Sample records for identify genetic polymorphisms

  1. Identifying disease polymorphisms from case-control genetic association data.

    PubMed

    Park, L

    2010-12-01

    In case-control association studies, it is typical to observe several associated polymorphisms in a gene region. Often the most significantly associated polymorphism is considered to be the disease polymorphism; however, it is not clear whether it is the disease polymorphism or there is more than one disease polymorphism in the gene region. Currently, there is no method that can handle these problems based on the linkage disequilibrium (LD) relationship between polymorphisms. To distinguish real disease polymorphisms from markers in LD, a method that can detect disease polymorphisms in a gene region has been developed. Relying on the LD between polymorphisms in controls, the proposed method utilizes model-based likelihood ratio tests to find disease polymorphisms. This method shows reliable Type I and Type II error rates when sample sizes are large enough, and works better with re-sequenced data. Applying this method to fine mapping using re-sequencing or dense genotyping data would provide important information regarding the genetic architecture of complex traits.

  2. Genetic polymorphisms in lung disease: bandwagon or breakthrough?

    PubMed Central

    Iannuzzi, Michael C; Maliarik, Mary; Rybicki, Benjamin

    2002-01-01

    The study of genetic polymorphisms has touched every aspect of pulmonary and critical care medicine. We review recent progress made using genetic polymorphisms to define pathophysiology, to identify persons at risk for pulmonary disease and to predict treatment response. Several pitfalls are commonly encountered in studying genetic polymorphisms, and this article points out criteria that should be applied to design high-quality genetic polymorphism studies. PMID:11980584

  3. Effect of genetic polymorphisms on development of gout.

    PubMed

    Urano, Wako; Taniguchi, Atsuo; Inoue, Eisuke; Sekita, Chieko; Ichikawa, Naomi; Koseki, Yumi; Kamatani, Naoyuki; Yamanaka, Hisashi

    2013-08-01

    To validate the association between genetic polymorphisms and gout in Japanese patients, and to investigate the cumulative effects of multiple genetic factors on the development of gout. Subjects were 153 Japanese male patients with gout and 532 male controls. The genotypes of 11 polymorphisms in the 10 genes that have been indicated to be associated with serum uric acid levels or gout were determined. The cumulative effects of the genetic polymorphisms were investigated using a weighted genotype risk score (wGRS) based on the number of risk alleles and the OR for gout. A model to discriminate between patients with gout and controls was constructed by incorporating the wGRS and clinical factors. C statistics method was applied to evaluate the capability of the model to discriminate gout patients from controls. Seven polymorphisms were shown to be associated with gout. The mean wGRS was significantly higher in patients with gout (15.2 ± 2.01) compared to controls (13.4 ± 2.10; p < 0.0001). The C statistic for the model using genetic information alone was 0.72, while the C statistic was 0.81 for the full model that incorporated all genetic and clinical factors. Accumulation of multiple genetic factors is associated with the development of gout. A prediction model for gout that incorporates genetic and clinical factors may be useful for identifying individuals who are at risk of gout.

  4. Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling

    PubMed Central

    de Albuquerque, Felipe Neves; Brandão, Andréa Araujo; da Silva, Dayse Aparecida; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; de Albuquerque, Denilson Campos

    2014-01-01

    Background The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. Objective To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Methods Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). Results The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0

  5. Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling.

    PubMed

    Albuquerque, Felipe Neves de; Brandão, Andréa Araujo; Silva, Dayse Aparecida da; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; Albuquerque, Denilson Campos de

    2014-01-01

    The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0.021, respectively). The distribution of

  6. [ISSR analysis for genetic polymorphism of Aconitum leucostomum from different habitats].

    PubMed

    Gao, Fu-chun; Sun, Yun; Zhang, Jing; Zhang, Fan

    2014-01-01

    To investigate the genetic diversities and variations of Aconitum leucostomum,and to supply essential characteristics for identifying Aconitum crude drugs. Plant genome extraction kit was applied to extract DNA,and ultraviolet spectrophotometer was used to detect the concentrations and purity of DNA. 60 ISSR primers were screened to analyze the DNA of Aconitum leucostomum from 10 habitats. Biosoftwares including POPGEN32 and NTSYS-PC were used to analyze the polymorphic bands obtained, and hence to yield the genetic similarity coefficient of the 10 habitats and map the related graphics, and cluster analysis were performed by UPGMA method. 11 primers selected from 60 ISSR primers were used for amplification and a total of 101 DNA bands were obtained, including 89 polymorphic bands,the average percentage of polymorphic bands (PPB) was 88.1%. Shannon information index (I) was 0.5298, the genetic similarity coefficient (H) was 0.3648, observed number of alleles was 1.8911, and effective number of alleles was 1.6555. The genetic identity was from 0.4950 to 0.6931, and the genetic distances were from 0.3666 to 0.7031. According to cluster analysis result of ISSR, the 10 habitats of Aconitum leucostomum were classified into five groups. Germplasm resources of Aconitum leucostomum show abundant polymorphism and higher genetic variation, which might supply molecular level basis, and provide basis for building DNA fingerprint.

  7. Sexual selection and genetic colour polymorphisms in animals.

    PubMed

    Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2014-11-01

    Genetic colour polymorphisms are widespread across animals and often subjected to complex selection regimes. Traditionally, colour morphs were used as simple visual markers to measure allele frequency changes in nature, selection, population divergence and speciation. With advances in sequencing technology and analysis methods, several model systems are emerging where the molecular targets of selection are being described. Here, we discuss recent studies on the genetics of sexually selected colour polymorphisms, aiming at (i) reviewing the evidence of sexual selection on colour polymorphisms, (ii) highlighting the genetic architecture, molecular and developmental basis underlying phenotypic colour diversification and (iii) discuss how the maintenance of such polymorphisms might be facilitated or constrained by these. Studies of the genetic architecture of colour polymorphism point towards the importance of tight clustering of colour loci with other trait loci, such as in the case of inversions and supergene structures. Other interesting findings include linkage between colour loci and mate preferences or sex determination, and the role of introgression and regulatory variation in fuelling polymorphisms. We highlight that more studies are needed that explicitly integrate fitness consequences of sexual selection on colour with the underlying molecular targets of colour to gain insights into the evolutionary consequences of sexual selection on polymorphism maintenance. © 2014 John Wiley & Sons Ltd.

  8. Genetic polymorphism of MMP family and coronary disease susceptibility: a meta-analysis.

    PubMed

    Li, Min; Shi, Jingpu; Fu, Lingyu; Wang, Hailong; Zhou, Bo; Wu, Xiaomei

    2012-03-01

    The issue that genetic polymorphism of matrix metalloproteinase (MMP) family is in association with coronary disease is controversial. So we did a meta-analysis to clarify it clearly. We made a literature search of PubMed, the Web of Science, and Cochrane Collaboration's database to identify eligible reports. The methodological quality of each included studies was assessed. We calculated the pooled ORs with their 95%CI for each genetic polymorphism in STATA 11 software. Separate analysis was performed to address the consistency of results across the subgroup with different continents. A total of 39 studies were included, with a sample of 42269 individuals. This meta-analysis provided evidence that genetic polymorphism of MMP1-1607 1G/2G, MMP3-Gly45lys, MMP3-376 G/C, MMP3-1171 5A/6A, MMP9-1562 C/T and MMP9-R279Q have a small to medium effect on incidence of coronary disease. There was no evidence that MMP1-519 A/G, MMP1-340 T/C and MMP2-1306 C/T polymorphism could increase risk of coronary disease. Results from subgroup analysis supported a relation between MMP3-1711 5A allele, MMP9-1562 C allele and coronary disease especially in Asian population. The results provide moderate association between the six common genetic polymorphism of matrix metalloproteinase family and coronary disease. However, the challenge for researcher is identifying separate effect on different races. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Migraine and genetic polymorphisms: an overview.

    PubMed

    Pizza, Vincenzo; Agresta, Anella; Agresta, Antonio; Lamaida, Eros; Lamaida, Norman; Infante, Francesco; Capasso, Anna

    2012-01-01

    The relationship between genetic polymorphisms and migraine as a cause of an increased risk of thrombotic disorders development is still debated In this respect, factor V Leiden, factor V (H1299R), prothrombin G20210A, factor XIII (V34L), β-fibrinogen, MTHFR (C677T), MTHFR (A1298C), APO E, PAI-1, HPA-1 and ACE I/D seem to play a determinant role in vascular diseases related to migraine. The present review analyzes both the incidence of the above genetic vascular mutations in migraineurs and the most re-cent developments related to genetic polymorphisms and migraine.

  10. Migraine and Genetic Polymorphisms: An Overview

    PubMed Central

    Pizza, Vincenzo; Agresta, Anella; Agresta, Antonio; Lamaida, Eros; Lamaida, Norman; Infante, Francesco; Capasso, Anna

    2012-01-01

    The relationship between genetic polymorphisms and migraine as a cause of an increased risk of thrombotic disorders development is still debated In this respect, factor V Leiden, factor V (H1299R), prothrombin G20210A, factor XIII (V34L), β-fibrinogen, MTHFR (C677T), MTHFR (A1298C), APO E, PAI-1, HPA-1 and ACE I/D seem to play a determinant role in vascular diseases related to migraine. The present review analyzes both the incidence of the above genetic vascular mutations in migraineurs and the most re-cent developments related to genetic polymorphisms and migraine. PMID:22962564

  11. Genetic polymorphisms associated with heart failure: A literature review.

    PubMed

    Guo, Mengqi; Guo, Guanlun; Ji, Xiaoping

    2016-02-01

    To review possible associations reported between genetic variants and the risk, therapeutic response and prognosis of heart failure. Electronic databases (PubMed, Web of Science and CNKI) were systematically searched for relevant papers, published between January 1995 and February 2015. Eighty-two articles covering 29 genes and 39 polymorphisms were identified. Genetic association studies of heart failure have been highly controversial. There may be interaction or synergism of several genetic variants that together result in the ultimate pathological phenotype for heart failure. © The Author(s) 2016.

  12. Turner syndrome and genetic polymorphism: a systematic review

    PubMed Central

    de Marqui, Alessandra Bernadete Trovó

    2015-01-01

    Objective: To present the main results of the literature on genetic polymorphisms in Turner syndrome and their association with the clinical signs and the etiology of this chromosomal disorder. Data sources: The review was conducted in the PubMed database without any time limit, using the terms Turner syndrome and genetic polymorphism. A total of 116 articles were found, and based on the established inclusion and exclusion criteria 17 were selected for the review. Data synthesis: The polymorphisms investigated in patients with Turner syndrome were associated with growth deficit, causing short stature, low bone mineral density, autoimmunity and cardiac abnormalities, which are frequently found in patients with Turner syndrome. The role of single nucleotide polymorphisms in the etiology of Turner syndrome, i.e., in chromosomal nondisjunction, was also confirmed. Conclusions: Genetic polymorphisms appear to be associated with Turner syndrome. However, in view of the small number of published studies and their contradictory findings, further studies in different populations are needed in order to clarify the role of genetic variants in the clinical signs and etiology of the Turner syndrome. PMID:25765448

  13. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection

    PubMed Central

    Guillamón, José M.; Barrio, Eladio

    2017-01-01

    The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties. PMID:28522998

  14. [Turner syndrome and genetic polymorphism: a systematic review].

    PubMed

    Trovó de Marqui, Alessandra Bernadete

    2015-01-01

    To present the main results of the literature on genetic polymorphisms in Turner Syndrome and their association with the clinical signs and the etiology of this chromosomal disorder. The review was conducted in the PubMed database without any time limit, using the terms Turner syndrome and genetic polymorphism. A total of 116 articles were found, and based on the established inclusion and exclusion criteria 17 were selected for the review. The polymorphisms investigated in patients with Turner Syndrome were associated with growth deficit, causing short stature, low bone mineral density, autoimmunity and cardiac abnormalities, which are frequently found in patients with Turner Syndrome. The role of single nucleotide polymorphisms (SNPs) in the etiology of Turner syndrome, i.e., in chromosomal nondisjunction, was also confirmed. Genetic polymorphisms appear to be associated with Turner Syndrome. However, in view of the small number of published studies and their contradictory findings, further studies in different populations are needed in order to clarify the role of genetic variants in the clinical signs and etiology of the Turner Syndrome. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Genetic polymorphism of antioxidant enzymes in eosinophilic and non-eosinophilic nasal polyposis.

    PubMed

    Akyigit, Abdulvahap; Keles, Erol; Etem, Ebru Onalan; Ozercan, Ibrahim; Akyol, Hatice; Sakallioglu, Oner; Karlidag, Turgut; Polat, Cahit; Kaygusuz, Irfan; Yalcin, Sinasi

    2017-01-01

    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease of the paranasal sinuses, and its pathophysiology is not yet precisely known. It is suggested that oxygen free radicals play an important role in the pathogenesis of nasal polyposis. This study aimed to identify genetic polymorphisms of superoxide dismutase (SOD 2), catalase (CAT), and inducible nitric oxide synthase (iNOS) enzymes in eosinophilic CRSwNP and non-eosinophilic CRSwNP patients; the study also aimed to evaluate the effect of genetic polymorphism of antioxidant enzymes on CRSwNP etiopathogenesis. One hundred thirty patients, who received endoscopic sinus surgery due to CRSwNP, and 188 control individuals were included in this study. Nasal polyp tissues were divided into two groups histopathologically as eosinophilic CRSwNP and non-eosinophilic CRSwNP. Venous blood samples were taken from the patient and control groups. Polymorphisms in the Ala16Va1 gene, which is the most common variation of SOD-2 gene, and 21 A/T polymorphisms in catalase gene were evaluated with the restriction fragment length polymorphism method and -277 C/T polymorphism in the iNOS gene was evaluated with the DNA sequencing method. The GG genotype distribution for the (-277) A/G polymorphism in the iNOS gene was a statistically significant difference between eosinophilic CRSwNP and control groups (p < 0.05). The CC genotype distribution for the SOD2 A16V (C/T) polymorphism was not statistically significant in all groups (p > 0.05). The TT genotype distribution for the A/T polymorphism in catalase gene at position -21 was statistically significant differences in eosinophilic CRSwNP and control groups (p < 0.05). Increased free oxygen radical levels, which are considered effective factors in the pathogenesis of CRSwNP, can occur due to genetic polymorphism of enzymes in the antioxidant system and genetic polymorphism of antioxidant enzymes in eosinophilic CRSwNP patients might contribute to the

  16. Identification of possible genetic polymorphisms involved in cancer cachexia: a systematic review.

    PubMed

    Tan, Benjamin H L; Ross, James A; Kaasa, Stein; Skorpen, Frank; Fearon, Kenneth C H

    2011-04-01

    Cancer cachexia is a polygenic and complex syndrome. Genetic variations in regulation of the inflammatory response, muscle and fat metabolic pathways, and pathways in appetite regulation are likely to contribute to the susceptibility or resistance to developing cancer cachexia. A systematic search of Medline and EmBase databases, covering 1986-2008 was performed for potential candidate genes/genetic polymorphisms relating to cancer cachexia. Related genes were then identified using pathway functional analysis software. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Genes with variants which had functional or clinical associations with cachexia and replicated in at least one study were entered into pathway analysis software to reveal possible network associations between genes. A total of 184 polymorphisms with functional or clinical relevance to cancer cachexia were identified in 92 candidate genes. Of these, 42 polymorphisms (in 33 genes) were replicated in more than one study with 13 polymorphisms found to influence two or more hallmarks of cachexia (i.e. inflammation, loss of fat mass and/or lean mass and reduced survival). Thirty-three genes were found to be significantly interconnected in two major networks with four genes (ADIPOQ, IL6, NFKB1 and TLR4) interlinking both networks. Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides an initial framework to select genes/polymorphisms for further study in cancer cachexia, and to develop their potential as susceptibility biomarkers of developing cachexia.

  17. Genetic polymorphisms for estimating risk of atrial fibrillation: a literature-based meta-analysis

    PubMed Central

    Smith, J. Gustav; Almgren, Peter; Engström, Gunnar; Hedblad, Bo; Platonov, Pyotr G.; Newton-Cheh, Christopher; Melander, Olle

    2013-01-01

    Objectives Genome-wide association studies have recently identified genetic polymorphisms associated with common, etiologically complex diseases, for which direct-to-consumer genetic testing with provision of absolute genetic risk estimates is marketed by commercial companies. Polymorphisms associated with atrial fibrillation (AF) have shown relatively large risk estimates but the robustness of such estimates across populations and study designs has not been studied. Design A systematic literature review with meta-analysis and assessment of between-study heterogeneity was performed for single nucleotide polymorphisms (SNPs) in the six genetic regions associated with AF in genome-wide or candidate gene studies. Results Data from 18 samples of European ancestry (n=12,100 cases; 115,702 controls) were identified for the SNP on chromosome 4q25 (rs220733), 16 samples (n=12,694 cases; 132,602 controls) for the SNP on 16q22 (rs2106261) and 4 samples (n=5,272 cases; 59,725 controls) for the SNP in KCNH2 (rs1805123). Only the discovery studies were identified for SNPs on 1q21 and in GJA5 and IL6R, why no meta-analyses were performed for those SNPs. In overall random-effects meta-analyses, association with AF was observed for both SNPs from genome-wide studies on 4q25 (OR 1.67, 95% CI=1.50–1.86, p=2×10−21) and 16q22 (OR 1.21, 95% CI=1.13–1.29, p=1×10−8), but not the SNP in KCNH2 from candidate gene studies (p=0.15). There was substantial effect heterogeneity across case-control and cross-sectional studies for both polymorphisms (I2=0.50–0.78, p<0.05), but not across prospective cohort studies (I2=0.39, p=0.15). Both polymorphisms were robustly associated with AF for each study design individually (p<0.05). Conclusions In meta-analyses including up to 150,000 individuals, polymorphisms in two genetic regions were robustly associated with AF across all study designs but with substantial context-dependency of risk estimates. PMID:22690879

  18. Genetic polymorphisms, hormone levels, and hot flashes in midlife women.

    PubMed

    Schilling, Chrissy; Gallicchio, Lisa; Miller, Susan R; Langenberg, Patricia; Zacur, Howard; Flaws, Jodi A

    2007-06-20

    Hot flashes disrupt the lives of millions of women each year. Although hot flashes are a public health concern, little is known about risk factors that predispose women to hot flashes. Thus, the objective of this study was to examine whether sex steroid hormone levels and genetic polymorphisms in hormone biosynthesis and degradation enzymes are associated with the risk of hot flashes. In a cross-sectional study design, midlife women aged 45-54 years (n=639) were recruited from Baltimore and its surrounding counties. Participants completed a questionnaire and donated a blood sample for steroid hormone analysis and genotyping. The associations between genetic polymorphisms and hormone levels, as well as the associations between genetic polymorphisms, hormone levels, and hot flashes were examined using statistical models. A polymorphism in CYP1B1 was associated with lower dehydroepiandrosterone-sulfate (DHEA-S) and progesterone levels, while a polymorphism in CYP19 (aromatase) was associated with higher testosterone and DHEA-S levels. Lower progesterone and sex hormone binding globulin levels, lower free estradiol index, and a higher ratio of total androgens to total estrogens were associated with the experiencing of hot flashes. A polymorphism in CYP1B1 and a polymorphism in 3betaHSD were both associated with hot flashes. Some genetic polymorphisms may be associated with altered levels of hormones in midlife women. Further, selected genetic polymorphisms and altered hormone levels may be associated with the risk of hot flashes in midlife women.

  19. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    PubMed

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  20. Genetic diversity analysis of Jatropha curcas L. (Euphorbiaceae) based on methylation-sensitive amplification polymorphism.

    PubMed

    Kanchanaketu, T; Sangduen, N; Toojinda, T; Hongtrakul, V

    2012-04-13

    Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.

  1. Rheumatoid arthritis: identifying and characterising polymorphisms using rat models

    PubMed Central

    2016-01-01

    ABSTRACT Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans. PMID:27736747

  2. Identifying novel genetic determinants of hemostatic balance.

    PubMed

    Ginsburg, D

    2005-08-01

    Incomplete penetrance and variable expressivity confound the diagnosis and therapy of most inherited thrombotic and hemorrhagic disorders. For many of these diseases, some or most of this variability is determined by genetic modifiers distinct from the primary disease gene itself. Clues toward identifying such modifier genes may come from studying rare Mendelian disorders of hemostasis. Examples include identification of the cause of combined factor V and VIII deficiency as mutations in the ER Golgi intermediate compartment proteins LMAN1 and MCFD2. These proteins form a cargo receptor that facilitates the transport of factors V and VIII, and presumably other proteins, from the ER to the Golgi. A similar positional cloning approach identified ADAMTS-13 as the gene responsible for familial TTP. Along with the work of many other groups, these findings identified VWF proteolysis by ADAMTS-13 as a key regulatory pathway for hemostasis. Recent advances in mouse genetics also provide powerful tools for the identification of novel genes contributing to hemostatic balance. Genetic studies of inbred mouse lines with unusually high and unusually low plasma VWF levels identified polymorphic variation in the expression of a glycosyltransferase gene, Galgt2, as an important determinant of plasma VWF levels in the mouse. Ongoing studies in mice genetically engineered to carry the factor V Leiden mutation may similarly identify novel genes contributing to thrombosis risk in humans.

  3. Genetic polymorphism and chronic obstructive pulmonary disease.

    PubMed

    Yuan, Cunhua; Chang, De; Lu, Guangming; Deng, Xiaowei

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a common chronic disease, and its morbidity and mortality are increasing. There are many studies that have tried to explain the pathogenesis of COPD from genetic susceptibility, to identify the susceptibility of COPD factors, which play a role in early prevention, early detection and the early treatment. However, it is well known that COPD is an inflammatory disease characterized by incomplete reversible airflow limitation in which genes interact with the environment. In recent years, many studies have proved gene polymorphisms and COPD correlation. However, there is less research on the relationship between COPD and genome-wide association study (GWAS), epigenetics and apoptosis. In this paper, we summarized the correlation between gene level and COPD from the following four aspects: the GWAS, the gene polymorphism, the epigenetics and the apoptosis, and the relationship between COPD and gene is summarized comprehensively.

  4. [Genetic diversity and genetic structure of endangered wild Sinopodophyllum emodi by start codon targeted polymorphism].

    PubMed

    Chen, Da-Xia; Zhao, Ji-Feng; Liu, Xiang; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue

    2013-01-01

    Revealed the genetic diversity level and genetic structure characteristics in Sinopodophyllum emodi, a rare and endangered species in China. We detected the genetic polymorphism within and among six wild populations (45 individuals) by the approach of Start Codon Targeted (SCoT) Polymorphism. The associated genetic parameters were calculated by POP-GENE1.31 and the relationship was constructed based on UPGMA method. A total of 350 bands were scored by 27 primers and 284 bands of them were polymorphic. The average polymorphic bands of each primer were 10.52. At species level, there was a high level of genetic diversity among six populations (PPB = 79.27%, N(e) = 1.332 7, H = 0.210 9 and H(sp) = 0.328 6). At population level, the genetic diversity level was low (PPB = 10.48% (4.00% -23.71%), N(e) = 1.048 7 (1.020 7-1.103 7), H = 0.029 7 (0.012 9-0.063 1), H(pop) = 0.046 2 (0.019 9-0.098 6). The Nei's coefficient of genetic differentiation was 0.841 1, which was consistent with the Shannon's coefficient of genetic differentiation (0.849 4). Two calculated methods all showed that most of the genetic variation existed among populations. The gene flow (N(m) = 0.094 4) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.570 8 to 0.978 7. By clustering analysis, the tested populations were divided into two classes and had a tendency that the same geographical origin or material of similar habitats clustered into one group. The genetic diversity of samples of S. emodi is high,which laid a certain foundation for effective protection and improvement of germplasm resources.

  5. Genetic polymorphism and natural selection of Duffy binding protein of Plasmodium vivax Myanmar isolates

    PubMed Central

    2012-01-01

    Background Plasmodium vivax Duffy binding protein (PvDBP) plays an essential role in erythrocyte invasion and a potential asexual blood stage vaccine candidate antigen against P. vivax. The polymorphic nature of PvDBP, particularly amino terminal cysteine-rich region (PvDBPII), represents a major impediment to the successful design of a protective vaccine against vivax malaria. In this study, the genetic polymorphism and natural selection at PvDBPII among Myanmar P. vivax isolates were analysed. Methods Fifty-four P. vivax infected blood samples collected from patients in Myanmar were used. The region flanking PvDBPII was amplified by PCR, cloned into Escherichia coli, and sequenced. The polymorphic characters and natural selection of the region were analysed using the DnaSP and MEGA4 programs. Results Thirty-two point mutations (28 non-synonymous and four synonymous mutations) were identified in PvDBPII among the Myanmar P. vivax isolates. Sequence analyses revealed that 12 different PvDBPII haplotypes were identified in Myanmar P. vivax isolates and that the region has evolved under positive natural selection. High selective pressure preferentially acted on regions identified as B- and T-cell epitopes of PvDBPII. Recombination may also be played a role in the resulting genetic diversity of PvDBPII. Conclusions PvDBPII of Myanmar P. vivax isolates displays a high level of genetic polymorphism and is under selective pressure. Myanmar P. vivax isolates share distinct types of PvDBPII alleles that are different from those of other geographical areas. These results will be useful for understanding the nature of the P. vivax population in Myanmar and for development of PvDBPII-based vaccine. PMID:22380592

  6. Genetic relatedness of artichoke (Cynara scolymus L.) hybrids using random amplified polymorphic DNA (RAPD) fingerprinting.

    PubMed

    Sharaf-Eldin, M A; Al-Tamimi, A; Alam, P; Elkholy, S F; Jordan, J R

    2015-12-28

    The artichoke (Cynara scolymus L.) is an important food and medicinal crop that is cultivated in Mediterranean countries. Morphological characteristics, such as head shape and diameter, leaf shape, and bract shape, are mainly affected by environmental conditions. A molecular marker approach was used to analyze the degree of polymorphism between artichoke hybrid lines. The degree of genetic difference among three artichoke hybrids was evaluated using random amplified polymorphic DNA-PCR (RAPD-PCR). In this study, the DNA fingerprints of three artichoke lines (A13-010, A11-018, and A12-179) were generated, and a total of 10 decamer primers were applied for RAPD-PCR analyses. Polymorphism  (16.66 to 62.50%) was identified using eight arbitrary decamers and total genomic DNA extracted from the hybrids. Of the 59 loci detected, there were 25 polymorphic and 34 monomorphic loci. Jaccard's similarity index (JSI) ranged between 1.0 and 0.84. Based on the unweighted pair group method with arithmetic mean (UPGMA) similarity matrix and dendrogram, the results indicated that two hybrids (A13-010 and A11-018) were closely related to each other, and the A12-179 line showed more divergence. When identifying correct accessions, consideration of the genetic variation and genetic relationships among the genotypes are required. The RAPD-PCR fingerprinting of artichoke lines clearly showed that it is possible to analyze the RAPD patterns for correlation between genetic means and differences or resemblance between close accessions (A13-010 and A11- 018) at the genomic level.

  7. Frequency of genetic polymorphisms of PXR gene in the Brazilian population.

    PubMed

    Moreira, Ricardo P P; Jorge, Alexander A L; Mendonca, Berenice B; Bachega, Tânia A S S

    2011-01-01

    PXR polymorphisms have been implicated in modulating CYP3A4 and PXR expression, potentially accounting for interindividual differences in drug metabolism. The prevalence of PXR polymorphisms varies among ethnic groups and data on the allelic distribution in the highly mixed Brazilian population is lacking. The aim of this study was to analyze genetic variations in the PXR gene in Brazilians and to compare the results to other ethnic groups. DNA samples from 117 healthy Brazilians underwent PCR amplification and sequencing. Eleven polymorphisms were identified, 3 of which are highly associated with differences in CYP3A4 expression. We also identified 1 new synonymous variant in 1.3% of the alleles. Among the functional polymorphisms, -25913 C>T and -6994T>C occurred at a higher frequency comparedtothe Africanalleles (p < 0.05) but at a lower frequency compared to Caucasian alleles. The 8055 C>T allele was found at a similar frequency to those described in Caucasians and Africans (p > 0.05). We observed that functional variants of the PXR were frequent in our sample of the Brazilian population. Our results suggest that PXR gene variants may be of interest in pharmacogenetic studies involving Brazilians.

  8. Investigating the potential genetic association between RANBP9 polymorphisms and the risk of schizophrenia.

    PubMed

    Bae, Joon Seol; Kim, Jason Yongha; Park, Byung-Lae; Cheong, Hyun Sub; Kim, Jeong-Hyun; Namgoong, Suhg; Kim, Ji-On; Park, Chul Soo; Kim, Bong-Jo; Lee, Cheol-Soon; Lee, Migyung; Choi, Woo Hyuk; Shin, Tae-Min; Hwang, Jaeuk; Shin, Hyoung Doo; Woo, Sung-Il

    2015-04-01

    Schizophrenia is a serious mental disorder that is affected by genetic and environmental factors. As the disease has a high heritability rate, genetic studies identifying candidate genes for schizophrenia have been conducted in various populations. The gene for human Ran‑binding protein 9 (RANBP9) is a newly discovered candidate gene for schizophrenia. As RANBP9 is a small guanosine‑5'‑triphosphate‑binding protein that interacts with the disrupted in schizophrenia 1 protein, it is considered to be an important molecule in the pathogenesis of schizophrenia. However, to date, no study has examined the possible association between the genetic variations of RANBP9 and the risk of schizophrenia. In the present study, it was hypothesized that RANBP9 variations may influence the risk of schizophrenia. In order to investigate the association between RANBP9 polymorphisms and the risk of schizophrenia and smooth pursuit eye movement (SPEM) abnormalities, a case‑control association analysis was performed. Using a TaqMan assay, five single‑nucleotide polymorphisms and an insertion/deletion variation within the start codon region of RANBP9 were genotyped. Five major haplotypes were identified in 449 patients with schizophrenia and 393 unrelated healthy individuals as controls (total, n=842). However, the association analyses revealed no associations between all genetic variants and schizophrenia and SPEM abnormality. To the best of our knowledge, this is the first study to investigate an association between RANBP9 polymorphisms and schizophrenia and SPEM abnormality. The findings of allele frequencies and association results in this study may aid in further genetic etiological studies in schizophrenia in various populations.

  9. Potential genetic polymorphisms predicting polycystic ovary syndrome.

    PubMed

    Chen, Yao; Fang, Shu-Ying

    2018-05-01

    Polycystic ovary syndrome (PCOS) is a heterogenous endocrine disorder with typical symptoms of oligomenorrhoea, hyperandrogenism, hirsutism, obesity, insulin resistance and increased risk of type 2 diabetes mellitus. Extensive evidence indicates that PCOS is a genetic disease and numerous biochemical pathways have been linked with its pathogenesis. A number of genes from these pathways have been investigated, which include those involved with steroid hormone biosynthesis and metabolism, action of gonadotropin and gonadal hormones, folliculogenesis, obesity and energy regulation, insulin secretion and action and many others. In this review, we summarize the historical and recent findings in genetic polymorphisms of PCOS from the relevant publications and outline some genetic polymorphisms that are potentially associated with the risk of PCOS. This information could uncover candidate genes associating with PCOS, which will be valuable for the development of novel diagnostic and treatment platforms for PCOS patients. © 2018 The authors.

  10. Genetic polymorphisms and the risk of stroke after cardiac surgery.

    PubMed

    Grocott, Hilary P; White, William D; Morris, Richard W; Podgoreanu, Mihai V; Mathew, Joseph P; Nielsen, Dahlia M; Schwinn, Debra A; Newman, Mark F

    2005-09-01

    Stroke represents a significant cause of morbidity and mortality after cardiac surgery. Although the risk of stroke varies according to both patient and procedural factors, the impact of genetic variants on stroke risk is not well understood. Therefore, we tested the hypothesis that specific genetic polymorphisms are associated with an increased risk of stroke after cardiac surgery. Patients undergoing cardiac surgery utilizing cardiopulmonary bypass surgery were studied. DNA was isolated from preoperative blood and analyzed for 26 different single-nucleotide polymorphisms. Multivariable logistic regression modeling was used to determine the association of clinical and genetic characteristics with stroke. Permutation analysis was used to adjust for multiple comparisons inherent in genetic association studies. A total of 1635 patients experiencing 28 strokes (1.7%) were included in the final genetic model. The combination of the 2 minor alleles of C-reactive protein (CRP; 3'UTR 1846C/T) and interleukin-6 (IL-6; -174G/C) polymorphisms, occurring in 583 (35.7%) patients, was significantly associated with stroke (odds ratio, 3.3; 95% CI, 1.4 to 8.1; P=0.0023). In a multivariable logistic model adjusting for age, the CRP and IL-6 single-nucleotide polymorphism combination remained significantly associated with stroke (P=0.0020). We demonstrate that common genetic variants of CRP (3'UTR 1846C/T) and IL-6 (-174G/C) are significantly associated with the risk of stroke after cardiac surgery, suggesting a pivotal role of inflammation in post-cardiac surgery stroke.

  11. Genome skimming identifies polymorphism in tern populations and species

    PubMed Central

    2012-01-01

    Background Terns (Charadriiformes: Sterninae) are a lineage of cosmopolitan shorebirds with a disputed evolutionary history that comprises several species of conservation concern. As a non-model system in genetics, previous study has left most of the nuclear genome unexplored, and population-level studies are limited to only 15% of the world's species of terns and noddies. Screening of polymorphic nuclear sequence markers is needed to enhance genetic resolution because of supposed low mitochondrial mutation rate, documentation of nuclear insertion of hypervariable mitochondrial regions, and limited success of microsatellite enrichment in terns. Here, we investigated the phylogenetic and population genetic utility for terns and relatives of a variety of nuclear markers previously developed for other birds and spanning the nuclear genome. Markers displaying a variety of mutation rates from both the nuclear and mitochondrial genome were tested and prioritized according to optimal cross-species amplification and extent of genetic polymorphism between (1) the main tern clades and (2) individual Royal Terns (Thalasseus maxima) breeding on the US East Coast. Results Results from this genome skimming effort yielded four new nuclear sequence-based markers for tern phylogenetics and 11 intra-specific polymorphic markers. Further, comparison between the two genomes indicated a phylogenetic conflict at the base of terns, involving the inclusion (mitochondrial) or exclusion (nuclear) of the Angel Tern (Gygis alba). Although limited mitochondrial variation was confirmed, both nuclear markers and a short tandem repeat in the mitochondrial control region indicated the presence of considerable genetic variation in Royal Terns at a regional scale. Conclusions These data document the value of intronic markers to the study of terns and allies. We expect that these and additional markers attained through next-generation sequencing methods will accurately map the genetic origin and

  12. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing.

    PubMed

    Shi, Ainong; Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs.

  13. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    PubMed Central

    Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs. PMID:29190770

  14. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies.

    PubMed

    Johns, N; Tan, B H; MacMillan, M; Solheim, T S; Ross, J A; Baracos, V E; Damaraju, S; Fearon, K C H

    2014-12-01

    Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986-2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and

  15. Genetic polymorphism and immune response to tuberculosis in indigenous populations: a brief review.

    PubMed

    Longhi, Renata Maronna Praça; Zembrzuski, Verônica Marques; Basta, Paulo Cesar; Croda, Julio

    2013-01-01

    We systematically reviewed studies of the immune response to tuberculosis and the genetic polymorphisms associated with Th1- or Th2-mediated cytokine expression in indigenous populations. A bibliographic search was performed on the Medline and ISI databases and included studies published between January 1980 and October 2011. The search terms were tuberculosis, American Indians, Amerindian, indigenous, Indians, native people, aboriginal, immun*, host immune, immune response, cytokine*, polymorphism*, and gene. Regardless of their design, studies that evaluated immunoglobulin, cytokine levels and genetic polymorphisms that altered cytokine expression were included. Thirteen studies met the inclusion criteria. The majority of studies were performed in Latin America, and five investigated the Warao ethnic group of Venezuela. Most of the investigations indirectly evaluated the immune response. Higher anergy to the tuberculin skin test, higher IgG4 and IgM levels, higher IL-5 production and lower TNF-α, IL-12p40 and IFN-γ production were found in the indigenous populations. The studies also reported a predominantly Th2-type response in these populations and a possibly higher susceptibility to tuberculosis. A better understanding of the relevant genetic polymorphisms and their role in immune regulation would help to clarify the immunogenetic mechanisms of TB infection in these populations. This information would be useful for identifying new treatments and preventing infection and progression to active disease. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  16. Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery.

    PubMed

    Stafford-Smith, Mark; Podgoreanu, Mihai; Swaminathan, Madhav; Phillips-Bute, Barbara; Mathew, Joseph P; Hauser, Elizabeth H; Winn, Michelle P; Milano, Carmelo; Nielsen, Dahlia M; Smith, Mike; Morris, Richard; Newman, Mark F; Schwinn, Debra A

    2005-03-01

    Post-cardiac surgery renal dysfunction is a common, serious, multifactorial disorder, with interpatient variability predicted poorly by preoperative clinical, procedural, and biological markers. Therefore, we tested the hypothesis that selected gene variants are associated with acute renal injury, reflected by a serum creatinine level increase after cardiac surgery. One thousand six hundred seventy-one patients undergoing aortocoronary surgery were studied. Clinical covariates were recorded. DNA was isolated from preoperative blood; mass spectrometry was used for genotype analysis. A model was developed relating clinical and genetic factors to postoperative acute renal injury. A race effect was found; therefore, Caucasians and African Americans were analyzed separately. Overall, clinical factors alone account poorly for postoperative renal injury, although more so in African Americans than Caucasians. When 12 candidate polymorphisms were assessed, 2 alleles (interleukin 6 -572C and angiotensinogen 842C) showed a strong association with renal injury in Caucasians (P < 0.0001; >50% decrease in renal filtration when they present together). Using less stringent criteria for significance (0.01 > P > 0.001), 4 additional polymorphisms are identified (apolipoproteinE 448C [4], angiotensin receptor1 1166C, and endothelial nitric oxide synthase [eNOS] 894T in Caucasians; eNOS 894T and angiotensin-converting enzyme deletion and insertion in African Americans). Adding genetic to clinical factors resulted in the best model, with overall ability to explain renal injury increasing approximately 4-fold in Caucasians and doubling in African Americans (P < 0.0005). In this study, we identify genetic polymorphisms that collectively provide 2- to 4-fold improvement over preoperative clinical factors alone in explaining post-cardiac surgery renal dysfunction. From a mechanistic perspective, most identified genetic variants are associated with increased renal inflammatory and

  17. Application of novel polymorphic microsatellite loci identified in the Korean Pacific Abalone (Haliotis diversicolor supertexta (Haliotidae)) in the genetic characterization of wild and released populations.

    PubMed

    An, Hye Suck; Lee, Jang Wook; Hong, Seong Wan

    2012-01-01

    The small abalone, Haliotis diversicolor supertexta, of the family Haliotidae, is one of the most important species of marine shellfish in eastern Asia. Over the past few decades, this species has drastically declined in Korea. Thus, hatchery-bred seeds have been released into natural coastal areas to compensate for the reduced fishery resources. However, information on the genetic background of the small abalone is scarce. In this study, 20 polymorphic microsatellite DNA markers were identified using next-generation sequencing techniques and used to compare allelic variation between wild and released abalone populations in Korea. Using high-throughput genomic sequencing, a total of 1516 (2.26%; average length of 385 bp) reads containing simple sequence repeats were obtained from 86,011 raw reads. Among the 99 loci screened, 28 amplified successfully, and 20 were polymorphic. When comparing allelic variation between wild and released abalone populations, a total of 243 different alleles were observed, with 18.7 alleles per locus. High genetic diversity (mean heterozygosity = 0.81; mean allelic number = 15.5) was observed in both populations. A statistical analysis of the fixation index (F(ST)) and analysis of molecular variance (AMOVA) indicated limited genetic differences between the two populations (F(ST) = 0.002, p > 0.05). Although no significant reductions in the genetic diversity were found in the released population compared with the wild population (p > 0.05), the genetic diversity parameters revealed that the seeds released for stock abundance had a different genetic composition. These differences are likely a result of hatchery selection and inbreeding. Additionally, all the primer pair sets were effectively amplified in another congeneric species, H. diversicolor diversicolor, indicating that these primers are useful for both abalone species. These microsatellite loci may be valuable for future aquaculture and population genetic studies aimed at

  18. Identification of trends in scientific publications related to genetic polymorphisms in gestational diabetes mellitus.

    PubMed

    Gomes, J S; Minasi, L B; da Cruz, A D; Rodrigues, F M

    2016-05-09

    Gestational diabetes is a genetic multifactorial systemic disease that has been extensively studied. Consequently, there is a large volume of scientific literature pertaining to genes associated with gestational diabetes. The aim of this study was to characterize the main trends in scientific publications focusing on the associations between genetic polymorphisms and gestational diabetes mellitus (GDM). The related articles were extracted from Scopus using the key words "genetic polymorphism" and "gestational diabetes mellitus"; the collected data focused on various fields (medical, biochemical, etc.) and included papers published within December 2013. One hundred and eighty-three relevant articles published between 1987 and 2013 were identified; we observed a significantly increasing trend in the number of publications pertaining to GDM. A majority of the articles focused on the medical (59.9%), biochemical, and genetics and molecular biological (29.6%) aspects of the disease. The genes coding for transcription factor 7-like 2 and glucokinase (TCF7L2, 29% and GCK, 28%) were predominantly studied and reported. This study helped quantify the growth in research pertaining to GDM; researchers from the USA have published a majority of the publications related to GDM. Several candidate genes have been linked to diabetes; however, the specific gene locus responsible for GDM has not yet been identified. The results of this study could help determine the orientation of future research on genetic factors associated with GDM.

  19. [Analysis on genetic polymorphism of 5 STR loci selected from X chromosome].

    PubMed

    Liu, Qi-ji; Gong, Yao-qin; Zhang, Xi-yu; Gao, Gui-min; Li, Jiang-xia; Guo, Yi-shou

    2005-02-01

    To select short tandem repeats(STR) from X chromosome. STR is a universal genetic marker that has changeable polymorphism and stable heredity in human genome. It is a specific DNA segment composed of 2-6 base pairs as its core sequence. It is an ideal DNA marker used in linkage analysis and gene mapping. In this study, 8 short tandem repeats were selected from two genomic clones on X chromosome by using BCM Search Launcher. Primers amplifying the STR loci were designed by using Primer 3.0 according to the unique sequence flanking the STRs. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five of these STRs were polymorphic. Chi-square test indicated that the distribution of genotypes agreed with Hardy-Weinberg equilibrium (P>0.05). Five polymorphic short tandem repeats have been identified on chromosome X and will be useful for linkage analysis and gene mapping.

  20. The danger within: the role of genetic, behavioural and ecological factors in population persistence of colour polymorphic species.

    PubMed

    Bolton, Peri E; Rollins, Lee A; Griffith, Simon C

    2015-06-01

    Polymorphic species have been the focus of important work in evolutionary biology. It has been suggested that colour polymorphic species have specific evolutionary and population dynamics that enable them to persist through environmental changes better than less variable species. We suggest that recent empirical and theoretical work indicates that polymorphic species may be more vulnerable to extinction than previously thought. This vulnerability arises because these species often have a number of correlated sexual, behavioural, life history and ecological traits, which can have a simple genetic underpinning. When exacerbated by environmental change, these alternate strategies can lead to conflict between morphs at the genomic and population levels, which can directly or indirectly affect population and evolutionary dynamics. In this perspective, we identify a number of ways in which the nature of the correlated traits, their underpinning genetic architecture, and the inevitable interactions between colour morphs can result in a reduction in population fitness. The principles illustrated here apply to all kinds of discrete polymorphism (e.g. behavioural syndromes), but we focus primarily on colour polymorphism because they are well studied. We urge further empirical investigation of the genetic architecture and interactions in polymorphic species to elucidate the impact on population fitness. © 2015 John Wiley & Sons Ltd.

  1. Genetic polymorphism in postoperative sepsis after open heart surgery in infants.

    PubMed

    Fakhri, Dicky; Djauzi, Samsuridjal; Murni, Tri Wahyu; Rachmat, Jusuf; Harahap, Alida Roswita; Rahayuningsih, Sri Endah; Mansyur, Muchtaruddin; Santoso, Anwar

    2016-05-01

    Sepsis is one of the complications following open heart surgery. Toll-like receptor 2 and toll-interacting protein polymorphism influence the immune response after open heart surgery. This study aimed to assess the genetic distribution of toll-like receptor 2 N199N and toll-interacting protein rs5743867 polymorphism in the development of postoperative sepsis. A prospective cohort study was conducted in 108 children <1-year old who underwent open heart surgery with a Basic Aristotle score ≥6. Patients with an accompanying congenital anomaly, human immunodeficiency virus infection, or history of previous open heart surgery were excluded. The patients' nutritional status and genetic polymorphism were assessed prior to surgery. The results of genetic polymorphism were obtained through genotyping. Patients' ages on the day of surgery and cardiopulmonary bypass times were recorded. The diagnosis of sepsis was established according to Surviving Sepsis Campaign criteria. Postoperative sepsis was observed in 21% of patients. There were 92.6% patients with toll-like receptor 2 N199N polymorphism and 52.8% with toll-interacting protein rs5743867 polymorphism. Toll-like receptor 2 N199N polymorphism tends to increase the risk of sepsis (odds ratio = 1.974; 95% confidence interval: 0.23-16.92; p = 0.504), while toll-interacting protein rs5743867 polymorphism tends to decrease the risk of sepsis (odds ratio = 0.496; 95% confidence interval: 0.19-1.27; p = 0.139) in infants <1-year old undergoing complex open heart surgery. © The Author(s) 2016.

  2. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    PubMed

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  3. TPH2 polymorphisms and expression in Prader-Willi syndrome subjects with differing genetic subtypes.

    PubMed

    Henkhaus, Rebecca S; Bittel, Douglas C; Butler, Merlin G

    2010-09-01

    Prader-Willi syndrome (PWS) is a genetic imprinting disease that causes developmental and behavioral disturbances resulting from loss of expression of genes from the paternal chromosome 15q11-q13 region. In about 70% of subjects, this portion of the paternal chromosome is deleted, while 25% have two copies of the maternal chromosome 15, or uniparental maternal disomy (UPD; the remaining subjects have imprinting center defects. There are several documented physical and behavioral differences between the two major PWS genetic subtypes (deletion and UPD) indicating the genetic subtype plays a role in clinical presentation. Serotonin is known to be disturbed in PWS and affects both eating behavior and compulsion, which are reported to be abnormal in PWS. We investigated the tryptophan hydroxylase gene (TPH2), the rate-limiting enzyme in the production of brain serotonin, by analyzing three different TPH2 gene polymorphisms, transcript expression, and correlation with PWS genetic subtype. DNA and RNA from lymphoblastoid cell lines derived from 12 PWS and 12 comparison subjects were used for the determination of genetic subtype, TPH2 polymorphisms and quantitative RT-PCR analysis. A similar frequency of TPH2 polymorphisms was seen in the PWS and comparison subjects with PWS deletion subjects showing increased expression with one or more TPH2 polymorphism. Both PWS deletion and PWS UPD subjects had significantly lower TPH2 expression than control subjects and PWS deletion subjects had significantly lower TPH2 expression compared with PWS UPD subjects. PWS subjects with 15q11-q13 deletions had lower TPH2 expression compared with PWS UPD or control subjects, requiring replication and further studies to identify the cause including identification of disturbed gene interactions resulting from the deletion process.

  4. CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.

    PubMed

    Chin, Fee Wai; Chan, Soon Choy; Abdul Rahman, Sabariah; Noor Akmal, Sharifah; Rosli, Rozita

    2016-01-01

    The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the

  5. Genetic polymorphisms of pharmacogenomic VIP variants in the Yi population from China.

    PubMed

    Yan, Mengdan; Li, Dianzhen; Zhao, Guige; Li, Jing; Niu, Fanglin; Li, Bin; Chen, Peng; Jin, Tianbo

    2018-03-30

    Drug response and target therapeutic dosage are different among individuals. The variability is largely genetically determined. With the development of pharmacogenetics and pharmacogenomics, widespread research have provided us a wealth of information on drug-related genetic polymorphisms, and the very important pharmacogenetic (VIP) variants have been identified for the major populations around the world whereas less is known regarding minorities in China, including the Yi ethnic group. Our research aims to screen the potential genetic variants in Yi population on pharmacogenomics and provide a theoretical basis for future medication guidance. In the present study, 80 VIP variants (selected from the PharmGKB database) were genotyped in 100 unrelated and healthy Yi adults recruited for our research. Through statistical analysis, we made a comparison between the Yi and other 11 populations listed in the HapMap database for significant SNPs detection. Two specific SNPs were subsequently enrolled in an observation on global allele distribution with the frequencies downloaded from ALlele FREquency Database. Moreover, F-statistics (Fst), genetic structure and phylogenetic tree analyses were conducted for determination of genetic similarity between the 12 ethnic groups. Using the χ2 tests, rs1128503 (ABCB1), rs7294 (VKORC1), rs9934438 (VKORC1), rs1540339 (VDR) and rs689466 (PTGS2) were identified as the significantly different loci for further analysis. The global allele distribution revealed that the allele "A" of rs1540339 and rs9934438 were more frequent in Yi people, which was consistent with the most populations in East Asia. F-statistics (Fst), genetic structure and phylogenetic tree analyses demonstrated that the Yi and CHD shared a closest relationship on their genetic backgrounds. Additionally, Yi was considered similar to the Han people from Shaanxi province among the domestic ethnic populations in China. Our results demonstrated significant differences on

  6. [Genetic polymorphisms of 21 non-CODIS STR loci].

    PubMed

    Shao, Wei-bo; Zhang, Su-hua; Li, Li

    2011-02-01

    To investigate genetic polymorphisms of 21 non-CODIS STR loci in Han population from the east of China and to explore their forensic application value. Twenty-one non-CODIS STR loci, were amplified with AGCU 21+1 STR kit and DNA samples were obtained from 225 unrelated individuals of the Han population from the east of China. The PCR products were analyzed with 3130 Genetic Analyzer and genotyped with GeneMapper ID v3.2 software. The genetic data were statistically analyzed with PowerStats v12.xls and Cervus 2.0 software. The distributions of 21 non-CODIS STR loci satisfied the Hardy-Weinberg equilibration. The heterozygosity (H) distributions were 0.596-0.804, the discrimination power (DP) were 0.764-0.948, the probability of exclusion of duo-testing (PEduo) were 0.176-0.492, the probability of exclusion of trios-testing (PEtrio) were 0.334-0.663, and the polymorphic information content (PIC) were 0.522-0.807. The cumulative probability of exclusion (CPE) of duo-testing was 0.999707, the CPE of trios-testing was 0.9999994, and the cumulated discrimination power (CDP) was 0.99999999999999999994. Twenty-one non-CODIS STR loci are highly polymorphic. They can be effectively used in personal identification and paternity testing in trios cases. They can also be used as supplement in the difficult cases of diad paternity testing.

  7. Genetic polymorphisms in the ESR1 gene and cerebral infarction risk: a meta-analysis.

    PubMed

    Gao, Hong-Hua; Gao, Lian-Bo; Wen, Jia-Mei

    2014-09-01

    A number of studies have documented that estrogen receptor α (ESR1) may play an important role in the development and progression of cerebral infarction, but many existing studies have yielded inconclusive results. This meta-analysis was performed to evaluate the relationships between ESR1 genetic polymorphisms and cerebral infarction risk. The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before October 1, 2013, without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Seven case-control studies were included with a total of 1471 patients with cerebral infarction and 4688 healthy control subjects. Two common single-nucleotide polymorphisms (SNPs) in the ESR1 gene (rs2234693 T>C and rs9340799 A>G) were assessed. Our meta-analysis results revealed that ESR1 genetic polymorphisms might increase the risk of cerebral infarction. Subgroup analysis by SNP type indicated that both rs2234693 and rs9340799 polymorphisms in the ESR1 gene were strongly associated with an increased risk of cerebral infarction. Further subgroup analysis by ethnicity showed significant associations between ESR1 genetic polymorphisms and increased risk of cerebral infarction among both Asians and Caucasians. In the stratified subgroup analysis by gender, the results suggested that ESR1 genetic polymorphisms were associated with an increased risk of cerebral infarction in the female population. However, there were no statistically significant associations between ESR1 genetic polymorphisms and cerebral infarction risk in the male population. Meta-regression analyses also confirmed that gender might be a main source of heterogeneity. Our findings indicate that ESR1 genetic polymorphisms may contribute to the development of cerebral infarction, especially in the female population.

  8. Failure of replicating the association between hippocampal volume and 3 single-nucleotide polymorphisms identified from the European genome-wide association study in Asian populations.

    PubMed

    Li, Ming; Ohi, Kazutaka; Chen, Chunhui; He, Qinghua; Liu, Jie-Wei; Chen, Chuansheng; Luo, Xiong-Jian; Dong, Qi; Hashimoto, Ryota; Su, Bing

    2014-12-01

    Hippocampal volume is a key brain structure for learning ability and memory process, and hippocampal atrophy is a recognized biological marker of Alzheimer's disease. However, the genetic bases of hippocampal volume are still unclear although it is a heritable trait. Genome-wide association studies (GWASs) on hippocampal volume have implicated several significantly associated genetic variants in Europeans. Here, to test the contributions of these GWASs identified genetic variants to hippocampal volume in different ethnic populations, we screened the GWAS-identified candidate single-nucleotide polymorphisms in 3 independent healthy Asian brain imaging samples (a total of 990 subjects). The results showed that none of these single-nucleotide polymorphisms were associated with hippocampal volume in either individual or combined Asian samples. The replication results suggested a complexity of genetic architecture for hippocampal volume and potential genetic heterogeneity between different ethnic populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. An application of CART algorithm in genetics: IGFs and cGH polymorphisms in Japanese quail

    NASA Astrophysics Data System (ADS)

    Kaplan, Selçuk

    2017-04-01

    The avian insulin-like growth factor-1 (IGFs) and avian growth hormone (cGH) genes are the most important genes that can affect bird performance traits because of its important function in growth and metabolism. Understanding the molecular genetic basis of variation in growth-related traits is of importance for continued improvement and increased rates of genetic gain. The objective of the present study was to identify polymorphisms of cGH and IGFs genes in Japanese quail using conventional least square method (LSM) and CART algorithm. Therefore, this study was aimed to demonstrate at determining the polymorphisms of two genes related growth characteristics via CART algorithm. A simulated data set was generated to analyze by adhering the results of some poultry genetic studies which it includes live weights at 5 weeks of age, 3 alleles and 6 genotypes of cGH and 2 alleles and 3 genotypes of IGFs. As a result, it has been determined that the CART algorithm has some advantages as for that LSM.

  10. Genetic polymorphisms and skin aging: the identification of population genotypic groups holds potential for personalized treatments.

    PubMed

    Naval, Jordi; Alonso, Vicente; Herranz, Miquel Angel

    2014-01-01

    Skin changes are among the most visible signs of aging. Skin properties such as hydration, elasticity, and antioxidant capacity play a key role in the skin aging process. Skin aging is a complex process influenced by heritable and environmental factors. Recent studies on twins have revealed that up to 60% of the skin aging variation between individuals can be attributed to genetic factors, while the remaining 40% is due to non-genetic factors. Recent advances in genomics and bioinformatics approaches have led to the association of certain single nucleotide polymorphisms (SNPs) to skin properties. Our aim was to classify individuals based on an ensemble of multiple polymorphisms associated with certain properties of the skin for providing personalized skin care and anti-aging therapies. We identified the key proteins and SNPs associated with certain properties of the skin that contribute to skin aging. We selected a set of 13 SNPs in gene coding for these proteins which are potentially associated with skin aging. Finally, we classified a sample of 120 female volunteers into ten clusters exhibiting different skin properties according to their genotypic signature. This is the first study that describes the actual frequency of genetic polymorphisms and their distribution in clusters involved in skin aging in a Caucasian population. Individuals can be divided into genetic clusters defined by genotypic variables. These genotypic variables are linked with polymorphisms in one or more genes associated with certain properties of the skin that contribute to a person's perceived age. Therefore, by using this classification, it is possible to characterize human skin care and anti-aging needs on the basis of an individual's genetic signature, thus opening the door to personalized treatments addressed at specific populations. This is part of an ongoing effort towards personalized anti-aging therapies combining genetic signatures with environmental and life style evaluations.

