence of sub-mesoscopic structural changes prior to seizure onset may act as biomarkers of excitability in genetic epilepsies. We also propose that presymptomatic treatment may be essential for limiting the long-term consequences of disease-causing mutations in genetic epilepsies. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  11. Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells.

    PubMed

    Aoi, Takashi

    2016-09-01

    At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.

  12. Screening for germline BRCA1, BRCA2, TP53 and CHEK2 mutations in families at-risk for hereditary breast cancer identified in a population-based study from Southern Brazil.

    PubMed

    Palmero, Edenir Inêz; Alemar, Bárbara; Schüler-Faccini, Lavínia; Hainaut, Pierre; Moreira-Filho, Carlos Alberto; Ewald, Ingrid Petroni; Santos, Patricia Koehler Dos; Ribeiro, Patricia Lisbôa Izetti; Oliveira, Cristina Brinkmann de Netto; Calvez-Kelm, Florence Le; Tavtigian, Sean; Cossio, Silvia Liliana; Giugliani, Roberto; Caleffi, Maira; Ashton-Prolla, Patricia

    2016-05-24

    In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS) in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH) of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA). If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil.

  13. Screening for germline BRCA1, BRCA2, TP53 and CHEK2 mutations in families at-risk for hereditary breast cancer identified in a population-based study from Southern Brazil

    PubMed Central

    Palmero, Edenir Inêz; Alemar, Bárbara; Schüler-Faccini, Lavínia; Hainaut, Pierre; Moreira-Filho, Carlos Alberto; Ewald, Ingrid Petroni; dos Santos, Patricia Koehler; Ribeiro, Patricia Lisbôa Izetti; de Oliveira, Cristina Brinkmann; Kelm, Florence Le Calvez; Tavtigian, Sean; Cossio, Silvia Liliana; Giugliani, Roberto; Caleffi, Maira; Ashton-Prolla, Patricia

    2016-01-01

    Abstract In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS) in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH) of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA). If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil. PMID:27223485

  14. A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic

    PubMed Central

    Madsen, Bo Eskerod; Browning, Sharon R.

    2009-01-01

    Resequencing is an emerging tool for identification of rare disease-associated mutations. Rare mutations are difficult to tag with SNP genotyping, as genotyping studies are designed to detect common variants. However, studies have shown that genetic heterogeneity is a probable scenario for common diseases, in which multiple rare mutations together explain a large proportion of the genetic basis for the disease. Thus, we propose a weighted-sum method to jointly analyse a group of mutations in order to test for groupwise association with disease status. For example, such a group of mutations may result from resequencing a gene. We compare the proposed weighted-sum method to alternative methods and show that it is powerful for identifying disease-associated genes, both on simulated and Encode data. Using the weighted-sum method, a resequencing study can identify a disease-associated gene with an overall population attributable risk (PAR) of 2%, even when each individual mutation has much lower PAR, using 1,000 to 7,000 affected and unaffected individuals, depending on the underlying genetic model. This study thus demonstrates that resequencing studies can identify important genetic associations, provided that specialised analysis methods, such as the weighted-sum method, are used. PMID:19214210

  15. Exome Capture and Massively Parallel Sequencing Identifies a Novel HPSE2 Mutation in a Saudi Arabian Child with Ochoa (Urofacial) Syndrome

    PubMed Central

    Al Badr, Wisam; Al Bader, Suha; Otto, Edgar; Hildebrandt, Friedhelm; Ackley, Todd; Peng, Weiping; Xu, Jishu; Li, Jun; Owens, Kailey M.; Bloom, David; Innis, Jeffrey W.

    2011-01-01

    We describe a child of Middle Eastern descent by first-cousin mating with idiopathic neurogenic bladder and high grade vesicoureteral reflux at 1 year of age, whose characteristic facial grimace led to the diagnosis of Ochoa (Urofacial) syndrome at age 5 years. We used homozygosity mapping, exome capture and paired end sequencing to identify the disease causing mutation in the proband. We reviewed the literature with respect to the urologic manifestations of Ochoa syndrome. A large region of marker homozygosity was observed at 10q24, consistent with known autosomal recessive inheritance, family consanguinity and previous genetic mapping in other families with Ochoa syndrome. A homozygous mutation was identified in the proband in HPSE2: c.1374_1378delTGTGC, a deletion of 5 nucleotides in exon 10 that is predicted to lead to a frameshift followed by replacement of 132 C-terminal amino acids with 153 novel amino acids (p.Ala458Alafsdel132ins153). This mutation is novel relative to very recently published mutations in HPSE2 in other families. Early intervention and recognition of Ochoa syndrome with control of risk factors and close surveillance will decrease complications and renal failure. PMID:21450525

  16. Genetic Testing for Oculocutaneous Albinism Type 1 and 2 and Hermansky–Pudlak Syndrome Type 1 and 3 Mutations in Puerto Rico

    PubMed Central

    Santiago Borrero, Pedro J.; Rodríguez-Pérez, Yolanda; Renta, Jessicca Y.; Izquierdo, Natalio J.; del Fierro, Laura; Muñoz, Daniel; Molina, Norma López; Ramírez, Sonia; Pagán-Mercado, Glorivee; Ortíz, Idith; Rivera-Caragol, Enid; Spritz, Richard A.; Cadilla, Carmen L.

    2013-01-01

    Hermansky–Pudlak syndrome (HPS) (MIM #203300) is a heterogeneous group of autosomal recessive disorders characterized by oculocutaneous albinism (OCA), bleeding tendency, and lysosomal dysfunction. HPS is very common in Puerto Rico (PR), particularly in the northwest part of the island, with a frequency of ~1:1,800. Two HPS genes and mutations have been identified in PR, a 16-base pair (bp) duplication in HPS1 and a 3,904-bp deletion in HPS3. In Puerto Ricans with more typical OCA, the most common mutation of the tyrosinase (TYR) (human tyrosinase (OCA1) gene) gene was G47D. We describe screening 229 Puerto Rican OCA patients for these mutations, and for mutations in the OCA2 gene. We found the HPS1 mutation in 42.8% of cases, the HPS3 deletion in 17%, the TYR G47D mutation in 3.0%, and a 2.4-kb deletion of the OCA2 gene in 1.3%. Among Puerto Rican newborns, the frequency of the HPS1 mutation is highest in northwest PR (1:21; 4.8%) and lower in central PR (1:64; 1.6%). The HPS3 gene deletion is most frequent in central PR (1:32; 3.1%). Our findings provide insights into the genetics of albinism and HPS in PR, and provide the basis for genetic screening for these disorders in this minority population. PMID:16417222

  17. Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma.

    PubMed

    Jouenne, Fanélie; Chauvot de Beauchene, Isaure; Bollaert, Emeline; Avril, Marie-Françoise; Caron, Olivier; Ingster, Olivier; Lecesne, Axel; Benusiglio, Patrick; Terrier, Philippe; Caumette, Vincent; Pissaloux, Daniel; de la Fouchardière, Arnaud; Cabaret, Odile; N'Diaye, Birama; Velghe, Amélie; Bougeard, Gaelle; Mann, Graham J; Koscielny, Serge; Barrett, Jennifer H; Harland, Mark; Newton-Bishop, Julia; Gruis, Nelleke; Van Doorn, Remco; Gauthier-Villars, Marion; Pierron, Gaelle; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Guimbaud, Rosine; Delnatte, Capucine; Scoazec, Jean-Yves; Eggermont, Alexander M; Feunteun, Jean; Tchertanov, Luba; Demoulin, Jean-Baptiste; Frebourg, Thierry; Bressac-de Paillerets, Brigitte

    2017-09-01

    Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A -/+ genotype and for CDKN2A mutations in 190 TP53 -negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A /p16 INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A /p16 INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor ( PDGFRA ) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. Germline mutations in CDKN2A /P16 INK4A , a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Environmental risk factors for autism: do they help cause de novo genetic mutations that contribute to the disorder?

    PubMed

    Kinney, Dennis K; Barch, Daniel H; Chayka, Bogdan; Napoleon, Siena; Munir, Kerim M

    2010-01-01

    Recent research has discovered that a number of genetic risk factors for autism are de novo mutations. Advanced parental age at the time of conception is associated with increased risk for both autism and de novo mutations. We investigated the hypothesis that other environmental factors associated with increased risk for autism might also be mutagenic and contribute to autism by causing de novo mutations. A survey of the research literature identified 9 environmental factors for which increased pre-conceptual exposure appears to be associated with increased risk for autism. Five of these factors--mercury, cadmium, nickel, trichloroethylene, and vinyl chloride--are established mutagens. Another four--including residence in regions that are urbanized, located at higher latitudes, or experience high levels of precipitation--are associated with decreased sun exposure and increased risk for vitamin D deficiency. Vitamin D plays important roles in repairing DNA damage and protecting against oxidative stress--a key cause of DNA damage. Factors associated with vitamin D deficiency will thus contribute to higher mutation rates and impaired repair of DNA. We note how de novo mutations may also help explain why the concordance rate for autism is so markedly higher in monozygotic than dizygotic twins. De novo mutations may also explain in part why the prevalence of autism is so remarkably high, given the evidence for a strong role of genetic factors and the low fertility of individuals with autism--and resultant selection pressure against autism susceptibility genes. These several lines of evidence provide support for the hypothesis, and warrant new research approaches--which we suggest--to address limitations in existing studies. The hypothesis has implications for understanding possible etiologic roles of de novo mutations in autism, and it suggests possible approaches to primary prevention of the disorder, such as addressing widespread vitamin D deficiency and exposure to

  19. Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluijtmans, L.A.J.; Heuvel, L.P.W.J. van den; Stevens, E.M.B.

    1996-01-01

    Mild hyperhomocysteinemia is an established risk factor for cardiovascular disease. Genetic aberrations in the cystathionine P-synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) genes may account for reduced enzyme activities and elevated plasma homocysteine levels. In 15 unrelated Dutch patients with homozygous CBS deficiency, we observed the 833T{yields}C (1278T) mutation in 50% of the alleles. Very recently, we identified a common mutation (677C{yields}T; A{yields}V) in the MTHFR gene, which, in homozygous state, is responsible for the thermolabile phenotype and which is associated with decreased specific MTHFR activity and elevated homocysteine levels. We screened 60 cardiovascular patients and 111 controls for these twomore » mutations, to determine whether these mutations are risk factors for premature cardiovascular disease. Heterozygosity for the 833T{yields}C mutation in the CBS gene was observed in one individual of the control group but was absent in patients with premature cardiovascular disease. Homozygosity for the 677C-{yields}T mutation in the MTHFR gene was found in 9 (15%) of 60 cardiovascular patients and in only 6 ({approximately}5%) of 111 control individuals (odds ratio 3.1 [95% confidence interval 1.0-9.21]). Because of both the high prevalence of the 833T-{yields}C mutation among homozygotes for CBS deficiency and its absence in 60 cardiovascular patients, we may conclude that heterozygosity for CBS deficiency does not appear to be involved in premature cardiovascular disease. However, a frequent homozygous mutation in the MTHFR gene is associated with a threefold increase in risk for premature cardiovascular disease. 35 refs., 3 figs., 1 tab.« less

  20. Genetic susceptibility to neuroblastoma

    PubMed Central

    Tolbert, Vanessa P.; Coggins, Grace E.; Maris, John M.

    2017-01-01

    Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma. PMID:28458126

  1. Two novel mutations in seven Czech and Slovak kindreds with familial neurohypophyseal diabetes insipidus-benefit of genetic testing.

    PubMed

    Hrčková, Gabriela; Jankó, Viktor; Kytnarová, Jitka; Čižmárová, Michaela; Tesařová, Markéta; Košťálová, Ľudmila; Virgová, Daniela; Dallos, Tomáš; Hána, Václav; Lebl, Jan; Zeman, Jiří; Kovács, László

    2016-09-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is a rare hereditary disorder with unknown prevalence characterized by arginine-vasopressin hormone (AVP) deficiency resulting in polyuria and polydipsia from early childhood. We report the clinical manifestation and genetic test results in seven unrelated kindreds of Czech or Slovak origin with FNDI phenotype. The age of the sign outset ranged from 2 to 17 years with remarkable interfamilial and intrafamilial variability. Inconclusive result of the fluid deprivation test in three children aged 7 and 17 years old might cause misdiagnosis; however, the AVP gene analysis confirmed the FNDI. The seven families segregated together five different mutations, two of them were novel (c.164C > A, c.298G > C). In addition, DNA analysis proved mutation carrier status in one asymptomatic 1-year-old infant. The present study together with previously published data identified 38 individuals with FNDI in the studied population of 16 million which predicts a disease prevalence of 1:450,000 for the Central European region. The paper underscores that diagnostic water deprivation test may be inconclusive in polyuric children with partial diabetes insipidus and points to the clinical importance and feasibility of molecular genetic testing for AVP gene mutations in the proband and her/his first degree relatives. • At least 70 different mutations were reported to date in about 100 families with neurohypophyseal diabetes insipidus (FNDI), and new mutations appear sporadically. What is New: • Two novel mutations of the AVP gene are reported • The importance of molecular testing in children with polyuria and inconclusive water deprivation test is emphasized.

  2. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    PubMed

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  3. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations.

    PubMed

    Cosgarea, Ioana; Ugurel, Selma; Sucker, Antje; Livingstone, Elisabeth; Zimmer, Lisa; Ziemer, Mirjana; Utikal, Jochen; Mohr, Peter; Pfeiffer, Christiane; Pföhler, Claudia; Hillen, Uwe; Horn, Susanne; Schadendorf, Dirk; Griewank, Klaus G; Roesch, Alexander

    2017-06-20

    Mucosal melanoma represents ~1% of all melanomas, frequently having a poor prognosis due to diagnosis at a late stage of disease. Mucosal melanoma differs from cutaneous melanoma not only in terms of poorer clinical outcome but also on the molecular level having e.g. less BRAF and more frequent KIT mutations than cutaneous melanomas. For the majority of mucosal melanomas oncogenic driver mutations remain unknown. In our study, 75 tumor tissues from patients diagnosed with mucosal melanoma were analyzed, applying a targeted next generation sequencing panel covering 29 known recurrently mutated genes in melanoma. NF1 and RAS mutations were identified as the most frequently mutated genes occurring in 18.3% and 16.9% of samples, respectively. Mutations in BRAF were identified in 8.4% and KIT in 7.0% of tumor samples. Our study identifies NF1 as the most frequently occurring driver mutation in mucosal melanoma. RAS alterations, consisting of NRAS and KRAS mutations, were the second most frequent mutation type. BRAF and KIT mutations were rare with frequencies below 10% each. Our data indicate that in mucosal melanomas RAS/NF1 alterations are frequent, implying a significant pathogenetic role for MAPK and potentially PI3K pathway activation in these tumors.

  4. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations

    PubMed Central

    Cosgarea, Ioana; Ugurel, Selma; Sucker, Antje; Livingstone, Elisabeth; Zimmer, Lisa; Ziemer, Mirjana; Utikal, Jochen; Mohr, Peter; Pfeiffer, Christiane; Pföhler, Claudia; Hillen, Uwe; Horn, Susanne; Schadendorf, Dirk

    2017-01-01

    Purpose Mucosal melanoma represents ~1% of all melanomas, frequently having a poor prognosis due to diagnosis at a late stage of disease. Mucosal melanoma differs from cutaneous melanoma not only in terms of poorer clinical outcome but also on the molecular level having e.g. less BRAF and more frequent KIT mutations than cutaneous melanomas. For the majority of mucosal melanomas oncogenic driver mutations remain unknown. Experimental Design and Results In our study, 75 tumor tissues from patients diagnosed with mucosal melanoma were analyzed, applying a targeted next generation sequencing panel covering 29 known recurrently mutated genes in melanoma. NF1 and RAS mutations were identified as the most frequently mutated genes occurring in 18.3% and 16.9% of samples, respectively. Mutations in BRAF were identified in 8.4% and KIT in 7.0% of tumor samples. Conclusions Our study identifies NF1 as the most frequently occurring driver mutation in mucosal melanoma. RAS alterations, consisting of NRAS and KRAS mutations, were the second most frequent mutation type. BRAF and KIT mutations were rare with frequencies below 10% each. Our data indicate that in mucosal melanomas RAS/NF1 alterations are frequent, implying a significant pathogenetic role for MAPK and potentially PI3K pathway activation in these tumors. PMID:28380455

  5. Blue genes: An integrative laboratory to differentiate genetic transformation from gene mutation for underclassmen.

    PubMed

    Militello, Kevin T; Chang, Ming-Mei; Simon, Robert D; Lazatin, Justine C

    2016-01-01

    The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by which the genetic material can be altered: genetic transformation and gene mutation. In the first week of the laboratory, students incubate a plasmid DNA with calcium chloride-treated Escherichia coli JM109 cells and observe a phenotype change from ampicillin sensitive to ampicillin resistant and from white color to blue color on plates containing 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and isopropyl β-D-thiogalactopyranoside (IPTG). Over the course of the next three weeks, students use a battery of approaches including plasmid DNA isolation experiments, restriction maps, and PCR to differentiate between mutation and transformation. The students ultimately come to the conclusion that the changes in phenotypes are due to genetic transformation and not mutation based on the evidence generated over the four-week period. Pre-laboratory tests and post-laboratory tests indicate that this set of exercises is successful in helping students differentiate between transformation and mutation. The laboratory is designed for underclassmen and is a good prerequisite for an apprentice-based research opportunity, although it is not designed as a class based research experience. Potential modifications and future directions of the laboratory based upon student experiences and assessment are presented. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2.

    PubMed

    Kraus, Cornelia; Hoyer, Juliane; Vasileiou, Georgia; Wunderle, Marius; Lux, Michael P; Fasching, Peter A; Krumbiegel, Mandy; Uebe, Steffen; Reuter, Miriam; Beckmann, Matthias W; Reis, André

    2017-01-01

    Breast and ovarian cancer (BC/OC) predisposition has been attributed to a number of high- and moderate to low-penetrance susceptibility genes. With the advent of next generation sequencing (NGS) simultaneous testing of these genes has become feasible. In this monocentric study, we report results of panel-based screening of 14 BC/OC susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, CHEK2, PALB2, ATM, NBN, CDH1, TP53, MLH1, MSH2, MSH6 and PMS2) in a group of 581 consecutive individuals from a German population with BC and/or OC fulfilling diagnostic criteria for BRCA1 and BRCA2 testing including 179 with a triple-negative tumor. Altogether we identified 106 deleterious mutations in 105 (18%) patients in 10 different genes, including seven different exon deletions. Of these 106 mutations, 16 (15%) were novel and only six were found in BRCA1/2. To further characterize mutations located in or nearby splicing consensus sites we performed RT-PCR analysis which allowed confirmation of pathogenicity in 7 of 9 mutations analyzed. In PALB2, we identified a deleterious variant in six cases. All but one were associated with early onset BC and a positive family history indicating that penetrance for PALB2 mutations is comparable to BRCA2. Overall, extended testing beyond BRCA1/2 identified a deleterious mutation in further 6% of patients. As a downside, 89 variants of uncertain significance were identified highlighting the need for comprehensive variant databases. In conclusion, panel testing yields more accurate information on genetic cancer risk than assessing BRCA1/2 alone and wide-spread testing will help improve penetrance assessment of variants in these risk genes. © 2016 UICC.

  7. Molecular genetics of Leber congenital amaurosis in Chinese: New data from 66 probands and mutation overview of 159 probands.

    PubMed

    Xu, Yan; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Xin, Wei; Wang, Panfeng; Sun, Wenmin; Huang, Li; Guo, Xiangming; Zhang, Qingjiong

    2016-08-01

    Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Exome Sequencing Identifies a Novel Nonsense Mutation of MYO6 as the Cause of Deafness in a Brazilian Family.

    PubMed

    Sampaio-Silva, Juliana; Batissoco, Ana Carla; Jesus-Santos, Rafaela; Abath-Neto, Osório; Scarpelli, Luciano Cesar; Nishimura, Patricia Yoshie; Galindo, Layla Testa; Bento, Ricardo Ferreira; Oiticica, Jeanne; Lezirovitz, Karina

    2018-01-01

    We investigated 313 unrelated subjects who presented with hearing loss to identify the novel genetic causes of this condition in Brazil. Causative GJB2/GJB6 mutations were found in 12.7% of the patients. Among the familial cases (100/313), four were selected for exome sequencing. In one case, two novel heterozygous variants were found and were predicted to be pathogenic based on bioinformatics tools, that is, p.Ser906* (MYO6) and p.Arg42Cys (GJB3). We confirmed that this nonsense MYO6 mutation segregated with deafness in this family. Only the proband and her unaffected mother exhibited the GJB3 mutation, which is in the same amino acid of a known Erythrokeratodermia variabilis mutation. None of the patients exhibited this skin disease, but the proband exhibited a more severe hearing loss. Hence, the GJB3 mutation was considered to be a variant of uncertain significance. In conclusion, we described a novel nonsense MYO6 mutation that was responsible for the hearing loss in a Brazilian family. This mutation resides in the neck domain of myosin-VI after the motor domain. Thus, our data give further support for genotype-phenotype correlations, which state that when the motor domain of the protein is functioning, the hearing loss is milder and has a later onset. The three remaining families without mutations in the known genes suggest that there are still deafness genes to be revealed. © 2017 John Wiley & Sons Ltd/University College London.

  9. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait.

    PubMed

    Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi

    2006-02-01

    Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.

  10. Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2017-08-01

    Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.

  11. Deleterious BRCA1/2 mutations in an urban population of Black women

    PubMed Central

    Smith, Karen Lisa; Stein, Julie; DeMarco, Tiffani; Wang, Yiru; Wang, Hongkun; Fries, Melissa; Peshkin, Beth N.; Isaacs, Claudine

    2018-01-01

    Information on the prevalence of deleterious BRCA1 and BRCA2 (BRCA1/2) mutations in clinic-based populations of Black women is limited. In order to address this gap, we performed a retrospective study to determine the prevalence of deleterious BRCA1/2 mutations, predictors of having a mutation, and acceptance of risk-reducing surgeries in Black women. In an urban unselected clinic-based population, we evaluated 211 self-identified Black women who underwent genetic counseling for hereditary breast–ovarian cancer syndrome. BRCA1/2 mutations were identified in 13.4 % of the participants who received genetic testing. Younger age at diagnosis, higher BRCA-PRO score, significant family history, and diagnosis of triple-negative breast cancer were associated with identification of a BRCA1/2 mutation. Of the affected patients found to have a deleterious mutation, almost half underwent prophylactic measures. In our study population, 1 in 7 Black women who underwent genetic testing harbored a deleterious BRCA1/2 mutation independent of age at diagnosis or family history. PMID:26250392

  12. Evidence of intermetastatic heterogeneity for pathological response and genetic mutations within colorectal liver metastases following preoperative chemotherapy.

    PubMed

    Sebagh, Mylène; Allard, Marc-Antoine; Bosselut, Nelly; Dao, Myriam; Vibert, Eric; Lewin, Maïté; Lemoine, Antoinette; Cherqui, Daniel; Adam, René; Sa Cunha, Antonio

    2016-04-19

    In patients receiving preoperative chemotherapy, colorectal liver metastases (CLM) are expected to demonstrate a similar behaviour because of similar organ microenvironment and tumour cell chemosensitivity. We focused on the occurrence of pathological and genetic heterogeneity within CLM. Patients resected for multiple CLM between 2004 and 2011 after > three cycles of chemotherapy were included. Pathological heterogeneity was arbitrarily defined as a > 50% difference in the percentage of remaining tumour cells between individual CLM. In patients with pathological heterogeneity, the mutational genotyping (KRAS, NRAS, BRAF and PIK3CA) was determined from the most heterogeneous CLM. Pathological heterogeneity was observed in 31 of 157 patients with multiple CLM (median = 4, range, 2-32) (19.7%). In 72.4% of them, we found a concordance of the mutation status between the paired CLM: both wild-type in 55%, and both mutated in 17.2%. We observed a discordance of the mutation status of 27.6% between CLM: one mutated and the other wild-type. The mutated CLM was the less florid one in 75% of patients with genetic heterogeneity. Pathological heterogeneity is present in 19.7% of patients with multiple CLM. Genetic heterogeneity is present in 27.6% of patients with pathological heterogeneity. Heterogeneity could refine guide management for tissue sampling.

  13. Mutations in SURF1 are important genetic causes of Leigh syndrome in Slovak patients.

    PubMed

    Danis, Daniel; Brennerova, Katarina; Skopkova, Martina; Kurdiova, Timea; Ukropec, Jozef; Stanik, Juraj; Kolnikova, Miriam; Gasperikova, Daniela

    2018-04-01

    Leigh syndrome is a progressive early onset neurodegenerative disease typically presenting with psychomotor regression, signs of brainstem and/or basal ganglia disease, lactic acidosis, and characteristic magnetic resonance imaging findings. At molecular level, deficiency of respiratory complexes and/or pyruvate dehydrogenase complex is usually observed. Nuclear gene SURF1 encodes an assembly factor for cytochrome c-oxidase complex of the respiratory chain and autosomal recessive mutations in SURF1 are one of the most frequent causes of cytochrome c-oxidase-related Leigh syndrome cases. Here, we aimed to elucidate the genetic basis of Leigh syndrome in three Slovak families. Three probands presenting with Leigh syndrome were selected for DNA analysis. The first proband, presenting with atypical LS onset without abnormal basal ganglia magnetic resonance imaging findings, was analyzed with whole exome sequencing. In the two remaining probands, SURF1 was screened by Sanger sequencing. Four different heterozygous mutations were identified in SURF1: c.312_321delinsAT:p.(Pro104Profs*1), c.588+1G>A, c.823_833+7del:p. (?) and c.845_846del:p.(Ser282Cysfs*9). All the mutations are predicted to have a loss-of-function effect. We identified disease-causing mutations in all three probands, which points to the important role of SURF1 gene in etiology of Leigh syndrome in Slovakia. Our data showed that patients with atypical Leigh syndrome phenotype without lesions in basal ganglia may benefit from the whole exome sequencing method. In the case of probands presenting the typical phenotype, Sanger sequencing of the SURF1 gene seems to be an effective method of DNA analysis.

  14. Identification of mutations in Colombian patients affected with Fabry disease.

    PubMed

    Uribe, Alfredo; Mateus, Heidi Eliana; Prieto, Juan Carlos; Palacios, Maria Fernanda; Ospina, Sandra Yaneth; Pasqualim, Gabriela; da Silveira Matte, Ursula; Giugliani, Roberto

    2015-12-15

    Fabry Disease (FD) is an X-linked inborn error of glycosphingolipid catabolism, caused by a deficiency of the lisosomal α-galactosidase A (AGAL). The disorder leads to a vascular disease secondary to the involvement of kidney, heart and the central nervous system. The mutation analysis is a valuable tool for diagnosis and genetic counseling. Although more than 600 mutations have been identified, most mutations are private. Our objective was to describe the analysis of nine Colombian patients with Fabry disease by automated sequencing of the seven exons of the GLA gene. Two novel mutations were identified in two patients affected with the classical subtype of FD, in addition to other 6 mutations previously reported. The present study confirms the heterogeneity of mutations in Fabry disease and the importance of molecular analysis for genetic counseling, female heterozygotes detection as well as therapeutic decisions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Nonaminoglycoside compounds induce readthrough of nonsense mutations

    PubMed Central

    Damoiseaux, Robert; Nahas, Shareef; Gao, Kun; Hu, Hailiang; Pollard, Julianne M.; Goldstine, Jimena; Jung, Michael E.; Henning, Susanne M.; Bertoni, Carmen

    2009-01-01

    Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ∼34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein. PMID:19770270

  16. Diverse growth hormone receptor gene mutations in Laron syndrome.

    PubMed Central

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  17. In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum.

    PubMed

    Nasir, Muhammad; Ahmad, Nafees; Sieber, Christian M K; Latif, Amir; Malik, Salman Akbar; Hameed, Abdul

    2013-09-24

    Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system. Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain.

  18. In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum

    PubMed Central

    2013-01-01

    Background Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. Results The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system. Conclusions Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain. PMID:24063568

  19. CREBBP mutations in relapsed acute lymphoblastic leukaemia

    PubMed Central

    Mullighan, Charles G.; Zhang, Jinghui; Kasper, Lawryn H.; Lerach, Stephanie; Payne-Turner, Debbie; Phillips, Letha A.; Heatley, Sue L.; Holmfeldt, Linda; Collins-Underwood, J. Racquel; Ma, Jing; Buetow, Kenneth H.; Pui, Ching-Hon; Baker, Sharyn D.; Brindle, Paul K.; Downing, James R.

    2010-01-01

    Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biologic determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways1,2, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse3. However, detailed analysis of sequence mutations in ALL has not been performed. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase (HAT) CREB-binding protein (CBP)4. The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the HAT domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism

  20. Germline Mutations of BRCA1 and BRCA2 in Korean Ovarian Cancer Patients: Finding Founder Mutations.

    PubMed

    Choi, Min Chul; Heo, Jin-Hyung; Jang, Ja-Hyun; Jung, Sang Geun; Park, Hyun; Joo, Won Duk; Lee, Chan; Lee, Je Ho; Lee, Jun Mo; Hwang, Yoon Young; Kim, Seung Jo

    2015-10-01

    To investigate and analyze the BRCA mutations in Korean ovarian cancer patients with or without family history and to find founder mutations in this group. One hundred two patients who underwent a staging operation for pathologically proven epithelial cancer between January 2013 and December 2014 were enrolled. Thirty-two patients declined to analyze BRCA1/2 gene alterations after genetic counseling and pedigree analysis. Lymphocyte specimens from peripheral blood were assessed for BRCA1/2 by direct sequencing. BRCA genetic test results of 70 patients were available. Eighteen BRCA1/2 mutations and 17 unclassified variations (UVs) were found. Five of the BRCA1/2 mutations and 4 of the UVs were not reported in the Breast Cancer Information Core database. One BRCA2 UV (8665_8667delGGA) was strongly suspicious to be a deleterious mutation. BRCA1/2 mutations were identified in 11 (61.1%) of 18 patients with a family history and in 7 (13.5%) of 52 patients without a family history.Candidates for founder mutations in Korean ovarian cancer patients were assessed among 39 BRCA1/2 mutations from the present study and from literature reviews. The analysis showed that 1041_1043delAGCinsT (n = 4; 10.2%) and 3746insA (n = 4; 10.2%) were possible BRCA1 founder mutations. Only one of the BRCA2 mutations (5804_5807delTTAA) was repeated twice (n = 2; 5.1%). The prevalence of BRCA1/2 mutations in Korean ovarian cancer patients irrespective of the family history was significantly higher than previously reported. Possible founder mutations in Korean ovarian cancer patients were identified.

  1. Germline genetic variants in somatically significantly mutated genes in tumors are associated with renal cell carcinoma risk and outcome.

    PubMed

    Shu, Xiang; Gu, Jianchun; Huang, Maosheng; Tannir, Nizar M; Matin, Surena F; Karam, Jose A; Wood, Christopher G; Wu, Xifeng; Ye, Yuanqing

    2018-05-28

    Genome-wide association studies (GWAS) have identified 13 susceptibility loci for renal cell carcinoma (RCC). Additional genetic loci of risk remain to be explored. Moreover, the role of germline genetic variants in predicting RCC recurrence and overall survival (OS) is less understood. In this study, we focused on 127 significantly mutated genes from The Cancer Genome Atlas (TCGA) Pan-Cancer Analysis across 12 major cancer sites to identify potential genetic variants predictive of RCC risk and clinical outcomes. In a three-phase design with a total of 2657 RCC cases and 5315 healthy controls, two single nucleotide polymorphisms (SNPs) that map to PIK3CG (rs6466135:A, ORmeta = 0.85, 95% CI = 0.77-0.94, Pmeta = 1.4 × 10-3) and ATM (rs611646:T, ORmeta = 1.17, 95% CI = 1.05-1.31, Pmeta = 3.5 × 10-3) were significantly associated with RCC risk. With respect to RCC recurrence and OS, two separate datasets with a total of 661 stages I-III RCC patients (discovery: 367; validation: 294) were analyzed. The most significant association was observed for rs10932384:C (ERBB4) with both outcomes (recurrence: HRmeta = 0.52, 95% CI = 0.39-0.68, Pmeta = 3.81 × 10-6; OS: HRmeta = 0.50, 95% CI = 0.37-0.67, Pmeta = 6.00 × 10-6). In addition, six SNPs were significantly associated with either RCC recurrence or OS but not both (Pmeta < 0.01). Rs10932384:C was significantly correlated with mutation frequency of ERBB4 in clear cell RCC (ccRCC) patients (P = 0.003, Fisher's exact test). Cis-eQTL was observed for several SNPs in blood/transformed fibroblasts but not in RCC tumor tissues. In summary, we identified promising genetic predictors of recurrence and OS among RCC patients with localized disease.

  2. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients.

    PubMed

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J; Gerdes, Anne-Marie; Krogh, Lotte N; Bernstein, Inge; Okkels, Henrik; Wikman, Friedrik; Nielsen, Finn C; Hansen, Thomas V O

    2013-10-03

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance. Intronic MLH1, MSH2, or MSH6 variants were investigated using in silico prediction tools and mini-gene assay to asses the effect on splicing. We describe in silico and in vitro characterization of nine intronic MLH1, MSH2, or MSH6 mutations identified in Danish colorectal cancer patients, of which four mutations are novel. The analysis revealed aberrant splicing of five mutations (MLH1 c.588 + 5G > A, MLH1 c.677 + 3A > T, MLH1 c.1732-2A > T, MSH2 c.1276 + 1G > T, and MSH2 c.1662-2A > C), while four mutations had no effect on splicing compared to wild type (MLH1 c.117-34A > T, MLH1 c.1039-8 T > A, MSH2 c.2459-18delT, and MSH6 c.3439-16C > T). In conclusion, we classify five MLH1/MSH2 mutations as pathogenic, whereas four MLH1/MSH2/MSH6 mutations are classified as neutral. This study supports the notion that in silico prediction tools and mini-gene assays are important for the classification of intronic variants, and thereby crucial for the genetic counseling of patients and their family members.

  3. Novel mutations associated with nephrogenic diabetes insipidus. A clinical-genetic study.

    PubMed

    García Castaño, Alejandro; Pérez de Nanclares, Gustavo; Madariaga, Leire; Aguirre, Mireia; Chocron, Sara; Madrid, Alvaro; Lafita Tejedor, Francisco Javier; Gil Campos, Mercedes; Sánchez Del Pozo, Jaime; Ruiz Cano, Rafael; Espino, Mar; Gomez Vida, Jose Maria; Santos, Fernando; García Nieto, Victor Manuel; Loza, Reyner; Rodríguez, Luis Miguel; Hidalgo Barquero, Emilia; Printza, Nikoleta; Camacho, Juan Antonio; Castaño, Luis; Ariceta, Gema

    2015-10-01

    Molecular diagnosis is a useful diagnostic tool in primary nephrogenic diabetes insipidus (NDI), an inherited disease characterized by renal inability to concentrate urine. The AVPR2 and AQP2 genes were screened for mutations in a cohort of 25 patients with clinical diagnosis of NDI. Patients presented with dehydration, polyuria-polydipsia, failure to thrive (mean ± SD; Z-height -1.9 ± 2.1 and Z-weight -2.4 ± 1.7), severe hypernatremia (mean ± SD; Na 150 ± 10 mEq/L), increased plasma osmolality (mean ± SD; 311 ± 18 mOsm/Kg), but normal glomerular filtration rate. Genetic diagnosis revealed that 24 male patients were hemizygous for 17 different putative disease-causing mutations in the AVPR2 gene (each one in a different family). Of those, nine had not been previously reported, and eight were recurrent. Moreover, we found those same AVPR2 changes in 12 relatives who were heterozygous carriers. Further, in one female patient, AVPR2 gene study turned out to be negative and she was found to be homozygous for the novel AQP2 p.Ala86Val alteration. Genetic analysis presumably confirmed the diagnosis of nephrogenic diabetes insipidus in every patient of the studied cohort. We emphasize that we detected a high presence (50 %) of heterozygous females with clinical NDI symptoms. • In most cases (90 %), inherited nephrogenic diabetes insipidus (NDI) is an X-linked disease, caused by mutations in the AVPR2 gene. • In rare occasions (10 %), it is caused by mutations in the AQP2 gene. What is new: • In this study, we report 10 novel mutations associated with NDI. • We have detected a high presence (50 %) of heterozygous carriers with clinical NDI symptoms.

  4. Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus

    PubMed Central

    Zhao, Hui; Huang, Xiu-Feng; Zheng, Zhi-Li; Deng, Wen-Li; Lei, Xin-Lan; Xing, Dong-Jun; Ye, Liang; Xu, Su-Zhong; Chen, Jie; Zhang, Fang; Yu, Xin-Ping; Jin, Zi-Bing

    2016-01-01

    Objectives Infantile nystagmus (IN) is a genetically heterogeneous condition characterised by involuntary rhythmic oscillations of the eyes accompanied by different degrees of vision impairment. Two genes have been identified as mainly causing IN: FRMD7 and GPR143. The aim of our study was to identify the genetic basis of both sporadic IN and X-linked IN. Design Prospective analysis. Patients Twenty Chinese patients, including 15 sporadic IN cases and 5 from X-linked IN families, were recruited and underwent molecular genetic analysis. We first performed PCR-based DNA sequencing of the entire coding region and the splice junctions of the FRMD7 and GPR143 genes in participants. Mutational analysis and co-segregation confirmation were then performed. Setting All clinical examinations and genetic experiments were performed in the Eye Hospital of Wenzhou Medical University. Results Two mutations in the FRMD7 gene, including one novel nonsense mutation (c.1090C>T, p.Q364X) and one reported missense mutation (c.781C>G, p.R261G), were identified in two of the five (40%) X-linked IN families. However, none of putative mutations were identified in FRMD7 or GPR143 in any of the sporadic cases. Conclusions The results suggest that mutations in FRMD7 appeared to be the major genetic cause of X-linked IN, but not of sporadic IN. Our findings provide further insights into FRMD7 mutations, which could be helpful for future genetic diagnosis and genetic counselling of Chinese patients with nystagmus. PMID:27036142

  5. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis

    DOE PAGES

    Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick; ...

    2016-01-08

    Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two locimore » show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Lastly, our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.« less

  6. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick

    Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two locimore » show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Lastly, our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.« less

  7. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    PubMed

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  8. Functional modules, mutational load and human genetic disease

    PubMed Central

    Zaghloul, Norann A.; Katsanis, Nicholas

    2013-01-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically-relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. PMID:20226561

  9. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: Impact of recurrent CARD11 mutations.

    PubMed

    Wu, Chenglin; de Miranda, Noel Fcc; Chen, Longyun; Wasik, Agata M; Mansouri, Larry; Jurczak, Wojciech; Galazka, Krystyna; Dlugosz-Danecka, Monika; Machaczka, Maciej; Zhang, Huilai; Peng, Roujun; Morin, Ryan D; Rosenquist, Richard; Sander, Birgitta; Pan-Hammarström, Qiang

    2016-06-21

    The genetic mechanisms underlying disease progression, relapse and therapy resistance in mantle cell lymphoma (MCL) remain largely unknown. Whole-exome sequencing was performed in 27 MCL samples from 13 patients, representing the largest analyzed series of consecutive biopsies obtained at diagnosis and/or relapse for this type of lymphoma. Eighteen genes were found to be recurrently mutated in these samples, including known (ATM, MEF2B and MLL2) and novel mutation targets (S1PR1 and CARD11). CARD11, a scaffold protein required for B-cell receptor (BCR)-induced NF-κB activation, was subsequently screened in an additional 173 MCL samples and mutations were observed in 5.5% of cases. Based on in vitro cell line-based experiments, overexpression of CARD11 mutants were demonstrated to confer resistance to the BCR-inhibitor ibrutinib and NF-κB-inhibitor lenalidomide. Genetic alterations acquired in the relapse samples were found to be largely non-recurrent, in line with the branched evolutionary pattern of clonal evolution observed in most cases. In summary, this study highlights the genetic heterogeneity in MCL, in particular at relapse, and provides for the first time genetic evidence of BCR/NF-κB activation in a subset of MCL.

  10. Co-inheritance of HNF1a and GCK mutations in a family with maturity-onset diabetes of the young (MODY): implications for genetic testing.

    PubMed

    López-Garrido, M P; Herranz-Antolín, S; Alija-Merillas, M J; Giralt, P; Escribano, J

    2013-09-01

    To determine the genetic basis of dominant early-onset diabetes mellitus in two families. Molecular analysis by PCR sequencing of the promoter, the 5' untranslated region (UTR) and exons of both GCK and HNF1A genes was carried out in two families with clinically diagnosed dominant diabetes mellitus. The novel HNF1A c.-154_-160TGGGGGT mutation, located in the 5' UTR, was present in several members of the two families in the heterozygous state. Interestingly, the GCK p.Y61X mutation was also identified in three members of one of the families, and two of them carried both mutations in heterozygosis. To the best of our knowledge, this is the first report of the co-inheritance of GCK and HNF1A mutations and the coexistence of maturity-onset diabetes of the young (MODY) 2, MODY 3 and unusual MODY 2-3 genotypes in the same family. Carriers of both GCK and HNF1A mutations manifested a typical MODY 3 phenotype and showed that the presence of a second mutation in the GCK gene apparently did not modify the clinical outcome, at least at the time of this study. Our data show that co-inheritance of MODY 2 and MODY 3 mutations should be considered, at least in some cases, for accurate genetic testing. © 2012 John Wiley & Sons Ltd.

  11. SF3B1 and BAP1 mutations in blue nevus-like melanoma.

    PubMed

    Griewank, Klaus G; Müller, Hansgeorg; Jackett, Louise A; Emberger, Michael; Möller, Inga; van de Nes, Johannes Ap; Zimmer, Lisa; Livingstone, Elisabeth; Wiesner, Thomas; Scholz, Simone L; Cosgarea, Ioana; Sucker, Antje; Schimming, Tobias; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Reis, Henning; Mentzel, Thomas; Kutzner, Heinz; Rütten, Arno; Murali, Rajmohan; Scolyer, Richard A; Schadendorf, Dirk

    2017-07-01

    Blue nevi are melanocytic tumors originating in the cutaneous dermis. Malignant tumors may arise in association with or resembling blue nevi, so called 'blue nevus-like melanoma', which can metastasize and result in patient death. Identifying which tumors will behave in a clinically aggressive manner can be challenging. Identifying genetic alterations in such tumors may assist in their diagnosis and prognostication. Blue nevi are known to be genetically related to uveal melanomas (eg, both harboring GNAQ and GNA11 mutations). In this study, we analyzed a large cohort (n=301) of various morphologic variants of blue nevi and related tumors including tumors diagnosed as atypical blue nevi (n=21), and blue nevus-like melanoma (n=12), screening for all gene mutations known to occur in uveal melanoma. Similar to published reports, we found the majority of blue nevi harbored activating mutations in GNAQ (53%) or GNA11 (15%). In addition, rare CYSLTR2 (1%) and PLCB4 (1%) mutations were identified. EIF1AX, SF3B1, and BAP1 mutations were also detected, with BAP1 and SF3B1 R625 mutations being present only in clearly malignant tumors (17% (n=2) and 25% (n=3) of blue nevus-like melanoma, respectively). In sequencing data from a larger cohort of cutaneous melanomas, this genetic profile was also identified in tumors not originally diagnosed as blue nevus-like melanoma. Our findings suggest that the genetic profile of coexistent GNAQ or GNA11 mutations with BAP1 or SF3B1 mutations can aid the histopathological diagnosis of blue nevus-like melanoma and distinguish blue nevus-like melanoma from conventional epidermal-derived melanomas. Future studies will need to further elucidate the prognostic implications and appropriate clinical management for patients with tumors harboring these mutation profiles.

  12. Splice-site mutations identified in PDE6A responsible for retinitis pigmentosa in consanguineous Pakistani families

    PubMed Central

    Khan, Shahid Y.; Ali, Shahbaz; Naeem, Muhammad Asif; Khan, Shaheen N.; Husnain, Tayyab; Butt, Nadeem H.; Qazi, Zaheeruddin A.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2015-01-01

    Purpose This study was conducted to localize and identify causal mutations associated with autosomal recessive retinitis pigmentosa (RP) in consanguineous familial cases of Pakistani origin. Methods Ophthalmic examinations that included funduscopy and electroretinography (ERG) were performed to confirm the affectation status. Blood samples were collected from all participating individuals, and genomic DNA was extracted. A genome-wide scan was performed, and two-point logarithm of odds (LOD) scores were calculated. Sanger sequencing was performed to identify the causative variants. Subsequently, we performed whole exome sequencing to rule out the possibility of a second causal variant within the linkage interval. Sequence conservation was performed with alignment analyses of PDE6A orthologs, and in silico splicing analysis was completed with Human Splicing Finder version 2.4.1. Results A large multigenerational consanguineous family diagnosed with early-onset RP was ascertained. An ophthalmic clinical examination consisting of fundus photography and electroretinography confirmed the diagnosis of RP. A genome-wide scan was performed, and suggestive two-point LOD scores were observed with markers on chromosome 5q. Haplotype analyses identified the region; however, the region did not segregate with the disease phenotype in the family. Subsequently, we performed a second genome-wide scan that excluded the entire genome except the chromosome 5q region harboring PDE6A. Next-generation whole exome sequencing identified a splice acceptor site mutation in intron 16: c.2028–1G>A, which was completely conserved in PDE6A orthologs and was absent in ethnically matched 350 control chromosomes, the 1000 Genomes database, and the NHLBI Exome Sequencing Project. Subsequently, we investigated our entire cohort of RP familial cases and identified a second family who harbored a splice acceptor site mutation in intron 10: c.1408–2A>G. In silico analysis suggested that these

  13. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA

    PubMed Central

    Ashenberg, Orr; Padmakumar, Jai

    2017-01-01

    The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP). Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors. PMID:28346537

  14. Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung

    PubMed Central

    Jung, Seung-Hyun; Kim, Min Sung; Lee, Sung-Hak; Park, Hyun-Chun; Choi, Hyun Joo; Maeng, Leeso; Min, Ki Ouk; Kim, Jeana; Park, Tae In; Shin, Ok Ran; Kim, Tae-Jung; Xu, Haidong; Lee, Kyo Young; Kim, Tae-Min; Song, Sang Yong; Lee, Charles; Chung, Yeun-Jun; Lee, Sug Hyung

    2016-01-01

    Pulmonary sclerosing hemangioma (PSH) is a benign tumor with two cell populations (epithelial and stromal cells), for which genomic profiles remain unknown. We conducted exome sequencing of 44 PSHs and identified recurrent somatic mutations of AKT1 (43.2%) and β-catenin (4.5%). We used a second subset of 24 PSHs to confirm the high frequency of AKT1 mutations (overall 31/68, 45.6%; p.E17K, 33.8%) and recurrent β-catenin mutations (overall 3 of 68, 4.4%). Of the PSHs without AKT1 mutations, two exhibited AKT1 copy gain. AKT1 mutations existed in both epithelial and stromal cells. In two separate PSHs from one patient, we observed two different AKT1 mutations, indicating they were not disseminated but independent arising tumors. Because the AKT1 mutations were not found to co-occur with β-catenin mutations (or any other known driver alterations) in any of the PSHs studied, we speculate that this may be the single-most common driver alteration to develop PSHs. Our study revealed genomic differences between PSHs and lung adenocarcinomas, including a high rate of AKT1 mutation in PSHs. These genomic features of PSH identified in the present study provide clues to understanding the biology of PSH and for differential genomic diagnosis of lung tumors. PMID:27601661

  15. Comprehensive Mutation Scanning of LMNA in 268 Patients With Lone Atrial Fibrillation

    PubMed Central

    Brauch, Katharine M.; Chen, Lin Y.; Olson, Timothy M.

    2009-01-01

    Atrial fibrillation (AF) is a heritable, genetically heterogeneous disorder. To identify gene defects that cause or confer susceptibility to AF, a cohort of 268 unrelated patients with idiopathic forms of familial and sporadic AF was recruited. LMNA, encoding the nuclear membrane proteins, lamin A/C, was selected as a candidate gene for lone AF based on its established association with a syndrome of dilated cardiomyopathy, conduction system disease, and AF. Comprehensive mutation scanning identified only 1 potentially pathogenic mutation. In conclusion, LMNA mutations rarely cause lone AF and routine genetic testing of LMNA in these patients does not appear warranted. PMID:19427440

  16. High-risk individuals' perceptions of reproductive genetic testing for CDH1 mutations.

    PubMed

    Hallowell, Nina; Badger, Shirlene; Richardson, Sue; Caldas, Carlos; Hardwick, Richard H; Fitzgerald, Rebecca C; Lawton, Julia

    2017-10-01

    Reproductive genetic testing- PreNatal Diagnosis (PND) and Preimplantation Genetic Diagnosis (PGD)-for CDH1 mutations associated with Hereditary Diffuse Gastric Cancer (HDGC)is available in the UK. This qualitative interview study examined high-risk individuals' (n = 35) views of CDH1 reproductive genetic testing. Interviewees generally regarded reproductive genetic testing as an acceptable form of HDGC risk management. However, some were concerned that their genetic risks required them to plan reproduction and anticipated difficulties communicating this to reproductive partners. Individuals had a preference for PGD over PND because it avoided the need for a termination of pregnancy. However, those who had not yet had children expressed concerns about having to undergo IVF procedures and worries about their effectiveness and the need for embryo selection in PGD. It is suggested that high-risk individuals are provided with access to reproductive genetic counselling.

  17. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    PubMed

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  18. Exploiting the extraordinary genetic polymorphism of ciona for developmental genetics with whole genome sequencing.

    PubMed

    Abdul-Wajid, Sarah; Veeman, Michael T; Chiba, Shota; Turner, Thomas L; Smith, William C

    2014-05-01

    Studies in tunicates such as Ciona have revealed new insights into the evolutionary origins of chordate development. Ciona populations are characterized by high levels of natural genetic variation, between 1 and 5%. This variation has provided abundant material for forward genetic studies. In the current study, we make use of deep sequencing and homozygosity mapping to map spontaneous mutations in outbred populations. With this method we have mapped two spontaneous developmental mutants. In Ciona intestinalis we mapped a short-tail mutation with strong phenotypic similarity to a previously identified mutant in the related species Ciona savignyi. Our bioinformatic approach mapped the mutation to a narrow interval containing a single mutated gene, α-laminin3,4,5, which is the gene previously implicated in C. savignyi. In addition, we mapped a novel genetic mutation disrupting neural tube closure in C. savignyi to a T-type Ca(2+) channel gene. The high efficiency and unprecedented mapping resolution of our study is a powerful advantage for developmental genetics in Ciona, and may find application in other outbred species.

  19. Isocitrate dehydrogenase mutations in gliomas

    PubMed Central

    Waitkus, Matthew S.; Diplas, Bill H.; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg132 of IDH1 and Arg172 of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014

  20. Feline Genetics: Clinical Applications and Genetic Testing

    PubMed Central

    Lyons, Leslie A.

    2010-01-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately thirty-three genes contain fifty mutations that cause feline health problems or alterations in the cat’s appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab using a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat’s internal genome. PMID:21147473

  1. Single-Exome sequencing identified a novel RP2 mutation in a child with X-linked retinitis pigmentosa.

    PubMed

    Lim, Hassol; Park, Young-Mi; Lee, Jong-Keuk; Taek Lim, Hyun

    2016-10-01

    To present an efficient and successful application of a single-exome sequencing study in a family clinically diagnosed with X-linked retinitis pigmentosa. Exome sequencing study based on clinical examination data. An 8-year-old proband and his family. The proband and his family members underwent comprehensive ophthalmologic examinations. Exome sequencing was undertaken in the proband using Agilent SureSelect Human All Exon Kit and Illumina HiSeq 2000 platform. Bioinformatic analysis used Illumina pipeline with Burrows-Wheeler Aligner-Genome Analysis Toolkit (BWA-GATK), followed by ANNOVAR to perform variant functional annotation. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation. Analysis of exome sequence data identified a novel frameshift mutation in RP2 gene resulting in a premature stop codon (c.665delC, p.Pro222fsTer237). Sanger sequencing revealed this mutation co-segregated with the disease phenotype in the child's family. We identified a novel causative mutation in RP2 from a single proband's exome sequence data analysis. This study highlights the effectiveness of the whole-exome sequencing in the genetic diagnosis of X-linked retinitis pigmentosa, over the conventional sequencing methods. Even using a single exome, exome sequencing technology would be able to pinpoint pathogenic variant(s) for X-linked retinitis pigmentosa, when properly applied with aid of adequate variant filtering strategy. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  2. OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations.

    PubMed

    Diaz-Uriarte, Ramon

    2017-06-15

    OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual populations with special focus on cancer progression. Fitness can be defined as an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, restrictions in the order of accumulation of mutations, and order effects. Mutation rates can differ among genes, and can be affected by (anti)mutator genes. Also available are sampling from simulations (including single-cell sampling), plotting the genealogical relationships of clones and generating and plotting fitness landscapes. Implemented in R and C ++, freely available from BioConductor for Linux, Mac and Windows under the GNU GPL license. Version 2.5.9 or higher available from: http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html . GitHub repository at: https://github.com/rdiaz02/OncoSimul. ramon.diaz@iib.uam.es. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  3. Focus on increased serum angiotensin-converting enzyme level: From granulomatous diseases to genetic mutations.

    PubMed

    Lopez-Sublet, Marilucy; di Lanzacco, Lorenzo Caratti; Jan Danser, A H; Lambert, Michel; Elourimi, Ghassan; Persu, Alexandre

    2018-06-18

    Angiotensin I-converting enzyme (ACE) is a well-known zinc-metallopeptidase that converts angiotensin I to the potent vasoconstrictor angiotensin II and degrades bradykinin, a powerful vasodilator, and as such plays a key role in the regulation of vascular tone and cardiac function. Increased circulating ACE (cACE) activity has been reported in multiple diseases, including but not limited to granulomatous disorders. Since 2001, genetic mutations leading to cACE elevation have also been described. This review takes advantage of the identification of a novel ACE mutation (25-IVS25 + 1G > A) in two Belgian pedigrees to summarize current knowledge about the differential diagnosis of cACE elevation, based on literature review and the experience of our centre. Furthermore, we propose a practical approach for the evaluation and management of patients with elevated cACE and discuss in which cases search for genetic mutations should be considered. Copyright © 2018. Published by Elsevier Inc.

  4. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects

    PubMed Central

    Choi, Lin; DeNieu, Michael; Sonnenschein, Anne; Hummel, Kristen; Marier, Christian; Victory, Andrew; Porter, Cody; Mammel, Anna; Holms, Julie; Sivaratnam, Gayatri

    2017-01-01

    For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis. PMID:29166655

  5. [Clinical-genetic care of BRCA-mutation carrier women: prevention, diagnosis and therapy].

    PubMed

    Nagy, Zsolt; Csanád, Mónika; Tóth, Katalin; Máté, Szabolcs; Joó, József Gábor

    2011-06-05

    Predictive genetics opens a considerable perspective in the diagnostics as well as the treatment of breast and ovarian cancer. Current recommendations and guidelines for the management of BRCA 1 and BRCA 2 mutation carriers are not based on controlled randomized trials, but on expert opinions. The existing options of prevention, early diagnosis and treatment must be clearly interpreted to the patient. In the context of a dedicated genetic counseling the participation of all involved professionals (geneticist, oncologist, surgeon, gynecologist) is required. The decision-making process concerning the possibilities of prevention, diagnosis and treatment is always deeply influenced by the patient's own experience with the cancer occurred in the family, as well as by her values and expectations of life. The focused multidisciplinary approach, with the application of results from prospective studies in cohorts of BRCA mutation carriers allow the concerned individuals to benefit from this kind of approach of medical treatment.

  6. Genetic Diagnosis before Surgery has an Impact on Surgical Decision in BRCA Mutation Carriers with Breast Cancer.

    PubMed

    Park, Sungmin; Lee, Jeong Eon; Ryu, Jai Min; Kim, Issac; Bae, Soo Youn; Lee, Se Kyung; Yu, Jonghan; Kim, Seok Won; Nam, Seok Jin

    2018-05-01

    The first aim of our study was to evaluate surgical decision-making by BRCA mutation carriers with breast cancer based on the timing of knowledge of their BRCA mutation status. The second aim was to evaluate breast cancer outcome following surgical treatment. This was a retrospective study of 164 patients diagnosed with invasive breast cancer, tested for BRCA mutation, and treated with primary surgery between 2004 and 2015 at Samsung Medical Center in Seoul, Korea. We reviewed types of surgery and timing of the BRCA test result. We compared surgical decision- making of BRCA carriers with breast cancer based on the timing of knowledge of their BRCA mutation status. Only 15 (9.1%) patients knew their BRCA test results before their surgery, and 149 (90.9%) knew the results after surgery. In patients with unilateral cancer, there was a significant difference between groups whose BRCA mutation status known before surgery and groups whose BRCA status unknown before surgery regarding the choice of surgery (p = 0.017). No significant difference was observed across surgery types of risk of ipsilateral breast tumor recurrence (p = 0.765) and contralateral breast cancer (p = 0.69). Genetic diagnosis before surgery has an impact on surgical decision choosing unilateral mastectomy or bilateral mastectomy in BRCA mutation carriers with breast cancer. Knowledge about BRCA mutation status after initial surgery led to additional surgeries for patients with BCS. Thus, providing genetic counseling and genetic testing before surgical choice and developing treatment strategies for patients with a high risk of breast cancer are important.

  7. Germline Mutations of Inhibins in Early-Onset Ovarian Epithelial Tumors

    PubMed Central

    Tournier, Isabelle; Marlin, Régine; Walton, Kelly; Charbonnier, Françoise; Coutant, Sophie; Théry, Jean-Christophe; Charbonnier, Camille; Spurrell, Cailyn; Vezain, Myriam; Ippolito, Lorena; Bougeard, Gaëlle; Roman, Horace; Tinat, Julie; Sabourin, Jean-Christophe; Stoppa-Lyonnet, Dominique; Caron, Olivier; Bressac-de Paillerets, Brigitte; Vaur, Dominique; King, Mary-Claire; Harrison, Craig; Frebourg, Thierry

    2014-01-01

    To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors. PMID:24302632

  8. Mutational analyses of molecularly cloned satellite tobacco mosaic virus during serial passage in plants: Evidence for hotspots of genetic change

    USGS Publications Warehouse

    Kurath, G.; Dodds, J.A.

    1995-01-01

    The high level of genetic diversity and rapid evolution of viral RNA genomes are well documented, but few studies have characterized the rate and nature of ongoing genetic change over time under controlled experimental conditions, especially in plant hosts. The RNA genome of satellite tobacco mosaic virus (STMV) was used as an effective model for such studies because of advantageous features of its genome structure and because the extant genetic heterogeneity of STMV has been characterized previously. In the present study, the process of genetic change over time was studied by monitoring multiple serial passage lines of STMV populations for changes in their consensus sequences. A total of 42 passage lines were initiated by inoculation of tobacco plants with a helper tobamovirus and one of four STMV RNA inocula that were transcribed from full-length infectious STMV clones or extracted from purified STMV type strain virions. Ten serial passages were carried out for each line and the consensus genotypes of progeny STMV populations were assessed for genetic change by RNase protection analyses of the entire 1,059-nt STMV genome. Three different types of genetic change were observed, including the fixation of novel mutations in 9 of 42 lines, mutation at the major heterogeneity site near nt 751 in 5 of the 19 lines inoculated with a single genotype, and selection of a single major genotype in 6 of the 23 lines inoculated with mixed genotypes. Sequence analyses showed that the majority of mutations were single base substitutions. The distribution of mutation sites included three clusters in which mutations occurred at or very near the same site, suggesting hot spots of genetic change in the STMV genome. The diversity of genetic changes in sibling lines is clear evidence for the important role of chance and random sampling events in the process of genetic diversification of STMV virus populations.

  9. CRISPR: a Versatile Tool for Both Forward and Reverse Genetics Research

    PubMed Central

    Gurumurthy, Channabasavaiah B.; Grati, M'hamed; Ohtsuka, Masato; Schilit, Samantha L.P.; Quadros, Rolen M.; Liu, Xue Zhong

    2016-01-01

    Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples. PMID:27384229

  10. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families.

    PubMed

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients' families. Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients' F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson's correlation coefficient and the nonparametric Mann-Whitney test. Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity.

  11. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families

    PubMed Central

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Background Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients’ families. Material and methods Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients’ F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson’s correlation coefficient and the nonparametric Mann-Whitney test. Results Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Discussion Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues

  12. Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform.

    PubMed

    Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee

    2011-11-01

    Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.

  13. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  14. Characterization of macular structure and function in two Swedish families with genetically identified autosomal dominant retinitis pigmentosa

    PubMed Central

    Abdulridha-Aboud, Wissam; Kjellström, Ulrika; Andréasson, Sten

    2016-01-01

    Purpose To study the phenotype in two families with genetically identified autosomal dominant retinitis pigmentosa (adRP) focusing on macular structure and function. Methods Clinical data were collected at the Department of Ophthalmology, Lund University, Sweden, for affected and unaffected family members from two pedigrees with adRP. Examinations included optical coherence tomography (OCT), full-field electroretinography (ffERG), and multifocal electroretinography (mfERG). Molecular genetic screening was performed for known mutations associated with adRP. Results The mode of inheritance was autosomal dominant in both families. The members of the family with a mutation in the PRPF31 (p.IVS6+1G>T) gene had clinical features characteristic of RP, with severely reduced retinal rod and cone function. The degree of deterioration correlated well with increasing age. The mfERG showed only centrally preserved macular function that correlated well with retinal thinning on OCT. The family with a mutation in the RHO (p.R135W) gene had an extreme intrafamilial variability of the phenotype, with more severe disease in the younger generations. OCT showed pathology, but the degree of morphological changes was not correlated with age or with the mfERG results. The mother, with a de novo mutation in the RHO (p.R135W) gene, had a normal ffERG, and her retinal degeneration was detected merely with the reduced mfERG. Conclusions These two families demonstrate the extreme inter- and intrafamilial variability in the clinical phenotype of adRP. This is the first Swedish report of the clinical phenotype associated with a mutation in the PRPF31 (p.IVS6+1G>T) gene. Our results indicate that methods for assessment of the central retinal structure and function may improve the detection and characterization of the RP phenotype. PMID:27212874

  15. Predictable Phenotypes of Antibiotic Resistance Mutations.

    PubMed

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  16. High-Throughput Identification of Loss-of-Function Mutations for Anti-Interferon Activity in the Influenza A Virus NS Segment

    PubMed Central

    Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Luan, Harding H.; Li, Xinmin; Wu, Ting-Ting

    2014-01-01

    ABSTRACT Viral proteins often display several functions which require multiple assays to dissect their genetic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that confer a fitness disadvantage under a specified growth condition. Our methodology was achieved by genetically monitoring a mutant library under two growth conditions, with and without interferon, by deep sequencing. We employed a molecular tagging technique to distinguish true mutations from sequencing error. This approach enabled us to identify mutations that were negatively selected against, in addition to those that were positively selected for. Using this technique, we identified loss-of-function mutations in the influenza A virus NS segment that were sensitive to type I interferon in a high-throughput fashion. Mechanistic characterization further showed that a single substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach described in this study can be applied under any specified condition for any virus that can be genetically manipulated. IMPORTANCE Traditional genetics focuses on a single genotype-phenotype relationship, whereas high-throughput genetics permits phenotypic characterization of numerous mutants in parallel. High-throughput genetics often involves monitoring of a mutant library with deep sequencing. However, deep sequencing suffers from a high error rate (∼0.1 to 1%), which is usually higher than the occurrence frequency for individual point mutations within a mutant library. Therefore, only mutations that confer a fitness advantage can be identified with confidence due to an enrichment in the occurrence frequency. In contrast, it is impossible to identify deleterious mutations using most next-generation sequencing techniques. In this study, we have applied a molecular tagging technique to distinguish true mutations from sequencing errors. It enabled us to identify mutations that underwent negative

  17. Expanding the spectrum of genetic mutations in antenatal Bartter syndrome type II.

    PubMed

    Fretzayas, Andreas; Gole, Evangelia; Attilakos, Achilleas; Daskalaki, Anna; Nicolaidou, Polyxeni; Papadopoulou, Anna

    2013-06-01

    Bartter syndrome (BS) is a group of genetic disorders characterized by hypokalemic metabolic alkalosis, hyponatremia and elevated renin and aldosterone plasma concentrations. BS type II is caused by mutations in the KCNJ1 gene and usually presents with transient hyperkalemia. We report here a novel KCNJ1 mutation in a male neonate, prematurely born after a pregnancy complicated by polyhydramnios. The infant presented with typical clinical and laboratory findings of BS type II, such as hyponatremia, hypochloremic metabolic alkalosis, severe weight loss, elevated renin and aldosterone levels and transient hyperkalemia in the early postnatal period, which were later normalized. Molecular analysis revealed a compound heterozygous mutation in the KCNJ1 gene, consisting of a novel K76E and an already described V315G mutation, both affecting functional domains of the channel protein. Typical manifestations of antenatal BS in combination with hyperkalemia should prompt the clinician to search for mutations in the KCNJ1 gene first. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  18. Genetic study of the PAH locus in the Iranian population: familial gene mutations and minihaplotypes.