  11. Precise definition of anonymization in genetic polymorphism studies.

    PubMed

    Hamajima, Nobuyuki; Atsuta, Yoshiko; Niwa, Yoshimitsu; Nishio, Kazuko; Tanaka, Daisuke; Yamamoto, Kazuhito; Tamakoshi, Akiko

    2004-01-01

    Anonymization is an essential tool to protect privacy of participants in epidemiological studies. This paper classifies types of anonymization in genetic polymorphism studies, providing precise definitions. They are: 1) unlinkable anonymization at enrollment without a participant list; 2) unlinkable anonymization before genotyping with a participant list; 3) linkable anonymization; 4) unlinkable anonymization for outsiders; and 5) linkable anonymization for outsiders. The classification in view of accessibility to a table including genotype data with directly identifiable data such as names is important; if such tables exist, staff may obtain genotype information about participants. The first three modes are defined here as anonymization unaccessible to genotype data with directly identifiable information for research staff. Anonymization with a key code held by participants is possible with any of the above anonymization modes, by which participants can access to their own genotypes through telephone or internet. A guideline issued on March 29, 2001 with collaboration of three Ministries in Japan defines "anonymization in a linkable fashion" and "anonymization in an unlinkable fashion", "for the purpose of preventing the personal information from being divulged externally in violation of law, the present guidelines or a research protocol", but the contents are not clear in practice. The proposed definitions will be useful when we describe and discuss the preferable mode of anonymization for a given polymorphism study.

  12. Prevalence of genetic thrombophilic polymorphisms in the Sri Lankan population--implications for association study design and clinical genetic testing services.

    PubMed

    Dissanayake, Vajira H W; Weerasekera, Lakshini Y; Gammulla, C Gayani; Jayasekara, Rohan W

    2009-10-01

    We investigated the prevalence of genotypes/alleles of single nucleotide polymorphisms (SNP) and haplotypes defined by them in three genes in which variations are associated with venous thromboembolism in 80 Sinhalese, 80 Sri Lankan Tamils and 80 Moors in the Sri Lankan population and compared the SNP data with that of other populations in Southern India and haplotype data with that of HapMap populations. The genes and polymorphisms investigated were Methylenetetrahydrofolate reductase (MTHFR) - 677C>T (rs1801133), 1298A>C (rs1801131), 1317T>C, 1793G>A (rs2274976); Factor V (F5) - 1691G>A (rs6025) and 4070A>G (rs1800595); and prothrombin (F2) - 20210G>A (rs1799963). The polymorphisms were genotyped using PCR/RFLP methods. The prevalence of the variant alleles of each polymorphism in the Sinhalese, Tamils, and Moors was MTHFR 677T: Sinhalese - 13%, Tamils - 9%, Moors - 9%. 1317T>C: Sinhalese - 0%; Tamils - 0%; Moors - 0%. 1793A: Sinhalese - 19%, Tamils - 19%, Moors - 19%. F5 1691A: Sinhalese - 2%, Tamils - 3%, Moors - 2%. 4070G: Sinhalese - 6%, Tamils - 5%, Moors - 8%. F2 20210A: Sinhalese - 0%, Tamils - 0%, Moors - 0%. The frequencies observed were similar to data from other South Indian populations; the haplotype data showed haplotypes unique to the Sri Lankan population when compared to HapMap populations. rs9651118 was identified as a SNP that splits the haplotypes harbouring the functionally significant 677T allele in the MTHFR gene. This data would be useful in planning genetic association studies in the Sri Lankan population and in deciding on which genetic variants should be tested in a clinical genetic testing service.

  13. Cacao single-nucleotide polymorphism (SNP) markers: A discovery strategy to identify SNPs for genotyping, genetic mapping and genome wide association studies (GWAS)

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...

  14. Genetic discovery in Xylella fastidiosa through sequence analysis of selected randomly amplified polymorphic DNAs.

    PubMed

    Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C

    2005-02-01

    Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.

  15. Targeted Approach to Identify Genetic Loci Associated with ...

    EPA Pesticide Factsheets

    Extreme tolerance to highly toxic dioxin-like contaminants (DLCs) has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly contaminated urban/industrialized estuaries of the US Atlantic coast. We hypothesized that comparisons among tolerant populations and in contrast to their sensitive neighboring killifish might reveal genetic loci associated with DLC tolerance. Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, we identified single nucleotide polymorphisms (SNPs) from 43 genes associated with the AHR to serve as targeted markers. Wild fish from the four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Consistent with other killifish population genetic analyses, our results revealed strong genetic differentiation among populations, consistent with isolation by distance models. Pairwise comparisons of nearby tolerant and sensitive populations revealed differentiation among these loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP) 1A and 3A30, and the NADH ubiquinone oxidoreductase MLRQ subunit. By grouping tolerant versus sensitive populations, we also identified cytochrome P450 1A and the AHR2 loci as under selection, lend

  16. Colon tumor mutations and epigenetic changes associated with genetic polymorphism: Insight into disease pathways

    PubMed Central

    Slattery, Martha L.; Wolff, Roger K.; Curtin, Karen; Fitzpatrick, Frank; Herrick, Jennifer; Potter, John D.; Caan, Bette J.; Samowitz, Wade S.

    2010-01-01

    Variation in genes associated with serum levels of proteins may be useful for examining specific disease pathways. Using data from a large study of colon cancer, we examine genetic variants in insulin, inflammation, estrogen, metabolizing enzymes, and energy homeostasis genes to explore associations with microsatellite instability (MSI), CpG Island methylator phenotype (CIMP), mutations of p53 in exons 5 through 8, and mutations in codons 12 and 13 of Ki-ras. Insulin-related genes were associated with CIMP positive and MSI tumors, with the strongest associations among aspirin users. The Fok1 Vitamin D Receptor (VDR) polymorphism was associated with CIMP positive/Ki-ras mutated tumors; the Poly A and CDX2 VDR polymorphisms were associated only with Ki-ras mutated tumors. NAT2 was associated with CIMP positive/Ki-ras mutated tumors but not with MSI tumors. The TCF7L2 rs7903146 polymorphism was associated with p53 mutated tumors. Most associations varied by recent aspirin/NSAID use: IL6 rs1800796 and rs1800795 polymorphisms were associated inversely with tumor mutations in the presence of aspirin/NSAIDs; POMC significantly reduced risk of Ki-ras- mutated tumors when aspirin/NSAIDs were not used; the TCF7L2 rs7903146 was associated with reduced risk of Ki-ras-mutated tumors in the presence of aspirin and increased risk in the absence of aspirin. These data, although exploratory, identify specific tumor subsets that may be associated with specific exposures/polymorphism combinations. The important modifying effects of aspirin/NSAIDs on associations with genetic polymorphisms reinforce the underlying role of inflammation in the etiology of colon cancer. PMID:18992263

  17. Genetic polymorphisms in adipokine genes and the risk of obesity: a systematic review and meta-analysis.

    PubMed

    Yu, Zhangbin; Han, Shuping; Cao, Xingguo; Zhu, Chun; Wang, Xuejie; Guo, Xirong

    2012-02-01

    Polymorphisms in adipokine genes, such as leptin (LEP), leptin receptor (LEPR), resistin (RETN), adiponectin (ADIPOQ), interleukin-1β (IL-1β), IL-6 (IL-6), and tumor necrosis factor-α (TNF-α) may be involved in the development of obesity. We conducted a systematic review of published evidence on the association between different adipokine genes and the risk of obesity. Librarian-designed searches of PubMed and HuGeNet, review of reference lists from published reviews and content expert advice identified potentially eligible studies. The genotyping information and polymorphisms of different adipokine genes, numbers of genotyped cases and controls and frequencies of genotypes were extracted from 48 eligible studies included in this review. Twenty-one polymorphisms each associated with obesity in at least one study were identified. Polymorphisms in the adipokine genes, LEP, LEPR, and RETN were not associated with obesity susceptibility, whereas ADIPOQ G276T (T vs. G: odds ratio (OR), 1.59; 95% confidence interval (CI), 1.39-1.81), IL-1β C3953T (CC vs. CT+TT: OR, 1.61; 95% CI, 1.18-2.20), and TNF-α G308A (GG vs. GA+AA: OR, 1.19; 95% CI, 1.02-1.39) polymorphisms were associated with an increased risk of obesity. The IL-6 G174C polymorphism was also associated obesity when using allelic comparisons, the recessive genetic model and the dominant genetic model with OR (95% CI) of 1.95 (1.37-2.77), 1.44 (1.15-1.80), and 1.36 (1.16-1.59), respectively. No significant evidence of publication bias was present. However, these "null" results were underpowered due to a small pooled sample size, and analysis of additional case-control studies with larger sample sizes should provide further clarifications.

  18. Genetic diversity and prevalence of CCR2-CCR5 gene polymorphisms in the Omani population

    PubMed Central

    Al-Mahruqi, Samira H.; Zadjali, Fahad; Beja-Pereira, Albano; Koh, Crystal Y.; Balkhair, Abdullah; Al-Jabri, Ali A.

    2014-01-01

    Polymorphisms in the regulatory region of the CCR5 gene affect protein expression and modulate the progress of HIV-1 disease. Because of this prominent role, variations in this gene have been under differential pressure and their frequencies vary among human populations. The CCR2V64I mutation is tightly linked to certain polymorphisms in the CCR5 gene. The current Omani population is genetically diverse, a reflection of their history as traders who ruled extensive regions around the Indian Ocean. In this study, we examined the CCR2-CCR5 haplotypes in Omanis and compared the patterns of genetic diversity with those of other populations. Blood samples were collected from 115 Omani adults and genomic DNA was screened to identify the polymorphic sites in the CCR5 gene and the CCR2V64I mutation. Four minor alleles were common: CCR5-2554T and CCR5-2086G showed frequencies of 49% and 46%, respectively, whereas CCR5-2459A and CCR5-2135C both had a frequency of 36%. These alleles showed moderate levels of heterozygosity, indicating that they were under balancing selection. However, the well-known allele CCR5Δ32 was relatively rare. Eleven haplotypes were identified, four of which were common: HHC (46%), HHE (20%), HHA (14%) and HHF*2 (12%). PMID:24688285

  19. Ploidally antagonistic selection maintains stable genetic polymorphism.

    PubMed

    Immler, Simone; Arnqvist, Göran; Otto, Sarah Perin

    2012-01-01

    Understanding the maintenance of genetic variation in the face of selection remains a key issue in evolutionary biology. One potential mechanism for the maintenance of genetic variation is opposing selection during the diploid and haploid stages of biphasic life cycles universal among eukaryotic sexual organisms. If haploid and diploid gene expression both occur, selection can act in each phase, potentially in opposing directions. In addition, sex-specific selection during haploid phases is likely simply because male and female gametophytes/gametes tend to have contrasting life histories. We explored the potential for the maintenance of a stable polymorphism under ploidally antagonistic as well as sex-specific selection. Furthermore, we examined the role of the chromosomal location of alleles (autosomal or sex-linked). Our analyses show that the most permissible conditions for the maintenance of polymorphism occur under negative ploidy-by-sex interactions, where stronger selection for an allele in female than male diploids is coupled with weaker selection against the allele in female than male haploids. Such ploidy-by-sex interactions also promote allele frequency differences between the sexes. With constant fitness, ploidally antagonistic selection can maintain stable polymorphisms for autosomal and X-linked genes but not for Y-linked genes. We discuss the implications of our results and outline a number of biological settings where the scenarios modeled may apply. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  20. Ecosensitivity and genetic polymorphism of somatic traits in the perinatal development of twins.

    PubMed

    Waszak, Małgorzata; Cieślik, Krystyna; Skrzypczak-Zielińska, Marzena; Szalata, Marlena; Wielgus, Karolina; Kempiak, Joanna; Bręborowicz, Grzegorz; Słomski, Ryszard

    2016-04-01

    In view of criticism regarding the usefulness of heritability coefficients, the aim of this study was to analyze separately the information on genetic and environmental variability. Such an approach, based on the normalization of trait's variability for its value, is determined by the coefficients of genetic polymorphism (Pg) and ecosensitivity (De). The studied material included 1263 twin pairs of both sexes (among them 424 pairs of monozygotic twins and 839 pairs of dizygotic twins) born between the 22nd and 41st week of gestation. Variability of six somatic traits was analyzed. The zygosity of same-sex twins was determined based on the polymorphism of DNA from lymphocytes of the umbilical cord blood, obtained at birth. The coefficients of genetic polymorphism and ecosensitivity for analyzed traits of male and female twins born at various months of gestation were calculated. Our study revealed that a contribution of the genetic component predominated over that of the environmental component in determining the phenotypic variability of somatic traits of newborns from twin pregnancies. The genetically determined phenotypic variability in male twins was greater than in the females. The genetic polymorphism and ecosensitivity of somatic traits were relatively stable during the period of fetal ontogeny analyzed in this study. Only in the case of body weight, a slight increase in the genetic contribution of polygenes to the phenotypic variance could be observed with gestational age, along with a slight decrease in the influence of environmental factors. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. IL-17 and IL-22 genetic polymorphisms in HBV vaccine non- and low-responders among healthcare workers

    PubMed Central

    Borzooy, Zohreh; Streinu-Cercel, Adrian; Mirshafiey, Abbass; Khamseh, Azam; Mahmoudie, Masoud Karkhaneh; Navabi, Shadi Sadat; Nosrati, Marjan; Najafi, Zahra; Hosseini, Mostafa; Jazayeri, Seyed Mohammad

    2016-01-01

    Background Healthcare workers constitute a population at high risk for HBV infection. Efficient vaccination options are available; however, the individual response to HBV vaccination may vary widely between subjects, potentially due to cytokine profiles and genetic variations. In the present study, we investigated the relationship between IL-17 and IL-22 gene polymorphisms versus non- and low-responsiveness to HBV vaccination in healthcare workers. Methods We selected the following IL-17 and IL-22 polymorphisms: rs4711998 (A/G) from IL-17 and rs2227501 (A/T), rs2227503 (A/G), rs1026786 (A/G) from IL-22 sequences genes. These were determined by polymerase chain reaction restriction fragment length polymorphisms. Results The IL-17 rs4711998 GG genotype had a significantly lower frequency in non-responders compared to low-responders (p=0.025). However, we did not identify a relationship between IL-22 rs1026780, rs2227501 and rs2227503 genotypes and the anti-HBs response following HBV vaccination. Conclusion These data suggest that genetic variation in rs4711998 polymorphisms in the IL-17 cytokine may influence vaccine-induced immune responses to HBV vaccine in healthcare workers. PMID:27019828

  2. Genetic polymorphism in Leishmania infantum isolates from human and animals determined by nagt PCR-RFLP.

    PubMed

    El Hamouchi, Adil; El Kacem, Sofia; Ejghal, Rajaa; Lemrani, Meryem

    2018-06-14

    Leishmania infantum is the causative agent of human visceral leishmaniasis (VL) and sporadic human cutaneous leishmaniasis (CL) in the Mediterranean region. The genetic variation of the Leishmania parasites may result in different phenotypes that can be associated with the geographical distribution and diversity of the clinical manifestations. The main objective of this study was to explore the genetic polymorphism in L. infantum isolates from human and animal hosts in different regions of Morocco. The intraspecific genetic variability of 40 Moroccan L. infantum MON-1 strains isolated from patients with VL (n = 31) and CL (n = 2) and from dogs (n = 7) was evaluated by PCR-RFLP of nagt, a single-copy gene encoding N-acetylglucosamine-1-phosphate transferase. For a more complete analysis of L. infantum polymorphism, we included the restriction patterns of nagt from 17 strains available in the literature and patterns determined by in-silico digestion of three sequences from the GenBank database. Moroccan L. infantum strains presented a certain level of genetic diversity and six distinct nagt-RFLP genotypes were identified. Three of the six genotypes were exclusively identified in the Moroccan population of L. infantum: variant M1 (15%), variant M2 (7.5%), and variant M3 (2.5%). The most common genotype (65%), variant 2 (2.5%), and variant 4 (7.5%), were previously described in several countries with endemic leishmaniasis. Phylogenetic analysis segregated our L. infantum population into two distinct clusters, whereas variant M2 was clearly distinguished from both cluster I and cluster II. This distribution highlights the degree of genetic variability among the Moroccan L. infantum population. The nagt PCR-RFLP method presented here showed an important genetic heterogeneity among Moroccan L. infantum strains isolated from human and canine reservoirs with 6 genotypes identified. Three of the six Moroccan nagt genotypes, have not been previously described and

  3. Genetic polymorphisms and skin aging: the identification of population genotypic groups holds potential for personalized treatments

    PubMed Central

    Naval, Jordi; Alonso, Vicente; Herranz, Miquel Angel

    2014-01-01

    Introduction Skin changes are among the most visible signs of aging. Skin properties such as hydration, elasticity, and antioxidant capacity play a key role in the skin aging process. Skin aging is a complex process influenced by heritable and environmental factors. Recent studies on twins have revealed that up to 60% of the skin aging variation between individuals can be attributed to genetic factors, while the remaining 40% is due to non-genetic factors. Recent advances in genomics and bioinformatics approaches have led to the association of certain single nucleotide polymorphisms (SNPs) to skin properties. Our aim was to classify individuals based on an ensemble of multiple polymorphisms associated with certain properties of the skin for providing personalized skin care and anti-aging therapies. Methods and results We identified the key proteins and SNPs associated with certain properties of the skin that contribute to skin aging. We selected a set of 13 SNPs in gene coding for these proteins which are potentially associated with skin aging. Finally, we classified a sample of 120 female volunteers into ten clusters exhibiting different skin properties according to their genotypic signature. Conclusion This is the first study that describes the actual frequency of genetic polymorphisms and their distribution in clusters involved in skin aging in a Caucasian population. Individuals can be divided into genetic clusters defined by genotypic variables. These genotypic variables are linked with polymorphisms in one or more genes associated with certain properties of the skin that contribute to a person’s perceived age. Therefore, by using this classification, it is possible to characterize human skin care and anti-aging needs on the basis of an individual’s genetic signature, thus opening the door to personalized treatments addressed at specific populations. This is part of an ongoing effort towards personalized anti-aging therapies combining genetic signatures

  4. Genetic analysis of Apuleia leiocarpa as revealed by random amplified polymorphic DNA markers: prospects for population genetic studies.

    PubMed

    Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A

    2016-12-19

    Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.

  5. Developing and Evaluating the HRM Technique for Identifying Cytochrome P450 2D6 Polymorphisms.

    PubMed

    Lu, Hsiu-Chin; Chang, Ya-Sian; Chang, Chun-Chi; Lin, Ching-Hsiung; Chang, Jan-Gowth

    2015-05-01

    Cytochrome P450 2D6 is one of the important enzymes involved in the metabolism of many widely used drugs. Genetic polymorphisms of CYP2D6 can affect its activity. Therefore, an efficient method for identifying CYP2D6 polymorphisms is clinically important. We developed a high-resolution melting (HRM) analysis to investigate CYP2D6 polymorphisms. Genomic DNA was extracted from peripheral blood samples from 71 healthy individuals. All nine exons of the CYP2D6 gene were sequenced before screening by HRM analysis. This method can detect the most genotypes (*1, *2, *4, *10, *14, *21 *39, and *41) of CYP2D6 in Chinese. All samples were successfully genotyped. The four most common mutant CYP2D6 alleles (*1, *2, *10, and *41) can be genotyped. The single nucleotides polymorphism (SNP) frequencies of 100C > T (rs1065852), 1039C > T (rs1081003), 1661G > C (rs1058164), 2663G > A (rs28371722), 2850C > T (rs16947), 2988G > A (rs28371725), 3181A > G, and 4180G > C (rs1135840) were 58%, 61%, 73%, 1%, 13%, 3%, 1%, 73%, respectively. We identified 100% of all heterozygotes without any errors. The two homozygous genotypes (1661G > C and 4180G > C) can be distinguished by mixing with a known genotype sample to generate an artificial heterozygote for HRM analysis. Therefore, all samples could be identified using our HRM method, and the results of HRM analysis are identical to those obtained by sequencing. Our method achieved 100% sensitivity, specificity, positive prediction value and negative prediction value. HRM analysis is a nongel resolution method that is faster and less expensive than direct sequencing. Our study shows that it is an efficient tool for typing CYP2D6 polymorphisms. © 2014 Wiley Periodicals, Inc.

  6. Drug-related genetic polymorphisms affecting severe chemotherapy-induced neutropenia in breast cancer patients

    PubMed Central

    Tsuji, Daiki; Ikeda, Midori; Yamamoto, Keisuke; Nakamori, Harumi; Kim, Yong-Il; Kawasaki, Yohei; Otake, Aki; Yokoi, Mari; Inoue, Kazuyuki; Hirai, Keita; Nakamichi, Hidenori; Tokou, Umi; Shiokawa, Mitsuru; Itoh, Kunihiko

    2016-01-01

    Abstract Chemotherapy-induced neutropenia (CIN) is one of the major adverse events that necessitate chemotherapy dose reduction. This study aimed to evaluate the association between grade 4 neutropenia and genetic polymorphisms in breast cancer patients. In this genetic polymorphism association study, peripheral blood samples from 100 consecutive breast cancer outpatients, between August 2012 and September 2014, treated with doxorubicin and cyclophosphamide (AC) combination chemotherapy were genotyped for polymorphisms in adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1), cytochrome P450 (CYP) enzyme-coding genes (CYP2B6 and CYP3A5), glutathione S-transferase (GST), and excision repair cross-complementing 1 (ERCC1). Associations between grade 4 neutropenia and genotypes as well as risk factors were examined using multivariate logistic regression. From 100 patients, 32.0% had grade 4 neutropenia. Multivariate logistic regression analysis revealed that ERCC1 118C > T (odds ratio [OR], 3.43; 95% confidence interval [CI], 1.22–9.69; P = 0.020), CYP2B6∗6 (OR, 4.51; 95% CI, 1.21–16.95; P = 0.025), body mass index (BMI) (OR, 6.94; 95% CI, 1.15–41.67; P = 0.035), and baseline white blood cell (WBC) count (OR, 2.99; 95% CI, 1.06–8.40; P = 0.038) were significant predictors of grade 4 neutropenia. ERCC1 and CYP2B6 gene polymorphisms were associated with the extent of grade 4 neutropenia in patients receiving AC chemotherapy. In addition to previously known risk factors, BMI and WBC counts, ERCC1 and CYP2B6 gene polymorphisms were also identified as independent strong predictors of grade 4 neutropenia. PMID:27858847

  7. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    PubMed

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  8. The genetics of alcoholism: identifying specific genes through family studies.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2006-09-01

    Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.

  9. Lack of genetic polymorphism among peregrine falcons Falco peregrinus of Fiji

    USGS Publications Warehouse

    Talbot, Sandra; Palmer, Angela G.; Sage, George K.; Sonsthagen, Sarah A.; Swem, Ted; Brimm, Daniel J.; White, Clayton M

    2014-01-01

    We compared levels of genetic diversity and isolation among peregrine falcons Falco peregrinus from two South Pacific island complexes (Fiji and Vanuatu: F. p. nesiotes), relative to other island and mainland populations. Fragment data from 12 microsatellite loci and sequence information from the control region of the mitochondrial DNA indicated levels of genetic variation in the South Pacific populations were lower than other island and mainland populations. Indeed, diversity varied from extremely low (Vanuatu) to completely absent (Fiji). We find little support for a hypothesis that populations on Fiji or Vanuatu were colonized via Australia. The complete lack of polymorphism in peregrine falcons of Fiji is remarkable, and to our knowledge has not been observed in a natural avian population. This lack of polymorphism, and the inability to test for decrease in polymorphism using museum samples, precludes testing whether the lack of genetic diversity in the population on Fiji is due to a recent bottleneck, or sustained isolation over evolutionary time. Increased fertility in eggs of Fiji peregrines upon outbreeding with males from other areas is consistent with inbreeding depression within a population typified by heterozygote deficiency.

  10. [Adverse birth outcomes of maternal smoking during pregnancy and genetic polymorphisms: exploiting gene-environment interaction].

    PubMed

    Sasaki, Seiko; Kishi, Reiko

    2009-09-01

    It has been recognized that metabolic enzymes mediating genetic susceptibility to environmental chemicals such as polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls might be related to adverse human health. Recent studies, including the Hokkaido Study of Environmental and Children's Health, have shown that metabolic enzymes mediating genetic susceptibility to environmental chemicals including tobacco smoke might be related to adverse birth outcomes. Certain maternal genetic polymorphisms in the polycyclic aromatic hydrocarbons (PAHs)-metabolizing enzymes have been shown to enhance the association between maternal smoking and infant birth weight in both Caucasians and Japanese. For maternal genetic polymorphisms encoding the N-nitrosamine-metabolizing enzymes, we found that infant birth weight, birth length and birth head circumference were significantly smaller among infants of smokers than among those of nonsmokers and quitters. The adverse effects of maternal smoking on infant birth size may be modified by maternal genetic polymorphisms. Further study is required to clarify the potential association between genetic polymorphisms and cognitive function in childhood, becauae it has been reported that a small birth length or a small head circumference at birth might affect neurobehavioral development during early childhood. It is necessary to elucidate additive impacts of genetic factors on adverse effects of various chemicals commonly encountered in our daily lives, follow up the development of children, and carry out longitudinal observation.

  11. [Association between HRE-2 gene polymorphism at codon 655 and genetic susceptibility of colorectal cancer].

    PubMed

    Liang, Xia; Zhang, Yong-jing; Liu, Bing; Ni, Qin; Jin, Ming-juan; Ma, Xin-yuan; Yao, Kai-yan; Li, Qi-long; Chen, Kun

    2009-06-01

    To explore the distribution of HER-2 genetic polymorphism at codon 655 and its association with susceptibility of colorectal cancer in Chinese. A population-based case-control study was carried out. 292 patients with colorectal cancer and 842 healthy controls were interviewed. Meanwhile, the genetic polymorphism of HRE-2 was detected using polymerase chain reaction-restriction fragment length polymorphism. The frequencies of Ile/Val+Val/Val genotypes and Val allele were both higher in cases (25.34% and 13.36%) than those in controls (18.41% and 9.74%) (P<0.05). Compared with Ile/Ile genotype, Ile/Val+Val/Val genotypes were significantly associated with colorectal cancer [ORadjusted=1.54, 95% CI: 1.11-2.14]. The adjusted odds ratio of interactions between this polymorphism and smoking, alcohol drinking were 1.43 (95%CI: 0.88-2.30) and 1.29 (95%CI: 0.73-2.29), respectively. The present findings suggest that HER-2 genetic polymorphism at codon 655 may be associated with the risk of colorectal cancer in Chinese. In addition, there are no interactions between this polymorphism and smoking, alcohol drinking, respectively.

  12. Use of multi-dose activated charcoal in phenytoin toxicity secondary to genetic polymorphism.

    PubMed

    Chan, Betty S H; Sellors, Kate; Chiew, Angela L; Buckley, Nicholas A

    2015-02-01

    Phenytoin is metabolised in the liver by cytochrome (CYP)2C9 and 2C19 enzymes. Due to saturation of enzyme capacity, the elimination half-life is prolonged at supratherapeutic levels. Genetic polymorphisms of CYP2C9 and 2C19 are reasonably common and further prolong the elimination of phenytoin. There are conflicting reports regarding whether multiple-dose activated charcoal (MDAC) significantly increases the clearance of phenytoin in poisoning. We present 3 patients with phenytoin toxicity and very slow elimination secondary to reduced CYP enzyme function from genetic polymorphisms. MDAC was used in two patients and led to rapid and large reductions in the measured elimination half-lives. This is contrasted with very prolonged elimination in a third patient who did not receive MDAC. MDAC may play a role in the management of chronic phenytoin toxicity, especially in those with very slow endogenous elimination secondary to genetic polymorphisms.

  13. Useful DNA polymorphisms are identified by snapback, a midrepetitive element in Tribolium castaneum.

    PubMed

    Stuart, J J; De Gortari, M J; Hall, P S; Maxwell, M E; Mocelin, G; Brown, S J; Muir, W M

    1996-06-01

    The red flour bettle, Tribolium castaneum, is both a pest of stored grain products and an important experimental organism. To improve its facility as a genetic model, we are developing DNA fingerprinting methods for this insect. A Tribolium DNA fragment, snapback-1 (SBI), identified among sequences that reassociate before a Cot of 0.03 mol.s/L, was found to produce a banding pattern in restriction endonuclease digested genomic DNA that is characteristic of a midrepetitive element. DNA fingerprints of individual beetles demonstrated that unvarying inherited DNA polymorphism is revealed, and that polymorphism is inherited in a dominant Mendelian fashion. Linkage between bands was minimal. The sequence of SBI was determined, and hybridization experiments indicated that SBI is a fragment of a larger midrepetitive element. Fingerprinting individuals with known inbreeding coefficients indicated that SBI loci have relatively high mutation rates. The possibility that SBI is a fragment of a transposable element is discussed.

  14. Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population.

    PubMed

    Hu, Guo-Xin; Dai, Da-Peng; Wang, Hao; Huang, Xiang-Xin; Zhou, Xiao-Yang; Cai, Jie; Chen, Hao; Cai, Jian-Ping

    2017-03-01

    To systematically investigate the genetic polymorphisms of the CYP3A4 gene in a Han Chinese population. The promoter and exons of CYP3A4 gene in 1114 unrelated, healthy Han Chinese subjects were amplified and genotyped by direct sequencing. In total, five previously reported alleles (*1G, *4, *5, *18B and *23) were detected, of which one allele (*23) was reported for the first time in Han Chinese population. Additionally, seven novel exonic variants were also identified and designated as new alleles CYP3A4*28-*34. This study provides the most comprehensive data of CYP3A4 polymorphisms in Han Chinese population and detects the largest number of novel CYP3A4 alleles in one ethnic group.

  15. [Genetic polymorphism of Gentiana lutea L. (Gentianaceae) populations from Chornohora Ridge of Ukrainian Carpathians].

    PubMed

    Mosula, M Z; Konvaliuk, I I; Mel'nyk, V M; Drobyk, N M; Tsaryk, I V; Nesteruk, Iu I; Kunakh, V A

    2014-01-01

    The features of genetic structure and level of diversity were investigated for G. lutea populations from Chornohora Ridge of Ukrainian Carpathians using RAPD- and ISSR-PCR. We have shown a high level of genetic diversity for investigated populations. The differences between populations account for 59-72% of the total genetic variation, whereas intrapopulation polymorphism makes up 28-41%. The relationships among genetic variability level and ecological-geographical conditions as well as biological features of the species were assumed to be possible. The obtained results indicate the genetic isolation of G. lutea Chornohora populations from Ukrainian Carpathians. Pozhyzhevska agropopulation was characterized by a high level of polymorphism that means the possibility to use artificial plantings of the investigated species for its conservation.

  16. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    PubMed Central

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that span the genome. Most of these markers are single nucleotide polymorphisms and sequences for these variants are provided in an accessible format. The average density of the new markers is one per 225 kb on the autosomes and one per megabase on the X chromosome. We include in this survey a set of P-element strains that provide additional use for high-resolution mapping. We show one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community. PMID:11381036

  17. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markersmore » is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.« less

  18. Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean

    PubMed Central

    2012-01-01

    Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron

  19. Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms.

    PubMed

    Morote, Juan; Del Amo, Jokin; Borque, Angel; Ars, Elisabet; Hernández, Carlos; Herranz, Felipe; Arruza, Antonio; Llarena, Roberto; Planas, Jacques; Viso, María J; Palou, Joan; Raventós, Carles X; Tejedor, Diego; Artieda, Marta; Simón, Laureano; Martínez, Antonio; Rioja, Luis A

    2010-08-01

    Single nucleotide polymorphisms are inherited genetic variations that can predispose or protect individuals against clinical events. We hypothesized that single nucleotide polymorphism profiling may improve the prediction of biochemical recurrence after radical prostatectomy. We performed a retrospective, multi-institutional study of 703 patients treated with radical prostatectomy for clinically localized prostate cancer who had at least 5 years of followup after surgery. All patients were genotyped for 83 prostate cancer related single nucleotide polymorphisms using a low density oligonucleotide microarray. Baseline clinicopathological variables and single nucleotide polymorphisms were analyzed to predict biochemical recurrence within 5 years using stepwise logistic regression. Discrimination was measured by ROC curve AUC, specificity, sensitivity, predictive values, net reclassification improvement and integrated discrimination index. The overall biochemical recurrence rate was 35%. The model with the best fit combined 8 covariates, including the 5 clinicopathological variables prostate specific antigen, Gleason score, pathological stage, lymph node involvement and margin status, and 3 single nucleotide polymorphisms at the KLK2, SULT1A1 and TLR4 genes. Model predictive power was defined by 80% positive predictive value, 74% negative predictive value and an AUC of 0.78. The model based on clinicopathological variables plus single nucleotide polymorphisms showed significant improvement over the model without single nucleotide polymorphisms, as indicated by 23.3% net reclassification improvement (p = 0.003), integrated discrimination index (p <0.001) and likelihood ratio test (p <0.001). Internal validation proved model robustness (bootstrap corrected AUC 0.78, range 0.74 to 0.82). The calibration plot showed close agreement between biochemical recurrence observed and predicted probabilities. Predicting biochemical recurrence after radical prostatectomy based on

  20. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    PubMed

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  1. Genetic polymorphisms and their association with the prevalence and severity of chronic postsurgical pain: a systematic review.

    PubMed

    Hoofwijk, D M N; van Reij, R R I; Rutten, B P; Kenis, G; Buhre, W F; Joosten, E A

    2016-12-01

    Although several patient characteristic, clinical, and psychological risk factors for chronic postsurgical pain (CPSP) have been identified, genetic variants including single nucleotide polymorphisms have also become of interest as potential risk factors for the development of CPSP. The aim of this review is to summarize the current evidence on genetic polymorphisms associated with the prevalence and severity of CPSP in adult patients. A systematic review of the literature was performed, and additional literature was obtained by reference tracking. The primary outcome was CPSP, defined as pain at least 2 months after the surgery. Studies performed exclusively in animals were excluded. Out of the 1001 identified studies, 14 studies were selected for inclusion. These studies described 5269 participants in 17 cohorts. A meta-analysis was not possible because of heterogeneity of data and data analysis. Associations with the prevalence or severity of CPSP were reported for genetic variants in the COMT gene, OPRM1, potassium channel genes, GCH1, CACNG, CHRNA6, P2X7R, cytokine-associated genes, human leucocyte antigens, DRD2, and ATXN1 CONCLUSIONS: Research on the topic of genetic variants associated with CPSP is still in its initial phase. Hypothesis-free, genome-wide association studies on large cohorts are needed in this field. In addition, future studies may also integrate genetic risk factors and patient characteristic, clinical, and psychological predictors for CPSP. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters.

    PubMed

    Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C

    2015-01-01

    Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Footprints of ancient-balanced polymorphisms in genetic variation data from closely related species

    PubMed Central

    Gao, Ziyue; Przeworski, Molly; Sella, Guy

    2015-01-01

    When long-lasting, balancing selection can lead to “trans-species” polymorphisms that are shared by two or more species identical by descent. In such cases, the gene genealogy at the selected site clusters by allele instead of by species, and nearby neutral sites also have unusual genealogies because of linkage. While this scenario is expected to leave discernible footprints in genetic variation data, the specific patterns remain poorly characterized. Motivated by recent findings in primates, we focus on the case of a biallelic polymorphism under ancient balancing selection and derive approximations for summaries of the polymorphism data from two species. Specifically, we characterize the length of the segment that carries most of the footprints, the expected number of shared neutral single nucleotide polymorphisms (SNPs), and the patterns of allelic associations among them. We confirm the accuracy of our approximations by coalescent simulations. We further show that for humans and chimpanzees—more generally, for pairs of species with low genetic diversity levels—these patterns are highly unlikely to be generated by neutral recurrent mutations. We discuss the implications for the design and interpretation of genome scans for ancient balanced polymorphisms in primates and other taxa. PMID:25403856

  4. Inheritance of restriction fragment length polymorphisms, random amplified polymorphic DNAs and isozymes in coastal Douglas-fir

    Treesearch

    K.D. Jermstad; A.M. Reem; J.R. Henifin; N.C. Wheeler; D.B Neale

    1994-01-01

    A total of 225 new genetic loci [151 restriction fragment length polymorphisms (RFLP) and 74 random amplified polymorphic DNAs (RAPD)] in coastal Douglas- fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] have been identified using a three-generation outbred pedigree. The Mendelian inheritance of 16 RFLP loci and 29...

  5. Genetic polymorphisms in 5-Fluorouracil-related enzymes predict pathologic response after neoadjuvant chemoradiation for rectal cancer.

    PubMed

    Nelson, Bailey; Carter, Jane V; Eichenberger, Maurice R; Netz, Uri; Galandiuk, Susan

    2016-11-01

    Many patients with rectal cancer undergo preoperative neoadjuvant chemoradiation, with approximately 70% exhibiting pathologic downstaging in response to treatment. Currently, there is no accurate test to predict patients who are likely to be complete responders to therapy. 5-Fluorouracil is used regularly in the neoadjuvant treatment of rectal cancer. Genetic polymorphisms affect the activity of thymidylate synthase, an enzyme involved in 5-Fluorouracil metabolism, which may account for observed differences in response to neoadjuvant treatment between patients. Detection of genetic polymorphisms might identify patients who are likely to have a complete response to neoadjuvant therapy and perhaps allow them to avoid operation. DNA was isolated from whole blood taken from patients with newly diagnosed rectal cancer who received neoadjuvant therapy (n = 50). Response to therapy was calculated with a tumor regression score based on histology from the time of operation. Polymerase chain reaction was performed targeting the promoter region of thymidylate synthase. Polymerase chain reaction products were separated using electrophoresis to determine whether patients were homozygous for a double-tandem repeat (2R), a triple-tandem repeat (3R), or were heterozygous (2R/3R). A single nucleotide polymorphism, 3G or 3C, also may be present in the second repeat unit of the triple-tandem repeat allele. Restriction fragment length polymorphism assays were performed in patients with at least one 3R allele using HaeIII. Patients with at least 1 thymidylate synthase 3G allele were more likely to have a complete or partial pathologic response to 5-Fluorouracil neoadjuvant therapy (odds ratio 10.4; 95% confidence interval, 1.3-81.6; P = .01) than those without at least one 3G allele. Identification of rectal cancer patients with specific genetic polymorphisms in enzymes involved in 5-Fluorouracil metabolism seems to predict the likelihood of complete or partial pathologic response

  6. Genetic advantageous predisposition of angiotensin converting enzyme id polymorphism in Tunisian athletes.

    PubMed

    Znazen, Hela; Mejri, Aouatef; Touhami, Imed; Chtara, Moktar; Siala, Hajer; LE Gallais, Daniel; Ahmetov, Ildus I; Messaoud, Taeib; Chamari, Karim; Soussi, Nizar

    2016-06-01

    ID polymorphism of the gene coding for the angiotensin I-converting enzyme (ACE) represents a determining factor in physical and athletic performance in the context of genetic conditioning of sports predisposition. The aim of this study was to show the potential importance of genetic factors in relation to the athletic status in Tunisian athletes. The ACE genotypes were established using polymerase chain reaction (PCR) amplification for 282 Tunisian athletes (endurance: N.=149 - power: N.=133), and 211 sedentary volunteers. No significant difference was found in the ACE genotype distribution between athletes (36% DD, 49% ID, 15% II) and controls (CTR) (39% DD, 46% ID, 15% II; P=0.72). In contrast, a high significant difference between endurance and power groups were noted in genotype and alleles (χ2=10.32, P=0.0057; χ2=4,752, P=0.029, respectively). The elite endurance-athletes (N.=72) possess some inherent genetic advantage predisposing them to superior athletic performances compared to CTR for ACE alleles (χ2=3.51, P=0.06). In addition endurance trained athletes were also significantly different from CTR for ACE genotype (χ2=6.05, P=0.04). Furthermore, a significant difference have been found between elite power-athletes (N.=59) and CTR for ACE alleles (χ2=3.79, P=0.05). Tunisian athletes exhibit insertion (I) and deletion (D) alleles of the ACE polymorphism associated with a high level of human endurance and power performance, respectively. This genetic background plays an important role in sporting potential and causes some individuals to be better adapted to specific physical training. This should be considered in athlete development to identify which sporting specialties should be trained for Tunisian talent promotion.

  7. High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.

    PubMed

    Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas

    2011-10-01

    Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  8. Analysis of CYP3A4 genetic polymorphisms in Han Chinese.

    PubMed

    Zhou, Qing; Yu, Xiaomin; Shu, Chang; Cai, Yimei; Gong, Wei; Wang, Xumin; Wang, Duen-mei; Hu, Songnian

    2011-06-01

    Our study aimed to comprehensively investigate the genetic polymorphisms of CYP3A4 in Han Chinese. We sequenced the gene regions of CYP3A4, including its promoter, exons, surrounding introns and 3' untranslated region (3'UTR), from 100 unrelated-healthy Han Chinese individuals. We detected 11 SNPs, three of which are novel. According to in silico functional prediction of novel variants, 20148 A>G in exon 10, resulting in substitution of Tyr319 with Cys (CYP3A4*21), may induce dramatic alteration of protein conformation, and 26908 G>A in 3'UTR may disrupt post-transcriptional regulation. We identified five alleles in Han Chinese, the allele frequencies of CYP3A4*1, *5, *6, *18 and *21 are 97, 0.5, 1, 1 and 0.5%, respectively. Haplotype inference revealed 14 haplotypes, of which the major haplotype CYP3A4*1A constitutes 59% of the total chromosomes. We also examined the possible role of natural selection in shaping the variation of CYP3A4 and confirmed a trend, consistent with the action of positive selection. We systematically screened the genetic polymorphisms of CYP3A4 in Han Chinese, highlighted possible functional impairment of the novel allele and summarized the distinct allele and haplotype frequency distribution, with an emphasis on detecting the footprint of recent positive selection on the CYP3A4 gene in Han Chinese.

  9. Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis.

    PubMed

    Gao, L; Tao, Y; Zhang, L; Jin, Q

    2010-01-01

    Host genetic susceptibility has been suggested as one of the most important explanations for inter-individual differences in tuberculosis (TB) risk. The vitamin D receptor (VDR) gene has been studied as a candidate locus due to genetic polymorphisms that affects the activity of the receptor and subsequent downstream vitamin D-mediated effects. We reviewed published studies on VDR polymorphisms and TB susceptibility up to 15 April 2009 and quantitatively summarised associations of the most widely studied polymorphisms (FokI, TaqI, ApaI and BsmI) using meta-analysis. A total of 23 eligible studies were included in this review. Heterogeneous results were observed, which may be partly explained by the differences between populations. Among Asians, the FokI ff genotype showed a pronounced positive association (OR 2.0, 95%CI 1.3-3.2), a significant inverse association was observed for the BsmI bb genotype (OR 0.5, 95%CI 0.4-0.8), and marginal significant associations were found for TaqI and ApaI polymorphisms. However, none of the polymorphisms was significantly related to TB among Africans or South Americans. The association of VDR polymorphisms with risk of TB observed in our analyses supports the hypothesis that vitamin D deficiency might play a role as risk factor during the development of TB.

  10. Genetic Association Study of KCNQ5 Polymorphisms with High Myopia.

    PubMed

    Liao, Xuan; Yap, Maurice K H; Leung, Kim Hung; Kao, Patrick Y P; Liu, Long Qian; Yip, Shea Ping

    2017-01-01

    Identification of genetic variations related to high myopia may advance our knowledge of the etiopathogenesis of refractive error. This study investigated the role of potassium channel gene (KCNQ5) polymorphisms in high myopia. We performed a case-control study of 1563 unrelated Han Chinese subjects (809 cases of high myopia and 754 emmetropic controls). Five tag single-nucleotide polymorphisms (SNPs) of KCNQ5 were genotyped, and association testing with high myopia was conducted using logistic regression analysis adjusted for sex and age to give P asym values, and multiple comparisons were corrected by permutation test to give P emp values. All five noncoding SNPs were associated with high myopia. The SNP rs7744813, previously shown to be associated with refractive error and myopia in two GWAS, showed an odds ratio of 0.75 (95% CI 0.63-0.90; P emp = 0.0058) for the minor allele. The top SNP rs9342979 showed an odds ratio of 0.75 (95% CI 0.64-0.89; P emp = 0.0045) for the minor allele. Both SNPs are located within enhancer histone marks and DNase-hypersensitive sites. Our data support the involvement of KCNQ5 gene polymorphisms in the genetic susceptibility to high myopia and further exploration of KCNQ5 as a risk factor for high myopia.

  11. Genetic polymorphism of the beta-2 adrenergic receptor in atopic and non-atopic subjects.

    PubMed

    Potter, P C; Van Wyk, L; Martin, M; Lentes, K U; Dowdle, E B

    1993-10-01

    To investigate a possible genetic basis for reported differences in beta-2 receptor expression in atopic subjects, DNA from 42 atopic children (22 asthmatics and 22 with allergic rhinitis) and 30 non-atopic subjects was Southern blotted and Ban-1 restriction fragment polymorphisms (RFLPS) were studied using a 2.6 kb probe of the human beta-2 receptor gene. Two alleles 3.1 kb and 2.9 kb were identified. Homozygotes and heterozygotes for the two alleles were found with equal frequency in the atopic patients who had asthma and in those who had allergic rhinitis only. The gene frequencies for the upper and lower alleles were 0.45 and 0.55 respectively. Our studies do not provide evidence for an association between a particular polymorphic form of the human beta-2 receptor gene and atopy.

  12. Potential for Incorporation of Genetic Polymorphism Data in Human Health Risk Assessment

    EPA Science Inventory

    This overview summarizes several EPA assessment publications evaluating the potential impact of genetic polymorphisms in ten metabolizing enzymes on the variability in enzyme function across ethnically diverse populations.

  13. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat.

    PubMed

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-03-28

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  14. Genome-wide association study for rotator cuff tears identifies two significant single-nucleotide polymorphisms.

    PubMed

    Tashjian, Robert Z; Granger, Erin K; Farnham, James M; Cannon-Albright, Lisa A; Teerlink, Craig C

    2016-02-01

    The precise etiology of rotator cuff disease is unknown, but prior evidence suggests a role for genetic factors. Limited data exist identifying specific genes associated with rotator cuff tearing. The purpose of this study was to identify specific genes or genetic variants associated with rotator cuff tearing by a genome-wide association study with an independent set of rotator cuff tear cases. A set of 311 full-thickness rotator cuff tear cases genotyped on the Illumina 5M single-nucleotide polymorphism (SNP) platform were used in a genome-wide association study with 2641 genetically matched white population controls available from the Illumina iControls database. Tests of association were performed with GEMMA software at 257,558 SNPs that compose the intersection of Illumina SNP platforms and that passed general quality control metrics. SNPs were considered significant if P < 1.94 × 10(-7) (Bonferroni correction: 0.05/257,558). Tests of association revealed 2 significantly associated SNPs, one occurring in SAP30BP (rs820218; P = 3.8E-9) on chromosome 17q25 and another occurring in SASH1 (rs12527089; P = 1.9E-7) on chromosome 6q24. This study represents the first attempt to identify genetic factors influencing rotator cuff tearing by a genome-wide association study using a dense/complete set of SNPs. Two SNPs were significantly associated with rotator cuff tearing, residing in SAP30BP on chromosome 17 and SASH1 on chromosome 6. Both genes are associated with the cellular process of apoptosis. Identification of potential genes or genetic variants associated with rotator cuff tearing may help in identifying individuals at risk for the development of rotator cuff tearing. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications

    PubMed Central

    Zetterberg, Henrik

    2004-01-01

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy. PMID:14969589

  16. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications.

    PubMed

    Zetterberg, Henrik

    2004-02-17

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy.

  17. Genetic polymorphisms in the vitamin D pathway in relation to lung cancer risk and survival

    PubMed Central

    Kong, Jinyu; Xu, Fangxiu; Qu, Jinli; Wang, Yu; Gao, Ming; Yu, Herbert; Qian, Biyun

    2015-01-01

    Studies have suggested that vitamin D may have protective effects against cancer development or tumor progression. To search for additional evidence, we investigated the role of genetic polymorphisms involved in the vitamin D pathway in non-small cell lung cancer (NSCLC). We evaluated common genetic polymorphisms associated with the vitamin D pathway in relation to NSCLC in a case-control study of 603 newly diagnosed NSCLC patients and 661 matched healthy controls. Seven single nucleotide polymorphisms (SNPs) were genotyped, the expression of CYP27B1 and CYP24A1 were measured in 153 tumor samples and their associations with genotypes and patient survival were also analyzed. In the case-control comparison, we found SNP rs3782130 (CYP27B1), rs7041 (GC), rs6068816 and rs4809957 (CYP24A1) associated with NSCLC risk. The risk of NSCLC was increased with the number of risk alleles. CYP27B1 and CYP24A1 expression were significantly different between tumor and normal tissues in NSCLC. High CYP27B1 expression was associated with better overall survival, and the expression was different by the rs3782130 genotype. The study suggests that some genetic polymorphisms involved in the vitamin D pathway may associate with NSCLC risk, and one of the polymorphisms (rs3782130) may affect gene expression and patient survival. PMID:25544771

  18. Evolution of genetic polymorphisms of Plasmodium falciparum merozoite surface protein (PfMSP) in Thailand.

    PubMed

    Kuesap, Jiraporn; Chaijaroenkul, Wanna; Ketprathum, Kanchanok; Tattiyapong, Puntanat; Na-Bangchang, Kesara

    2014-02-01

    Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.

  19. Correlation between genetic polymorphisms and stroke recovery: analysis of the GAIN Americas and GAIN International Studies.

    PubMed

    Cramer, S C; Procaccio, V

    2012-05-01

    Recovery after stroke occurs on the basis of specific molecular events. Genetic polymorphisms associated with impaired neural repair or plasticity might reduce recovery from stroke and might also account for some of the intersubject variability in stroke recovery. This study hypothesized that the ApoE ε4 polymorphism and the val(66) met polymorphism for brain-derived neurotrophic factor (BDNF) are each associated with poorer outcome after stroke. Associations with mitochondrial genotype were also explored. Genotypes were determined in 255 stroke patients who also received behavioral evaluations in the Glycine Antagonist In Neuroprotection (GAIN) clinical trials. The primary outcome measure was recovery during the first month post-stroke, as this is the time when neural repair is at a maximum and so when genetic influences might have their largest impact. Two secondary outcome measures at 3 months post-stroke were also examined.   Genotype groups were similar acutely post-stroke. Presence of the ApoE ε4 polymorphism was associated with significantly poorer recovery over the first month post-stroke (P = 0.023) and with a lower proportion of subjects with minimal or no disability (modified Rankin score 0-1, P = 0.01) at 3 months post-stroke. Indeed, those with this polymorphism were approximately half as likely to achieve minimal or no disability (18.2%) versus those with polymorphism absent (35.5%). Findings were confirmed in multivariate models. Results suggested possible effects from the val(66) met BDNF polymorphism and from the R0 mitochondrial DNA haplotype.   Genetic factors, particularly the ApoE ε4 polymorphism, might contribute to variability in outcomes after stroke. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  20. Exome-wide association study identifies genetic polymorphisms of C12orf51, MYL2, and ALDH2 associated with blood lead levels in the general Korean population.

    PubMed

    Eom, Sang-Yong; Hwang, Myung Sil; Lim, Ji-Ae; Choi, Byung-Sun; Kwon, Ho-Jang; Park, Jung-Duck; Kim, Yong-Dae; Kim, Heon

    2017-02-17

    Lead (Pb) is a ubiquitous toxic metal present in the environment that poses adverse health effects to humans. Inter-individual variation in blood Pb levels is affected by various factors, including genetic makeup. However, limited data are available on the association between genetic variation and blood Pb levels. The purpose of this study was to identify the genetic markers associated with blood Pb levels in the Korean population. The study subjects consisted of 1,483 healthy adults with no history of occupational exposure to Pb. We measured blood Pb levels and calculated probable daily intake of Pb according to dietary data collected using 24-hour recall. We conducted exome-wide association screening using Illumina Human Exome-12v1.2 platform (n = 500) and a replication analysis using VeraCode Goldengate assay (n = 1,483). Among the 244,770 single nucleotide polymorphisms (SNPs) tested, 12 SNPs associated with blood Pb level were identified, with suggestive significance level (P < 1 × 10 -4 ). In the Goldengate assay for replication, three SNPs (C12orf51 rs11066280, MYL2 rs12229654, and ALDH2 rs671) were associated with statistically suggestively significant differences in blood Pb levels. When stratified by drinking status, a potential association of C12orf51 rs11066280, MYL2 rs12229654, and ALDH2 rs671 with blood Pb level was observed only in drinkers. A marginally significant gene-environment interaction between ALDH2 rs671 and alcohol consumption was observed in relation to blood Pb levels. The effects of the three suggestively significant SNPs on blood Pb levels was dependent on daily calcium intake amounts. This exome-wide association study indicated that C12orf51 rs11066280, MYL2 rs12229654, and ALDH2 rs671 polymorphisms are linked to blood Pb levels in the Korean population. Our results suggest that these three SNPs are involved in the determination of Pb levels in Koreans via the regulation of alcohol drinking behavior, and that their

  1. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change.

    PubMed

    Mills, L Scott; Bragina, Eugenia V; Kumar, Alexander V; Zimova, Marketa; Lafferty, Diana J R; Feltner, Jennifer; Davis, Brandon M; Hackländer, Klaus; Alves, Paulo C; Good, Jeffrey M; Melo-Ferreira, José; Dietz, Andreas; Abramov, Alexei V; Lopatina, Natalia; Fay, Kairsten

    2018-03-02

    Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Clinical relevance of the interleukin 10 promoter polymorphisms in Chinese Han patients with major trauma: genetic association studies.

    PubMed

    Zeng, Ling; Gu, Wei; Chen, Kehong; Jiang, Dongpo; Zhang, Lianyang; Du, Dingyuan; Hu, Ping; Liu, Qing; Huang, Suna; Jiang, Jianxin

    2009-01-01

    An excessive inflammatory response is thought to account for the pathogenesis of sepsis and multiple organ dysfunction syndrome (MODS) after severe trauma. The interleukin-10 (IL-10) is a potent anti-inflammatory cytokine. The objectives of this prospective study were to investigate the distribution of IL-10 promoter polymorphisms in a cohort of 308 Chinese Han patients with major trauma, and to identify associations of IL-10 promoter polymorphisms with IL-10 production and incidence of sepsis and MODS. A total of 308 patients with major trauma were included in this study. The genotypes of polymorphisms -1082, -819 and -592 were determined by polymerase chain reaction-restriction fragment length polymorphism. The IL-10 levels in the supernatants were determined with enzyme-linked immunoabsorbent assay. The -1082A and -592A alleles were significantly associated with lower lipopolysaccharide-induced IL-10 production in an allele-dose dependent fashion. There was no significant difference for the -819 polymorphism. Except for the -1082 polymorphism, the -819 and -592 polymorphisms were not significantly associated with sepsis morbidity rate and MOD scores. Our results further confirm the functionality of the IL-10 promoter single nucleotide polymorphisms in relation to IL-10 production. They also suggest that individual difference in IL-10 production in trauma patients might be at least in part related to genetic variations in the IL-10 promoter region.

  3. Impact of Genetic Polymorphisms on the Smoking-related Risk of Periodontal Disease: the Population-based Study SHIP

    PubMed Central

    Meisel, P; Heins, G; Carlsson, LE; Giebel, J; John, U; Schwahn, C; Kocher, T

    2003-01-01

    Periodontitis is a bacterial inflammatory disease leading to attachment loss with the consequence of tooth loss. There exists a multifactorial risk pattern including bacterial challenge, smoking, age, sex, diabetes, socio-economic and genetic factors. Smoking has the highest impact on the course of the disease modulated by all the other factors. Here, we report the relationship between smoking and the polymorphisms of genetic polymorphisms inflicted in the pathogenesis. In a randomly selected population-based study, 1083 subjects were typed for the polymorphisms of the IL-1 genotype, Fcγ RIIIb receptor gene, myeloperoxidase and N-acetyltransferase (NAT2) and related to their periodontal state. Smoking behavior was assessed including present and past quality and quantity of smoking. There is a significant dose-effect relationship between the exposure to tobacco smoke and the extent of periodontal disease assessed as attachment loss and tooth loss. Moreover, there are gene-environmental interactions as subjects bearing variant genotypes show an enhanced smoking-associated risk of the disease modulated by these genotypes. In non-smokers, the impact of these genetic polymorphisms is mostly negligible. This study provides support for the hypothesis that subjects bearing genetic variants of polymorphically expressed phenotypes are at an increased risk of periodontitis when smoking. Mostly, this may be accomplished via the influence of smoking-related impairment on defense mechanisms rather than on the pathogenic pathways. PMID:19570260

  4. Impact of Genetic Polymorphisms on the Smoking-related Risk of Periodontal Disease: the Population-based Study SHIP

    PubMed Central

    Meisel, P; Heins, G; Carlsson, LE; Giebel, J; John, U; Schwahn, C; Kocher, T

    2003-01-01

    Periodontitis is a bacterial inflammatory disease leading to attachment loss with the consequence of tooth loss. There exists a multifactorial risk pattern including bacterial challenge, smoking, age, sex, diabetes, socio-economic and genetic factors. Smoking has the highest impact on the course of the disease modulated by all the other factors. Here, we report the relationship between smoking and the polymorphisms of genetic polymorphisms inflicted in the pathogenesis. In a randomly selected population-based study, 1083 subjects were typed for the polymorphisms of the IL-1 genotype, Fcγ RIIIb receptor gene, myeloperoxidase and N-acetyltransferase (NAT2) and related to their periodontal state. Smoking behavior was assessed including present and past quality and quantity of smoking. There is a significant dose-effect relationship between the exposure to tobacco smoke and the extent of periodontal disease assessed as attachment loss and tooth loss. Moreover, there are gene-environmental interactions as subjects bearing variant genotypes show an enhanced smoking-associated risk of the disease modulated by these genotypes. In non-smokers, the impact of these genetic polymorphisms is mostly negligible. This study provides support for the hypothesis that subjects bearing genetic variants of polymorphically expressed phenotypes are at an increased risk of periodontitis when smoking. Mostly, this may be accomplished via the influence of smoking-related impairment on defense mechanisms rather than on the pathogenic pathways.