    PubMed

    Razipour, Masoumeh; Alavinejad, Elaheh; Sajedi, Seyede Zahra; Talebi, Saeed; Entezam, Mona; Mohajer, Neda; Kazemi-Sefat, Golnaz-Ensieh; Gharesouran, Jalal; Setoodeh, Aria; Mohaddes Ardebili, Seyyed Mojtaba; Keramatipour, Mohammad

    2017-10-01

    Phenylketonuria (PKU), one of the most common inborn errors of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene (PAH). PKU has wide allelic heterogeneity, and over 600 different disease-causing mutations in PAH have been detected to date. Up to now, there have been no reports on the minihaplotype (VNTR/STR) analysis of PAH locus in the Iranian population. The aims of the present study were to determine PAH mutations and minihaplotypes in Iranian families with PAH deficiency and to investigate the correlation between them. A total of 81 Iranian families with PAH deficiency were examined using PCR-sequencing of all 13 PAH exons and their flanking intron regions to identify sequence variations. Fragment analysis of the PAH minihaplotypes was performed by capillary electrophoresis for 59 families. In our study, 33 different mutations were found accounting for 95% of the total mutant alleles. The majority of these mutations (72%) were distributed across exons 7, 11, 2 and their flanking intronic regions. Mutation c.1066-11G > A was the most common with a frequency of 20.37%. The less frequent mutations, p.Arg261Gln (8%), p.Arg243Ter (7.4%), p.Leu48Ser (7.4%), p.Lys363Asnfs*37 (6.79%), c.969 + 5G > A (6.17%), p.Pro281Leu (5.56), c.168 + 5G > C (5.56), and p.Arg261Ter (4.94) together comprised about 52% of all mutant alleles. In this study, a total of seventeen PAH gene minihaplotypes were detected, six of which associated exclusively with particular mutations. Our findings indicate a broad PAH mutation spectrum in the Iranian population, which is consistent with previous studies reporting a wide range of PAH mutations, most likely due to ethnic heterogeneity. High prevalence of c.1066-11G > A mutation linked to minihaplotype 7/250 among both Iranian and Mediterranean populations is indicative of historical and geographical links between them. Also, strong association between particular mutations and minihaplotypes

  19. Modeling dynamics for oncogenesis encompassing mutations and genetic instability.

    PubMed

    Fassoni, Artur C; Yang, Hyun M

    2018-06-27

    Tumorigenesis has been described as a multistep process, where each step is associated with a genetic alteration, in the direction to progressively transform a normal cell and its descendants into a malignant tumour. Into this work, we propose a mathematical model for cancer onset and development, considering three populations: normal, premalignant and cancer cells. The model takes into account three hallmarks of cancer: self-sufficiency on growth signals, insensibility to anti-growth signals and evading apoptosis. By using a nonlinear expression to describe the mutation from premalignant to cancer cells, the model includes genetic instability as an enabling characteristic of tumour progression. Mathematical analysis was performed in detail. Results indicate that apoptosis and tissue repair system are the first barriers against tumour progression. One of these mechanisms must be corrupted for cancer to develop from a single mutant cell. The results also show that the presence of aggressive cancer cells opens way to survival of less adapted premalignant cells. Numerical simulations were performed with parameter values based on experimental data of breast cancer, and the necessary time taken for cancer to reach a detectable size from a single mutant cell was estimated with respect to some parameters. We find that the rates of apoptosis and mutations have a large influence on the pace of tumour progression and on the time it takes to become clinically detectable.

  20. Evaluation of the genetic parameters and mutation analysis of 22 STR loci in the central Chinese Han population.

    PubMed

    Hongdan, Wang; Bing, Kang; Ning, Su; Miao, He; Bo, Zhang; Yuxin, Guo; Bofeng, Zhu; Shixiu, Liao; Zhaoshu, Zeng

    2017-01-01

    At present, the Han nationality is China's main ethnic group and also the most populous nation in the world. This is a great resource to study microsatellite mutations and for the study of ethnogeny. The aim of this study is to investigate the genetic polymorphisms and mutations of 22 autosomal STR loci in 2475 individuals from Henan province, China. DNA is amplified and genotyped using PowerPlex™24 system. The gene frequencies, forensic parameters, and the mutation rate of the 22 STR loci are analyzed. A total of 295 alleles are observed in this Henan Han population, and the allelic frequencies ranged from 0.0003 to 0.5036. In order to investigate the genetic relationships between the Henan Han and the other 14 different populations, our present data were compared with previously published data for the same 15 STR loci. The results indicated that the Henan Han had closer genetic relationships the groups including Minnan Han, Maonan, Yi and Guangdong Han groups while the South morocco population, the Moroccan population, the Malay group, and the Uigur stand away from Henan Han. Except of D2S441, D13S317, PentaE, D2S1338, D5S818, TPOX and D19S433, the mutation events are found in the other 15 STR loci. A total of 40 mutation events are observed in the 15 STR loci. The mutation rates are ranged from 0 to 4.85 × 10 -3 . In this study, 39 mutations are single-step mutations, and only one at FGA comprised two steps. STR mutation is commonly existed in paternity testing, while there are no STR mutation studies of the 22 STR loci in the Henan Han population. It is of great importance in forensic individual discrimination and paternal testing.

  1. Challenges in managing genetic cancer risk: a long-term qualitative study of unaffected women carrying BRCA1/BRCA2 mutations.

    PubMed

    Caiata-Zufferey, Maria; Pagani, Olivia; Cina, Viviane; Membrez, Véronique; Taborelli, Monica; Unger, Sheila; Murphy, Anne; Monnerat, Christian; Chappuis, Pierre O

    2015-09-01

    Women carrying BRCA1/BRCA2 germ-line mutations have an increased risk of developing breast/ovarian cancer. To minimize this risk, international guidelines recommend lifelong surveillance and preventive measures. This study explores the challenges that unaffected women genetically predisposed to breast/ovarian cancer face in managing their risk over time and the psychosocial processes behind these challenges. Between 2011 and 2013, biographical qualitative interviews were conducted in Switzerland with 32 unaffected French- and Italian-speaking women carrying BRCA1/BRCA2 mutations. Their mutation status had been known for at least 3 years (mean, 6 years). Data were analyzed through constant comparative analysis using software for qualitative analysis. From the time these women received their positive genetic test results, they were encouraged to follow medical guidelines. Meanwhile, their adherence to these guidelines was constantly questioned by their social and medical environments. As a result of these contradictory pressures, BRCA1/BRCA2 mutation carriers experienced a sense of disorientation about the most appropriate way of dealing with genetic risk. Given the contradictory attitudes of health-care professionals in caring for unaffected BRCA1/BRCA2 mutation carriers, there is an urgent need to educate physicians in dealing with genetically at-risk women and to promote a shared representation of this condition among them.Genet Med 17 9, 726-732.

  2. New intragenic and promoter region deletion mutations in FERMT1 underscore genetic homogeneity in Kindler syndrome.

    PubMed

    Fuchs-Telem, D; Nousbeck, J; Singer, A; McGrath, J A; Sarig, O; Sprecher, E

    2014-04-01

    Kindler syndrome (KS) is a rare autosomal recessive skin disorder, which was recently reclassified as a subtype of epidermolysis bullosa. Despite the fact that loss-of-function mutations in the FERMT1 gene, encoding kindlin-1, have been shown to cause the syndrome in numerous patients, a small number of typical cases of KS in which FERMT1 mutations could not be identified has raised the possibility that the disorder may be genetically heterogeneous. To assess two highly consanguineous families with clinical characteristics of KS. In the first family, a hitherto unreported deletion (c.137-140delTAGT) in FERMT1 was detected, which is predicted to lead to premature termination of translation. However, direct sequencing of the coding region of FERMT1 failed to disclose any pathogenic change in the second family. To confirm the possibility that the disease in this family may be due to a mutation in another gene, we used homozygosity mapping, and found that all affected family members share a segment of homozygosity on 20p12.3, spanning the FERMT1 gene. Accordingly, a large and highly unusual deletion (g.-711-1241del) spanning the putative FERMT1 promoter sequence and the first noncoding exon of the gene was found to cosegregate with the disease phenotype in this family, and to prevent transcription of the gene, as attested by the lack of FERMT1 message in the skin of a patient. The present data provide evidence in support of genetic homogeneity in KS. © 2014 British Association of Dermatologists.

  3. Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder

    PubMed Central

    Chatterjee, Anindya; Ghosh, Joydeep; Kapur, Reuben

    2015-01-01

    Although more than 90% systemic mastocytosis (SM) patients express gain of function mutations in the KIT receptor, recent next generation sequencing has revealed the presence of several additional genetic and epigenetic mutations in a subset of these patients, which confer poor prognosis and inferior overall survival. A clear understanding of how genetic and epigenetic mutations cooperate in regulating the tremendous heterogeneity observed in these patients will be essential for designing effective treatment strategies for this complex disease. In this review, we describe the clinical heterogeneity observed in patients with mastocytosis, the nature of relatively novel mutations identified in these patients, therapeutic strategies to target molecules downstream from activating KIT receptor and finally we speculate on potential novel strategies to interfere with the function of not only the oncogenic KIT receptor but also epigenetic mutations seen in these patients. PMID:26158763

  4. 20 ans après: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition

    PubMed Central

    Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis

    2014-01-01

    Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene–environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients. PMID:24169519

  5. 20 ans après: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition.

    PubMed

    Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis

    2014-06-01

    Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene-environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients.

  6. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  7. Novel myosin mutations for hereditary hearing loss revealed by targeted genomic capture and massively parallel sequencing

    PubMed Central

    Brownstein, Zippora; Abu-Rayyan, Amal; Karfunkel-Doron, Daphne; Sirigu, Serena; Davidov, Bella; Shohat, Mordechai; Frydman, Moshe; Houdusse, Anne; Kanaan, Moien; Avraham, Karen B

    2014-01-01

    Hereditary hearing loss is genetically heterogeneous, with a large number of genes and mutations contributing to this sensory, often monogenic, disease. This number, as well as large size, precludes comprehensive genetic diagnosis of all known deafness genes. A combination of targeted genomic capture and massively parallel sequencing (MPS), also referred to as next-generation sequencing, was applied to determine the deafness-causing genes in hearing-impaired individuals from Israeli Jewish and Palestinian Arab families. Among the mutations detected, we identified nine novel mutations in the genes encoding myosin VI, myosin VIIA and myosin XVA, doubling the number of myosin mutations in the Middle East. Myosin VI mutations were identified in this population for the first time. Modeling of the mutations provided predicted mechanisms for the damage they inflict in the molecular motors, leading to impaired function and thus deafness. The myosin mutations span all regions of these molecular motors, leading to a wide range of hearing phenotypes, reinforcing the key role of this family of proteins in auditory function. This study demonstrates that multiple mutations responsible for hearing loss can be identified in a relatively straightforward manner by targeted-gene MPS technology and concludes that this is the optimal genetic diagnostic approach for identification of mutations responsible for hearing loss. PMID:24105371

  8. Experimental evolution and the dynamics of genomic mutation rate modifiers.

    PubMed

    Raynes, Y; Sniegowski, P D

    2014-11-01

    Because genes that affect mutation rates are themselves subject to mutation, mutation rates can be influenced by natural selection and other evolutionary forces. The population genetics of mutation rate modifier alleles has been a subject of theoretical interest for many decades. Here, we review experimental contributions to our understanding of mutation rate modifier dynamics. Numerous evolution experiments have shown that mutator alleles (modifiers that elevate the genomic mutation rate) can readily rise to high frequencies via genetic hitchhiking in non-recombining microbial populations. Whereas these results certainly provide an explanatory framework for observations of sporadically high mutation rates in pathogenic microbes and in cancer lineages, it is nonetheless true that most natural populations have very low mutation rates. This raises the interesting question of how mutator hitchhiking is suppressed or its phenotypic effect reversed in natural populations. Very little experimental work has addressed this question; with this in mind, we identify some promising areas for future experimental investigation.

  9. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  10. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  11. Exome Sequencing Identifies a REEP1 Mutation Involved in Distal Hereditary Motor Neuropathy Type V

    PubMed Central

    Beetz, Christian; Pieber, Thomas R.; Hertel, Nicole; Schabhüttl, Maria; Fischer, Carina; Trajanoski, Slave; Graf, Elisabeth; Keiner, Silke; Kurth, Ingo; Wieland, Thomas; Varga, Rita-Eva; Timmerman, Vincent; Reilly, Mary M.; Strom, Tim M.; Auer-Grumbach, Michaela

    2012-01-01

    The distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of neurodegenerative disorders affecting the lower motoneuron. In a family with both autosomal-dominant dHMN and dHMN type V (dHMN/dHMN-V) present in three generations, we excluded mutations in all genes known to be associated with a dHMN phenotype through Sanger sequencing and defined three potential loci through linkage analysis. Whole-exome sequencing of two affected individuals revealed a single candidate variant within the linking regions, i.e., a splice-site alteration in REEP1 (c.304-2A>G). A minigene assay confirmed complete loss of splice-acceptor functionality and skipping of the in-frame exon 5. The resulting mRNA is predicted to be expressed at normal levels and to encode an internally shortened protein (p.102_139del). Loss-of-function REEP1 mutations have previously been identified in dominant hereditary spastic paraplegia (HSP), a disease associated with upper-motoneuron pathology. Consistent with our clinical-genetic data, we show that REEP1 is strongly expressed in the lower motoneurons as well. Upon exogeneous overexpression in cell lines we observe a subcellular localization defect for p.102_139del that differs from that observed for the known HSP-associated missense mutation c.59C>A (p.Ala20Glu). Moreover, we show that p.102_139del, but not p.Ala20Glu, recruits atlastin-1, i.e., one of the REEP1 binding partners, to the altered sites of localization. These data corroborate the loss-of-function nature of REEP1 mutations in HSP and suggest that a different mechanism applies in REEP1-associated dHMN. PMID:22703882

  12. Effect of genetic background on the stability of sunflower fatty acid composition in different high oleic mutations.

    PubMed

    Alberio, Constanza; Aguirrezábal, Luis An; Izquierdo, Natalia G; Reid, Roberto; Zuil, Sebastián; Zambelli, Andrés

    2018-02-01

    The effect of genetic background on the stability of fatty acid composition in sunflower near isogenic lines (NILs) carrying high-oleic Pervenets (P) or high-oleic NM1 mutations was studied. The materials were field-tested in different locations and at different sowing dates to evaluate a wide range of environmental conditions. Relationships were established between the fatty acids and the minimum night temperature (MNT) and the response was characterized. A genetic background effect for the fatty acid composition was found in both groups of NILs. The NM1-NILs showed an oleic level higher than 910 g kg -1 and they were more stable across environments with a zero or low dependence on the genetic background; on the other hand, high oleic materials bearing the P mutation showed lower levels of oleic acid, with a higher variation in fatty acid composition and a highly significant dependence on the genetic background. The NM1 mutation is the best option to develop ultra-high oleic sunflower oil that is stable across environments and genetic backgrounds, making its agronomical production more efficient and predictable. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Exome sequencing identifies a novel mutation of the GDI1 gene in a Chinese non-syndromic X-linked intellectual disability family

    PubMed Central

    Duan, Yongheng; Lin, Sheng; Xie, Lichun; Zheng, Kaifeng; Chen, Shiguo; Song, Hui; Zeng, Xuchun; Gu, Xueying; Wang, Heyun; Zhang, Linghua; Shao, Hao; Hong, Wenxu; Zhang, Lijie; Duan, Shan

    2017-01-01

    Abstract X-linked intellectual disability (XLID) has been associated with various genes. Diagnosis of XLID, especially for non-syndromic ones (NS-XLID), is often hampered by the heterogeneity of this disease. Here we report the case of a Chinese family in which three males suffer from intellectual disability (ID). The three patients shared the same phenotype: no typical clinical manifestation other than IQ score ≤ 70. For a genetic diagnosis for this family we carried out whole exome sequencing on the proband, and validated 16 variants of interest in the genomic DNA of all the family members. A missense mutation (c.710G > T), which mapped to exon 6 of the Rab GDP-Dissociation Inhibitor 1 (GDI1) gene, was found segregating with the ID phenotype, and this mutation changes the 237th position in the guanosine diphosphate dissociation inhibitor (GDI) protein from glycine to valine (p. Gly237Val). Through molecular dynamics simulations we found that this substitution results in a conformational change of GDI, possibly affecting the Rab-binding capacity of this protein. In conclusion, our study identified a novel GDI1 mutation that is possibly NS-XLID causative, and showed that whole exome sequencing provides advantages for detecting novel ID-associated variants and can greatly facilitate the genetic diagnosis of the disease. PMID:28863211

  14. Sodium Channel Mutations and Susceptibility to Heart Failure and Atrial Fibrillation

    PubMed Central

    Olson, Timothy M.; Michels, Virginia V.; Ballew, Jeffrey D.; Reyna, Sandra P.; Karst, Margaret L.; Herron, Kathleen J.; Horton, Steven C.; Rodeheffer, Richard J.; Anderson, Jeffrey L.

    2007-01-01

    Context Dilated cardiomyopathy (DCM), a genetically heterogeneous disorder, causes heart failure and rhythm disturbances. The majority of identified DCM genes encode structural proteins of the contractile apparatus and cytoskeleton. Recently, genetic defects in calcium and potassium regulation have been discovered in patients with DCM, implicating an alternative disease mechanism. The full spectrum of genetic defects in DCM, however, has not been established. Objectives To identify a novel gene for DCM at a previously mapped locus, define the spectrum of mutations in this gene within a DCM cohort, and determine the frequency of DCM among relatives inheriting a mutation in this gene. Design, Setting, and Participants Refined mapping of a DCM locus on chromosome 3p in a multigenerational family and mutation scanning in 156 unrelated pro-bands with DCM, prospectively identified at the Mayo Clinic between 1987 and 2004. Relatives underwent screening echocardiography and electrocardiography and DNA sample procurement. Main Outcome Measure Correlation of identified mutations with cardiac phenotype. Results Refined locus mapping revealed SCN5A, encoding the cardiac sodium channel, as a candidate gene. Mutation scans identified a missense mutation (D1275N) that cosegregated with an age-dependent, variably expressed phenotype of DCM, atrial fibrillation, impaired automaticity, and conduction delay. In the DCM cohort, additional missense (T220I, R814W, D1595H) and truncation (2550-2551insTG) SCN5A mutations, segregating with cardiac disease or arising de novo, were discovered in unrelated probands. Among individuals with an SCN5A mutation 27% had early features of DCM (mean age at diagnosis, 20.3 years), 38% had DCM (mean age at diagnosis, 47.9 years), and 43% had atrial fibrillation (mean age at diagnosis, 27.8 years). Conclusions Heritable SCN5A defects are associated with susceptibility to early-onset DCM and atrial fibrillation. Similar or even identical mutations may

  15. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features.

    PubMed

    Gaidzik, V I; Teleanu, V; Papaemmanuil, E; Weber, D; Paschka, P; Hahn, J; Wallrabenstein, T; Kolbinger, B; Köhne, C H; Horst, H A; Brossart, P; Held, G; Kündgen, A; Ringhoffer, M; Götze, K; Rummel, M; Gerstung, M; Campbell, P; Kraus, J M; Kestler, H A; Thol, F; Heuser, M; Schlegelberger, B; Ganser, A; Bullinger, L; Schlenk, R F; Döhner, K; Döhner, H

    2016-11-01

    We evaluated the frequency, genetic architecture, clinico-pathologic features and prognostic impact of RUNX1 mutations in 2439 adult patients with newly-diagnosed acute myeloid leukemia (AML). RUNX1 mutations were found in 245 of 2439 (10%) patients; were almost mutually exclusive of AML with recurrent genetic abnormalities; and they co-occurred with a complex pattern of gene mutations, frequently involving mutations in epigenetic modifiers (ASXL1, IDH2, KMT2A, EZH2), components of the spliceosome complex (SRSF2, SF3B1) and STAG2, PHF6, BCOR. RUNX1 mutations were associated with older age (16-59 years: 8.5%; ⩾60 years: 15.1%), male gender, more immature morphology and secondary AML evolving from myelodysplastic syndrome. In univariable analyses, RUNX1 mutations were associated with inferior event-free (EFS, P<0.0001), relapse-free (RFS, P=0.0007) and overall survival (OS, P<0.0001) in all patients, remaining significant when age was considered. In multivariable analysis, RUNX1 mutations predicted for inferior EFS (P=0.01). The effect of co-mutation varied by partner gene, where patients with the secondary genotypes RUNX1 mut /ASXL1 mut (OS, P=0.004), RUNX1 mut /SRSF2 mut (OS, P=0.007) and RUNX1 mut /PHF6 mut (OS, P=0.03) did significantly worse, whereas patients with the genotype RUNX1 mut /IDH2 mut (OS, P=0.04) had a better outcome. In conclusion, RUNX1-mutated AML is associated with a complex mutation cluster and is correlated with distinct clinico-pathologic features and inferior prognosis.

  16. Functional modules, mutational load and human genetic disease.

    PubMed

    Zaghloul, Norann A; Katsanis, Nicholas

    2010-04-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Identification of Mutations Underlying 20 Inborn Errors of Metabolism in the United Arab Emirates Population

    PubMed Central

    Ben-Rebeh, Imen; Hertecant, Jozef L.; Al-Jasmi, Fatma A.; Aburawi, Hanan E.; Al-Yahyaee, Said A.; Al-Gazali, Lihadh

    2012-01-01

    Inborn errors of metabolism (IEM) are frequently encountered by physicians in the United Arab Emirates (UAE). However, the mutations underlying a large number of these disorders have not yet been determined. Therefore, the objective of this study was to identify the mutations underlying a number of IEM disorders among UAE residents from both national and expatriate families. A case series of patients from 34 families attending the metabolic clinic at Tawam Hospital were clinically evaluated, and molecular testing was carried out to determine their causative mutations. The mutation analysis was carried out at molecular genetics diagnostic laboratories. Thirty-eight mutations have been identified as responsible for twenty IEM disorders, including in the metabolism of amino acids, lipids, steroids, metal transport and mitochondrial energy metabolism, and lysosomal storage disorders. Nine of the identified mutations are novel, including two missense mutations, three premature stop codons and four splice site mutations. Mutation analysis of IEM disorders in the UAE population has an important impact on molecular diagnosis and genetic counseling for families affected by these disorders. PMID:22106832

  18. Prematurity and Genetic Testing for Neonatal Diabetes.

    PubMed

    Besser, Rachel E J; Flanagan, Sarah E; Mackay, Deborah G J; Temple, I K; Shepherd, Maggie H; Shields, Beverley M; Ellard, Sian; Hattersley, Andrew T

    2016-09-01

    Hyperglycemia in premature infants is usually thought to reflect inadequate pancreatic development rather than monogenic neonatal diabetes. No studies, to our knowledge, have investigated the prevalence of monogenic forms of diabetes in preterm infants. We studied 750 patients with diabetes diagnosed before 6 months of age. We compared the genetic etiology and clinical characteristics of 146 preterm patients born <37 weeks and compared them with 604 born ≥37 weeks. A genetic etiology was found in 97/146 (66%) preterm infants compared with 501/604 (83%) born ≥37weeks, P < .0001. Chromosome 6q24 imprinting abnormalities (27% vs 12%, P = .0001) and GATA6 mutations (9% vs 2%, P = .003) occurred more commonly in preterm than term infants while mutations in KCNJ11 were less common (21 vs 34%, P = .008). Preterm patients with an identified mutation were diagnosed later than those without an identified mutation (median [interquartile range] 35 [34 to 36] weeks vs 31 [28 to 36] weeks, P < .0001). No difference was seen in other clinical characteristics of preterm patients with and without an identified mutation including age of presentation, birth weight, and time to referral. Patients with neonatal diabetes due to a monogenic etiology can be born preterm, especially those with 6q24 abnormalities or GATA6 mutations. A genetic etiology is more likely in patients with less severe prematurity (>32 weeks). Prematurity should not prevent referral for genetic testing as 37% have a potassium channel mutation and as a result can get improved control by replacing insulin with sulphonylurea therapy. Copyright © 2016 by the American Academy of Pediatrics.

  19. Whole Exome Sequencing Identifies de Novo Mutations in GATA6 Associated with Congenital Diaphragmatic Hernia

    PubMed Central

    Yu, Lan; Bennett, James T.; Wynn, Julia; Carvill, Gemma L.; Cheung, Yee Him; Shen, Yufeng; Mychaliska, George B.; Azarow, Kenneth S.; Crombleholme, Timothy M.; Chung, Dai H.; Potoka, Douglas; Warner, Brad W.; Bucher, Brian; Lim, Foong-Yen; Pietsch, John; Stolar, Charles; Aspelund, Gudrun; Arkovitz, Marc S.; Mefford, Heather; Chung, Wendy K.

    2014-01-01

    Background Congenital diaphragmatic hernia (CDH) is a common birth defect affecting 1 in 3,000 births. It is characterized by herniation of abdominal viscera through an incompletely formed diaphragm. Although chromosomal anomalies and mutations in several genes have been implicated, the cause for most patients is unknown. Methods We used whole exome sequencing in two families with CDH and congenital heart disease, and identified mutations in GATA6 in both. Results In the first family, we identified a de novo missense mutation (c.1366C>T, p.R456C) in a sporadic CDH patient with tetralogy of Fallot. In the second, a nonsense mutation (c.712G>T, p.G238*) was identified in two siblings with CDH and a large ventricular septal defect. The G238* mutation was inherited from their mother, who was clinically affected with congenital absence of the pericardium, patent ductus arteriosus, and intestinal malrotation. Deep sequencing of blood and saliva derived DNA from the mother suggested somatic mosaicism as an explanation for her milder phenotype, with only approximately 15% mutant alleles. To determine the frequency of GATA6 mutations in CDH, we sequenced the gene in 378 patients with CDH. We identified one additional de novo mutation (c.1071delG, p.V358Cfs34*). Conclusions Mutations in GATA6 have been previously associated with pancreatic agenesis and congenital heart disease. We conclude that, in addition to the heart and the pancreas, GATA6 is involved in development of two additional organs, the diaphragm and the pericardium. In addition we have shown that de novo mutations can contribute to the development of CDH, a common birth defect. PMID:24385578

  20. Prenatal genetic diagnosis of retinoblastoma and report of RB1 gene mutation from India.

    PubMed

    Shah, Parag K; Sripriya, S; Narendran, V; Pandian, A J

    2016-12-01

    Retinoblastoma is the most common intraocular malignancy of childhood. There is a paucity of genetic testing and prenatal genetic diagnosis from India, which has the highest incidence worldwide. RB1 gene screening of an 8-month-old female child with bilateral retinoblastoma was accomplished using next generation sequencing. The results were used for prenatal testing in this family. A heterozygous germline mutation (chr13: 48951119delA; c.1281delA) was detected, which resulted in premature termination of a protein product (p.Glu428Argfs*29). Prenatal testing in maternal DNA revealed carrier status of the mother. Further clinical examination in the family members revealed retinocytomas in both eyes of the mother and maternal grandmother. Prenatal genetic testing of the developing fetus showed positivity for the mutation. As the family preferred to continue the pregnancy, serial 3-D ultrasounds were carried out every 2 weeks in the third trimester. Ten days after delivery, small extrafoveal tumors developed in both eyes, which were then treated successfully with transpupillary thermotherapy. We report the significance of genetic testing in the early detection and management of retinoblastoma from India.

  1. Feline genetics: clinical applications and genetic testing.

    PubMed

    Lyons, Leslie A

    2010-11-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately 33 genes contain 50 mutations that cause feline health problems or alterations in the cat's appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab with a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's internal genome. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Mechanisms of mutations in myeloproliferative neoplasms.

    PubMed

    Levine, Ross L

    2009-12-01

    In recent years, a series of studies have provided genetic insight into the pathogenesis of myeloproliferative neoplasms (MPNs). It is now known that JAK2V617F mutations are present in 90% of patients with polycythaemia vera (PV), 60% of patients with essential thrombocytosis (ET) and 50% of patients with myelofibrosis (MF). Despite the high prevalence of JAK2V617F mutations in these three myeloid malignancies, several questions remain. For example, how does one mutation contribute to the pathogenesis of three clinically distinct diseases, and how do some patients develop these diseases in the absence of a JAK2V617F mutation? Single nucleotide polymorphisms at various loci and somatic mutations, such as those in MPLW515L/K, TET2 and in exon 12 of JAK2, may also contribute to the pathogenesis of these MPNs. There are likely additional germline and somatic genetic factors important to the MPN phenotype. Additional studies of large MPN and control cohorts with new techniques will help identify these factors.

  3. Mutations in FUS cause FALS and SALS in French and French Canadian populations

    PubMed Central

    Belzil, V. V.; Valdmanis, P. N.; Dion, P. A.; Daoud, H.; Kabashi, E.; Noreau, A.; Gauthier, J.; Hince, P.; Desjarlais, A.; Bouchard, J. -P.; Lacomblez, L.; Salachas, F.; Pradat, P. -F.; Camu, W.; Meininger, V.; Dupré, N.; Rouleau, G. A.

    2009-01-01

    Background: The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. Methods: To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. Results: In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Conclusions: Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis. PMID:19741216

  4. Mutations in FUS cause FALS and SALS in French and French Canadian populations.

    PubMed

    Belzil, V V; Valdmanis, P N; Dion, P A; Daoud, H; Kabashi, E; Noreau, A; Gauthier, J; Hince, P; Desjarlais, A; Bouchard, J-P; Lacomblez, L; Salachas, F; Pradat, P-F; Camu, W; Meininger, V; Dupré, N; Rouleau, G A

    2009-10-13

    The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis.

  5. cis-Regulatory Mutations Are a Genetic Cause of Human Limb Malformations

    PubMed Central

    VanderMeer, Julia E.; Ahituv, Nadav

    2011-01-01

    The underlying mutations that cause human limb malformations are often difficult to determine, particularly for limb malformations that occur as isolated traits. Evidence from a variety of studies shows that cis-regulatory mutations, specifically in enhancers, can lead to some of these isolated limb malformations. Here, we provide a review of human limb malformations that have been shown to be caused by enhancer mutations and propose that cis-regulatory mutations will continue to be identified as the cause of additional human malformations as our understanding of regulatory sequences improves. PMID:21509892

  6. Genetic rearrangements, hotspot mutations, and microRNA expression in the progression of metastatic adenoid cystic carcinoma of the salivary gland

    PubMed Central

    Andreasen, Simon; Agander, Tina Klitmøller; Bjørndal, Kristine; Erentaite, Daiva; Heegaard, Steffen; Larsen, Stine R.; Melchior, Linea Cecilie; Tan, Qihua; Ulhøi, Benedicte Parm; Wessel, Irene; Homøe, Preben

    2018-01-01

    Adenoid cystic carcinoma (ACC) is among the most common salivary gland malignancies, and is notorious for its unpredictable clinical course with frequent local recurrences and metastatic spread. However, the molecular mechanisms for metastatic spread are poorly understood. This malignancy is known to frequently harbor gene fusions involving MYB, MYBL1, and NFIB, and to have a low mutational burden. Most studies have focused on primary tumors to understand the biology of ACC, but this has not revealed a genetic cause for metastatic dissemination in the majority of cases. Hence, other molecular mechanisms are likely to be involved. Here, we characterize the genetic and microRNA expressional landscape of primary ACC and corresponding metastatic lesions from 11 patients. FISH demonstrated preservation of MYB aberrations between primary tumors and metastases, and targeted next-generation sequencing identified mutations exclusive for the metastatic lesions in 3/11 cases (27.3%). Global microRNA profiling identified several differentially expressed miRNAs between primary ACC and metastases as compared to normal salivary gland tissue. Interestingly, individual tumor pairs differed in miRNA profile, but there was no general difference between primary ACCs and metastases. Collectively, we show that MYB and NFIB aberrations are consistently preserved in ACC metastatic lesions, and that additional mutations included in the 50-gene hotspot panel used are infrequently acquired by the metastatic lesions. In contrast, tumor pairs differ in microRNA expression and our data suggest that they are heterogeneous according to their microRNA profile. This adds an additional layer to the complex process of ACC metastatic spread. PMID:29731974

  7. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  8. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  9. Genetic factors of age-related macular degeneration

    PubMed Central

    Tuo, Jingsheng; Bojanowski, Christine M.; Chan, Chi-Chao

    2007-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in the United States and developed countries. Although the etiology and pathogenesis of AMD remain unknown, a complex interaction of genetic and environmental factors is thought to exist. The incidence and progression of all of the features of AMD are known to increase significantly with age. The tendency for familial aggregation and the findings of gene variation association studies implicate a significant genetic component in the development of AMD. This review summarizes in detail the AMD-related genes identified by studies on genetically engineered and spontaneously gene-mutated (naturally mutated) animals, AMD chromosomal loci identified by linkage studies, AMD-related genes identified through studies of monogenic degenerative retinal diseases, and AMD-related gene variation identified by association studies. PMID:15094132

  10. Genetically distinct genogroup IV norovirus strains identified in wastewater.

    PubMed

    Kitajima, Masaaki; Rachmadi, Andri T; Iker, Brandon C; Haramoto, Eiji; Gerba, Charles P

    2016-12-01

    We investigated the prevalence and genetic diversity of genogroup IV norovirus (GIV NoV) strains in wastewater in Arizona, United States, over a 13-month period. Among 50 wastewater samples tested, GIV NoVs were identified in 13 (26 %) of the samples. A total of 47 different GIV NoV strains were identified, which were classified into two genetically distinct clusters: the GIV.1 human cluster and a unique genetic cluster closely related to strains previously identified in Japanese wastewater. The results provide additional evidence of the considerable genetic diversity among GIV NoV strains through the analysis of wastewater containing virus strains shed from all populations.

  11. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma.

    PubMed

    Schmitz, Roland; Wright, George W; Huang, Da Wei; Johnson, Calvin A; Phelan, James D; Wang, James Q; Roulland, Sandrine; Kasbekar, Monica; Young, Ryan M; Shaffer, Arthur L; Hodson, Daniel J; Xiao, Wenming; Yu, Xin; Yang, Yandan; Zhao, Hong; Xu, Weihong; Liu, Xuelu; Zhou, Bin; Du, Wei; Chan, Wing C; Jaffe, Elaine S; Gascoyne, Randy D; Connors, Joseph M; Campo, Elias; Lopez-Guillermo, Armando; Rosenwald, Andreas; Ott, German; Delabie, Jan; Rimsza, Lisa M; Tay Kuang Wei, Kevin; Zelenetz, Andrew D; Leonard, John P; Bartlett, Nancy L; Tran, Bao; Shetty, Jyoti; Zhao, Yongmei; Soppet, Dan R; Pittaluga, Stefania; Wilson, Wyndham H; Staudt, Louis M

    2018-04-12

    Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. Gene-expression profiling has identified subgroups of DLBCL (activated B-cell-like [ABC], germinal-center B-cell-like [GCB], and unclassified) according to cell of origin that are associated with a differential response to chemotherapy and targeted agents. We sought to extend these findings by identifying genetic subtypes of DLBCL based on shared genomic abnormalities and to uncover therapeutic vulnerabilities based on tumor genetics. We studied 574 DLBCL biopsy samples using exome and transcriptome sequencing, array-based DNA copy-number analysis, and targeted amplicon resequencing of 372 genes to identify genes with recurrent aberrations. We developed and implemented an algorithm to discover genetic subtypes based on the co-occurrence of genetic alterations. We identified four prominent genetic subtypes in DLBCL, termed MCD (based on the co-occurrence of MYD88 L265P and CD79B mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations), N1 (based on NOTCH1 mutations), and EZB (based on EZH2 mutations and BCL2 translocations). Genetic aberrations in multiple genes distinguished each genetic subtype from other DLBCLs. These subtypes differed phenotypically, as judged by differences in gene-expression signatures and responses to immunochemotherapy, with favorable survival in the BN2 and EZB subtypes and inferior outcomes in the MCD and N1 subtypes. Analysis of genetic pathways suggested that MCD and BN2 DLBCLs rely on "chronic active" B-cell receptor signaling that is amenable to therapeutic inhibition. We uncovered genetic subtypes of DLBCL with distinct genotypic, epigenetic, and clinical characteristics, providing a potential nosology for precision-medicine strategies in DLBCL. (Funded by the Intramural Research Program of the National Institutes of Health and others.).

  12. Genetic code mutations: the breaking of a three billion year invariance.

    PubMed

    Mat, Wai-Kin; Xue, Hong; Wong, J Tze-Fei

    2010-08-20

    The genetic code has been unchanging for some three billion years in its canonical ensemble of encoded amino acids, as indicated by the universal adoption of this ensemble by all known organisms. Code mutations beginning with the encoding of 4-fluoro-Trp by Bacillus subtilis, initially replacing and eventually displacing Trp from the ensemble, first revealed the intrinsic mutability of the code. This has since been confirmed by a spectrum of other experimental code alterations in both prokaryotes and eukaryotes. To shed light on the experimental conversion of a rigidly invariant code to a mutating code, the present study examined code mutations determining the propagation of Bacillus subtilis on Trp and 4-, 5- and 6-fluoro-tryptophans. The results obtained with the mutants with respect to cross-inhibitions between the different indole amino acids, and the growth effects of individual nutrient withdrawals rendering essential their biosynthetic pathways, suggested that oligogenic barriers comprising sensitive proteins which malfunction with amino acid analogues provide effective mechanisms for preserving the invariance of the code through immemorial time, and mutations of these barriers open up the code to continuous change.

  13. Hidden Genetic Variation in LCA9-Associated Congenital Blindness Explained by 5'UTR Mutations and Copy-Number Variations of NMNAT1.

    PubMed

    Coppieters, Frauke; Todeschini, Anne Laure; Fujimaki, Takuro; Baert, Annelot; De Bruyne, Marieke; Van Cauwenbergh, Caroline; Verdin, Hannah; Bauwens, Miriam; Ongenaert, Maté; Kondo, Mineo; Meire, Françoise; Murakami, Akira; Veitia, Reiner A; Leroy, Bart P; De Baere, Elfride

    2015-12-01

    Leber congenital amaurosis (LCA) is a severe autosomal-recessive retinal dystrophy leading to congenital blindness. A recently identified LCA gene is NMNAT1, located in the LCA9 locus. Although most mutations in blindness genes are coding variations, there is accumulating evidence for hidden noncoding defects or structural variations (SVs). The starting point of this study was an LCA9-associated consanguineous family in which no coding mutations were found in the LCA9 region. Exploring the untranslated regions of NMNAT1 revealed a novel homozygous 5'UTR variant, c.-70A>T. Moreover, an adjacent 5'UTR variant, c.-69C>T, was identified in a second consanguineous family displaying a similar phenotype. Both 5'UTR variants resulted in decreased NMNAT1 mRNA abundance in patients' lymphocytes, and caused decreased luciferase activity in human retinal pigment epithelial RPE-1 cells. Second, we unraveled pseudohomozygosity of a coding NMNAT1 mutation in two unrelated LCA patients by the identification of two distinct heterozygous partial NMNAT1 deletions. Molecular characterization of the breakpoint junctions revealed a complex Alu-rich genomic architecture. Our study uncovered hidden genetic variation in NMNAT1-associated LCA and emphasized a shift from coding to noncoding regulatory mutations and repeat-mediated SVs in the molecular pathogenesis of heterogeneous recessive disorders such as hereditary blindness. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  14. Spectrum of mismatch repair gene mutations and clinical presentation of Hispanic individuals with Lynch syndrome.

    PubMed

    Sunga, Annette Y; Ricker, Charité; Espenschied, Carin R; Castillo, Danielle; Melas, Marilena; Herzog, Josef; Bannon, Sarah; Cruz-Correa, Marcia; Lynch, Patrick; Solomon, Ilana; Gruber, Stephen B; Weitzel, Jeffrey N

    2017-04-01

    Lynch syndrome (LS), the most common hereditary colorectal cancer syndrome, is caused by mismatch repair (MMR) gene mutations. However, data about MMR mutations in Hispanics are limited. This study aims to describe the spectrum of MMR mutations in Hispanics with LS and explore ancestral origins. This case series involved an IRB-approved retrospective chart review of self-identified Hispanic patients (n = 397) seen for genetic cancer risk assessment at four collaborating academic institutions in California, Texas, and Puerto Rico who were evaluated by MMR genotyping and/or tumor analysis. A literature review was conducted for all mutations identified. Of those who underwent clinical genetic testing (n = 176), 71 had MMR gene mutations. Nine mutations were observed more than once. One third (3/9) of recurrent mutations and two additional mutations (seen only once) were previously reported in Spain, confirming the influence of Spanish ancestry on MMR mutations in Hispanic populations. The recurrent mutations identified (n = 9) included both previously reported mutations as well as unique mutations not in the literature. This is the largest report of Hispanic MMR mutations in North America; however, a larger sample and haplotype analyses are needed to better understand recurrent MMR mutations in Hispanic populations. Copyright © 2017. Published by Elsevier Inc.

  15. Mutation-Based Learning to Improve Student Autonomy and Scientific Inquiry Skills in a Large Genetics Laboratory Course

    ERIC Educational Resources Information Center

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could…

  16. Systems Genetics Identifies a Novel Regulatory Domain of Amylose Synthesis1[OPEN

    PubMed Central

    Parween, Sabiha; Samson, Irene; de Guzman, Krishna; Alhambra, Crisline Mae; Misra, Gopal

    2017-01-01

    A deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS) of debranched starch structure from grains of a 320 indica rice diversity panel using genotyping data from the high-density rice array. A systems genetics approach that interrelates starch structure data from GWAS to functional pathways from a gene regulatory network identified known genes with high correlation to the proportion of amylose and amylopectin. An SNP in the promoter region of Granule Bound Starch Synthase I was identified along with seven other SNPs to form haplotypes that discriminate samples into different phenotypic ranges of amylose. A GWAS peak on chromosome 7 between LOC_Os07g11020 and LOC_Os07g11520 indexed by a nonsynonymous SNP mutation on exon 5 of a bHLH transcription factor was found to elevate the proportion of amylose at the expense of reduced short-chain amylopectin. Linking starch structure with starch digestibility by determining the kinetics of cooked grain amylolysis of selected haplotypes revealed strong association of starch structure with estimated digestibility kinetics. Combining all results from grain quality genomics, systems genetics, and digestibility phenotyping, we propose target haplotypes for fine-tuning starch structure in rice through marker-assisted breeding that can be used to alter the digestibility of rice grain, thus offering rice consumers a new diet-based intervention to mitigate the impact of nutrition-related noncommunicable diseases. PMID:27881726

  17. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations.

    PubMed

    Rebbeck, Timothy R; Friebel, Tara M; Friedman, Eitan; Hamann, Ute; Huo, Dezheng; Kwong, Ava; Olah, Edith; Olopade, Olufunmilayo I; Solano, Angela R; Teo, Soo-Hwang; Thomassen, Mads; Weitzel, Jeffrey N; Chan, T L; Couch, Fergus J; Goldgar, David E; Kruse, Torben A; Palmero, Edenir Inêz; Park, Sue Kyung; Torres, Diana; van Rensburg, Elizabeth J; McGuffog, Lesley; Parsons, Michael T; Leslie, Goska; Aalfs, Cora M; Abugattas, Julio; Adlard, Julian; Agata, Simona; Aittomäki, Kristiina; Andrews, Lesley; Andrulis, Irene L; Arason, Adalgeir; Arnold, Norbert; Arun, Banu K; Asseryanis, Ella; Auerbach, Leo; Azzollini, Jacopo; Balmaña, Judith; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Benitez, Javier; Berger, Andreas; Berger, Raanan; Blanco, Amie M; Blazer, Kathleen R; Blok, Marinus J; Bonadona, Valérie; Bonanni, Bernardo; Bradbury, Angela R; Brewer, Carole; Buecher, Bruno; Buys, Saundra S; Caldes, Trinidad; Caliebe, Almuth; Caligo, Maria A; Campbell, Ian; Caputo, Sandrine M; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Collée, J Margriet; Cook, Jackie; Davidson, Rosemarie; de la Hoya, Miguel; De Leeneer, Kim; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Ding, Yuan Chun; Ditsch, Nina; Domchek, Susan M; Dorfling, Cecilia M; Velazquez, Carolina; Dworniczak, Bernd; Eason, Jacqueline; Easton, Douglas F; Eeles, Ros; Ehrencrona, Hans; Ejlertsen, Bent; Engel, Christoph; Engert, Stefanie; Evans, D Gareth; Faivre, Laurence; Feliubadaló, Lidia; Ferrer, Sandra Fert; Foretova, Lenka; Fowler, Jeffrey; Frost, Debra; Galvão, Henrique C R; Ganz, Patricia A; Garber, Judy; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Gesta, Paul; Giannini, Giuseppe; Giraud, Sophie; Glendon, Gord; Godwin, Andrew K; Greene, Mark H; Gronwald, Jacek; Gutierrez-Barrera, Angelica; Hahnen, Eric; Hauke, Jan; Henderson, Alex; Hentschel, Julia; Hogervorst, Frans B L; Honisch, Ellen; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Kaczmarek, Katarzyna; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Kim, Sung-Won; Konstantopoulou, Irene; Korach, Jacob; Laitman, Yael; Lasa, Adriana; Lasset, Christine; Lázaro, Conxi; Lee, Annette; Lee, Min Hyuk; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lindor, Noralane M; Longy, Michel; Loud, Jennifer T; Lu, Karen H; Lubinski, Jan; Machackova, Eva; Manoukian, Siranoush; Mari, Véronique; Martínez-Bouzas, Cristina; Matrai, Zoltan; Mebirouk, Noura; Meijers-Heijboer, Hanne E J; Meindl, Alfons; Mensenkamp, Arjen R; Mickys, Ugnius; Miller, Austin; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Neuhausen, Susan L; Nevanlinna, Heli; Ngeow, Joanne; Nguyen, Huu Phuc; Niederacher, Dieter; Nielsen, Henriette Roed; Nielsen, Finn Cilius; Nussbaum, Robert L; Offit, Kenneth; Öfverholm, Anna; Ong, Kai-Ren; Osorio, Ana; Papi, Laura; Papp, Janos; Pasini, Barbara; Pedersen, Inge Sokilde; Peixoto, Ana; Peruga, Nina; Peterlongo, Paolo; Pohl, Esther; Pradhan, Nisha; Prajzendanc, Karolina; Prieur, Fabienne; Pujol, Pascal; Radice, Paolo; Ramus, Susan J; Rantala, Johanna; Rashid, Muhammad Usman; Rhiem, Kerstin; Robson, Mark; Rodriguez, Gustavo C; Rogers, Mark T; Rudaitis, Vilius; Schmidt, Ane Y; Schmutzler, Rita Katharina; Senter, Leigha; Shah, Payal D; Sharma, Priyanka; Side, Lucy E; Simard, Jacques; Singer, Christian F; Skytte, Anne-Bine; Slavin, Thomas P; Snape, Katie; Sobol, Hagay; Southey, Melissa; Steele, Linda; Steinemann, Doris; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tan, Yen Y; Teixeira, Manuel R; Terry, Mary Beth; Teulé, Alex; Thomas, Abigail; Thull, Darcy L; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Topka, Sabine; Trainer, Alison H; Tung, Nadine; van Asperen, Christi J; van der Hout, Annemieke H; van der Kolk, Lizet E; van der Luijt, Rob B; Van Heetvelde, Mattias; Varesco, Liliana; Varon-Mateeva, Raymonda; Vega, Ana; Villarreal-Garza, Cynthia; von Wachenfeldt, Anna; Walker, Lisa; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weber, Bernhard H F; Yannoukakos, Drakoulis; Yoon, Sook-Yee; Zanzottera, Cristina; Zidan, Jamal; Zorn, Kristin K; Hutten Selkirk, Christina G; Hulick, Peter J; Chenevix-Trench, Georgia; Spurdle, Amanda B; Antoniou, Antonis C; Nathanson, Katherine L

    2018-05-01

    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations. © 2018 Wiley Periodicals, Inc.

  18. Investigation of FANCA mutations in Greek patients.

    PubMed

    Selenti, Nikoletta; Sofocleous, Christalena; Kattamis, Antonis; Kolialexi, Aggeliki; Kitsiou, Sophia; Fryssira, Elena; Polychronopoulou, Sophia; Kanavakis, Emmanouel; Mavrou, Ariadni

    2013-08-01

    Fanconi anemia (FA) is a rare genetic disease characterized by considerable heterogeneity. Fifteen subtypes are currently recognised and deletions of the Fanconi anemia complementation group A (FANCA) gene account for more than 65% of FA cases. We report on the results from a cohort of 166 patients referred to the Department of Medical Genetics of Athens University for genetic investigation after the clinical suspicion of FA. For clastogen-induced chromosome damage, cultures were set up with the addition of mitomycin C (MMC) and diepoxybutane (DEB), respectively. Following a positive cytogenetic result, molecular analysis was performed to allow identification of causative mutations in the FANCA gene. A total of 13/166 patients were diagnosed with FA and 8/13 belonged to the FA-A subtype. A novel point mutation was identified in exon 26 of FANCA gene. In our study 62% of FA patients were classified in the FA-A subtype and a point mutation in exon 26 was noted for the first time.

  19. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease.

    PubMed

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-11-01

    Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.

  20. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease

    PubMed Central

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-01-01

    Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND. PMID:29133643

  1. Mapping Challenging Mutations by Whole-Genome Sequencing

    PubMed Central

    Smith, Harold E.; Fabritius, Amy S.; Jaramillo-Lambert, Aimee; Golden, Andy

    2016-01-01

    Whole-genome sequencing provides a rapid and powerful method for identifying mutations on a global scale, and has spurred a renewed enthusiasm for classical genetic screens in model organisms. The most commonly characterized category of mutation consists of monogenic, recessive traits, due to their genetic tractability. Therefore, most of the mapping methods for mutation identification by whole-genome sequencing are directed toward alleles that fulfill those criteria (i.e., single-gene, homozygous variants). However, such approaches are not entirely suitable for the characterization of a variety of more challenging mutations, such as dominant and semidominant alleles or multigenic traits. Therefore, we have developed strategies for the identification of those classes of mutations, using polymorphism mapping in Caenorhabditis elegans as our model for validation. We also report an alternative approach for mutation identification from traditional recombinant crosses, and a solution to the technical challenge of sequencing sterile or terminally arrested strains where population size is limiting. The methods described herein extend the applicability of whole-genome sequencing to a broader spectrum of mutations, including classes that are difficult to map by traditional means. PMID:26945029

  2. Merits and pitfalls of genetic testing in a hypertrophic cardiomyopathy clinic.

    PubMed

    Arad, Michael; Monserrat, Lorenzo; Haron-Khun, Shiraz; Seidman, Jonathan G; Seidman, Christine E; Arbustini, Eloisa; Glikson, Michael; Freimark, Dov

    2014-11-01

    Hypertrophic cardiomyopathy (HCM) is a familial disease with autosomal dominant inheritance and age-dependent penetrance, caused primarily by mutations of sarcomere genes. Because the clinical variability of HCM is related to its genetic heterogeneity, genetic studies may improve the diagnosis and prognostic evaluation in HCM. To analyze the impact of genetic diagnosis on the clinical management of HCM. Genetic studies were performed for either research or clinical reasons. Once the disease-causing mutation was identified, the management plan was reevaluated. Family members were invited to receive genetic counseling and encouraged to be tested for the mutation. Ten mutations in sarcomere protein genes were identified in 9 probands: 2 novel and 8 previously described. Advanced heart failure or sudden death in a young person prompted the genetic study in 8 of the 9 families. Of 98 relatives available for genotyping, only 53 (54%) agreed to be tested. The compliance was higher in families with sudden death and lower in what appeared to be sporadic HCM or elderly-onset disease. Among the healthy we identified 9 carriers and 19 non-carriers. In 6 individuals the test result resolved an uncertainty about "possible HCM." In several cases the genetic result was also used for family planning and played a role in decisions on cardioverter-defibrillator implantation. Recurrence of a same mutation in different families created an opportunity to apply the information from the literature for risk stratification of individual patients. We suggest that the clinical context determines the indication for genetic testing and interpretation of the results.

  3. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families†

    PubMed Central

    Chang, Wendy; Winder, Thomas L.; LeDuc, Charles A.; Simpson, Lynn L.; Millar, William S.; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A.; Chung, Wendy K.

    2009-01-01

    Objective Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. Method We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. Results We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. Conclusion These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. PMID:19266496

  4. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families.

    PubMed

    Chang, Wendy; Winder, Thomas L; LeDuc, Charles A; Simpson, Lynn L; Millar, William S; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A; Chung, Wendy K

    2009-06-01

    Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of alpha-dystroglycan (alpha-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. Copyright (c) 2009 John Wiley & Sons, Ltd.

  5. CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic

    PubMed Central

    Marshall, A D; Bailey, C G; Champ, K; Vellozzi, M; O'Young, P; Metierre, C; Feng, Y; Thoeng, A; Richards, A M; Schmitz, U; Biro, M; Jayasinghe, R; Ding, L; Anderson, L; Mardis, E R; Rasko, J E J

    2017-01-01

    CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer. PMID:28319062

  6. Mutational screening in genes related with porto-pulmonary hypertension: An analysis of 6 cases.

    PubMed

    Pousada, Guillermo; Baloira, Adolfo; Valverde, Diana

    2017-04-07

    Portopulmonary hypertension (PPH) is a rare disease with a low incidence and without a clearly-identified genetic component. The aim of this work was to check genes and genetic modifiers related to pulmonary arterial hypertension in patients with PPH in order to clarify the molecular basis of the pathology. We selected a total of 6 patients with PPH and amplified the exonic regions and intronic flanking regions of the relevant genes and regions of interest of the genetic modifiers. Six patients diagnosed with PPH were analyzed and compared to 55 healthy individuals. Potentially-pathogenic mutations were identified in the analyzed genes of 5 patients. None of these mutations, which are highly conserved throughout evolution, were detected in the control patients nor different databases analyzed (1000 Genomes, ExAC and DECIPHER). After analyzing for genetic modifiers, we found different variations that could favor the onset of the disease. The genetic analysis carried out in this small cohort of patients with PPH revealed a large number of mutations, with the ENG gene showing the greatest mutational frequency. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  7. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA.

    PubMed

    Wang, Na; Liu, Tiantian; Sofiadis, Anastasios; Juhlin, C Christofer; Zedenius, Jan; Höög, Anders; Larsson, Catharina; Xu, Dawei

    2014-10-01

    The telomerase reverse transcriptase (TERT) promoter mutations C228T and C250T have been found in many malignancies, including in thyroid carcinomas. However, it is unclear how early these mutations occur in thyroid tumorigenesis. The study included primary tumors from 58 patients initially diagnosed with follicular thyroid adenoma (FTA), a benign entity, 18 with atypical FTA (AFTA) having an uncertain malignant potential, and 52 with follicular thyroid carcinoma (FTC). Sanger sequencing was used to investigate the mutational status of the TERT promoter. Telomere length and TERT messenger RNA (mRNA) expression were determined using quantitative polymerase chain reaction (PCR). Telomerase activity was assessed using a Telomerase PCR enzyme-linked immunosorbent assay kit. The C228T mutation was identified in 1 of 58 FTA (2%) and 3 of 18 AFTA (17%) samples. These 4 tumors all expressed TERT mRNA and telomerase activity, whereas the majority of C228T-negative adenomas lacked TERT expression (C228T versus wild-type, P = .008). The C228T mutation was associated with NRAS gene mutations (P = .016). The patient with C228T-mutated FTA later developed a scar recurrence and died of FTC, whereas none of the remaining 57 patients with FTA had recurrence. No recurrence occurred in 3 patients with AFTA who carried C228T during the follow-up period (36-285 months). Nine of the 52 FTCs (17%) exhibited the TERT mutation (8 of 9 C228T and 1 of 9 C250T), and the presence of the mutation was associated with shorter patient survival. TERT promoter mutations may occur as an early genetic event in thyroid follicular tumors that have not developed malignant features on routine histopathological workup. © 2014 American Cancer Society.

  8. Epilepsy in hemiplegic migraine: Genetic mutations and clinical implications.

    PubMed

    Prontera, P; Sarchielli, P; Caproni, S; Bedetti, C; Cupini, L M; Calabresi, P; Costa, C

    2018-02-01

    Objective We performed a systematic review on the comorbidities of familial/sporadic hemiplegic migraine (F/SHM) with seizure/epilepsy in patients with CACNA1A, ATP1A2 or SCN1A mutations, to identify the genotypes associated and investigate for the presence of mutational hot spots. Methods We performed a search in MEDLINE and in the Human Gene Mutation and Leiden Open Variation Databases for mutations in the CACNA1A, ATP1A2 and SCN1A genes. After having examined the clinical characteristics of the patients, we selected those having HM and seizures, febrile seizures or epilepsy. For each gene, we determined both the frequency and the positions at protein levels of these mutations, as well as the penetrance of epilepsy within families. Results Concerning F/SHM-Epilepsy1 (F/SHME1) and F/SHME2 endophenotypes, we observed a prevalent involvement of the transmembrane domains, and a strong correlation in F/SHME1 when the positively charged amino acids were involved. The penetrance of epilepsy within the families was highest for patients carrying mutation in the CACNA1A gene (60%), and lower in those having SCN1A (33.3%) and ATP1A2 (30.9%) mutations. Conclusion Among the HM cases with seizure/epilepsy, we observed mutational hot spots in the transmembrane domains of CACNA1A and ATP1A2 proteins. These findings could lead to a better understanding of the pathological mechanisms underlying migraine and epilepsy, therein guaranteeing the most appropriate therapeutic approach.

  9. [Clinical and genetic analysis for two children with congenital disturbance of glycosylation with PMM2 gene mutations].

    PubMed

    Ren, Changhong; Fang, Fang; Huang, Yu; Cheng, Hua; Dai, Lifang

    2015-12-01

    To analyze the clinical and PMM2 gene mutation features of congenital disturbance of glycosylation caused by PMM2 gene mutation (PMM2-CDG, previously known as CDG 1a). The clinical data of two Chinese patients who were clinically diagnosed as PMM2-CDG at neurology department of Beijing Children's Hospital in 2012 were retrospectively collected. The gene mutations were identified by Sanger sequencing. Both patients were female, aged 1 year and 1 month and 8 months respectively. The main clinical features of the two cases were developmental delay after birth, chronic diarrhea and metabolic acidosis, associated with elevated serum transaminases, and decreased antithrombin III activity. Physical examination showed esotropia, inverted nipples, and abnormal subcutaneous fat pads. The cranial MRI showed cerebellar atrophy. Both cases were treated with occupational therapy, physical therapy and speech therapy. The development was gradually improved but also delayed as compared with normal peers during follow-up for more than 3 years. Genetic analysis showed that patient 1 was compound heterozygous for c. 422G>A(p.Arg141His), which was reported for known pathogenic mutation, and c. 669C>A(p.Asp223Glu), was a new mutation. The patient 2 showed compound heterozygous mutation for c. 634A>G (p.Met212Val)and c. 713G>C(p.Arg238Pro), which were both new mutations. PMM2-CDG is a rare metabolic disease, and the diagnosis should be considered in a child with developmental delay, elevated serum transaminases, decreased antithrombin III activity, inverted nipples, abnormal subcutaneous fat pads, esotropia, and cerebellar atrophy on MRI. It can be confirmed by PMM2 gene analysis.

  10. Mutation spectrum of Chinese patients with Bartter syndrome.

    PubMed

    Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping

    2017-11-24

    Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population.

  11. Mutation spectrum of Chinese patients with Bartter syndrome

    PubMed Central

    Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping

    2017-01-01

    Objective Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Methods Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. Results 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. Conclusion The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population. PMID:29254190

  12. Analysis of the GCK gene in 79 MODY type 2 patients: A multicenter Turkish study, mutation profile and description of twenty novel mutations.

    PubMed

    Aykut, Ayça; Karaca, Emin; Onay, Hüseyin; Gökşen, Damla; Çetinkalp, Şevki; Eren, Erdal; Ersoy, Betül; Çakır, Esra Papatya; Büyükinan, Muammer; Kara, Cengiz; Anık, Ahmet; Kırel, Birgül; Özen, Samim; Atik, Tahir; Darcan, Şükran; Özkınay, Ferda

    2018-01-30

    Maturity onset diabetes is a genetic form of diabetes mellitus characterized by an early age at onset and several etiologic genes for this form of diabetes have been identified in many patients. Maturity onset diabetes type 2 [MODY2 (#125851)] caused by mutations in the glucokinase gene (GCK). Although its prevalence is not clear, it is estimated that 1%-2% of patients with diabetes have the monogenic form. The aim of this study was to evaluate the molecular spectrum of GCK gene mutations in 177 Turkish MODY type 2 patients. Mutations in the GCK gene were identified in 79 out of 177. All mutant alleles were identified, including 45 different GCK mutations, 20 of which were novel. Copyright © 2017. Published by Elsevier B.V.

  13. Genetic analysis of hispanic individuals with cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebe, T.A.; Doane, W.W.; Norman, R.A.

    1994-03-01

    The authors have performed molecular genetic analysis of Hispanic individuals with cystic fibrosis (CF) in the southwestern United States. Of 129 CF chromosomes analyzed, oly 46% (59/129) carry [Delta]F508. The G542X mutation was found on 5% (7/129) of CF chromosomes. The 3849+10kbC[yields]T mutation, detected primarily in Ashkenazi Jews, was present on 2% (3/129). R1162X and R334W, mutations identified in Spain and Italy, each occurred on 1.6% (2/129) of CF chromosomes. W1282X and R553X were each detected once. G551D and N1303K were not found. Overall, screening for 22 or more mutations resulted in detection of only 58% of CF transmembrane conductancemore » regulator gene mutations among Hispanic individuals. Analysis of KM19/XV2c haplotypes revealed an unusual distribution. Although the majority of [Delta]508 mutations are on chromosomes of B haplotypes, the other CF mutations are on A and C haplotypes at higher-than-expected frequencies. These genetic analysis demonstrate significant differences between Hispanic individuals with CF and those of the general North American population. Assessment of carrier/affected risk in Hispanic CF individuals cannot, therefore, be based on the mutation frequencies found through studies of the general population but must be adjusted to better reflect the genetic makeup of this ethnic group. Further studies are necessary to identify the causative mutation(s) in this population and to better delineate genotype/phenotype correlations. These will enable counselors to provide more accurate genetic counseling. 22 refs., 2 tabs.« less

  14. GENETIC MUTATIONS AFFECTING THE FIRST LINE ERADICATION THERAPY OF Helicobacter pylori-INFECTED EGYPTIAN PATIENTS.

    PubMed

    Ramzy, Iman; Elgarem, Hassan; Hamza, Iman; Ghaith, Doaa; Elbaz, Tamer; Elhosary, Waleed; Mostafa, Gehan; Elzahry, Mohammad A Mohey Eldin

    2016-12-08

    Several genetic mutations affect the first-line triple therapy for Helicobacter pylori. We aimed to study the most common genetic mutations affecting the metronidazole and clarithromycin therapy for H. pylori-infected Egyptian patients. In our study, we included 100 successive dyspeptic patients scheduled for diagnosis through upper gastroscopy at Cairo's University Hospital, Egypt. Gastric biopsies were tested for the presence of H. pylori by detection of the 16S rRNA gene. Positive biopsies were further studied for the presence of the rdxA gene deletion by Polymerase Chain Reaction (PCR), while clarithromycin resistance was investigated by the presence of nucleotide substitutions within H. pylori 23S rRNA V domain using MboII and BsaI to carry out a Restricted Fragment Length Polymorphism (RFLP) assay. Among 70 H. pylori positive biopsies, the rdxA gene deletion was detected in 44/70 (62.9%) samples, while predominance of the A2142G mutations within the H. pylori 23S rRNA V domain was evidenced in 39/70 (55.7%) of the positive H. pylori cases. No statistically significant difference was found between the presence of gene mutations and different factors such as patients 'age, gender, geographic distribution, symptoms and endoscopic findings. Infection with mutated H. pylori strains is considerably high, a finding that imposes care in the use of the triple therapy to treat H. pylori in Egypt, since the guidelines recommend to abandon the standard triple therapy when the primary clarithromycin resistance rate is over 20%1.

  15. Next-generation sequencing for targeted discovery of rare mutations in rice

    USDA-ARS?s Scientific Manuscript database

    Advances in DNA sequencing (i.e., next-generation sequencing, NGS) have greatly increased the power and efficiency of detecting rare mutations in large mutant populations. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach for identifying gene mutations resulting fro...

  16. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.

    PubMed

    Traxler, Elizabeth A; Yao, Yu; Wang, Yong-Dong; Woodard, Kaitly J; Kurita, Ryo; Nakamura, Yukio; Hughes, Jim R; Hardison, Ross C; Blobel, Gerd A; Li, Chunliang; Weiss, Mitchell J

    2016-09-01

    Disorders resulting from mutations in the hemoglobin subunit beta gene (HBB; which encodes β-globin), mainly sickle cell disease (SCD) and β-thalassemia, become symptomatic postnatally as fetal γ-globin expression from two paralogous genes, hemoglobin subunit gamma 1 (HBG1) and HBG2, decreases and adult β-globin expression increases, thereby shifting red blood cell (RBC) hemoglobin from the fetal (referred to as HbF or α2γ2) to adult (referred to as HbA or α2β2) form. These disorders are alleviated when postnatal expression of fetal γ-globin is maintained. For example, in hereditary persistence of fetal hemoglobin (HPFH), a benign genetic condition, mutations attenuate γ-globin-to-β-globin switching, causing high-level HbF expression throughout life. Co-inheritance of HPFH with β-thalassemia- or SCD-associated gene mutations alleviates their clinical manifestations. Here we performed CRISPR-Cas9-mediated genome editing of human blood progenitors to mutate a 13-nt sequence that is present in the promoters of the HBG1 and HBG2 genes, thereby recapitulating a naturally occurring HPFH-associated mutation. Edited progenitors produced RBCs with increased HbF levels that were sufficient to inhibit the pathological hypoxia-induced RBC morphology found in SCD. Our findings identify a potential DNA target for genome-editing-mediated therapy of β-hemoglobinopathies.

  17. High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens.

    PubMed

    Hu, Xin-Sheng; Yeh, Francis C; Hu, Yang; Deng, Li-Ting; Ennos, Richard A; Chen, Xiaoyang

    2017-02-22

    Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G st  = 0.05 ± 0.049). The smallest divergence is among African populations (G st  = 0.0081 ± 0.0025), with increased divergence among non-African populations (G st  = 0.0217 ± 0.0109) and then among African and non-African populations (G st  = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci.