  5. Association between genetic polymorphisms of interleukins and cerebral infarction risk: a meta-analysis

    PubMed Central

    Wang, Jiantao; Fan, Niannian; Deng, Yili; Zhu, Jie; Mei, Jing; Chen, Yao; Yang, Heng

    2016-01-01

    Interleukins (ILs) are the most typical inflammatory and immunoregulatory cytokines. Evidences have shown that polymorphisms in ILs are associated with cerebral infarction risk. However, the results remain inconclusive. The present study was to evaluate the role of ILs polymorphisms in cerebral infarction susceptibility. Relevant case-control studies published between January 2000 and December 2015 were searched and retrieved from the electronic databases of Web of Science, PubMed, Embase and the Chinese Biomedical Database. The odds ratio (OR) with its 95% confidence interval (CI) were employed to calculate the strength of association. A total of 55 articles including 12619 cerebral infarction patients and 14436 controls were screened out. Four ILs (IL-1, IL-6, IL-10 and IL-18) contained nine single nucleotide polymorphisms (SNPs; IL-1α −899C/T, IL-1β −511C/T and IL-1β +3953C/T; IL-6 −174G/C and −572C/G; IL-10 −819C/T and −1082A/G; IL-18 −607C/A and −137G/C). Our result showed that IL-1α −899C/T and IL-18 −607C/A (under all the genetic models), and IL-6 −572C/G (under the allelic model, heterogeneity model and dominant model) were associated with increased the risk of cerebral infarction (P<0.05). Subgroup analysis by ethnicity showed that IL-6 −174G/C polymorphism (under all the five models) and IL-10 −1082A/G polymorphism (under the allelic model and heterologous model) were significantly associated with increased the cerebral infarction risk in Asians. Other genetic polymorphisms were not related with cerebral infarction susceptibility under any genetic models. In conclusion, IL-1α −899C/T, IL-6 −572C/G and IL-18 −607C/A might be risk factors for cerebral infarction development. Further studies with well-designed and large sample size are still required. PMID:27679860

  6. [Correlation between genetic polymorphisms of -855 G/C and -1140 G/A in GRIN1 gene and paranoid schizophrenia].

    PubMed

    Li, Zhong-Jie; Ding, Mei; Pang, Hao; Sun, Xue-Fei; Xing, Jia-Xin; Xuan, Jin-Feng; Wang, Bao-Jie

    2013-04-01

    To investigate the single nucleotide polymorphisms (SNP) of -855 G/C and -1140 G/A in promoter regions of GRIN1 gene and find their genetic correlation to paranoid schizophrenia as well as their applicable values in forensic medicine. The genetic polymorphisms of -855 G/C and -1140 G/A at the 5' end of GRIN1 gene were detected by PCR restriction fragment length polymorphism and PAGE in 183 healthy unrelated individuals of northern Chinese Han population and 172 patients of paranoid schizophrenia, respectively. The chi2 test was used to identify Hardy-Weinberg equilibrium of the genotype distribution. The differences of genotypes and allelic frequency distributions were compared between the two groups. Distributions of the genotypic frequencies satisfied Hardy-Weinberg equilibrium in both groups. The difference of genotypes was statistically significant between female patient group and female control group in -855 G/C distribution (P < 0.05). The differences of genotypes and allelic frequencies were statistically significant not only between the patient group and the control group but also between female patient group and female control group in -1140 G/A distribution (P < 0.05). The SNP of -1140 G/A in promoter regions of GRIN1 gene might positively correlate to paranoid schizophrenia. The genetic factor of schizophrenia is involved in gender tendency. And it could be useful in forensic identification of schizophrenia.

  7. Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation.

    PubMed

    Kapplinger, Jamie D; Pundi, Krishna N; Larson, Nicholas B; Callis, Thomas E; Tester, David J; Bikker, Hennie; Wilde, Arthur A M; Ackerman, Michael J

    2018-02-01

    Pathogenic RYR2 variants account for ≈60% of clinically definite cases of catecholaminergic polymorphic ventricular tachycardia. However, the rate of rare benign RYR2 variants identified in the general population remains a challenge for genetic test interpretation. Therefore, we examined the results of the RYR2 genetic test among patients referred for commercial genetic testing and examined factors impacting variant interpretability. Frequency and location comparisons were made for RYR2 variants identified among 1355 total patients of varying clinical certainty and 60 706 Exome Aggregation Consortium controls. The impact of the clinical phenotype on the yield of RYR2 variants was examined. Six in silico tools were assessed using patient- and control-derived variants. A total of 18.2% (218/1200) of patients referred for commercial testing hosted rare RYR2 variants, statistically less than the 59% (46/78) yield among clinically definite cases, resulting in a much higher potential genetic false discovery rate among referrals considering the 3.2% background rate of rare, benign RYR2 variants. Exclusion of clearly putative pathogenic variants further complicates the interpretation of the next novel RYR2 variant. Exonic/topologic analyses revealed overrepresentation of patient variants in exons covering only one third of the protein. In silico tools largely failed to show evidence toward enhancement of variant interpretation. Current expert recommendations have resulted in increased use of RYR2 genetic testing in patients with questionable clinical phenotypes. Using the largest to date catecholaminergic polymorphic ventricular tachycardia patient versus control comparison, this study highlights important variables in the interpretation of variants to overcome the 3.2% background rate that confounds RYR2 variant interpretation. © 2018 American Heart Association, Inc.

  8. Association between environmental tobacco smoke exposure and lung cancer susceptibility: modification by antioxidant enzyme genetic polymorphisms.

    PubMed

    Fathy, Mona; Hamed, Mai; Youssif, Omnia; Fawzy, Nahla; Ashour, Wafa

    2014-02-01

    Environmental tobacco smoke (ETS) is the primary etiologic factor responsible for lung cancer. However, only 10-15 % of smokers develop lung cancer, suggesting a genetic role in modifying individual susceptibility to lung cancer. Antioxidant enzymes and genetic polymorphisms should be considered. The present study aimed to evaluate the role of antioxidant enzyme activity and genetic polymorphisms in modifying the susceptibility to lung cancer among individuals exposed to ETS. A total of 150 male subjects were divided into three groups: 50 lung cancer patients, 50 chronic smokers, and 50 passive smokers. Genotyping of microsomal epoxide hydrolase (mEH) exon 3 (Tyr(113)Hist) and exon 4 (Hist(139)Arg) polymorphisms were done by the polymerase chain reaction-restriction fragment length polymorphism technique. MnSOD (Val(16)Ala) polymorphism was detected by the real time-TaqMan assay. Erythrocyte MnSOD activity was measured spectrophotometrically. ETS-exposed individuals (both active and passive smokers) who carried the His allele of mEH exon3 have a 2.9-fold increased risk of lung cancer (odds ratio [OR] 2.9, P < 0.001). In addition, ETS-exposed carriers of the Arg allele of mEH exon 4 have a 2.1-fold increased risk of lung cancer (OR 2.1, P = 0.024). However, no association between the MnSOD Val(16)Ala polymorphism and lung cancer was detected among ETS-exposed individuals (OR 1.6, P = 0.147), although the lung cancer group had significantly lower MnSOD activity than the chronic or passive smoker groups (P = 0.03). Exons 3 and 4 polymorphisms of the mEH gene may contribute to lung cancer susceptibility through disturbed antioxidant balance. However, this was not the case with the MnSOD Val(16)Ala single-nucleotid polymorphism. Antioxidant enzymes may modulate the influence of ETS exposure on lung cancer risk.

  9. Leishmania major: genetic heterogeneity of Iranian isolates by single-strand conformation polymorphism and sequence analysis of ribosomal DNA internal transcribed spacer.

    PubMed

    Tashakori, Mahnaz; Mahnaz, Tashakori; Kuhls, Katrin; Katrin, Kuhls; Al-Jawabreh, Amer; Amer, Al-Jawabreh; Mauricio, Isabel L; Isabel, Mauricio; Schönian, Gabriele; Gabriele, Schönian; Farajnia, Safar; Safar, Farajnia; Alimohammadian, Mohammad Hossein; Hossein, Alimohammadian Mohammad

    2006-04-01

    Protozoan parasites of Leishmania major are the causative agents of cutaneous leishmaniasis in different parts of Iran. We applied PCR-based methods to analyze L. major parasites isolated from patients with active lesions from different geographic areas in Iran in order to understand DNA polymorphisms within L. major species. Twenty-four isolates were identified as L. major by RFLP analysis of the ribosomal internal transcribed spacer 1 (ITS1) amplicons. These isolates were further studied by single-strand conformation polymorphism (SSCP) analysis and sequencing of ITS1 and ITS2. Data obtained from SSCP analysis of the ITS1 and ITS2 loci revealed three and four different patterns among all studied samples, respectively. Sequencing of ITS1 and ITS2 confirmed the results of SSCP analysis and showed the potential of the PCR-SSCP method for assessing genetic heterogeneity within L. major. Different patterns in ITS1 were due to substitution of one nucleotide, whereas in ITS2 the changes were defined by variation in the number of repeats in two polymorphic microsatellites. In total five genotypic groups LmA, LmB, LmC, LmD and LmE were identified among L. major isolates. The most frequent genotype, LmA, was detected in isolates collected from different endemic areas of cutaneous leishmaniasis in Iran. Genotypes LmC, LmD and LmE were found only in the new focus of CL in Damghan (Semnan province) and LmB was identified exclusively among isolates of Kashan focus (Isfahan province). The distribution of genetic polymorphisms suggests the existence of distinct endemic regions of L. major in Iran.

  10. [Genetic polymorphism of Tulipa gesneriana L. evaluated on the basis of the ISSR marking data].

    PubMed

    Kashin, A S; Kritskaya, T A; Schanzer, I A

    2016-10-01

    Using the method of ISSR analysis, the genetic diversity of 18 natural populations of Tulipa gesneriana L. from the north of the Lower Volga region was examined. The ten ISSR primers used in the study provided identification of 102 PCR fragments, of which 50 were polymorphic (49.0%). According to the proportion of polymorphic markers, two population groups were distinguished: (1) the populations in which the proportion of polymorphic markers ranged from 0.35 to 0.41; (2) the populations in which the proportion of polymorphic markers ranged from 0.64 to 0.85. UPGMA clustering analysis provided subdivision of the sample into two large clusters. The unrooted tree constructed using the Neighbor Joining algorithm had similar topology. The first cluster included slightly variable populations and the second cluster included highly variable populations. The AMOVA analysis showed statistically significant differences (F CT = 0.430; p = 0.000) between the two groups. Local populations are considerably genetically differentiated from each other (F ST = 0.632) and have almost no links via modern gene flow, as evidenced by the results of the Mantel test (r =–0.118; p = 0.819). It is suggested that the degree of genetic similarities and differences between the populations depends on the time and the species dispersal patterns on these territories.

  11. Prediction for Intravenous Immunoglobulin Resistance by Using Weighted Genetic Risk Score Identified From Genome-Wide Association Study in Kawasaki Disease.

    PubMed

    Kuo, Ho-Chang; Wong, Henry Sung-Ching; Chang, Wei-Pin; Chen, Ben-Kuen; Wu, Mei-Shin; Yang, Kuender D; Hsieh, Kai-Sheng; Hsu, Yu-Wen; Liu, Shih-Feng; Liu, Xiao; Chang, Wei-Chiao

    2017-10-01

    Intravenous immunoglobulin (IVIG) is the treatment of choice in Kawasaki disease (KD). IVIG is used to prevent cardiovascular complications related to KD. However, a proportion of KD patients have persistent fever after IVIG treatment and are defined as IVIG resistant. To develop a risk scoring system based on genetic markers to predict IVIG responsiveness in KD patients, a total of 150 KD patients (126 IVIG responders and 24 IVIG nonresponders) were recruited for this study. A genome-wide association analysis was performed to compare the 2 groups and identified risk alleles for IVIG resistance. A weighted genetic risk score was calculated by the natural log of the odds ratio multiplied by the number of risk alleles. Eleven single-nucleotide polymorphisms were identified by genome-wide association study. The KD patients were categorized into 3 groups based on their calculated weighted genetic risk score. Results indicated a significant association between weighted genetic risk score (groups 3 and 4 versus group 1) and the response to IVIG (Fisher's exact P value 4.518×10 - 03 and 8.224×10 - 10 , respectively). This is the first weighted genetic risk score study based on a genome-wide association study in KD. The predictive model integrated the additive effects of all 11 single-nucleotide polymorphisms to provide a prediction of the responsiveness to IVIG. © 2017 The Authors.

  12. Evaluation of genetic diversity in Chinese kale (Brassica oleracea L. var. alboglabra Bailey) by using rapid amplified polymorphic DNA and sequence-related amplified polymorphism markers.

    PubMed

    Zhang, J; Zhang, L G

    2014-02-14

    Chinese kale is an original Chinese vegetable of the Cruciferae family. To select suitable parents for hybrid breeding, we thoroughly analyzed the genetic diversity of Chinese kale. Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) molecular markers were used to evaluate the genetic diversity across 21 Chinese kale accessions from AVRDC and Guangzhou in China. A total of 104 bands were detected by 11 RAPD primers, of which 66 (63.5%) were polymorphic, and 229 polymorphic bands (68.4%) were observed in 335 bands amplified by 17 SRAP primer combinations. The dendrogram showed the grouping of the 21 accessions into 4 main clusters based on RAPD data, and into 6 clusters based on SRAP and combined data (RAPD + SRAP). The clustering of accessions based on SRAP data was consistent with petal colors. The Mantel test indicated a poor fit for the RAPD and SRAP data (r = 0.16). These results have an important implication for Chinese kale germplasm characterization and improvement.

  13. GxG epistasis in growth and condition and the maintenance of genetic polymorphism in Gambusia holbrooki.

    PubMed

    Culumber, Zachary W; Kraft, Brittany; Lemakos, Valerie; Hoffner, Erika; Travis, Joseph; Hughes, Kimberly A

    2018-05-01

    Theory on indirect genetic effects (IGEs) indicates that variation in the genetic composition of social groups can generate GxG epistasis that may promote the evolution of stable polymorphisms. Using a livebearing fish with a genetic polymorphism in coloration and associated behavioral differences, we tested whether genotypes of social partners interacted with focal individual genotypes to influence growth and condition over 16 weeks of development. We found that IGEs had a significant influence on patterns of feeding, regardless of focal fish genotype. There was no influence of social environment on juvenile length, but there was significant GxG epistasis for body condition. Each focal juvenile was in better condition when its own genotype was not present in adult social partners. These data are consistent with negative frequency-dependent selection in which each morph performs better when it is rare. Neither variation in feeding nor activity-related behaviors explained variation in body condition, suggesting that GxG epistasis for condition was caused by physiological differences between the two genotypes. These findings indicate that GxG epistasis in a given polymorphism can generate fitness landscapes that contribute to the maintenance of that polymorphism and to maintenance of genetic variation for additional fitness-related traits. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  14. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis.

    PubMed

    Alberts, Rudi; de Vries, Elisabeth M G; Goode, Elizabeth C; Jiang, Xiaojun; Sampaziotis, Fotis; Rombouts, Krista; Böttcher, Katrin; Folseraas, Trine; Weismüller, Tobias J; Mason, Andrew L; Wang, Weiwei; Alexander, Graeme; Alvaro, Domenico; Bergquist, Annika; Björkström, Niklas K; Beuers, Ulrich; Björnsson, Einar; Boberg, Kirsten Muri; Bowlus, Christopher L; Bragazzi, Maria C; Carbone, Marco; Chazouillères, Olivier; Cheung, Angela; Dalekos, Georgios; Eaton, John; Eksteen, Bertus; Ellinghaus, David; Färkkilä, Martti; Festen, Eleonora A M; Floreani, Annarosa; Franceschet, Irene; Gotthardt, Daniel Nils; Hirschfield, Gideon M; Hoek, Bart van; Holm, Kristian; Hohenester, Simon; Hov, Johannes Roksund; Imhann, Floris; Invernizzi, Pietro; Juran, Brian D; Lenzen, Henrike; Lieb, Wolfgang; Liu, Jimmy Z; Marschall, Hanns-Ulrich; Marzioni, Marco; Melum, Espen; Milkiewicz, Piotr; Müller, Tobias; Pares, Albert; Rupp, Christian; Rust, Christian; Sandford, Richard N; Schramm, Christoph; Schreiber, Stefan; Schrumpf, Erik; Silverberg, Mark S; Srivastava, Brijesh; Sterneck, Martina; Teufel, Andreas; Vallier, Ludovic; Verheij, Joanne; Vila, Arnau Vich; Vries, Boudewijn de; Zachou, Kalliopi; Chapman, Roger W; Manns, Michael P; Pinzani, Massimo; Rushbrook, Simon M; Lazaridis, Konstantinos N; Franke, Andre; Anderson, Carl A; Karlsen, Tom H; Ponsioen, Cyriel Y; Weersma, Rinse K

    2017-08-04

    Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10 -9 ). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3 , we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Association of neonatal necrotizing enterocolitis with myeloid differentiation-2 and GM2 activator protein genetic polymorphisms.

    PubMed

    Zhou, Wei; Yuan, Weiming; Huang, Longguang; Wang, Ping; Rong, Xiao; Tang, Juan

    2015-07-01

    The aim of the present study was to investigate the association of neonatal necrotizing enterocolitis (NEC) with myeloid differentiation-(MD-2) and GM2 activator protein (GM2A) genetic polymorphisms. Gene resequencing of the MD-2 and GM2A gene exons was performed on 42 neonates, diagnosed with NEC (NEC group), as well as in the rs11465996 locus, located in the MD-2 gene promoter region. The aim was to detect the genetic polymorphisms present in the neonates with NEC and compare the functional polymorphic loci with 83 neonates without NEC (control group), who had been born during the same period. A polymorphic locus with abnormal frequency was detected in the exon region of the MD-2 gene. In the NEC group, the frequency of genotypes carrying the low frequency allele (G) in the rs11465996 locus (MD-2 promoter region) was significantly higher compared with the control group (χ(2)=4.388, P=0.036). Furthermore, the frequencies of genotypes carrying the low frequency A and C alleles in the rs1048719 (GM2A gene exon 1) and rs2075783 loci (GM2A intron), respectively, were significantly higher in the NEC group compared with the control group (χ(2)=4.316, P=0.038; and χ(2)=13.717, P=0.000, respectively). In addition, the rs11465996 polymorphism in the MD-2 gene promoter region was found to be associated with the severity of NEC. Furthermore, the rs2075783 polymorphism in the GM2A gene exon 1 and the rs1048719 polymorphism in the intron region of this gene, were associated with the occurrence of NEC. The present study demonstrated that gene polymorphisms of MD-2 and GM2A were associated with the occurrence or severity of NEC; however, further in-depth exploration is required to clarify the associations between genetic predispositions to polymorphisms, and NEC.

  16. Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

    PubMed Central

    Puffenberger, Erik G.; Jinks, Robert N.; Sougnez, Carrie; Cibulskis, Kristian; Willert, Rebecca A.; Achilly, Nathan P.; Cassidy, Ryan P.; Fiorentini, Christopher J.; Heiken, Kory F.; Lawrence, Johnny J.; Mahoney, Molly H.; Miller, Christopher J.; Nair, Devika T.; Politi, Kristin A.; Worcester, Kimberly N.; Setton, Roni A.; DiPiazza, Rosa; Sherman, Eric A.; Eastman, James T.; Francklyn, Christopher; Robey-Bond, Susan; Rider, Nicholas L.; Gabriel, Stacey; Morton, D. Holmes; Strauss, Kevin A.

    2012-01-01

    The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data. PMID:22279524

  17. Functional analysis of regulatory single-nucleotide polymorphisms.

    PubMed

    Pampín, Sandra; Rodríguez-Rey, José C

    2007-04-01

    The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.

  18. Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms

    PubMed Central

    Mahoney, J. Matthew; Taroni, Jaclyn; Martyanov, Viktor; Wood, Tammara A.; Greene, Casey S.; Pioli, Patricia A.; Hinchcliff, Monique E.; Whitfield, Michael L.

    2015-01-01

    Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6–12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA) genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected and related to a

  19. A Web-Based Genetic Polymorphism Learning Approach for High School Students and Science Teachers

    ERIC Educational Resources Information Center

    Amenkhienan, Ehichoya; Smith, Edward J.

    2006-01-01

    Variation and polymorphism are concepts that are central to genetics and genomics, primary biological disciplines in which high school students and undergraduates require a solid foundation. From 1998 through 2002, a web-based genetics education program was developed for high school teachers and students. The program included an exercise on using…

  20. Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity.

    PubMed

    Revelas, Mary; Thalamuthu, Anbupalam; Oldmeadow, Christopher; Evans, Tiffany-Jane; Armstrong, Nicola J; Kwok, John B; Brodaty, Henry; Schofield, Peter R; Scott, Rodney J; Sachdev, Perminder S; Attia, John R; Mather, Karen A

    2018-06-08

    Many factors contribute to exceptional longevity, with genetics playing a significant role. However, to date, genetic studies examining exceptional longevity have been inconclusive. This comprehensive review seeks to determine the genetic variants associated with exceptional longevity by undertaking meta-analyses. Meta-analyses of genetic polymorphisms previously associated with exceptional longevity (85+) were undertaken. For each variant, meta-analyses were performed if there were data from at least three independent studies available, including two unpublished additional cohorts. Five polymorphisms, ACE rs4340, APOE ε2/3/4, FOXO3A rs2802292, KLOTHO KL-VS and IL6 rs1800795 were significantly associated with exceptional longevity, with the pooled effect sizes (odds ratios) ranging from 0.42 (APOE ε4) to 1.45 (FOXO3A males). In general, the observed modest effect sizes of the significant variants suggest many genes of small influence play a role in exceptional longevity, which is consistent with results for other polygenic traits. Our results also suggest that genes related to cardiovascular health may be implicated in exceptional longevity. Future studies should examine the roles of gender and ethnicity and carefully consider study design, including the selection of appropriate controls. Copyright © 2018. Published by Elsevier B.V.

  1. 4P: fast computing of population genetics statistics from large DNA polymorphism panels

    PubMed Central

    Benazzo, Andrea; Panziera, Alex; Bertorelle, Giorgio

    2015-01-01

    Massive DNA sequencing has significantly increased the amount of data available for population genetics and molecular ecology studies. However, the parallel computation of simple statistics within and between populations from large panels of polymorphic sites is not yet available, making the exploratory analyses of a set or subset of data a very laborious task. Here, we present 4P (parallel processing of polymorphism panels), a stand-alone software program for the rapid computation of genetic variation statistics (including the joint frequency spectrum) from millions of DNA variants in multiple individuals and multiple populations. It handles a standard input file format commonly used to store DNA variation from empirical or simulation experiments. The computational performance of 4P was evaluated using large SNP (single nucleotide polymorphism) datasets from human genomes or obtained by simulations. 4P was faster or much faster than other comparable programs, and the impact of parallel computing using multicore computers or servers was evident. 4P is a useful tool for biologists who need a simple and rapid computer program to run exploratory population genetics analyses in large panels of genomic data. It is also particularly suitable to analyze multiple data sets produced in simulation studies. Unix, Windows, and MacOs versions are provided, as well as the source code for easier pipeline implementations. PMID:25628874

  2. A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows

    PubMed Central

    Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L

    2016-01-01

    Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323

  3. Analysis of genetic diversity of Tunisian pistachio (Pistacia vera L.) using sequence-related amplified polymorphism (SRAP) markers.

    PubMed

    Guenni, K; Aouadi, M; Chatti, K; Salhi-Hannachi, A

    2016-10-17

    Sequence-related amplified polymorphism (SRAP) markers preferentially amplify open reading frames and were used to study the genetic diversity of Tunisian pistachio. In the present study, 43 Pistacia vera accessions were screened using seven SRAP primer pairs. A total of 78 markers was revealed (95.12%) with an average polymorphic information content of 0.850. The results suggest that there is strong genetic differentiation, which characterizes the local resources (G ST = 0.307). High gene flow (N m = 1.127) among groups was explained by the exchange of plant material among regions. Analysis of molecular variance revealed significant differences within groups and showed that 73.88% of the total genetic diversity occurred within groups, whereas the remaining 26.12% occurred among groups. Bayesian clustering and principal component analysis identified three pools, El Guettar, Pollenizers, and the rest of the pistachios belonging to the Gabès, Kasserine, and Sfax localities. Bayesian analysis revealed that El Guettar and male genotypes were assigned with more than 80% probability. The BayeScan method proposed that locus 59 (F13-R9) could be used in the development of sex-linked SCAR markers from SRAP since it is a commonly detected locus in comparisons involving the Pollenizers group. This is the first application of SRAP markers for the assessment of genetic diversity in Tunisian germplasm of P. vera. Such information will be useful to define conservation strategies and improvement programs for this species.

  4. Dog obesity--the need for identifying predisposing genetic markers.

    PubMed

    Switonski, M; Mankowska, M

    2013-12-01

    Incidence of overweight and obesity in dogs exceeds 30%, and several breeds are predisposed to this heritable phenotype. Rapid progress of canine genomics and advanced knowledge on the genetic background of human obesity bring a unique opportunity to perform such studies in dogs. Natural candidate genes for obesity are these encoding adipokines. Extended studies in humans indicated that polymorphisms of three of them, i.e. ADIPOQ, IL1 and TNF, are associated with predisposition to obesity. On the other hand, the use of genome-wide association studies revealed an association between human obesity and polymorphism of more than 50 other genes. Until now only few preliminary reports on polymorphism of canine FTO, MC4R, MC3R and PPARG genes have been published. Since the dog is a valuable model organism for human diseases one can foresee that such studies may also contribute to an in-depth understanding of human obesity pathogenesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The effects of genetic polymorphism on treatment response of recombinant human growth hormone.

    PubMed

    Chen, Shi; You, Hanxiao; Pan, Hui; Zhu, Huijuan; Yang, Hongbo; Gong, Fengying; Wang, Linjie; Jiang, Yu; Yan, Chengsheng

    2017-12-06

    Recombinant human growth hormone (rhGH) has been widely used in clinical treatment of growth hormone deficiency (GHD) or non GHD since 1985 and technology have achieved a great development in different long-acting formulations. Although the mathematical models for predicting the growth hormone response could help clinicians get to an individual personalized growth dose, many patients just can't reach the target height and the growth hormone responses differed.Genetic polymorphisms may play a role in the varies of individual responses in this treatment process.This article gives an overview of the genetic polymorphisms research of growth hormone in recent years, in order to give some potential suggestion and guide for the dose titration during treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Genetic Polymorphisms in RNA Binding Proteins Contribute to Breast Cancer Survival

    PubMed Central

    Upadhyay, Rohit; Sanduja, Sandhya; Kaza, Vimala; Dixon, Dan A.

    2012-01-01

    The RNA-binding proteins TTP and HuR control expression of numerous genes associated with breast cancer pathogenesis by regulating mRNA stability. However, the role of genetic variation in TTP (ZFP36) and HuR (ELAVL1) genes is unknown in breast cancer prognosis. A total of 251 breast cancer patients (170 Caucasians and 81 African-Americans) were enrolled and followed-up from 2001 to 2011 (or until death). Genotyping was performed for 10 SNPs in ZFP36 and 7 in ELAVL1 genes. On comparing both races with one another, significant differences were found for clinical and genetic variables. The influence of genetic polymorphisms on survival was analyzed by using Cox-regression, Kaplan-Meier analysis, and the log-rank test. Univariate (Kaplan-Meier/Cox-regression) and multivariate (Cox-regression) analysis showed that the TTP gene polymorphism ZFP36*2 A>G was significantly associated with poor prognosis of Caucasian patients (HR = 2.03; 95% CI = 1.09–3.76; P = 0.025; log-rank P = 0.022). None of the haplotypes, but presence of more than six risk genotypes in Caucasian patients, was significantly associated with poor prognosis (HR=2.42; 95% CI=1.17–4.99; P = 0.017; log-rank P = 0.007). The effect of ZFP36*2 A>G on gene expression was evaluated from patients' tissue samples. Both TTP mRNA and protein expression was significantly decreased in ZFP36*2 G allele carriers compared to A allele homozygotes. Conversely, upregulation of the TTP-target gene COX-2 was observed ZFP36*2 G allele carriers. Through its ability to attenuate TTP gene expression, the ZFP36*2 A>G gene polymorphism has appeared as a novel prognostic breast cancer marker in Caucasian patients. PMID:22907529

  7. A preliminary report on the genetic variation in pointed gourd (Trichosanthes dioica Roxb.) as assessed by random amplified polymorphic DNA.

    PubMed

    Adhikari, S; Biswas, A; Bandyopadhyay, T K; Ghosh, P D

    2014-06-01

    Pointed gourd (Trichosanthes dioica Roxb.) is an economically important cucurbit and is extensively propagated through vegetative means, viz vine and root cuttings. As the accessions are poorly characterized it is important at the beginning of a breeding programme to discriminate among available genotypes to establish the level of genetic diversity. The genetic diversity of 10 pointed gourd races, referred to as accessions was evaluated. DNA profiling was generated using 10 sequence independent RAPD markers. A total of 58 scorable loci were observed out of which 18 (31.03%) loci were considered polymorphic. Genetic diversity parameters [average and effective number of alleles, Shannon's index, percent polymorphism, Nei's gene diversity, polymorphic information content (PIC)] for RAPD along with UPGMA clustering based on Jaccard's coefficient were estimated. The UPGMA dendogram constructed based on RAPD analysis in 10 pointed gourd accessions were found to be grouped in a single cluster and may represent members of one heterotic group. RAPD analysis showed promise as an effective tool in estimating genetic polymorphism in different accessions of pointed gourd.

  8. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers

    PubMed Central

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-01-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype “MS F” (in both markers) was highly diverse and genotypes “Q104 F” (SCoT) and “82–18 F” (CBDP) were least diverse among the female genotype populations. Among male genotypes, “32 M” (CBDP) and “MS M” (SCoT) revealed highest h and I values while “58-5 M” (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups

  9. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers.

    PubMed

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-09-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype "MS F" (in both markers) was highly diverse and genotypes "Q104 F" (SCoT) and "82-18 F" (CBDP) were least diverse among the female genotype populations. Among male genotypes, "32 M" (CBDP) and "MS M" (SCoT) revealed highest h and I values while "58-5 M" (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of

  10. Genetic polymorphisms in the amino acid transporters LAT1 and LAT2 in relation to the pharmacokinetics and side effects of melphalan.

    PubMed

    Kühne, Annett; Kaiser, Rolf; Schirmer, Markus; Heider, Ulrike; Muhlke, Sabine; Niere, Wiebke; Overbeck, Tobias; Hohloch, Karin; Trümper, Lorenz; Sezer, Orhan; Brockmöller, Jürgen

    2007-07-01

    Melphalan is widely used in the treatment of multiple myeloma. Pharmacokinetics of this alkylating drug shows high inter-individual variability. As melphalan is a phenylalanine derivative, the pharmacokinetic variability may be determined by genetic polymorphisms in the L-type amino acid transporters LAT1 (SLC7A5) and LAT2 (SLC7A8). Pharmacokinetics were analysed in 64 patients after first administration of intravenous melphalan. Severity of side effects was documented according to WHO criteria. Genomic DNA was analysed for polymorphisms in LAT1 and LAT2 by sequencing of the entire coding region, intron-exon boundaries and 2 kb upstream promoter region. Selected polymorphisms in the common heavy chain of both transporters, the protein 4F2hc (SLC3A2), were analysed by single nucleotide primer extension. Melphalan pharmacokinetics was highly variable with up to 6.2-fold differences in total clearance. A total of 44 polymorphisms were identified in LAT1 and 21 polymorphisms in LAT2. From all variants, only five were in the coding region and only one heterozygous non-synonymous polymorphism (Ala94Thr) was found in LAT2. Numerous polymorphisms were found in the LAT1 and LAT2 5'-flanking regions but did not correlate with expression of the respective genes. No significant correlations could be observed between the polymorphisms in 4F2hc, LAT1, and LAT2 with melphalan pharmacokinetics or with melphalan side effects. The study confirmed that these transporter genes are highly conserved, particularly in the coding sequences. Genetic variation in 4F2hc, LAT1, and LAT2 does not appear to be a major cause of inter-individual variability in pharmacokinetics and of adverse reactions to melphalan.

  11. Genetic polymorphism and population structure of Echinococcus ortleppi.

    PubMed

    Addy, F; Wassermann, M; Banda, F; Mbaya, H; Aschenborn, J; Aschenborn, O; Koskei, P; Umhang, G; DE LA Rue, M; Elmahdi, I E; Mackenstedt, U; Kern, P; Romig, T

    2017-04-01

    The zoonotic cestode Echinococcus ortleppi (Lopez-Neyra and Soler Planas, 1943) is mainly transmitted between dogs and cattle. It occurs worldwide but is only found sporadically in most regions, with the notable exception of parts of southern Africa and South America. Its epidemiology is little understood and the extent of intraspecific variability is unknown. We have analysed in the present study the genetic diversity among 178 E. ortleppi isolates from sub-Saharan Africa, Europe and South America using the complete mitochondrial cox1 (1608 bp) and nad1 (894 bp) DNA sequences. Genetic polymorphism within the loci revealed 15 cox1 and six nad1 haplotypes, respectively, and 20 haplotypes of the concatenated genes. Presence of most haplotypes was correlated to geographical regions, and only one haplotype had a wider spread in both eastern and southern Africa. Intraspecific microvariance was low in comparison with Echinococcus granulosus sensu stricto, despite the wide geographic range of examined isolates. In addition, the various sub-populations showed only subtle deviation from neutrality and were mostly genetically differentiated. This is the first insight into the population genetics of the enigmatic cattle adapted Echinococcus ortleppi. It, therefore, provides baseline data for biogeographical comparison among E. ortleppi endemic regions and for tracing its translocation paths.

  12. Genetic association of APOB polymorphisms with variation in serum lipid profile among the Kuwait population.

    PubMed

    Al-Bustan, Suzanne A; Alnaqeeb, Majed A; Annice, Babitha G; Ebrahim, Ghada A; Refai, Thanaa M

    2014-10-08

    Several studies have identified APOB as a candidate gene predisposing individuals to dyslipidemia. Polymorphisms including the signal peptide (rs11279109), codon 2488 XbaI (rs1042031), codon 3611 MspI (rs693), codon 4154 EcoRI (rs1801701) and the 3' variable number of tandem repeats have been reported to be associated with dyslipidemia in several populations. With limited studies on Arabs, this study aimed to investigate the genetic association of APOB polymorphisms and assess the potential influence of minor and rare alleles on serum lipid levels in the Kuwaiti population. A total of 795 Kuwaiti subjects, documented with phenotypic data and fasting serum lipid levels, were genotyped for the five polymorphisms using PCR, PCR-RFLP and gene fragment analysis. Genotype and allele association with variation in serum lipid levels as well as haplotypes were analyzed using chi-square test, univariate and logistic regression analysis. Analysis of the genotype and allele frequencies distribution revealed a significant positive association between the APOB signal peptide and 3611 MspI polymorphisms with increased levels of triglycerides (statistical power of 80%). Haplotype analysis further supported the findings by showing that carriers of haplotypes (IX-M-E+M) had significantly lower mean (SD) TG levels (0.86 ± 0.07) as compared to non-carriers (1.01 ± 0.02). Significance was also observed with regards to positive family history of hypercholesterolemia. The results imply a "protective role" for two alleles (rs11279109 and rs1801701) in which logistic regression analysis showed a significant half-fold decrease in the risk for heterozygotes of rs11279109 and an 8.8 fold decrease in the risk for homozygous M-M- of rs1801701 of having lower TG levels (<1.70 mmol/L) in individuals. This suggests that genetic interaction between various polymorphisms at different gene loci act in linkage disequilibrium to affect serum TG levels. Apo B genotyping may be a useful adjunct

  13. High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations

    PubMed Central

    Stegelmann, Frank; Bullinger, Lars; Griesshammer, Martin; Holzmann, Karlheinz; Habdank, Marianne; Kuhn, Susanne; Maile, Carmen; Schauer, Stefanie; Döhner, Hartmut; Döhner, Konstanze

    2010-01-01

    Single-nucleotide polymorphism arrays allow for genome-wide profiling of copy-number alterations and copy-neutral runs of homozygosity at high resolution. To identify novel genetic lesions in myeloproliferative neoplasms, a large series of 151 clinically well characterized patients was analyzed in our study. Copy-number alterations were rare in essential thrombocythemia and polycythemia vera. In contrast, approximately one third of myelofibrosis patients exhibited small genomic losses (less than 5 Mb). In 2 secondary myelofibrosis cases the tumor suppressor gene NF1 in 17q11.2 was affected. Sequencing analyses revealed a mutation in the remaining NF1 allele of one patient. In terms of copy-neutral aberrations, no chromosomes other than 9p were recurrently affected. In conclusion, novel genomic aberrations were identified in our study, in particular in patients with myelofibrosis. Further analyses on single-gene level are necessary to uncover the mechanisms that are involved in the pathogenesis of myeloproliferative neoplasms. PMID:20015882

  14. [Genetic polymorphism in XPD related to risks of chronic benzene poisoning].

    PubMed

    Li, Yan; Zhang, Zhongbin; Sun, Pin; Wan, Junxiang; Jin, Xipeng; Xia, Zhaolin

    2010-05-01

    To explore the relation between genetic polymorphisms in XPD and risks of chronic benzene poisoning (CBP). A case-control study was conducted. 152 CBP patients and 152 NCBP workers occupationally exposed to benzene were investigated. Polymerase chain reaction-restrained fragment length polymorphism technique (PCR-RFLP) was applied to detect the single nucleotide polymorphisms (SNPs) at c. 199, c. 201, c. 312 and c. 751 of XPD gene. No variant alleles was detected at c. 199 and c. 201 of XPD gene. In comparition with the individual genotypes of XPDc. 312Asp/Asp, the risk of CBP suffered from the individual genotype of XPDc. 312Asp/Asn + Asn/Asn decreased a 0.59 fold (ORadj = 0.59, 95% CI = 0.35-0.99, chi2 = 3.99, P < 0.05), when sex, workage and intensity of benzene exposure were adjusted. And in low intensity of benzene exposure group, the risk of CBP suffered from the individual genotypes of XPDc. 312Asp/Asn + Asn/Asn more decreased (ORadj = 0.13, 95% CI = 0.04-0.51, chi2 = 8.93, P < 0.01). Polymorphism of XPD Asp312Asn could contribute to altered risk of CBP.

  15. Rapid recent human evolution and the accumulation of balanced genetic polymorphisms.

    PubMed

    Wills, Christopher

    2011-01-01

    All evolutionary change can be traced to alterations in allele frequencies in populations over time. DNA sequencing on a massive scale now permits us to follow the genetic consequences as our species has diverged from our close relatives and as we have colonized different parts of the world and adapted to them. But it has been difficult to disentangle natural selection from many other factors that alter frequencies. These factors include mutation and intragenic reciprocal recombination, gene conversion, segregation distortion, random drift, and gene flow between populations (these last two are greatly influenced by splits and coalescences of populations over time). The first part of this review examines recent studies that have had some success in dissecting out the role of natural selection, especially in humans and Drosophila. Among many examples, these studies include those that have followed the rapid evolution of traits that may permit adaptation to high altitude in Tibetan and Andean populations. In some cases, directional selection has been so strong that it may have swept alleles close to fixation in the span of a few thousand years, a rapidity of change that is also sometimes encountered in other organisms. The second part of the review summarizes data showing that remarkably few alleles have been carried completely to fixation during our recent evolution. Some of the alleles that have not reached fixation may be approaching new internal equilibria, which would indicate polymorphisms that are maintained by balancing selection. Finally, the review briefly examines why genetic polymorphisms, particularly those that are maintained by negative frequency dependence, are likely to have played an important role in the evolution of our species. A method is suggested for measuring the contribution of these polymorphisms to our gene pool. Such polymorphisms may add to the ability of our species to adapt to our increasingly complex and challenging environment.

  16. Evaluation of genetic diversity in jackfruit (Artocarpus heterophyllus Lam.) based on amplified fragment length polymorphism markers.

    PubMed

    Shyamalamma, S; Chandra, S B C; Hegde, M; Naryanswamy, P

    2008-07-22

    Artocarpus heterophyllus Lam., commonly called jackfruit, is a medium-sized evergreen tree that bears high yields of the largest known edible fruit. Yet, it has been little explored commercially due to wide variation in fruit quality. The genetic diversity and genetic relatedness of 50 jackfruit accessions were studied using amplified fragment length polymorphism markers. Of 16 primer pairs evaluated, eight were selected for screening of genotypes based on the number and quality of polymorphic fragments produced. These primer combinations produced 5976 bands, 1267 (22%) of which were polymorphic. Among the jackfruit accessions, the similarity coefficient ranged from 0.137 to 0.978; the accessions also shared a large number of monomorphic fragments (78%). Cluster analysis and principal component analysis grouped all jackfruit genotypes into three major clusters. Cluster I included the genotypes grown in a jackfruit region of Karnataka, called Tamaka, with very dry conditions; cluster II contained the genotypes collected from locations having medium to heavy rainfall in Karnataka; cluster III grouped the genotypes in distant locations with different environmental conditions. Strong coincidence of these amplified fragment length polymorphism-based groupings with geographical localities as well as morphological characters was observed. We found moderate genetic diversity in these jackfruit accessions. This information should be useful for tree breeding programs, as part of our effort to popularize jackfruit as a commercial crop.

  17. Identification of Genetic Polymorphisms of CYP2W1 in the Three Main Chinese Ethnicities: Han, Tibetan, and Uighur.

    PubMed

    Li, Yanwei; Kang, Xing; Yang, Ge; Dai, Penggao; Chen, Chao; Wang, Huijuan

    2016-09-01

    CYP2W1 is an orphan member of the cytochrome P450 superfamily. Recently, CYP2W1 has gained great research interest because of its unknown enzymatic function and tumor-specific expression property. This study aims to investigate the genetic polymorphisms of the CYP2W1 gene in Chinese populations and explore the functions of the detected variants. All of the nine exons and exon-intron junction regions of the CYP2W1 gene were sequenced in 150 Chinese subjects, including 50 Han Chinese, 50 Tibetans, and 50 Uighurs. A total of 26 genetic variants were identified in this study, and 19 polymorphisms were detected in each population. Frequency comparison between populations showed that nine variants exhibited significantly different allelic distributions. A total of 12 different haplotypes were inferred from 150 samples by using the genotype data of nine exonic variants found in this study. CYP2W1*1A, *1B, *2, *4, and *6 were detected as the main alleles/haplotypes. Moreover, one, three, and two ethnically specific haplotypes were observed in the Han, Tibetan, and Uighur samples, respectively. Then, the effects of four detected missense mutations (Ala181Thr, Gly376Ser, Val432Ile, and Pro488Leu) on the CYP2W1 protein function were predicted using three in silico tools: Polymorphism Phenotyping v2, Sorts Intolerant from Tolerant, and MutationTaster. The results showed that Gly376Ser and Pro488Leu may have deleterious effects. In summary, this study showed that the genetic pattern of CYP2W1 is interethnically different among the three Chinese populations, and this finding can extend our understanding of population genetics of CYP2W1 in the Chinese population. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams--I. Associations in Spanish dry-cured ham Jamón Serrano.

    PubMed

    Gou, P; Zhen, Z Y; Hortós, M; Arnau, J; Diestre, A; Robert, N; Claret, A; Čandek-Potokar, M; Santé-Lhoutellier, V

    2012-12-01

    The functional single polymorphisms identified in the calpastatin (CAST) gene have been related to the rate of meat tenderization and the protein turnover after slaughter, and the Ile199Val polymorphism identified in the coding region of the protein kinase AMP-activated (PRKAG3) gene has been proven to affect ultimate pH in muscle. The aim of the present study was to show the effects of these genetic polymorphisms on the quality traits of Spanish dry-cured ham Jamón Serrano. A tissue sample from 665 crossbreed pigs were genotyped for PRKAG3 Ile199Val, CAST Arg249Lys and CAST Ser638Arg polymorphisms, and a subsample of 120 dry cured hams was selected to perform physico-chemical, rheological, instrumental colour and sensory analyses. Associations between the polymorphisms and several quality traits of dry-cured ham, mainly related to flavour and texture, were found. The genotypes PRKAG3 Ile/Ile, CAST249 Arg/Arg and CAST638 Arg/Arg, and the haplotype CAST 249Arg-638Arg were the most favourable for Jamón Serrano production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Arsenic methylation capacity in relation to nutrient intake and genetic polymorphisms in one-carbon metabolism.

    PubMed

    Gamboa-Loira, Brenda; Hernández-Alcaraz, César; Gandolfi, A Jay; Cebrián, Mariano E; Burguete-García, Ana; García-Martínez, Angélica; López-Carrillo, Lizbeth

    2018-07-01

    Nutrients and genetic polymorphisms participating in one-carbon metabolism may explain interindividual differences in inorganic arsenic (iAs) methylation capacity, which in turn may account for variations in susceptibility to iAs-induced diseases. 1) To evaluate the association between polymorphisms in five one-carbon metabolism genes (FOLH1 c.223 T > C, MTHFD1 c.1958 G > A, MTHFR c.665 C > T, MTR c.2756 A > G, and MTRR c.66 A > G) and iAs methylation capacity; 2) To assess if previously reported associations between nutrient intake and iAs methylation capacity are modified by those polymorphisms. Women (n = 1027) exposed to iAs in Northern Mexico were interviewed. Blood and urine samples were collected. Nutrient dietary intake was estimated using a validated food frequency questionnaire. iAs methylation capacity was calculated from urinary iAs species (iAs, monomethylarsonic acid [MMA] and dimethylarsinic acid [DMA]) measured by high performance liquid chromatography (HPLC-ICP-MS). One polymorphism in each of the five genes evaluated was genotyped by allelic discrimination. Multivariable linear regression models were used to evaluate if genetic polymorphisms modified the associations between iAs methylation capacity parameters and nutrient intake. The median (min-max) concentration of total arsenic (TAs) was 20.2 (1.3-2776.0) µg/g creatinine in the study population. Significant interactions for iAs metabolism were only found with FOLH1 c.223 T > C polymorphism and vitamin B12 intake, so that CT and CC genotype carriers had significantly lower %iAs, and higher DMA/iAs with an increased vitamin B12 intake, as compared to carriers of wild-type TT. Differences in dietary nutrient intake and genetic variants in one-carbon metabolism may jointly influence iAs methylation capacity. Confirmation of these interactions in other populations is warranted. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine.

    PubMed

    Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen; Tzvetkov, Mladen Vassilev

    2017-01-01

    Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine's potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine pharmacokinetics in humans remain to be analyzed.

  1. Genetic polymorphisms in the IL-18 gene and ulcerative colitis risk: a meta-analysis.

    PubMed

    Wang, Ying; Tong, Jing; Chang, Bing; Wang, Bai-Fang; Zhang, Dai; Wang, Bing-Yuan

    2014-07-01

    This meta-analysis was performed to evaluate the relationships between genetic polymorphisms in the IL-18 gene and ulcerative colitis (UC) risk. The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before November 1st, 2013 without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude odds ratios (ORs) with their 95% confidence intervals (95% CI) were calculated. Eight case-control studies with a total of 1000 UC cases and 1392 healthy subjects met the inclusion criteria. Six common polymorphisms in the IL-18 gene were evaluated, including rs1946518 A>C, rs187238 G>C, rs917997 G>A, Codon35, rs1946519 C>A, and rs360718 A>C. The results of our meta-analysis suggest that the IL-18 rs1946518 (allele model: OR=1.22, 95% CI: 1.01-1.48, p=0.039; dominant model: OR=1.44, 95% CI: 1.01-2.06, p=0.045; respectively), rs187238 (allele model: OR=1.38, 95% CI: 1.19-1.61, p<0.001; dominant model: OR=1.50, 95% CI: 1.03-2.19, p=0.034; respectively), and rs360718 (allele model: OR=2.18, 95% CI: 1.22-3.90, p=0.008) polymorphisms might be strongly correlated with an increased risk of UC. A subgroup analysis was conducted to investigate the effect of ethnicity on an individual's risk of UC. Our results revealed positive significant correlations between IL-18 genetic polymorphisms and an increased risk of UC among Asians (allele model: OR=1.36, 95% CI: 1.16-1.60, p<0.001; dominant model: OR=1.50, 95% CI: 1.14-1.98, p=0.004; respectively) and Africans (allele model: OR=1.45, 95% CI: 1.03-2.05, p=0.034), but not among Caucasians (all p>0.05). Our findings provide convincing evidence that IL-18 genetic polymorphisms may contribute to susceptibility to UC, especially the rs1946518, rs187238, and rs360718 polymorphisms among Asians and Africans.

  2. [A meta-analysis on the association between genetic polymorphisms of osteoprotegerin and cardiovascular disease].

    PubMed

    Xin, J Y; Cong, H L

    2018-06-24

    Objective: To explore the association between genetic polymorphisms of rs2073617T/C (950T/C) and rs2073618G/C(1181G/C) in the osteoprotegerin gene and cardiovascular disease with meta-analysis. Methods: A computer-based search for the study of relationship between genetic polymorphisms of rs2073617T/C and rs2073618G/C in the osteoprotegerin gene and cardiovascular disease were performed in electronic databases including China National Knowledge Infrastructure(CNKI), China Biomedical Literature Database, Wanfang Database, Chinese Journal Full-text Database, Embase, PubMed, and Cochrane Library, supplemented by manual search, from the beginning of library to February 28, 2017. The quality of the included studies were assessed by the Newcastle-Ottawa Scale (NOS) scoring system. Data were analyzed using STATA 12.0 software. Results: Eleven clinical case-control studies that enrolled 2 115 patients with cardiovascular disease and 1 467 healthy subjects were included.The results indicated that osteoprotegerin gene polymorphisms of rs2073617T/C and rs2073618G/C might be closely associated with the susceptibility to cardiovascular disease(rs2073617T/C allele model: OR= 0.79, 95% CI 0.73-0.87, P= 0.001;rs2073618G/C M allele and W allele: OR= 0.83, 95% CI 0.74-0.92, P= 0.001). The osteoprotegerin gene polymorphisms of rs2073617T/C and rs2073618G/C were significantly related to the incidence of coronary artery disease and acute coronary syndrome(coronary artery disease allele model: OR= 0.83, 95% CI 0.75-0.92, P= 0.001; acute coronary syndrome allele model: OR= 0.73, 95% CI 0.62-0.85, P< 0.001). However, there was no significant correlation between the genetic polymorphisms of these two sites and the lesion vessel number of coronary artery (rs2073617T/C allele model: OR= 1.00, 95% CI 0.81-1.24, P= 0.985;rs2073618G/C allele model: OR= 0.98, 95% CI 0.80-1.21, P= 0.626). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and polymerase chain reaction

  3. No Association between Personality and Candidate Gene Polymorphisms in a Wild Bird Population

    PubMed Central

    Durieux, Gillian; Burke, Terry; Dugdale, Hannah L.

    2015-01-01

    Consistency of between-individual differences in behaviour or personality is a phenomenon in populations that can have ecological consequences and evolutionary potential. One way that behaviour can evolve is to have a genetic basis. Identifying the molecular genetic basis of personality could therefore provide insight into how and why such variation is maintained, particularly in natural populations. Previously identified candidate genes for personality in birds include the dopamine receptor D4 (DRD4), and serotonin transporter (SERT). Studies of wild bird populations have shown that exploratory and bold behaviours are associated with polymorphisms in both DRD4 and SERT. Here we tested for polymorphisms in DRD4 and SERT in the Seychelles warbler (Acrocephalus sechellensis) population on Cousin Island, Seychelles, and then investigated correlations between personality and polymorphisms in these genes. We found no genetic variation in DRD4, but identified four polymorphisms in SERT that clustered into five haplotypes. There was no correlation between bold or exploratory behaviours and SERT polymorphisms/haplotypes. The null result was not due to lack of power, and indicates that there was no association between these behaviours and variation in the candidate genes tested in this population. These null findings provide important data to facilitate representative future meta-analyses on candidate personality genes. PMID:26473495

  4. Influence of cytochrome P450 oxidoreductase genetic polymorphisms on CYP1A2 activity and inducibility by smoking.

    PubMed

    Dobrinas, Maria; Cornuz, Jacques; Pedrido, Leticia; Eap, Chin B

    2012-02-01

    Cytochrome P4501A2 (CYP1A2) presents a high interindividual variability in its activity and also in its inducibility by smoking. Cytochrome P450 oxidoreductase (POR) is an electron transfer protein that catalyzes the activity of several cytochromes P450. We aimed to study the influence of POR genetic polymorphisms on CYP1A2 activity while smoking and after smoking cessation, as well as on CYP1A2 inducibility. CYP1A2 activity was determined by the paraxanthine/caffeine ratio in 184 smokers and in 113 of these smokers who were abstinent during a 4-week period. Participants were genotyped for POR rs17148944G>A, rs10239977C>T, rs3815455C>T, rs2286823G>A, rs2302429G>A, and rs1057868C>T (POR*28) polymorphisms. While smoking, none of the tested POR polymorphisms showed a significant influence on CYP1A2 activity. After smoking cessation, significantly higher CYP1A2 activity was found in POR rs2302429A carriers (P=0.038) and in carriers of rs17148944G-rs10239977C-rs3815455T-rs2286823G-rs2302429A-rs1057868T haplotype (P=0.038), whereas carriers of POR rs2286823A (P=0.031) and of the rs17148944G-rs10239977C-rs3815455C-rs2286823A-rs2302429G-rs1057868C haplotype (P=0.031) had decreased CYP1A2 activity. In the complete regression model, only POR rs2302429G>A showed a significant effect (P=0.017). No influence of POR genotypes or haplotypes was observed on the inducibility of CYP1A2. POR genetic polymorphisms influence CYP1A2 basal but not induced activity and do not seem to influence CYP1A2 inducibility. Future work is warranted to identify other clinical and genetic factors that may explain the variability in CYP1A2 activity and inducibility by smoking.

  5. Human Xq28 inversion polymorphism: From sex linkage to Genomics--A genetic mother lode.

    PubMed

    Kirby, Cait S; Kolber, Natalie; Salih Almohaidi, Asmaa M; Bierwert, Lou Ann; Saunders, Lori; Williams, Steven; Merritt, Robert

    2016-01-01

    An inversion polymorphism of the filamin and emerin genes at the tip of the long arm of the human X-chromosome serves as the basis of an investigative laboratory in which students learn something new about their own genomes. Long, nearly identical inverted repeats flanking the filamin and emerin genes illustrate how repetitive elements can lead to alterations in genome structure (inversions) through nonallelic homologous recombination. The near identity of the inverted repeats is an example of concerted evolution through gene conversion. While the laboratory in its entirety is designed for college level genetics courses, portions of the laboratory are appropriate for courses at other levels. Because the polymorphism is on the X-chromosome, the laboratory can be used in introductory biology courses to enhance understanding of sex-linkage and to test for Hardy-Weinberg equilibrium in females. More advanced topics, such as chromosome interference, the molecular model for recombination, and inversion heterozygosity suppression of recombination can be explored in upper-level genetics and evolution courses. DNA isolation, restriction digests, ligation, long PCR, and iPCR provide experience with techniques in molecular biology. This investigative laboratory weaves together topics stretching from molecular genetics to cytogenetics and sex-linkage, population genetics and evolutionary genetics. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Identifying genetic relatives without compromising privacy

    PubMed Central

    He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-01-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977

  7. Identifying genetic relatives without compromising privacy.

    PubMed

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  8. Genetic Polymorphism and Expression of CXCR4 in Breast Cancer

    PubMed Central

    Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Losi Guembarovski, Roberta; Banin Hirata, Bruna Karina; Vitiello, Glauco Akelinghton Freire; Campos, Clodoaldo Zago; Watanabe, Maria Angelica Ehara

    2015-01-01

    CXCR4 genetic polymorphisms, as well as their expression level, have been associated with cancer development and prognosis. The present study aimed to investigate the influence of CXCR4 rs2228014 polymorphism on its mRNA and protein expression in breast cancer samples. It was observed that patients presented higher CXCR4 mRNA relative expression (5.7-fold) than normal mammary gland, but this expression was not correlated with patients clinicopathological features (nuclear grade, nodal status, ER status, PR status, p53 staining, Ki67 index, and HER-2 status). Moreover, CXCR4 mRNA relative expression also did not differ regarding the presence or absence of T allele (p = 0.301). In the immunohistochemical assay, no difference was observed for CXCR4 cytoplasmic protein staining in relation to different genotypes (p = 0.757); however, high cytoplasmic CXCR4 staining was verified in invasive breast carcinoma (p < 0.01). All in all, the results from present study indicated that rs2228014 genetic variant does not alter CXCR4 mRNA or protein expression. However, this receptor was more expressed in tumor compared to normal tissue, in both RNA and protein levels, suggesting its promising applicability in the general context of mammary carcinogenesis. PMID:26576337

  9. Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L.

    PubMed Central

    Allegre, Mathilde; Argout, Xavier; Boccara, Michel; Fouet, Olivier; Roguet, Yolande; Bérard, Aurélie; Thévenin, Jean Marc; Chauveau, Aurélie; Rivallan, Ronan; Clement, Didier; Courtois, Brigitte; Gramacho, Karina; Boland-Augé, Anne; Tahi, Mathias; Umaharan, Pathmanathan; Brunel, Dominique; Lanaud, Claire

    2012-01-01

    Theobroma cacao is an economically important tree of several tropical countries. Its genetic improvement is essential to provide protection against major diseases and improve chocolate quality. We discovered and mapped new expressed sequence tag-single nucleotide polymorphism (EST-SNP) and simple sequence repeat (SSR) markers and constructed a high-density genetic map. By screening 149 650 ESTs, 5246 SNPs were detected in silico, of which 1536 corresponded to genes with a putative function, while 851 had a clear polymorphic pattern across a collection of genetic resources. In addition, 409 new SSR markers were detected on the Criollo genome. Lastly, 681 new EST-SNPs and 163 new SSRs were added to the pre-existing 418 co-dominant markers to construct a large consensus genetic map. This high-density map and the set of new genetic markers identified in this study are a milestone in cocoa genomics and for marker-assisted breeding. The data are available at http://tropgenedb.cirad.fr. PMID:22210604

  10. Using microarray analysis to evaluate genetic polymorphisms involved in the metabolism of environmental chemicals.

    PubMed

    Ban, Susumu; Kondo, Tomoko; Ishizuka, Mayumi; Sasaki, Seiko; Konishi, Kanae; Washino, Noriaki; Fujita, Syoichi; Kishi, Reiko

    2007-05-01

    The field of molecular biology currently faces the need for a comprehensive method of evaluating individual differences derived from genetic variation in the form of single nucleotide polymorphisms (SNPs). SNPs in human genes are generally considered to be very useful in determining inherited genetic disorders, susceptibility to certain diseases, and cancer predisposition. Quick and accurate discrimination of SNPs is the key characteristic of technology used in DNA diagnostics. For this study, we first developed a DNA microarray and then evaluated its efficacy by determining the detection ability and validity of this method. Using DNA obtained from 380 pregnant Japanese women, we examined 13 polymorphisms of 9 genes, which are associated with the metabolism of environmental chemical compounds found in high frequency among Japanese populations. The ability to detect CYP1A1 I462V, CYP1B1 L432V, GSTP1 I105V and AhR R554K gene polymorphisms was above 98%, and agreement rates when compared with real time PCR analysis methods (kappa values) showed high validity: 0.98 (0.96), 0.97 (0.93), 0.90 (0.81), 0.90 (0.91), respectively. While this DNA microarray analysis should prove important as a method for initial screening, it is still necessary that we find better methods for improving the detection of other gene polymorphisms not part of this study.

  11. Association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population.

    PubMed

    Park, Chul-Soo; Park, So-Young; Lee, Chul-Soon; Sohn, Jin-Wook; Hahn, Gyu-Hee; Kim, Bong-Jo

    2006-06-01

    Family, twin, and adoption studies have demonstrated that genes play an important role in the development of alcoholism. We investigated the association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population. The genotype of the GABAA receptor gene polymorphisms were determined by performing polymerase chain reaction genotyping for 172 normal controls and 162 male alcoholics who are hospitalized in alcoholism treatment institute. We found a significant association between the genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene and alcoholism. The GG genotype of the GABAA alpha1 receptor gene was associated with the onset age of alcoholism and alcohol withdrawal symptoms, and a high score on the Korean version of the ADS. However, there was no association between the genetic polymorphisms of the GABAA beta2 and gamma2 receptor gene and alcoholisms. Our finding suggest that genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene may be associated with the development of alcoholism and that the GG genotype of the GABAA alpha1 receptor gene play an important role in the development of the early onset and the severe type of alcoholism.

  12. Genetic polymorphism and isoenzyme patterns of lactate dehydrogenase in tench (Tinca tinca), crucian carp (Carassius carassius) and carp (Cyprinus carpio).

    PubMed

    Valenta, M; Slechta, V; Slechtová, V; Kálal, L

    1977-01-01

    Isoenzyme patterns and the polymorphism of lactate dehydrogenase (LDH) were investigated in 3 fish species of family Cyprinidae, i.e. tench (Tinca tinca), crucian carp (Carassius carassius) and carp (Cyprinus carpio). The isoenzyme patterns were tissue and species specific. In crucian carp subunits with different electrophoretic mobility are present, which are genetically controlled from the B1, B2, A1, A2 and C loci, while the set of loci in carp is B1, B2, A, C1 and C2 and in tench B, A, C. The locus B of LDH in tench, the locus B2 in crucian carp, and the loci B1, C1 and C2 in carp are polymorphic and have two different alleles in each case. The polymorphism did not affect the total LDH activity in the tissues. All the populations investigated were in Hardy-Weinberg equilibrium. The genetic control of the polymorphism in B1 and C1 loci in carp was proved by test matings. The polymorphism in B loci tested in erythrocytes may be utilized as genetic markers in the fish breeding.

  13. Effective utilization of genetic information for athletes and coaches: focus on ACTN3 R577X polymorphism

    PubMed Central

    Kikuchi, Naoki; Nakazato, Koichi

    2015-01-01

    Training variants (type, intensity, and duration of exercise) can be selected according to individual aims and fitness assessment. Recently, various methods of resistance and endurance training have been used for muscle hypertrophy and VO2max improvement. Although several genetic variants are associated with elite athletic performance and muscle phenotypes, genetic background has not been used as variant for physical training. ACTN3 R577X is a well-studied genetic polymorphism. It is the only genotype associated with elite athletic performance in multiple cohorts. This association is strongly supported by mechanistic data from an Actn3-knockout mouse model. In this review, possible guidelines are discussed for effective utilization of ACTN3 R577X polymorphism for physical training. PMID:26526670

  14. Genetic homogeneity of the invasive lionfish across the Northwestern Atlantic and the Gulf of Mexico based on Single Nucleotide Polymorphisms.

    PubMed

    Pérez-Portela, R; Bumford, A; Coffman, B; Wedelich, S; Davenport, M; Fogg, A; Swenarton, M K; Coleman, F; Johnston, M A; Crawford, D L; Oleksiak, M F

    2018-03-22

    Despite the devastating impact of the lionfish (Pterois volitans) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfish's long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (F ST p-values > 0.01, and t-test p-values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation.

  15. Genetic Polymorphisms in Cytokine Genes in Colombian Patients with Ocular Toxoplasmosis.

    PubMed

    Naranjo-Galvis, C A; de-la-Torre, A; Mantilla-Muriel, L E; Beltrán-Angarita, L; Elcoroaristizabal-Martín, X; McLeod, R; Alliey-Rodriguez, N; Begeman, I J; López de Mesa, C; Gómez-Marín, J E; Sepúlveda-Arias, J C

    2018-04-01

    Toxoplasmosis is caused by infection with the protozoan parasite Toxoplasma gondii , which has the capacity to infect all warm-blooded animals worldwide. Toxoplasmosis is a major cause of visual defects in the Colombian population; however, the association between genetic polymorphisms in cytokine genes and susceptibility to ocular toxoplasmosis has not been studied in this population. This work evaluates the associations between polymorphisms in genes coding for the cytokines tumor necrosis factor alpha (TNF-α) (rs1799964, rs1800629, rs1799724, rs1800630, and rs361525), interleukin 1β (IL-1β) (rs16944, rs1143634, and rs1143627), IL-1α (rs1800587), gamma interferon (IFN-γ) (rs2430561), and IL-10 (rs1800896 and rs1800871) and the presence of ocular toxoplasmosis (OT) in a sample of a Colombian population (61 patients with OT and 116 healthy controls). Genotyping was performed with the "dideoxynucleotide (ddNTP) primer extension" technique. Functional-effect predictions of single nucleotide polymorphisms (SNPs) were done by using FuncPred. A polymorphism in the IL-10 gene promoter (-1082G/A) was significantly more prevalent in OT patients than in controls ( P = 1.93e-08; odds ratio [OR] = 5.27e+03; 95% confidence interval [CI] = 3.18 to 8.739; Bonferroni correction [BONF] = 3.48e-07). In contrast, haplotype "AG" of the IL-10 gene promoter polymorphisms (rs1800896 and rs1800871) was present at a lower frequency in OT patients ( P = 7e-04; OR = 0.10; 95% CI = 0.03 to 0.35). The +874A/T polymorphism of IFN-γ was associated with OT ( P = 3.37e-05; OR = 4.2; 95% CI = 2.478 to 7.12; BONF = 6.07e-04). Haplotype "GAG" of the IL-1β gene promoter polymorphisms (rs1143634, rs1143627, and rs16944) appeared to be significantly associated with OT ( P = 0.0494). The IL-10, IFN-γ, and IL-1β polymorphisms influence the development of OT in the Colombian population. Copyright © 2018 American Society for Microbiology.

  16. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  17. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE PAGES

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.; ...

    2017-05-15

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  18. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses

    PubMed Central

    Derringer, Jaime; Gratten, Jacob; Lee, James J; Liu, Jimmy Z; de Vlaming, Ronald; Ahluwalia, Tarunveer S; Buchwald, Jadwiga; Cavadino, Alana; Frazier-Wood, Alexis C; Davies, Gail; Furlotte, Nicholas A; Garfield, Victoria; Geisel, Marie Henrike; Gonzalez, Juan R; Haitjema, Saskia; Karlsson, Robert; van der Laan, Sander W; Ladwig, Karl-Heinz; Lahti, Jari; van der Lee, Sven J; Miller, Michael B; Lind, Penelope A; Liu, Tian; Matteson, Lindsay; Mihailov, Evelin; Minica, Camelia C; Nolte, Ilja M; Mook-Kanamori, Dennis O; van der Most, Peter J; Oldmeadow, Christopher; Qian, Yong; Raitakari, Olli; Rawal, Rajesh; Realo, Anu; Rueedi, Rico; Schmidt, Börge; Smith, Albert V; Stergiakouli, Evie; Tanaka, Toshiko; Taylor, Kent; Thorleifsson, Gudmar; Wedenoja, Juho; Wellmann, Juergen; Westra, Harm-Jan; Willems, Sara M; Zhao, Wei; Amin, Najaf; Bakshi, Andrew; Bergmann, Sven; Bjornsdottir, Gyda; Boyle, Patricia A; Cherney, Samantha; Cox, Simon R; Davis, Oliver S P; Ding, Jun; Direk, Nese; Eibich, Peter; Emeny, Rebecca T; Fatemifar, Ghazaleh; Faul, Jessica D; Ferrucci, Luigi; Forstner, Andreas J; Gieger, Christian; Gupta, Richa; Harris, Tamara B; Harris, Juliette M; Holliday, Elizabeth G; Hottenga, Jouke-Jan; De Jager, Philip L; Kaakinen, Marika A; Kajantie, Eero; Karhunen, Ville; Kolcic, Ivana; Kumari, Meena; Launer, Lenore J; Franke, Lude; Li-Gao, Ruifang; Liewald, David C; Koini, Marisa; Loukola, Anu; Marques-Vidal, Pedro; Montgomery, Grant W; Mosing, Miriam A; Paternoster, Lavinia; Pattie, Alison; Petrovic, Katja E; Pulkki-Råback, Laura; Quaye, Lydia; Räikkönen, Katri; Rudan, Igor; Scott, Rodney J; Smith, Jennifer A; Sutin, Angelina R; Trzaskowski, Maciej; Vinkhuyzen, Anna E; Yu, Lei; Zabaneh, Delilah; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Boomsma, Dorret I; Snieder, Harold; Chang, Shun-Chiao; Cucca, Francesco; Deary, Ian J; van Duijn, Cornelia M; Eriksson, Johan G; Bültmann, Ute; de Geus, Eco J C; Groenen, Patrick J F; Gudnason, Vilmundur; Hansen, Torben; Hartman, Catharine A; Haworth, Claire M A; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Hyppönen, Elina; Iacono, William G; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Keltikangas-Järvinen, Liisa; Kraft, Peter; Kubzansky, Laura D; Lehtimäki, Terho; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Mills, Melinda; de Mutsert, Renée; Oldehinkel, Albertine J; Pasterkamp, Gerard; Pedersen, Nancy L; Plomin, Robert; Polasek, Ozren; Power, Christine; Rich, Stephen S; Rosendaal, Frits R; den Ruijter, Hester M; Schlessinger, David; Schmidt, Helena; Svento, Rauli; Schmidt, Reinhold; Alizadeh, Behrooz Z; Sørensen, Thorkild I A; Spector, Tim D; Starr, John M; Stefansson, Kari; Steptoe, Andrew; Terracciano, Antonio; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Uitterlinden, André G; Vollenweider, Peter; Wagner, Gert G; Weir, David R; Yang, Jian; Conley, Dalton C; Smith, George Davey; Hofman, Albert; Johannesson, Magnus; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Pickrell, Joseph K; Esko, Tõnu; Krueger, Robert F; Beauchamp, Jonathan P; Koellinger, Philipp D; Benjamin, Daniel J; Bartels, Meike; Cesarini, David

    2016-01-01

    We conducted genome-wide association studies of three phenotypes: subjective well-being (N = 298,420), depressive symptoms (N = 161,460), and neuroticism (N = 170,910). We identified three variants associated with subjective well-being, two with depressive symptoms, and eleven with neuroticism, including two inversion polymorphisms. The two depressive symptoms loci replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings, and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal/pancreas tissues are strongly enriched for association. PMID:27089181

  19. Single nucleotide polymorphisms in multiple sclerosis: disease susceptibility and treatment response biomarkers.

    PubMed

    Pravica, Vera; Popadic, Dusan; Savic, Emina; Markovic, Milos; Drulovic, Jelena; Mostarica-Stojkovic, Marija

    2012-04-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by unpredictable and variable clinical course. Etiology of MS involves both genetic and environmental factors. New technologies identified genetic polymorphisms associated with MS susceptibility among which immunologically relevant genes are significantly overrepresented. Although individual genes contribute only a small part to MS susceptibility, they might be used as biomarkers, thus helping to identify accurate diagnosis, predict clinical disease course and response to therapy. This review focuses on recent progress in research on MS genetics with special emphasis on the possibility to use single nucleotide polymorphism of candidate genes as biomarkers of susceptibility to disease and response to therapy.

  20. Genetic polymorphisms in the formaldehyde dehydrogenase gene and their biological significance.

    PubMed

    Just, Walter; Zeller, Jasmin; Riegert, Clarissa; Speit, Günter

    2011-11-30

    The GSH-dependent formaldehyde dehydrogenase (FDH) is the most important enzyme for the metabolic inactivation of formaldehyde. We studied three polymorphisms of this gene with the intention to elucidate their relevance for inter-individual differences in the protection against the (geno-)toxicity of FA. The first polymorphism (rs11568816) was investigated using real-time PCR and restriction fragment analysis in 150 subjects. However, we did not find the polymorphic sequence in any of the subjects. We studied a second polymorphism (rs17028487), representing a base exchange (c.*114A>G) in exon 9 of the FDH gene. We analyzed 70 subjects with the SNaPshot Primer Extension method and subsequent analysis in a ABI PRISM 3100, but no variant allele was identified. A third polymorphism, rs13832 in exon 9 (c.*493G>T), was studied in a group of 105 subjects by the SNaPshot Primer Extension method. 43 of the subjects were heterozygous for the polymorphism (G/T), 46 homozygous for the T allele, and 16 were homozygous for the G-allele. Real-time RT-PCR measurements of FDH mRNA did not indicate a significant difference in transcript levels between the heterozygous and the homozygous groups. The in vitro comet assay after FA exposure of blood samples obtained from 5 homozygous GG and 3 homozygous TT subjects did not lead to a significant difference between these two groups. Altogether, our study did not identify biologically relevant polymorphisms in transcribed regions of the FDH gene, which may lead to inter-individual differences in the metabolic inactivation of FA. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Structure and population genetics of the breakpoints of a polymorphic inversion in Drosophila subobscura.

    PubMed

    Papaceit, Montserrat; Segarra, Carmen; Aguadé, Montserrat

    2013-01-01

    Drosophila subobscura is a paleartic species of the obscura group with a rich chromosomal polymorphism. To further our understanding on the origin of inversions and on how they regain variation, we have identified and sequenced the two breakpoints of a polymorphic inversion of D. subobscura--inversion 3 of the O chromosome--in a population sample. The breakpoints could be identified as two rather short fragments (∼300 bp and 60 bp long) with no similarity to any known transposable element family or repetitive sequence. The presence of the ∼300-bp fragment at the two breakpoints of inverted chromosomes implies its duplication, an indication of the inversion origin via staggered double-strand breaks. Present results and previous findings support that the mode of origin of inversions is neither related to the inversion age nor species-group specific. The breakpoint regions do not consistently exhibit the lower level of variation within and stronger genetic differentiation between arrangements than more internal regions that would be expected, even in moderately small inversions, if gene conversion were greatly restricted at inversion breakpoints. Comparison of the proximal breakpoint region in species of the obscura group shows that this breakpoint lies in a small high-turnover fragment within a long collinear region (∼300 kb). © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  2. Determination of IL-1B (rs16944) and IL-6 (rs1800796) genetic polymorphisms in IgA nephropathy in a northwest Chinese Han population.

    PubMed

    Zhang, Daofa; Xie, Maowei; Yang, Xiaohong; Zhang, Yin; Su, Yan; Wang, Yanni; Huang, Haiyang; Han, Hui; Li, Wenning; Fu, Keying; Su, Huiluan; Xu, Wentan; Han, Yeguang; Wang, Ru; Zhang, Pei; Wu, Wei; Huang, Yun; Chen, Daojun; Jin, Tianbo; Wei, Jiali

    2017-09-22

    IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide, but etiology and pathogenesis continue to be poorly understood. Polymorphisms in the cytokine genes may play a role in the etiology and pathogenesis of IgAN. The incidence of different between diverse ethnic groups suggested important genetic influences on its pathogenesis. We genotype 10 single nucleotide polymorphisms (SNPs) in IL-1B and IL-6 gene using Sequenom Mass-ARRAY technology from 417 IgAN patients and 463 healthy controls of the Chinese Han population. We evaluated these SNPs associated with IgAN utilising the chi-square tests and genetic model analysis. We identified that the minor alleles of rs16944 ("A"), rs1800796 ("G") in IL-1B, IL-6 were involved in an increasingly risk of IgAN in allelic model analysis, respectively. The rs16944 in IL-1B and rs1800796 in IL-6 were associated with 1.23-fold (95% CI, 1.02-1.48, P = 0.031) and 1.33-fold (95% CI, 1.11-1.66, P = 0.003) increases in the risk of developing IgAN, respectively. There was only rs1800796 still correlated with IgAN in the allelic model after adjustment by age and gender and the Bonferroni correction. In addition, Haplotype G rs1800796 A rs2069837 G rs2069840 ( P = 0.037) and G rs1800796 A rs2069837 C rs2069840 ( P = 0.042) in IL-6 were considered to be associated with increased IgAN risk. This study verified the IL-6, IL-1B genetic variants polymorphisms contributed to IgAN susceptibility in a Chinese Han population. Although we identified SNPs susceptibility, however, replication studies and functional research are required to confirm the genetic contribution in IgAN.

  3. Determination of IL-1B (rs16944) and IL-6 (rs1800796) genetic polymorphisms in IgA nephropathy in a northwest Chinese Han population

    PubMed Central

    Zhang, Yin; Su, Yan; Wang, Yanni; Huang, Haiyang; Han, Hui; Li, Wenning; Fu, Keying; Su, Huiluan; Xu, Wentan; Han, Yeguang; Wang, Ru; Zhang, Pei; Wu, Wei; Huang, Yun; Chen, Daojun; Jin, Tianbo; Wei, Jiali

    2017-01-01

    IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide, but etiology and pathogenesis continue to be poorly understood. Polymorphisms in the cytokine genes may play a role in the etiology and pathogenesis of IgAN. The incidence of different between diverse ethnic groups suggested important genetic influences on its pathogenesis. We genotype 10 single nucleotide polymorphisms (SNPs) in IL-1B and IL-6 gene using Sequenom Mass-ARRAY technology from 417 IgAN patients and 463 healthy controls of the Chinese Han population. We evaluated these SNPs associated with IgAN utilising the chi-square tests and genetic model analysis. We identified that the minor alleles of rs16944 (“A”), rs1800796 (“G”) in IL-1B, IL-6 were involved in an increasingly risk of IgAN in allelic model analysis, respectively. The rs16944 in IL-1B and rs1800796 in IL-6 were associated with 1.23-fold (95% CI, 1.02-1.48, P = 0.031) and 1.33-fold (95% CI, 1.11-1.66, P = 0.003) increases in the risk of developing IgAN, respectively. There was only rs1800796 still correlated with IgAN in the allelic model after adjustment by age and gender and the Bonferroni correction. In addition, Haplotype Grs1800796A rs2069837G rs2069840 (P = 0.037) and G rs1800796A rs2069837C rs2069840 (P = 0.042) in IL-6were considered to be associated with increased IgAN risk. This study verified the IL-6, IL-1B genetic variants polymorphisms contributed to IgAN susceptibility in a Chinese Han population. Although we identified SNPs susceptibility, however, replication studies and functional research are required to confirm the genetic contribution in IgAN. PMID:29069743

  4. [Genetic polymorphism of the IL8 gene and its associations with milk traits and SCS in Chinese Holstein].

    PubMed

    Chen, Ren-Jin; Yang, Zhang-Ping; Mao, Yong-Jiang; Chen, Ying; Chang, Ling-Ling; Ji, De-Jun; Wu, Hai-Tao; Li, Yun-Long; Li, Rui

    2010-12-01

    The polymorphism of Interleukin-8 (IL8) gene were investigated for 610 Chinese Holstein cows of 30 bull families from a dairy farm in Shanghai using Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP) technique with a mixed animal model to verify the effects of the polymorphisms on some milk productive performance, tested day milk yield, tested day fat percentage, tested day milk protein percentage, 305 d corrected milk yield, 305 d milk fat yield, 305 d milk protein yield, and somatic cell score (SCS). The aim was to explore the significant molecular marker in practical dairy production. Three genotypes were identified and the genotypic frequencies of KK, KA, and AA were 0.187, 0.451, and 0.362, respectively. The gene frequencies of K and A were 0.412 and 0.588. The results showed highly significant (P < 0.01) association of IL8 mutations with tested day milk yield, 305 d milk protein yield, 305 d corrected milk yield and 305 d milk fat yield, SCS and tested day milk protein percentage (P < 0.05). However, no association (P > 0.05) with tested day milk fat percentage was recorded. The cows with KK genotype had higher tested day milk yield, 305 d milk protein yield, 305 d corrected milk yield and 305 d milk fat yield than those with AA and KA genotypes (P < 0.01). The least square mean of SCS for KK was significantly lower than that with AA and KA genotypes (P < 0.01). AA genotype was significant lower in tested day milk protein percentage than KK and KA genotypes (P < 0.05). The IL8 gene genetic diversity has a great genetic effect on milk traits and mastitis resistance and could be a useful genetic marker for Chinese Holstein breeding.

  5. Assessing genetic divergence in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism markers.

    PubMed

    Zhang, F; Ge, Y Y; Wang, W Y; Shen, X L; Yu, X Y

    2012-12-03

    Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F(1) hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars.

  6. BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT.

    PubMed

    Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro; Gregori, Silvia; Bacchetta, Rosa

    2014-11-01

    The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants-other than HLA class I and II-associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R(2)=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10(-8); and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT.

  7. Genetic associations with micronutrient levels identified in immune and gastrointestinal networks.

    PubMed

    Morine, Melissa J; Monteiro, Jacqueline Pontes; Wise, Carolyn; Teitel, Candee; Pence, Lisa; Williams, Anna; Ning, Baitang; McCabe-Sellers, Beverly; Champagne, Catherine; Turner, Jerome; Shelby, Beatrice; Bogle, Margaret; Beger, Richard D; Priami, Corrado; Kaput, Jim

    2014-07-01

    The discovery of vitamins and clarification of their role in preventing frank essential nutrient deficiencies occurred in the early 1900s. Much vitamin research has understandably focused on public health and the effects of single nutrients to alleviate acute conditions. The physiological processes for maintaining health, however, are complex systems that depend upon interactions between multiple nutrients, environmental factors, and genetic makeup. To analyze the relationship between these factors and nutritional health, data were obtained from an observational, community-based participatory research program of children and teens (age 6-14) enrolled in a summer day camp in the Delta region of Arkansas. Assessments of erythrocyte S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma homocysteine (Hcy) and 6 organic micronutrients (retinol, 25-hydroxy vitamin D3, pyridoxal, thiamin, riboflavin, and vitamin E), and 1,129 plasma proteins were performed at 3 time points in each of 2 years. Genetic makeup was analyzed with 1 M SNP genotyping arrays, and nutrient status was assessed with 24-h dietary intake questionnaires. A pattern of metabolites (met_PC1) that included the ratio of erythrocyte SAM/SAH, Hcy, and 5 vitamins were identified by principal component analysis. Met_PC1 levels were significantly associated with (1) single-nucleotide polymorphisms, (2) levels of plasma proteins, and (3) multilocus genotypes coding for gastrointestinal and immune functions, as identified in a global network of metabolic/protein-protein interactions. Subsequent mining of data from curated pathway, network, and genome-wide association studies identified genetic and functional relationships that may be explained by gene-nutrient interactions. The systems nutrition strategy described here has thus associated a multivariate metabolite pattern in blood with genes involved in immune and gastrointestinal functions.

  8. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species.

    PubMed

    Feng, Shangguo; He, Refeng; Yang, Sai; Chen, Zhe; Jiang, Mengying; Lu, Jiangjie; Wang, Huizhong

    2015-08-10

    Two molecular marker systems, start codon targeted (SCoT) and target region amplification polymorphism (TRAP), were used for genetic relationship analysis of 36 Dendrobium species collected from China. Twenty-two selected SCoT primers produced 337 loci, of which 324 (96%) were polymorphic, whereas 13 TRAP primer combinations produced a total of 510 loci, with 500 (97.8%) of them being polymorphic. An average polymorphism information content of 0.953 and 0.983 was detected using the SCoT and TRAP primers, respectively, showing that a high degree of genetic diversity exists among Chinese Dendrobium species. The partition of clusters in the unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis plot based on the SCoT and TRAP markers was similar and clustered the 36 Dendrobium species into four main groups. Our results will provide useful information for resource protection and will also be useful to improve the current Dendrobium breeding programs. Our results also demonstrate that SCoT and TRAP markers are informative and can be used to evaluate genetic relationships between Dendrobium species. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children.

    PubMed

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C; Reyes-López, Miguel A; Quiñones, Luis A

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11-5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62-78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42-191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94-31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05-6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19-31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children.

  10. Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine

    PubMed Central

    Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen

    2017-01-01

    Background Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. Aim In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. Methods and results We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. Conclusions We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine’s potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine

  11. Association of BSG genetic polymorphisms with atherosclerotic cerebral infarction in the Han Chinese population.

    PubMed

    Zhou, Juan; Song, Bingxin; Duan, Xiaomei; Long, Yuming; Lu, Jinfeng; Li, Zhibin; Zeng, Sian; Zhan, Qiong; Yuan, Mei; Yang, Qidong; Xia, Jian

    2014-10-01

    The Basigin (BSG, also known as CD147/extracellular matrix metalloproteinase inducer) belongs to the immunoglobulin superfamily (IgSF). It is a cellular receptor for cyclophilin A (CypA), and is originally known as tumor cell collagenase stimulatory factor (TCSF), which could abundantly expressed on the surface of tumor cells, haematopoietic, monocytes, epithelial endothelial cells and smooth muscle cells. Accumulating evidence showed that BSG played an important role in stimulating the secretion of matrix metalloproteinases (MMPs), which has been reported to be involved in the development of atherosclerosis. Since atherosclerosis is an important risk factor for atherosclerotic cerebral infarction (ACI), we speculate that BSG genetic polymorphisms may influence formation of atherosclerosis and then development of ACI. This study aimed to detect the potential association of the single nucleotide polymorphisms (SNP, -631 G > T, -318 G > C, 10141 G > A and 10826 G > A) of BSG gene in Hunan Han Chinese population with ACI. We genotyped 199 ACI patients and 188 matched healthy controls for the four BSG SNP by method of matrix-assisted laser desorption/ionization-time-offlight mass spectrometry (MALDI-TOF MS). Our results suggested that all the polymorphisms were observed in the subjects from Changsha area of Hunan Province. However, no significant difference was observed between the distribution of these SNP in cases and controls. Therefore, we speculate that BSG genetic polymorphisms might not be an important factor in the development of ACI in our Chinese Han population.

  12. CYP2D6 genetic polymorphisms and their relevance for poisoning due to amfetamines, opioid analgesics and antidepressants.

    PubMed

    Haufroid, Vincent; Hantson, Philippe

    2015-07-01

    Cytochrome P450 2D6 (CYP2D6) is a member of the cytochrome P450 (CYP) superfamily involved in the biotransformation of drugs and substances of abuse encountered in clinical toxicology. Among the CYP superfamily, the CYP2D6 gene is considered as the most polymorphic as more than 105 different alleles have been identified so far. CYP2D6 genetic polymorphisms have the potential to affect the toxicity of their substrates. This review will focus specifically on CYP2D6 genetic polymorphisms and their relevance for poisoning due to amfetamines, opioid analgesics and antidepressants in humans. PubMed (up to August 2013) was searched with the following selection criteria: 'CYP2D6 AND (toxicology OR poisoning OR intoxication OR overdose)'. Of the 454 citations retrieved, only 46 papers dealt with the impact of CYP2D6 polymorphisms on poisoning due to amfetamines, opioid analgesics and antidepressants. amfetamines. While some in vitro studies suggest that CYP2D6-mediated metabolites of 3,4-methylenedioxymethamfetamine (MDMA) are substantially more cytotoxic compared with unchanged MDMA, it is not yet confirmed in human cases of MDMA intoxication that extensive/ultra-rapid CYP2D6 metabolisers could be at higher risk. This would also apply to methamfetamine exposure and the related cardiac and central nervous system toxicity. Opioid analgesics. CYP2D6 ultra-rapid metabolisers are more likely to experience the adverse effects of codeine and tramadol. Opioid analgesics that do not rely on CYP2D6 for therapeutic activity, such as morphine and hydromorphone, may therefore be a better alternative to codeine and tramadol, with the limitation that these drugs have their own set of adverse reactions. Antidepressants. CYP2D6 poor metabolisers are generally more prone to adverse effects. Among them, the four drugs with the highest level of evidence are amitriptyline, nortriptyline, venlafaxine and fluoxetine. Further data are needed, however, for doxepin and paroxetine, while citalopram

  13. [Evaluation of association between 9 genetic polymorphism and myocardial infarction in the Siberian population].

    PubMed

    Maksimov, V N; Kulikov, I V; Orlov, P S; Gafarov, V V; Maliutina, S K; Romashchenko, A G; Voevoda, M I

    2012-01-01

    to evaluate association between genetic polymorphism (SNPs) and myocardial infarction (identified in recent GWAS) as markers of high risk of myocardial infarction (MI) in Siberian population. Patients were divided into 2 groups - MI patients and control group (ratio 1:2) and presented the sapmle of population of Novosibirsk (9400 patients, 45-69 years) within international project HAPIEE (Health, Alcohol and Psychosocial factors In Eastern Europe). 200 patients with MI (129 men, 71 women) were included. Control group - individuals without MI (420) matched for age and sex. Genomic DNA was extracted from venous blood by phenol-chloroform extraction. Gene polymorphism of genes tested by real-time PCR according to protocol (probes TaqMan, Applied Biosystems, USA) with the use of ABI 7900HT. The following SNPs were studied: rs28711149, rs499818, rs619203, rs10757278 and rs1333049 (hr. 9), rs1376251, rs2549513, rs4804611, rs17465637. The association of SNP and MI was confirmed for 4 of 9 studied SNPs: rs1333049 (hr. 9), rs10757278 (hr. 9), rs499818 (hr. 6), rs619203 gene ROS1. Heart rate was associated with rs1333049 and rs10757278. Glucose level was associated with rs619203, rs28711149 and rs1376251. Total cholesterol and atherogenic index was associated with rs28711149. For the first time in Russian population the associations of GWAS with myocardial infarction SNPs was detected for rs619203, rs499818, rs1333049 and rs10757278. These genetic markers can be used for assessing the risk of myocardial infarction in Russian population.

  14. First Insights into the Genetic Diversity of the Pinewood Nematode in Its Native Area Using New Polymorphic Microsatellite Loci

    PubMed Central

    Mallez, Sophie; Castagnone, Chantal; Espada, Margarida; Vieira, Paulo; Eisenback, Jonathan D.; Mota, Manuel; Guillemaud, Thomas; Castagnone-Sereno, Philippe

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, native to North America, is the causative agent of pine wilt disease and among the most important invasive forest pests in the East-Asian countries, such as Japan and China. Since 1999, it has been found in Europe in the Iberian Peninsula, where it also causes significant damage. In a previous study, 94 pairs of microsatellite primers have been identified in silico in the pinewood nematode genome. In the present study, specific PCR amplifications and polymorphism tests to validate these loci were performed and 17 microsatellite loci that were suitable for routine analysis of B. xylophilus genetic diversity were selected. The polymorphism of these markers was evaluated on nematodes from four field origins and one laboratory collection strain, all originate from the native area. The number of alleles and the expected heterozygosity varied between 2 and 11 and between 0.039 and 0.777, respectively. First insights into the population genetic structure of B. xylophilus were obtained using clustering and multivariate methods on the genotypes obtained from the field samples. The results showed that the pinewood nematode genetic diversity is spatially structured at the scale of the pine tree and probably at larger scales. The role of dispersal by the insect vector versus human activities in shaping this structure is discussed. PMID:23554990

  15. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids.

    PubMed

    Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.

  16. Identification of Pyrus Single Nucleotide Polymorphisms (SNPs) and Evaluation for Genetic Mapping in European Pear and Interspecific Pyrus Hybrids

    PubMed Central

    Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E.; Crowhurst, Ross N.; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality. PMID:24155917

  17. Genetic polymorphisms of 54 mitochondrial DNA SNP loci in Chinese Xibe ethnic minority group

    PubMed Central

    Shen, Chun-Mei; Hu, Li; Yang, Chun-Hua; Yin, Cai-Yong; Li, Zhi-Dan; Meng, Hao-Tian; Guo, Yu-Xin; Mei, Ting; Chen, Feng; Zhu, Bo-Feng

    2017-01-01

    We analyzed the genetic polymorphisms of 54 mitochondrial DNA (mtDNA) variants in Chinese Xibe ethnic minority group. A total of 137 unrelated healthy volunteers from Chinese Xibe group were the objects of our study. Among the selected loci, there were 51 variable positions including transitions and transversions, and single nucleotide transitions were common (83.93%) versus transversions. These variations defined 64 different mtDNA haplotypes exclusive of (CA)n and 9 bp deletion variation. The haplotype diversity and discrimination power in Xibe population were 0.9800 ± 0.004 and 0.9699, respectively. Besides, we compared Xibe group with 18 other populations and reconstructed a phylogenetic tree using Neighbor-Joining method. The result revealed that Xibe group was a close to Xinjiang Han and Yanbian Korean groups. Our data also indicated that Xibe group has a close relationship with Daur and Ewenki groups, which is reflected by the history that Xibe was influenced by Daur and Ewenki groups during the development of these groups. In conclusion, the variants we studied are polymorphic and could be used as informative genetic markers for forensic and population genetic application. PMID:28327596

  18. Arsenic exposure assists ccm3 genetic polymorphism in elevating blood pressure

    PubMed Central

    Liu, Xinxia; Xing, Xiumei; Zhang, Huimin; Yun, Jianpei; Ou, Xiaoyan; Su, Xiaolin; Lu, Yao; Sun, Yi; Yang, Yarui; Jiang, Jun; Cui, Dong; Zhuang, Zhixiong; He, Yun

    2018-01-01

    Epidemiologic study has suggested that arsenic exposure is positively related to increased blood pressure. However, the underlying mechanism concerning interaction between genetic polymorphisms and arsenic exposure remains unclear. In present study, within 395 Chinese, the effects of interaction between arsenic exposure and CCM3 gene polymorphisms on elevation of blood pressure were probed by multiple Logistic regression models after adjusting for confounding factors. Firstly, we found that serum arsenic was positively associated with blood pressure, cholesterol, glucose and C-reactive protein. Then, adjusted for confounding factors of age, gender, smoking, alcohol consumption, BMI and degree of education, arsenic exposure incurred the hazard of increased systolic pressure and diastolic pressure, with odds ratios (ORs) being 1.725 and 1.425, respectively. Distinctly, we found that interactions between rs3804610* rs9818496, rs6784267*rs9818496, and rs3804610* rs6784267 variant genotype can increase significantly risks of SBP. Additionally, interactions between rs9818496, rs3804610 and rs6784267 genotypic variantions and arsenic exposure boosted the hazard of increased systolic pressure, with ORs being 1.496, 1.496 and 1.312. In conclusion, our fingdings suggest that As exposure of population can assist CCM3 polymorphism in elevating SBP. PMID:29435151

  19. Glutamate Oxaloacetate Transaminase (Got) Genetics in the Mouse: Polymorphism of Got-1

    PubMed Central

    Chapman, Verne M.; Ruddle, Frank H.

    1972-01-01

    We have examined a polymorphism for the soluble glutamate oxaloacetate (GOT-1) isozyme system which was found in the Asian mouse Mus castaneus. Variants of GOT-1 segregate as though they are controlled by codominant alleles for a single autosomal locus which we have designated Got-1. No close linkage of genes for soluble and mitochondrial forms of the enzyme, GOT-1 and GOT-2 respectively, was observed. Furthermore, no close linkage of Got-1 and the loci c, Gpi-1, Mod-2, Mod-1, Ld-1, Gpd-1, Pgm-1 or Gpo-1 was observed. Our results demonstrate the utility of sampling Mus from diverse populations to extend the repertoire of polymorphic loci and the genetic linkage map. PMID:17248564

  20. Genetics of osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urano, Tomohiko; Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies onmore » twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.« less

  1. Genetic mapping of a food preference gene in the silkworm, Bombyx mori, using restriction fragment length polymorphisms (RFLPs).

    PubMed

    Mase, Keisuke; Iizuka, Tetsuya; Yamamoto, Toshio; Okada, Eiji; Hara, Wajirou

    2007-06-01

    The domesticated silkworm, Bombyx mori, has strict food preferences and grows by feeding on mulberry leaves. However, "Sawa-J", an abnormal feeding habit strain selected from the genetic stock, feeds on an artificial diet without mulberry leaf powder. In this study, the food preference gene in Sawa-J was genetically identified using restriction fragment length polymorphisms (RFLPs) of a cDNA clone on each linkage group. Taking advantage of a lack of genetic recombination in females, reciprocal backcrossed F1 (BC1) progenies were independently prepared using a non-feeding strain, C108, as a mating partner of Sawa-J. Our results of linkage analysis and mapping proved that the feeding behavior is primarily controlled by a major recessive gene mapped at 20.2 cM on RFLP linkage group 9 (RFLG9), and clone e73 at a distance of 4.2 cM was found as the first linked molecular marker.

  2. Genetic association of cyclooxygenase-2 gene polymorphisms with Parkinson's disease susceptibility in Chinese Han population.

    PubMed

    Dai, Yi; Wu, Yuquan; Li, Yansheng

    2015-01-01

    The aim of this study was to explore the genetic association of cyclooxygenase-2 (COX2) gene promoter region polymorphisms with Parkinson's disease (PD) susceptibility in Chinese Han population. The genotyping of COX2 gene polymorphisms was conducted by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 122 patients with PD and 120 healthy persons. The association strength of gene polymorphism with disease was measured by odds ratio (OR) and 95% confidence interval (95% CI) calculated using χ(2) test which also evaluated the Hardy-Weinberg equilibrium (HWE) of gene polymorphism in controls. The linkage disequilibrium and haplotype were also analyzed as evidence in the analysis of association. On condition that the genotypes distributions of COX2 -1290A>G, -1195G>A, -765G>C in the control group all conformed to HWE, however, only the homozygous genotype AA of -1195G>A polymorphism showed an association with PD (OR=0.432, 95% CI=0.196-0.950). In addition, in haplotype analysis, G-A-C haplotype frequency in cases was significantly lower than the controls, compared with the common haplotype A-G-G (P=0.031, OR=0.375, 95% CI=0.149-0.940). COX2 -1195G>A polymorphism might play a protective role in the onset of PD and G-A-C haplotype in this three promoter region polymorphisms also showed a negative association.

  3. The relationship in Japanese infants between a genetic polymorphism in the promoter region of the insulin-like growth factor I gene and the plasma level.

    PubMed

    Kinoshita, Yumiko; Kizaki, Zenro; Ishihara, Yasunori; Nakajima, Hisakazu; Adachi, Shinsuke; Kosaka, Kitaro; Kinugasa, Akihiko; Sugimoto, Tohru

    2007-01-01

    Evidence is accumulating that the promoter region of the insulin-like growth factor I (IGF-I) gene polymorphism and low levels of IGF-I are associated with type 2 diabetes, cardiovascular disease and birth weight; however, the number of wild-type alleles is different in each country. This study aimed to examine the 737/738 marker, a cytosine-adenine repeat in the promoter region of the IGF-I gene polymorphism, and plasma IGF-I levels in Japanese infants and analyze the genetic background. Data were collected for 15 months in Kyoto Prefectural University of Medicine. The body composition parameters of all infants were determined at birth. At 5 days after birth, we took blood samples to measure the product size of the promoter region of the IGF-I gene polymorphism and plasma IGF-I. In a population-based sample of 160 subjects, 6 different alleles and 16 genotypes were identified in the promoter region of the IGF-I gene polymorphism. The existence of a 196-bp allele has proved to result in a low plasma IGF-I level, a small head and chest circumference (p < 0.05) and no significant for premature birth, short-birth height and low-birth weight. This is the first study showing the role of the promoter region of the IGF-I gene polymorphism and the level of plasma IGF-I and body composition parameters in Japanese infants. Our results suggest genetical influence on prenatal growth and serum IGF-I levels.

  4. Association Between Genetic Polymorphisms and Pain Sensitivity in Patients with Hip Osteoarthritis.

    PubMed

    Olesen, Anne E; Nielsen, Lecia M; Feddersen, Søren; Erlenwein, Joachim; Petzke, Frank; Przemeck, Michael; Christrup, Lona L; Drewes, Asbjørn M

    2018-06-01

    Factors such as age, gender, and genetic polymorphisms may explain individual differences in pain phenotype. Genetic associations with pain sensitivity have previously been investigated in osteoarthritis patients, with a focus on the P2X7, TRPV1, and TACR1 genes. However, other genes may play a role as well. Osteoarthritis is a common joint disease, and many patients suffering from this disease are thought to have increased sensitivity to noxious stimuli resulting from sensitization in the nociceptive system. The aim of this study was to investigate if genetic variants of mu, kappa, and delta opioid receptor genes (OPRM1, OPRK1, and OPRD1) and the catechol-O-methyltransferase gene (COMT) influenced the pain phenotype in patients with osteoarthritis. The frequencies of 17 polymorphisms were examined. Pain sensitivity was assessed preoperatively by (1) hip rotation, (2) contact heat stimulation, (3) conditioned pain modulation effect, and (4) pressure stimulation at the tibia in both the affected and the unaffected leg. Ninety-two patients (mean age 66 years) with unilateral hip osteoarthritis were included in the study. Carriage of the OPRM1 rs589046T allele was found to be associated with increased pain ratings during hip rotation (P = 0.04) and increased conditioned pain modulation (P = 0.049). Carriage of the OPRD1 rs2234918C allele was found to be associated with an increased pain detection threshold to contact heat stimulation (P = 0.001). No other associations were found (all P > 0.05). Results from the present study suggest that, in patients with hip osteoarthritis, genetic variants in OPRM1 and OPRD1 may contribute to the pain phenotype. © 2017 World Institute of Pain.

  5. Association of the IFN-γ (+874A/T) Genetic Polymorphism with Paranoid Schizophrenia in Tunisian Population.

    PubMed

    Jemli, Achraf; Eshili, Awatef; Trifa, Fatma; Mechri, Anouar; Zaafrane, Ferid; Gaha, Lotfi; Juckel, George; Tensaout, Besma Bel Hadj Jrad

    2017-02-01

    Since growing evidence suggests a significant role of chronic low-grade inflammation in the physiopathology of schizophrenia, we have hypothesized that functional genetic variant of the IFN gamma (IFN-γ; +874A/T; rs2430561) gene may be involved in the predisposition to schizophrenia. This research is based on a case-control study which aims to identify whether polymorphism of the IFN-γ gene is a risk factor for the development of schizophrenia. The RFLP-PCR genotyping of the IFN-γ gene was conducted on a Tunisian population composed of 218 patients and 162 controls. The IFN-γ (+874A/T) polymorphism analysis showed higher frequencies of minor homozygous genotype (TT) and allele (T) in all patients compared with controls (11.5 vs. 4.9%; p = 0.03, OR = 2.64 and 30.7 vs. 24.1%, p = 0.04, OR = 1.4, respectively). This correlation was confirmed for male but not for female patients. Also, the T allele was significantly more common among patients with paranoid schizophrenia when compared with controls (25.8 vs. 4.9%, p = 0.0001; OR = 6.7). Using the binary regression analysis to eliminate confounding factors as age and sex, only this last association remained significant (p = 0.03; OR = 1.76, CI = 1.05-2.93). In conclusion, our results showed a significant association between +874A/T polymorphism of IFN-γ and paranoid schizophrenia, suggesting that this single nucleotide polymorphism (SNP) or another at proximity could predispose to paranoid schizophrenia. Since the minor allele of this polymorphism was correlated with an increased expression of their product, our study validates the hypothesis of excessive pro-inflammatory cytokine in the physiopathology of paranoid schizophrenia.

  6. Using information content and base frequencies to distinguish mutations from genetic polymorphisms in splice junction recognition sites.

    PubMed

    Rogan, P K; Schneider, T D

    1995-01-01

    Predicting the effects of nucleotide substitutions in human splice sites has been based on analysis of consensus sequences. We used a graphic representation of sequence conservation and base frequency, the sequence logo, to demonstrate that a change in a splice acceptor of hMSH2 (a gene associated with familial nonpolyposis colon cancer) probably does not reduce splicing efficiency. This confirms a population genetic study that suggested that this substitution is a genetic polymorphism. The information theory-based sequence logo is quantitative and more sensitive than the corresponding splice acceptor consensus sequence for detection of true mutations. Information analysis may potentially be used to distinguish polymorphisms from mutations in other types of transcriptional, translational, or protein-coding motifs.

  7. Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1.

    PubMed

    Cheng, Timothy H T; Thompson, Deborah; Painter, Jodie; O'Mara, Tracy; Gorman, Maggie; Martin, Lynn; Palles, Claire; Jones, Angela; Buchanan, Daniel D; Win, Aung Ko; Hopper, John; Jenkins, Mark; Lindor, Noralane M; Newcomb, Polly A; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Giles, Graham G; Pharoah, Paul; Peto, Julian; Cox, Angela; Swerdlow, Anthony; Couch, Fergus; Cunningham, Julie M; Goode, Ellen L; Winham, Stacey J; Lambrechts, Diether; Fasching, Peter; Burwinkel, Barbara; Brenner, Hermann; Brauch, Hiltrud; Chang-Claude, Jenny; Salvesen, Helga B; Kristensen, Vessela; Darabi, Hatef; Li, Jingmei; Liu, Tao; Lindblom, Annika; Hall, Per; de Polanco, Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Aguiar Jnr, Samuel; Teixeira, Manuel R; Dunning, Alison M; Dennis, Joe; Otton, Geoffrey; Proietto, Tony; Holliday, Elizabeth; Attia, John; Ashton, Katie; Scott, Rodney J; McEvoy, Mark; Dowdy, Sean C; Fridley, Brooke L; Werner, Henrica M J; Trovik, Jone; Njolstad, Tormund S; Tham, Emma; Mints, Miriam; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Amant, Frederic; Schrauwen, Stefanie; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif; Czene, Kamila; Meindl, Alfons; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Annibali, Daniela; Depreeuw, Jeroen; Al-Tassan, Nada A; Harris, Rebecca; Meyer, Brian F; Whiffin, Nicola; Hosking, Fay J; Kinnersley, Ben; Farrington, Susan M; Timofeeva, Maria; Tenesa, Albert; Campbell, Harry; Haile, Robert W; Hodgson, Shirley; Carvajal-Carmona, Luis; Cheadle, Jeremy P; Easton, Douglas; Dunlop, Malcolm; Houlston, Richard; Spurdle, Amanda; Tomlinson, Ian

    2015-12-01

    High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10(-9)) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10(-8)), with the alleles showing opposite effects on the risks of the two cancers.

  8. Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1

    PubMed Central

    Cheng, Timothy HT; Thompson, Deborah; Painter, Jodie; O’Mara, Tracy; Gorman, Maggie; Martin, Lynn; Palles, Claire; Jones, Angela; Buchanan, Daniel D.; Ko Win, Aung; Hopper, John; Jenkins, Mark; Lindor, Noralane M.; Newcomb, Polly A.; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Giles, Graham G; Pharoah, Paul; Peto, Julian; Cox, Angela; Swerdlow, Anthony; Couch, Fergus; Cunningham, Julie M; Goode, Ellen L; Winham, Stacey J; Lambrechts, Diether; Fasching, Peter; Burwinkel, Barbara; Brenner, Hermann; Brauch, Hiltrud; Chang-Claude, Jenny; Salvesen, Helga B.; Kristensen, Vessela; Darabi, Hatef; Li, Jingmei; Liu, Tao; Lindblom, Annika; Hall, Per; de Polanco, Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Aguiar Jnr, Samuel; Teixeira, Manuel R.; Dunning, Alison M; Dennis, Joe; Otton, Geoffrey; Proietto, Tony; Holliday, Elizabeth; Attia, John; Ashton, Katie; Scott, Rodney J; McEvoy, Mark; Dowdy, Sean C; Fridley, Brooke L; Werner, Henrica MJ; Trovik, Jone; Njolstad, Tormund S; Tham, Emma; Mints, Miriam; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Amant, Frederic; Schrauwen, Stefanie; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif; Czene, Kamila; Meindl, Alfons; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Annibali, Daniela; Depreeuw, Jeroen; Al-Tassan, Nada A.; Harris, Rebecca; Meyer, Brian F.; Whiffin, Nicola; Hosking, Fay J; Kinnersley, Ben; Farrington, Susan M.; Timofeeva, Maria; Tenesa, Albert; Campbell, Harry; Haile, Robert W.; Hodgson, Shirley; Carvajal-Carmona, Luis; Cheadle, Jeremy P.; Easton, Douglas; Dunlop, Malcolm; Houlston, Richard; Spurdle, Amanda; Tomlinson, Ian

    2015-01-01

    High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10−9) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10−8), with the alleles showing opposite effects on the risks of the two cancers. PMID:26621817

  9. Association of GNLY genetic polymorphisms with chronic liver disease in a Korean population.

    PubMed

    Park, Geun-Hee; Kim, Kyoung-Yeon; Cheong, Jae Youn; Cho, Sung Won; Kwack, KyuBum

    2012-09-01

    Granulysin (GNLY) is found in cytotoxic granules of cytolytic T lymphocytes and natural killer (NK) cells, which are critical for hepatitis B virus (HBV) clearance. GNLY cytotoxicity plays an important role in the defense against viruses or intracellular bacteria. We hypothesized that genetic variation in the GNLY gene could affect the resistance of hosts against HBV infection. We compared the distribution frequencies of GNLY polymorphisms between an HBV-induced chronic liver disease (CLD) group and a spontaneous recovery (SR) control group to determine whether GNLY polymorphisms play a role in HBV clearance. A total of 117 patients in the SR group and 230 patients in the CLD group were enrolled. Samples derived from complex infections, including hepatitis C and human immunodeficiency virus, and those associated with insufficient clinical information (10 samples in SR and 24 samples in CLD) were excluded from the study. The final analysis included 107 SR and 206 CLD samples. DNA was extracted from peripheral blood, and GNLY genotypes were determined by the GoldenGate(®) method. The genotype distribution of the single-nucleotide polymorphisms (SNPs) rs2886767 (C>T), rs1561285 (G>C), and rs11127 (T>C) were significantly different between the SR and CLD groups in a recessive model (p<0.015). These three SNPs were in a complete linkage disequilibrium (LD) block. Diplotype distributions of haplotype (HT) 1 (C-G-T) and HT2 (T-C-C) were significantly different between the SR and CLD groups in a recessive model (p=0.025) and a dominant model (p=0.008). All p-values remained significant after multiple comparisons. GNLY polymorphism genotypes and diplotypes were associated with the chronicity of HBV. These data suggested that genetic variation of GNLY may be an important factor in HBV clearance through the CD8+ T or NK cell-mediated removal of HBV-infected cells from the host.

  10. Genetic diversity of myanmar and indonesia native chickens together with two jungle fowl species by using 102 indels polymorphisms.

    PubMed

    Maw, Aye Aye; Shimogiri, Takeshi; Riztyan; Kawabe, Kotaro; Kawamoto, Yasuhiro; Okamoto, Shin

    2012-07-01

    The efficiency of insertion and/or deletion (indels) polymorphisms as genetic markers was evaluated by genotyping 102 indels loci in native chicken populations from Myanmar and Indonesia as well as Red jungle fowls and Green jungle fowls from Java Island. Out of the 102 indel markers, 97 were polymorphic. The average observed and expected heterozygosities were 0.206 to 0.268 and 0.229 to 0.284 in native chicken populations and 0.003 to 0.101 and 0.012 to 0.078 in jungle fowl populations. The coefficients of genetic differentiation (Gst) of the native chicken populations from Myanmar and Indonesia were 0.041 and 0.098 respectively. The genetic variability is higher among native chicken populations than jungle fowl populations. The high Gst value was found between native chicken populations and jungle fowl populations. Neighbor-joining tree using genetic distance revealed that the native chickens from two countries were genetically close to each other and remote from Red and Green jungle fowls of Java Island.

  11. Association of the widespread A149P hereditary fructose intolerance mutation with newly identified sequence polymorphisms in the aldolase B gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, C.C.; Tolan, D.R.