  18. C-to-U editing and site-directed RNA editing for the correction of genetic mutations.

    PubMed

    Vu, Luyen Thi; Tsukahara, Toshifumi

    2017-07-24

    Cytidine to uridine (C-to-U) editing is one type of substitutional RNA editing. It occurs in both mammals and plants. The molecular mechanism of C-to-U editing involves the hydrolytic deamination of a cytosine to a uracil base. C-to-U editing is mediated by RNA-specific cytidine deaminases and several complementation factors, which have not been completely identified. Here, we review recent findings related to the regulation and enzymatic basis of C-to-U RNA editing. More importantly, when C-to-U editing occurs in coding regions, it has the power to reprogram genetic information on the RNA level, therefore it has great potential for applications in transcript repair (diseases related to thymidine to cytidine (T>C) or adenosine to guanosine (A>G) point mutations). If it is possible to manipulate or mimic C-to-U editing, T>C or A>G genetic mutation-related diseases could be treated. Enzymatic and non-enzymatic site-directed RNA editing are two different approaches for mimicking C-to-U editing. For enzymatic site-directed RNA editing, C-to-U editing has not yet been successfully performed, and in theory, adenosine to inosine (A-to-I) editing involves the same strategy as C-to-U editing. Therefore, in this review, for applications in transcript repair, we will provide a detailed overview of enzymatic site-directed RNA editing, with a focus on A-to-I editing and non-enzymatic site-directed C-to-U editing.

  19. Detection of functional protein domains by unbiased genome-wide forward genetic screening.

    PubMed

    Herzog, Mareike; Puddu, Fabio; Coates, Julia; Geisler, Nicola; Forment, Josep V; Jackson, Stephen P

    2018-04-18

    Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.

  20. BLM germline and somatic PKMYT1 and AHCY mutations: Genetic variations beyond MYCN and prognosis in neuroblastoma.

    PubMed

    Novak, E M; Halley, N S; Gimenez, T M; Rangel-Santos, A; Azambuja, A M P; Brumatti, M; Pereira, P L; Vince, C S C; Giorgi, R R; Bendit, I; Cristofani, L M; Odone-Filho, V

    2016-12-01

    Neuroblastoma (NB) is the most common extra cranial solid tumor of childhood and often lethal in childhood. Clinical and biologic characteristics that are independently prognostic of outcome in NB are currently used for risk stratification to optimally the therapy. It includes age at diagnosis, International Neuroblastoma Staging System tumor histopathology and MYCN amplification. However, even in patients with theoretically good prognosis, such as localized tumor and non-amplified MYCN, either disease progress or recurrence may occur. Potential genetic determinants of this unfavorable behavior are not yet fully clarified. The presence of elevated expression of AHCY, PKMYT1, and BLM has accompanied poor prognosis MYCN-amplified neuroblastoma patients. Considering the potential implication of these genes on the clinical management of NB, we hypothesize that the identification of genetic variations may have significant impact during development of the recurrent or progressive disease. Using targeted DNA sequencing, we analyzed the mutation profiles of the genes PKMYT1, AHCY, and BLM in tumor samples of five patients with MYCN amplified and 15 MYCN non-amplified NB. In our study, BLM germline variants were detected in two patients with MYCN-non-amplified neuroblastoma. Our data allow us to hypothesize that, regardless of MYCN status, these mutations partially abolish BLM protein activity by impairing its ATPase and helicase activities. BLM mutations are also clinically relevant because BLM plays an important role in DNA damage repair and the maintenance of genomic integrity. We also found a novel variant in our cohort, PKMYT1 mutation localized in the C-terminal domain with effect unknown on NB. We hypothesize that this variant may affect the catalytic activity of PKMYT1 in NB, specifically when CDK1 is complexed to cyclins. The prognostic value of this mutation must be further investigated. Another mutation identified was a nonsynonymous variant in AHCY. This variant

  1. [CHEK2-mutation in Dutch breast cancer families: expanding genetic testing for breast cancer].

    PubMed

    Adank, Muriel A; Hes, Frederik J; van Zelst-Stams, Wendy A G; van den Tol, M Petrousjka; Seynaeve, Caroline; Oosterwijk, Jan C

    2015-01-01

    In the majority of breast cancer families, DNA testing does not show BRCA1 or BRCA2 mutations and the genetic cause of breast cancer remains unexplained. Routine testing for the CHEK2*1100delC mutation has recently been introduced in breast cancer families in the Netherlands. The 1100delC mutation in the CHEK2-gene may explain the occurrence of breast cancer in about 5% of non-BRCA1/2 families in the Netherlands. In the general population the CHEK2*1100delC mutation confers a slightly increased breast cancer risk, but in a familial breast cancer setting this risk is between 35-55% for first degree female carriers. Female breast cancer patients with the CHEK2*1100delC mutation are at increased risk of contralateral breast cancer and may have a less favourable prognosis. Female heterozygous CHEK2*1100delC mutation carriers are offered annual mammography and specialist breast surveillance between the ages of 35-60 years. Prospective research in CHEK2-positive families is essential in order to develop more specific treatment and screening strategies.

  2. Joint effects of pleiotropic selection and stabilizing selection on the maintenance of quantitative genetic variation at mutation-selection balance.

    PubMed Central

    Zhang, Xu-Sheng; Hill, William G

    2002-01-01

    In quantitative genetics, there are two basic "conflicting" observations: abundant polygenic variation and strong stabilizing selection that should rapidly deplete that variation. This conflict, although having attracted much theoretical attention, still stands open. Two classes of model have been proposed: real stabilizing selection directly on the metric trait under study and apparent stabilizing selection caused solely by the deleterious pleiotropic side effects of mutations on fitness. Here these models are combined and the total stabilizing selection observed is assumed to derive simultaneously through these two different mechanisms. Mutations have effects on a metric trait and on fitness, and both effects vary continuously. The genetic variance (V(G)) and the observed strength of total stabilizing selection (V(s,t)) are analyzed with a rare-alleles model. Both kinds of selection reduce V(G) but their roles in depleting it are not independent: The magnitude of pleiotropic selection depends on real stabilizing selection and such dependence is subject to the shape of the distributions of mutational effects. The genetic variation maintained thus depends on the kurtosis as well as the variance of mutational effects: All else being equal, V(G) increases with increasing leptokurtosis of mutational effects on fitness, while for a given distribution of mutational effects on fitness, V(G) decreases with increasing leptokurtosis of mutational effects on the trait. The V(G) and V(s,t) are determined primarily by real stabilizing selection while pleiotropic effects, which can be large, have only a limited impact. This finding provides some promise that a high heritability can be explained under strong total stabilizing selection for what are regarded as typical values of mutation and selection parameters. PMID:12242254

  3. Driven by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer.

    PubMed

    Castellanos, Emily; Feld, Emily; Horn, Leora

    2017-04-01

    EGFR-mutated NSCLC is a genetically heterogeneous disease that includes more than 200 distinct mutations. The implications of mutational subtype for both prognostic and predictive value are being increasingly understood. Although the most common EGFR mutations-exon 19 deletions or L858R mutations-predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs), it is now being recognized that outcomes may be improved in patients with exon 19 deletions. Additionally, 10% of patients will have an uncommon EGFR mutation, and response to EGFR TKI therapy is highly variable depending on the mutation. Given the growing recognition of the genetic and clinical variation seen in this disease, the development of comprehensive bioinformatics-driven tools to both analyze response in uncommon mutation subtypes and inform clinical decision making will be increasingly important. Clinical trials of novel EGFR TKIs should prospectively account for the presence of uncommon mutation subtypes in study design. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  4. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    PubMed Central

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  5. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus

    PubMed Central

    Pfannenstiel, Brandon T.; Zhao, Xixi; Wortman, Jennifer; Throckmorton, Kurt; Spraker, Joseph E.; Luo, Xingyu; Lindner, Daniel L.; Lim, Fang Yun; Knox, Benjamin P.; Haas, Brian; Fischer, Gregory J.; Choera, Tsokyi; Butchko, Robert A. E.; Bok, Jin-Woo; Affeldt, Katharyn J.

    2017-01-01

    ABSTRACT The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin’s carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST), the penultimate precursor of aflatoxin. A previous forward genetic screen identified 23 A. nidulans mutants involved in regulating ST production. Six mutants were characterized from this screen using classical mapping (five mutations in mcsA) and complementation with a cosmid library (one mutation in laeA). The remaining mutants were backcrossed and sequenced using Illumina and Ion Torrent sequencing platforms. All but one mutant contained one or more sequence variants in predicted open reading frames. Deletion of these genes resulted in identification of mutant alleles responsible for the loss of ST production in 12 of the 17 remaining mutants. Eight of these mutations were in genes already known to affect ST synthesis (laeA, mcsA, fluG, and stcA), while the remaining four mutations (in laeB, sntB, and hamI) were in previously uncharacterized genes not known to be involved in ST production. Deletion of laeB, sntB, and hamI in A. flavus results in loss of aflatoxin production, confirming that these regulators are conserved in the aflatoxigenic aspergilli. This report highlights the multifaceted regulatory mechanisms governing secondary metabolism in Aspergillus. Additionally, these data contribute to the increasing number of studies showing that forward genetic screens of fungi coupled with whole-genome resequencing is a robust and cost-effective technique. PMID:28874473

  6. Extended mutation spectrum of Usher syndrome in Finland.

    PubMed

    Västinsalo, Hanna; Jalkanen, Reetta; Bergmann, Carsten; Neuhaus, Christine; Kleemola, Leenamaija; Jauhola, Liisa; Bolz, Hanno Jörn; Sankila, Eeva-Marja

    2013-06-01

    The Finnish distribution of clinical Usher syndrome (USH) types is 40% USH3, 34% USH1 and 12% USH2. All patients with USH3 carry the founder mutation in clarin 1 (CLRN1), whereas we recently reported three novel myosin VIIA (MYO7A) mutations in two unrelated patients with USH1. This study was carried out to further investigate the USH mutation spectrum in Finnish patients. We analysed samples from nine unrelated USH patients/families without known mutations and two USH3 families with atypically severe phenotype. The Asper Ophthalmics USH mutation chip was used to screen for known mutations and to evaluate the chip in molecular diagnostics of Finnish patients. The chip revealed a heterozygous usherin (USH2A) mutation, p.N346H, in one patient. Sequencing of MYO7A and/or USH2A in three index patients revealed two novel heterozygous mutations, p.R873W in MYO7A and c.14343+2T>C in USH2A. We did not identify definite pathogenic second mutations in the patients, but identified several probably nonpathogenic variations that may modify the disease phenotype. Possible digenism could not be excluded in two families segregating genomic variations in both MYO7A and USH2A, and two families with CLRN1 and USH2A. We conclude that there is considerable genetic heterogeneity of USH1 and USH2 in Finland, making molecular diagnostics and genetic counselling of patients and families challenging. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  7. Impact of Mutation Type and Amplicon Characteristics on Genetic Diversity Measures Generated Using a High-Resolution Melting Diversity Assay

    PubMed Central

    Cousins, Matthew M.; Donnell, Deborah; Eshleman, Susan H.

    2013-01-01

    We adapted high-resolution melting (HRM) technology to measure genetic diversity without sequencing. Diversity is measured as a single numeric HRM score. Herein, we determined the impact of mutation types and amplicon characteristics on HRM diversity scores. Plasmids were generated with single-base changes, insertions, and deletions. Different primer sets were used to vary the position of mutations within amplicons. Plasmids and plasmid mixtures were analyzed to determine the impact of mutation type, position, and concentration on HRM scores. The impact of amplicon length and G/C content on HRM scores was also evaluated. Different mutation types affected HRM scores to varying degrees (1-bp deletion < 1-bp change < 3-bp insertion < 9-bp insertion). The impact of mutations on HRM scores was influenced by amplicon length and the position of the mutation within the amplicon. Mutations were detected at concentrations of 5% to 95%, with the greatest impact at 50%. The G/C content altered melting temperature values of amplicons but had no impact on HRM scores. These data are relevant to the design of assays that measure genetic diversity using HRM technology. PMID:23178437

  8. Spectrum of Mutations in Hypertrophic Cardiomyopathy Genes Among Tunisian Patients.

    PubMed

    Jaafar, Nawel; Gómez, Juan; Kammoun, Ikram; Zairi, Ihsen; Amara, Wael Ben; Kachboura, Salem; Kraiem, Sondes; Hammami, Mohamed; Iglesias, Sara; Alonso, Belén; Coto, Eliecer

    2016-11-01

    Hypertrophic cardiomyopathy (HCM) is a common cardiac genetic disorder associated with heart failure and sudden death. Mutations in the cardiac sarcomere genes are found in approximately half of HCM patients and are more common among cases with a family history of the disease. Data about the mutational spectrum of the sarcomeric genes in HCM patients from Northern Africa are limited. The population of Tunisia is particularly interesting due to its Berber genetic background. As founder mutations have been reported in other disorders. We performed semiconductor chip (Ion Torrent PGM) next generation sequencing of the nine main sarcomeric genes (MYH7, MYBPC3, TNNT2, TNNI3, ACTC1, TNNC1, MYL2, MYL3, TPM1) as well as the recently identified as an HCM gene, FLNC, in 45 Tunisian HCM patients. We found sarcomere gene polymorphisms in 12 patients (27%), with MYBPC3 and MYH7 representing 83% (10/12) of the mutations. One patient was homozygous for a new MYL3 mutation and two were double MYBPC3 + MYH7 mutation carriers. Screening of the FLNC gene identified three new mutations, which points to FLNC mutations as an important cause of HCM among Tunisians. The mutational background of HCM in Tunisia is heterogeneous. Unlike other Mendelian disorders, there were no highly prevalent mutations that could explain most of the cases. Our study also suggested that FLNC mutations may play a role on the risk for HCM among Tunisians.

  9. Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands.

    PubMed

    Huang, Li; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Wang, Panfeng; Sun, Wenmin; Xu, Yan; Xin, Wei; Guo, Xiangming; Zhang, Qingjiong

    2016-05-01

    Cone-rod dystrophy (CORD) is a common form of inherited retinal degeneration. Previously, we have conducted serial mutational analysis in probands with CORD either by Sanger sequencing or whole exome sequencing (WES). In the current study, variants in all genes from RetNet were selected from the whole exome sequencing data of 108 CORD probands (including 61 probands reported here for the first time) and were analyzed by multistep bioinformatics analysis, followed by Sanger sequencing and segregation validation. Data from the previous studies and new data from this study (163 probands in total) were summarized to provide an overview of the molecular genetics of CORD. The following potentially pathogenic mutations were identified in 93 of the 163 (57.1%) probands: CNGA3 (32.5%), ABCA4 (3.8%), ALMS1 (3.1%), GUCY2D (3.1%), CACNA1F (2.5%), CRX (1.8%), PDE6C (1.8%), CNGB3 (1.8%), GUCA1A (1.2%), UNC119 (0.6%), RPGRIP1 (1.2%), RDH12 (0.6%), KCNV2 (0.6%), C21orf2 (0.6%), CEP290 (0.6%), USH2A (0.6%) and SNRNP200 (0.6%). The 17 genes with mutations included 12 known CORD genes and five genes (ALMS1, RDH12, CEP290, USH2A, and SNRNP200) associated with other forms of retinal degeneration. Mutations in CNGA3 is most common in this cohort. This is a systematic molecular genetic analysis of Chinese patients with CORD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mutations in the newly identified RAX regulatory sequence are not a frequent cause of micro/anophthalmia.

    PubMed

    Chassaing, Nicolas; Vigouroux, Adeline; Calvas, Patrick

    2009-06-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (SOX2, OTX2, RAX, and CHX10) have been implicated in isolated micro/anophthalmia, but causative mutations of these genes explain less than a quarter of these developmental defects. A specifically conserved SOX2/OTX2-mediated RAX expression regulatory sequence has recently been identified. We postulated that mutations in this sequence could lead to micro/anophthalmia, and thus we performed molecular screening of this regulatory element in patients suffering from micro/anophthalmia. Fifty-one patients suffering from nonsyndromic microphthalmia (n = 40) or anophthalmia (n = 11) were included in this study after negative molecular screening for SOX2, OTX2, RAX, and CHX10 mutations. Mutation screening of the RAX regulatory sequence was performed by direct sequencing for these patients. No mutations were identified in the highly conserved RAX regulatory sequence in any of the 51 patients. Mutations in the newly identified RAX regulatory sequence do not represent a frequent cause of nonsyndromic micro/anophthalmia.

  11. A novel dysfunctional germline P53 mutation identified in a family with Li-Fraumeni syndrome.

    PubMed

    Ji, Min; Wang, Lin; Shao, Yuguo; Cao, Wei; Xu, Ting; Chen, Shujie; Wang, Zhiwei; He, Qi; Yang, Kuo

    2018-01-01

    Li-Fraumeni Syndrome (LFS), which is a rare dominantly inherited cancer predisposition syndrome, is associated with germline P53 mutations. Mutations of the tumor suppressor protein P53 are associated with more than 50% of human cancers; however, almost 30% of P53 mutations occur rarely and this has raised questions about their significance. It therefore appeared of particular interest that we identified a novel mutation in a patient suffering from breast cancer and fulfilling the diagnostic criteria of LFS. In this study, a patient with remarkable family history developed breast cancer and was diagnosed with LFS. By performing next-generation sequencing on the patient and subsequent verification by Sanger sequencing among other family members, a new germ-line P53 replication error, a trinucleotide repeat mutation in the coding region, was identified in two generations of this Li-Fraumeni family.

  12. Genetic characterization of HIV-1 strains in Togo reveals a high genetic complexity and genotypic drug-resistance mutations in ARV naive patients.

    PubMed

    Yaotsè, Dagnra Anoumou; Nicole, Vidal; Roch, Niama Fabien; Mireille, Prince-David; Eric, Delaporte; Martine, Peeters

    2009-07-01

    In this study, the genetic diversity of HIV-1 and the presence of genotypic drug-resistance mutations in ARV naive patients in Lomé, the capital city of Togo, was documented for the first time. Between June 2006 and January 2007, 83 plasma samples were collected in Lomé from HIV-1 positive and antiretroviral (ARV) naive individuals. Pol (protease+RT) and env (V3-V5) regions were amplified and sequenced. Phylogenetic and recombination analyses were done to identify the HIV-1 variants. Pol sequences were then inspected to identify presence of drug-resistance mutations based on the WHO list recommended for epidemiological studies. A total of 75 plasma samples were amplified and sequenced in both genomic regions. The phylogenetic analysis showed that CRF02 (48.7% and 51.2%) and G (12.8% and 16.2%) were predominant, followed by A3 (6.4% and 6.2%) and CRF06 (3.8% and 12.5%) in pol and env, respectively. One strain was identified as CRF05 in pol and env. Two divergent subtype A strains in env were undetermined (U) in pol but clustered with a previously described complex recombinant strain, 99GR303. Overall, at least 23/83 (27.7%) strains were recombinant, 19 had a unique recombinant structure in pol, and 4 had discordant subtype/CRF designations between pol and env. The subtypes/CRFs involved in the recombination events corresponded to those already circulating as non-recombinant strains in the country. A total of 8 patients harbored strains with mutations associated to drug resistance: L90M (n=1), K103N (n=1), T69N (n=1), T215S (n=1), M41L (n=4). In this study we showed the complexity of the HIV-1 strains circulating in Togo and documented a relative high proportion of ARV naive patients with drug-resistance mutations. The high number of resistant strains observed in Togo needs further attention and additional studies are needed to confirm this trend especially because the national ART program experienced major problems to provide drugs on a regular base.

  13. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    PubMed

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  14. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    PubMed

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  15. Presenilin-Based Genetic Screens in Drosophila melanogaster Identify Novel Notch Pathway Modifiers

    PubMed Central

    Mahoney, Matt B.; Parks, Annette L.; Ruddy, David A.; Tiong, Stanley Y. K.; Esengil, Hanife; Phan, Alexander C.; Philandrinos, Panos; Winter, Christopher G.; Chatterjee, Runa; Huppert, Kari; Fisher, William W.; L'Archeveque, Lynn; Mapa, Felipa A.; Woo, Wendy; Ellis, Michael C.; Curtis, Daniel

    2006-01-01

    Presenilin is the enzymatic component of γ-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for γ-tubulin in the pathway. PMID:16415372

  16. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers.

    PubMed

    Mahoney, Matt B; Parks, Annette L; Ruddy, David A; Tiong, Stanley Y K; Esengil, Hanife; Phan, Alexander C; Philandrinos, Panos; Winter, Christopher G; Chatterjee, Runa; Huppert, Kari; Fisher, William W; L'Archeveque, Lynn; Mapa, Felipa A; Woo, Wendy; Ellis, Michael C; Curtis, Daniel

    2006-04-01

    Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.

  17. Clinical and Molecular Genetic Analysis in Three Children with Wolfram Syndrome: A Novel WFS1 Mutation (c.2534T>A)

    PubMed Central

    Çelmeli, Gamze; Türkkahraman, Doğa; Çürek, Yusuf; Houghton, Jayne; Akçurin, Sema; Bircan, İffet

    2017-01-01

    Wolfram syndrome (WS) is an autosomal recessive disorder caused by mutations in WFS1 gene. The clinical features include diabetes insipidus, diabetes mellitus (DM), optic atrophy, deafness, and other variable clinical manifestations. In this paper, we present the clinical and genetic characteristics of 3 WS patients from 3 unrelated Turkish families. Clinical characteristics of the patients and the age of onset of symptoms were quite different in each pedigree. The first two cases developed all symptoms of the disease in their first decade of life. The heterozygous father of case 2 was symptomatic with bilateral deafness. The first ocular finding of one patient (patient 3) was bilateral cataract which was accompanying DM as a first feature of the syndrome. In this patient’s family, there were two members with features suggestive of WS. Previously known homozygous mutations, c.460+1G>A in intron 4 and c.1885C>T in exon 8, were identified in these cases. A novel homozygous c.2534T>A mutation was also detected in the exon 8 of WFS1 gene. Because of the rarity and heterogeneity of WS, detection of specific and nonspecific clinical signs including ocular findings and family history in non-autoimmune, insulinopenic diabetes cases should lead to a tentative diagnosis of WS. Genetic testing is required to confirm the diagnosis. PMID:27468121

  18. A MELAS syndrome family harboring two mutations in mitochondrial genome.

    PubMed

    Choi, Byung-Ok; Hwang, Jung Hee; Kim, Joonki; Cho, Eun Min; Cho, Sun Young; Hwang, Su Jin; Lee, Hyang Woon; Kim, Song Ja; Chung, Ki Wha

    2008-06-30

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous mitochondrial disorder with variable clinical symptoms. Here, from the sequencing of the entire mitochondrial genome, we report a Korean MELAS family harboring two homoplasmic missense mutations, which were reported 9957T>C (Phe251Leu) transition mutation in the cytochrome c oxidase subunit 3 (COX3) gene and a novel 13849A>C (Asn505His) transversion mutation in the NADH dehydrogenase subunit 5 (ND5) gene. Neither of these mutations was found in 205 normal controls. Both mutations were identified from the proband and his mother, but not his father. The patients showed cataract symptom in addition to MELAS phenotype. We believe that the 9957T>C mutation is pathogenic, however, the 13849A>C mutation is of unclear significance. It is likely that the 13849A>C mutation might function as the secondary mutation which increase the expressivity of overlapping phenotypes of MELAS and cataract. This study also demonstrates the importance of full sequencing of mtDNA for the molecular genetic understanding of mitochondrial disorders.

  19. Integrating surgery and genetic testing for the modern surgeon.

    PubMed

    Caso, Raul; Beamer, Matthew; Lofthus, Alexander D; Sosin, Michael

    2017-10-01

    The field of cancer genetics is rapidly evolving and several genetic mutations have been identified in hereditary cancer syndromes. These mutations can be diagnosed via routine genetic testing allowing prompt intervention. This is especially true for certain variants of colorectal, breast, and thyroid cancers where genetic testing may guide surgical therapy. Ultimately, surgical intervention may drastically diminish disease manifestation or progression in individuals deemed as high-risk based on their genetic makeup. Understanding the concepts of gene-based testing and integrating into current surgical practice is crucial. This review addresses common genetic syndromes, tests, and interventions salient to the current surgeon.

  20. How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases

    PubMed Central

    Strynatka, Katherine A.; Gurrola-Gal, Michelle C.; Berman, Jason N.; McMaster, Christopher R.

    2018-01-01

    Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases. PMID:29487144

  1. Mutations in the RS1 gene in a Chinese family with X-linked juvenile retinoschisis.

    PubMed

    Hou, Qiaofang; Chu, Yan; Guo, Qiannan; Wu, Dong; Liao, Shixiu

    2012-02-01

    The purpose of our study was to identify the mutations in the retinoschisis 1 (RS1) gene, which was associated with X-linked retinoschisis (XLRS) in a four-generation Chinese family, and to provide the theoretical basis for gene diagnosis and gene therapy. Genomic DNA was extracted from peripheral leukocytes. All six exons and flanking intronic regions were amplified by polymerase chain reaction (PCR), followed by direct sequencing. Through our genetic analysis, one frameshift 573delG mutation was identified in the patients of this four-generation pedigree; however, this mutation was absent in normal or non-carrier subjects. In conclusion, this 573delG mutation is reported in the Chinese population for the first time. This mutation widens the mutational spectrum of RS1 in Asians. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.

  2. Impact of 226C>T MSH2 gene mutation on cancer phenotypes in two HNPCC-associated highly-consanguineous families from Kuwait: emphasis on premarital genetic testing.

    PubMed

    Marafie, Makia J; Al-Awadi, Sadiqa; Al-Mosawi, Fatemah; Elshafey, Alaa; Al-Ali, Waleed; Al-Mulla, Fahd

    2009-01-01

    Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC) is one of the commonest cancer susceptibility syndromes. It is characterized by early onset colon cancer and a variety of extracolonic tumours. Germline mutations in the DNA mismatch repair genes (MLH1, MSH2, MSH6, PMS1, and PMS2) are responsible for this disorder. Identifying an affected individual depends on the tumour histopathology, family history that fulfils the Amsterdam and/or Bethesda criteria, tumour immunohistochemistry, microsatellite instability, and finally molecular analysis of an affected member. It is a laborious, time consuming and expensive procedure, which needs the effort of a multi-disciplinary team. However, once the diagnosis is established and germline defect is identified, other high risk pre-symptomatic carriers could be offered intensive surveillance and management as a preventive measure against cancer development. Here, we present two large highly consanguineous HNPCC-families from Kuwait in whom a founder MSH2 mutation was identified. The relationship between this mutation and cancer expressivity in two large consanguineous families harbouring other genetic defects is discussed. Moreover, we shed light on the challenges pertaining to diagnosis, screening, premarital counselling of couples and prenatal diagnosis of offspring with biallelic MSH2 gene mutation.

  3. Emerging Helicobacter pylori levofloxacin resistance and novel genetic mutation in Nepal.

    PubMed

    Miftahussurur, Muhammad; Shrestha, Pradeep Krishna; Subsomwong, Phawinee; Sharma, Rabi Prakash; Yamaoka, Yoshio

    2016-11-04

    The prevalence of Helicobacter pylori antibiotic susceptibility in the Nepalese strains is untracked. We determined the antibiotic susceptibility for H. pylori and analyzed the presence of genetic mutations associated with antibiotic resistance in Nepalese strains. This study included 146 consecutive patients who underwent gastroduodenal endoscopy in Kathmandu, Nepal. Among 42 isolated H. pylori, there was no resistance to amoxicillin and tetracycline. In contrast, similar with typical South Asian patterns; metronidazole resistance rate in Nepalese strains were extremely high (88.1 %, 37/42). Clarithromycin resistance rate in Nepalese strains were modestly high (21.4 %, 9/42). Most of metronidazole resistant strains had highly distributed rdxA and frxA mutations, but were relative coincidence without a synergistic effect to increase the minimum inhibitory concentration (MIC). Among strains with the high MIC, 63.6 % (7/11) were associated with frameshift mutation at position 18 of frxA with or without rdxA involvement. However, based on next generation sequencing data we found that one strain with the highest MIC value had a novel mutation in the form of amino acid substituted at Ala-212, Gln-382, Ile-485 of dppA and Leu-145, Thr-168, Glu-117, Val-121, Arg-221 in dapF aside from missense mutations in full-length rdxA. Mutations at Asn-87 and/or Asp-91 of the gyrA were predominantly in levofloxacin-resistant strains. The gyrB mutation had steady relationship with the gyrA 87-91 mutations. Although three (44.4 %) and two (22.2 %) of clarithromycin resistant strains had point mutation on A2143G and A2146G, we confirmed the involvement of rpl22 and infB in high MIC strains without an 23SrRNA mutation. The rates of resistance to clarithromycin, metronidazole and levofloxacin were high in Nepalese strains, indicating that these antibiotics-based triple therapies are not useful as first-line treatment in Nepal. Bismuth or non-bismuth-based quadruple regimens

  4. Two novel mutations in the homogentisate-1,2-dioxygenase gene identified in Chinese Han Child with Alkaptonuria.

    PubMed

    Li, Hongying; Zhang, Kaihui; Xu, Qun; Ma, Lixia; Lv, Xin; Sun, Ruopeng

    2015-03-01

    Alkaptonuria (AKU) is an autosomal recessive disorder of tyrosine metabolism, which is caused by a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) with subsequent accumulation of homogentisic acid. Presently, more than 100 HGD mutations have been identified as the cause of the inborn error of metabolism across different populations worldwide. However, the HGD mutation is very rarely reported in Asia, especially China. In this study, we present mutational analyses of HGD gene in one Chinese Han child with AKU, which had been identified by gas chromatography-mass spectrometry detection of organic acids in urine samples. PCR and DNA sequencing of the entire coding region as well as exon-intron boundaries of HGD have been performed. Two novel mutations were identified in the HGD gene in this AKU case, a frameshift mutation of c.115delG in exon 3 and the splicing mutation of IVS5+3 A>C, a donor splice site of the exon 5 and exon-intron junction. The identification of these mutations in this study further expands the spectrum of known HGD gene mutations and contributes to prenatal molecular diagnosis of AKU.

  5. Genetic basis of early-onset, MODY-like diabetes in Japan and features of patients without mutations in the major MODY genes: dominance of maternal inheritance.

    PubMed

    Yorifuji, Tohru; Higuchi, Shinji; Kawakita, Rie; Hosokawa, Yuki; Aoyama, Takane; Murakami, Akiko; Kawae, Yoshiko; Hatake, Kazue; Nagasaka, Hironori; Tamagawa, Nobuyoshi

    2018-06-21

    Causative mutations cannot be identified in the majority of Asian patients with suspected maturity-onset diabetes of the young (MODY). To elucidate the genetic basis of Japanese patients with MODY-like diabetes and gain insight into the etiology of patients without mutations in the major MODY genes. 263 Japanese patients with early-onset, nonobese, MODY-like diabetes mellitus referred to Osaka City General Hospital for diagnosis. Mutational analysis of the four major MODY genes (GCK, HNF1A, HNF4A, HNF1B) by Sanger sequencing. Mutation-positive and mutation-negative patients were further analyzed for clinical features. Mutations were identified in 103 (39.2%) patients; 57 mutations in GCK; 29, HNF1A; 7, HNF4A; and 10, HNF1B. Contrary to conventional diagnostic criteria, 18.4% of mutation-positive patients did not have affected parents and 8.2% were in the overweight range (BMI >85 th percentile). HOMA-IR at diagnosis was elevated (>2) in 15 of 66 (22.7%) mutation-positive patients. Compared with mutation-positive patients, mutation-negative patients were significantly older (p = 0.003), and had higher BMI percentile at diagnosis (p = 0.0006). Interestingly, maternal inheritance of diabetes was significantly more common in mutation-negative patients (p = 0.0332) and these patients had significantly higher BMI percentile as compared with mutation-negative patients with paternal inheritance (p = 0.0106). Contrary to the conventional diagnostic criteria, de novo diabetes, overweight, and insulin-resistance are common in Japanese patients with mutation-positive MODY. A significant fraction of mutation-negative patients had features of early-onset type 2 diabetes common in Japanese, and non-Mendelian inheritance needs to be considered for these patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. De novo point mutations in patients diagnosed with ataxic cerebral palsy

    PubMed Central

    Parolin Schnekenberg, Ricardo; Perkins, Emma M.; Miller, Jack W.; Davies, Wayne I. L.; D’Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A.; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O’Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis

    2015-01-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. PMID:25981959

  7. Steroid-resistant nephrotic syndrome: impact of genetic testing.

    PubMed

    Kari, Jameela A; El-Desoky, Sherif M; Gari, Mamdooh; Malik, Khalid; Vega-Warner, Virginia; Lovric, Svjetlana; Bockenhauer, Detlef

    2013-01-01

    Mutations in several genes are known to cause steroid-resistant nephrotic syndome (SRNS), most commonly in NPHS1, NPHS2, and WT1. Our aims were to determine the frequency of mutations in these genes in children with SRNS, the response of patients with SRNS to various immunosuppressants, and the disease outcome, and to review the predictive value of genetic testing and renal biopsy result. A retrospective review was performed of the medical records for all children with SRNS who were treated and followed-up in the Pediatric Nephrology Unit of King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia from 2002-2012. We retrospectively reviewed the medical records of children above 1 year of age, who presented with SRNS to KAUH, Jeddah, Saudi Arabia, in the 10-year interval from 2002-2012 and for whom the results of genetic testing for NPHS1, NPHS2, and WT1 were available. We compared the clinical phenotype, including response to treatment and renal outcome to genotype data. We identified 44 children with a clinical diagnosis of SRNS in whom results of genetic testing were available. Presumably disease-causing mutations were detected in 5 children (11.4%) of which 3 (6.8%) had NPHS2 mutation and 2 (4.5%) had NPHS1 mutation. Renal biopsy revealed minimal change disease (MCD) or variants in 17 children, focal segmental glomerulosclerosis (FSGS) in 23 children, membranoproliferative changes (MPGN) in 2 children, and IgA nephropathy in another 2 children. Children with MCD on biopsy were more likely to respond to treatment than those with FSGS. None of those with an identified genetic cause showed any response to treatment. The frequency of identified disease-causing mutations in children older than 1 year with SRNS presented to KAUH was 11.4%, and these patients showed no response to treatment. Initial testing for gene mutation in children with SRNS may obviate the need for biopsy, and the use of immunosuppressive treatment in children with disease due to NPHS1 or

  8. Persistence of transmitted HIV-1 drug resistance mutations associated with fitness costs and viral genetic backgrounds.