    1993-04-01

    Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease resulting from the catalytic deficiency of fructose 1-phosphate aldolase (aldolase B) in fructose-metabolizing tissues. The A149P mutation in exon 5 of the aldolase B gene, located on chromosome 9q2l.3-q22.2, is widespread and the most common HFI mutation, accounting for 57% of HFI chromosomes. The possible origin of this mutation was studied by linkage to polymorphisms within the aldolase B gene. DNA fragments of the aldolase B gene containing the polymorphic marker loci from HFI patients homozygous for the A149P allele were amplified by PCR. Absolute linkage to a commonmore » Pvull RFLP allele was observed in 10 A149P homozygotes. In a more informative study, highly heterozygous polymorphisms were detected by direct sequence determination of a PCR-amplified aldolase B gene fragment. Two two-allele, single-base-pair polymorphisms, themselves in absolute linkage disequilibrium, in intron 8 (C at nucleotide 84 and A at nucleotide 105, or T at 84 and G at 105) of the aldolase B gene were identified. Mendelian segregation of these polymorphisms was confirmed in three families. Allele-specific oligonucleotide (ASO) hybridizations with probes for both sequence polymorphisms showed that 47% of 32 unrelated individuals were heterozygous at these loci; the calculated PIC value was .37. Finally, ASO hybridizations of PCR-amplified DNA from 15 HFI patients homozygous for the A149P allele with probes for these sequence polymorphisms revealed absolute linkage disequilibrium between the A149P mutation and the 84T/105G allele. These results are consistent with a single origin of the A149P allele and subsequent spread by genetic drift. 32 refs., 4 figs., 3 tabs.« less

  12. The DNA Methyltransferase 3B -149 Genetic Polymorphism Modulates Lung Cancer Risk from Smoking

    PubMed Central

    Lai, Chung Yu; Huang, Chia Chen; Tsai, Chin Hung; Wang, Jiun Yao; Kerr, Chih Ling; Chen, Yi Yu; Cai, Yan Wei; Wong, Ruey Hong

    2017-01-01

    Background: Smoking can cause increase of DNA methylation and hypermethylation of tumor suppressor genes, this possible contributing to subsequent lung cancer development. DNA methyltransferase 3B (DNMT3B) is crucial in regulation of DNA methylation and it has been proposed that green tea might lower cancer risk through inhibiting its activity. Here, we designed a case-control study to investigate whether the DNMT3B -149 genetic polymorphism could modulate lung cancer risk due to smoking. Possible interactions of smoking and green tea consumption with this DNMT3B genetic polymorphism were also assessed. Materials and Methods: A total of 190 lung cancer patients and 380 healthy controls were recruited. Questionnaires were administered to obtain data on sociodemographic and lifestyle variables, as well as family history of lung cancer. Genotypes for DNMT3B -149 were identified by polymerase chain reaction. Results: Smoking, green tea consumption, exposure to cooking fumes, family history of lung cancer, and the DNMT3B -149 genotype (odds ratio (OR)=2.65; 95% confidence interval (CI) 1.15-6.10) were all significantly associated with the development of lung cancer. Smokers carrying the DNMT3B -149 TT genotype were at elevated risk compared to non-smokers carrying DNMT3B -149 (OR=7.69; 95% CI 2.55-23.14). Interaction of smoking with DNMT3B -149 genotypes was significant regarding lung cancer risk. However, interaction between green tea drinking and DNMT3B -149 genotypes was not. Conclusions: The DNMT3B -149 TT genotype might increase the smoking-associated lung cancer risk. PMID:29072397

  13. Indolethylamine-N-methyltransferase Polymorphisms: Genetic and Biochemical Approaches for Study of Endogenous N,N,-dimethyltryptamine.

    PubMed

    Dean, Jon G

    2018-01-01

    N,N -dimethyltryptamine (DMT) is a powerful serotonergic psychedelic whose exogenous administration elicits striking psychedelic effects in humans. Studies have identified DMT and analogous compounds (e.g., 5-hydroxy-DMT, 5-methoxy-DMT) alongside of an enzyme capable of synthesizing DMT endogenously from tryptamine, indolethylamine- N -methyltransferase (INMT), in human and several other mammalian tissues. Subsequently, multiple hypotheses for the physiological role of endogenous DMT have emerged, from proposed immunomodulatory functions to an emphasis on the overlap between the mental states generated by exogenous DMT and naturally occurring altered states of consciousness; e.g., schizophrenia. However, no clear relationship between endogenous DMT and naturally occurring altered states of consciousness has yet been established from in vivo assays of DMT in bodily fluids. The advent of genetic screening has afforded the capability to link alterations in the sequence of specific genes to behavioral and molecular phenotypes via expression of identified single nucleotide polymorphisms (SNPs) in cell and animal models. As SNPs in INMT may impact endogenous DMT synthesis and levels via changes in INMT expression and/or INMT structure and function, these combined genetic and biochemical approaches circumvent the limitations of assaying DMT in bodily fluids and may augment data from prior in vitro and in vivo work. Therefore, all reported SNPs in INMT were amassed from genetic and biochemical literature and genomic databases to consolidate a blueprint for future studies aimed at elucidating whether DMT plays a physiological role.

  14. Indolethylamine-N-methyltransferase Polymorphisms: Genetic and Biochemical Approaches for Study of Endogenous N,N,-dimethyltryptamine

    PubMed Central

    Dean, Jon G.

    2018-01-01

    N,N-dimethyltryptamine (DMT) is a powerful serotonergic psychedelic whose exogenous administration elicits striking psychedelic effects in humans. Studies have identified DMT and analogous compounds (e.g., 5-hydroxy-DMT, 5-methoxy-DMT) alongside of an enzyme capable of synthesizing DMT endogenously from tryptamine, indolethylamine-N-methyltransferase (INMT), in human and several other mammalian tissues. Subsequently, multiple hypotheses for the physiological role of endogenous DMT have emerged, from proposed immunomodulatory functions to an emphasis on the overlap between the mental states generated by exogenous DMT and naturally occurring altered states of consciousness; e.g., schizophrenia. However, no clear relationship between endogenous DMT and naturally occurring altered states of consciousness has yet been established from in vivo assays of DMT in bodily fluids. The advent of genetic screening has afforded the capability to link alterations in the sequence of specific genes to behavioral and molecular phenotypes via expression of identified single nucleotide polymorphisms (SNPs) in cell and animal models. As SNPs in INMT may impact endogenous DMT synthesis and levels via changes in INMT expression and/or INMT structure and function, these combined genetic and biochemical approaches circumvent the limitations of assaying DMT in bodily fluids and may augment data from prior in vitro and in vivo work. Therefore, all reported SNPs in INMT were amassed from genetic and biochemical literature and genomic databases to consolidate a blueprint for future studies aimed at elucidating whether DMT plays a physiological role. PMID:29740267

  15. Oxidative stress markers and genetic polymorphisms of glutathione S-transferase T1, M1, and P1 in a subset of children with autism spectrum disorder in Lagos, Nigeria.

    PubMed

    Oshodi, Y; Ojewunmi, O; Oshodi, T A; Ijarogbe, G T; Ogun, O C; Aina, O F; Lesi, Fea

    2017-09-01

    The role of oxidative stress has been identified in the development of autism spectrum disorder (ASD), and polymorphisms of glutathione S-transferase have been associated with some diseases linked to oxidative stress. Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a clinical interview were included in the study. Twenty-three age-matched controls without any known genetic/developmental disorder were also recruited. Oxidative stress markers along with the genetic polymorphisms of glutathione S-transferase were determined. Reduced glutathione in ASD patients was significantly lower than the control (P = 0.008), whereas other oxidative stress markers measured were not significantly different in both the control and case populations. The frequencies of GSTT1 and GSTM1 null genotypes were lower among the controls compared with the cases, however, no association risk was observed. The observed risk of carrying Val/Val genotype among the cases was approximately six times that of the controls. Individuals with ASD showed a significant diminished level of reduced glutathione, however, the distribution of GSTT1, GSTM1, and GSTP1 polymorphisms was not found to be associated with autism in this study population.

  16. Kappa-casein polymorphisms among cattle breeds and bison herds

    USGS Publications Warehouse

    Cronin, M.A.; Cockett, N.

    1993-01-01

    We identified the HindIII restriction site polymorphism Of kappa-casein in cattle reported by Pinder et al. (Animal Genetics 22, 11, 1991) and found an additonal polymorphism (RsaI) in cattle and bison. The Hin dIII and Rsa I restriction sites were mapped and three haplotypes (alleles) were identified. Preliminary screening of 39 cattle and 71 bison revealed one allele restricted to cattle, one restricted to bison, and one shared by the species. No fixed allelic differences were observed among cattle breeds or among bison herds or subspecies.

  17. Genetic polymorphisms of the drug-metabolizing enzyme cytochrome P450 3A5 in a Uyghur Chinese population.

    PubMed

    Chen, Zhengshuai; Li, Jingjie; Chen, Peng; Wang, Fengjiao; Zhang, Ning; Yang, Min; Jin, Tianbo; Chen, Chao

    2016-09-01

    1.  Detection of CYP3A5 variant alleles, and knowledge about their allelic frequency in Uyghur ethnic groups, is important to establish the clinical relevance of screening for these polymorphisms to optimize pharmacotherapy. 2. We used DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A5 gene in 96 unrelated healthy Uyghur individuals. We also used SIFT and PolyPhen-2 to predict the protein function of the novel non-synonymous mutation in CYP3A5 coding regions. 3. We found 24 different CYP3A5 polymorphisms in the Uyghur population, three of which were novel: the synonymous mutation 43C > T in exon 1, two mutations 32120C > G and 32245T > C in 3'-untranslated region, and we detected the allele frequencies of CYP3A5*1 and *3 as 64.58% and 35.42%, respectively. While no subjects with CYP3A5*6 were identified. Other identified genotypes included the heterozygous genotype 1A/3A (59.38%) and 1A/3E (11.46%), which lead to decreased enzyme activity. In addition, the frequency of haplotype "TTAGGT" was the most prevalent with 0.781. 4. Our data provide new information regarding CYP3A5 genetic polymorphisms in Uyghur individuals, which may help to improve individualization of drug therapy and offer a preliminary basis for more rational use of drugs.

  18. Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip

    PubMed Central

    Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  19. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  20. Prospective study of MTHFR genetic polymorphisms as a possible etiology of male infertility.

    PubMed

    Li, S-S; Li, J; Xiao, Z; Ren, A-G; Jin, L

    2014-03-24

    The aim of this study was to explore the relationship between 2 genetic polymorphisms of the methylenetetrahydrofolate reductase gene (MTHFR), C677T and A1298C, and determine the long-term reproductive outcome in infertile men. This was a prospective study conducted in an andrology clinic. Men with a 1-year history of infertility were assessed for the MTHFR polymorphisms at a 5-year follow-up. We compared the MTHFR C677T and A1298C polymorphisms by polymerase chain reaction-restriction fragment length polymorphism between men who did and did not bear children during follow-up. Of the 215 men who were infertile at 1 year, 82 (38.1%) remained infertile and 133 (61.9%) achieved natural conception during the 5-year follow-up, with the highest rate in the first year (32.6%). The MTHFR 677TT genotype (homozygote) was associated with a substantially increased risk of infertility during follow-up [odds ratio (OR) = 10.242; 95% confidence interval (CI) = 1.257-83.464] relative to the MTHFR 677CC genotype (wild-type). Risk of infertility was not increased by the MTHFR A1298C polymorphism alone, but was increased by the combination of polymorphisms MTHFR C677T and MTHFR A1298C (OR = 11.818; 95%CI = 1.415-98.674). The homozygous MTHFR C677T genotype was a risk factor for male infertility during 5-year follow-up, whereas a correlation between MTHFR A1298C and infertility was not observed. The MTHFR C677T and MTHFR A1298C polymorphisms had additive effects on male infertility.

  1. Genetic Polymorphisms in Host Antiviral Genes: Associations with Humoral and Cellular Immunity to Measles Vaccine

    PubMed Central

    Haralambieva, Iana H.; Ovsyannikova, Inna G.; Umlauf, Benjamin J.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2014-01-01

    Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-value<0.20. In conclusion, our findings strongly point to genetic variants/genes, involved in antiviral sensing and antiviral control, as critical determinants, differentially modulating the adaptive immune responses to live attenuated measles vaccine in Caucasians and African

  2. Candidate gene study of genetic thrombophilic polymorphisms in pre-eclampsia and recurrent pregnancy loss in Sinhalese women.

    PubMed

    Dissanayake, Vajira H W; Sirisena, Nirmala D; Weerasekera, Lakshini Y; Gammulla, Chumithri G; Seneviratne, Harshalal R; Jayasekara, Rohan W

    2012-09-01

    Genetic thrombophilias are known to contribute to adverse pregnancy outcomes. Studies in Western populations show that 5, 10-methylenetetrahydrofolate reductase (MTHFR) 677C>T and Factor V (F5) 1691G>A (Leiden) polymorphisms are commonly associated with pre-eclampsia and recurrent spontaneous pregnancy loss. The objective of this study was to investigate the association of MTHFR 677C>T (rs1801133); 1298A>C (rs1801131) and F5 1691G>A (rs6025); 4070A>G (rs1800595) polymorphisms with pre-eclampsia and recurrent pregnancy loss among Sinhalese women in Sri Lanka. Genotype and allele frequencies at each polymorphic site in the MTHFR and F5 genes and the haplotypes defined by them were determined in 175 Sinhalese women with pre-eclampsia, 171 normotensive controls, 200 Sinhalese women with two or more recurrent pregnancy losses and 200 controls with two or more living children and no pregnancy losses. Genotyping was done by polymerase chain reaction/restriction fragment length polymorphism. Odds ratios and χ(2) -testing were performed to compare genotype/haplotype frequencies at each polymorphic site for both cases and controls. The genotype frequencies at each polymorphic site in the MTHFR 677C>T; 1298A>C; F5 1691G>A and 4070A>G genes and the haplotypes defined by them were not significantly associated with either pre-eclampsia or recurrent pregnancy loss. There was no significant association of genetic thrombophilia with either early or late pregnancy losses. The MTHFR and F5 polymorphisms and the haplotypes defined by them were not significantly associated with either pre-eclampsia or recurrent pregnancy loss in this group of Sinhalese women. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  3. Effects of VKORC1 Genetic Polymorphisms on Warfarin Maintenance Dose Requirement in a Chinese Han Population

    PubMed Central

    Yan, Xiaojuan; Yang, Feng; Zhou, Hanyun; Zhang, Hongshen; Liu, Jianfei; Ma, Kezhong; Li, Yi; Zhu, Jun; Ding, Jianqiang

    2015-01-01

    Background VKORC1 is reported to be capable of treating several diseases with thrombotic risk, such as cardiac valve replacement. Some single-nucleotide polymorphisms (SNPs) in VKORC1 are documented to be associated with clinical differences in warfarin maintenance dose. This study explored the correlations of VKORC1–1639 G/A, 1173 C/T and 497 T/G genetic polymorphisms with warfarin maintenance dose requirement in patients undergoing cardiac valve replacement. Material/Methods A total of 298 patients undergoing cardiac valve replacement were recruited. During follow-up, clinical data were recorded. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was applied to detect VKORC1–1639 G/A, 1173 C/T and 497 T/G polymorphisms, and genotypes were analyzed. Results Correlations between warfarin maintenance dose and baseline characteristics revealed statistical significances of age, gender and operation methods with warfarin maintenance dose (all P<0.05). Warfarin maintenance dose in VKORC1–1639 G/A AG + GG carriers was obviously higher than in AA carriers (P<0.001). As compared with patients with TT genotype in VKORC1 1173 C/T, warfarin maintenance dose was apparently higher in patients with CT genotype (P<0.001). Linear regression analysis revealed that gender, operation method, method for heart valve replacement, as well as VKORC1–1639 G/A and 1173 C/T gene polymorphisms were significantly related to warfarin maintenance dose (all P<0.05). Conclusions VKORC1 gene polymorphisms are key genetic factors to affect individual differences in warfarin maintenance dose in patients undergoing cardiac valve replacement; meanwhile, gender, operation method and method for heart valve replacement might also be correlate with warfarin maintenance dose. PMID:26583785

  4. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    PubMed Central

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  5. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    PubMed

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  6. Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism.

    PubMed

    Agha, S H; Pilla, F; Galal, S; Shaat, I; D'Andrea, M; Reale, S; Abdelsalam, A Z A; Li, M H

    2008-06-01

    Seven microsatellite markers were used to study genetic diversity of three Egyptian (Egyptian Baladi, Barki and Zaraibi) and two Italian (Maltese and Montefalcone) goat breeds. The microsatellites showed a high polymorphic information content (PIC) of more than 0.5 in most of the locus-breed combinations and indicated that the loci were useful in assessing within- and between-breed variability of domestic goat (Capra hircus). The expected heterozygosity of the breeds varied from 0.670 to 0.792. In the geographically wider distributed Egyptian Baladi breed there were indications for deviations from random breeding. Analysis of genetic distances and population structure grouped the three Egyptian goat breeds together, and separated them from the two Italian breeds. The studied Mediterranean breeds sampled from African and European populations seem to have differentiated from each other with only little genetic exchange between the geographically isolated populations.

  7. BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related stem cell transplantation

    PubMed Central

    Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro

    2014-01-01

    The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We applied a whole genome analysis to investigate genetic variants - other than HLA class I and II - associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single nucleotide polymorphisms in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong Linkage Disequilibrium between each other (R2=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P < 0.00001 for BAT2 SNP rs11538264, and P < 0.0001 for BAT3 SNP rs10484558). Whereas, the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs. 2.6%, nominal P = 1.15×10−8; and adjusted P = 0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT. PMID:25111513

  8. [ROLE OF GENETIC POLYMORPHISM AND DIFFERENCES IN THE DETOXIFICATION OF CHEMICAL SUBSTANCES IN THE HUMAN BODY].

    PubMed

    Mogilenkova, L A; Rembovskiy V R

    2016-01-01

    There are given modern views on the role of genetic polymorphism on the detoxification of chemical substances and individual sensitivity in workers to the development of diseases associated with xenobiotics metabolism disorders. In the search for genetic markers of occupationally caused diseases it is promising to study allelomorphs of genes responsible for the polyfunctional response of the human body, including genes involved in xenobiotic biotransformation. There is substantiated the expediency of compilation and introduction of genetic passports for stuff occupied at hazardous chemical enterprises.

  9. Genetic effects of PDGFRB and MARCH1 identified in GWAS revealing strong associations with semen production traits in Chinese Holstein bulls.

    PubMed

    Liu, Shuli; Yin, Hongwei; Li, Cong; Qin, Chunhua; Cai, Wentao; Cao, Mingyue; Zhang, Shengli

    2017-07-03

    Using a genome-wide association study strategy, our previous study discovered 19 significant single-nucleotide polymorphisms (SNPs) related to semen production traits in Chinese Holstein bulls. Among them, three SNPs were within or close to the phosphodiesterase 3A (PDE3A), membrane associated ring-CH-type finger 1 (MARCH1) and platelet derived growth factor receptor beta (PDGFRB) genes. The present study was designed with the objectives of identifying genetic polymorphism of the PDE3A, PDGFRB and MARCH1 genes and their effects on semen production traits in a Holstein bull population. A total of 20 SNPs were detected and genotyped in 730 bulls. Association analyses using de-regressed estimated breeding values of each semen production trait revealed four statistically significant SNPs for one or more semen production traits (P < 0.05): one SNP was located downstream of PDGFRB and three SNPs were located in the promoter of MARCH1. Interestingly, for MARCH1, haplotype-based analysis revealed significant associations of haplotypes with semen volume per ejaculate. Furthermore, high expression of the MARCH1 gene was observed in sperm cells. One SNP (rs43445726) in the regulatory region of MARCH1 had a significant effect on gene expression. Our study demonstrated the significant associations of genetic variants of the PDGFRB and MARCH1 genes with semen production traits. The identified SNPs may serve as genetic markers to optimize breeding programs for semen production traits in Holstein bull populations.

  10. COMT val158met and 5-HTTLPR Genetic Polymorphisms Moderate Executive Control in Cannabis Users

    PubMed Central

    Verdejo-García, Antonio; Beatriz Fagundo, Ana; Cuenca, Aida; Rodriguez, Joan; Cuyás, Elisabet; Langohr, Klaus; de Sola Llopis, Susana; Civit, Ester; Farré, Magí; Peña-Casanova, Jordi; de la Torre, Rafael

    2013-01-01

    The adverse effects of cannabis use on executive functions are still controversial, fostering the need for novel biomarkers able to unveil individual differences in the cognitive impact of cannabis consumption. Two common genetic polymorphisms have been linked to the neuroadaptive impact of Δ9-tetrahydrocannabinol (THC) exposure and to executive functions in animals: the catechol-O-methyltransferase (COMT) gene val158met polymorphism and the SLC6A4 gene 5-HTTLPR polymorphism. We aimed to test if these polymorphisms moderate the harmful effects of cannabis use on executive function in young cannabis users. We recruited 144 participants: 86 cannabis users and 58 non-drug user controls. Both groups were genotyped and matched for genetic makeup, sex, age, education, and IQ. We used a computerized neuropsychological battery to assess different aspects of executive functions: sustained attention (CANTAB Rapid Visual Information Processing Test, RVIP), working memory (N-back), monitoring/shifting (CANTAB ID/ED set shifting), planning (CANTAB Stockings of Cambridge, SOC), and decision-making (Iowa Gambling Task, IGT). We used general linear model-based analyses to test performance differences between cannabis users and controls as a function of genotypes. We found that: (i) daily cannabis use is not associated with executive function deficits; and (ii) COMT val158met and 5-HTTLPR polymorphisms moderate the link between cannabis use and executive performance. Cannabis users carrying the COMT val/val genotype exhibited lower accuracy of sustained attention, associated with a more strict response bias, than val/val non-users. Cannabis users carrying the COMT val allele also committed more monitoring/shifting errors than cannabis users carrying the met/met genotype. Finally, cannabis users carrying the 5-HTTLPR s/s genotype had worse IGT performance than s/s non-users. COMT and SLC6A4 genes moderate the impact of cannabis use on executive functions. PMID:23449176

  11. Phytomonas: analysis of polymorphism and genetic relatedness between isolates from plants and phytophagous insects from different geographic regions by RAPD fingerprints and synapomorphic markers.

    PubMed

    Serrano, M G; Camargo, E P; Teixeira, M M

    1999-01-01

    The random amplification of polymorphic DNA was used for easy, quick and sensitive assessment of genetic polymorphism within Phytomonas to discriminate isolates and determine genetic relationships within the genus. We examined 48 Phytomonas spp., 31 isolates from plants and 17 from insects, from different geographic regions. Topology of the dendrogram based on randomly amplified polymorphic DNA fingerprints segregated the Phytomonas spp. into 5 main clusters, despite the high genetic variability within this genus. Similar clustering could also be obtained by both visual and cross-hybridization analysis of randomly amplified synapomorphic DNA fragments. There was some concordance between the genetic relationship of isolates and their plant tissue tropism. Moreover, Phytomonas spp. from plants and insects were grouped according to geographic origin, thus revealing a complex structure of this taxon comprising several clusters of very closely related organisms.

  12. Factors associated with anti-TB drug-induced hepatotoxicity and genetic polymorphisms in indigenous and non-indigenous populations in Brazil.

    PubMed

    Heinrich, Melissa M; Zembrzuski, Verônica M; Ota, Marcos M; Sacchi, Flavia P; Teixeira, Raquel L F; Cabello Acero, Pedro H; Cunha, Geraldo Marcelo; Souza-Santos, Reinaldo; Croda, Julio; Basta, Paulo C

    2016-12-01

    Anti-tuberculosis (TB) drugs are responsible for the occurrence of several adverse drug reactions (ADRs), including hepatotoxicity. The aim was to estimate the incidence of hepatotoxicity and its association with genetic polymorphisms and clinical-epidemiological factors by comparing indigenous and non-indigenous TB patients. We investigated clinical-epidemiological variables, serum levels of liver enzymes and NAT2, CYP2E1 and GSTM1 polymorphisms. A non-conditional logistic regression was used to identify the factors associated with hepatotoxicity. Odds ratios were used as the association measures. The incidence of hepatotoxicity was 19.7% for all patients. The risk of hepatotoxicity was almost four times higher in indigenous patients, comparing to non-indigenous. We identified a new nonsynonymous single nucleotide polymorphism of NAT2 in indigenous patients. In total, 54.6% of the patients expressed a slow acetylation phenotype profile. The frequency of the null genotype of GSTM1 was higher in non-indigenous patients (p = 0.002), whereas no significant differences in relation to polymorphisms of CYP2E1 were observed between the groups. Hepatotoxicity was associated with patients older than 60 and indigenous (OR = 26.0; 95%CI:3.1-217.6; OR = 3.8; 95%CI:1.3-11.1, respectively). Furthermore, hepatotoxicity was associated with a slow acetylation profile in indigenous patients (OR = 10.7; 95%CI:1.2-97.2). Our findings suggest that there are distinct acetylation profiles in the Brazilian population, emphasizing the importance of pharmacogenetic analyses for achieving personalized therapeutic schemes and better outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. [Genetic polymorphism and forensic application of 30 InDel loci of Han population in Beijing].

    PubMed

    Bai, Ru-Feng; Jiang, Li-Zhe; Zhang, Zhong; Shi, Mei-Sen

    2013-12-01

    To study the genetic diversities of 30 insertion-deletion (InDel) polymorphisms loci of Han population in Beijing, and to evaluate their forensic application, 210 unrelated healthy individuals of Han population in Beijing were investigated to determine the distributions of allele frequencies by using Investigator DIP system. The PCR products were detected with ABI 3130 XL Genetic Analyzer. Forensic parameters were calculated with relevant statistical analysis software. As a result, after the Bonferroni correction at a 95% significance level, there were no significant departures from Hardy-Weinberg equilibrium or significant linkage disequilibrium between the loci. The power of discrimination (DP) varies between 0.2690 (HLD118) and 0.6330 (HLD45), and the combined discrimination power (TDP) for the 30 InDel loci is 0.999999999985. The combined power of exclusion was 0.98771049 in trio cases (CPE(trio)) and 0.94579456 in duo cases (CPE(duo)). The parentage testing of 32 cases revealed no mutations happened to 30 InDel loci. Multiplex detection of the 30 InDel loci revealed a highly polymorphic genetic distribution in Beijing Han population, which represents a complementary tool in human identification studies, especially in challenging DNA cases.

  14. [Genetic diversity and relationships of northern eurasia populations for polymorphic Alu-insertions].

    PubMed

    Khitrinskaia, I Iu; Khar'kov, V N; Voevoda, M I; Stepanova, V A

    2014-01-01

    We for the first time have examined the autosomal gene pool of the Siberia, Central Asian and the Far East populations (27 populations of 12 ethnic groups) using a set of polymorphic Alu insertions in the human genome. The results of the analysis testify (i) to a significant level of genetic diversity in the Northern Eurasian populations and (ii) to a considerable differentiation of gene pool in the population of this region. It has been shown that at the CD4 locus, the frequency of Alu (-) is inversely related to the Mongoloid component of the population, the lowest and highest frequencies of the Alu deletion at locus CD4 were recorded respectively in Eskimo (0.012) and Russian and Ukrainian (0.35). The analysis of gene flow proved Caucasoid populations (Russian, Tajik and Uzbek), as well as those of Turkic ethnic groups from the Southern Siberia (Altaians and Tuvinians) and Khanty and Mansy populations to be the recipients of a considerable gene flow from the outside of the concerned population system, as compared with the East Siberian and the Far East ethnic groups. The results of the correlation analysis received with use polymorphic Alu insertion testify to the greatest correlation of genetic distances with anthropological characteristics of populations.

  15. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    PubMed

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  16. Genetic predictors of long-term response to growth hormone (GH) therapy in children with GH deficiency and Turner syndrome: the influence of a SOCS2 polymorphism.

    PubMed

    Braz, Adriana F; Costalonga, Everlayny F; Trarbach, Ericka B; Scalco, Renata C; Malaquias, Alexsandra C; Guerra-Junior, Gil; Antonini, Sonir R R; Mendonca, Berenice B; Arnhold, Ivo J P; Jorge, Alexander A L

    2014-09-01

    There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.

  17. PPARγ2Pro12Ala Polymorphism and Human Health

    PubMed Central

    He, Weimin

    2009-01-01

    The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPARγ) is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPARγ have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPARγ, Pro12Ala of PPARγ2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPARγ2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPARγ2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPARγ2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies. PMID:19390629

  18. Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice

    PubMed Central

    Badoni, Saurabh; Das, Sweta; Sayal, Yogesh K.; Gopalakrishnan, S.; Singh, Ashok K.; Rao, Atmakuri R.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17–79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9–21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, “Oryza ISM-ILP marker” database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice. PMID:27032371

  19. A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla

    PubMed Central

    Macé, Matthias; Crouau-Roy, Brigitte

    2008-01-01

    Background The early radiation of the Cetartiodactyla is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (Cetacea and Ruminantia). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields. Results and discussion We report a large interstitial insertion in the Y amelogenin locus in most of the Cetartiodactyla lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species. When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in Cetartiodactyla whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion. The 1 kbp Amel-Y amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region. Conclusion The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the Cetartiodactyla but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science. PMID:18925953

  20. Genetic polymorphisms and their association with brain and behavioural measures in heterogeneous stock mice

    PubMed Central

    Janecka, Magdalena; Marzi, Sarah J.; Parsons, Michael J.; Liu, Lin; Paya-Cano, Jose L.; Smith, Rebecca G.; Fernandes, Cathy; Schalkwyk, Leonard C.

    2017-01-01

    Although the search for quantitative trait loci for behaviour remains a considerable challenge, the complicated genetic architecture of quantitative traits is beginning to be understood. The current project utilised heterogeneous stock (HS) male mice (n = 580) to investigate the genetic basis for brain weights, activity, anxiety and cognitive phenotypes. We identified 126 single nucleotide polymorphisms (SNPs) in genes involved in regulation of neurotransmitter systems, nerve growth/death and gene expression, and subsequently investigated their associations with changes in behaviour and/or brain weights in our sample. We found significant associations between four SNP-phenotype pairs, after controlling for multiple testing. Specificity protein 2 (Sp2, rs3708840), tryptophan hydroxylase 1 (Tph1, rs262731280) and serotonin receptor 3A (Htr3a, rs50670893) were associated with activity/anxiety behaviours, and microtubule-associated protein 2 (Map2, rs13475902) was associated with cognitive performance. All these genes except for Tph1 were expressed in the brain above the array median, and remained significantly associated with relevant behaviours after controlling for the family structure. Additionally, we found evidence for a correlation between Htr3a expression and activity. We discuss our findings in the light of the advantages and limitations of currently available mouse genetic tools, suggesting further directions for association studies in rodents. PMID:28145470

  1. The genetic polymorphism and expression profiles of NLRP3 inflammasome in patients with chronic myeloid leukemia.

    PubMed

    Zhang, Amin; Yu, Jie; Yan, Shuxin; Zhao, Xia; Chen, Chen; Zhou, Ying; Zhao, Xueyun; Hua, Mingqiang; Wang, Ruiqing; Zhang, Chen; Zhong, Chaoqin; He, Na; Ji, Chunyan; Ma, Daoxin

    2018-01-01

    NLRP3 inflammasome has been recently reported as an important risk factor in the development of cancer. But the relationship between polymorphisms of NLRP3 inflammasome related genes and chronic myeloid leukemia (CML) is rarely reported. Therefore, the aim of the present study was to investigate the association of five genetic polymorphisms (NLRP3, IL-1β, IL-18, CARD8 and NF-κB) in 267 CML patients and 344 healthy controls. We found that the AT genotype of CARD8 (rs2043211) was significantly higher compared to TT genotype in high and intermediate risk CML patients. IL-1β (rs16944) polymorphism in early molecular response at 6 months was marginally different, with more GG and less AA genotype in BCR-ABL IS >1% group. IL-18 (rs1946518) polymorphism was significantly different with more GG genotype in BCR-ABL IS >1% group at 6 months. We also demonstrated that WBC count of newly diagnosed patients carrying AG genotype was significantly higher than that of GG or AA genotype of IL-1β (rs16944). The onset age of patients carrying ins/ins genotype of NF-κB (rs28362491) was significantly older than that of ins/del and del/del genotype. Moreover, IL-1β or NLRP3 mRNA expression was decreased and IL-18 mRNA expression was increased significantly in CML patients compared with controls. In conclusion, the genetic polymorphisms of NLRP3 inflammasome may be served as potential predictors for CML. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  2. Genetic Diversity of Myanmar and Indonesia Native Chickens Together with Two Jungle Fowl Species by Using 102 Indels Polymorphisms

    PubMed Central

    Maw, Aye Aye; Shimogiri, Takeshi; Riztyan; Kawabe, Kotaro; Kawamoto, Yasuhiro; Okamoto, Shin

    2012-01-01

    The efficiency of insertion and/or deletion (indels) polymorphisms as genetic markers was evaluated by genotyping 102 indels loci in native chicken populations from Myanmar and Indonesia as well as Red jungle fowls and Green jungle fowls from Java Island. Out of the 102 indel markers, 97 were polymorphic. The average observed and expected heterozygosities were 0.206 to 0.268 and 0.229 to 0.284 in native chicken populations and 0.003 to 0.101 and 0.012 to 0.078 in jungle fowl populations. The coefficients of genetic differentiation (Gst) of the native chicken populations from Myanmar and Indonesia were 0.041 and 0.098 respectively. The genetic variability is higher among native chicken populations than jungle fowl populations. The high Gst value was found between native chicken populations and jungle fowl populations. Neighbor-joining tree using genetic distance revealed that the native chickens from two countries were genetically close to each other and remote from Red and Green jungle fowls of Java Island. PMID:25049646

  3. Genetic polymorphisms associated with fatty liver disease and fibrosis in HIV positive patients receiving combined antiretroviral therapy (cART)

    PubMed Central

    Luda, Carolin; Schwarze-Zander, Carolynne; Boesecke, Christoph; Hansel, Cordula; Nischalke, Hans-Dieter; Lutz, Philipp; Mohr, Raphael; Wasmuth, Jan-Christian; Strassburg, Christian P.; Trebicka, Jonel; Rockstroh, Jürgen Kurt; Spengler, Ulrich

    2017-01-01

    Hepatic steatosis can occur with any antiretroviral therapy (cART). Although single nucleotide polymorphisms (SNPs) have been identified to predispose to alcoholic and non-alcoholic fatty liver disease, their role for treatment-associated steatosis in HIV-positive patients remains unclear. We determined the frequency of PNPLA3 (rs738409), CSPG3/NCAN (rs2228603), GCKR (rs780094), PPP1R3B (rs4240624), TM6SF (rs8542926), LYPLAL1 (rs12137855) and MBOAT7 (rs626283) by RT-PCR in 117 HIV-positive patients on cART and stratified participants based on their “controlled attenuation parameter” (CAP) into probable (CAP: 215–300 dB/m) and definite (CAP >300 dB/m) hepatic steatosis. We analyzed CAP values and routine metabolic parameters according to the allele frequencies. Sixty-five (55.6%) and 13 (11.1%) patients were allocated to probable and definite steatosis. CAP values (p = 0.012) and serum triglycerides (p = 0.043) were increased in carriers of the GCKR (rs780094) A allele. Cox logistic regression identified triglycerides (p = 0.006), bilirubin (p = 0.021) and BMI (p = 0.068), but not the genetic parameters as risk factors for the occurrence of hepatic steatosis. Taken together, according to the limited sample size, this exploratory study generates the hypothesis that genetic polymorphisms seem to exert minor effects on the risk for fatty liver disease in HIV-positive patients on cART. Nevertheless, SNPs may modify metabolic complications once metabolic abnormalities have developed. Hence, subsequent analysis of a larger cohort is needed. PMID:28594920

  4. Genetic Contributions to Age-Related Decline in Executive Function: A 10-Year Longitudinal Study of COMT and BDNF Polymorphisms

    PubMed Central

    Erickson, Kirk I.; Kim, Jennifer S.; Suever, Barbara L.; Voss, Michelle W.; Francis, B. Magnus; Kramer, Arthur F.

    2008-01-01

    Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) were related to the trajectory of cognitive decline occurring over a 10-year period in older adults. A single nucleotide polymorphism in the COMT (Val158/108Met) gene affects the concentration of dopamine in the prefrontal cortex. In addition, a Val/Met substitution in the pro-domain for BDNF (Val66Met) affects the regulated secretion and trafficking of BDNF with Met carriers showing reduced secretion and poorer cognitive function. We found that impairments over the 10-year span on a task-switching paradigm did not vary as a function of the COMT polymorphism. However, for the BDNF polymorphism the Met carriers performed worse than Val homozygotes at the first testing session but only the Val homozygotes demonstrated a significant reduction in performance over the 10-year span. Our results argue that the COMT polymorphism does not affect the trajectory of age-related executive control decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive decay in old age. These results are discussed in relation to the role of BDNF in senescence and the transforming impact of the Met allele on cognitive function in old age. PMID:18958211

  5. Evaluation of Genetic Polymorphism of Leishmania (V.) braziliensis Isolates Obtained from the Same Patient before and after Therapeutic Failure or Reactivation of Cutaneous Lesions

    PubMed Central

    Baptista, Cibele; Schubach, Armando de Oliveira; Madeira, Maria de Fatima; de Freitas Campos Miranda, Luciana; Guimarães de Souza Pinto, Andressa; Helena da Silva Barros, Juliana; Conceição-Silva, Fatima; Fernandes Pimentel, Maria Ines; da Silva Pacheco, Raquel

    2012-01-01

    The aim of this study was to investigate genetic polymorphism in Leishmania braziliensis population previously typed through isoenzyme electrophoresis, isolated from the same patient in two different moments: (A) before the beginning of treatment and (B) after treatment failure to meglumine antimoniate or reactivation after successful initial treatment. Fifteen pairs of isolates were assessed using the polymorphic molecular marker LSSP-PCR and following the phenetic analysis. The genetic profiles of the 30 samples were grouped in four clusters. Only two patients presented total identity in the A and B isolates. Most isolates presented similarity coefficients varying from 0.63 to 0.91. In this group of patients genetic polymorphisms could be observed indicating low similarity between the pairs of isolates. The results demonstrate the existence of genetic polymorphism between the samples isolated before treatment and after reactivation or treatment failure, suggesting a possible differentiation of the structure of the original parasite population which could be involved in the mechanisms of resistance to treatment or reactivation of lesions in the ATL. This phenomenon is important, although other factors also could be involved in this context and are discussed in this paper. PMID:23304168

  6. Genetic and epigenetic diversity and structure of Phragmites australis from local habitats of the Songnen Prairie using amplified fragment length polymorphism markers.

    PubMed

    Qiu, T; Jiang, L L; Yang, Y F

    2016-08-19

    The genetic and epigenetic diversity and structure of naturally occurring Phragmites australis populations occupying two different habitats on a small spatial scale in the Songnen Prairie in northeastern China were investigated by assessing amplified fragment length polymorphisms (AFLPs) and methylation-sensitive amplified polymorphisms (MSAPs) through fluorescent capillary detection. The two groups of P. australis were located in a seasonal waterlogged low-lying and alkalized meadow with a pH of 8-8.5 and in an alkaline patch without accumulated rainwater and with a pH greater than 10. These groups showed high levels of genetic diversity at the habitat level based on the percentage of polymorphic bands (90.32, 82.56%), Nei's gene diversity index (0.262, 0.248), and the Shannon diversity index (0.407, 0.383). Although little is known about the between-habitat genetic differentiation of P. australis on a small spatial scale, our results implied significant genetic differentiation between habitats. Extensive epigenetic diversity within habitats, along with clear differentiation, was found. Specifically, the former habitat (Habitat 1, designated H1) harbored higher levels of genetic and epigenetic diversity than the latter (Habitat 2, designated H2), and population-level diversity was also high. This study represents one of few attempts to predict habitat-based genetic differentiation of reeds on a small scale. These assessments of genetic and epigenetic variation are integral aspects of molecular ecological studies on P. australis. Possible causes for within- and between-habitat genetic and epigenetic variations are discussed.

  7. Characterization of early follicular cDNA library suggests evidence for genetic polymorphisms in the inbred strain C108 of Bombyx mori.

    PubMed

    Mills, D R; Goldsmith, M R

    2000-04-01

    Recent work towards the completion of a saturated molecular genetic linkage map for the lepidopteran silkworm, Bombyx mori (n = 28), has provided evidence for existing polymorphisms in the inbred strain C108. Two inbred parental strains, p50 and C108, were crossed to produce the F1 (P/C) hybrid offspring. The populations used in this project were comprised of a combination of 29 F2 (F1 x F1) and 31 reciprocal backcross (P/C x C/C, P/C x P/P) progeny. All restriction fragment length polymorphisms (RFLPs) for the initial analysis were hybridized with anonymous probes derived from a random early follicular cDNA (Rcf) library from Bombyx. A total of 19 Rcf probes were selected as showing scorable codominant polymorphic patterns when screened against F2 and backcross DNAs digested with the restriction enzymes EcoRI, HindIII, or PstI, and Southern blotted to nylon membranes for hybridization. Of the newly reported Rcf probes, 7 (37%) were characterized as producing 'simple' polymorphic patterns, while 12 (63%) were characterized as producing 'complex' polymorphic patterns. Further characterization of the complex patterns subdivided this group into two general classes: polymorphisms that contained an additional allele, and multiple bands that contained an easily scored two banded polymorphism. Because the extra allele class was limited to the (P/C x C/C) backcross progeny, it is suggested that the inbred parental strain C108 harbors polymorphic loci that are inherited in a simple Mendelian fashion. A genetic analysis discussing plausible origins and maintenance of these polymorphisms is presented.

  8. Genetic polymorphisms of ADH1B, ADH1C and ALDH2 in Turkish alcoholics: lack of association with alcoholism and alcoholic cirrhosis.

    PubMed

    Vatansever, Sezgin; Tekin, Fatih; Salman, Esin; Altintoprak, Ender; Coskunol, Hakan; Akarca, Ulus Salih

    2015-05-17

    No data exists regarding the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) gene polymorphisms in Turkish alcoholic cirrhotics. We studied the polymorphisms of ADH1B, ADH1C and ALDH2 genes in alcoholic cirrhotics and compared the results with non-cirrhotic alcoholics and healthy volunteers. Overall, 237 subjects were included for the study: 156 alcoholic patients (78 cirrhotics, 78 non-cirrhotic alcoholics) and 81 healthy volunteers. Three different single-nucleotide-polymorphism genotyping methods were used. ADH1C genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism method. The identified ADH1C genotypes were named according to the presence or absence of the enzyme restriction sites. ADH1B (Arg47Hys) genotyping was performed using the allele specific primer extension method, and ALDH2 (Glu487Lys) genotyping was performed by a multiplex polymerase chain reaction using two allele-specific primer pairs. For ADH1B, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 97.4%, 94.9% and 99.4%, respectively. For ADH1C, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 47%, 36.3% and 45%, respectively. There was no statistical difference between the groups for ADH1B and ADH1C (p>0.05). All alcoholic and non-alcoholic subjects (100%) had the allele *1 for ALDH2. The obtained results for ADH1B, ADH1C, and ALDH gene polymorphisms in the present study are similar to the results of Caucasian studies. ADH1B and ADH1C genetic variations are not related to the development of alcoholism or susceptibility to alcoholic cirrhosis. ALDH2 gene has no genetic variation in the Turkish population.

  9. Genetic Polymorphisms and Phenotypic Profiles of Sulfadiazine-Resistant and Sensitive Toxoplasma gondii Isolates Obtained from Newborns with Congenital Toxoplasmosis in Minas Gerais, Brazil.

    PubMed

    Silva, Letícia Azevedo; Reis-Cunha, João Luís; Bartholomeu, Daniella Castanheira; Vítor, Ricardo Wagner Almeida

    2017-01-01

    Previous Toxoplasma gondii studies revealed that mutations in the dhps (dihydropteroate synthase) gene are associated with resistance to sulfonamides. Although Brazilian strains are genotypically different, very limited data are available regarding the susceptibility of strains obtained from human to sulfonamides. The aim of this study was to evaluate the efficacy of sulfadiazine (SDZ) against Brazilian isolates of T. gondii and verify whether isolates present polymorphisms in the dhps gene. We also investigated whether the virulence-phenotype and/or genotype were associated with the profile of susceptibility to SDZ. Five T. gondii isolates obtained from newborns with congenital toxoplasmosis were used to verify susceptibility. Mice were infected with 104 tachyzoites and orally treated with different doses of SDZ. The mortality curve was evaluated by the Log-rank test. The presence of polymorphisms in the dhps gene was verified using sequencing. A descriptive analysis for 11 Brazilian isolates was used to assess the association between susceptibility, genotype, and virulence-phenotype. Statistical analysis showed that TgCTBr03, 07, 08, and 16 isolates were susceptible to SDZ, whereas TgCTBr11 isolate presented a profile of resistance to SDZ. Nineteen polymorphisms were identified in dhps exons. Seven polymorphisms corresponded to non-synonymous mutations, with four being new mutations, described for the first time in this study. No association was found between the profile of susceptibility and the virulence-phenotype or genotype of the parasite. There is a high variability in the susceptibilities of Brazilian T. gondii strains to SDZ, with evidence of drug resistance. Despite the large number of polymorphisms identified, the profile of susceptibility to SDZ was not associated with any of the dhps variants identified in this study. Other genetic factors, not yet determined, may be associated with the resistance to SDZ; thus, further studies are needed as a basis

  10. Genetic Polymorphisms and Phenotypic Profiles of Sulfadiazine-Resistant and Sensitive Toxoplasma gondii Isolates Obtained from Newborns with Congenital Toxoplasmosis in Minas Gerais, Brazil

    PubMed Central

    Silva, Letícia Azevedo; Reis-Cunha, João Luís; Bartholomeu, Daniella Castanheira; Vítor, Ricardo Wagner Almeida

    2017-01-01

    Background Previous Toxoplasma gondii studies revealed that mutations in the dhps (dihydropteroate synthase) gene are associated with resistance to sulfonamides. Although Brazilian strains are genotypically different, very limited data are available regarding the susceptibility of strains obtained from human to sulfonamides. The aim of this study was to evaluate the efficacy of sulfadiazine (SDZ) against Brazilian isolates of T. gondii and verify whether isolates present polymorphisms in the dhps gene. We also investigated whether the virulence-phenotype and/or genotype were associated with the profile of susceptibility to SDZ. Methods Five T. gondii isolates obtained from newborns with congenital toxoplasmosis were used to verify susceptibility. Mice were infected with 104 tachyzoites and orally treated with different doses of SDZ. The mortality curve was evaluated by the Log-rank test. The presence of polymorphisms in the dhps gene was verified using sequencing. A descriptive analysis for 11 Brazilian isolates was used to assess the association between susceptibility, genotype, and virulence-phenotype. Results Statistical analysis showed that TgCTBr03, 07, 08, and 16 isolates were susceptible to SDZ, whereas TgCTBr11 isolate presented a profile of resistance to SDZ. Nineteen polymorphisms were identified in dhps exons. Seven polymorphisms corresponded to non-synonymous mutations, with four being new mutations, described for the first time in this study. No association was found between the profile of susceptibility and the virulence-phenotype or genotype of the parasite. Conclusions There is a high variability in the susceptibilities of Brazilian T. gondii strains to SDZ, with evidence of drug resistance. Despite the large number of polymorphisms identified, the profile of susceptibility to SDZ was not associated with any of the dhps variants identified in this study. Other genetic factors, not yet determined, may be associated with the resistance to SDZ; thus

  11. Genetic polymorphisms of 20 autosomal STR loci in the Vietnamese population from Yunnan Province, Southwest China.

    PubMed

    Zhang, Xiufeng; Hu, Liping; Du, Lei; Nie, Aiting; Rao, Min; Pang, Jing Bo; Nie, Shengjie

    2017-05-01

    The genetic polymorphisms of 20 autosomal short tandem repeat (STR) loci included in the PowerPlex® 21 kit were evaluated in 522 healthy unrelated Vietnamese from Yunnan, China. All of the loci reached the Hardy-Weinberg equilibrium. These loci were examined to determine allele frequencies and forensic statistical parameters. The combined discrimination power and probability of excluding paternity of the 20 STR loci were 0.999999999999999999999991 26 and 0.999999975, respectively. Results suggested that the 20 STR loci are highly polymorphic, which is suitable for forensic personal identification and paternity testing.

  12. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis.

    PubMed

    Jain, A; Bhatia, S; Banga, S S; Prakash, S; Lakshmikumaran, M

    1994-04-01

    RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism was present among the exotic ones. Based on the pair-wise comparisons of amplification products the genetic similarity was calculated using Jaccard's similarity coefficients and a dendrogram was constructed using an unweighted pair group method was arithmetical averages (UPGMA). On the basis of this analysis the genotypes were clustered into two groups, A and B. Group A comprised only exotic genotypes, whereas all the Indian genotypes and four of the exotic genotypes were clustered in group B. Almost similar genotypic rankings could also be established by computing as few as 200 amplification products. In general, a high per cent of heterosis was recorded in crosses involving Indian x exotic genotypes. On the other hand, when crosses were made amongst Indian or exotic genotypes, about 80% of them exhibited negative heterosis. Results from this study indicate that, despite the lack of direct correlation between the genetic distance and the degree of heterosis, genetic diversity forms a very useful guide not only for investigating the relationships among Brassica genotypes but also in the selection of parents for heterotic hybrid combinations.

  13. Salivary protein polymorphisms and risk of dental caries: a systematic review.

    PubMed

    Lips, Andrea; Antunes, Leonardo Santos; Antunes, Lívia Azeredo; Pintor, Andrea Vaz Braga; Santos, Diana Amado Baptista Dos; Bachinski, Rober; Küchler, Erika Calvano; Alves, Gutemberg Gomes

    2017-06-05

    Dental caries is an oral pathology associated with both lifestyle and genetic factors. The caries process can be influenced by salivary composition, which includes ions and proteins. Studies have described associations between salivary protein polymorphisms and dental caries experience, while others have shown no association with salivary proteins genetic variability. The aim of this study is to assess the influence of salivary protein polymorphisms on the risk of dental caries by means of a systematic review of the current literature. An electronic search was performed in PubMed, Scopus, and Virtual Health Library. The following search terms were used: "dental caries susceptibility," "dental caries," "polymorphism, genetics," "saliva," "proteins," and "peptides." Related MeSH headings and free terms were included. The inclusion criteria comprised clinical investigations of subjects with and without caries. After application of these eligibility criteria, the selected articles were qualified by assessing their methodological quality. Initially, 338 articles were identified from the electronic databases after exclusion of duplicates. Exclusion criteria eliminated 322 articles, and 16 remained for evaluation. Eleven articles found a consistent association between salivary protein polymorphisms and risk of dental caries, for proteins related to antimicrobial activity (beta defensin 1 and lysozyme-like protein), pH control (carbonic anhydrase VI), and bacterial colonization/adhesion (lactotransferrin, mucin, and proline-rich protein Db). This systematic review demonstrated an association between genetic polymorphisms and risk of dental caries for most of the salivary proteins.

  14. Meta-analysis of the association between COL9A2 genetic polymorphisms and lumbar disc disease susceptibility.

    PubMed

    Zhang, Zhaobo; Zhang, Jingsheng; Ding, Lingzhi; Teng, Xiao

    2014-09-15

    Meta-analysis to collect all the relevant studies to date to further investigate whether or not the COL9A2 gene rs12077871, rs12722877, and rs7533552 polymorphism are associated with susceptibility to lumbar disc disease (LDD). The aim of this study was to assess the association between the COL9A2 gene rs12077871, rs12722877, and rs7533552 and LDD. LDD is a common musculoskeletal disease with strong genetic determinants. COL9A2 encodes the α2 (IX) chain of type IX collagen, which is the major collagen component of the hyaline cartilage. Growing numbers of studies have revealed the association between COL9A2 polymorphisms and susceptibility to LDD. However, those studies have yielded contradictory results. Data were collected from the following electronic databases: PubMed, Web of Knowledge, and China National Knowledge Infrastructure, with the last report up to November 30, 2013. The odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of association under the allelic genetic model. We summarized the data on the association between COL9A2 rs12077871, rs12722877, and rs7533552 polymorphism and LDD in the overall studies. Nine case-control studies, including 1522 LDD cases and 1646 controls, were identified. The results indicated that the rs12077871, rs12722877, and rs7533552 variants in COL9A2 were not associated with LDD (rs12077871: C vs. T, OR = 0.541, 95% CI = 0.256-1.147, P = 0.109; rs12722877: C vs. G, OR = 1.199, 95% CI = 0.992-1.448, P = 0.06; rs7533552: A vs. G, OR = 0.993, 95% CI = 0.815-1.069, P = 0.320). Furthermore, the Egger test and the Begg funnel plot did not show any evidence of publication bias. Our results suggest that the COL9A2 rs12077871, rs12722877, and rs7533552 polymorphisms may not be associated with LDD. More studies based on larger sample sizes and homogeneous samples of patients with LDD are needed to confirm these findings. 2.

  15. A Simple Sequence Repeat- and Single-Nucleotide Polymorphism-Based Genetic Linkage Map of the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Jairin, Jirapong; Kobayashi, Tetsuya; Yamagata, Yoshiyuki; Sanada-Morimura, Sachiyo; Mori, Kazuki; Tashiro, Kosuke; Kuhara, Satoru; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Matsumura, Masaya; Yasui, Hideshi

    2013-01-01

    In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH. PMID:23204257

  16. Genetic association analysis of Osteopontin and Matrix Gla Protein genes polymorphisms with primary knee osteoarthritis in Mexican population.

    PubMed

    Borgonio-Cuadra, Verónica Marusa; González-Huerta, Norma Celia; Rojas-Toledo, Emma Xochitl; Morales-Hernández, Eugenio; Pérez-Hernández, Nonanzit; Rodríguez-Pérez, José Manuel; Tovilla-Zárate, Carlos Alfonso; González-Castro, Thelma Beatriz; Hernández-Díaz, Yazmín; López-Narváez, María Lilia; Miranda-Duarte, Antonio

    2018-05-18

    Primary osteoarthritis (OA) is a complex entity in which several loci related to different molecular pathways or classes of molecules are associated with its development as demonstrated through genetic association studies. Genes involved in bone formation and mineralization, such as osteopontin (OPN) and Matrix Gla protein (MGP), could also be related with OA. The aim of this study was to evaluate the association between the genetic variants of OPN and MGP with primary knee osteoarthritis in a Mexican population. A case-control study was conducted in 296 patients with primary knee osteoarthritis and in 354 control subjects. Study groups were assessed radiologically. The rs11730582 of OPN and rs1800802, rs1800801, and rs4236 of MGP were determined by TaqMan allele discrimination assays. The haplotypes of the polymorphisms of MGP were constructed. The association was tested through univariate and multivariate non-conditional logistic regression analyses. The polymorphisms of MGP complied with Hardy-Weinberg (HW) equilibrium. The polymorphisms of OPN and MGP were not significantly associated with primary knee osteoarthritis in the codominant, dominant, and recessive models (p > 0.05). Our study suggests that there are no associations between OPN and MGP polymorphisms with primary knee osteoarthritis in Mexican population.

  17. Distribution of stromal cell-derived factor-1 genetic polymorphism in head and neck cancer patients of Indonesian population

    NASA Astrophysics Data System (ADS)

    Sabrina, H.; Midoen, Y. H.; Soedarsono, N.; Djamal, N. Z.; Suhartono, A. W.; Auerkari, E. I.

    2018-05-01

    Head and neck cancer (HNC), the fourth most common cancer in Indonesia, is associated with several risk factors, including genetic ones. The chemokine Stromal Cell-Derived Factor-1 (SDF-1) contributes to tumor growth, angiogenesis, and metastasis of cancer. Recent studies suggest the G801A genetic polymorphism of SDF-1 as a factor increasing susceptibility to HNC. The aim of this study was to investigate whether the G801A polymorphism of SDF-1 is associated with the susceptibility of HNC in the Indonesian population. Samples from 50 head and neck cancer patients and 50 healthy controls were genotyped by PCR-RFLP method. The distributions of genotypes and alleles were analyzed for the Hardy-Weinberg Equilibrium (HWE) and for the potential association with the head and neck cancer susceptibility by Fisher’s exact test. The study showed no statistically significant difference in the frequencies of SDF-1 G801A polymorphism between the control and case groups. The homozygous variant genotype occurred at low frequency in both cancer and control groups, while the wild type was not less common in the cancer group than in the control group. Unlike in some studies on other Asian populations, the polymorphism was not found to be significantly associated with HNC susceptibility in the Indonesian population.

  18. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes.

    PubMed

    Albrechtsen, A; Grarup, N; Li, Y; Sparsø, T; Tian, G; Cao, H; Jiang, T; Kim, S Y; Korneliussen, T; Li, Q; Nie, C; Wu, R; Skotte, L; Morris, A P; Ladenvall, C; Cauchi, S; Stančáková, A; Andersen, G; Astrup, A; Banasik, K; Bennett, A J; Bolund, L; Charpentier, G; Chen, Y; Dekker, J M; Doney, A S F; Dorkhan, M; Forsen, T; Frayling, T M; Groves, C J; Gui, Y; Hallmans, G; Hattersley, A T; He, K; Hitman, G A; Holmkvist, J; Huang, S; Jiang, H; Jin, X; Justesen, J M; Kristiansen, K; Kuusisto, J; Lajer, M; Lantieri, O; Li, W; Liang, H; Liao, Q; Liu, X; Ma, T; Ma, X; Manijak, M P; Marre, M; Mokrosiński, J; Morris, A D; Mu, B; Nielsen, A A; Nijpels, G; Nilsson, P; Palmer, C N A; Rayner, N W; Renström, F; Ribel-Madsen, R; Robertson, N; Rolandsson, O; Rossing, P; Schwartz, T W; Slagboom, P E; Sterner, M; Tang, M; Tarnow, L; Tuomi, T; van't Riet, E; van Leeuwen, N; Varga, T V; Vestmar, M A; Walker, M; Wang, B; Wang, Y; Wu, H; Xi, F; Yengo, L; Yu, C; Zhang, X; Zhang, J; Zhang, Q; Zhang, W; Zheng, H; Zhou, Y; Altshuler, D; 't Hart, L M; Franks, P W; Balkau, B; Froguel, P; McCarthy, M I; Laakso, M; Groop, L; Christensen, C; Brandslund, I; Lauritzen, T; Witte, D R; Linneberg, A; Jørgensen, T; Hansen, T; Wang, J; Nielsen, R; Pedersen, O

    2013-02-01

    Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) >1% with common metabolic phenotypes. The study comprised three stages. We performed medium-depth (8×) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI >27.5 kg/m(2) and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case-control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Exome sequencing identified 70,182 polymorphisms with MAF >1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 × 10(-14)), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 × 10(-11)) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 × 10(-10)). We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.

  19. Molecular genetics of cystinuria: Identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasparini, P.; Bisceglia, L.; Notarangelo, A.

    A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the disease have been described. The frequency of these mutations has been investigated in a large sample of 51 Italian and Spanish cystinuric patients. In addition, to identify new mutated alleles, genomic DNA has been analyzed by an accurate and sensitive method able to detect nucleotide changes. Because of the lack of information available on the genomic structure of rBAT gene, the study was carried out using the sequence data so far obtained by us. More than 70% of the entire coding sequence and 8 intron-exon boundariesmore » have been analyzed. Four new mutations and seven intragenic polymorphisms have been detected. All mutations so far identified in rBAT belong only to cystinuria type I alleles, accounting for {approximately} 44% of all type I cystinuric chromosomes. Mutation M467T is the most common mutated allele in the Italian and Spanish populations. After analysis of 70% of the rBAT coding region, we have detected normal sequences in cystinuria type II and type III chromosomes. The presence of rBAT mutated alleles only in type I chromosomes of homozygous (type I/I) and heterozygous (type I/III) patients provides evidence for genetic heterogeneity where rBAT would be responsible only for type I cystinuria and suggests a complementation mechanism to explain the intermediate type I/type III phenotype. 25 refs., 1 fig., 3 tabs.« less

  20. Glutathion-S-Transferase P1 polymorphisms association with broncopulmonary dysplasia in preterm infants

    PubMed Central

    Karagianni, P; Rallis, D; Fidani, L; Porpodi, M; Kalinderi, K; Tsakalidis, C; Nikolaidis, N

    2013-01-01

    Background: Oxidative stress, characterized by the excretion of pre-oxidative and anti-oxidative proteases, has a key role in the pathogenesis of bronchopulmonary dysplasia (BPD). One of the many host anti-oxidant enzymes is glutathione-S-transferase P1 (GSTP1), with three polymorphic alleles having been identified: homozygous ile, heterozygous ile/val and homozygous val isomorph. The aim of this study was to examine the genetic predisposition to BPD in the GSTP1 polymorphisms. Methods: A prospective case-control study was carried out in the 2nd Neonatal Intensive Care Unit of Aristotle University in Thessaloniki, Greece during 2008. The genetic polymorphisms of GSTP1 in 28 preterms <32 weeks gestational age (GA) with BPD compared to 74 controls (33 preterms without BPD and 41 healthy terms) were examined. Results: The homozygous ile isomorph was predominant in all groups (preterms with BPD: 82%, preterms without BPD: 70%, healthy terms: 78%), followed by the heterozygous ile/val (14%, 18% and 20% respectively) and the homozygous val isomorph (4%, 12% and 2% respectively). The homozygous ile isomorph was also identified in the majority of preterms with mild (80%), moderate (100%) and severe (73%) BPD. The GSTP1 genetic distribution did not differ between the groups and GSTP1 polymorphisms were not associated with the severity of BPD. Conclusions: This study could not confirm an association between GSTP1 polymorphisms and the development of BPD or the severity of the disease. PMID:25031518

  1. Glutathion-S-Transferase P1 polymorphisms association with broncopulmonary dysplasia in preterm infants.

    PubMed

    Karagianni, P; Rallis, D; Fidani, L; Porpodi, M; Kalinderi, K; Tsakalidis, C; Nikolaidis, N

    2013-10-01

    Oxidative stress, characterized by the excretion of pre-oxidative and anti-oxidative proteases, has a key role in the pathogenesis of bronchopulmonary dysplasia (BPD). One of the many host anti-oxidant enzymes is glutathione-S-transferase P1 (GSTP1), with three polymorphic alleles having been identified: homozygous ile, heterozygous ile/val and homozygous val isomorph. The aim of this study was to examine the genetic predisposition to BPD in the GSTP1 polymorphisms. A prospective case-control study was carried out in the 2nd Neonatal Intensive Care Unit of Aristotle University in Thessaloniki, Greece during 2008. The genetic polymorphisms of GSTP1 in 28 preterms <32 weeks gestational age (GA) with BPD compared to 74 controls (33 preterms without BPD and 41 healthy terms) were examined. The homozygous ile isomorph was predominant in all groups (preterms with BPD: 82%, preterms without BPD: 70%, healthy terms: 78%), followed by the heterozygous ile/val (14%, 18% and 20% respectively) and the homozygous val isomorph (4%, 12% and 2% respectively). The homozygous ile isomorph was also identified in the majority of preterms with mild (80%), moderate (100%) and severe (73%) BPD. The GSTP1 genetic distribution did not differ between the groups and GSTP1 polymorphisms were not associated with the severity of BPD. This study could not confirm an association between GSTP1 polymorphisms and the development of BPD or the severity of the disease.

  2. Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array

    USDA-ARS?s Scientific Manuscript database

    A large number of genetic variations have been identified in rice. Such variations must in many cases control phenotypic differences in abiotic stress tolerance and other traits. A single feature polymorphism (SFP) is an oligonucleotide array-based polymorphism which can be used for identification o...

  3. The genetics of muscle atrophy and growth: the impact and implications of polymorphisms in animals and humans.

    PubMed

    Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P

    2005-10-01

    Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.

  4. avpr1a length polymorphism is not associated with either social or genetic monogamy in free-living prairie voles.

    PubMed

    Mabry, Karen E; Streatfeild, Craig A; Keane, Brian; Solomon, Nancy G

    2011-01-01

    Recent discoveries of single-gene influences on social behaviour have generated a great deal of interest in the proximate mechanisms underlying the expression of complex behaviours. Length polymorphism in a microsatellite in the regulatory region of the gene encoding the vasopressin 1a receptor (avpr1a) has been associated with both inter- and intra-specific variation in socially monogamous behaviour in voles (genus Microtus) under laboratory conditions. Here, we evaluate the relationship between avpr1a length polymorphism and social associations, genetic monogamy, and reproductive success in free-living prairie vole (M. ochrogaster) populations. We found no evidence of a relationship between avpr1a microsatellite length and any of our correlates of either social or genetic monogamy in the field. Our results, especially when taken in conjunction with those of recent experimental studies in semi-natural enclosures, suggest that avpr1a polymorphism is unlikely to have been a major influence in the evolution or maintenance of social monogamy in prairie voles under natural conditions.

  5. Single-Nucleotide Polymorphism Markers from De-Novo Assembly of the Pomegranate Transcriptome Reveal Germplasm Genetic Diversity

    PubMed Central

    Ophir, Ron; Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Sharabi Schwager, Michal; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Holland, Doron

    2014-01-01

    Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature. PMID:24558460

  6. Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity.

    PubMed

    Ophir, Ron; Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Sharabi Schwager, Michal; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Holland, Doron

    2014-01-01

    Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature.

  7. Genetic polymorphisms related to efficacy and overuse of triptans in chronic migraine.

    PubMed

    Gentile, Giovanna; Borro, Marina; Lala, Noemi; Missori, Serena; Simmaco, Maurizio; Martelletti, Paolo

    2010-10-01

    Migraine is a common type of headache and its most severe attacks are usually treated with triptans, the efficacy of which is extremely variable. Several SNPs in genes involved in metabolism and target mechanisms of triptans have been described. To define an association between genetic profile and triptan response, we classified a migrainous population on the basis of triptan response and characterized it for polymorphisms in the genes coding for monoamine oxidase A, G protein β3 and the cytochrome CYP1A2. Analysis of the association between genotypic and allelic frequencies of the analyzed SNPs and the grade of response to triptan administration showed a significant correlation for MAOA uVNTR polymorphism. Further stratification of patients in abuser and non-abuser groups revealed a significant association with triptan overuse and, within the abusers, with drug response to the CYP1A2*1F variant.

  8. Genome-Wide Single-Nucleotide Polymorphisms Discovery and High-Density Genetic Map Construction in Cauliflower Using Specific-Locus Amplified Fragment Sequencing

    PubMed Central

    Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan

    2016-01-01

    Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515

  9. Variation in human genetic polymorphisms, their association with Helicobacter pylori acquisition and gastric cancer in a multi-ethnic country.

    PubMed

    Schmidt, Heather-Marie A; Ha, Dung Mai; Taylor, Elizabeth F; Kovach, Zsuzsanna; Goh, Khean-Lee; Fock, Kwong Ming; Barrett, Jennifer H; Forman, David; Mitchell, Hazel

    2011-12-01

    The contribution of human genetic polymorphisms to Helicobacter pylori infection and gastric cancer (GC) development remains unclear due to geographic variation in the association between specific host genetic polymorphisms and GC. In the current study we investigated the association between polymorphisms related to immune and cancer-related pathways and H. pylori infection among the major ethnicities, Chinese, Malay and Indian, resident in Singapore and Malaysia as well as the association between these polymorphisms and GC development in ethnic Chinese patients. Thirty-four polymorphisms in 26 genes were typed by mass spectrometry in 422 patients undergoing endoscopy (162 Chinese, 113 Indian and 87 Malay controls and 60 Chinese GC cases). Patients were assessed for evidence of H. pylori infection. Odds ratios (OR) and confidence intervals (CI) were obtained using logistic regression models. The prevalence of 16 polymorphisms varied significantly among the ethnicities. In the Chinese subgroup, nominally significant associations were shown between (i) EBBR2+1963G (rs1801200) and H. pylori infection (per-allele OR: 0.48, 95% CI 0.23, 0.98, P = 0.04), (ii) PTGS2-1195G (rs689466) and an increased risk of GC on adjusting for H. pylori status (OR: 1.53, 95% CI 0.99, 2.37, P = 0.05), and (iii) IL1B-1473C (rs1143623) and a decreased risk of GC (OR: 0.64, 95% CI 0.41, 0.99, P = 0.05). Borderline significant associations were seen between IL2-330G (rs2069762) (OR 1.45, 95% CI 0.95, 2.15, P = 0.06) and IL13-1111T (rs1800925) (OR 0.65, 95% CI 0.42, 1.01, P = 0.06) and H. pylori infection. These findings contribute to the understanding of the genetic variation between ethnicities, which may influence H. pylori susceptibility and the outcome of infection. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  10. Fatal Methadone Toxicity: Potential Role of CYP3A4 Genetic Polymorphism

    PubMed Central

    Richards-Waugh, Lauren L.; Primerano, Donald A.; Dementieva, Yulia; Kraner, James C.; Rankin, Gary O.

    2014-01-01

    Methadone is difficult to administer as a therapeutic agent because of a wide range of interindividual pharmacokinetics, likely due to genetic variability of the CYP450 enzymes responsible for metabolism to its principal metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). CYP3A4 is one of the primary CYP450 isoforms responsible for the metabolism of methadone to EDDP in humans. The purpose of this study was to evaluate the role of CYP3A4 genetic polymorphisms in accidental methadone fatalities. A study cohort consisting of 136 methadone-only and 92 combined methadone/benzodiazepine fatalities was selected from cases investigated at the West Virginia and Kentucky Offices of the Chief Medical Examiner. Seven single nucleotide polymorphisms (SNPs) were genotyped within the CYP3A4 gene. Observed allelic and genotypic frequencies were compared with expected frequencies obtained from The National Center for Biotechnology Information dbSNP database. SNPs rs2242480 and rs2740574 demonstrated an apparent enrichment within the methadone-only overdose fatalities compared with the control group and the general population. This enrichment was not apparent in the methadone/benzodiazepine cases for these two SNPs. Our findings indicate that there may be two or more SNPs on the CYP3A4 gene that cause or contribute to the methadone poor metabolizer phenotype. PMID:25217544

  11. Fas and FasL genetic polymorphisms in women with recurrent pregnancy loss: a case-control study.

    PubMed

    Han, Ae Ra; Choi, Young Min; Hong, Min A; Kim, Jin Ju; Lee, Sung Ki; Yang, Kwang Moon; Paik, Eun Chan; Jeong, Hyeon Jeong; Jun, Jong Kwan

    2018-05-20

    Aberrant apoptosis at the trophoblast-maternal interface and abnormal expression of Fas and Fas ligand (FasL) have been reported in complicated pregnancies with recurrent pregnancy losses (RPL) and preeclampsia. We assessed the prevalence of Fas and FasL genetic polymorphisms in Korean women with RPL and in fertile controls. In total, 306 women with RPL and 298 fertile controls were enrolled. Genotype distributions of Fas and FasL in RPL patients versus fertile controls were examined under the Hardy-Weinberg equilibrium. Fas -670 A/G genotype (AA versus AG versus GG, p = 0.340) and allele frequencies (A versus G, p = 0.412) were not different between the RPL and control groups. There was no difference in each Fas -1377 G/A and FasL -844 C/T genotype, and their allele frequencies. In addition, the unions of two zygosities of each genotype and their combined genotypes did not differ between two groups. No difference in the prevalence of Fas and FasL single-nucleotide polymorphisms (SNPs) was observed between women with RPL and fertile controls among Korean women. To determine the possibility of genetic polymorphisms in Fas and its ligand as risk factors for RPL, further studies in various races and a large study population are needed.

  12. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups

    PubMed Central

    da Costa, Kerry-Ann; Corbin, Karen D.; Niculescu, Mihai D.; Galanko, Joseph A.; Zeisel, Steven H.

    2014-01-01

    Effect alleles (alleles with a polymorphism that is associated with the effect being measured) in a small number of single-nucleotide polymorphisms (SNPs) are known to influence the dietary requirement for choline. In this study, we examined a much larger number of SNPs (n=200) in 10 genes related to choline metabolism for associations with development of organ dysfunction (liver or muscle) when 79 humans were fed a low-choline diet. We confirmed that effect alleles in SNPs such as the C allele of PEMT rs12325817 increase the risk of developing organ dysfunction in women when they consume a diet low in choline, and we identified novel effect alleles, such as the C allele of CHKA SNP rs7928739, that alter dietary choline requirements. When fed a low-choline diet, some people presented with muscle damage rather than liver damage; several effect alleles in SLC44A1 (rs7873937, G allele; rs2771040, G; rs6479313, G; rs16924529, A; and rs3199966, C) and one in CHKB (rs1557502, A) were more common in these individuals. This suggests that pathways related to choline metabolism are more important for normal muscle function than previously thought. In European, Mexican, and Asian Americans, and in individuals of African descent, we examined the prevalence of the effect alleles in SNPs that alter choline requirement and found that they are differentially distributed among people of different ethnic and racial backgrounds. Overall, our study has identified novel genetic variants that modulate choline requirements and suggests that the dietary requirement for choline may be different across racial and ethnic groups.—Da Costa, K.-A., Corbin, K. D., Niculescu, M. D., Galanko, J. A., Zeisel, S. H. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. PMID:24671709

  13. ESTs and EST-linked polymorphisms for genetic mapping and phylogenetic reconstruction in the guppy, Poecilia reticulata

    PubMed Central

    Dreyer, Christine; Hoffmann, Margarete; Lanz, Christa; Willing, Eva-Maria; Riester, Markus; Warthmann, Norman; Sprecher, Andrea; Tripathi, Namita; Henz, Stefan R; Weigel, Detlef

    2007-01-01

    Background The guppy, Poecilia reticulata, is a well-known model organism for studying inheritance and variation of male ornamental traits as well as adaptation to different river habitats. However, genomic resources for studying this important model were not previously widely available. Results With the aim of generating molecular markers for genetic mapping of the guppy, cDNA libraries were constructed from embryos and different adult organs to generate expressed sequence tags (ESTs). About 18,000 ESTs were annotated according to BLASTN and BLASTX results and the sequence information from the 3' UTRs was exploited to generate PCR primers for re-sequencing of genomic DNA from different wild type strains. By comparison of EST-linked genomic sequences from at least four different ecotypes, about 1,700 polymorphisms were identified, representing about 400 distinct genes. Two interconnected MySQL databases were built to organize the ESTs and markers, respectively. A robust phylogeny of the guppy was reconstructed, based on 10 different nuclear genes. Conclusion Our EST and marker databases provide useful tools for genetic mapping and phylogenetic studies of the guppy. PMID:17686157

  14. Meta-analysis of human leukocyte antigen genetic polymorphisms and susceptibility to chronic myelogenous leukemia in Chinese population.

    PubMed

    Zhang, Min-Yue; Chen, Fang-Yuan; Zhong, Hua

    2011-12-01

    Human leukocyte antigen (HLA) genetic polymorphisms are assumed to be correlated to the risk of chronic myelogenous leukemia (CML) in various ethnicities. Up to now, no clear consensus has been reached. Our goal is to address this issue in Chinese population. By searching the data in PubMed, Embase and four Chinese databases (prior to July 2010), the association of HLA genetic polymorphisms with CML has been fixed as the research objective. We studied a totality of 12 studies, comprising 2281 CML cases and 41000 health controls. The data demonstrated that HLA-A*11, A*74, HLA-B*40, B*47, B*55 and B*81 alleles were correlated with the increasing risk of CML. Nevertheless, HLA-DRB1*13 allele seemed to contribute to the genetic protection to CML. Conclusively we suggested that certain HLA alleles might be in association with the pathogenesis of CML in Chinese population. Due to little statistical scale, larger studies and particularly in a mono-people background, our hypothesis need to be further investigated in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Genetic polymorphisms of serotonin transporter and receptor 1A could influence success during embryo implantation and maintenance of pregnancy.

    PubMed

    Palomares, Arturo R; Lendínez-Ramírez, Ana M; Pérez-Nevot, Beatriz; Cortés-Rodríguez, Miriam; Martínez, Francisco; Garrido, Nicolás; Ruiz-Galdón, Maximiliano; Reyes-Engel, Armando

    2013-06-01

    To explore whether serotonin-related gene polymorphisms influence clinical outcomes of IVF treatment in recipients using donated oocytes. Nested case-control study. University-affiliated infertility clinic. Two hundred forty-five women undergoing IVF treatment with donated oocytes. None. Genotype and haplotype analysis of the serotonin transporter-linked polymorphic region (5-HTTLPR), rs1800532, rs6295, rs6313, and rs3813929, between recipients grouped according to the results of the oocyte donation for IVF treatment. No differences were found between genotype distribution of the tryptophan hydroxylase 1, serotonin receptor 2A, and serotonin receptor 2C polymorphisms. Recipients carrying the LL genotype for 5-HTTLPR had lower clinical pregnancy rates (PR) and higher biochemical pregnancy loss (BPL) events. Lower implantation rates were found in CC carriers for 5-HT1A.rs6295 who also presented higher BPL rates. A lower incidence of clinical pregnancy was observed for LC haplotypes, corresponding to an increase in BPL rates. A strong association was found between early pregnancy loss and recipients carrying the 5-HTTLPR and rs6295 genetic variants. Identifying biological processes involving serotonin and embryo implantation may help to understand the dynamics of the maternal-embryo dialogue. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Estrogen Receptor 1 ( ESR1) Gene Polymorphisms and Obesity Phenotypes in a Population of Young Adults.

    PubMed

    Correa-Rodríguez, María; Schmidt-RioValle, Jacqueline; González-Jiménez, Emilio; Rueda-Medina, Blanca

    2017-06-01

    Obesity is considered an increasingly serious health problem determined by multiple genetic and environmental factors. Estrogens have been found to play a major role in body weight and adiposity regulation through estrogen receptor 1 ( ESR1). The aim of this study was to determine whether genotype and haplotype frequencies of ESR1 polymorphisms are associated with body composition measures in a population of 572 young adults. A lack of significant association between genotypes of ESR1 gene polymorphisms and obesity phenotypes was seen after adjustment for confounding factors. Linkage disequilibrium (LD) analysis identified a single LD block for the ESR1 gene including PvuII and XbaI single-nucleotide polymorphisms (SNPs) (pairwise r 2 = .66). None of the haplotypes identified revealed statistically significant associations with any of the obesity phenotypes. Our results suggest that polymorphisms of the ESR1 gene do not contribute significantly to the genetic risk for obesity phenotypes in a population of young Caucasian adults.

  17. Connecting Common Genetic Polymorphisms to Protein Function: A Modular Project Sequence for Lecture or Lab

    ERIC Educational Resources Information Center

    Berndsen, Christopher E.; Young, Byron H.; McCormick, Quinlin J.; Enke, Raymond A.

    2016-01-01

    Single nucleotide polymorphisms (SNPs) in DNA can result in phenotypes where the biochemical basis may not be clear due to the lack of protein structures. With the growing number of modeling and simulation software available on the internet, students can now participate in determining how small changes in genetic information impact cellular…

  18. Genetic Polymorphisms of Metastasis Suppressor Gene NME1 and Breast Cancer Survival

    PubMed Central

    Qu, Shimian; Long, Jirong; Cai, Qiuyin; Shu, Xiao-Ou; Cai, Hui; Gao, Yu-Tang; Zheng, Wei

    2009-01-01

    Purpose Ample evidence supports an important role of tumor metastasis suppressor genes in cancer metastatic processes. We evaluated the association of genetic polymorphisms of tumor metastasis suppressor gene NME1 with breast cancer prognosis in a follow-up study of patients with primary breast cancer and further investigated the functions of these polymorphisms. Experimental Design NME1 genotypes were analyzed in a cohort of 1134 breast cancer patients recruited as part of the Shanghai Breast Cancer Study who were followed for a median of 7.1 years. In vitro biochemical analyses were carried out to examine the function of NME1 gene polymorphisms. Results Single nucleotide polymorphisms (SNPs) in the promoter region of the NME1 gene were found to be associated with breast cancer prognosis. Patients carrying the C allele in rs16949649 were associated with higher breast cancer-specific mortality (HR =1.4, 95% CI =1.1–1.9) as compared to those carrying the wild-type allele, and the association was more evident in patients with an early stage cancer (HR=1.7, 95% CI =1.2–2.5). SNP rs2302254 was also associated with breast cancer prognosis, and the association was statistically significant for the risk of breast cancer relapse, metastasis, and death (HR=1.3, 95% CI, 1.0–1.6). In vitro biochemical analyses showed that minor alleles in rs2302254 and rs3760468, which is in strong linkage disequilibrium with rs16949646, altered nuclear proteins binding capacity and reduced NME1 promoter activity, supporting the results from an association study of these SNPs with breast cancer survival. Conclusion Promoter polymorphisms in the NME1 gene may alter its expression and influence breast cancer survival. PMID:18676749

  19. CR1 rs3818361 Polymorphism Contributes to Alzheimer's Disease Susceptibility in Chinese Population.

    PubMed

    Li, Yongning; Song, Dongjing; Jiang, Yongshuai; Wang, Jingwei; Feng, Rennan; Zhang, Liangcai; Wang, Guangyu; Chen, Zugen; Wang, Renzhi; Jiang, Qinghua; Liu, Guiyou

    2016-08-01

    Recent genome-wide association studies (GWAS) reported CR1 rs3818361 polymorphism to be an Alzheimer's disease (AD) susceptibility variant in European ancestry. Three independent studies investigated this association in Chinese population. However, these studies reported weak or no significant association. Here, we reinvestigated the association using all the samples from three independent studies in Chinese population (N = 4047, 1244 AD cases and 2803 controls). We also selected three independent studies in European ancestry population (N = 11787, 3939 AD cases and 7848 controls) to evaluate the effect of rs3818361 polymorphism on AD risk in different ethnic backgrounds. In Chinese population, we did not identified significant heterogeneity using additive, recessive, and dominant genetic models. Meta-analysis showed significant association between rs3818361 and AD with P = 6.00E-03 and P = 5.00E-03. We further identified no heterogeneity of rs3818361 polymorphism between Chinese and European populations. We found that rs3818361 polymorphism contributed to AD with similar genetic risk in Chinese and European populations. In summary, this is the first study to show significant association between rs3818361 polymorphism and AD in Chinese population by a meta-analysis method. Our findings indicate that the effect of CR1 rs3818361 polymorphism on AD risk in Chinese cohorts is consistent with the increased risk observed in European AD cohorts.

  20. Vitamin D receptor gene Alw I, Fok I, Apa I, and Taq I polymorphisms in patients with urinary stone.

    PubMed

    Seo, Ill Young; Kang, In-Hong; Chae, Soo-Cheon; Park, Seung Chol; Lee, Young-Jin; Yang, Yun Sik; Ryu, Soo Bang; Rim, Joung Sik

    2010-04-01

    To evaluate vitamin D receptor (VDR) gene polymorphisms in Korean patients so as to identify the candidate genes associated with urinary stones. Urinary stones are a multifactorial disease that includes various genetic factors. A normal control group of 535 healthy subjects and 278 patients with urinary stones was evaluated. Of 125 patients who presented stone samples, 102 had calcium stones on chemical analysis. The VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms were evaluated using the polymerase chain reaction-restriction fragment length polymorphism analysis. Allelic and genotypic frequencies were calculated to identify associations in both groups. The haplotype frequencies of the VDR gene polymorphisms for multiple loci were also determined. For the VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms, there was no statistically significant difference between the patients with urinary stones and the healthy controls. There was also no statistically significant difference between the patients with calcium stones and the healthy controls. A novel haplotype (Ht 4; CTTT) was identified in 13.5% of the patients with urinary stones and in 8.3% of the controls (P = .001). The haplotype frequencies were significantly different between the patients with calcium stones and the controls (P = .004). The VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms does not seem to be candidate genetic markers for urinary stones in Korean patients. However, 1 novel haplotype of the VDR gene polymorphisms for multiple loci might be a candidate genetic marker. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Genetic variation and genetic structure of the endangered species Sinowilsonia henryi Hemsi. (Hamamelidaceae) revealed by amplified fragment length polymorphism (AFLP) markers.

    PubMed

    Zhang, H; Ji, W L; Li, M; Zhou, L Y

    2015-10-14

    Comprehensive research of genetic variation is crucial in designing conservation strategies for endangered and threatened species. Sinowilsonia henryi Hemsi. is a tertiary relic with a limited geographical distribution in the central and western areas of China. It is endangered because of climate change and habitat fragmentation over the last thousands of years. In this study, amplified fragment length polymorphism markers were utilized to estimate genetic diversity and genetic structure in and among S. henryi. In this study, Nei's genetic diversity and Shannon's information index were found to be 0.192 and 0.325 respectively, indicating a moderate-to-high genetic diversity in species. According to analysis of molecular variation results, 32% of the genetic variation was shown to be partitioned among populations, demonstrating a relatively high genetic divergence; this was supported by principal coordinate analysis and unweighted pair-group method with arithmetic average analysis. Moreover, the Mantel test showed that there was no significant correlation between genetic and geographical distances. The above results can be explained by the effects of habitat fragmentation, history traits, and gene drift. Based on the results, several implications were indicated and suggestions proposed for preservation strategies for this species.

  2. Polymorphisms of the lipoprotein lipase gene as genetic markers for stroke in colombian population: a case control study.

    PubMed

    Velásquez Pereira, Leydi Carolina; Vargas Castellanos, Clara Inés; Silva Sieger, Federico Arturo

    2016-12-30

    To analyze if there is an association between the presence of polymorphisms in the LPL gene (rs320, rs285 and rs328) with development of acute ischemic stroke in Colombian population. In a case control design, 133 acute ischemic stroke patients (clinical diagnosis and x-ray CT) and 269 subjects without stroke as controls were studied. PCR -RFLP technique was used to detect rs320, rs285 and rs328 polymorphisms in the LPL gene. In the present research was not found any association between any of the LPL gene polymorphism and acute ischemic stroke in the population studied; the allele and genotypic frequencies of the studied polymorphisms were similar in cases and controls and followed the Hardy-Weinberg equilibrium. The study was approved by the IRB and each subject signed the informed consent. LPL gene polymorphisms are not genetic markers for the development of stroke in the Colombian sample used.

  3. Lack of association between genetic polymorphism of FTO, AKT1 and AKTIP in childhood overweight and obesity.

    PubMed

    Pereira, Patrícia de Araújo; Alvim-Soares, António Marcos; Sandrim, Valéria Cristina; Lanna, Carla Márcia Moreira; Souza-Costa, Débora Cristine; Belo, Vanessa de Almeida; de Paula, Jonas Jardim; Tanus-Santos, José Eduardo; Romano-Silva, Marco Aurélio; Miranda, Débora Marques de

    2016-01-01

    Obesity is a chronic disease caused by both environmental and genetic factors. Epidemiological studies have documented that increased energy intake and sedentary lifestyle, as well as a genetic contribution, are forces behind the obesity epidemic. Knowledge about the interaction between genetic and environmental components can facilitate the choice of the most effective and specific measures for the prevention of obesity. The aim of this study was to assess the association between the FTO, AKT1, and AKTIP genes and childhood obesity and insulin resistance. This was a case-control study in which SNPs in the FTO (rs99396096), AKT1, and AKTIP genes were genotyped in groups of controls and obese/overweight children. The study included 195 obese/overweight children and 153 control subjects. As expected, the obese/overweight group subjects had higher body mass index, higher fasting glucose, HOMA-IR index, total cholesterol, low-density lipoprotein, and triglycerides. However, no significant differences were observed in genes polymorphisms genotype or allele frequencies. The present results suggest that AKT1, FTO, and AKTIP polymorphisms were not associated with obesity/overweight in Brazilians children. Future studies on the genetics of obesity in Brazilian children and their environment interactions are needed. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Large-Scale Development of Cost-Effective Single-Nucleotide Polymorphism Marker Assays for Genetic Mapping in Pigeonpea and Comparative Mapping in Legumes

    PubMed Central

    Saxena, Rachit K.; Varma Penmetsa, R.; Upadhyaya, Hari D.; Kumar, Ashish; Carrasquilla-Garcia, Noelia; Schlueter, Jessica A.; Farmer, Andrew; Whaley, Adam M.; Sarma, Birinchi K.; May, Gregory D.; Cook, Douglas R.; Varshney, Rajeev K.

    2012-01-01

    Single-nucleotide polymorphisms (SNPs, >2000) were discovered by using RNA-seq and allele-specific sequencing approaches in pigeonpea (Cajanus cajan). For making the SNP genotyping cost-effective, successful competitive allele-specific polymerase chain reaction (KASPar) assays were developed for 1616 SNPs and referred to as PKAMs (pigeonpea KASPar assay markers). Screening of PKAMs on 24 genotypes [23 from cultivated species and 1 wild species (Cajanus scarabaeoides)] defined a set of 1154 polymorphic markers (77.4%) with a polymorphism information content (PIC) value from 0.04 to 0.38. One thousand and ninety-four PKAMs showed polymorphisms between parental lines of the reference mapping population (C. cajan ICP 28 × C. scarabaeoides ICPW 94). By using high-quality marker genotyping data on 167 F2 lines from the population, a comprehensive genetic map comprising 875 PKAMs with an average inter-marker distance of 1.11 cM was developed. Previously mapped 35 simple sequence repeat markers were integrated into the PKAM map and an integrated genetic map of 996.21 cM was constructed. Mapped PKAMs showed a higher degree of synteny with the genome of Glycine max followed by Medicago truncatula and Lotus japonicus and least with Vigna unguiculata. These PKAMs will be useful for genetics research and breeding applications in pigeonpea and for utilizing genome information from other legume species. PMID:23103470

  5. The influence of PRNP polymorphisms on human prion disease susceptibility: an update.

    PubMed

    Kobayashi, Atsushi; Teruya, Kenta; Matsuura, Yuichi; Shirai, Tsuyoshi; Nakamura, Yoshikazu; Yamada, Masahito; Mizusawa, Hidehiro; Mohri, Shirou; Kitamoto, Tetsuyuki

    2015-08-01

    Two normally occurring polymorphisms of the human PRNP gene, methionine (M)/valine (V) at codon 129 and glutamic acid (E)/lysine (K) at codon 219, can affect the susceptibility to prion diseases. It has long been recognized that 129M/M homozygotes are overrepresented in sporadic Creutzfeldt-Jakob disease (CJD) patients and variant CJD patients, whereas 219E/K heterozygotes are absent in sporadic CJD patients. In addition to these pioneering findings, recent progress in experimental transmission studies and worldwide surveillance of prion diseases have identified novel relationships between the PRNP polymorphisms and the prion disease susceptibility. For example, although 219E/K heterozygosity confers resistance against the development of sporadic CJD, this genotype is not entirely protective against acquired forms (iatrogenic CJD and variant CJD) or genetic forms (genetic CJD and Gerstmann-Sträussler-Scheinker syndrome) of prion diseases. In addition, 129M/V heterozygotes predispose to genetic CJD caused by a pathogenic PRNP mutation at codon 180. These findings show that the effects of the PRNP polymorphisms may be more complicated than previously thought. This review aims to summarize recent advances in our knowledge about the influence of the PRNP polymorphisms on the prion disease susceptibility.

  6. Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis.

    PubMed

    Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A; Silva, Kathleen A; Kennedy, Victoria E; Cario, Clinton L; Richardson, Matthew A; Chase, Thomas H; Schofield, Paul N; Uitto, Jouni; Sundberg, John P

    2016-06-01

    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.

  7. Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11 and 15 for age-related cardiac fibrosis

    PubMed Central

    Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A.; Silva, Kathleen A.; Kennedy, Victoria E.; Cario, Clinton L; Richardson, Matthew A.; Chase, Thomas H.; Schofield, Paul N.; Uitto, Jouni; Sundberg, John P.

    2017-01-01

    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscal loci 1 through 4. Here we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10−13) and Chr 4 at 122 Mb (P < 10−11) and 134 Mb (P < 10−7). At the Chr 15 locus Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximate 6 Mb away from the Dyscal 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits. PMID:27126641

  8. Novel Genetic Loci Identified for the Pathophysiology of Childhood Obesity in the Hispanic Population

    PubMed Central

    Comuzzie, Anthony G.; Cole, Shelley A.; Laston, Sandra L.; Voruganti, V. Saroja; Haack, Karin; Gibbs, Richard A.; Butte, Nancy F.

    2012-01-01

    Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association study (GWAS) entailed genotyping 1.1 million single nucleotide polymorphisms (SNPs) using the Illumina Infinium technology in 815 children. Measured genotype analysis was performed between genetic markers and obesity-related traits i.e., anthropometry, body composition, growth, metabolites, hormones, inflammation, diet, energy expenditure, substrate utilization and physical activity. Identified genome-wide significant loci: 1) corroborated genes implicated in other studies (MTNR1B, ZNF259/APOA5, XPA/FOXE1 (TTF-2), DARC, CCR3, ABO); 2) localized novel genes in plausible biological pathways (PCSK2, ARHGAP11A, CHRNA3); and 3) revealed novel genes with unknown function in obesity pathogenesis (MATK, COL4A1). Salient findings include a nonsynonymous SNP (rs1056513) in INADL (p = 1.2E-07) for weight; an intronic variant in MTNR1B associated with fasting glucose (p = 3.7E-08); variants in the APOA5-ZNF259 region associated with triglycerides (p = 2.5-4.8E-08); an intronic variant in PCSK2 associated with total antioxidants (p = 7.6E-08); a block of 23 SNPs in XPA/FOXE1 (TTF-2) associated with serum TSH (p = 5.5E-08 to 1.0E-09); a nonsynonymous SNP (p = 1.3E-21), an intronic SNP (p = 3.6E-13) in DARC identified for MCP-1; an intronic variant in ARHGAP11A associated with sleep duration (p = 5.0E-08); and, after adjusting for body weight, variants in MATK for total energy expenditure (p = 2.7E-08) and in CHRNA3 for sleeping energy expenditure (p = 6.0E-08). Unprecedented phenotyping and high-density SNP genotyping enabled localization of novel genetic loci associated with the pathophysiology of childhood obesity. PMID:23251661

  9. Single-tube tetradecaplex panel of highly polymorphic microsatellite markers < 1 Mb from F8 for simplified preimplantation genetic diagnosis of hemophilia A.

    PubMed

    Zhao, M; Chen, M; Tan, A S C; Cheah, F S H; Mathew, J; Wong, P C; Chong, S S

    2017-07-01

    Essentials Preimplantation genetic diagnosis (PGD) of severe hemophilia A relies on linkage analysis. Simultaneous multi-marker screening can simplify selection of informative markers in a couple. We developed a single-tube tetradecaplex panel of polymorphic markers for hemophilia A PGD use. Informative markers can be used for linkage analysis alone or combined with mutation detection. Background It is currently not possible to perform single-cell preimplantation genetic diagnosis (PGD) to directly detect the common inversion mutations of the factor VIII (F8) gene responsible for severe hemophilia A (HEMA). As such, PGD for such inversion carriers relies on indirect analysis of linked polymorphic markers. Objectives To simplify linkage-based PGD of HEMA, we aimed to develop a panel of highly polymorphic microsatellite markers located near the F8 gene that could be simultaneously genotyped in a multiplex-PCR reaction. Methods We assessed the polymorphism of various microsatellite markers located ≤ 1 Mb from F8 in 177 female subjects. Highly polymorphic markers were selected for co-amplification with the AMELX/Y indel dimorphism in a single-tube reaction. Results Thirteen microsatellite markers located within 0.6 Mb of F8 were successfully co-amplified with AMELX/Y in a single-tube reaction. Observed heterozygosities of component markers ranged from 0.43 to 0.84, and ∼70-80% of individuals were heterozygous for ≥ 5 markers. The tetradecaplex panel successfully identified fully informative markers in a couple interested in PGD for HEMA because of an intragenic F8 point mutation, with haplotype phasing established through a carrier daughter. In-vitro fertilization (IVF)-PGD involved single-tube co-amplification of fully informative markers with AMELX/Y and the mutation-containing F8 amplicon, followed by microsatellite analysis and amplicon mutation-site minisequencing analysis. Conclusions The single-tube multiplex-PCR format of this highly polymorphic

  10. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes.

    PubMed

    Driver, John P; Chen, Yi-Guang; Mathews, Clayton E

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.

  11. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  12. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    PubMed

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.

  13. The 372 T/C genetic polymorphism of TIMP-1 is associated with serum levels of TIMP-1 and survival in patients with severe sepsis

    PubMed Central

    2013-01-01

    Introduction Previous studies have found higher circulating levels of tissue inhibitor of matrix metalloproteinase (TIMP)-1 in nonsurviving septic patients than in surviving septic patients, and an association between the 372 T/C genetic polymorphism of TIMP-1 and the risk of developing certain diseases. However, the relationship between genetic polymorphisms of TIMP-1, circulating TIMP-1 levels and survival in patients with severe sepsis has not been examined, and this was the objective of the study. Methods This multicentre, prospective, observational study was carried out in six Spanish ICUs. We determined the 372 T/C genetic polymorphism of TIMP-1 (rs4898), serum levels of TIMP-1, matrix metalloproteinase (MMP)-9, MMP-10, TNFα, IL-10 and plasma plasminogen activator inhibitor-1 (PAI-1). Survival at 30 days from ICU admission was the endpoint assessed. The association between continuous variables was carried out using Spearman's rank correlation coefficient or Spearman's rho coefficient. Multivariate logistic regression analysis was applied to determine the association between the 372 T/C genetic polymorphism and survival 30 days from ICU admission. Results Of 275 patients with severe sepsis, 80 had genotype CC, 55 had genotype CT and 140 had genotype TT of the 372 T/C genetic polymorphism of TIMP-1. Patients with the T allele showed higher serum levels of TIMP-1 than patients without the T allele (P = 0.004). Multiple logistic regression analysis showed that the T allele was associated with higher mortality at 30 days (odds ratio = 2.08; 95% confidence interval = 1.06 to 4.09; P = 0.03). Survival analysis showed that patients with the T allele presented lower 30-day survival than patients without the T allele (χ2 = 5.77; P = 0.016). We found an association between TIMP-1 levels and levels of MMP-9 (ρ = -0.19; P = 0.002), MMP-10 (ρ = 0.55; P <0.001), TNFα (ρ = 0.56; P <0.001), IL-10 (ρ = 0.48; P <0.001) and PAI-1 (ρ = 0.49; P <0.001). Conclusion The

  14. Genetically distinct genogroup IV norovirus strains identified in wastewater.

    PubMed

    Kitajima, Masaaki; Rachmadi, Andri T; Iker, Brandon C; Haramoto, Eiji; Gerba, Charles P

    2016-12-01

    We investigated the prevalence and genetic diversity of genogroup IV norovirus (GIV NoV) strains in wastewater in Arizona, United States, over a 13-month period. Among 50 wastewater samples tested, GIV NoVs were identified in 13 (26 %) of the samples. A total of 47 different GIV NoV strains were identified, which were classified into two genetically distinct clusters: the GIV.1 human cluster and a unique genetic cluster closely related to strains previously identified in Japanese wastewater. The results provide additional evidence of the considerable genetic diversity among GIV NoV strains through the analysis of wastewater containing virus strains shed from all populations.

  15. Gender-specific association of ADA genetic polymorphism with human longevity.

    PubMed

    Napolioni, Valerio; Lucarini, Nazzareno

    2010-08-01

    Aim of this study was to investigate whether the polymorphic ADA (Adenosine Deaminase, EC 3.5.4.4) gene, which determines the cellular level of adenosine and plays a crucial role in the regulation of the immune system and in the control of metabolic rates, is involved in longevity. 884 unrelated healthy individuals (age range 10-106 years, 400 males and 484 females) from central Italy were studied. ADA genotyping was performed by RFLP-PCR. Frequency distributions were compared using the chi-square test and a three-way contingency table analysis by a log linear model was applied to test independence between the variables. We found that ADA influences human life-span in a sex and age specific way. An increased frequency of ADA*2 carriers was found in males aged 80-85, and a decreased frequency in males over 85 (chi(2) = 13.93; df = 3; P = 0.003); significant differences among the age groups was not found in females. A strong interaction among age groups, ADA genotype and sex (G = 15.086; df = 3; P = 0.0017) was found. Males aged 80-85 could be protected from ischemic stroke by higher levels of adenosine (determined by the ADA*2 allele). The decrease of ADA*2 carriers in males over 85 may depend essentially on immunological factors; reduced levels of adenosine protect from asthma and other pulmonary diseases and lead to a reduced activation of inflammatory cells and pro-inflammatory cytokines production. Moreover, the low level of adenosine may potentiate the activity of NK and other cellular effectors against tumor cells. The negligible effect of ADA genetic polymorphism in females suggest a marginal influence of genetic factors in determining longevity in this sex, confirming previous reports.

  16. Genetic susceptibility to renal scar formation after urinary tract infection: a systematic review and meta-analysis of candidate gene polymorphisms.

    PubMed

    Zaffanello, Marco; Tardivo, Stefano; Cataldi, Luigi; Fanos, Vassilios; Biban, Paolo; Malerba, Giovanni

    2011-07-01

    Identifying patients who may develop renal scarring after urinary tract infections (UTI) remains challenging, as clinical determinants explain only a portion of individual risk. An additional factor that likely affects risk is individual genetic variability. We searched for peer-reviewed articles from 1980 to December 2009 in electronic databases that reported results showing an association between gene polymorphims and renal scaring after UTI. Two independent researchers screened articles using predetermined criteria. Studies were assessed for methodological quality using an aggregate scoring system. The 18 studies ultimately included in the review had investigated 16 polymorphisms in nine genes in association with renal scarring formation after UTI. Based on the predetermined criteria for assessing the quality of the studies, 12 studies (67%) were identified as being of poor quality design. A meta-analysis of cumulative studies showed on association between renal scarring formation after UTI and the angiotensin converting enzyme insertion/deletion polymorphism [ACE I/D; recessive model for D allele; odds ratio (OR) 1.73, 95% confidence interval (CI) 1.09-2.74, P = 0.02] or transforming growth factor (TGF)-β1 c.-509 T > C polymorphism (dominant model for T allele; OR 2.24, 95% CI 1.34-3.76, P = 0.002). However, heterogeneity among studies was large, indicating a strong difference that cannot only be explained by differences in study design. The studies reviewed in this article support a modest involvement of the vasomotor and inflammatory genes in the development of renal scarring after UTIs. This review also shows that only few possible candidate genes have been investigated for an association with renal scarring, raising the hypothesis that some gene polymorphisms may exert their effects through an interaction with as yet uninvestigated factors that may be related to geographic and/or socio-economic differences.

  17. Factor VII R353Q genetic polymorphism is associated with altered warfarin sensitivity among CYP2C9 *1/*1 carriers.

    PubMed

    Mlynarsky, Liat; Bejarano-Achache, Idit; Muszkat, Mordechai; Caraco, Yoseph

    2012-05-01

    Warfarin responsiveness is characterized by marked interindividual variability. A major portion of this variability is attributed to CYP2C9 and VKORC1 polymorphisms, but almost 50% is still unaccounted for. This paper reports the first prospective study on the association between factor VII R353Q polymorphism and warfarin responsiveness during induction. Genotyping for factor VII R353Q and 323D/I polymorphisms was performed in a cohort consisting of 374 patients (198 CYP2C9*1/*1) treated with warfarin who were prospectively followed from warfarin initiation. Compared with *1/*1-R/R and *1/*1-R/Q genotype carriers, *1/*1-Q/Q homozygotes achieved higher International Normalized Ratio (INR) values while consuming lower warfarin doses. The greater sensitivity was illustrated by 82.1% higher Warfarin Sensitivity Index During Induction (WSIDI) (0.14 ± 0.11 vs. 0.08 ± 0.50 mg⁻¹ Mann-Whitney, P = 0.043). Multiple regression analysis consisting of both genetic and nongenetic factors explained 26% of WSIDI variability, with R353Q genetic polymorphism having a modest yet significant effect and accounting for 1.7% of the overall variability. Moreover, the incidence of overanticoagulation (i.e., INR > 4) was 6.94-fold higher among *1/*1-Q/Q vs. *1/*1-R/R&R/Q carriers during warfarin induction (Pearson chi-square, P = 0.005). These findings were not accounted for by a chance difference in the distribution of VKORC1 genotypes. Analysis of these parameters among the entire cohort, including CYP2C9*2 and CYP2C9*3 variant allele carriers, did not reach statistical significance. Warfarin responsiveness during induction was unrelated to factor VII 323D/I genetic polymorphism. The response to warfarin during induction is influenced by factor VII R353Q polymorphism. The prospective use of this polymorphism, along with CYP2C9 and VKORC1, may enhance the accuracy of warfarin loading. However, the impact of R353Q polymorphism on overall warfarin response is subtle, and it is therefore

  18. Identifying Multimodal Intermediate Phenotypes between Genetic Risk Factors and Disease Status in Alzheimer’s Disease

    PubMed Central

    Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Zhang, Daoqiang; Shen, Li

    2016-01-01

    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer’s disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494

  19. Genetic polymorphism in paraoxonase is a risk factor for childhood focal segmental glomerulosclerosis.

    PubMed

    Frishberg, Y; Toledano, H; Becker-Cohen, R; Feigin, E; Halle, D

    2000-12-01

    Focal segmental glomerulosclerosis (FSGS) is an important cause of end-stage renal failure (ESRF) in children. Our previous studies have shown that Arab children in Israel have a worse prognosis compared with Jewish patients despite similar clinical presentation and management. Progression of proteinuric glomerular diseases has been associated with alterations in lipid metabolism, and similarities have been drawn between the mechanisms underlying atherosclerosis and glomerulosclerosis. Paraoxonase (PON) is a high-density lipoprotein (HDL)-associated enzyme involved in preventing the oxidation of low-density lipoprotein (LDL), and an association has been shown between two genetic polymorphisms in PON1 and the risk of coronary artery disease. The aim of this study was to determine the frequency of these genetic polymorphisms in PON1 in Arab and Jewish children with FSGS and to determine any association with severity of outcome. Forty-seven children (21 Arab and 26 Jewish) with biopsy-proven FSGS and 274 healthy controls of matching ethnic origin were studied. The glutamine (A)-192-arginine (B) and the methionine (M)-55-leucine (L) polymorphisms were analyzed. The frequency of the A allele was similar in patients and controls (0.68 versus 0.71), as was that of the L allele (0.63 versus 0.6). When subgroups were analyzed, the prevalence of the LL genotype in Arab patients was significantly greater than in Jewish patients (57.1% versus 26.9%, P: < 0.05) and Arab controls (57.1% versus 28.9%, P: < 0.03). A trend in association was found between homozygosity for the L allele and progression of renal disease in Arab children. Homozygosity for the L allele is a risk factor for developing FSGS in Arab children and may be associated with a worse prognosis.

  20. avpr1a length polymorphism is not associated with either social or genetic monogamy in free-living prairie voles

    PubMed Central

    Mabry, Karen E.; Streatfeild, Craig A.; Keane, Brian; Solomon, Nancy G.

    2010-01-01

    Recent discoveries of single-gene influences on social behaviour have generated a great deal of interest in the proximate mechanisms underlying the expression of complex behaviours. Length polymorphism in a microsatellite in the regulatory region of the gene encoding the vasopressin 1a receptor (avpr1a) has been associated with both inter- and intra-specific variation in socially monogamous behaviour in voles (genus Microtus) under laboratory conditions. Here, we evaluate the relationship between avpr1a length polymorphism and social associations, genetic monogamy, and reproductive success in free-living prairie vole (M. ochrogaster) populations. We found no evidence of a relationship between avpr1a microsatellite length and any of our correlates of either social or genetic monogamy in the field. Our results, especially when taken in conjunction with those of recent experimental studies in semi-natural enclosures, suggest that avpr1a polymorphism is unlikely to have been a major influence in the evolution or maintenance of social monogamy in prairie voles under natural conditions. PMID:21442019

  1. [Studying the association between genetic polymorphism of growth factors and the development of primary open-angle glaucoma].

    PubMed

    Kirilenko, M Yu; Tikunova, E V; Sirotina, S S; Polonikov, A V; Bushueva, O Yu; Churnosov, M I

    Primary open-angle glaucoma (POAG) is a multifactorial disease, etiopathogenesis of which largely depends on growth factors. Possessing a variety of medical and biological effects, these cytokines may influence the development and progression of POAG. to reveal the role of genetic polymorphisms of growth factors in predisposition to developing POAG that is refractory to local hypotensive therapy. The object of the study were 162 patients with stage II-III POAG, in whom local hypotensive therapy was inefficient, 90 patients with stage II-III POAG well controlled on local hypotensive therapy, and 191 controls. The material for the study was venous blood taken from the cubital vein of a proband. Isolation of genomic DNA was performed by phenol-chloroform extraction. Analysis of genetic polymorphisms of growth factors was performed through allelic discrimination. For that, synthesis of DNA was carried out via polymerase chain reaction (PCR). It is found that the T IGFR-1 genetic variant (OR=1.34) and a combination of the C VEGF-A and T IGFR-1 genetic variants (OR=1.90) are risk factors of developing POAG that is refractory to local hypotensive therapy. A statistical model for predicting such a risk has been proposed that includes: VEGF-A с.-958C>T genetic marker (rs 833,061), age, concomitant non-inflammatory ocular diseases, microvascular changes in the conjunctiva, the degree of pigmentation of the angle of the anterior chamber, and pseudoexfoliative syndrome. Recognition accuracy of the model is 90.42%. The T IGFR-1 genetic variant and a combination of the C VEGF-A and T IGFR-1 genetic variants increase the risk of developing POAG that is refractory to local hypotensive therapy.

  2. Association of Symptoms and Severity of Rift Valley Fever with Genetic Polymorphisms in Human Innate Immune Pathways

    PubMed Central

    Hise, Amy G.; Traylor, Zachary; Hall, Noémi B.; Sutherland, Laura J.; Dahir, Saidi; Ermler, Megan E.; Muiruri, Samuel; Muchiri, Eric M.; Kazura, James W.; LaBeaud, A. Desirée; King, Charles H.; Stein, Catherine M.

    2015-01-01

    Background Multiple recent outbreaks of Rift Valley Fever (RVF) in Africa, Madagascar, and the Arabian Peninsula have resulted in significant morbidity, mortality, and financial loss due to related livestock epizootics. Presentation of human RVF varies from mild febrile illness to meningoencephalitis, hemorrhagic diathesis, and/or ophthalmitis with residual retinal scarring, but the determinants for severe disease are not understood. The aim of the present study was to identify human genes associated with RVF clinical disease in a high-risk population in Northeastern Province, Kenya. Methodology/Principal Findings We conducted a cross-sectional survey among residents (N = 1,080; 1–85 yrs) in 6 villages in the Sangailu Division of Ijara District. Participants completed questionnaires on past symptoms and exposures, physical exam, vision testing, and blood collection. Single nucleotide polymorphism (SNP) genotyping was performed on a subset of individuals who reported past clinical symptoms consistent with RVF and unrelated subjects. Four symptom clusters were defined: meningoencephalitis, hemorrhagic fever, eye disease, and RVF-not otherwise specified. SNPs in 46 viral sensing and response genes were investigated. Association was analyzed between SNP genotype, serology and RVF symptom clusters. The meningoencephalitis symptom phenotype cluster among seropositive patients was associated with polymorphisms in DDX58/RIG-I and TLR8. Having three or more RVF-related symptoms was significantly associated with polymorphisms in TICAM1/TRIF, MAVS, IFNAR1 and DDX58/RIG-I. SNPs significantly associated with eye disease included three different polymorphisms TLR8 and hemorrhagic fever symptoms associated with TLR3, TLR7, TLR8 and MyD88. Conclusions/Significance Of the 46 SNPs tested, TLR3, TLR7, TLR8, MyD88, TRIF, MAVS, and RIG-I were repeatedly associated with severe symptomatology, suggesting that these genes may have a robust association with RVFV-associated clinical

  3. Genetic polymorphism of matrix metalloproteinase-1 and coronary artery disease susceptibility: a case-control study in a Han Chinese population.

    PubMed

    Qintao, Cui; Yan, Li; Changhong, Duan; Xiaoliang, Guo; Xiaochen, Liu

    2014-12-01

    Coronary artery disease (CAD) receives intensive research due to its high incidence and severe impact on the quality of life. One member of the matrix metalloproteinases (MMPs), MMP-1, has been reported to be associated with CAD. To identify the markers contributing to the genetic susceptibility to CAD, nine single-nucleotide polymorphisms (rs1799750, rs498186, rs475007, rs514921, rs494379, rs996999, rs2071232, rs1938901, and rs2239008) throughout the MMP-1 gene were genotyped using MALDI-TOF within the MassARRAY system, and the allele and genotype distributions were compared between 438 healthy controls and 411 patients with CAD from a Chinese Han population. The analysis revealed a weak association between the rs1799750 (in the promoter region) genotype distribution and CAD (p=0.022). An increased risk of CAD was significantly associated with the 2G allele of rs1799750 (p=0.005, odds ratio=1.329, 95% confidence interval=1.090-1.620, after Bonferroni corrections). Strong linkage disequilibrium was observed in three blocks (D'>0.9). Significantly more C-2G (rs498186-rs1799750) haplotypes (p=0.001 after Bonferroni corrections) were found in CAD subjects. These findings point to a role for the polymorphism in the MMP-1 promoter in CAD among a Han Chinese population and may be informative for future genetic or biological studies on CAD.

  4. Androgen Receptor Gene Polymorphism, Aggression, and Reproduction in Tanzanian Foragers and Pastoralists

    PubMed Central

    Butovskaya, Marina L.; Lazebny, Oleg E.; Vasilyev, Vasiliy A.; Dronova, Daria A.; Karelin, Dmitri V.; Mabulla, Audax Z. P.; Shibalev, Dmitri V.; Shackelford, Todd K.; Fink, Bernhard; Ryskov, Alexey P.

    2015-01-01

    The androgen receptor (AR) gene polymorphism in humans is linked to aggression and may also be linked to reproduction. Here we report associations between AR gene polymorphism and aggression and reproduction in two small-scale societies in northern Tanzania (Africa)—the Hadza (monogamous foragers) and the Datoga (polygynous pastoralists). We secured self-reports of aggression and assessed genetic polymorphism of the number of CAG repeats for the AR gene for 210 Hadza men and 229 Datoga men (aged 17–70 years). We conducted structural equation modeling to identify links between AR gene polymorphism, aggression, and number of children born, and included age and ethnicity as covariates. Fewer AR CAG repeats predicted greater aggression, and Datoga men reported more aggression than did Hadza men. In addition, aggression mediated the identified negative relationship between CAG repeats and number of children born. PMID:26291982

  5. Genetic analysis of 430 Chinese Cynodon dactylon accessions using sequence-related amplified polymorphism markers.

    PubMed

    Huang, Chunqiong; Liu, Guodao; Bai, Changjun; Wang, Wenqiang

    2014-10-21

    Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260-1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53-0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars.