    PubMed

    Yang, Wan-Lin; Kouyos, Roger D; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Scherrer, Alexandra U; Shilaih, Mohaned; Hinkley, Trevor; Petropoulos, Christos; Bonhoeffer, Sebastian; Günthard, Huldrych F

    2015-03-01

    Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.

  9. New genetic discoveries and primary immune deficiencies.

    PubMed

    Hernandez-Trujillo, Vivian

    2014-04-01

    The field of immunology has undergone recent discoveries of genetic causes for many primary immunodeficiency diseases (PIDD). The ever-expanding knowledge has led to increased understanding behind the pathophysiology of these diseases. Since these diseases are rare, the patients are frequently misdiagnosed early in the presentation of their illnesses. The identification of new genes has increased our opportunities for recognizing and making the diagnosis in patients with PIDD before they succumb to infections that may result secondary to their PIDD. Some mutations lead to a variety of presentations of severe combined immunodeficiency (SCID). The myriad and ever-growing genetic mutations which lead to SCID phenotypes have been identified in recent years. Other mutations associated with some genetic syndromes have associated immunodeficiency and are important for making the diagnosis of primary immunodeficiency in patients with some syndromes, who may otherwise be missed within the larger context of their syndromes. A variety of mutations also lead to increased susceptibility to infections due to particular organisms. These patterns of infections due to specific organisms are important keys in properly identifying the part of the immune system which is affected in these patients. This review will discuss recent genetic discoveries that enhance our understanding of these complex diseases.

  10. Novel ITGB6 mutation in autosomal recessive amelogenesis imperfecta

    PubMed Central

    Seymen, F; Lee, K-E; Koruyucu, M; Gencay, K; Bayram, M; Tuna, EB; Lee, ZH; Kim, J-W

    2015-01-01

    Objective Hereditary defects in tooth enamel formation, amelogenesis imperfecta (AI), can be non-syndromic or syndromic phenotype. Integrins are signaling proteins that mediate cell–cell and cell–extracellular matrix communication, and their involvement in tooth development is well known. The purposes of this study were to identify genetic cause of an AI family and molecular pathogenesis underlying defective enamel formation. Materials and Methods We recruited a Turkish family with isolated AI and performed mutational analyses to clarify the underlying molecular genetic etiology. Results Autozygosity mapping and exome sequencing identified a novel homozygous ITGB6 transversion mutation in exon 4 (c.517G>C, p.Gly173Arg). The glycine at this position in the middle of the βI-domain is conserved among a wide range of vertebrate orthologs and human paralogs. Clinically, the enamel was generally thin and pitted with pigmentation. Thicker enamel was noted at the cervical area of the molars. Conclusions In this study, we identified a novel homozygous ITGB6 mutation causing isolated AI, and this advances the understanding of normal and pathologic enamel development. PMID:25431241

  11. Applying Cystic Fibrosis Transmembrane Conductance Regulator Genetics and CFTR2 Data to Facilitate Diagnoses.

    PubMed

    Sosnay, Patrick R; Salinas, Danieli B; White, Terry B; Ren, Clement L; Farrell, Philip M; Raraigh, Karen S; Girodon, Emmanuelle; Castellani, Carlo

    2017-02-01

    As a Mendelian disease, genetics plays an integral role in the diagnosis of cystic fibrosis (CF). The identification of 2 disease-causing mutations in the CF transmembrane conductance regulator (CFTR) in an individual with a phenotype provides evidence that the disease is CF. However, not all variations in CFTR always result in CF. Therefore, for CFTR genotype to provide the same level of evidence of CFTR dysfunction as shown by direct tests such as sweat chloride or nasal potential difference, the mutations identified must be known to always result in CF. The use of CFTR genetics in CF diagnosis, therefore, relies heavily on mutation interpretation. Progress that has been made on mutation interpretation and annotation was reviewed at the recent CF Foundation Diagnosis Consensus Conference. A modified Delphi method was used to identify consensus statements on the use of genetic analysis in CF diagnosis. The largest recent advance in CF genetics has come through the Clinical and Functional Translation of CFTR (CFTR2) project. This undertaking seeks to characterize CFTR mutations from patients with CF around the world. The project also established guidelines for the clinical, functional, and population/penetrance criteria that can be used to interpret mutations not yet included in CFTR2's review. The use of CFTR genetics to aid in diagnosis of CF requires that the mutations identified have a known disease liability. The demonstration of 2 in trans mutations known to always result in CF is satisfactory evidence of CFTR dysfunction. However, if the identified mutations are known to be associated with variable outcomes, or have unknown consequence, that genotype may not result in a CF phenotype. In these cases, other tests of CFTR function may help. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    DOE PAGES

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  13. How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases.

    PubMed

    Strynatka, Katherine A; Gurrola-Gal, Michelle C; Berman, Jason N; McMaster, Christopher R

    2018-03-01

    Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases. Copyright © 2018 by the Genetics Society of America.

  14. TP53, PIK3CA, FBXW7 and KRAS Mutations in Esophageal Cancer Identified by Targeted Sequencing.

    PubMed

    Zheng, Huili; Wang, Yan; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Zhang, Guangchun; Cao, Weihai; Li, Jingwen; Liu, Lifeng; Liu, Zhencong; Zhang, Chao; Lou, Feng; Liu, Zhiyuan; Li, Yangyang; Shi, Zhenfen; Zhang, Jingbo; Zhang, Dandan; Sun, Hong; Dong, Haichao; Dong, Zhishou; Guo, Baishuai; Yan, H E; Lu, Qingyu; Huang, Xue; Chen, Si-Yi

    2016-01-01

    Esophageal cancer (EC) is a common malignancy with significant morbidity and mortality. As individual cancers exhibit unique mutation patterns, identifying and characterizing gene mutations in EC that may serve as biomarkers might help predict patient outcome and guide treatment. Traditionally, personalized cancer DNA sequencing was impractical and expensive. Recent technological advancements have made targeted DNA sequencing more cost- and time-effective with reliable results. This technology may be useful for clinicians to direct patient treatment. The Ion PGM and AmpliSeq Cancer Panel was used to identify mutations at 737 hotspot loci of 45 cancer-related genes in 64 EC samples from Chinese patients. Frequent mutations were found in TP53 and less frequent mutations in PIK3CA, FBXW7 and KRAS. These results demonstrate that targeted sequencing can reliably identify mutations in individual tumors that make this technology a possibility for clinical use. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  15. A novel missense mutation in the HECT domain of NEDD4L identified in a girl with periventricular nodular heterotopia, polymicrogyria and cleft palate.

    PubMed

    Kato, Koji; Miya, Fuyuki; Hori, Ikumi; Ieda, Daisuke; Ohashi, Kei; Negishi, Yutaka; Hattori, Ayako; Okamoto, Nobuhiko; Kato, Mitsuhiro; Tsunoda, Tatsuhiko; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro; Saitoh, Shinji

    2017-09-01

    We identified a novel de novo heterozygous missense mutation in the NEDD4L gene (NM_015277: c.2617G>A; p.Glu873Lys) through whole-exome sequencing in a 3-year-old girl showing severe global developmental delay, infantile spasms, cleft palate, periventricular nodular heterotopia and polymicrogyria. Mutations in the HECT domain of NEDD4L have been reported in patients with a neurodevelopmental disorder along with similar brain malformations. All patients reported with NEDD4L HECT domain mutations showed periventricular nodular heterotopia, and most had seizures, cortex anomalies, cleft palate and syndactyly. The unique constellation of clinical features in patients with NEDD4L mutations might help clinically distinguish them from patients with other genetic mutations including FLNA, which is a well-known causative gene of periventricular nodular heterotopia. Although mutations in the HECT domain of NEDD4L that lead to AKT-mTOR pathway deregulation in forced expression system were reported, our western blot analysis did not show an increased level of AKT-mTOR activity in lymphoblastoid cell lines (LCLs) derived from the patient. In contrast to the forced overexpression system, AKT-mTOR pathway deregulation in LCLs derived from our patient seems to be subtle.

  16. GNAq mutations are not identified in papillary thyroid carcinomas and hyperfunctioning thyroid nodules.

    PubMed

    Cassol, Clarissa A; Guo, Miao; Ezzat, Shereen; Asa, Sylvia L

    2010-12-01

    Activating mutations of GNAq protein in a hotspot at codon 209 have been recently described in uveal melanomas. Since these neoplasms share with thyroid carcinomas a high frequency of MAP kinase pathway-activating mutations, we hypothesized whether GNAq mutations could also play a role in the development of thyroid carcinomas. Additionally, activating mutations of another subtype of G protein (GNAS1) are frequently found in hyperfunctioning thyroid adenomas, making it plausible that GNAq-activating mutations could also be found in some of these nodules. To investigate thyroid papillary carcinomas and thyroid hyperfunctioning nodules for GNAq mutations in exon 5, codon 209, a total of 32 RET/PTC, BRAF, and RAS negative thyroid papillary carcinomas and 13 hyperfunctioning thyroid nodules were evaluated. No mutations were identified. Although plausible, GNAq mutations seem not to play an important role in the development of thyroid follicular neoplasms, either benign hyperfunctioning nodules or malignant papillary carcinomas. Our results are in accordance with the literature, in which no GNAq hotspot mutations were found in thyroid papillary carcinomas, as well as in an extensive panel of other tumors. The molecular basis for MAP-kinase pathway activation in RET-PTC/BRAF/RAS negative thyroid carcinomas remains to be determined.

  17. Molecular-genetic diagnostics of von Hippel-Lindau syndrome (VHL) in Bulgaria: first complex mutation event in the VHL gene.

    PubMed

    Glushkova, Maria; Dimova, Petia; Yordanova, Iglika; Todorov, Tihomir; Tourtourikov, Ivan; Mitev, Vanyo; Todorova, Albena

    2018-02-01

    Von Hippel-Lindau syndrome is an autosomal-dominant disease characterized by the formation of various tumours and cysts in many different parts of the body. Von Hippel-Lindau syndrome is caused by VHL gene mutations leading to production of impaired tumor suppressor Von Hippel-Lindau syndrome protein or its complete absence. To study five patients with clinically suspected Von Hippel-Lindau syndrome, who were referred for molecular genetic testing. Sanger sequencing of the coding regions of the VHL gene. Five clinically relevant germline mutations were detected. One of the pathogenic variants has not been previously reported. This novel mutation is a complex mutation event combining a duplication and an indel, rearranging exon 3 of the VHL gene - c. [516_517dupGTCAAGCCT; 532_542delCTGGACATCGTinsATTA], p. (Glu173Serfs*4). Overall, our results showed that the diagnosis of Von Hippel-Lindau syndrome in our country is difficult most probably because of its heterogeneous clinical manifestation and insufficient knowledge on the diagnostic criteria for the disease. From genetic point of view our results add some novel data on the mutation profile of the VHL gene. In order to prove or revise the diagnosis, early genetic testing is strongly recommended in affected patients and their family members to ensure appropriate follow-up and treatment of the malignancies.

  18. Panel-based NGS Reveals Novel Pathogenic Mutations in Autosomal Recessive Retinitis Pigmentosa

    PubMed Central

    Perez-Carro, Raquel; Corton, Marta; Sánchez-Navarro, Iker; Zurita, Olga; Sanchez-Bolivar, Noelia; Sánchez-Alcudia, Rocío; Lelieveld, Stefan H.; Aller, Elena; Lopez-Martinez, Miguel Angel; López-Molina, Mª Isabel; Fernandez-San Jose, Patricia; Blanco-Kelly, Fiona; Riveiro-Alvarez, Rosa; Gilissen, Christian; Millan, Jose M; Avila-Fernandez, Almudena; Ayuso, Carmen

    2016-01-01

    Retinitis pigmentosa (RP) is a group of inherited progressive retinal dystrophies (RD) characterized by photoreceptor degeneration. RP is highly heterogeneous both clinically and genetically, which complicates the identification of causative genes and mutations. Targeted next-generation sequencing (NGS) has been demonstrated to be an effective strategy for the detection of mutations in RP. In our study, an in-house gene panel comprising 75 known RP genes was used to analyze a cohort of 47 unrelated Spanish families pre-classified as autosomal recessive or isolated RP. Disease-causing mutations were found in 27 out of 47 cases achieving a mutation detection rate of 57.4%. In total, 33 pathogenic mutations were identified, 20 of which were novel mutations (60.6%). Furthermore, not only single nucleotide variations but also copy-number variations, including three large deletions in the USH2A and EYS genes, were identified. Finally seven out of 27 families, displaying mutations in the ABCA4, RP1, RP2 and USH2A genes, could be genetically or clinically reclassified. These results demonstrate the potential of our panel-based NGS strategy in RP diagnosis. PMID:26806561

  19. Genetic heterogeneity and actionable mutations in HER2-positive primary breast cancers and their brain metastases.

    PubMed

    De Mattos-Arruda, Leticia; Ng, Charlotte K Y; Piscuoglio, Salvatore; Gonzalez-Cao, Maria; Lim, Raymond S; De Filippo, Maria R; Fusco, Nicola; Schultheis, Anne M; Ortiz, Carolina; Viteri, Santiago; Arias, Alexandra; Macedo, Gabriel S; Oliveira, Mafalda; Gomez, Patricia; Teixidó, Cristina; Nuciforo, Paolo; Peg, Vicente; Saura, Cristina; Ramon Y Cajal, Santiago; Casas, Francesc Tresserra; Weigelt, Britta; Cortes, Javier; Seoane, Joan; Reis-Filho, Jorge S

    2018-04-17

    Brain metastases constitute a challenge in the management of patients with HER2-positive breast cancer treated with anti-HER2 systemic therapies. Here we sought to define the repertoire of mutations private to or enriched for in HER2-positive brain metastases. Massively parallel sequencing targeting all exons of 254 genes frequently mutated in breast cancers and/or related to DNA repair was used to characterize the spatial and temporal heterogeneity of HER2-positive breast cancers and their brain metastases in six patients. Data were analyzed with state-of-the-art bioinformatics algorithms and selected mutations were validated with orthogonal methods. Spatial and temporal inter-lesion genetic heterogeneity was observed in the HER2-positive brain metastases from an index patient subjected to a rapid autopsy. Genetic alterations restricted to the brain metastases included mutations in cancer genes FGFR2, PIK3CA and ATR , homozygous deletion in CDKN2A and amplification in KRAS . Shifts in clonal composition and the acquisition of additional mutations in the progression from primary HER2-positive breast cancer to brain metastases following anti-HER2 therapy were investigated in additional five patients. Likely pathogenic mutations private to or enriched in the brain lesions affected cancer and clinically actionable genes, including ATR, BRAF, FGFR2, MAP2K4, PIK3CA, RAF1 and TP53 . Changes in clonal composition and the acquisition of additional mutations in brain metastases may affect potentially actionable genes in HER2-positive breast cancers. Our observations have potential clinical implications, given that treatment decisions for patients with brain metastatic disease are still mainly based on biomarkers assessed in the primary tumor.

  20. Remarkable stabilization of a psychrotrophic RNase HI by a combination of thermostabilizing mutations identified by the suppressor mutation method.

    PubMed

    Tadokoro, Takashi; Matsushita, Kyoko; Abe, Yumi; Rohman, Muhammad Saifur; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2008-08-05

    Ribonuclease HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 (So-RNase HI) is much less stable than Escherichia coli RNase HI (Ec-RNase HI) by 22.4 degrees C in T m and 12.5 kJ mol (-1) in Delta G(H 2O), despite their high degrees of structural and functional similarity. To examine whether the stability of So-RNase HI increases to a level similar to that of Ec-RNase HI via introduction of several mutations, the mutations that stabilize So-RNase HI were identified by the suppressor mutation method and combined. So-RNase HI and its variant with a C-terminal four-residue truncation (154-RNase HI) complemented the RNase H-dependent temperature-sensitive (ts) growth phenotype of E. coli strain MIC3001, while 153-RNase HI with a five-residue truncation could not. Analyses of the activity and stability of these truncated proteins suggest that 153-RNase HI is nonfunctional in vivo because of a great decrease in stability. Random mutagenesis of 153-RNase HI using error-prone PCR, followed by screening for the revertants, allowed us to identify six single suppressor mutations that make 153-RNase HI functional in vivo. Four of them markedly increased the stability of the wild-type protein by 3.6-6.7 degrees C in T m and 1.7-5.2 kJ mol (-1) in Delta G(H 2O). The effects of these mutations were nearly additive, and combination of these mutations increased protein stability by 18.7 degrees C in T m and 12.2 kJ mol (-1) in Delta G(H 2O). These results suggest that several residues are not optimal for the stability of So-RNase HI, and their replacement with other residues strikingly increases it to a level similar to that of the mesophilic counterpart.

  1. A Common Ancestral Mutation in CRYBB3 Identified in Multiple Consanguineous Families with Congenital Cataracts

    PubMed Central

    Irum, Bushra; Khan, Arif O.; Wang, Qiwei; Li, David; Khan, Asma A.; Husnain, Tayyab; Akram, Javed; Riazuddin, Sheikh

    2016-01-01

    Purpose This study was performed to investigate the genetic determinants of autosomal recessive congenital cataracts in large consanguineous families. Methods Affected individuals underwent a detailed ophthalmological examination and slit-lamp photographs of the cataractous lenses were obtained. An aliquot of blood was collected from all participating family members and genomic DNA was extracted from white blood cells. Initially, a genome-wide scan was performed with genomic DNAs of family PKCC025 followed by exclusion analysis of our familial cohort of congenital cataracts. Protein-coding exons of CRYBB1, CRYBB2, CRYBB3, and CRYBA4 were sequenced bidirectionally. A haplotype was constructed with SNPs flanking the causal mutation for affected individuals in all four families, while the probability that the four familial cases have a common founder was estimated using EM and CHM-based algorithms. The expression of Crybb3 in the developing murine lens was investigated using TaqMan assays. Results The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis localized the causal phenotype in family PKCC025 to chromosome 22q with statistically significant two-point logarithm of odds (LOD) scores. Subsequently, we localized three additional families, PKCC063, PKCC131, and PKCC168 to chromosome 22q. Bidirectional Sanger sequencing identified a missense variation: c.493G>C (p.Gly165Arg) in CRYBB3 that segregated with the disease phenotype in all four familial cases. This variation was not found in ethnically matched control chromosomes, the NHLBI exome variant server, or the 1000 Genomes or dbSNP databases. Interestingly, all four families harbor a unique disease haplotype that strongly suggests a common founder of the causal mutation (p<1.64E-10). We observed expression of Crybb3 in the mouse lens as early as embryonic day 15 (E15), and expression remained relatively steady throughout

  2. Sexual selection on spontaneous mutations strengthens the between-sex genetic correlation for fitness.

    PubMed

    Allen, Scott L; McGuigan, Katrina; Connallon, Tim; Blows, Mark W; Chenoweth, Stephen F

    2017-10-01

    A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation-accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between-sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between-sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex-limited, and/or sex-biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual-based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest-to-large fraction of mutations have sex-limited (or highly sex-biased) fitness effects, and (2) the average fitness effect of sex-limited mutations is larger than the average fitness effect of

  3. Quality control in mutation analysis: the European Molecular Genetics Quality Network (EMQN).

    PubMed

    Müller, C R

    2001-08-01

    The demand for clinical molecular genetics testing has steadily grown since its introduction in the 1980s. In order to reach and maintain the agreed quality standards of laboratory medicine, the same internal and external quality assurance (IQA/EQA) criteria have to be applied as for "conventional" clinical chemistry or pathology. In 1996 the European Molecular Genetics Quality Network (EMQN) was established in order to spread QA standards across Europe and to harmonise the existing national activities. EMQN is operated by a central co-ordinator and 17 national partners from 15 EU countries; since 1998 it is being funded by the EU commission for a 3-year period. EMQN promotes QA by two tools: by providing disease-specific best practice meetings (BPM) and EQA schemes. A typical BPM is focussed on one disease or group of related disorders. International experts report on the latest news of gene characterisation and function and the state-of-the-art techniques for mutation detection. Disease-specific EQA schemes are provided by experts in the field. DNA samples are sent out together with mock clinical referrals and a diagnostic question is asked. Written reports must be returned which are marked for genotyping and interpretation. So far, three BPMs have been held and six EQA schemes are in operation at various stages. Although mutation types and diagnostic techniques varied considerably between schemes, the overall technical performance showed a high diagnostic standard. Nevertheless, serious genotyping errors have been occurred in some schemes which underline the necessity of quality assurance efforts. The European Molecular Genetics Quality Network provides a necessary platform for the internal and external quality assurance of molecular genetic testing.

  4. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients

    PubMed Central

    2014-01-01

    Background Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. Methods We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Results Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients’ clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Conclusions Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology

  5. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients.

    PubMed

    Chang, Lixian; Yuan, Weiping; Zeng, Huimin; Zhou, Quanquan; Wei, Wei; Zhou, Jianfeng; Li, Miaomiao; Wang, Xiaomin; Xu, Mingjiang; Yang, Fengchun; Yang, Yungui; Cheng, Tao; Zhu, Xiaofan

    2014-05-15

    Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.

  6. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants.

    PubMed

    Sugiura, Kazumitsu

    2014-06-01

    Generalized pustular psoriasis (GPP) is often present in patients with existing or prior psoriasis vulgaris (PV; "GPP with PV"). However, cases of GPP have been known to arise without a history of PV ("GPP alone"). There has long been debate over whether GPP alone and GPP with PV are distinct subtypes that are etiologically different from each other. We recently reported that the majority of GPP alone cases is caused by recessive mutations of IL36RN. In contrast, only a few exceptional cases of GPP with PV were found to have recessive IL36RN mutations. Very recently, we also reported that CARD14 p.Asp176His, a gain-of-function variant, is a predisposing factor for GPP with PV; in contrast, the variant is not associated with GPP alone in the Japanese population. These results suggest that GPP alone is genetically different from GPP with PV. IL36RN mutations are also found in some patients with severe acute generalized exanthematous pustulosis, palmar-plantar pustulosis, and acrodermatitis continua of hallopeau. CARD14 mutations and variants are causal or disease susceptibility factors of PV, GPP, or pityriasis rubra pilaris, depending on the mutation or variant position of CARD14. It is clinically important to analyze IL36RN mutations in patients with sterile pustulosis. For example, identifying recessive IL36RN mutations leads to early diagnosis of GPP, even at the first episode of pustulosis. In addition, individuals with IL36RN mutations are very susceptible to GPP or GPP-related generalized pustulosis induced by drugs (e.g., amoxicillin), infections, pregnancy, or menstruation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.

    PubMed

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-03-17

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.

  8. Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa

    PubMed Central

    Rebello, George; Ramesar, Rajkumar; Vorster, Alvera; Roberts, Lisa; Ehrenreich, Liezle; Oppon, Ekow; Gama, Dumisani; Bardien, Soraya; Greenberg, Jacquie; Bonapace, Giuseppe; Waheed, Abdul; Shah, Gul N.; Sly, William S.

    2004-01-01

    Genetic and physical mapping of the RP17 locus on 17q identified a 3.6-megabase candidate region that includes the gene encoding carbonic anhydrase IV (CA4), a glycosylphosphatidylinositol-anchored protein that is highly expressed in the choriocapillaris of the human eye. By sequencing candidate genes in this region, we identified a mutation that causes replacement of an arginine with a tryptophan (R14W) in the signal sequence of the CA4 gene at position -5 relative to the signal sequence cleavage site. This mutation was found to cosegregate with the disease phenotype in two large families and was not found in 36 unaffected family members or 100 controls. Expression of the mutant cDNA in COS-7 cells produced several findings, suggesting a mechanism by which the mutation can explain the autosomal dominant disease. In transfected COS-7 cells, the R14W mutation (i) reduced the steady-state level of carbonic anhydrase IV activity expressed by 28% due to a combination of decreased synthesis and accelerated turnover; (ii) led to up-regulation of immunoglobulin-binding protein, double-stranded RNA-regulated protein kinase-like ER kinase, and CCAAT/enhancer-binding protein homologous protein, markers of the unfolded protein response and endoplasmic reticulum stress; and (iii) induced apoptosis, as evidenced by annexin V binding and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining, in most cells expressing the mutant, but not the WT, protein. We suggest that a high level of expression of the mutant allele in the endothelial cells of the choriocapillaris leads to apoptosis, leading in turn to ischemia in the overlying retina and producing autosomal dominant retinitis pigmentosa. PMID:15090652

  9. Mutations in Soviet public health science: post-Lysenko medical genetics, 1969-1991.

    PubMed

    Bauer, Susanne

    2014-09-01

    This paper traces the integration of human genetics with Soviet public health science after the Lysenko era. For nearly three decades, USSR biology pursued its own version of anti-bourgeois, Soviet 'creative Darwinism', departing from western, post-WWII scientific developments. After Lysenko was suspended, research niches of immunology, biophysics and mutation research formed the basis of new departments at the Institute of Medical Genetics, which was founded in 1969 as part of the Soviet Academy of Medical Sciences. Focussing on early research activities and collaborations at the institute, I show how the concept of mutagenesis, a pivotal issue during the Cold War, became mobilized from Drosophila genetics to human heredity and to society as a whole. This mode of scaling up and down through population studies shaped not only Soviet human biology and genetics; it also brought about changes in clinical practice and public health as well as in the monitoring and regulation of mutagenic agents in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Molecular Testing of 163 Patients with Morquio A (Mucopolysaccharidosis IVA) Identifies 39 Novel GALNS Mutations

    PubMed Central

    Morrone, A; Tylee, K.L.; Al-Sayed, M; Brusius-Facchin, A.C.; Caciotti, A.; Church, H.J.; Coll, M.J.; Davidson, K.; Fietz, M.J.; Gort, L.; Hegde, M.; Kubaski, F.; Lacerda, L.; Laranjeira, F.; Leistner-Segal, S.; Mooney, S.; Pajares, S.; Pollard, L.; Riberio, I.; Wang, R.Y.; Miller, N.

    2014-01-01

    Morquio A (Mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by partial or total deficiency of the enzyme galactosamine-6-sulfate sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate sulfatase) encoded by the GALNS gene. Patients who inherit two mutated GALNS gene alleles produce protein with decreased ability to degrade the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate, thereby causing GAG accumulation within lysosomes and consequently pleiotropic disease. GALNS mutations occur throughout the gene and many mutations are identified only in single patients or families, causing difficulties both in mutation detection and interpretation. In this study, molecular analysis of 163 patients with Morquio A identified 99 unique mutations in the GALNS gene believed to negatively impact GALNS protein function, of which 39 are previously unpublished, together with 26 single-nucleotide polymorphisms. Recommendations for the molecular testing of patients, clear reporting of sequence findings, and interpretation of sequencing data are provided. PMID:24726177

  11. Genetic heterogeneity of diffuse large B-cell lymphoma.

    PubMed

    Zhang, Jenny; Grubor, Vladimir; Love, Cassandra L; Banerjee, Anjishnu; Richards, Kristy L; Mieczkowski, Piotr A; Dunphy, Cherie; Choi, William; Au, Wing Yan; Srivastava, Gopesh; Lugar, Patricia L; Rizzieri, David A; Lagoo, Anand S; Bernal-Mizrachi, Leon; Mann, Karen P; Flowers, Christopher; Naresh, Kikkeri; Evens, Andrew; Gordon, Leo I; Czader, Magdalena; Gill, Javed I; Hsi, Eric D; Liu, Qingquan; Fan, Alice; Walsh, Katherine; Jima, Dereje; Smith, Lisa L; Johnson, Amy J; Byrd, John C; Luftig, Micah A; Ni, Ting; Zhu, Jun; Chadburn, Amy; Levy, Shawn; Dunson, David; Dave, Sandeep S

    2013-01-22

    Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.

  12. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities.

    PubMed

    Zhang, Quan; Zhu, Feng; Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as revealed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus.

  13. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    PubMed

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  14. Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations.

    PubMed

    Scimone, Concetta; Bramanti, Placido; Alafaci, Concetta; Granata, Francesca; Piva, Francesco; Rinaldi, Carmela; Donato, Luigi; Greco, Federica; Sidoti, Antonina; D'Angelo, Rosalia

    2017-02-01

    Cerebral cavernous malformations (CCMs) are lesions affecting brain microvessels. The pathogenesis is not clearly understood. Conventional classification criterion is based on genetics, and thus, familial and sporadic forms can be distinguished; however, classification of sporadic cases with multiple lesions still remains uncertain. To date, three CCM causative genes have been identified: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. In our previous mutation screening, performed in a cohort of 95 Italian patients, with both sporadic and familial cases, we identified several mutations in CCM genes. This study represents further molecular screening in a cohort of 19 Italian patients enrolled by us in the few last years and classified into familial, sporadic and sporadic with multiple lesions cases. Direct sequencing and multiplex ligation-dependent probe amplification (MLPA) analysis were performed to detect point mutations and large genomic rearrangements, respectively. Effects of detected mutations and single-nucleotide polymorphisms (SNPs) were evaluated by an in silico approach and by western blot analysis. A novel nonsense mutation in CCM1 and a novel missense mutation in CCM2 were detected; moreover, several CCM2 gene polymorphisms in sporadic CCM patients were reported. We believe that these data enrich the mutation spectrum of CCM genes, which is useful for genetic counselling to identify both familial and sporadic CCM cases, as early as possible.

  15. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    PubMed

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. Copyright ©ERS 2015.

  16. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models.

    PubMed

    Marzi, Andrea; Chadinah, Spencer; Haddock, Elaine; Feldmann, Friederike; Arndt, Nicolette; Martellaro, Cynthia; Scott, Dana P; Hanley, Patrick W; Nyenswah, Tolbert G; Sow, Samba; Massaquoi, Moses; Feldmann, Heinz

    2018-05-08

    Ebola virus (EBOV), isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models. Published by Elsevier Inc.

  17. Integrin Alpha 8 Recessive Mutations Are Responsible for Bilateral Renal Agenesis in Humans

    PubMed Central

    Humbert, Camille; Silbermann, Flora; Morar, Bharti; Parisot, Mélanie; Zarhrate, Mohammed; Masson, Cécile; Tores, Frédéric; Blanchet, Patricia; Perez, Marie-José; Petrov, Yuliya; Khau Van Kien, Philippe; Roume, Joelle; Leroy, Brigitte; Gribouval, Olivier; Kalaydjieva, Luba; Heidet, Laurence; Salomon, Rémi; Antignac, Corinne; Benmerah, Alexandre; Saunier, Sophie; Jeanpierre, Cécile

    2014-01-01

    Renal hypodysplasia (RHD) is a heterogeneous condition encompassing a spectrum of kidney development defects including renal agenesis, hypoplasia, and (cystic) dysplasia. Heterozygous mutations of several genes have been identified as genetic causes of RHD with various severity. However, these genes and mutations are not associated with bilateral renal agenesis, except for RET mutations, which could be involved in a few cases. The pathophysiological mechanisms leading to total absence of kidney development thus remain largely elusive. By using a whole-exome sequencing approach in families with several fetuses with bilateral renal agenesis, we identified recessive mutations in the integrin α8-encoding gene ITGA8 in two families. Itga8 homozygous knockout in mice is known to result in absence of kidney development. We provide evidence of a damaging effect of the human ITGA8 mutations. These results demonstrate that mutations of ITGA8 are a genetic cause of bilateral renal agenesis and that, at least in some cases, bilateral renal agenesis is an autosomal-recessive disease. PMID:24439109

  18. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations.

    PubMed

    Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew; Cornwell, MacIntosh; Liu, Weihan; Nardone, Agostina; Xiao, Tengfei; Li, Wei; Qiu, Xintao; Buchwalter, Gilles; Feiglin, Ariel; Abell-Hart, Kayley; Fei, Teng; Rao, Prakash; Long, Henry; Kwiatkowski, Nicholas; Zhang, Tinghu; Gray, Nathanael; Melchers, Diane; Houtman, Rene; Liu, X Shirley; Cohen, Ofir; Wagle, Nikhil; Winer, Eric P; Zhao, Jean; Brown, Myles

    2018-02-12

    Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER + ) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Imprints from genetic drift and mutation imply relative divergence times across marine transition zones in a pan-European small pelagic fish (Sprattus sprattus).

    PubMed

    Limborg, M T; Hanel, R; Debes, P V; Ring, A K; André, C; Tsigenopoulos, C S; Bekkevold, D

    2012-08-01

    Geographic distributions of most temperate marine fishes are affected by postglacial recolonisation events, which have left complex genetic imprints on populations of marine species. This study investigated population structure and demographic history of European sprat (Sprattus sprattus L.) by combining inference from both mtDNA and microsatellite genetic markers throughout the species' distribution. We compared effects from genetic drift and mutation for both genetic markers in shaping genetic differentiation across four transition zones. Microsatellite markers revealed significant isolation by distance and a complex population structure across the species' distribution (overall θ(ST)=0.038, P<0.01). Across transition zones markers indicated larger effects of genetic drift over mutations in the northern distribution of sprat contrasting a stronger relative impact of mutation in the species' southern distribution in the Mediterranean region. These results were interpreted to reflect more recent divergence times between northern populations in accordance with previous findings. This study demonstrates the usefulness of comparing inference from different markers and estimators of divergence for phylogeographic and population genetic studies in species with weak genetic structure, as is the case in many marine species.

  20. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    PubMed Central

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  1. The pleiotropic phenotype of Apc mutations in the mouse: allele specificity and effects of the genetic background.

    PubMed

    Halberg, Richard B; Chen, Xiaodi; Amos-Landgraf, James M; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C; Dove, William F

    2008-09-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes.

  2. When to Consider Risk-Reducing Mastectomy in BRCA1/BRCA2 Mutation Carriers with Advanced Stage Ovarian Cancer: a Case Study Illustrating the Genetic Counseling Challenges.

    PubMed

    Speight, Beverley; Tischkowitz, Marc

    2017-12-01

    Germline mutations in BRCA1/BRCA2 significantly increase the risk of breast and ovarian cancer in women. This case report describes a BRCA1 germline mutation identified in a woman with stage IV epithelial ovarian cancer and the provision of genetic counseling about BRCA1-associated breast cancer risk in the three years following diagnosis. The report centers on the patient's enquiry about risk-reducing breast surgery. We focus on the challenges for health professionals and patients in understanding and balancing the risks and benefits of major prophylactic surgery in the context of a potentially life-limiting cancer diagnosis. Breast cancer risk management in BRCA1/BRCA2 carriers with advanced ovarian cancer is an under-explored area of genetic counseling research. This article includes a case report, a review of the relevant literature and considers some implications for practice.

  3. Cancer Risk Information Sharing: The Experience of Individuals Receiving Genetic Counseling for BRCA1/2 Mutations

    PubMed Central

    Chopra, Ishveen; Kelly, Kimberly M.

    2017-01-01

    Genetic counseling and testing for familial cancer is a unique context for the communication of risk information in the family. This study utilized a theoretical framework based on the family systems perspective to understand intra-familial cancer risk communication patterns in the Ashkenazi Jewish population. Individuals (n=120) at an elevated risk for BRCA1/2 mutations were included. Change in communication patterns over time was assessed using McNemar tests. Associations with communication patterns were assessed with multivariable logistic regression. Overall, the proportion of participants encouraged by others significantly (P<0.001) increased from pre- to post-genetic counseling. A higher proportion of participants were encouraged by female family members compared to male family members. Participants who were older, had no personal history of cancer, and had a higher cancer risk perception were more likely to be encouraged by others for genetic testing. Participant’s intent to encourage family members for genetic testing from pre-counseling to post-receipt of genetic test results decreased by 16.7%. Participants who had no personal history of cancer and had informative test results for a BRCA1/2 mutation were more likely to encourage other family members for genetic testing. In addition, qualitative findings suggested that closeness among family members, concern for family, especially future generations, and cognizance about cancer risk facilitates information sharing and encouragement for genetic testing. Our findings indicate that intra-familial cancer risk communication varies with structure of family relationships, where genetic counseling played an important role in improving intra-familial cancer risk communication. PMID:28112991

  4. Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort

    PubMed Central

    Catteruccia, Michela; Fattori, Fabiana; Codemo, Valentina; Ruggiero, Lucia; Maggi, Lorenzo; Tasca, Giorgio; Fiorillo, Chiara; Pane, Marika; Berardinelli, Angela; Verardo, Margherita; Bragato, Cinzia; Mora, Marina; Morandi, Lucia; Bruno, Claudio; Santoro, Lucio; Pegoraro, Elena; Mercuri, Eugenio; Bertini, Enrico; D’Amico, Adele

    2013-01-01

    Mutations in dynamin 2 (DNM2) gene cause autosomal dominant centronuclear myopathy and occur in around 50% of patients with centronuclear myopathy. We report clinical, morphological, muscle imaging and genetic data of 10 unrelated Italian patients with centronuclear myopathy related to DNM2 mutations. Our results confirm the clinical heterogeneity of this disease, underlining some peculiar clinical features, such as severe pulmonary impairment and jaw contracture that should be considered in the clinical follow-up of these patients. Muscle MRI showed a distinct pattern of involvement, with predominant involvement of soleus and tibialis anterior in the lower leg muscles, followed by hamstring muscles and adductor magnus at thigh level and gluteus maximus. The detection of three novel DNM2 mutations and the first case of somatic mosaicism further expand the genetic spectrum of the disease. PMID:23394783

  5. A MELAS syndrome family harboring two mutations in mitochondrial genome

    PubMed Central

    Choi, Byung-Ok; Hwang, Jung Hee; Kim, Joonki; Cho, Eun Min; Cho, Sun Young; Hwang, Su Jin; Lee, Hyang Woon; Kim, Song Ja

    2008-01-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous mitochondrial disorder with variable clinical symptoms. Here, from the sequencing of the entire mitochondrial genome, we report a Korean MELAS family harboring two homoplasmic missense mutations, which were reported 9957T > C (Phe251Leu) transition mutation in the cytochrome c oxidase subunit 3 (COX3) gene and a novel 13849A > C (Asn505His) transversion mutation in the NADH dehydrogenase subunit 5 (ND5) gene. Neither of these mutations was found in 205 normal controls. Both mutations were identified from the proband and his mother, but not his father. The patients showed cataract symptom in addition to MELAS phenotype. We believe that the 9957T > C mutation is pathogenic, however, the 13849A > C mutation is of unclear significance. It is likely that the 13849A > C mutation might function as the secondary mutation which increase the expressivity of overlapping phenotypes of MELAS and cataract. This study also demonstrates the importance of full sequencing of mtDNA for the molecular genetic understanding of mitochondrial disorders. PMID:18587274

  6. Effects of Cancer Genetic Panel Testing on at-Risk Individuals.

    PubMed

    Frost, Anja S; Toaff, Miriam; Biagi, Tara; Stark, Elizabeth; McHenry, Allison; Kaltman, Rebecca

    2018-06-01

    To evaluate the role of screening patients at increased risk for hereditary cancer syndromes with an extended panel of cancer predisposition genes to identify actionable genetic mutations. A retrospective chart review was conducted of all patients presenting to a multidisciplinary cancer program for genetic counseling and testing from January 2015 to December 2016. Individuals presenting to the program were identified as at-risk by a personal or family history of cancer, by their health care provider, or by self-referral. All participants met current National Comprehensive Cancer Network criteria for genetic risk evaluation for hereditary cancer. The results of testing and its implications for management, based on National Comprehensive Cancer Network guidelines, were recorded. Of 670 at-risk patients who underwent genetic testing, 66 (9.9%) had BRCA-limited testing; of these, 26 of 670 (3.9%) had a deleterious or likely pathogenic mutation. Expanded panel testing was done for 560 of the 670 patients (83.4%), and abnormal results were found in 65 of 670 (9.7%); non-BRCA mutations (predominantly CHEK2) were found in 49 of the 65 (75%). Abnormal genetic testing was associated with increased surveillance in 96% of those with deleterious mutations, whereas negative testing for a known familial mutation in 45 patients was associated with a downgrade of their risk and reduction of subsequent surveillance and management. Guideline-based management is frequently altered by genetic testing, including panel testing, in patients at risk for cancer. We recommend that obstetrics and gynecology providers routinely refer at-risk patients for genetic counseling and testing when clinically appropriate.

  7. Novel therapeutic strategies in myelodysplastic syndromes: do molecular genetics help?

    PubMed

    Chung, Stephen S

    2016-03-01

    Many studies over the past decade have together identified genes that are recurrently mutated in the myelodysplastic syndromes (MDS). We will summarize how this information has informed our understanding of disease pathogenesis and behavior, with an emphasis on how this information may inform therapeutic strategies. Genomic sequencing techniques have allowed for the identification of many recurrently mutated genes in MDS, with the most common mutations being found in epigenetic modifiers and components of the splicing machinery. Although many mutations are associated with clinical outcomes and disease phenotypes, at the current time they add relatively little to already robust clinical prognostic algorithms. However, as molecular genetic data are accumulated in larger numbers of patients, it is likely that the clinical significance of co-occurring mutations and less common mutations will come to light. Finally, mutated genes may identify biologically distinct subgroups of MDS that may benefit from novel therapies, and a subset of these genes may themselves serve as therapeutic targets. Advances in our knowledge of the molecular genetics of MDS have significantly improved our understanding of disease biology and promise to improve tools for clinical decision-making and identify new therapies for patients.

  8. Germline mutation prevalence in individuals with pancreatic cancer and a history of previous malignancy.

    PubMed

    Dudley, Beth; Karloski, Eve; Monzon, Federico A; Singhi, Aatur D; Lincoln, Stephen E; Bahary, Nathan; Brand, Randall E

    2018-04-15

    Approximately 10% of pancreatic adenocarcinoma (PC) cases are attributed to hereditary causes. Individuals with PC and a personal history of another cancer associated with hereditary breast and ovarian cancer (HBOC) or Lynch syndrome (LS) may be more likely to carry germline mutations. Participants with PC and a history of cancer were selected from a pancreatic disease registry. Of 1296 individuals with PC, 149 had a relevant history of cancer. If banked DNA was available, a multigene panel was performed for individuals who had not 1) previously had a mutation identified through clinical testing or 2) undergone clinical multigene panel testing with no mutations detected. Twenty-two of 124 individuals with PC and another HBOC- or LS-related cancer who underwent genetic testing had a mutation identified in a PC susceptibility gene (18%). If prostate cancer is excluded, the mutation prevalence increased to 23% (21/93). Mutation carriers were more likely to have more than 1 previous cancer diagnosis (P = .001), to have had clinical genetic testing (P = .001), and to meet National Comprehensive Cancer Network (NCCN) genetic testing criteria (P < .001). Approximately 23% of mutation carriers did not meet NCCN HBOC or LS testing guidelines based on their personal cancer history and reported cancer history in first-degree relatives. At least 18% of individuals with PC and a personal history of other HBOC- or LS-related cancers carry mutations in a PC susceptibility gene based on our data, suggesting that criteria for genetic testing in individuals with PC should include consideration of previous cancer history. Cancer 2018;124:1691-700. © 2018 American Cancer Society. © 2018 American Cancer Society.

  9. Current and future role of genetic screening in gynecologic malignancies.

    PubMed

    Ring, Kari L; Garcia, Christine; Thomas, Martha H; Modesitt, Susan C

    2017-11-01

    The world of hereditary cancers has seen exponential growth in recent years. While hereditary breast and ovarian cancer and Lynch syndrome account for the majority of mutations encountered by gynecologists, newly identified deleterious genetic mutations continue to be unearthed with their associated risks of malignancies. However, these advances in genetic cancer predispositions then force practitioners and their patients to confront the uncertainties of these less commonly identified mutations and the fact that there is limited evidence to guide them in expected cancer risk and appropriate risk-reduction strategies. Given the speed of information, it is imperative to involve cancer genetics experts when counseling these patients. In addition, coordination of screening and care in conjunction with specialty high-risk clinics, if available, allows for patients to have centralized management for multiple cancer risks under the guidance of physicians with experience counseling these patients. The objective of this review is to present the current literature regarding genetic mutations associated with gynecologic malignancies as well to propose screening and risk-reduction options for these high-risk patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  11. Using information content and base frequencies to distinguish mutations from genetic polymorphisms in splice junction recognition sites.

    PubMed

    Rogan, P K; Schneider, T D

    1995-01-01

    Predicting the effects of nucleotide substitutions in human splice sites has been based on analysis of consensus sequences. We used a graphic representation of sequence conservation and base frequency, the sequence logo, to demonstrate that a change in a splice acceptor of hMSH2 (a gene associated with familial nonpolyposis colon cancer) probably does not reduce splicing efficiency. This confirms a population genetic study that suggested that this substitution is a genetic polymorphism. The information theory-based sequence logo is quantitative and more sensitive than the corresponding splice acceptor consensus sequence for detection of true mutations. Information analysis may potentially be used to distinguish polymorphisms from mutations in other types of transcriptional, translational, or protein-coding motifs.

  12. Novel recurrently mutated genes in African American colon cancers.

    PubMed

    Guda, Kishore; Veigl, Martina L; Varadan, Vinay; Nosrati, Arman; Ravi, Lakshmeswari; Lutterbaugh, James; Beard, Lydia; Willson, James K V; Sedwick, W David; Wang, Zhenghe John; Molyneaux, Neil; Miron, Alexander; Adams, Mark D; Elston, Robert C; Markowitz, Sanford D; Willis, Joseph E

    2015-01-27

    We used whole-exome and targeted sequencing to characterize somatic mutations in 103 colorectal cancers (CRC) from African Americans, identifying 20 new genes as significantly mutated in CRC. Resequencing 129 Caucasian derived CRCs confirmed a 15-gene set as a preferential target for mutations in African American CRCs. Two predominant genes, ephrin type A receptor 6 (EPHA6) and folliculin (FLCN), with mutations exclusive to African American CRCs, are by genetic and biological criteria highly likely African American CRC driver genes. These previously unsuspected differences in the mutational landscapes of CRCs arising among individuals of different ethnicities have potential to impact on broader disparities in cancer behaviors.

  13. Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis.

    PubMed

    Smith, Miriam J; Wallace, Andrew J; Bowers, Naomi L; Rustad, Cecilie F; Woods, C Geoff; Leschziner, Guy D; Ferner, Rosalie E; Evans, D Gareth R

    2012-05-01

    Mutations of the SMARCB1 gene have been implicated in several human tumour predisposing syndromes. They have recently been identified as an underlying cause of the tumour suppressor syndrome schwannomatosis. There is a much higher rate of mutation detection in familial disease than in sporadic disease. We have carried out extensive genetic testing on a cohort of familial and sporadic patients who fulfilled clinical diagnostic criteria for schwannomatosis. In our current cohort, we identified novel mutations within the SMARCB1 gene and detected several mutations that have been previously identified in other schwannomatosis cohorts. Of the schwannomatosis screens reported to date, including our current dataset, SMARCB1 mutations have been found in 45 % of familial probands and 7 % of sporadic patients. The exon 1 mutation, c.41C >A, and the 3' untranslated region mutation, c.*82C >T, are the most common changes reported in schwannomatosis disease so far, indicating mutation hotspots at both 5' and 3' portions of the gene. SMARCB1 mutations are found in a significant proportion of schwannomatosis patients, but there remains the possibility that further causative genes remain to be found.

  14. Analysis of Genetic Mutations in a Cohort of Hereditary Optic Neuropathy in Shanghai, China.

    PubMed

    Gan, Dekang; Li, Mengwei; Wu, Jihong; Sun, Xinghuai; Tian, Guohong

    2017-01-01

    To evaluate the clinical classification and characteristics of hereditary optic neuropathy patients in a single center in China. Retrospective case study. Patients diagnosed with hereditary optic neuropathy between January 2014 and December 2015 in the neuro-ophthalmology division in Shanghai Eye and ENT Hospital of Fudan University were recruited. Clinical features as well as visual field, brain/orbital MRI, and spectrum domain optical coherence tomography (SD-OCT) were analyzed. Eighty-two patients diagnosed by gene test were evaluated, including 66 males and 16 females. The mean age of the patients was 19.4 years (range, 5-46 years). A total of 158 eyes were analyzed, including 6 unilateral, 61 bilateral, and 15 sequential. The median duration of the disease was 0.5 year (range, 0.1-20 years). Genetic test identified 68 patients with Leber hereditary optic neuropathy, 9 with dominant optic neuropathy, and 2 with a Wolfram gene mutation. There was also one case of hereditary spastic paraplegia, spinocerebellar ataxia, and polymicrogyria with optic nerve atrophy, respectively. Leber hereditary optic neuropathy is the most common detected type of hereditary optic neuropathy in Shanghai, China. The detection of other autosomal mutations in hereditary optic neuropathy is limited by the currently available technique.

  15. De novo point mutations in patients diagnosed with ataxic cerebral palsy.

    PubMed

    Parolin Schnekenberg, Ricardo; Perkins, Emma M; Miller, Jack W; Davies, Wayne I L; D'Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O'Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis; Jackson, Mandy; Tucker, Stephen J; Németh, Andrea H

    2015-07-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  16. Surveillance of Helicobacter pylori Antibiotic Susceptibility in Indonesia: Different Resistance Types among Regions and with Novel Genetic Mutations

    PubMed Central

    Miftahussurur, Muhammad; Syam, Ari Fahrial; Nusi, Iswan Abbas; Makmun, Dadang; Waskito, Langgeng Agung; Zein, Lukman Hakim; Akil, Fardah; Uwan, Willy Brodus; Simanjuntak, David; Wibawa, I Dewa Nyoman; Waleleng, Jimmy Bradley; Saudale, Alexander Michael Joseph; Yusuf, Fauzi; Mustika, Syifa; Adi, Pangestu; Maimunah, Ummi; Maulahela, Hasan; Rezkitha, Yudith Annisa Ayu; Subsomwong, Phawinee; Nasronudin; Rahardjo, Dadik; Suzuki, Rumiko; Akada, Junko; Yamaoka, Yoshio

    2016-01-01

    Information regarding Helicobacter pylori antibiotic resistance in Indonesia was previously inadequate. We assessed antibiotic susceptibility for H. pylori in Indonesia, and determined the association between virulence genes or genetic mutations and antibiotic resistance. We recruited 849 dyspeptic patients who underwent endoscopy in 11 cities in Indonesia. E-test was used to determine the minimum inhibitory concentration of five antibiotics. PCR-based sequencing assessed mutations in 23S rRNA, rdxA, gyrA, gyrB, and virulence genes. Next generation sequencing was used to obtain full-length sequences of 23S rRNA, infB, and rpl22. We cultured 77 strains and identified 9.1% with clarithromycin resistance. Low prevalence was also found for amoxicillin and tetracycline resistance (5.2% and 2.6%, respectively). In contrast, high resistance rates to metronidazole (46.7%) and levofloxacin (31.2%) were demonstrated. Strains isolated from Sumatera Island had significantly higher metronidazole resistance than those from other locations. Metronidazole resistant strains had highly distributed rdxA amino acid substitutions and the 23S rRNA A2143G mutation was associated with clarithromycin resistance (42.9%). However, one strain with the highest MIC value had a novel mutation in rpl22 without an A2143G mutation. Mutation at Asn-87 and/or Asp-91 of gyrA was associated with levofloxacin-resistance and was related to gyrB mutations. In conclusions, although this is a pilot study for a larger survey, our current data show that Indonesian strains had the high prevalence of metronidazole and levofloxacin resistance with low prevalence of clarithromycin, amoxicillin, and tetracycline resistance. Nevertheless, clarithromycin- or metronidazole-based triple therapy should be administered with caution in some regions of Indonesia. PMID:27906990

  17. Surveillance of Helicobacter pylori Antibiotic Susceptibility in Indonesia: Different Resistance Types among Regions and with Novel Genetic Mutations.

    PubMed

    Miftahussurur, Muhammad; Syam, Ari Fahrial; Nusi, Iswan Abbas; Makmun, Dadang; Waskito, Langgeng Agung; Zein, Lukman Hakim; Akil, Fardah; Uwan, Willy Brodus; Simanjuntak, David; Wibawa, I Dewa Nyoman; Waleleng, Jimmy Bradley; Saudale, Alexander Michael Joseph; Yusuf, Fauzi; Mustika, Syifa; Adi, Pangestu; Maimunah, Ummi; Maulahela, Hasan; Rezkitha, Yudith Annisa Ayu; Subsomwong, Phawinee; Nasronudin; Rahardjo, Dadik; Suzuki, Rumiko; Akada, Junko; Yamaoka, Yoshio

    2016-01-01

    Information regarding Helicobacter pylori antibiotic resistance in Indonesia was previously inadequate. We assessed antibiotic susceptibility for H. pylori in Indonesia, and determined the association between virulence genes or genetic mutations and antibiotic resistance. We recruited 849 dyspeptic patients who underwent endoscopy in 11 cities in Indonesia. E-test was used to determine the minimum inhibitory concentration of five antibiotics. PCR-based sequencing assessed mutations in 23S rRNA, rdxA, gyrA, gyrB, and virulence genes. Next generation sequencing was used to obtain full-length sequences of 23S rRNA, infB, and rpl22. We cultured 77 strains and identified 9.1% with clarithromycin resistance. Low prevalence was also found for amoxicillin and tetracycline resistance (5.2% and 2.6%, respectively). In contrast, high resistance rates to metronidazole (46.7%) and levofloxacin (31.2%) were demonstrated. Strains isolated from Sumatera Island had significantly higher metronidazole resistance than those from other locations. Metronidazole resistant strains had highly distributed rdxA amino acid substitutions and the 23S rRNA A2143G mutation was associated with clarithromycin resistance (42.9%). However, one strain with the highest MIC value had a novel mutation in rpl22 without an A2143G mutation. Mutation at Asn-87 and/or Asp-91 of gyrA was associated with levofloxacin-resistance and was related to gyrB mutations. In conclusions, although this is a pilot study for a larger survey, our current data show that Indonesian strains had the high prevalence of metronidazole and levofloxacin resistance with low prevalence of clarithromycin, amoxicillin, and tetracycline resistance. Nevertheless, clarithromycin- or metronidazole-based triple therapy should be administered with caution in some regions of Indonesia.

  18. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish

    PubMed Central

    Ryan, Sean; Willer, Jason; Marjoram, Lindsay; Bagwell, Jennifer; Mankiewicz, Jamie; Leshchiner, Ignaty; Goessling, Wolfram; Bagnat, Michel; Katsanis, Nicholas

    2013-01-01

    Forward genetic approaches in zebrafish have provided invaluable information about developmental processes. However, the relative difficulty of mapping and isolating mutations has limited the number of new genetic screens. Recent improvements in the annotation of the zebrafish genome coupled to a reduction in sequencing costs prompted the development of whole genome and RNA sequencing approaches for gene discovery. Here we describe a whole exome sequencing (WES) approach that allows rapid and cost-effective identification of mutations. We used our WES methodology to isolate four mutations that cause kidney cysts; we identified novel alleles in two ciliary genes as well as two novel mutants. The WES approach described here does not require specialized infrastructure or training and is therefore widely accessible. This methodology should thus help facilitate genetic screens and expedite the identification of mutants that can inform basic biological processes and the causality of genetic disorders in humans. PMID:24130329

  20. Exome Sequencing Identifies a Novel CEACAM16 Mutation Associated with Autosomal Dominant Nonsyndromic Hearing Loss DFNA4B in a Chinese Family

    PubMed Central

    He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2014-01-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant. PMID:25589040

  1. Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family.

    PubMed

    Wang, Honghan; Wang, Xinwei; He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2015-03-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next-generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild type, suggesting a deleterious effect of the sequence variant.

  2. Complex Genetics and the Etiology of Human Congenital Heart Disease

    PubMed Central

    Gelb, Bruce D.; Chung, Wendy K.

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD, but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Mainly because of recent advances in genomic technology such as next-generation DNA sequencing, scientists have begun to identify the genetic variants underlying CHD. In this article, the roles of modifier genes, de novo mutations, copy number variants, common variants, and noncoding mutations in the pathogenesis of CHD are reviewed. PMID:24985128

  3. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  4. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations

    PubMed Central

    Gu, Shun; Tian, Yuanyuan; Chen, Xue

    2016-01-01

    Purpose We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Methods Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease–relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Results Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant’s colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Conclusions Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all

  5. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations.

    PubMed

    Gu, Shun; Tian, Yuanyuan; Chen, Xue; Zhao, Chen

    2016-01-01

    We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease-relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant's colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all Chinese patients carrying mutations in the EYS

  6. Clinical and Genetic Features of Congenital Myasthenic Syndromes due to CHAT Mutations: Case Report and Literature Review.

    PubMed

    Arican, Pinar; Gencpinar, Pinar; Cavusoglu, Dilek; Olgac Dundar, Nihal

    2018-05-21

    Congenital myasthenic syndromes (CMS) are neuromuscular transmission disorders caused by mutations in genes encoding neuromuscular junction proteins. CMS due to choline acetyltransferase (CHAT) gene is characterized by episodic apnea. We report a case of a 12-month-old female patient presented with recurrent episodic apnea carrying a mutation in CHAT gene, p.I336T. Furthermore, we describe the genetic and clinical findings in 44 CMS patients due to CHAT mutations in the literature up to date. Episodes of apnea and respiratory insufficiency are the hallmarks of CHAT mutations. Clinical manifestations usually provoked by infections and fever. CMS due to CHAT mutations are rare, but it is important to diagnosis. Early diagnosis and appropriate treatment can improve morbidity and mortality. Georg Thieme Verlag KG Stuttgart · New York.

  7. [Mutations of amyloid precursor protein in early-onset familial Alzheimer's disease].

    PubMed

    Naruse, S; Tsuji, S; Miyatake, T

    1992-09-01

    Genetic linkage studies of familial Alzheimer's disease (FAD) have suggested that some form of early-onset FAD is linked to proximal long arm of chromosome 21. It has been also suggested that some form of late-onset FAD is linked to long arm of chromosome 19. Goate et al have identified a mis-sense mutation (Val to Ile) in exon 17 of the amyloid precursor protein (APP) gene in 2 of 16 early-onset FAD families, and have shown that the FAD locus in an FAD family is tightly linked to the mis-sense mutation. To determine if the mis-sense mutation is observed in different ethnic origine, we have studied some early-onset FAD families. Two early-onset FAD families showed the existence of the mutation. As the mutation has been identified in different ethnic origine and the mutation has not been observed in normal individuals, it strengthen hypothesis that the mutation is pathogenic. Recently, Val to Phe and Val to Gly mutations have been also identified at the same codon (Codon 717) of the APP gene.

  8. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    PubMed

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of

  9. Statewide Retrospective Review of Familial Pancreatic Cancer in Delaware, and Frequency of Genetic Mutations in Pancreatic Cancer Kindreds.

    PubMed

    Catts, Zohra Ali-Khan; Baig, Muhammad Khurram; Milewski, Becky; Keywan, Christine; Guarino, Michael; Petrelli, Nicholas

    2016-05-01

    Considering the typical rapid progression and high mortality of pancreatic cancer (PC), early detection may lead to an improved outcome. To date, there is no safe, sensitive, and cost-effective screening strategy to detect PC. Currently, screening is focused on individuals at the highest risk of developing PC based on family history. A high-risk individual is defined as having two or more first-degree relatives with PC, or one first- or second-degree relative with PC with a confirmed mutation in a gene associated with PC. The BRCA2 gene is one of the most common genes linked to pancreatic-only cancer families; however, other hereditary cancer syndromes have also been associated with an increased risk for PC. We conducted a retrospective review of pedigrees of families with a pancreatic adenocarcinoma cancer diagnosis held in the statewide Ruth Ann Minner High Risk Family Cancer Registry at the Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, USA, from 2002 to 2013. The registry was queried based on how many first-, second-, or third-degree relatives of the proband were affected with PC, genetic testing status, and (if applicable) the results. These data were then categorized into families that meet familial PC (FPC) criteria, defined as two first-degree relatives with PC (FPC families), families that did not meet the FPC definition but had one first-degree relative affected with PC (first-degree families), and probands with PC (probands). Each family was counted only once in the analysis, even if multiple family members were tested. Our analysis revealed that 175 of 597 families fitting any of the above criteria completed genetic testing. Of this cohort, 52 had pathogenic alterations with nine different genes implicated. Overall, 164 of the 175 families that fitted into any of the three categories previously identified had BRCA1 or BRCA2 testing, either by DNA sequencing or next-generation sequencing via a panel test

  10. Steroid Biomarkers and Genetic Studies Reveal Inactivating Mutations in Hexose-6-Phosphate Dehydrogenase in Patients with Cortisone Reductase Deficiency

    PubMed Central

    Lavery, Gareth G.; Walker, Elizabeth A.; Tiganescu, Ana; Ride, Jon P.; Shackleton, Cedric H. L.; Tomlinson, Jeremy W.; Connell, John M. C.; Ray, David W.; Biason-Lauber, Anna; Malunowicz, Ewa M.; Arlt, Wiebke; Stewart, Paul M.

    2008-01-01

    Context: Cortisone reductase deficiency (CRD) is characterized by a failure to regenerate cortisol from cortisone via 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), resulting in increased cortisol clearance, activation of the hypothalamic-pituitary-axis (HPA) and ACTH-mediated adrenal androgen excess. 11β-HSD1 oxoreductase activity requires the reduced nicotinamide adenine dinucleotide phosphate-generating enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the endoplasmic reticulum. CRD manifests with hyperandrogenism resulting in hirsutism, oligo-amenorrhea, and infertility in females and premature pseudopuberty in males. Recent association studies have failed to corroborate findings that polymorphisms in the genes encoding H6PDH (R453Q) and 11β-HSD1 (Intron 3 inserted adenine) interact to cause CRD. Objective: Our objective was to reevaluate the genetics and steroid biochemistry of patients with CRD. Design: We analyzed 24-h urine collection for steroid biomarkers by gas chromatography/mass spectrometry and sequenced the HSD11B1 and H6PD genes in our CRD cohort. Patients: Patients included four cases presenting with hyperandrogenism and biochemical features clearly indicative of CRD. Results: Gas chromatography/mass spectrometry identified steroid biomarkers that correlated with CRD in each case. Three cases were identified as homozygous (R109AfsX3, Y316X, and G359D) and one case identified as compound heterozygous (c.960G→A and D620fsX3) for mutations in H6PD. No mutations affecting enzyme activity were identified in the HSD11B1 gene. Expression and activity assays demonstrate loss of function for all reported H6PDH mutations. Conclusions: CRD is caused by inactivating mutations in the H6PD gene, rendering the 11β-HSD1 enzyme unable to operate as an oxoreductase, preventing local glucocorticoid regeneration. These data highlight the importance of the redox control of cortisol metabolism and the 11β-HSD1-H6PDH pathway in regulating hypothalamic

  11. Automation of diagnostic genetic testing: mutation detection by cyclic minisequencing.

    PubMed

    Alagrund, Katariina; Orpana, Arto K

    2014-01-01

    The rising role of nucleic acid testing in clinical decision making is creating a need for efficient and automated diagnostic nucleic acid test platforms. Clinical use of nucleic acid testing sets demands for shorter turnaround times (TATs), lower production costs and robust, reliable methods that can easily adopt new test panels and is able to run rare tests in random access principle. Here we present a novel home-brew laboratory automation platform for diagnostic mutation testing. This platform is based on the cyclic minisequecing (cMS) and two color near-infrared (NIR) detection. Pipetting is automated using Tecan Freedom EVO pipetting robots and all assays are performed in 384-well micro plate format. The automation platform includes a data processing system, controlling all procedures, and automated patient result reporting to the hospital information system. We have found automated cMS a reliable, inexpensive and robust method for nucleic acid testing for a wide variety of diagnostic tests. The platform is currently in clinical use for over 80 mutations or polymorphisms. Additionally to tests performed from blood samples, the system performs also epigenetic test for the methylation of the MGMT gene promoter, and companion diagnostic tests for analysis of KRAS and BRAF gene mutations from formalin fixed and paraffin embedded tumor samples. Automation of genetic test reporting is found reliable and efficient decreasing the work load of academic personnel.

  12. Genetic Aspects of Alzheimer Disease

    PubMed Central

    Williamson, Jennifer; Goldman, Jill; Marder, Karen S.

    2011-01-01

    Background Alzheimer disease (AD) is a genetically complex disorder. Mutations in 3 genes, presenilin 1, amyloid precursor protein, and presenilin 2, lead to early-onset familial AD in rare families with onset of disease occurring prior to age 65. Specific polymorphisms in apolipoprotein E are associated with the more common, late-onset AD occurring after age 65. In this review, we discuss current advances in AD genetics, the implications of the known AD genes, presenilin 1, presenilin 2, amyloid precursor protein, and apolipoprotein E, and other possible genes on the clinical diagnosis, treatment, and genetic counseling of patients and families with early- and late-onset AD. Review Summary In addition to the mutations in 4 known genes associated with AD, mutations in other genes may be implicated in the pathogenesis of the disease. Most recently, 2 different research groups have reported genetic association between 2 genes, sortilin-related receptor and GAB2, and AD. These associations have not changed the diagnostic and medical management of AD. Conclusions New research in the genetics of AD have implicated novel genes as having a role in the disease, but these findings have not been replicated nor have specific disease causing mutations been identified. To date, clinical genetic testing is limited to familial early-onset disease for symptomatic individuals and asymptomatic relatives and, although not recommended, amyloid precursor protein apolipoprotein E testing as an adjunct to diagnosis of symptomatic individuals. PMID:19276785

  13. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy

    PubMed Central

    Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M

    2007-01-01

    Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362

  14. Novel ITGB6 mutation in autosomal recessive amelogenesis imperfecta.

    PubMed

    Seymen, F; Lee, K-E; Koruyucu, M; Gencay, K; Bayram, M; Tuna, E B; Lee, Z H; Kim, J-W

    2015-05-01

    Hereditary defects in tooth enamel formation, amelogenesis imperfecta (AI), can be non-syndromic or syndromic phenotype. Integrins are signaling proteins that mediate cell-cell and cell-extracellular matrix communication, and their involvement in tooth development is well known. The purposes of this study were to identify genetic cause of an AI family and molecular pathogenesis underlying defective enamel formation. We recruited a Turkish family with isolated AI and performed mutational analyses to clarify the underlying molecular genetic etiology. Autozygosity mapping and exome sequencing identified a novel homozygous ITGB6 transversion mutation in exon 4 (c.517G>C, p.Gly173Arg). The glycine at this position in the middle of the βI-domain is conserved among a wide range of vertebrate orthologs and human paralogs. Clinically, the enamel was generally thin and pitted with pigmentation. Thicker enamel was noted at the cervical area of the molars. In this study, we identified a novel homozygous ITGB6 mutation causing isolated AI, and this advances the understanding of normal and pathologic enamel development. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Neutral mutation as the source of genetic variation in life history traits.