  6. Genetic Analysis of 430 Chinese Cynodon dactylon Accessions Using Sequence-Related Amplified Polymorphism Markers

    PubMed Central

    Huang, Chunqiong; Liu, Guodao; Bai, Changjun; Wang, Wenqiang

    2014-01-01

    Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260–1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53–0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars. PMID:25338051

  7. Primary DNA damage and genetic polymorphisms for CYP1A1, EPHX and GSTM1 in workers at a graphite electrode manufacturing plant

    PubMed Central

    Moretti, Massimo; Dell'Omo, Marco; Villarini, Milena; Pastorelli, Roberta; Muzi, Giacomo; Airoldi, Luisa; Pasquini, Rossana

    2007-01-01

    Background The results of a cross-sectional study aimed to evaluate whether genetic polymorphisms (biomarkers of susceptibility) for CYP1A1, EPHX and GSTM1 genes that affect polycyclic aromatic hydrocarbons (PAH) activation and detoxification might influence the extent of primary DNA damage (biomarker of biologically effective dose) in PAH exposed workers are presented. PAH-exposure of the study populations was assessed by determining the concentration of 1-hydroxypyrene (1OHP) in urine samples (biomarker of exposure dose). Methods The exposed group consisted of workers (n = 109) at a graphite electrode manufacturing plant, occupationally exposed to PAH. Urinary 1OHP was measured by HPLC. Primary DNA damage was evaluated by the alkaline comet assay in peripheral blood leukocytes. Genetic polymorphisms for CYP1A1, EPHX and GSTM1 were determined by PCR or PCR/RFLP analysis. Results 1OHP and primary DNA damage were significantly higher in electrode workers compared to reference subjects. Moreover, categorization of subjects as normal or outlier highlighted an increased genotoxic risk OR = 2.59 (CI95% 1.32–5.05) associated to exposure to PAH. Polymorphisms in EPHX exons 3 and 4 was associated to higher urinary concentrations of 1OHP, whereas none of the genotypes analyzed (CYP1A1, EPHX, and GSTM1) had any significant influence on primary DNA damage as evaluated by the comet assay. Conclusion The outcomes of the present study show that molecular epidemiology approaches (i.e. cross-sectional studies of genotoxicity biomarkers) can play a role in identifying common genetic risk factors, also attempting to associate the effects with measured exposure data. Moreover, categorization of subjects as normal or outlier allowed the evaluation of the association between occupational exposure to PAH and DNA damage highlighting an increased genotoxic risk. PMID:17908297

  8. [Studies on the adverse effects of fluvoxamine treatment in children with autistic disorder: correlation with genetic polymorphism in serotonin related genes].

    PubMed

    Sugie, Yoko; Sugie, Hideo; Fukuda, Tokiko; Ito, Masataka; Ohzeki, Takehiko

    2003-05-01

    Selective serotonin re-uptake inhibitors (SSRIs) have recently been applied to the children with autistic disorder. To create better treatment, we studied here clinical adverse effects of fluvoxamine and correlated them with genetic polymorphism of two genes, the promoter region of serotonin transporter gene (5-HTTLPR) and serotonin 2A receptor gene (5-HT2AR). Twenty-eight subjects, consisting of 23 boys and 5 girls, aged from 3 to 18 years old diagnosed as having autistic disorder were analyzed during fluvoxamine administration. The dosages and duration of fluvoxamine treatment are 1.5 to 3 mg/kg/day and 2 weeks to 17 months (mean 7.9 months), respectively. There were several clinical adverse effects such as sleep disturbance in 9 cases, climb up to high places in 8, gastrointestinal symptoms in 6, hyperactivities in 5, excitement in 4, general fatigability in 2 and urticaria in 1. Medication was discontinued in 2 patients with fatigability and 1 with sleep disturbance, diarrhea and poor appetite. There was no significant correlation between genetic polymorphism in 5-HTTLPR and the occurrence of clinical adverse effects of fluvoxamine. However hyperactivity was significantly more frequent in the subjects with 102T/102T polymorphism of 5-HT2AR, and patients with sleep disturbance were significantly less frequent in the subjects with 102C/102C polymorphism. We conclude that the clinical adverse effects such as climb up to high places and hyperactivity during fluvoxamine treatment may be relatively specific in children, and that genetic polymorphism of 5-HT2AR may be related to the appearance of clinical adverse effects.

  9. Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits.

    PubMed

    Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A

    2017-10-23

    Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the

  10. Genetic polymorphisms involved in dopaminergic neurotransmission and risk for Parkinson's disease in a Japanese population

    PubMed Central

    2011-01-01

    Background Parkinson's disease (PD) is characterized by alterations in dopaminergic neurotransmission. Genetic polymorphisms involved in dopaminergic neurotransmission may influence susceptibility to PD. Methods We investigated the relationship of catechol-O-methyltransferase (COMT), monoamine oxidase B (MAOB), dopamine receptor (DR) D2 and DRD4 polymorphisms and PD risk with special attention to the interaction with cigarette smoking among 238 patients with PD and 369 controls in a Japanese population. Results Subjects with the AA genotype of MAOB rs1799836 showed a significantly increased risk of PD (odds ratio (OR) = 1.70, 95% confidence interval (CI) = 1.12 - 2.58) compared with the AG and GG genotypes combined. The AA genotype of COMT rs4680 was marginally associated with an increased risk of PD (OR = 1.86, 95% CI = 0.98 - 3.50) compared with the GG genotype. The DRD2 rs1800497 and DRD4 rs1800955 polymorphisms showed no association with PD. A COMT -smoking interaction was suggested, with the combined GA and AA genotypes of rs4680 and non-smoking conferring significantly higher risk (OR = 3.97, 95% CI = 2.13 - 7.41) than the AA genotype and a history of smoking (P for interaction = 0.061). No interactions of smoking with other polymorphisms were observed. Conclusions The COMT rs4680 and MAOB rs1799836 polymorphisms may increase susceptibility to PD risk among Japanese. Future studies involving larger control and case populations and better pesticide exposure histories will undoubtedly lead to a more thorough understanding of the role of the polymorphisms involved in the dopamine pathway in PD. PMID:21781348

  11. Genetic differentiation of Octopus minor (Mollusca, Cephalopoda) off the northern coast of China as revealed by amplified fragment length polymorphisms.

    PubMed

    Yang, J M; Sun, G H; Zheng, X D; Ren, L H; Wang, W J; Li, G R; Sun, B C

    2015-12-02

    Octopus minor (Sasaki, 1920) is an economically important cephalopod that is found in the northern coastal waters of China. In this study, we investigated genetic differentiation in fishery populations using amplified fragment length polymorphisms (AFLPs). A total of 150 individuals were collected from five locations: Dalian (DL), Yan-tai (YT), Qingdao (QD), Lianyungang (LY), and Zhoushan (ZS), and 243 reproducible bands were amplified using five AFLP primer combinations. The percentage of polymorphic bands ranged from 53.33 to 76.08%. Nei's genetic identity ranged from 0.9139 to 0.9713, and the genetic distance ranged from 0.0291 to 0.0900. A phylogenetic tree was constructed using the unweighted pair group method with arithmetic mean, based on the genetic distance. The DL and YT populations originated from one clade, while the QD, LY, and ZS populations originated from another. The results indicate that the O. minor stock consisted of two genetic populations with an overall significantly analogous FST value (0.1088, P < 0.05). Most of the variance was within populations. These findings will be important for more sustainable octopus fisheries, so that this marine resource can be conserved for its long-term utilization.

  12. Evolution of a genetic polymorphism with climate change in a Mediterranean landscape

    PubMed Central

    Thompson, John; Charpentier, Anne; Bouguet, Guillaume; Charmasson, Faustine; Roset, Stephanie; Buatois, Bruno; Vernet, Philippe; Gouyon, Pierre-Henri

    2013-01-01

    Many species show changes in distribution and phenotypic trait variation in response to climatic warming. Evidence of genetically based trait responses to climate change is, however, less common. Here, we detected evolutionary variation in the landscape-scale distribution of a genetically based chemical polymorphism in Mediterranean wild thyme (Thymus vulgaris) in association with modified extreme winter freezing events. By comparing current data on morph distribution with that observed in the early 1970s, we detected a significant increase in the proportion of morphs that are sensitive to winter freezing. This increase in frequency was observed in 17 of the 24 populations in which, since the 1970s, annual extreme winter freezing temperatures have risen above the thresholds that cause mortality of freezing-sensitive morphs. Our results provide an original example of rapid ongoing evolutionary change associated with relaxed selection (less extreme freezing events) on a local landscape scale. In species whose distribution and genetic variability are shaped by strong selection gradients, there may be little time lag associated with their ecological and evolutionary response to long-term environmental change. PMID:23382198

  13. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial

  14. Susceptibility to Colorectal Cancer and Two Genetic Polymorphisms of XRCC4.

    PubMed

    Emami, Naghmeh; Saadat, Iraj; Omidvari, Shahpour

    2015-09-01

    The X-ray complementing group 4 (XRCC4, OMIM: 194363) plays a key role in non-homologous end-joining DNA repair pathway in mammalian cells. This pathway is believed to help maintain genomic stability. In the present study, it is hypothesized that genetic polymorphisms in the NHEJ repair XRCC4 gene may be associated with an increased risk in developing colorectal cancer (CRC). We genotyped two polymorphisms of XRCC4, G-1394T (rs6869366) and intron 3 insertion/deletion (I/D; rs28360071) in 200 colorectal cancer patients as well as 256 healthy individuals, and evaluated their association with CRC. We found that in G-1394T polymorphism, neither the TG nor the GG genotypes (versus the TT genotype) were associated with the risk of developing CRC. The results of our study indicate that in comparison with the II genotype, ID and DD genotypes had no significant association with the risk of developing CRC. Subjects with TT genotype and positive family history in colorectal cancer were found to be at a much lower risk of developing CRC in comparison with the reference group (OR = 0.31, 95%CI: 0.11-0.85, P =  .023). It should be noted that participants having at least one G allele (TG+GG genotypes) were at a significantly higher risk to develop the disease compared with the reference group (OR = 9.10, 95%CI: 2.00-41.3, P = 0.004). In relation to I/D polymorphism, among participants, those with positive family history, either with ID (OR =  .78, 95%CI: 2.26-10.0, P < 0.001) or DD genotypes (OR = 5.73, 95%CI: 1.99-16.4, P = 0.001) had a significantly association with the disease. Among participants with a positive family history in CRC, the haplotype GD dramatically increased the risk of developing CRC (OR = 10.2, 95%CI: 2.28-46, P = 0.002). The results of this study indicate that G-1394T and I/D polymorphisms of XRCC4 among individuals with positive family history for colorectal cancer substantially increase the risk factor for developing colorectal cancers.

  15. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes.

    PubMed

    Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I

    2015-10-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P<5×10(-8)) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations.

  16. Genome-wide Association Study Identifies HLA 8.1 Ancestral Haplotype Alleles as Major Genetic Risk Factors for Myositis Phenotypes

    PubMed Central

    Miller, Frederick W.; Chen, Wei; O’Hanlon, Terrance P.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy R.; Isenberg, David A.; Chinoy, Hector; Ollier, William E.R.; Scheet, Paul; Peng, Bo; Lee, Annette; Byun, Jinyoung; Lamb, Janine A.; Gregersen, Peter K.; Amos, Christopher I.

    2016-01-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis; 473 juvenile dermatomyositis; 532 polymyositis; and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P < 5 × 10−8) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1haplotype comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations. PMID:26291516

  17. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.

    PubMed

    Brown, Allan F; Yousef, Gad G; Reid, Robert W; Chebrolu, Kranthi K; Thomas, Aswathy; Krueger, Christopher; Jeffery, Elizabeth; Jackson, Eric; Juvik, John A

    2015-07-01

    The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL

  18. [Association of XRCC1 genetic polymorphism with susceptibility to non-Hodgkin's lymphoma].

    PubMed

    Li, Su-Xia; Zhu, Hong-Li; Guo, Bo; Yang, Yang; Wang, Hong-Yan; Sun, Jing-Fen; Cao, Yong-Bin

    2014-08-01

    The purpose of this study was to explore the association between X-ray repair cross-complementing group 1 (XRCC1)gene polymorphism and non-Hodgkin's lymphoma risk. A total of 282 non-Hodgkin's lymphoma (NHL) patients and 231 normal controls were used to investigate the effect of three XRCC1 gene polymorphisms (rs25487, rs25489, rs1799782) on susceptibility to non-Hodgkin's lymphoma. Genotyping was performed by using SNaPshot method. All statistical analyses were done with R software. Genotype and allele frequencies of XRCC1 were compared between the patients and controls by using the chi-square test. Crude and adjusted odd ratios and 95% confidence intervals were calculated by using logistic regression on the basis of genetic different models. For four kinds of NHL, subgroup analyses were also conducted. Combined genotype analyses of the three XRCC1 polymorphisms were also done by using logistic regression. The results showed that the variant genotype frequency was not significantly different between the controls and NHL or NHL subtype cases. Combined genotype analyses of XRCC1 399-280-194 results showed that the combined genotype was not associated with risk of NHL overall, but the VT-WT-WT combined genotype was associated with the decreased risk of T-NHL (OR: 0.21; 95%CI (0.06-0.8); P = 0.022), and the WT-VT-WT combined genotype was associated with the increased risk of FL(OR:15.23; 95%CI (1.69-137.39); P = 0.015). It is concluded that any studied polymorphism (rs25487, rs25489, rs1799782) alone was not shown to be rela-ted with the risk of NHL or each histologic subtype of NHL. The combined genotype with mutation of three SNP of XRCC1 was not related to the risk of NHL. However, further large-scale studies would be needed to confirm the association of decreased or increased risk for T-NHL and FL with the risk 3 combined SNP mutants of XRCC1 polymorphism.

  19. The Role of Dopamine in Anticipatory Pursuit Eye Movements: Insights from Genetic Polymorphisms in Healthy Adults

    PubMed Central

    Hennig, Jürgen

    2016-01-01

    Abstract There is a long history of eye movement research in patients with psychiatric diseases for which dysfunctions of neurotransmission are considered to be the major pathologic mechanism. However, neuromodulation of oculomotor control is still hardly understood. We aimed to investigate in particular the impact of dopamine on smooth pursuit eye movements. Systematic variability in dopaminergic transmission due to genetic polymorphisms in healthy subjects offers a noninvasive opportunity to determine functional associations. We measured smooth pursuit in 110 healthy subjects genotyped for two well-documented polymorphisms, the COMT Val158Met polymorphism and the SLC6A3 3′-UTR-VNTR polymorphism. Pursuit paradigms were chosen to particularly assess the ability of the pursuit system to initiate tracking when target motion onset is blanked, reflecting the impact of extraretinal signals. In contrast, when following a fully visible target sensory, retinal signals are available. Our results highlight the crucial functional role of dopamine for anticipatory, but not for sensory-driven, pursuit processes. We found the COMT Val158Met polymorphism specifically associated with anticipatory pursuit parameters, emphasizing the dominant impact of prefrontal dopamine activity on complex oculomotor control. In contrast, modulation of striatal dopamine activity by the SLC6A3 3′-UTR-VNTR polymorphism had no significant functional effect. Though often neglected so far, individual differences in healthy subjects provide a promising approach to uncovering functional mechanisms and can be used as a bridge to understanding deficits in patients. PMID:28101524

  20. The Role of Dopamine in Anticipatory Pursuit Eye Movements: Insights from Genetic Polymorphisms in Healthy Adults.

    PubMed

    Billino, Jutta; Hennig, Jürgen; Gegenfurtner, Karl R

    2016-01-01

    There is a long history of eye movement research in patients with psychiatric diseases for which dysfunctions of neurotransmission are considered to be the major pathologic mechanism. However, neuromodulation of oculomotor control is still hardly understood. We aimed to investigate in particular the impact of dopamine on smooth pursuit eye movements. Systematic variability in dopaminergic transmission due to genetic polymorphisms in healthy subjects offers a noninvasive opportunity to determine functional associations. We measured smooth pursuit in 110 healthy subjects genotyped for two well-documented polymorphisms, the COMT Val 158 Met polymorphism and the SLC6A3 3'-UTR-VNTR polymorphism. Pursuit paradigms were chosen to particularly assess the ability of the pursuit system to initiate tracking when target motion onset is blanked, reflecting the impact of extraretinal signals. In contrast, when following a fully visible target sensory, retinal signals are available. Our results highlight the crucial functional role of dopamine for anticipatory, but not for sensory-driven, pursuit processes. We found the COMT Val 158 Met polymorphism specifically associated with anticipatory pursuit parameters, emphasizing the dominant impact of prefrontal dopamine activity on complex oculomotor control. In contrast, modulation of striatal dopamine activity by the SLC6A3 3'-UTR-VNTR polymorphism had no significant functional effect. Though often neglected so far, individual differences in healthy subjects provide a promising approach to uncovering functional mechanisms and can be used as a bridge to understanding deficits in patients.

  1. Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: complement component C1q and Prnp polymorphisms

    USGS Publications Warehouse

    Blanchong, Julie A.; Heisey, Dennis M.; Scribner, Kim T.; Libants, Scot V.; Johnson, Chad; Aiken, Judd M.; Langenberg, Julia A.; Samuel, Michael D.

    2009-01-01

    The genetic basis of susceptibility to chronic wasting disease (CWD) in free-ranging cervids is of great interest. Association studies of disease susceptibility in free-ranging populations, however, face considerable challenges including: the need for large sample sizes when disease is rare, animals of unknown pedigree create a risk of spurious results due to population admixture, and the inability to control disease exposure or dose. We used an innovative matched case–control design and conditional logistic regression to evaluate associations between polymorphisms of complement C1q and prion protein (Prnp) genes and CWD infection in white-tailed deer from the CWD endemic area in south-central Wisconsin. To reduce problems due to admixture or disease-risk confounding, we used neutral genetic (microsatellite) data to identify closely related CWD-positive (n = 68) and CWD-negative (n = 91) female deer to serve as matched cases and controls. Cases and controls were also matched on factors (sex, location, age) previously demonstrated to affect CWD infection risk. For Prnp, deer with at least one Serine (S) at amino acid 96 were significantly less likely to be CWD-positive relative to deer homozygous for Glycine (G). This is the first characterization of genes associated with the complement system in white-tailed deer. No tests for association between any C1q polymorphism and CWD infection were significant at p < 0.05. After controlling for Prnp, we found weak support for an elevated risk of CWD infection in deer with at least one Glycine (G) at amino acid 56 of the C1qC gene. While we documented numerous amino acid polymorphisms in C1q genes none appear to be strongly associated with CWD susceptibility.

  2. The genetic polymorphism of merozoite surface protein-1 in Plasmodium falciparum isolates from Aceh province, Indonesia

    NASA Astrophysics Data System (ADS)

    Jamil, K. F.; Supargiyono, S.; Syafruddin, D.; Pratama, N.; Silvy, S.

    2018-03-01

    An estimated of 3.3 million Indonesian population were infected with malaria. However, extensive genetic polymorphism of the field isolates msp-1 of P. falciparum represents a major obstacle for the development of malaria treatment. The aim of this study was to investigate the genetic diversity of msp-1 genotype in field isolates of P. falciparum collected in Aceh Province. A total of 90 patients with malaria (+) were selected from eleven district hospitals in Aceh from 2013-2015. Data were collected by anamnesis, complete physical examination and laboratory tests for msp-1. All protocols to diagnose malaria followed the WHO 2010 guideline. All samples were stored in Eijkman Biology Molecular Institute, Jakarta. Among 90 samples, 57.7% were male, and 42.3% were female with the most cases found between 21-30 years old. From the allele typing analysis of P. falciparum from Aceh; K1, MAD20, and RO33 allele types were identified. MAD20 type was the highest allele found in this study (57.9%). It was found in single and mixed infection. A moderate level of the mixed allele was also observed.

  3. Genetic polymorphisms associated with increased risk of developing chronic myelogenous leukemia

    PubMed Central

    Bruzzoni-Giovanelli, Heriberto; González, Juan R.; Sigaux, François; Villoutreix, Bruno O.; Cayuela, Jean Michel; Guilhot, Joëlle; Preudhomme, Claude; Guilhot, François; Poyet, Jean-Luc; Rousselot, Philippe

    2015-01-01

    Little is known about inherited factors associated with the risk of developing chronic myelogenous leukemia (CML). We used a dedicated DNA chip containing 16 561 single nucleotide polymorphisms (SNPs) covering 1 916 candidate genes to analyze 437 CML patients and 1 144 healthy control individuals. Single SNP association analysis identified 139 SNPs that passed multiple comparisons (1% false discovery rate). The HDAC9, AVEN, SEMA3C, IKBKB, GSTA3, RIPK1 and FGF2 genes were each represented by three SNPs, the PSM family by four SNPs and the SLC15A1 gene by six. Haplotype analysis showed that certain combinations of rare alleles of these genes increased the risk of developing CML by more than two or three-fold. A classification tree model identified five SNPs belonging to the genes PSMB10, TNFRSF10D, PSMB2, PPARD and CYP26B1, which were associated with CML predisposition. A CML-risk-allele score was created using these five SNPs. This score was accurate for discriminating CML status (AUC: 0.61, 95%CI: 0.58–0.64). Interestingly, the score was associated with age at diagnosis and the average number of risk alleles was significantly higher in younger patients. The risk-allele score showed the same distribution in the general population (HapMap CEU samples) as in our control individuals and was associated with differential gene expression patterns of two genes (VAPA and TDRKH). In conclusion, we describe haplotypes and a genetic score that are significantly associated with a predisposition to develop CML. The SNPs identified will also serve to drive fundamental research on the putative role of these genes in CML development. PMID:26474455

  4. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  5. Comprehensive genetic analysis of cytarabine sensitivity in a cell-based model identifies polymorphisms associated with outcome in AML patients

    PubMed Central

    Gamazon, Eric R.; Lamba, Jatinder K.; Pounds, Stanley; Stark, Amy L.; Wheeler, Heather E.; Cao, Xueyuan; Im, Hae K.; Mitra, Amit K.; Rubnitz, Jeffrey E.; Ribeiro, Raul C.; Raimondi, Susana; Campana, Dario; Crews, Kristine R.; Wong, Shan S.; Welsh, Marleen; Hulur, Imge; Gorsic, Lidija; Hartford, Christine M.; Zhang, Wei; Cox, Nancy J.; Dolan, M. Eileen

    2013-01-01

    A whole-genome approach was used to investigate the genetic determinants of cytarabine-induced cytotoxicity. We performed a meta-analysis of genome-wide association studies involving 523 lymphoblastoid cell lines (LCLs) from individuals of European, African, Asian, and African American ancestry. Several of the highest-ranked single-nucleotide polymorphisms (SNPs) were within the mutated in colorectal cancers (MCC) gene. MCC expression was induced by cytarabine treatment from 1.7- to 26.6-fold in LCLs. A total of 33 SNPs ranked at the top of the meta-analysis (P < 10−5) were successfully tested in a clinical trial of patients randomized to receive low-dose or high-dose cytarabine plus daunorubicin and etoposide; of these, 18 showed association (P < .05) with either cytarabine 50% inhibitory concentration in leukemia cells or clinical response parameters (minimal residual disease, overall survival (OS), and treatment-related mortality). This count (n = 18) was significantly greater than expected by chance (P = .016). For rs1203633, LCLs with AA genotype were more sensitive to cytarabine-induced cytotoxicity (P = 1.31 × 10−6) and AA (vs GA or GG) genotype was associated with poorer OS (P = .015), likely as a result of greater treatment-related mortality (P = .0037) in patients with acute myeloid leukemia (AML). This multicenter AML02 study trial was registered at www.clinicaltrials.gov as #NCT00136084. PMID:23538338

  6. Association of genetic polymorphisms of telomere binding proteins with cholinesterase activity in omethoate-exposed workers.

    PubMed

    Ding, Mingcui; Yang, Yongli; Duan, Xiaoran; Wang, Sihua; Feng, Xiaolei; Wang, Tuanwei; Wang, Pengpeng; Liu, Suxiang; Li, Lei; Liu, Junling; Tang, Lixia; Niu, Xinhua; Zhang, Yuhong; Li, Guoyu; Yao, Wu; Cui, Liuxin; Wang, Wei

    2018-06-18

    Omethoate, an organophosphorous pesticide, can cause a variety of health effects, especially the decrease of cholinesterase activity. The aim of this study is to explore the association of genetic polymorphisms of telomere binding proteins with cholinesterase activity in omethoate-exposed population. Cholinesterase activities in whole blood, red blood cell and plasma were detected using acetylthiocholine and dithio-bis-(nitrobenzoic acid) method; Genetic Genotyping of POT1 rs1034794, POT1 rs10250202, TERF1 rs3863242 and TERT rs2736098 were performed with PCR-RFLP. The cholinesterase activities of whole blood, red blood cells and plasma in exposure group are significantly lower than that of the control group (P < 0.001). Multivariate analysis indicates that exposure group (b = - 1.016, P < 0.001), agender (b = 0.365, P < 0.001), drinking (b = 0.271, P = 0.004) and TERF1rs3863242 (b = - 0.368, P = 0.016) had an impact on cholinesterase activities. The results suggest that individual carrying AG+GG genotypes in TERF1 gene rs3863242 polymorphism were susceptible to damage in cholinesterase induced by omethoate. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The development of 10 novel polymorphic microsatellite markers through next generation sequencing and a preliminary population genetic analysis for the endangered Glenelg spiny crayfish, Euastacus bispinosus.

    PubMed

    Miller, Adam D; Van Rooyen, Anthony; Sweeney, Oisín F; Whiterod, Nick S; Weeks, Andrew R

    2013-07-01

    The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E

  8. Effects of Lead Exposure and Genetic Polymorphisms on ALAD and GPx Activities in Brazilian Battery Workers.

    PubMed

    da Cunha Martins, Airton; Mazzaron Barcelos, Gustavo Rafael; Jacob Ferreira, Anna Laura Bechara; de Souza, Marilesia Ferreira; de Syllos Cólus, Ilce Mara; Antunes, Lusânia Maria Greggi; Bastos Paoliello, Monica Maria; Adeyemi, Joseph A; Barbosa, Fernando

    2015-01-01

    Lead (Pb) is a toxic metal that is widely used by metallurgical industries such as car battery recycling. Exposure to the metal may modify the redox status of the cells and consequently result in changes in activities of important enzymes such as delta-aminolevulinic acid dehydratase (ALAD) and glutathione peroxidase (GPx). Similarly, genetic polymorphisms may modulate the activities of enzymes related to detoxification processes of the metal and may modify Pb body burden. Therefore, the aims of the present study were (i) to evaluate the correlation between blood lead levels (BLL) and activities of the enzymes ALAD and GPx, and (ii) to determine whether activities of these enzymes may be influenced by polymorphisms in ALAD and GPx genes in Brazilian automotive battery workers chronically exposed to Pb, as well as the effects of these polymorphisms on BLL. Our study included 257 participants; BLL were determined by inductively couple plasma-mass spectrometry (ICP-MS), and the activities of the enzymes ALAD and GPx were quantified spectrophotometrically; and genotyping of ALAD (rs1800435) and GPx-1 (rs1800668) polymorphisms was performed by TaqMan assays (real-time polymerase chain reaction, RT-PCR). Significant negative correlations were found between BLL and ALAD activity. Subjects who carried at least one polymorphic allele for ALAD gene displayed markedly lower ALAD activities, while no significant effect was observed regarding GPx-1 polymorphism and activity of the same enzyme. Further, ALAD and GPx-1 polymorphisms exerted no marked influence on BLL. Taken together, our results showed that BLL affected ALAD but not GPx activities, and these were not modulated by polymorphisms in ALAD and GPx gene. Further, the rs1800435 SNP showed a tendency to modulate ALAD activity, while the rs1800668 SNP did not modulate GPx activity in Brazilian automotive battery workers exposed to Pb.

  9. Functional polymorphisms associated with human muscle size and strength.

    PubMed

    Thompson, Paul D; Moyna, Niall; Seip, Richard; Price, Thomas; Clarkson, Priscilla; Angelopoulos, Theodore; Gordon, Paul; Pescatello, Linda; Visich, Paul; Zoeller, Robert; Devaney, Joseph M; Gordish, Heather; Bilbie, Stephen; Hoffman, Eric P

    2004-07-01

    Skeletal muscle is critically important to human performance and health, but little is known of the genetic factors influencing muscle size, strength, and its response to exercise training. The Functional single nucleotide polymorphisms (SNP) Associated with Muscle Size and Strength, or FAMuSS, Study is a multicenter, NIH-funded program to examine the influence of gene polymorphisms on skeletal muscle size and strength before and after resistance exercise training. One thousand men and women, age 18 - 40 yr, will train their nondominant arm for 12 wk. Skeletal muscle size (magnetic resonance imaging) and isometric and dynamic strength will be measured before and after training. Individuals whose baseline values or response to training deviate > or = 1.5 SD will be defined as outliers and examined for genetic variants. Initially candidate genes previously associated with muscle performance will be examined, but the study will ultimately attempt to identify genes associated with muscle performance. FAMuSS should help identify genetic factors associated with muscle performance and the response to exercise training. Such insight should contribute to our ability to predict the individual response to exercise training but may also contribute to understanding better muscle physiology, to identifying individuals who are susceptible to muscle loss with environmental challenge, and to developing pharmacologic agents capable of preserving muscle size and function.

  10. Association between Apolipoprotein C-III Gene Polymorphisms and Coronary Heart Disease: A Meta-analysis.

    PubMed

    Zhang, Jing-Zhan; Xie, Xiang; Ma, Yi-Tong; Zheng, Ying-Ying; Yang, Yi-Ning; Li, Xiao-Mei; Fu, Zhen-Yan; Dai, Chuan-Fang; Zhang, Ming-Ming; Yin, Guo-Ting; Liu, Fen; Chen, Bang-Dang; Gai, Min-Tao

    2016-01-01

    Polymorphisms in the apolipoprotein C-III (APOC3) gene have been reported to be associated with coronary heart disease (CHD), but the data so far have been conflicting. To derive a more precise estimation of these associations, we performed a meta-analysis to investigate the three main polymorphisms (SstI, T-455C, C-482T) of APOC3 in all published studies. Databases including PubMed, Web of Science, Wanfang, SinoMed and CNKI were systematically searched. The association was assessed using odds ratios (ORs) with 95% confidence intervals (CIs). The statistical analysis was performed using Review Manager 5.3.3 and Stata 12.0. A total of 31 studies have been identified. The pooled odds ratio (OR) for the association between the APOC3 gene polymorphisms and CHD and its corresponding 95% confidence interval (95% CI) were evaluated by random or fixed effect models. A statistical association between APOC3 SstI polymorphism and CHD susceptibility was observed under an allelic contrast model (P= 0.003, OR = 1.14, 95% CI = 1.05-1.24), dominant genetic model (P= 0.01, OR = 1.14, 95% CI = 1.03-1.26), and recessive genetic model (P= 0.02, OR = 1.35, 95% CI = 1.06-1.71), respectively. A significant association between the APOC3 T-455C polymorphism and CHD was also detected under an allelic contrast (P < 0.0001, OR = 1.19, 95% CI = 1.10-1.29), dominant genetic model (P= 0.0003, OR = 1.24, 95% CI = 1.11-1.39) and recessive genetic model (P= 0.04, OR = 1.30, 95% CI = 1.01-1.67). No significant association between the APOC3 C-482T polymorphism and CHD was found under an allelic model (P= 0.94, OR = 1.00, 95% CI = 0.93-1.08), dominant genetic model (P= 0.20, OR = 1.07, 95% CI = 0.97-1.18) or recessive genetic model (P= 0.13, OR = 0.90, 95% CI = 0.79-1.03). This meta-analysis revealed that the APOC3 SstI and T-455C polymorphisms significantly increase CHD susceptibility. No significant association was observed between the APOC3 C-482T polymorphism and CHD susceptibility.

  11. Association between Apolipoprotein C-III Gene Polymorphisms and Coronary Heart Disease: A Meta-analysis

    PubMed Central

    Zhang, Jing-Zhan; Xie, Xiang; Ma, Yi-Tong; Zheng, Ying-Ying; Yang, Yi-Ning; Li, Xiao-Mei; Fu, Zhen-Yan; Dai, Chuan-Fang; Zhang, Ming-Ming; Yin, Guo-Ting; Liu, Fen; Chen, Bang-Dang; Gai, Min-Tao

    2016-01-01

    Polymorphisms in the apolipoprotein C-III (APOC3) gene have been reported to be associated with coronary heart disease (CHD), but the data so far have been conflicting. To derive a more precise estimation of these associations, we performed a meta-analysis to investigate the three main polymorphisms (SstI, T-455C, C-482T) of APOC3 in all published studies. Databases including PubMed, Web of Science, Wanfang, SinoMed and CNKI were systematically searched. The association was assessed using odds ratios (ORs) with 95% confidence intervals (CIs). The statistical analysis was performed using Review Manager 5.3.3 and Stata 12.0. A total of 31 studies have been identified. The pooled odds ratio (OR) for the association between the APOC3 gene polymorphisms and CHD and its corresponding 95% confidence interval (95% CI) were evaluated by random or fixed effect models. A statistical association between APOC3 SstI polymorphism and CHD susceptibility was observed under an allelic contrast model (P= 0.003, OR = 1.14, 95% CI = 1.05-1.24), dominant genetic model (P= 0.01, OR = 1.14, 95% CI = 1.03-1.26), and recessive genetic model (P= 0.02, OR = 1.35, 95% CI = 1.06-1.71), respectively. A significant association between the APOC3 T-455C polymorphism and CHD was also detected under an allelic contrast (P < 0.0001, OR = 1.19, 95% CI = 1.10-1.29), dominant genetic model (P= 0.0003, OR = 1.24, 95% CI = 1.11-1.39) and recessive genetic model (P= 0.04, OR = 1.30, 95% CI = 1.01-1.67). No significant association between the APOC3 C-482T polymorphism and CHD was found under an allelic model (P= 0.94, OR = 1.00, 95% CI = 0.93-1.08), dominant genetic model (P= 0.20, OR = 1.07, 95% CI = 0.97-1.18) or recessive genetic model (P= 0.13, OR = 0.90, 95% CI = 0.79-1.03). This meta-analysis revealed that the APOC3 SstI and T-455C polymorphisms significantly increase CHD susceptibility. No significant association was observed between the APOC3 C-482T polymorphism and CHD susceptibility. PMID:26816662

  12. Genetic association between ghrelin polymorphisms and Alzheimer's disease in a Japanese population.

    PubMed

    Shibata, Nobuto; Ohnuma, Tohru; Kuerban, Bolati; Komatsu, Miwa; Arai, Heii

    2011-01-01

    Ghrelin has been reported to enter the hippocampus and to bind to the neurons of the hippocampal formation. This peptide also affects neuronal glucose uptake and decreases tau hyperphosphorylation. There is increasing evidence suggesting an association between ghrelin and Alzheimer's disease (AD) pathology. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) of the ghrelin gene are associated with AD. The SNPs were genotyped using TaqMan technology and were analyzed using a case-control study design. Our case-control dataset consisted of 182 AD patients and 143 age-matched controls. Hardy-Weinberg equilibrium and linkage disequilibrium analyses suggest that the region in and around the gene is highly polymorphic. One SNP, rs4684677 (Leu90Gln), showed a marginal association with age of AD onset. We did not detect any association between the other SNPs of the ghrelin gene and AD. There have been few genetic studies on the relationship between circulating ghrelin and functional SNPs. Further multifactorial studies are needed to clarify the relationship between ghrelin and AD. Copyright © 2011 S. Karger AG, Basel.

  13. Associations of VEGF-C Genetic Polymorphisms with Urothelial Cell Carcinoma Susceptibility Differ between Smokers and Non-Smokers in Taiwan

    PubMed Central

    Tung, Min-Che; Hsieh, Ming-Ju; Wang, Shian-Shiang; Yang, Shun-Fa; Chen, Shiou-Sheng; Wang, Shih-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chien, Ming-Hsien

    2014-01-01

    Background Vascular endothelial growth factor (VEGF)-C is associated with lymphangiogenesis, pelvic regional lymph node metastasis, and an antiapoptotic phenotype in urothelial cell carcinoma (UCC). Knowledge of potential roles of VEGF-C genetic polymorphisms in susceptibility to UCC is lacking. This study was designed to examine associations between VEGF-C gene variants and UCC susceptibility and evaluate whether they are modified by smoking. Methodology/Principal Findings Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a TaqMan-based real-time polymerase chain reaction (PCR) in 233 patients with UCC and 520 cancer-free controls. A multivariate logistic regression was applied to model associations between genetic polymorphisms and UCC susceptibility, and to determine if the effect was modified by smoking. We found that after adjusting for other covariates, individuals within the entire population and the 476 non-smokers carrying at least one A allele at VEGF-C rs1485766 respectively had 1.742- and 1.834-fold risks of developing UCC than did wild-type (CC) carriers. Among the 277 smokers, we found that VEGF-C rs7664413 T (CT+TT) and rs2046463 G (AG+GG) allelic carriers were more prevalent in UCC patients than in non-cancer participants. Moreover, UCC patients with the smoking habit who had at least one T allele of VEGF-C rs7664413 were at higher risk of developing larger tumor sizes (p = 0.021), compared to those patients with CC homozygotes. Conclusions Our results suggest that the involvement of VEGF-C genotypes in UCC risk differs among smokers compared to non-smokers among Taiwanese. The genetic polymorphism of VEGF-C rs7664413 might be a predictive factor for the tumor size of UCC patients who have a smoking habit. PMID:24608123

  14. Associations of VEGF-C genetic polymorphisms with urothelial cell carcinoma susceptibility differ between smokers and non-smokers in Taiwan.

    PubMed

    Tung, Min-Che; Hsieh, Ming-Ju; Wang, Shian-Shiang; Yang, Shun-Fa; Chen, Shiou-Sheng; Wang, Shih-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chien, Ming-Hsien

    2014-01-01

    Vascular endothelial growth factor (VEGF)-C is associated with lymphangiogenesis, pelvic regional lymph node metastasis, and an antiapoptotic phenotype in urothelial cell carcinoma (UCC). Knowledge of potential roles of VEGF-C genetic polymorphisms in susceptibility to UCC is lacking. This study was designed to examine associations between VEGF-C gene variants and UCC susceptibility and evaluate whether they are modified by smoking. Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a TaqMan-based real-time polymerase chain reaction (PCR) in 233 patients with UCC and 520 cancer-free controls. A multivariate logistic regression was applied to model associations between genetic polymorphisms and UCC susceptibility, and to determine if the effect was modified by smoking. We found that after adjusting for other covariates, individuals within the entire population and the 476 non-smokers carrying at least one A allele at VEGF-C rs1485766 respectively had 1.742- and 1.834-fold risks of developing UCC than did wild-type (CC) carriers. Among the 277 smokers, we found that VEGF-C rs7664413 T (CT+TT) and rs2046463 G (AG+GG) allelic carriers were more prevalent in UCC patients than in non-cancer participants. Moreover, UCC patients with the smoking habit who had at least one T allele of VEGF-C rs7664413 were at higher risk of developing larger tumor sizes (p = 0.021), compared to those patients with CC homozygotes. Our results suggest that the involvement of VEGF-C genotypes in UCC risk differs among smokers compared to non-smokers among Taiwanese. The genetic polymorphism of VEGF-C rs7664413 might be a predictive factor for the tumor size of UCC patients who have a smoking habit.

  15. Osteopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis

    PubMed Central

    Alain, Karin; Karrow, Niel A; Thibault, Catherine; St-Pierre, Jessika; Lessard, Martin; Bissonnette, Nathalie

    2009-01-01

    Background Mastitis is the most important disease in dairy cows and it causes significant lost of profit to producers. Identification of the genes, and their variants, involved in innate immune responses is essential for the understanding of this inflammatory disease and to identify potential genetic markers for resistance to mastitis. The progeny of dairy cows would benefit from receiving favourable alleles that support greater resistance to infection, thus reducing antibiotic use. This study aims to identify a key gene in the innate immune response to mastitis, led us to evaluate its genetic association with somatic cell score (SCS), which is an indicator of clinical mastitis, and to evaluate its impact on other traits related to milk production. Results The osteopontin transcript (SPP1) was identified in the somatic cells from cows experimentally infected with Escherichia coli. By selecting bulls with extreme estimated breeding values (EBVs) for SCS, which is an indicator of mammary gland health, four DNA polymorphisms in the SPP1 genomic sequence were found. Statistical analysis revealed that the SNP SPP1c.-1301G>A has an impact on EBV for SCS (P < 0.001) Using an allele substitution model, SPP1c.-1251C>T, SPP1c.-430G>A, and SPP1c.*40A>C have an impact on SCS whereas SPP1c.-1301G>A has an effect on the EBVs for milk yield (second and third lactations), fat and protein percentages (all three lactations). Analysis revealed statistically significant differences between haplotype groups at a comparison-wise level with sire EBVS for SCS for the first (P = 0.012), second (P < 0.001), and third (P < 0.001) lactations. Conclusion This study reports the link between DNA polymorphisms of SPP1, the number of milk immune cells and, potentially, the susceptibility to mastitis. These SNPs were identified by in silico search to be located in transcription factor recognition sites which factors are presumably involved in the Th1 immune response and in the Th2 regulation

  16. Genetic polymorphism of matrix metalloproteinase family and chronic obstructive pulmonary disease susceptibility: a meta-analysis.

    PubMed

    Zhou, Hongbin; Wu, Yinfang; Jin, Yan; Zhou, Jiesen; Zhang, Chao; Che, Luanqing; Jing, Jiyong; Chen, Zhihua; Li, Wen; Shen, Huahao

    2013-10-02

    Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.

  17. Evidence for a functional genetic polymorphism of the human thiosulfate sulfurtransferase (Rhodanese), a cyanide and H2S detoxification enzyme.

    PubMed

    Billaut-Laden, Ingrid; Allorge, Delphine; Crunelle-Thibaut, Aurélie; Rat, Emmanuel; Cauffiez, Christelle; Chevalier, Dany; Houdret, Nicole; Lo-Guidice, Jean-Marc; Broly, Franck

    2006-08-01

    Rhodanese or thiosulfate sulfurtransferase (TST) is a mitochondrial matrix enzyme that plays roles in cyanide detoxification, the formation of iron-sulfur proteins and the modification of sulfur-containing enzymes. Transsulfuration reaction catalyzed by TST is also involved in H(2)S detoxification. To date, no polymorphism of the human TST gene had been reported. We developed a screening strategy based on a PCR-SSCP method to search for mutations in the 3 exons of TST and their proximal flanking regions. This strategy has been applied to DNA samples from 50 unrelated French individuals of Caucasian origin. Eleven polymorphisms consisting in seven nucleotide substitutions in non-coding regions, two silent mutations and two missense mutations were characterized. The functional consequences of the identified mutations were assessed in vivo by measurement of erythrocyte TST activity and/or in vitro using heterologous expression in Saccharomyces cerevisiae or transient transfection assay in HT29 and Caco-2 cell lines. The P(285)A variant appears to encode a protein with a 50% decrease of in vitro intrinsic clearance compared to the wild-type enzyme. Additionally, the six polymorphisms located upstream the ATG initiation codon are responsible for a significant decrease (ranging from 40% to 73%) in promoter activity of a reporter gene compared to the corresponding wild-type sequence. This work constitutes the first report of the existence of a functional genetic polymorphism affecting TST activity and should be of great help to investigate certain disorders for which impairment of CN(-) or H(2)S detoxification have been suggested to be involved.

  18. Genetic differentiation and origin of the Jordanian population: an analysis of Alu insertion polymorphisms.

    PubMed

    Bahri, Raoudha; El Moncer, Wifak; Al-Batayneh, Khalid; Sadiq, May; Esteban, Esther; Moral, Pedro; Chaabani, Hassen

    2012-05-01

    Although much of Jordan is covered by desert, its north-western region forms part of the Fertile Crescent region that had given a rich past to Jordanians. This past, scarcely described by historians, is not yet clarified by sufficient genetic data. Thus in this paper we aim to determine the genetic differentiation of the Jordanian population and to discuss its origin. A total of 150 unrelated healthy Jordanians were investigated for ten Alu insertion polymorphisms. Genetic relationships among populations were estimated by a principal component (PC) plot based on the analyses of the R-matrix software. Statistical analysis showed that the Jordanian population is not significantly different from the United Arab Emirates population or the North Africans. This observation, well represented in PC plot, suggests a common origin of these populations belonging respectively to ancient Mesopotamia, Arabia, and North Africa. Our results are compatible with ancient peoples' movements from Arabia to ancient Mesopotamia and North Africa as proposed by historians and supported by previous genetic results. The original genetic profile of the Jordanian population, very likely Arabian Semitic, has not been subject to significant change despite the succession of several civilizations.

  19. Genetic polymorphisms in nitric oxide synthase genes modify the relationship between vegetable and fruit intake and risk of non-Hodgkin lymphoma

    PubMed Central

    Han, Xuesong; Zheng, Tongzhang; Lan, Qing; Zhang, Yaqun; Kilfoy, Briseis A.; Qin, Qin; Rothman, Nathaniel; Zahm, Shelia H.; Holford, Theodore R.; Leaderer, Brian; Zhang, Yawei

    2010-01-01

    Oxidative damage caused by reactive oxygen species (ROS) and other free radicals is involved in carcinogenesis. It has been suggested that high vegetable and fruit intake may reduce the risk of non-Hodgkin lymphoma (NHL) as vegetables and fruit are rich in antioxidants. The aim of this study is to evaluate the interaction of vegetable and fruit intake with genetic polymorphisms in oxidative stress pathway genes and NHL risk. This hypothesis was investigated in a population-based case-control study of NHL and NHL histological subtype in Connecticut women including 513 histologically confirmed incident cases and 591 randomly selected controls. Gene-vegetable/fruit joint effects were estimated using unconditional logistic regression model. The false discovery rate method was applied to adjust for multiple comparisons. Significant interactions with vegetable and fruit intake were mainly found for genetic polymorphisms on nitric oxide synthase (NOS) genes among those with diffuse large B-cell lymphoma (DLBCL) and Follicular lymphoma (FL). Two single nucleotide polymorphisms (SNPs) in the NOS1 gene were found to significantly modify the association between total vegetable and fruit intake and risk of NHL overall, as well as the risk of follicular lymphoma (FL). When vegetables, bean vegetables, cruciferous vegetables, green leafy vegetables, red vegetables, yellow/orange vegetables, fruit, and citrus fruit were examined separately, strong interaction effects were narrowed to vegetable intake among DLBCL patients. Our results suggest that genetic polymorphisms in oxidative stress pathway genes, especially in the nitric oxide synthase genes, modify the association between vegetable and fruit intake and risk of NHL. PMID:19423521

  20. Association of LMX1A genetic polymorphisms with susceptibility to congenital scoliosis in Chinese Han population.

    PubMed

    Wu, Nan; Yuan, Suomao; Liu, Jiaqi; Chen, Jun; Fei, Qi; Liu, Sen; Su, Xinlin; Wang, Shengru; Zhang, Jianguo; Li, Shugang; Wang, Yipeng; Qiu, Guixing; Wu, Zhihong

    2014-10-01

    A genetic association study of single nucleotide polymorphisms (SNPs) for the LMX1A gene with congenital scoliosis (CS) in the Chinese Han population. To determine whether LMX1A genetic polymorphisms are associated with susceptibility to CS. CS is a lateral curvature of the spine due to congenital vertebral defects, whose exact genetic cause has not been well established. The LMX1A gene was suggested as a potential human candidate gene for CS. However, no genetic study of LMX1A in CS has ever been reported. We genotyped 13 SNPs of the LMX1A gene in 154 patients with CS and 144 controls with matched sex and age. After conducting the Hardy-Weinberg equilibrium test, the data of 13 SNPs were analyzed by the allelic and genotypic association with logistic regression analysis. Furthermore, the genotype-phenotype association and haplotype association analysis were also performed. The 13 SNPs of the LMX1A gene met Hardy-Weinberg equilibrium in the controls, which was not in the cases. None of the allelic and genotypic frequencies of these SNPs showed significant difference between case and control groups (P > 0.05). However, the genotypic frequencies of rs1354510 and rs16841013 in the LMX1A gene were associated with CS predisposition in the unconditional logistic regression analysis (P = 0.02 and 0.018, respectively). Genotypic frequencies of 3 SNPs at rs6671290, rs1354510, and rs16841013 were found to exhibit significant differences between patients with CS with failure of formation and the healthy controls (P = 0.019, 0.007, and 0.006, respectively). Besides, in the model analysis by using unconditional logistic regression analysis, the optimized model for the 3 genotypic positive SNPs with failure of formation were rs6671290 (codominant; P = 0.025, Akaike information value = 316.6, Bayesian information criterion = 333.9), rs1354510 (overdominant; P = 0.0017, Akaike information value = 312.1, Bayesian information criterion = 325.9), and rsl6841013 (overdominant; P = 0

  1. Institutional Protocol to Manage Consanguinity Detected by Genetic Testing in Pregnancy in a Minor

    PubMed Central

    Chen, Laura P.; Beck, Anita E.; Tsuchiya, Karen D.; Chow, Penny M.; Mirzaa, Ghayda M.; Wiester, Rebecca T.

    2015-01-01

    Single-nucleotide polymorphism arrays and other types of genetic tests have the potential to detect first-degree consanguinity and uncover parental rape in cases of minor teenage pregnancy. We present 2 cases in which genetic testing identified parental rape of a minor teenager. In case 1, single-nucleotide polymorphism array in a patient with multiple developmental abnormalities demonstrated multiple long stretches of homozygosity, revealing parental rape of a teenage mother. In case 2, a vague maternal sexual assault history and diagnosis of Pompe disease by direct gene sequencing identified parental rape of a minor. Given the medical, legal, and ethical implications of such revelations, a protocol was developed at our institution to manage consanguinity identified via genetic testing. PMID:25687148

  2. Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity.

    PubMed

    Gialeraki, Argyri; Markatos, Christos; Grouzi, Elisabeth; Merkouri, Efrosyni; Travlou, Anthi; Politou, Marianna

    2010-04-01

    Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.

  3. Influence of A-21T and C-262T genetic polymorphisms at the promoter region of the catalase (CAT) on gene expression.

    PubMed

    Saify, Khyber; Saadat, Iraj; Saadat, Mostafa

    2016-09-01

    Catalase (CAT, OMIM: 115500) is one of the major antioxidant enzymes, which plays an important role in the clearance of reactive oxygen species. Three genetic polymorphisms of A-21T (rs7943316), C-262T (rs1001179), and C-844T (rs769214) in the promoter region of the CAT have been reported. It has been suggested that these polymorphisms may alter the recognition sites of transcriptional factors, therefore it might be concluded that these polymorphisms may alter the expression levels of the gene. The aim of the present study is to evaluate the associations between these genetic variations and the CAT mRNA levels in human peripheral blood cells. The present study consisted of 47 healthy students of Shiraz University (south-west Iran). Genotypes of the CAT polymorphisms were determined by PCR based method. The quantitative CAT mRNA expression levels were investigated using quantitative real-time PCR. Analysis of variance revealed significant differences between the study genotypes (For A-21T polymorphism: F = 7.45; df = 2, 44; P = 0.002; For C-262T polymorphism: F = 15.17; df = 2, 44; P < 0.001). The studied polymorphisms showed linkage disequilibrium (D' = 1.0, r 2  = 0.1813, χ 2  = 17.03, P < 0.0001). The mRNA levels of CAT in the AC/TT, TC/TC, TC/TT, and TC/TC diplotypes significantly were higher than the mRNA levels in AC/AC diplotype. There was a significant difference between the study genotypes (F = 9.24; df = 5, 41; P < 0.001). The TC/TC and TT/TT diplotypes showed about 2 and 4 folds CAT mRNA levels compared with the AC/AC diplotype. The present findings indicated that these polymorphisms were significantly associated with the gene expression.

  4. GSTO and AS3MT genetic polymorphisms and differences in urinary arsenic concentrations among residents in Bangladesh.

    PubMed

    Rodrigues, Ema G; Kile, Molly; Hoffman, Elaine; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Hsueh, Yumei; Christiani, David C

    2012-05-01

    We determined whether single nucleotide polymorphisms (SNPs) in the glutathione S-transferase omega (GSTO) and arsenic(III)methyltransferase (AS3MT) genes were associated with concentrations of urinary arsenic metabolites among 900 individuals without skin lesions in Bangladesh. Four SNPs were assessed in these genes. A pathway analysis evaluated the association between urinary arsenic metabolites and SNPs. GSTO1 rs4925 homozygous wild type was significantly associated with higher monomethylarsonic acid (MMA) and dimethylarsinic acid urinary concentrations, whereas wild-type AS3MT rs11191439 had significantly lower levels of As(III) and MMA. Genetic polymorphisms GSTO and As3MT modify arsenic metabolism as evidenced by altered urinary arsenic excretion.

  5. Genetic Polymorphisms of Glutathione-Related Enzymes (GSTM1, GSTT1, and GSTP1) and Schizophrenia Risk: A Meta-Analysis

    PubMed Central

    Kim, Su Kang; Kang, Sang Wook; Chung, Joo-Ho; Park, Hae Jeong; Cho, Kyu Bong; Park, Min-Su

    2015-01-01

    The association between polymorphisms of glutathione-related enzyme (GST) genes and the risk of schizophrenia has been investigated in many published studies. However, their results were inconclusive. Therefore, we performed a meta-analysis to explore the association between the GSTM1, GSTT1, and GSTP1 polymorphisms and the risk of schizophrenia. Twelve case-control studies were included in this meta-analysis. The odds ratio (OR) and 95% confidence interval (95% CI) were used to investigate the strength of the association. Our meta-analysis results revealed that GSTM1, GSTT1, and GSTP1 polymorphisms were not related to risk of schizophrenia (p > 0.05 in each model). Further analyses based on ethnicity, GSTM polymorphism showed weak association with schizophrenia in East Asian population (OR = 1.314, 95% CI = 1.025–1.684, p = 0.031). In conclusion, our meta-analysis indicated the GSTM1 polymorphism may be the only genetic risk factor for schizophrenia in East Asian population. However, more meta-analysis with a larger sample size were needed to provide more precise evidence. PMID:26295386

  6. A Multinational Arab Genome-Wide Association Study Identifies New Genetic Associations for Rheumatoid Arthritis.

    PubMed

    Saxena, Richa; Plenge, Robert M; Bjonnes, Andrew C; Dashti, Hassan S; Okada, Yukinori; Gad El Haq, Wessam; Hammoudeh, Mohammed; Al Emadi, Samar; Masri, Basel K; Halabi, Hussein; Badsha, Humeira; Uthman, Imad W; Margolin, Lauren; Gupta, Namrata; Mahfoud, Ziyad R; Kapiri, Marianthi; Dargham, Soha R; Aranki, Grace; Kazkaz, Layla A; Arayssi, Thurayya

    2017-05-01

    Genetic factors underlying susceptibility to rheumatoid arthritis (RA) in Arab populations are largely unknown. This genome-wide association study (GWAS) was undertaken to explore the generalizability of previously reported RA loci to Arab subjects and to discover new Arab-specific genetic loci. The Genetics of Rheumatoid Arthritis in Some Arab States Study was designed to examine the genetics and clinical features of RA patients from Jordan, the Kingdom of Saudi Arabia, Lebanon, Qatar, and the United Arab Emirates. In total, >7 million single-nucleotide polymorphisms (SNPs) were tested for association with RA overall and with seropositive or seronegative RA in 511 RA cases and 352 healthy controls. In addition, replication of 15 signals was attempted in 283 RA cases and 221 healthy controls. A genetic risk score of 68 known RA SNPs was also examined in this study population. Three loci (HLA region, intergenic 5q13, and 17p13 at SMTNL2/GGT6) reached genome-wide significance in the analyses of association with RA and with seropositive RA, and for all 3 loci, evidence of independent replication was demonstrated. Consistent with the findings in European and East Asian populations, the association of RA with HLA-DRB1 amino acid position 11 conferred the strongest effect (P = 4.8 × 10 -16 ), and a weighted genetic risk score of previously associated RA loci was found to be associated with RA (P = 3.41 × 10 -5 ) and with seropositive RA (P = 1.48 × 10 -6 ) in this population. In addition, 2 novel associations specific to Arab populations were found at the 5q13 and 17p13 loci. This first RA GWAS in Arab populations confirms that established HLA-region and known RA risk alleles contribute strongly to the risk and severity of disease in some Arab groups, suggesting that the genetic architecture of RA is similar across ethnic groups. Moreover, this study identified 2 novel RA risk loci in Arabs, offering further population-specific insights into the

  7. Analysis of polymorphisms in milk proteins from cloned and sexually reproduced goats.

    PubMed

    Xing, H; Shao, B; Gu, Y Y; Yuan, Y G; Zhang, T; Zang, J; Cheng, Y

    2015-12-08

    This study evaluates the relationship between the genotype and milk protein components in goats. Milk samples were collected from cloned goats and normal white goats during different postpartum (or abortion) phases. Two cloned goats, originated from the same somatic line of goat mammary gland epithelial cells, and three sexually reproduced normal white goats with no genetic relationships were used as the control. The goats were phylogenetically analyzed by polymerase chain reaction-restriction fragment length polymorphism. The milk protein components were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicated that despite the genetic fingerprints being identical, the milk protein composition differed between the two cloned goats. The casein content of cloned goat C-50 was significantly higher than that of cloned goat C-4. Conversely, although the genetic fingerprints of the normal white goats N-1, N-2, and N-3 were not identical, the milk protein profiles did not differ significantly in their milk samples (obtained on postpartum day 15, 20, 25, 30, and 150). These results indicated an association between milk protein phenotypes and genetic polymorphisms, epigenetic regulation, and/or non-chromosomal factors. This study extends the knowledge of goat milk protein polymorphisms, and provides new strategies for the breeding of high milk-yielding goats.