    PubMed

    Brcić-Kostić, Krunoslav

    2005-08-01

    The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.

  16. Phenotypic diversity identified by cardiac magnetic resonance in a large hypertrophic cardiomyopathy family with a single MYH7 mutation.

    PubMed

    Wang, Jie; Wan, Ke; Sun, Jiayu; Li, Weihao; Liu, Hong; Han, Yuchi; Chen, Yucheng

    2018-01-17

    Limited data is available on phenotypic variations with the same genotype in hypertrophic cardiomyopathy (HCM). The present study aims to explore the relationship between genotype and phenotype characterized by cardiovascular magnetic resonance (CMR) in a large Chinese family. A proband diagnosed with HCM from a multigenerational family underwent next-generation sequencing based on a custom sureSelect panel, including 117 candidate pathogenic genes associated with cardiomyopathies. All genetic results were confirmed by the Sanger sequencing method. All confirmed mutation carriers underwent CMR exam and myocardial tissue characterization using T1 mapping and late gadolinium enhancement (LGE) on a 3T scanner (Siemens Trio, Gemany). After clinical and genetic screening of 36 (including the proband) members of a large Chinese family, nineteen family members are determined to carry the single p.T1377M (c.4130C>T) mutation in the MYH7 gene. Of these 19 mutation carriers, eight are diagnosed with HCM, one was considered as borderline affected and ten are not clinically or phenotypically affected. Different HCM phenotypes are present in the nine affected individuals in this family. In addition, we have found different tissue characteristics assessed by T1 mapping and LGE in these individuals. We describe a family that demonstrates the diverse HCM phenotypes associated with a single MYH7 mutation.

  17. The genetics underlying acquired long QT syndrome: impact for genetic screening

    PubMed Central

    Itoh, Hideki; Crotti, Lia; Aiba, Takeshi; Spazzolini, Carla; Denjoy, Isabelle; Fressart, Véronique; Hayashi, Kenshi; Nakajima, Tadashi; Ohno, Seiko; Makiyama, Takeru; Wu, Jie; Hasegawa, Kanae; Mastantuono, Elisa; Dagradi, Federica; Pedrazzini, Matteo; Yamagishi, Masakazu; Berthet, Myriam; Murakami, Yoshitaka; Shimizu, Wataru; Guicheney, Pascale; Schwartz, Peter J.; Horie, Minoru

    2016-01-01

    Aims Acquired long QT syndrome (aLQTS) exhibits QT prolongation and Torsades de Pointes ventricular tachycardia triggered by drugs, hypokalaemia, or bradycardia. Sometimes, QTc remains prolonged despite elimination of triggers, suggesting the presence of an underlying genetic substrate. In aLQTS subjects, we assessed the prevalence of mutations in major LQTS genes and their probability of being carriers of a disease-causing genetic variant based on clinical factors. Methods and results We screened for the five major LQTS genes among 188 aLQTS probands (55 ± 20 years, 140 females) from Japan, France, and Italy. Based on control QTc (without triggers), subjects were designated ‘true aLQTS’ (QTc within normal limits) or ‘unmasked cLQTS’ (all others) and compared for QTc and genetics with 2379 members of 1010 genotyped congenital long QT syndrome (cLQTS) families. Cardiac symptoms were present in 86% of aLQTS subjects. Control QTc of aLQTS was 453 ± 39 ms, shorter than in cLQTS (478 ± 46 ms, P < 0.001) and longer than in non-carriers (406 ± 26 ms, P < 0.001). In 53 (28%) aLQTS subjects, 47 disease-causing mutations were identified. Compared with cLQTS, in ‘true aLQTS’, KCNQ1 mutations were much less frequent than KCNH2 (20% [95% CI 7–41%] vs. 64% [95% CI 43–82%], P < 0.01). A clinical score based on control QTc, age, and symptoms allowed identification of patients more likely to carry LQTS mutations. Conclusion A third of aLQTS patients carry cLQTS mutations, those on KCNH2 being more common. The probability of being a carrier of cLQTS disease-causing mutations can be predicted by simple clinical parameters, thus allowing possibly cost-effective genetic testing leading to cascade screening for identification of additional at-risk family members. PMID:26715165

  18. Detecting negative selection on recurrent mutations using gene genealogy

    PubMed Central

    2013-01-01

    considerably high powers to detect negative selection, our new neutrality tests may open new venues for dealing with the population genetics of recurrent mutations as well as help identifying some types of genetic disorders that may have escaped identification by currently existing methods. PMID:23651527

  19. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos

    PubMed Central

    Khorram, David; Choi, Michael; Roos, Ben R.; Stone, Edwin M.; Kopel, Teresa; Allen, Richard; Alward, Wallace L.M.; Scheetz, Todd E.

    2015-01-01

    Purpose Autosomal dominant nanophthalmos is an inherited eye disorder characterized by a structurally normal but smaller eye. Patients with nanophthalmos have high hyperopia (far-sightedness), a greater incidence of angle-closure glaucoma, and increased risk of surgical complications. In this study, the clinical features and the genetic basis of nanophthalmos were investigated in two large autosomal dominant nanophthalmos pedigrees. Methods Fourteen members of a Caucasian pedigree from the United States and 15 members of a pedigree from the Mariana Islands enrolled in a genetic study of nanophthalmos and contributed DNA samples. Twenty of 29 family members underwent eye examinations that included measurement of axial eye length and/or refractive error. The genetic basis of nanophthalmos in the pedigrees was studied with linkage analysis, whole exome sequencing, and candidate gene (i.e., TMEM98) sequencing to identify the nanophthalmos-causing gene. Results Nine members of the pedigree from the United States and 11 members of the pedigree from the Mariana Islands were diagnosed with nanophthalmos that is transmitted as an autosomal dominant trait. The patients with nanophthalmos had abnormally short axial eye lengths, which ranged from 15.9 to 18.4 mm. Linkage analysis of the nanophthalmos pedigree from the United States identified nine large regions of the genome (greater than 10 Mbp) that were coinherited with disease in this family. Genes within these “linked regions” were examined for disease-causing mutations using exome sequencing, and a His196Pro mutation was detected in the TMEM98 gene, which was recently reported to be a nanophthalmos gene. Sanger sequencing subsequently showed that all other members of this pedigree with nanophthalmos also carry the His196Pro TMEM98 mutation. Testing the Mariana Islands pedigree for TMEM98 mutations identified a 34 bp heterozygous deletion that spans the 3′ end of exon 4 in all affected family members. Neither TMEM98

  20. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos.

    PubMed

    Khorram, David; Choi, Michael; Roos, Ben R; Stone, Edwin M; Kopel, Teresa; Allen, Richard; Alward, Wallace L M; Scheetz, Todd E; Fingert, John H

    2015-01-01

    Autosomal dominant nanophthalmos is an inherited eye disorder characterized by a structurally normal but smaller eye. Patients with nanophthalmos have high hyperopia (far-sightedness), a greater incidence of angle-closure glaucoma, and increased risk of surgical complications. In this study, the clinical features and the genetic basis of nanophthalmos were investigated in two large autosomal dominant nanophthalmos pedigrees. Fourteen members of a Caucasian pedigree from the United States and 15 members of a pedigree from the Mariana Islands enrolled in a genetic study of nanophthalmos and contributed DNA samples. Twenty of 29 family members underwent eye examinations that included measurement of axial eye length and/or refractive error. The genetic basis of nanophthalmos in the pedigrees was studied with linkage analysis, whole exome sequencing, and candidate gene (i.e., TMEM98) sequencing to identify the nanophthalmos-causing gene. Nine members of the pedigree from the United States and 11 members of the pedigree from the Mariana Islands were diagnosed with nanophthalmos that is transmitted as an autosomal dominant trait. The patients with nanophthalmos had abnormally short axial eye lengths, which ranged from 15.9 to 18.4 mm. Linkage analysis of the nanophthalmos pedigree from the United States identified nine large regions of the genome (greater than 10 Mbp) that were coinherited with disease in this family. Genes within these "linked regions" were examined for disease-causing mutations using exome sequencing, and a His196Pro mutation was detected in the TMEM98 gene, which was recently reported to be a nanophthalmos gene. Sanger sequencing subsequently showed that all other members of this pedigree with nanophthalmos also carry the His196Pro TMEM98 mutation. Testing the Mariana Islands pedigree for TMEM98 mutations identified a 34 bp heterozygous deletion that spans the 3' end of exon 4 in all affected family members. Neither TMEM98 mutation was detected in

  1. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance

    PubMed Central

    Andersson, Dan I

    2017-01-01

    Abstract Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success. PMID:28333270

  2. Mutation scanning analysis of genetic variation within and among Echinococcus species: implications and future prospects.

    PubMed

    Jabbar, Abdul; Gasser, Robin B

    2013-07-01

    Adult tapeworms of the genus Echinococcus (family Taeniidae) occur in the small intestines of carnivorous definitive hosts and are transmitted to particular intermediate mammalian hosts, in which they develop as fluid-filled larvae (cysts) in internal organs (usually lung and liver), causing the disease echinococcosis. Echinococcus species are of major medical importance and also cause losses to the meat and livestock industries, mainly due to the condemnation of infected offal. Decisions regarding the treatment and control of echinococcosis rely on the accurate identification of species and population variants (strains). Conventional, phenetic methods for specific identification have some significant limitations. Despite advances in the development of molecular tools, there has been limited application of mutation scanning methods to species of Echinococcus. Here, we briefly review key genetic markers used for the identification of Echinococcus species and techniques for the analysis of genetic variation within and among populations, and the diagnosis of echinococcosis. We also discuss the benefits of utilizing mutation scanning approaches to elucidate the population genetics and epidemiology of Echinococcus species. These benefits are likely to become more evident following the complete characterization of the genomes of E. granulosus and E. multilocularis.

  3. [Two novel pathogenic mutations of GAN gene identified in a patient with giant axonal neuropathy].

    PubMed

    Wang, Juan; Ma, Qingwen; Cai, Qin; Liu, Yanna; Wang, Wei; Ren, Zhaorui

    2016-06-01

    To explore the disease-causing mutations in a patient suspected for giant axonal neuropathy(GAN). Target sequence capture sequencing was used to screen potential mutations in genomic DNA extracted from peripheral blood sample of the patient. Sanger sequencing was applied to confirm the detected mutation. The mutation was verified among 400 GAN alleles from 200 healthy individuals by Sanger sequencing. The function of the mutations was predicted by bioinformatics analysis. The patient was identified as a compound heterozygote carrying two novel pathogenic GAN mutations, i.e., c.778G>T (p.Glu260Ter) and c.277G>A (p.Gly93Arg). Sanger sequencing confirmed that the c.778G>T (p.Glu260Ter) mutation was inherited from his father, while c.277G>A (p.Gly93Arg) was inherited from his mother. The same mutations was not found in the 200 healthy individuals. Bioinformatics analysis predicted that the two mutations probably caused functional abnormality of gigaxonin. Two novel GAN mutations were detected in a patient with GAN. Both mutations are pathogenic and can cause abnormalities of gigaxonin structure and function, leading to pathogenesis of GAN. The results may also offer valuable information for similar diseases.

  4. A CACNA1D mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia.

    PubMed

    Flanagan, S E; Vairo, F; Johnson, M B; Caswell, R; Laver, T W; Lango Allen, H; Hussain, K; Ellard, S

    2017-06-01

    Congenital hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or it may present as part of a wider syndrome. For approximately 40%-50% of individuals with this condition, sequence analysis of the known HH genes identifies a causative mutation. Identifying the underlying genetic aetiology in the remaining cases is important as a genetic diagnosis will inform on recurrence risk, may guide medical management and will provide valuable insights into β-cell physiology. We sequenced the exome of a child with persistent diazoxide-responsive HH, mild aortic insufficiency, severe hypotonia, and developmental delay as well as the unaffected parents. This analysis identified a de novo mutation, p.G403D, in the proband's CACNA1D gene. CACNA1D encodes the main L-type voltage-gated calcium channel in the pancreatic β-cell, a key component of the insulin secretion pathway. The p.G403D mutation had been reported previously as an activating mutation in an individual with primary hyper-aldosteronism, neuromuscular abnormalities, and transient hypoglycaemia. Sequence analysis of the CACNA1D gene in 60 further cases with HH did not identify a pathogenic mutation. Identification of an activating CACNA1D mutation in a second patient with congenital HH confirms the aetiological role of CACNA1D mutations in this disorder. A genetic diagnosis is important as treatment with a calcium channel blocker may be an option for the medical management of this patient. © 2017 The Authors. Pediatric Diabetes published by John Wiley & Sons Ltd.

  5. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    PubMed

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Whole-exome sequencing revealed two novel mutations in Usher syndrome.

    PubMed

    Koparir, Asuman; Karatas, Omer Faruk; Atayoglu, Ali Timucin; Yuksel, Bayram; Sagiroglu, Mahmut Samil; Seven, Mehmet; Ulucan, Hakan; Yuksel, Adnan; Ozen, Mustafa

    2015-06-01

    Usher syndrome is a clinically and genetically heterogeneous autosomal recessive inherited disorder accompanied by hearing loss and retinitis pigmentosa (RP). Since the associated genes are various and quite large, we utilized whole-exome sequencing (WES) as a diagnostic tool to identify the molecular basis of Usher syndrome. DNA from a 12-year-old male diagnosed with Usher syndrome was analyzed by WES. Mutations detected were confirmed by Sanger sequencing. The pathogenicity of these mutations was determined by in silico analysis. A maternally inherited deleterious frameshift mutation, c.14439_14454del in exon 66 and a paternally inherited non-sense c.10830G>A stop-gain SNV in exon 55 of USH2A were found as two novel compound heterozygous mutations. Both of these mutations disrupt the C terminal of USH2A protein. As a result, WES revealed two novel compound heterozygous mutations in a Turkish USH2A patient. This approach gave us an opportunity to have an appropriate diagnosis and provide genetic counseling to the family within a reasonable time. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Genetic determinants of heart failure: facts and numbers.

    PubMed

    Czepluch, Frauke S; Wollnik, Bernd; Hasenfuß, Gerd

    2018-06-01

    The relevance of gene mutations leading to heart diseases and hence heart failure has become evident. The risk for and the course of heart failure depends on genomic variants and mutations underlying the so-called genetic predisposition. Genetic contribution to heart failure is highly heterogenous and complex. For any patient with a likely inherited heart failure syndrome, genetic counselling is recommended and important. In the last few years, novel sequencing technologies (named next-generation sequencing - NGS) have dramatically improved the availability of molecular testing, the efficiency of genetic analyses, and moreover reduced the cost for genetic testing. Due to this development, genetic testing has become increasingly accessible and NGS-based sequencing is now applied in clinical routine diagnostics. One of the most common reasons of heart failure are cardiomyopathies such as the dilated or the hypertrophic cardiomyopathy. Nearly 100 disease-associated genes have been identified for cardiomyopathies. The knowledge of a pathogenic mutation can be used for genetic counselling, risk and prognosis determination, therapy guidance and hence for a more effective treatment. Besides, family cascade screening for a known familial, pathogenic mutation can lead to an early diagnosis in affected individuals. At that timepoint, a preventative intervention could be used to avoid or delay disease onset or delay disease progression. Understanding the cellular basis of genetic heart failure syndromes in more detail may provide new insights into the molecular biology of physiological and impaired cardiac (cell) function. As our understanding of the molecular and genetic pathophysiology of heart failure will increase, this might help to identify novel therapeutic targets and may lead to the development of new and specific treatment options in patients with heart failure. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European

  8. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii

    PubMed Central

    Kraemer, Susanne A.; Böndel, Katharina B.; Ness, Robert W.; Keightley, Peter D.; Colegrave, Nick

    2017-01-01

    Abstract Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain. PMID:28884790

  9. Are SCN1A gene mutations responsible for genetic susceptibility to subacute sclerosing panencephalitis?

    PubMed

    Garg, Ravindra Kumar

    2012-02-01

    Dravet syndrome, characterized predominantly by myoclonus, has a striking clinical resemblance to subacute sclerosing panencephalitis (SSPE). Patients with Dravet syndrome develop significant mental decline with advancing age of affected child like in SSPE. It is well established that SCN1A gene mutations are associated with Dravet syndrome. Even periodic EEG complexes have been described in Dravet syndrome. In addition to Dravet syndrome, several other types of acute and subacute encephalopathic syndromes having clinical and electroencephalographic resemblance to SSPE are associated with SCN1A gene mutations. SSPE is a devastating progressive inflammatory disorder of the central nervous system. It is caused by persistent infection of the brain by an aberrant measles virus. Only a few of a vast number of measles infected pediatric population develop SSPE. There are several reports describing presence of SSPE is close relatives and it has been described previously in sibling and twin pairs. A genetic susceptibility for development of SSPE is likely. In fact, a variety of genetic abnormalities have already been described in patients with SSPE. It can also be argued that because of striking clinical resemblance between Dravet and various epileptic and encephalopathic syndromes associated with SCN1A gene mutations and SSPE, SCN1A gene abnormalities may also be responsible for susceptibility to SSPE in measles infected children. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Keratin 17 Mutations in Four Families from India with Pachyonychia Congenita

    PubMed Central

    Agarwala, Manoj; Salphale, Pankaj; Peter, Dincy; Wilson, Neil J; Pulimood, Susanne; Schwartz, Mary E; Smith, Frances J D

    2017-01-01

    Pachyonychia congenita (PC) is a rare autosomal dominant genetic skin disorder due to a mutation in any one of the five keratin genes, KRT6A, KRT6B, KRT6C, KRT16, or KRT17. The main features are palmoplantar keratoderma, plantar pain, and nail dystrophy. Cysts of various types, follicular hyperkeratosis, oral leukokeratosis, hyperhidrosis, and natal teeth may also be present. Four unrelated Indian families presented with a clinical diagnosis of PC. This was confirmed by genetic testing; mutations in KRT17 were identified in all affected individuals. PMID:28794556

  11. Mutations in the Kinase Domain of the HER2/ERBB2 Gene Identified in a Wide Variety of Human Cancers.

    PubMed

    Wen, Wenhsiang; Chen, Wangjuh Sting; Xiao, Nick; Bender, Ryan; Ghazalpour, Anatole; Tan, Zheng; Swensen, Jeffrey; Millis, Sherri Z; Basu, Gargi; Gatalica, Zoran; Press, Michael F

    2015-09-01

    The HER2 (official name ERBB2) gene encodes a membrane receptor in the epidermal growth factor receptor family amplified and overexpressed in adenocarcinoma. Activating mutations also occur in several cancers. We report mutation analyses of the HER2 kinase domain in 7497 histologically diverse cancers. Forty-five genes, including the kinase domain of HER2 with HER2 IHC and dual in situ hybridization, were analyzed in tumors from 7497 patients with cancer, including 850 breast, 770 colorectal, 910 non-small cell lung, 823 uterine or cervical, 1372 ovarian, and 297 pancreatic cancers, as well as 323 melanomas and 2152 other solid tumors. Sixty-nine HER2 kinase domain mutations were identified in tumors from 68 patients (approximately 1% of all cases, ranging from absent in sarcomas to 4% in urothelial cancers), which included previously published activating mutations and 13 novel mutations. Fourteen cases with coexisting HER2 mutation and amplification and/or overexpression were identified. Fifty-two of 68 patients had additional mutations in other analyzed genes, whereas 16 patients (23%) had HER2 mutations identified as the sole driver mutation. HER2 mutations coexisted with HER2 gene amplification and overexpression and with mutations in other functionally important genes. HER2 mutations were identified as the only driver mutation in a significant proportion of solid cancers. Evaluation of anti-HER2 therapies in nonamplified, HER2-mutated cancers is warranted. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Mutational Analysis of Agxt in Tunisian Population with Primary Hyperoxaluria Type 1.

    PubMed

    M'dimegh, Saoussen; Omezzine, Asma; M'barek, Ibtihel; Moussa, Amira; Mabrouk, Sameh; Kaarout, Hayet; Souche, Geneviéve; Chemli, Jalel; Aloui, Sabra; Aquaviva-Bourdain, Cécile; Achour, Abdellatif; Abroug, Saoussen; Bouslama, Ali

    2017-01-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine:glyoxylate aminotransferase (AGT). PH1 is a clinically and genetically heterogeneous disorder. The aim of our study was to analyze and characterize the mutational spectrum of PH1 in Tunisian patients. Molecular studies of 146 Tunisian patients suspected with PH were performed by PCR/Restriction fragment length polymorphism (RFLP) to detect seven mutations described as the most common. Direct sequencing for the 11 exons was performed in patients in whom any mutation was not identified. The genetic diagnosis of PH1 was confirmed in 62.3% of patients. The first molecular approach based on PCR/restriction enzyme test was positive in 37.6% of patients, whereas the second molecular approach based on whole gene sequencing was successful in 24% of cases. Twelve pathogenic mutations were detected in our cohort. Two mutations were novel, and five were detected for the first time in Tunisians. The three most frequent mutations were p.Ile244Thr, p.Gly190Arg, and c.33dupC, with a frequency of 43.4%, 21.4%, and 13.1%, respectively. The two novel mutations detected in our study extend the spectrum of known AGXT gene mutations. The screen for the mutations identified in this study can provide a useful, cost-effective, and first-line investigation in Tunisian PH1 patients. © 2016 John Wiley & Sons Ltd/University College London.

  13. Interpreting short tandem repeat variations in humans using mutational constraint

    PubMed Central

    Gymrek, Melissa; Willems, Thomas; Reich, David; Erlich, Yaniv

    2017-01-01

    Identifying regions of the genome that are depleted of mutations can reveal potentially deleterious variants. Short tandem repeats (STRs), also known as microsatellites, are among the largest contributors of de novo mutations in humans. However, per-locus studies of STR mutations have been limited to highly ascertained panels of several dozen loci. Here, we harnessed bioinformatics tools and a novel analytical framework to estimate mutation parameters for each STR in the human genome by correlating STR genotypes with local sequence heterozygosity. We applied our method to obtain robust estimates of the impact of local sequence features on mutation parameters and used this to create a framework for measuring constraint at STRs by comparing observed vs. expected mutation rates. Constraint scores identified known pathogenic variants with early onset effects. Our metric will provide a valuable tool for prioritizing pathogenic STRs in medical genetics studies. PMID:28892063

  14. Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer.

    PubMed

    Bar-Peled, Liron; Kemper, Esther K; Suciu, Radu M; Vinogradova, Ekaterina V; Backus, Keriann M; Horning, Benjamin D; Paul, Thomas A; Ichu, Taka-Aki; Svensson, Robert U; Olucha, Jose; Chang, Max W; Kok, Bernard P; Zhu, Zhou; Ihle, Nathan T; Dix, Melissa M; Jiang, Ping; Hayward, Matthew M; Saez, Enrique; Shaw, Reuben J; Cravatt, Benjamin F

    2017-10-19

    The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Integrating Transcriptome and Genome Re-Sequencing Data to Identify Key Genes and Mutations Affecting Chicken Eggshell Qualities

    PubMed Central

    Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  16. A novel mutation of the beta myosin heavy chain gene responsible for familial hypertrophic cardiomyopathy.

    PubMed

    Wang, Juan; Xu, Shi-Jie; Zhou, Hua; Wang, Li-Jie; Hu, Bo; Fang, Fang; Zhang, Xu-Min; Luo, Yi-Wei; He, Xiao-Yan; Zhuang, Shao-Wei; Li, Xin-Ming; Liu, Zhong-Ming; Hu, Da-Yi

    2009-09-01

    Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder and shows high variability in genetic heterogeneity and phenotypic characteristics. The genetic etiology responsible for HCM in many individuals remains unclear. This instigation was sought to identify novel genetic determinants for familial hypertrophic cardiomyopathy. Six unrelated Chinese families with HCM were studied. For each of the 13 established HCM-susceptibility genes, 3 to 5 microsatellite markers were selected to perform genotyping and haplotype analysis. The linked genes were sequenced. Haplotype analyses on candidate genetic loci revealed cosegregation of the gene beta-myosin heavy chain (MYH7) with HCM in a single family. A novel double heterozygous missense mutation of Ala26Val plus Arg719Trp in MYH7 was subsequently identified by sequencing in this family and was associated with a severe phenotype of HCM. The novel double mutation of Ala26Val plus Arg719Trp in MYH7 identified in a Chinese family highlights the remarkable genetic heterogeneity of HCM, which provides important information for genetic counseling, accurate diagnosis, prognostic evaluation, and appropriate clinical management. Copyright 2009 Wiley Periodicals, Inc.

  17. Hypogonadotropic Hypogonadism due to Novel FGFR1 Mutations.

    PubMed

    Akkuş, Gamze; Kotan, Leman Damla; Durmaz, Erdem; Mengen, Eda; Turan, İhsan; Ulubay, Ayça; Gürbüz, Fatih; Yüksel, Bilgin; Tetiker, Tamer; Topaloğlu, A Kemal

    2017-06-01

    The underlying genetic etiology of hypogonadotropic hypogonadism (HH) is heterogeneous. Fibroblast growth factor signaling is pivotal in the ontogeny of gonadotropin-releasing hormone neurons. Loss-of-function mutations in FGFR1 gene cause variable HH phenotypes encompassing pubertal delay to idiopathic HH (IHH) or Kallmann syndrome (KS). As FGFR1 mutations are common, recognizing mutations and associated phenotypes may enhance clinical management. Using a candidate gene approach, we screened 52 IHH/KS patients. We identified three novel (IVS3-1G>C and p.W2X, p.R209C) FGFR1 gene mutations. Despite predictive null protein function, patients from the novel mutation families had normosmic IHH without non-reproductive phenotype. These findings further emphasize the great variability of FGFR1 mutation phenotypes in IHH/KS.

  18. Mutational spectrum of intraepithelial neoplasia in pancreatic heterotopia.

    PubMed

    Ma, Changqing; Gocke, Christopher D; Hruban, Ralph H; Belchis, Deborah A

    2016-02-01

    Heterotopic pancreatic parenchyma recapitulates the normal pancreas in extrapancreatic locations and, on rare occasions, can even give rise to pancreatic adenocarcinoma. The genetic signatures of pancreatic adenocarcinoma and its precursor lesions are well characterized. We explored the genetic alterations in precursor lesions (intraductal papillary mucinous neoplasms [IPMN], pancreatic intraepithelial neoplasia [PanIN]) in patients with pancreatic heterotopias but without concomitant pancreatic ductal adenocarcinomas. This allowed us to determine whether the stereotypical dysplasia--infiltrating carcinoma sequence also occurs in these extrapancreatic foci. Seven cases of heterotopic pancreas with ductal precursor lesions were identified. These included 2 IPMNs with focal high-grade dysplasia and 5 PanINs with low- to moderate-grade dysplasia (PanIN grades 1-2). Neoplastic epithelium was microdissected and genomic DNA was extracted. Sequencing of commonly mutated hotspots (KRAS, TP53, CDKN2A, SMAD4, BRAF, and GNAS) in pancreatic ductal adenocarcinoma and its precursor lesions was performed. Both IPMNs were found to have KRAS codon 12 mutations. The identification of KRAS mutations suggests a genetic pathway shared with IPMN of the pancreas. No mutations were identified in our heterotopic PanINs. One of the possible mechanisms for the development of dysplasia in these lesions is field effect. At the time of these resections, there was no clinical or pathologic evidence of a prior or concomitant pancreatic lesion. However, a clinically undetectable lesion is theoretically possible. Therefore, although a field effect cannot be excluded, there was no evidence for it in this study. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Kartsonaki, Christiana; Gayther, Simon A.; Pharoah, Paul D. P.; Sinilnikova, Olga M.; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Healey, Sue; Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Roversi, Gaia; Barile, Monica; Viel, Alessandra; Allavena, Anna; Ottini, Laura; Papi, Laura; Gismondi, Viviana; Capra, Fabio; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Cruger, Dorthe; Jensen, Uffe Birk; Caligo, Maria Adelaide; Olsson, Håkan; Kristoffersson, Ulf; Lindblom, Annika; Arver, Brita; Karlsson, Per; Stenmark Askmalm, Marie; Borg, Ake; Neuhausen, Susan L.; Ding, Yuan Chun; Nathanson, Katherine L.; Domchek, Susan M.; Jakubowska, Anna; Lubiński, Jan; Huzarski, Tomasz; Byrski, Tomasz; Gronwald, Jacek; Górski, Bohdan; Cybulski, Cezary; Dębniak, Tadeusz; Osorio, Ana; Durán, Mercedes; Tejada, Maria-Isabel; Benítez, Javier; Hamann, Ute; Rookus, Matti A.; Verhoef, Senno; Tilanus-Linthorst, Madeleine A.; Vreeswijk, Maaike P.; Bodmer, Danielle; Ausems, Margreet G. E. M.; van Os, Theo A.; Asperen, Christi J.; Blok, Marinus J.; Meijers-Heijboer, Hanne E. J.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Dunning, Alison M.; Evans, D. Gareth; Eeles, Ros; Pichert, Gabriella; Cole, Trevor; Hodgson, Shirley; Brewer, Carole; Morrison, Patrick J.; Porteous, Mary; Kennedy, M. John; Rogers, Mark T.; Side, Lucy E.; Donaldson, Alan; Gregory, Helen; Godwin, Andrew; Stoppa-Lyonnet, Dominique; Moncoutier, Virginie; Castera, Laurent; Mazoyer, Sylvie; Barjhoux, Laure; Bonadona, Valérie; Leroux, Dominique; Faivre, Laurence; Lidereau, Rosette; Nogues, Catherine; Bignon, Yves-Jean; Prieur, Fabienne; Collonge-Rame, Marie-Agnès; Venat-Bouvet, Laurence; Fert-Ferrer, Sandra; Miron, Alex; Buys, Saundra S.; Hopper, John L.; Daly, Mary B.; John, Esther M.; Terry, Mary Beth; Goldgar, David; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Agnarsson, Bjarni A.; Offit, Kenneth; Kirchhoff, Tomas; Vijai, Joseph; Dutra-Clarke, Ana V. C.; Przybylo, Jennifer A.; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny N.; Janavicius, Ramunas; Blanco, Ignacio; Lázaro, Conxi; Moysich, Kirsten B.; Karlan, Beth Y.; Gross, Jenny; Beattie, Mary S.; Schmutzler, Rita; Wappenschmidt, Barbara; Meindl, Alfons; Ruehl, Ina; Fiebig, Britta; Sutter, Christian; Arnold, Norbert; Deissler, Helmut; Varon-Mateeva, Raymonda; Kast, Karin; Niederacher, Dieter; Gadzicki, Dorothea; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Simard, Jacques; Soucy, Penny; Spurdle, Amanda B.; Holland, Helene; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.

    2011-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility. A genome-wide association study recently identified an association between the rare allele of the single-nucleotide polymorphism (SNP) rs3814113 (ie, the C allele) at 9p22.2 and decreased risk of ovarian cancer for women in the general population. We evaluated the association of this SNP with ovarian cancer risk among BRCA1 or BRCA2 mutation carriers by use of data from the Consortium of Investigators of Modifiers of BRCA1/2. Methods We genotyped rs3814113 in 10 029 BRCA1 mutation carriers and 5837 BRCA2 mutation carriers. Associations with ovarian and breast cancer were assessed with a retrospective likelihood approach. All statistical tests were two-sided. Results The minor allele of rs3814113 was associated with a reduced risk of ovarian cancer among BRCA1 mutation carriers (per-allele hazard ratio of ovarian cancer = 0.78, 95% confidence interval = 0.72 to 0.85; P = 4.8 × 10-9) and BRCA2 mutation carriers (hazard ratio of ovarian cancer = 0.78, 95% confidence interval = 0.67 to 0.90; P = 5.5 × 10-4). This SNP was not associated with breast cancer risk among either BRCA1 or BRCA2 mutation carriers. BRCA1 mutation carriers with the TT genotype at SNP rs3814113 were predicted to have an ovarian cancer risk to age 80 years of 48%, and those with the CC genotype were predicted to have a risk of 33%. Conclusion Common genetic variation at the 9p22.2 locus was associated with decreased risk of ovarian cancer for carriers of a BRCA1 or BRCA2 mutation. PMID:21169536

  20. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253