  8. Genome-wide polymorphisms and development of a microarray platform to detect genetic variations in Plasmodium yoelii.

    PubMed

    Nair, Sethu C; Pattaradilokrat, Sittiporn; Zilversmit, Martine M; Dommer, Jennifer; Nagarajan, Vijayaraj; Stephens, Melissa T; Xiao, Wenming; Tan, John C; Su, Xin-Zhuan

    2014-01-01

    The rodent malaria parasite Plasmodium yoelii is an important model for studying malaria immunity and pathogenesis. One approach for studying malaria disease phenotypes is genetic mapping, which requires typing a large number of genetic markers from multiple parasite strains and/or progeny from genetic crosses. Hundreds of microsatellite (MS) markers have been developed to genotype the P. yoelii genome; however, typing a large number of MS markers can be labor intensive, time consuming, and expensive. Thus, development of high-throughput genotyping tools such as DNA microarrays that enable rapid and accurate large-scale genotyping of the malaria parasite will be highly desirable. In this study, we sequenced the genomes of two P. yoelii strains (33X and N67) and obtained a large number of single nucleotide polymorphisms (SNPs). Based on the SNPs obtained, we designed sets of oligonucleotide probes to develop a microarray that could interrogate ∼11,000 SNPs across the 14 chromosomes of the parasite in a single hybridization. Results from hybridizations of DNA samples of five P. yoelii strains or cloned lines (17XNL, YM, 33X, N67 and N67C) and two progeny from a genetic cross (N67×17XNL) to the microarray showed that the array had a high call rate (∼97%) and accuracy (99.9%) in calling SNPs, providing a simple and reliable tool for typing the P. yoelii genome. Our data show that the P. yoelii genome is highly polymorphic, although isogenic pairs of parasites were also detected. Additionally, our results indicate that the 33X parasite is a progeny of 17XNL (or YM) and an unknown parasite. The highly accurate and reliable microarray developed in this study will greatly facilitate our ability to study the genetic basis of important traits and the disease it causes. Published by Elsevier B.V.

  9. Population differences in platinum toxicity as a means to identify novel genetic susceptibility variants

    PubMed Central

    O'Donnell, Peter H.; Gamazon, Eric; Zhang, Wei; Stark, Amy L.; Kistner-Griffin, Emily O.; Huang, R. Stephanie; Dolan, M. Eileen

    2010-01-01

    Objectives Clinical studies show that Asians (ASN) are more susceptible to toxicities associated with platinum-containing regimens. We hypothesized that studying ASN as an `enriched phenotype' population could enable the discovery of novel genetic determinants of platinum susceptibility. Methods Using well-genotyped lymphoblastoid cell lines from the HapMap, we determined cisplatin and carboplatin cytotoxicity phenotypes (IC50s) for ASN, Caucasians (CEU), and Africans (YRI). IC50s were used in genome-wide association studies. Results ASN were most sensitive to platinums, corroborating clinical findings. ASN genome-wide association studies produced 479 single-nucleotide polymorphisms (SNPs) associating with cisplatin susceptibility and 199 with carboplatin susceptibility (P<10−4). Considering only the most significant variants (P< 9.99 × 10−6), backwards elimination was then used to identify reduced-model SNPs, which robustly described the drug phenotypes within ASN. These SNPs comprised highly descriptive genetic signatures of susceptibility, with 12 SNPs explaining more than 95% of the susceptibility phenotype variation for cisplatin, and eight SNPs approximately 75% for carboplatin. To determine the possible function of these variants in ASN, the SNPs were tested for association with differential expression of target genes. SNPs were highly associated with the expression of multiple target genes, and notably, the histone H3 family was implicated for both drugs, suggesting a platinum-class mechanism. Histone H3 has repeatedly been described as regulating the formation of platinum-DNA adducts, but this is the first evidence that specific genetic variants might mediate these interactions in a pharmacogenetic manner. Finally, to determine whether any ASN-identified SNPs might also be important in other human populations, we interrogated all 479/199 SNPs for association with platinum susceptibility in an independent combined CEU/YRI population. Three unique SNPs

  10. Novel approach of molecular genetic understanding of iridology: relationship between iris constitution and angiotensin converting enzyme gene polymorphism.

    PubMed

    Um, Jae-Young; An, Nyeon-Hyoung; Yang, Gui-Bi; Lee, Geon-Mok; Cho, Ju-Jang; Cho, Jae-Woon; Hwang, Woo-Jun; Chae, Han-Jung; Kim, Hyung-Ryong; Hong, Seung-Heon; Kim, Hyung-Min

    2005-01-01

    Iridology is the study of the iris of the eye to detect the conditions of the body and its organs, genetic strengths and weaknesses, etc. Although iridology is not widely used as a scientific tool for healthcare professionals to get to the source of people's health conditions, it has been used as a supplementary source to help the diagnosis of medical conditions by noting irregularities of the pigmentation in the iris among some Korean Oriental medical doctors. Angiotensin converting enzyme (ACE) gene polymorphism is one of the most well studied genetic markers of vascular disease. We investigated the relationship between iridological constitution and ACE polymorphism in hypertensives. We classified 87 hypertensives and 79 controls according to iris constitution and determined the ACE genotype of each individual. DD genotype was more prevalent in patients with a neurogenic constitution than in controls. This finding supports the hypothesis that D allele is a candidate gene for hypertension and demonstrates the association among ACE genotype, Korean hypertensives and iris constitution.

  11. Functional genetic polymorphisms and female reproductive disorders: Part I: polycystic ovary syndrome and ovarian response

    PubMed Central

    Simoni, M.; Tempfer, C.B.; Destenaves, B.; Fauser, B.C.J.M.

    2008-01-01

    BACKGROUND The identification of polymorphisms associated with a disease can help to elucidate its pathogenesis, and this knowledge can be used to improve prognosis for women with a particular disorder, such as polycystic ovary syndrome (PCOS). Since an altered response to ovarian stimulation is also a characteristic of the disease, further knowledge about its aetiology could help in defining the parameters that determine the response of an individual to ovarian stimulation. METHODS PubMed and EMBASE databases were systematically searched for gene association studies published until the end of August 2007, using search criteria relevant to PCOS and ovarian response to stimulation. Data from additional papers identified through hand searches were also included; 139 publications were reviewed. RESULTS Several genes involved in ovarian function and metabolism are associated with increased susceptibility to PCOS, but none is strong enough to correlate alone with susceptibility to the disease, or response to therapy. A single-nucleotide polymorphism in exon 10 of the FSH receptor (FSHR) gene, FSHR p.N680S, was consistently identified as having a significant association with ovarian response to FSH. CONCLUSIONS No consistent association between gene polymorphism and PCOS could be identified. The FSHR gene may play a significant role in the success of ovarian stimulation, and can be used as a marker to predict differences in FSHR function and ovarian response to FSH. Genotyping the FSHR p.N680S polymorphism may provide a means of identifying a population of poor responders before in vitro fertilization procedures are initiated. PMID:18603647

  12. Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei.

    PubMed

    Cutter, Asher D

    2008-03-01

    Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.

  13. The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs.

    PubMed

    Udagawa, Chihiro; Tada, Naomi; Asano, Junzo; Ishioka, Katsumi; Ochiai, Kazuhiko; Bonkobara, Makoto; Tsuchida, Shuichi; Omi, Toshinori

    2014-12-11

    The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs. We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n=119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n=50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n=30), compared with the control breed (Shiba, n=30). The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results.

  14. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  15. Association of Genetic Polymorphisms in TNF and MIF Gene with the Risk of Primary Dysmenorrhea.

    PubMed

    Dogru, Hatice Yilmaz; Ozsoy, Asker Zeki; Karakus, Nevin; Delibas, Ilhan Bahri; Isguder, Cigdem Kunt; Yigit, Serbulent

    2016-08-01

    Primary dysmenorrhea, which affects 90 % of adolescent girls and more than 50 % of menstruating women worldwide, is characterized by recurrent pain during menses in the absence of a detectable organic disease. The aim of this study is to assess the association between MIF -173 and TNF -308 genetic polymorphisms and the clinical features of primary dysmenorrhea. The study population comprised 154 unrelated female patients with clinical diagnosis of dysmenorrhea, and a total of 144 control subjects were recruited consecutively. The MIF -173G > C promoter polymorphism (rs755622) and TNF gene -308G > A (rs1800629) polymorphism were analyzed by polymerase chain reaction-based restriction fragment length polymorphism assay. Two fragments (268 and 97 bp) were seen when the G allele was present at position -173, and three fragments (206, 97, and 62 bp) were observed when the C allele was present. Two fragments (87 and 20 bp) were seen when G allele was present at position -308. There were statistically significant associations between age at menarche and history of back pain among dysmenorrhea patients and MIF gene -173G > C polymorphism (p = 0.003 and p = 0.042, respectively). The genotype and allele frequencies of -308G > A polymorphism showed statistically significant differences between dysmenorrhea patients and controls (p = 0.023 and p = 0.009, respectively). A high association was also observed when the patients were compared with the controls according to the GG genotype versus GA+AA genotypes (p = 0.009). The present study showed that the TNF-α -308 GG genotype may be a useful tool to predict the susceptibility of dysmenorrhea.

  16. Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants.

    PubMed

    Jo, Jihoon; Oh, Jooseong; Lee, Hyun-Gwan; Hong, Hyun-Hee; Lee, Sung-Gwon; Cheon, Seongmin; Kern, Elizabeth M A; Jin, Soyeong; Cho, Sung-Jin; Park, Joong-Ki; Park, Chungoo

    2017-01-01

    The Japanese sea cucumber (Apostichopus japonicus Selenka 1867) is an economically important species as a source of seafood and ingredient in traditional medicine. It is mainly found off the coasts of northeast Asia. Recently, substantial exploitation and widespread biotic diseases in A. japonicus have generated increasing conservation concern. However, the genomic knowledge base and resources available for researchers to use in managing this natural resource and to establish genetically based breeding systems for sea cucumber aquaculture are still in a nascent stage. A total of 312 Gb of raw sequences were generated using the Illumina HiSeq 2000 platform and assembled to a final size of 0.66 Gb, which is about 80.5% of the estimated genome size (0.82 Gb). We observed nucleotide-level heterozygosity within the assembled genome to be 0.986%. The resulting draft genome assembly comprising 132 607 scaffolds with an N50 value of 10.5 kb contains a total of 21 771 predicted protein-coding genes. We identified 6.6-14.5 million heterozygous single nucleotide polymorphisms in the assembled genome of the three natural color variants (green, red, and black), resulting in an estimated nucleotide diversity of 0.00146. We report the first draft genome of A. japonicus and provide a general overview of the genetic variation in the three major color variants of A. japonicus. These data will help provide a comprehensive view of the genetic, physiological, and evolutionary relationships among color variants in A. japonicus, and will be invaluable resources for sea cucumber genomic research. © The Author 2017. Published by Oxford University Press.

  17. Genetic polymorphism of inosine-triphosphate-pyrophosphatase influences mercaptopurine metabolism and toxicity during treatment of acute lymphoblastic leukemia individualized for thiopurine-S-methyl-transferase status.

    PubMed

    Stocco, Gabriele; Crews, Kristine R; Evans, William E

    2010-01-01

    Although genetic polymorphisms in the gene encoding human thiopurine methyltransferase (TPMT) are known to have a marked effect on mercaptopurine metabolism and toxicity, there are many patients with wild-type TPMT who develop toxicity. Furthermore, when mercaptopurine dosages are adjusted in patients who are heterozygous at the TPMT locus, there are still some patients who develop toxicity for reasons that are not fully understood. Therefore, we recently studied the effects of a common polymorphism in another gene encoding an enzyme involved in mercaptopurine metabolism (SNP rs1127354 in inosine-triphospate-pyrophosphatase, ITPA), showing that genetic polymorphism of ITPA is a significant determinant of mercaptopurine metabolism and of febrile neutropenia following combination chemotherapy of acute lymphoblastic leukemia (ALL) in which mercaptopurine doses are individualized based on TPMT genotype. In this review, we summarize the knowledge available about the effect and clinical relevance of TPMT and ITPA on mercaptopurine pharmacogenomics, with a particular focus on the use of this medication in pediatric patients with ALL. Reader will gain insights into: i) the effects of pharmacogenomic traits on mercaptopurine toxicity and efficacy for the treatment of ALL and ii) individualization strategies that can be used to mitigate toxicity without compromising efficacy in pediatric patients with ALL. Mercaptopurine dose can be adjusted on the basis of TPMT genotype to mitigate toxicity in pediatric patients with ALL. As treatment is individualized in this way for the most relevant genetic determinant of drug response (i.e., for mercaptopurine, TPMT), the importance of other genetic polymorphisms emerges (e.g., ITPA).

  18. Promoter Hypermethylation Profiling Identifies Subtypes of Head and Neck Cancer with Distinct Viral, Environmental, Genetic and Survival Characteristics

    PubMed Central

    Choudhury, Javed Hussain; Ghosh, Sankar Kumar

    2015-01-01

    Background Epigenetic and genetic alteration plays a major role to the development of head and neck squamous cell carcinoma (HNSCC). Consumption of tobacco (smoking/chewing) and human papilloma virus (HPV) are also associated with an increase the risk of HNSCC. Promoter hypermethylation of the tumor suppression genes is related with transcriptional inactivation and loss of gene expression. We investigated epigenetic alteration (promoter methylation of tumor-related genes/loci) in tumor tissues in the context of genetic alteration, viral infection, and tobacco exposure and survival status. Methodology The study included 116 tissue samples (71 tumor and 45 normal tissues) from the Northeast Indian population. Methylation specific polymerase chain reaction (MSP) was used to determine the methylation status of 10 tumor-related genes/loci (p16, DAPK, RASSF1, BRAC1, GSTP1, ECAD, MLH1, MINT1, MINT2 and MINT31). Polymorphisms of CYP1A1, GST (M1 & T1), XRCC1and XRCC2 genes were studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiplex-PCR respectively. Principal Findings Unsupervised hierarchical clustering analysis based on methylation pattern had identified two tumor clusters, which significantly differ by CpG island methylator phenotype (CIMP), tobacco, GSTM1, CYP1A1, HPV and survival status. Analyzing methylation of genes/loci individually, we have found significant higher methylation of DAPK, RASSF1, p16 and MINT31genes (P = 0.031, 0.013, 0.031 and 0.015 respectively) in HPV (+) cases compared to HPV (-). Furthermore, a CIMP-high and Cluster-1 characteristic was also associated with poor survival. Conclusions Promoter methylation profiles reflecting a correlation with tobacco, HPV, survival status and genetic alteration and may act as a marker to determine subtypes and patient outcome in HNSCC. PMID:26098903

  19. A genetic polymorphism in the sex-linked ATP5A1 gene is associated with individual fitness in Ovenbirds (Seiurus aurocapilla)

    Treesearch

    Judith D. Toms; Lori S. Eggert; Wayne J. Arendt; John Faaborg

    2012-01-01

    While testing genetic sexing techniques in Ovenbirds (Seiurus aurocapilla),we found a genetic polymorphism in the ATP5A1 gene in 38% of individuals. The Z ' allele included changes in both intronic and exonic portions of the sequenced region, but there was no evidence that this changed the resulting ATP synthase product. Males that had one or more copies of...

  20. Effect of GSTM1 and GSTT1 Polymorphisms on Genetic Damage in Humans Populations Exposed to Radiation From Mobile Towers.

    PubMed

    Gulati, Sachin; Yadav, Anita; Kumar, Neeraj; Kanupriya; Aggarwal, Neeraj K; Kumar, Rajesh; Gupta, Ranjan

    2016-04-01

    All over the world, people have been debating about associated health risks due to radiation from mobile phones and mobile towers. The carcinogenicity of this nonionizing radiation has been the greatest health concern associated with mobile towers exposure until recently. The objective of our study was to evaluate the genetic damage caused by radiation from mobile towers and to find an association between genetic polymorphism of GSTM1 and GSTT1 genes and DNA damage. In our study, 116 persons exposed to radiation from mobile towers and 106 control subjects were genotyped for polymorphisms in the GSTM1 and GSTT1 genes by multiplex polymerase chain reaction method. DNA damage in peripheral blood lymphocytes was determined using alkaline comet assay in terms of tail moment (TM) value and micronucleus assay in buccal cells (BMN). There was a significant increase in BMN frequency and TM value in exposed subjects (3.65 ± 2.44 and 6.63 ± 2.32) compared with control subjects (1.23 ± 0.97 and 0.26 ± 0.27). However, there was no association of GSTM1 and GSTT1 polymorphisms with the level of DNA damage in both exposed and control groups.

  1. Association of I-FABP gene polymorphism and the risk of coronary heart disease.

    PubMed

    Yuan, Dong; Yu, Changqing; Zeng, Chunyu

    2015-01-01

    The study aimed to investigate the association between polymorphism of I-FABP gene and coronary heart disease (CHD). 225 patients with CHD were randomly recruited into the case group, and 196 healthy elderly volunteers were recruited from Medical Examination Center of our hospital as control. General clinical data were collected and plasma TC, TG, LDL-C, HDL-C levels were measured. Besides, polymerase chain reaction (PCR) and Restriction Fragment Length Polymorphism (RFLP) technology were used to detect the polymorphism of Hha-I enzyme cleavage sites in I-FABP gene in the study population. Hha-I cleavage sites occurred at codon 54 in exon in the coding sequencing of I-FABP gene in all participants. After cleavage with Hha-I enzyme, the genotypes were identified as wild-type A/A, heterozygous mutant A/T and homozygous mutant T/T. In case group, A/T and T/T genetic carriers had significantly higher levels of TC, TG and LDL-C than A/A carriers (P<0.05). However, in control group, similar differences were not observed (P>0.05). BMI, dietary habits and I-FABP alleles were independent risk factors of CHD. The polymorphism of I-FABP gene existed in the study population. And this genetic variation had influence on lipid metabolism, which was associated with the risk of developing CHD. I-FABP gene polymorphism may contribute to the increased genetic susceptibility to CHD.

  2. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans.

    PubMed

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva C

    2013-01-01

    The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene-environment interactions in relation to health risks is needed. The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-O-methyltransferase COMT Val158Met (rs4680) in Greenlandic Inuit (n=254) and Europeans (n=262) and explore the possible relation between the genotypes and serum levels of POPs. The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153) and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE) levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies.

  3. [THROMBOPHILIC GENETIC MUTATIONS AND POLYMORPHISMS IN WOMEN WITH INFERTILITY AND FAILED IN VITRO FERTILIZATION].

    PubMed

    Abrahamyan, G

    2017-01-01

    Occurrence of pregnancy after in vitro fertilization depends of two components: functional adequacy of the embryo at the blastocyst stage and receptivity of endometrium, which, according to modern perception, are determinate in achieving optimal conditions of implantation. From the pregnancy occurrence point of view, as well as in regard to its further development , implantation is the most crucial phase of IVF/ICSI and ET. As the same time, this phase is also the most vulnerable. Multiple researches have proven the role of mother thrombophilia for genesis of gestation complications and early embryo losses, but in relation to this problem i the context of IVF there is still a lot to be detailed. The objective of this work was to increase the efficiency of IVF and to research the causes of IVF failures, related to thrombophilic genetic mutations and polymorphisms. In order to achieve the set goal 354 women with infertility, who turned to the department of aided reproductive technologies (ART) for infertility treatment by means of IVF, were examined. 237 (66,9%) of women had primary infertility, 117 (33,1%) - secondary infertility. To 228 of these women the IVF (in vitro fertilization) program was introduced for the first time (study group 1), 126 patients had failed IVF history (1 to 9 failed attempts). Patients were 23 to 43 years of age. Obtained results confirm the relation between hemostasis defects, change of hemostasis system activity and efficiency of IVF. One of the main reason of IVF failure and, probably, of infertility is the hemostasis system disturbance of thrombophilic nature. High correlation is established between the hemostasis system disturbance of thrombophilic nature, preconditioned by genetic mutations and polymorphisms, as well as failed IVFs. Failure of IVF is the indication for expanded examination of genetically determined factors of hemostasis system. In case of presence of genetic defects of thrombophilic nature in hemostasis system the

  4. Impact of Genetic Polymorphisms on 6-Thioguanine Nucleotide Levels and Toxicity in Pediatric Patients with IBD Treated with Azathioprine.

    PubMed

    Lee, Mi-Na; Kang, Ben; Choi, So Yoon; Kim, Mi Jin; Woo, Sook Young; Kim, Jong-Won; Choe, Yon Ho; Lee, Soo-Youn

    2015-12-01

    Thiopurine-related toxicity results in discontinuation of therapy in up to 30% of patients with inflammatory bowel disease. Although thiopurine S-methyltransferase (TPMT) is implicated in toxicity, not all toxicity can be attributed to TPMT polymorphisms. We investigated the effects of polymorphisms of genes involved in thiopurine and folate metabolism pathways on 6-thioguanine nucleotide levels and toxicity. Retrospective clinical data and blood samples were collected from 132 pediatric patients with inflammatory bowel disease treated with azathioprine. Eighty-seven genetic polymorphisms of 30 genes were screened using the MassARRAY system, and 70 polymorphisms of 28 genes were selected for further analysis. TPMT genotype (P < 0.001), concurrent use of mesalazine (P = 0.006), ABCC5 (rs2293001) (P < 0.001), ITPA (rs2236206 and rs8362) (P = 0.010 and P = 0.003), and ABCB1 (rs2032582) (P = 0.028) were all associated with the ratio of 6-thioguanine nucleotides to azathioprine dose. ADK (rs10824095) (P = 0.004, odds ratio [OR] = 6.220), SLC29A1 (rs747199) (P = 0.016, OR = 5.681), and TYMS (rs34743033) (P = 0.045, OR = 3.846) were associated with neutropenia. ABCC1 (rs2074087) (P = 0.022, OR = 3.406), IMPDH1 (rs2278294) (P = 0.027, OR = 0.276), and IMPDH2 (rs11706052) (P = 0.034, OR = 3.639) had a significant impact on lymphopenia. This study describes genetic polymorphisms in genes whose products may affect pharmacokinetics and which may predict the relative likelihood of benefit or risk from thiopurine treatment. These findings may serve as a basis for personalized thiopurine therapy in pediatric patients with inflammatory bowel disease, although our data need to be validated in further studies.

  5. Effect of apolipoprotein C3 genetic polymorphisms on serum lipid levels and the risk of intracerebral hemorrhage.

    PubMed

    Jiang, Yan; Ma, Junpeng; Li, Hao; Liu, Yi; You, Chao

    2015-05-22

    Serum lipid levels are associated with the risk of intracerebral hemorrhage (ICH). Genetic variants in the apolipoprotein C3 (APOC3) gene were associated with plasma triglyceride (TG) and very-low-density lipoprotein (VLDL) levels. The aim of this study was to evaluate the effect of two genetic variants (1100 C/T and 3238 C/G) of APOC3 on serum lipid levels and risk of ICH. A prospective hospital-based case-control design and logistic regression analysis were utilized. We enrolled 150 ICH patients and 150 age- and gender-matched controls. The APOC3 gene polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). ICH patients had a significantly higher frequency of APOC3 3238 GG genotype [odds ratio (OR)=.97, 95% confidence interval (CI)=1.20, 7.38; P=0.02] and APOC3 3238 G allele (OR=.53, 95% CI=1.03, 2.27; P=0.04) than controls. The APOC3 3238 G allele was significantly associated with increasing plasma TG levels and VLDL levels both in ICH cases (P=0.01) and controls (P=0.02). No association was found between APOC3 1100 C/T polymorphisms and ICH. To the best of our knowledge, this is the first report in the literature that the APOC3 3238 GG genotype and G allele might contribute to an increased risk of ICH as a result of its effect on serum lipid levels.

  6. Polymorphism analysis of prion protein gene in 11 Pakistani goat breeds

    PubMed Central

    Hassan, Mohammad Farooque; Khan, Sher Hayat; Babar, Masroor Ellahi; Yang, Lifeng; Ali, Tariq; Khan, Jamal Muhammad; Shah, Syed Zahid Ali; Zhou, Xiangmei; Hussain, Tanveer; Zhu, Ting; Hussain, Tariq; Zhao, Deming

    2016-01-01

    ABSTRACT The association between caprine PrP gene polymorphisms and its susceptibility to scrapie has been investigated in current years. As the ORF of the PrP gene is extremely erratic in different breeds of goats, we studied the PrP gene polymorphisms in 80 goats which belong to 11 Pakistani indigenous goat breeds from all provinces of Pakistan. A total of 6 distinct polymorphic sites (one novel) with amino acid substitutions were identified in the PrP gene which includes 126 (A -> G), 304 (G -> T), 379 (A -> G), 414 (C -> T), 428 (A -> G) and 718 (C -> T). The locus c.428 was found highly polymorphic in all breeds as compare to other loci. On the basis of these PrP variants NJ phylogenetic tree was constructed through MEGA6.1 which showed that all goat breeds along with domestic sheep and Mauflon sheep appeared as in one clade and sharing its most recent common ancestors (MRCA) with deer species while Protein analysis has shown that these polymorphisms can lead to varied primary, secondary and tertiary structure of protein. Based on these polymorphic variants, genetic distance, multidimensional scaling plot and principal component analyses revealed the clear picture regarding greater number of substitutions in cattle PrP regions as compared to the small ruminant species. In particular these findings may pinpoint the fundamental control over the scrapie in Capra hircus on genetic basis. PMID:27388702

  7. A randomized open trial for comparison of proton pump inhibitors, omeprazole versus rabeprazole, in dual therapy for Helicobacter pylori infection in relation to CYP2C19 genetic polymorphism.

    PubMed

    Miyoshi, M; Mizuno, M; Ishiki, K; Nagahara, Y; Maga, T; Torigoe, T; Nasu, J; Okada, H; Yokota, K; Oguma, K; Tsuji, T

    2001-07-01

    The genetic polymorphism of cytochrome P450 (CYP) 2C19 has been shown to influence the efficacy of Helicobacter pylori eradication therapy with a proton pump inhibitor (PPI) and amoxicillin (so-called dual therapy). Omeprazole, a widely used PPI, and rabeprazole, a new PPI, are metabolized in different pathways in terms of CYP2C19 genetic polymorphisms. In this study, we compared the efficacy of omeprazole and rabeprazole in a 2-week dual therapy in relation to CYP2C19 polymorphism. One hundred and ninety-nine patients with peptic ulcer disease were randomly assigned to receive one of the following regimens: 500 mg t.i.d. amoxicillin together with either 20 mg b.i.d. omeprazole or 10 mg b.i.d rabeprazole. The eradication of H. pylori was evaluated by using a bacterial culture and a [(13)C]-urea breath test at 1--2 months after completion of treatment. Cytochrome P4502C19 polymorphism was analyzed by using polymerase chain reaction-restriction fragment length polymorphism. Intention-to-treat-based cure rates for the omeprazole or rabeprazole regimens were 66.3% (95% CI, 56--75) and 62.4% (95% CI, 52--71), respectively, without significant difference. Cytochrome P4502C19 genetic polymorphism did not influence the cure rates in either of these regimens. We analyzed various factors associated with treatment failure (PPI, CYP2C19 genotype, and smoking habit) by using multiple logistic regression; smoking was the only significant independent factor for treatment failure. Omeprazole and rabeprazole were equally effective in combination with amoxicillin in eradicating H. pylori, irrespective of the PPI used (omeprazole or rabeprazole) and CYP2C19 genetic polymorphism. Smoking significantly decreased the cure rate of H. pylori infection in the dual therapy.

  8. Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi-Atlantic peatmoss populations.

    PubMed

    Szövényi, P; Terracciano, S; Ricca, M; Giordano, S; Shaw, A J

    2008-12-01

    Several lines of evidence suggest that recent long-distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi-Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (IM and MIGRATE) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average F(ST) = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long-range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000-289,000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi-Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.

  9. Genetic polymorphisms of molecules involved in host immune response to dengue virus infection.

    PubMed

    Fang, Xin; Hu, Zhen; Shang, Weilong; Zhu, Junmin; Xu, Chuanshan; Rao, Xiancai

    2012-11-01

    The dengue virus (DENV) belongs to the flavivirus family. Each of the four distinct serotypes of this virus is capable of causing human disease, especially in tropical and subtropical areas. The majority of people infected with DENV manifest asymptomatic or dengue fever with flu-like self-limited symptoms. However, a small portion of patients emerge with severe manifestations referred to as dengue hemorrhagic fever, which has a high mortality rate if not treated promptly. The host immune system, which plays important roles throughout the whole process of DENV infection, has been confirmed to have double-edged effects on DENV infection. Recently, much attention has been paid to the genetic heterogeneity of molecules involved in the host immune response to DENV infection. This heterogeneity has been proved to be the determining factor for DENV disease orientation. The present review discusses the primary functions and single nucleotide polymorphisms of some critical molecules in the human DENV immunological defense, especially the polymorphism locus associated with the DENV pathogenesis and disease susceptibility. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Relationship of Genetic Polymorphisms of the Chemokine, CCL5, and Its Receptor, CCR5, with Coronary Artery Disease in Taiwan

    PubMed Central

    Ting, Ke-Hsin; Ueng, Kwo-Chang; Chiang, Whei-Ling; Chou, Ying-Erh; Yang, Shun-Fa; Wang, Po-Hui

    2015-01-01

    The chemokine receptor CCR5 polymorphism, which confers resistance to HIV infection, has been associated with reduced risk of cardiovascular disease. However, the association of the chemokine, CCL5, and its receptor, CCR5, polymorphism and coronary artery disease (CAD) in the Taiwanese has not been studied. In this study, 483 subjects who received elective coronary angiography were recruited from Chung Shan Medical University Hospital. CCL5-403 and CCR5-59029 were determined by polymerase chain reaction-restriction fragment length polymorphism. We found that CCL5-403 with TT genotype frequencies was significantly associated with the risk of CAD group (odds ratio = 3.063 and p = 0.012). Moreover, the frequencies of CCR5-59029 with GG or GA genotype were higher than AA genotype in acute coronary syndrome individuals (odds ratio = 1.853, CI = 1.176–2.921, p = 0.008). In conclusion, we found that CCL5-403 polymorphism may increase genetic susceptibility of CAD. CCL5-403 or CCR5-59029 single nucleotide polymorphism may include genotype score and it may predict cardiovascular event. PMID:26688689

  11. Analysis of single nucleotide polymorphisms in case-control studies.

    PubMed

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  12. Genome-wide association studies identify genetic loci for low von Willebrand factor levels

    PubMed Central

    van Loon, Janine; Dehghan, Abbas; Weihong, Tang; Trompet, Stella; McArdle, Wendy L; Asselbergs, Folkert F W; Chen, Ming-Huei; Lopez, Lorna M; Huffman, Jennifer E; Leebeek, Frank W G; Basu, Saonli; Stott, David J; Rumley, Ann; Gansevoort, Ron T; Davies, Gail; Wilson, James J F; Witteman, Jacqueline C M; Cao, Xiting; de Craen, Anton J M; Bakker, Stephan J L; Psaty, Bruce M; Starr, John M; Hofman, Albert; Wouter Jukema, J; Deary, Ian J; Hayward, Caroline; van der Harst, Pim; Lowe, Gordon D O; Folsom, Aaron R; Strachan, David P; Smith, Nicolas; de Maat, Moniek P M; O'Donnell, Christopher

    2016-01-01

    Low von Willebrand factor (VWF) levels are associated with bleeding symptoms and are a diagnostic criterion for von Willebrand disease, the most common inherited bleeding disorder. To date, it is unclear which genetic loci are associated with reduced VWF levels. Therefore, we conducted a meta-analysis of genome-wide association studies to identify genetic loci associated with low VWF levels. For this meta-analysis, we included 31 149 participants of European ancestry from 11 community-based studies. From all participants, VWF antigen (VWF:Ag) measurements and genome-wide single-nucleotide polymorphism (SNP) scans were available. Each study conducted analyses using logistic regression of SNPs on dichotomized VWF:Ag measures (lowest 5% for blood group O and non-O) with an additive genetic model adjusted for age and sex. An inverse-variance weighted meta-analysis was performed for VWF:Ag levels. A total of 97 SNPs exceeded the genome-wide significance threshold of 5 × 10−8 and comprised five loci on four different chromosomes: 6q24 (smallest P-value 5.8 × 10−10), 9q34 (2.4 × 10−64), 12p13 (5.3 × 10−22), 12q23 (1.2 × 10−8) and 13q13 (2.6 × 10−8). All loci were within or close to genes, including STXBP5 (Syntaxin Binding Protein 5) (6q24), STAB5 (stabilin-5) (12q23), ABO (9q34), VWF (12p13) and UFM1 (ubiquitin-fold modifier 1) (13q13). Of these, UFM1 has not been previously associated with VWF:Ag levels. Four genes that were previously associated with VWF levels (VWF, ABO, STXBP5 and STAB2) were also associated with low VWF levels, and, in addition, we identified a new gene, UFM1, that is associated with low VWF levels. These findings point to novel mechanisms for the occurrence of low VWF levels. PMID:26486471

  13. The Use of Angiotensin-I Converting Enzyme I/D Genetic Polymorphism as a Biomarker of Athletic Performance in Humans

    PubMed Central

    De Mello Costa, Maria Fernanda; Slocombe, Ron

    2012-01-01

    Angiotensin II is a key regulator of blood pressure and cardiovascular function in mammals. The conversion of angiotensin into its active form is carried out by Angiotensin I-Converting Enzyme (ACE). The measurement of ACE concentration in plasma or serum, its enzymatic activity, and the correlation between an insertion/deletion (I/D) genetic polymorphism of the ACE gene have been investigated as possible indicators of superior athletic performance in humans. In this context, other indicators of superior adaptation to exercise resulting in better athletic performance (such as ventricular hypertrophy, VO2 max, and competition results) were mostly used to study the association between ACE I/D polymorphism and improved performance. Despite the fact that the existing literature presents little consensus, there is sufficient scientific evidence to warrant further investigation on the usage of ACE activity and the I/D ACE gene polymorphism as biomarkers of superior athletic performance in humans of specific ethnicities or in athletes involved in certain sports. In this sense, a biomarker would be a substance or genetic component that could be measured to provide a degree of certainty, or an indication, of the presence of a certain trait or characteristic that would be beneficial to the athlete’s performance. Difficulties in interpreting and comparing the results of scientific research on the topic arise from dissimilar protocols and variation in study design. This review aims to investigate the current literature on the use of ACE I/D polymorphism as a biomarker of performance in humans through the comparison of scientific publications. PMID:25586030

  14. The use of Angiotensin-I converting enzyme i/d genetic polymorphism as a biomarker of athletic performance in humans.

    PubMed

    De Mello Costa, Maria Fernanda; Slocombe, Ron

    2012-10-09

    Angiotensin II is a key regulator of blood pressure and cardiovascular function in mammals. The conversion of angiotensin into its active form is carried out by Angiotensin I-Converting Enzyme (ACE). The measurement of ACE concentration in plasma or serum, its enzymatic activity, and the correlation between an insertion/deletion (I/D) genetic polymorphism of the ACE gene have been investigated as possible indicators of superior athletic performance in humans. In this context, other indicators of superior adaptation to exercise resulting in better athletic performance (such as ventricular hypertrophy, VO2 max, and competition results) were mostly used to study the association between ACE I/D polymorphism and improved performance. Despite the fact that the existing literature presents little consensus, there is sufficient scientific evidence to warrant further investigation on the usage of ACE activity and the I/D ACE gene polymorphism as biomarkers of superior athletic performance in humans of specific ethnicities or in athletes involved in certain sports. In this sense, a biomarker would be a substance or genetic component that could be measured to provide a degree of certainty, or an indication, of the presence of a certain trait or characteristic that would be beneficial to the athlete's performance. Difficulties in interpreting and comparing the results of scientific research on the topic arise from dissimilar protocols and variation in study design. This review aims to investigate the current literature on the use of ACE I/D polymorphism as a biomarker of performance in humans through the comparison of scientific publications.

  15. New genetic variants associated with prostate cancer

    Cancer.gov

    Researchers have newly identified 23 common genetic variants -- one-letter changes in DNA known as single-nucleotide polymorphisms or SNPs -- that are associated with risk of prostate cancer. These results come from an analysis of more than 10 million SNP

  16. Investigating the genetic basis of theory of mind (ToM): the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    PubMed

    Xia, Haiwei; Wu, Nan; Su, Yanjie

    2012-01-01

    The ability to deduce other persons' mental states and emotions which has been termed 'theory of mind (ToM)' is highly heritable. First molecular genetic studies focused on some dopamine-related genes, while the genetic basis underlying different components of ToM (affective ToM and cognitive ToM) remain unknown. The current study tested 7 candidate polymorphisms (rs4680, rs4633, rs2020917, rs2239393, rs737865, rs174699 and rs59938883) on the catechol-O-methyltransferase (COMT) gene. We investigated how these polymorphisms relate to different components of ToM. 101 adults participated in our study; all were genetically unrelated, non-clinical and healthy Chinese subjects. Different ToM tasks were applied to detect their theory of mind ability. The results showed that the COMT gene rs2020917 and rs737865 SNPs were associated with cognitive ToM performance, while the COMT gene rs5993883 SNP was related to affective ToM, in which a significant gender-genotype interaction was found (p = 0.039). Our results highlighted the contribution of DA-related COMT gene on ToM performance. Moreover, we found out that the different SNP at the same gene relates to the discriminative aspect of ToM. Our research provides some preliminary evidence to the genetic basis of theory of mind which still awaits further studies.

  17. Genetic Relatedness of North American Populations of Tomicus piniperda (Coleoptera: Scolytidae)

    Treesearch

    M. Carol Alosi Carter; Jacqueline L. Robertson; Robert A. Haack; Robert K. Lawrence; Jane L. Hayes

    1996-01-01

    We used DNA fingerprinting by random amplified polymorphic (RAPD) DNA and electrophoretic characterization of esteraseisozymesto investigate the genetic relatedness of North American populations of the exotic bark beetle Tombspiniperda (L.). Cluster analyses of genetic distances among populations identified the Illinois population as an outlier population with mean...

  18. Case-control study of eczema associated with IL13 genetic polymorphisms in Japanese children.

    PubMed

    Miyake, Yoshihiro; Kiyohara, Chikako; Koyanagi, Midori; Fujimoto, Takahiro; Shirasawa, Senji; Tanaka, Keiko; Sasaki, Satoshi; Hirota, Yoshio

    2011-01-01

    Several association studies have investigated the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and eczema, with inconsistent results. We conducted a case-control study of the relationship between the polymorphisms of rs1800925 and rs20541 and the risk of eczema in Japanese children aged 3 years. Included were the 209 cases identified based on criteria of the International Study of Asthma and Allergies in Childhood (ISAAC). Controls were 451 children without eczema based on ISAAC questions who had not been diagnosed by a physician as having asthma or atopic eczema. The minor TT genotype of the rs1800925 SNP and the minor AA genotype of the rs20541 SNP were significantly related to an increased risk of eczema: adjusted odds ratio for the TT genotype was 2.78 (95% confidence interval 1.22-6.30) and that for the AA genotype was 2.38 (95% confidence interval 1.35-4.18). Haplotype analyses showed a protective association between the CG haplotype and eczema, whereas the TA haplotype was positively related to the risk of eczema. Perinatal smoking exposure did not interact with genotypes of the IL13 gene in the etiology of eczema. The significant association of the rs20541 SNP with eczema essentially disappeared after additional adjustment for the rs1800925 SNP, whereas a relationship with the rs1800925 SNP remained significant. A common genetic variation in the IL13 gene at the levels of both single SNPs and haplotypes was associated with eczema. However, the significant association with the rs20541 SNP might be ascribed to the rs1800925 SNP. Copyright © 2010 S. Karger AG, Basel.

  19. Quantitative Assessment of CYP2C9 Genetic Polymorphisms Effect on the Oral Clearance of S-Warfarin in Healthy Subjects.

    PubMed

    Shaul, Chanan; Blotnick, Simcha; Muszkat, Mordechai; Bialer, Meir; Caraco, Yoseph

    2017-02-01

    Genetic polymorphisms in CYP2C9 account for 10-20% of the variability in warfarin dose requirement. As such CYP2C9 genetic polymorphisms are commonly included in algorithms aimed to optimize warfarin therapy as a way to account for variability in warfarin responsiveness that is due to altered pharmacokinetics. However, most of the currently available pharmacokinetic data were derived from studies among patients on chronic warfarin therapy and therefore suffer from the confounding effects of disease states and drug interactions. The purpose of the present study was to provide an accurate quantitative estimate of S-warfarin oral clearance (CL S ) among healthy subjects carrying different CYP2C9 genotypes. Single dose of warfarin was administered to 150 non-smokers, age (mean ± SD) 23.3 ± 4.5 years, 60% male, non-obese, healthy subjects. Blood samples were taken for up to 168 h and urine was collected over the entire study period. Compared with carriers of the wild-type CYP2C9*1/*1 genotype (n = 69), CL S was reduced by 25, 39 and 47% among heterozygote for CYP2C9*2 (n = 41) CYP2C9*3 (n = 26) and carriers of 2 variant alleles (n = 14), respectively (p < 0.001). The corresponding decrease in the formation clearance of 6 and 7 S-hydroxy-warfarin was 45, 65 and 75%, respectively (p < 0.001). The current study provides an estimate concerning the effect of CYP2C9 polymorphisms on S-warfarin pharmacokinetics among healthy subjects. As such it is free of the confounding effects of disease states and drug interactions. Further research is needed to evaluate whether the incorporation of quantitative data obtained in the present study into pharmacogenetic warfarin algorithm may enhance its precision. Clinicaltrials.gov Identifier NCT00162474.

  20. Genetic polymorphisms in the serotonergic system are associated with circadian manifestations of bruxism.

    PubMed

    Oporto, G H; Bornhardt, T; Iturriaga, V; Salazar, L A

    2016-11-01

    Bruxism (BRX) is a condition of great interest for researchers and clinicians in dental and medical areas. BRX has two circadian manifestations; it can occur during sleep (sleep bruxism, SB) or during wakefulness (awake bruxism, WB). However, it can be suffered together. Recent investigations suggest that central nervous system neurotransmitters and their genes could be involved in the genesis of BRX. Serotonin is responsible for the circadian rhythm, maintaining arousal, regulating stress response, muscle tone and breathing. Thus, serotonin could be associated with BRX pathogenesis. The aim of this work was to evaluate the frequency of genetic polymorphisms in the genes HTR1A (rs6295), HTR2A (rs1923884, rs4941573, rs6313, rs2770304), HTR2C (rs17260565) and SLC6A4 (rs63749047) in subjects undergoing BRX treatment. Patients included were classified according to their diagnosis in awake bruxism (61 patients), sleep bruxism (26 patients) and both (43 patients). The control group included 59 healthy patients with no signs of BRX. Data showed significant differences in allelic frequencies for the HTR2A rs2770304 polymorphism, where the C allele was associated with increased risk of SB (odds ratio = 2·13, 95% confidence interval: 1·08-4·21, P = 0·03). Our results suggest that polymorphisms in serotonergic pathways are involved in sleep bruxism. Further research is needed to clarify and increase the current understanding of BRX physiopathology. © 2016 John Wiley & Sons Ltd.

  1. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy

    PubMed Central

    Saruwatari, Junji; Ishitsu, Takateru; Nakagawa, Kazuko

    2010-01-01

    Genetic polymorphisms in the genes that encode drug-metabolizing enzymes are implicated in the inter-individual variability in the pharmacokinetics and pharmaco-dynamics of antiepileptic drugs (AEDs). However, the clinical impact of these polymorphisms on AED therapy still remains controversial. The defective alleles of cytochrome P450 (CYP) 2C9 and/or CYP2C19 could affect not only the pharmacokinetics, but also the pharmacodynamics of phenytoin therapy. CYP2C19 deficient genotypes were associated with the higher serum concentration of an active metabolite of clobazam, N-desmethylclobazam, and with the higher clinical efficacy of clobazam therapy than the other CYP2C19 genotypes. The defective alleles of CYP2C9 and/or CYP2C19 were also found to have clinically significant effects on the inter-individual variabilities in the population pharmacokinetics of phenobarbital, valproic acid and zonisamide. EPHX1 polymorphisms may be associated with the pharmacokinetics of carbamazepine and the risk of phenytoin-induced congenital malformations. Similarly, the UDP-glucuronosyltransferase 2B7 genotype may affect the pharmacokinetics of lamotrigine. Gluthatione S-transferase null genotypes are implicated in an increased risk of hepatotoxicity caused by carbamazepine and valproic acid. This article summarizes the state of research on the effects of mutations of drug-metabolizing enzymes on the pharmacokinetics and pharmacodynamics of AED therapies. Future directions for the dose-adjustment of AED are discussed. PMID:27713373

  2. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies

    PubMed Central

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-01-01

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. PMID:27172202

  3. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies.

    PubMed

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-07-07

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. Copyright © 2016 Chen et al.

  4. Human genetics as a tool to identify progranulin regulators.

    PubMed

    Nicholson, Alexandra M; Finch, NiCole A; Rademakers, Rosa

    2011-11-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases.

  5. HUMAN GENETICS AS A TOOL TO IDENTIFY PROGRANULIN REGULATORS

    PubMed Central

    Nicholson, Alexandra M.; Finch, NiCole A.; Rademakers, Rosa

    2012-01-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases. PMID:21626010

  6. Single nucleotide polymorphisms in bone turnover-related genes in Koreans: ethnic differences in linkage disequilibrium and haplotype

    PubMed Central

    Kim, Kyung-Seon; Kim, Ghi-Su; Hwang, Joo-Yeon; Lee, Hye-Ja; Park, Mi-Hyun; Kim, Kwang-joong; Jung, Jongsun; Cha, Hyo-Soung; Shin, Hyoung Doo; Kang, Jong-Ho; Park, Eui Kyun; Kim, Tae-Ho; Hong, Jung-Min; Koh, Jung-Min; Oh, Bermseok; Kimm, Kuchan; Kim, Shin-Yoon; Lee, Jong-Young

    2007-01-01

    Background Osteoporosis is defined as the loss of bone mineral density that leads to bone fragility with aging. Population-based case-control studies have identified polymorphisms in many candidate genes that have been associated with bone mass maintenance or osteoporotic fracture. To investigate single nucleotide polymorphisms (SNPs) that are associated with osteoporosis, we examined the genetic variation among Koreans by analyzing 81 genes according to their function in bone formation and resorption during bone remodeling. Methods We resequenced all the exons, splice junctions and promoter regions of candidate osteoporosis genes using 24 unrelated Korean individuals. Using the common SNPs from our study and the HapMap database, a statistical analysis of deviation in heterozygosity depicted. Results We identified 942 variants, including 888 SNPs, 43 insertion/deletion polymorphisms, and 11 microsatellite markers. Of the SNPs, 557 (63%) had been previously identified and 331 (37%) were newly discovered in the Korean population. When compared SNPs in the Korean population with those in HapMap database, 1% (or less) of SNPs in the Japanese and Chinese subpopulations and 20% of those in Caucasian and African subpopulations were significantly differentiated from the Hardy-Weinberg expectations. In addition, an analysis of the genetic diversity showed that there were no significant differences among Korean, Han Chinese and Japanese populations, but African and Caucasian populations were significantly differentiated in selected genes. Nevertheless, in the detailed analysis of genetic properties, the LD and Haplotype block patterns among the five sub-populations were substantially different from one another. Conclusion Through the resequencing of 81 osteoporosis candidate genes, 118 unknown SNPs with a minor allele frequency (MAF) > 0.05 were discovered in the Korean population. In addition, using the common SNPs between our study and HapMap, an analysis of genetic

  7. Interactive effects of genetic polymorphisms and childhood adversity on brain morphologic changes in depression.

    PubMed

    Kim, Yong-Ku; Ham, Byung-Joo; Han, Kyu-Man

    2018-03-10

    The etiology of depression is characterized by the interplay of genetic and environmental factors and brain structural alteration. Childhood adversity is a major contributing factor in the development of depression. Interactions between childhood adversity and candidate genes for depression could affect brain morphology via the modulation of neurotrophic factors, serotonergic neurotransmission, or the hypothalamus-pituitary-adrenal (HPA) axis, and this pathway may explain the subsequent onset of depression. Childhood adversity is associated with structural changes in the hippocampus, amygdala, anterior cingulate cortex (ACC), and prefrontal cortex (PFC), as well as white matter tracts such as the corpus callosum, cingulum, and uncinate fasciculus. Childhood adversity showed an interaction with the brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism, serotonin transporter-linked promoter region (5-HTTLPR), and FK506 binding protein 51 (FKBP5) gene rs1360780 in brain morphologic changes in patients with depression and in a non-clinical population. Individuals with the Met allele of BDNF Val66Met and a history of childhood adversity had reduced volume in the hippocampus and its subfields, amygdala, and PFC and thinner rostral ACC in a study of depressed patients and healthy controls. The S allele of 5-HTTLPR combined with exposure to childhood adversity or a poorer parenting environment was associated with a smaller hippocampal volume and subsequent onset of depression. The FKBP5 gene rs160780 had a significant interaction with childhood adversity in the white matter integrity of brain regions involved in emotion processing. This review identified that imaging genetic studies on childhood adversity may deepen our understanding on the neurobiological background of depression by scrutinizing complicated pathways of genetic factors, early psychosocial environments, and the accompanying morphologic changes in emotion-processing neural circuitry. Copyright

  8. Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, D.K.; Rosenbloom, C.L.; Cottingham, R.W.

    1994-06-01

    Genetic polymorphisms in leukocyte and endothelial cell adhesion molecules may be important variables with regard to susceptibility to multifactorial disease processes that include an inflammatory component. For this reason, polymorphisms were sought for intercellular adhesion molecule-1 (ICAM-1; gene symbol ICAM1) and for the three genes in the selectin cluster, P-selectin, L-selectin, and E-selectin (gene symbols SELP, SELL, and SELE, respectively). Two amino acid polymorphisms were identified for ICAM-1; Gly or Arg at codon 241 and Lys or Glu at codon 469. Dinucleotide repeat polymorphisms were identified in the 3{prime}-untranslated region for ICAM-1 and in intron 9 for P-selectin. Restriction fragmentmore » length polymorphisms were found using cDNAs for each of the three selectin genes as probes; E-selectin with BglII, P-selectin with ScaI, and L-selectin with HincII. Linkage analysis was performed for the selectin gene cluster and for ICAM-1 using the CEPH families; ICAM-1 is very tightly linked to the LDL receptor on chromosome 19, and the selectin cluster is linked to markers at chromosome 1q23. 41 refs., 2 tabs.« less

  9. Outcomes of methotrexate therapy for psoriasis and relationship to genetic polymorphisms.

    PubMed

    Warren, R B; Smith, R L; Campalani, E; Eyre, S; Smith, C H; Barker, J N W N; Worthington, J; Griffiths, C E M

    2009-02-01

    The use of methotrexate is limited by interindividual variability in response. Previous studies in patients with either rheumatoid arthritis or psoriasis suggest that genetic variation across the methotrexate metabolic pathway might enable prediction of both efficacy and toxicity of the drug. To assess if single nucleotide polymorphisms (SNPs) across four genes that are relevant to methotrexate metabolism [folypolyglutamate synthase (FPGS), gamma-glutamyl hydrolase (GGH), methylenetetrahydrofolate reductase (MTHFR) and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (ATIC)] are related to treatment outcomes in patients with psoriasis. DNA was collected from 374 patients with psoriasis who had been treated with methotrexate. Data were available on individual outcomes to therapy, namely efficacy and toxicity. Haplotype-tagging SNPs (r(2) > 0.8) for the four genes with a minor allele frequency of > 5% were selected from the HAPMAP phase II data. Genotyping was undertaken using the MassARRAY spectrometric method (Sequenom). There were no significant associations detected between clinical outcomes in patients with psoriasis treated with methotrexate and SNPs in the four genes investigated. Genetic variation in four key genes relevant to the intracellular metabolism of methotrexate does not appear to predict response to methotrexate therapy in patients with psoriasis.

  10. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans

    PubMed Central

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva C.

    2013-01-01

    Background The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene–environment interactions in relation to health risks is needed. Objectives The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-O-methyltransferase COMT Val158Met (rs4680) in Greenlandic Inuit (n=254) and Europeans (n=262) and explore the possible relation between the genotypes and serum levels of POPs. Results The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153) and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p′-DDE) levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Conclusion Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies. PMID:23785672

  11. Amerindian genetic ancestry and INDEL polymorphisms associated with susceptibility of childhood B-cell Leukemia in an admixed population from the Brazilian Amazon.

    PubMed

    Carvalho, Darlen C; Wanderley, Alayde V; Amador, Marcos A T; Fernandes, Marianne R; Cavalcante, Giovanna C; Pantoja, Karla B C C; Mello, Fernando A R; de Assumpção, Paulo P; Khayat, André S; Ribeiro-Dos-Santos, Ândrea; Santos, Sidney; Dos Santos, Ney P C

    2015-08-20

    Acute lymphoblastic leukemia (ALL) is a malignant tumor common in children. Studies of genetic susceptibility to cancer using biallelic insertion/deletion (INDEL) type polymorphisms associated with cancer development pathways may help to clarify etymology of ALL. In this study, we investigate the role of eight functional INDEL polymorphisms and influence of genetic ancestry to B-cell ALL susceptibility in children of Brazilian Amazon population, which has a high degree of inter-ethnic admixture. Ancestry analysis was estimated using a panel of 48 autosomal ancestry informative markers. 130 B-cell ALL patients and 125 healthy controls were included in this study. The odds ratios and 95% confidence intervals were adjusted for confounders. The results indicated an association between the investigated INDEL polymorphisms in CASP8 (rs3834129), CYP19A1 (rs11575899) e XRCC1 (rs3213239) genes in the development of B-cell ALL. The carriers of Insertion/Insertion (Ins/Ins) genotype of the polymorphism in CASP8 gene presented reduced chances of developing B-cell ALL (P=0.001; OR=0.353; 95% CI=0.192-0.651). The Deletion/Deletion (Del/Del) genotype of the polymorphism in CYP19A1 gene was associated to a lower chance of developing B-cell ALL (P=3.35×10 -6 ; OR=0.121; 95% CI=0.050-0.295), while Del/Del genotype of the polymorphism in XRCC1 gene was associated to a higher chance of developing B-cell ALL (P=2.01×10 -4 ; OR=6.559; 95% CI=2.433-17.681). We also found that Amerindian ancestry correlates with the risk of B-cell ALL. For each increase of 10% in the Amerindian ancestry results in 1.4-fold chances of developing B-cell ALL (OR=1.406; 95% IC=1.123-1.761), while each increase of 10% in the European ancestry presents a protection effect in the development of B-cell ALL (OR=0.666; 95% IC=0.536-0.827). The results suggest that genetic factors influence leukemogenesis and might be explored in the stratification of B-cell ALL risk in admixed populations. Copyright © 2015 Z

  12. CCR2-V64I genetic polymorphism: a possible involvement in HER2+ breast cancer.

    PubMed

    Banin-Hirata, Bruna Karina; Losi-Guembarovski, Roberta; Oda, Julie Massayo Maeda; de Oliveira, Carlos Eduardo Coral; Campos, Clodoaldo Zago; Mazzuco, Tânia Longo; Borelli, Sueli Donizete; Ceribelli, Jesus Roberto; Watanabe, Maria Angelica Ehara

    2016-05-01

    Many tumor cells express chemokines and chemokine receptors, and these molecules can affect both tumor progression and anti-tumor immune response. Genetic polymorphisms of some chemokine receptors were found to be closely related to malignant tumors, especially in metastasis process, including breast cancer (BC). Considering this, it was investigated a possible role for CCR2-V64I (C-C chemokine receptor 2) and CCR5-Δ32 (C-C chemokine receptor 5) genetic variants in BC context. Patients were divided into subgroups according to immunohistochemical profile of estrogen (ER) and progesterone (PR) receptors and the human epidermal growth factor receptor 2 (HER2) overexpression. No significant associations were found in relation to susceptibility (CCR2-V64I: OR 1.32; 95 % CI 0.57-3.06; CCR5-∆32: OR 1.04; 95 % CI 0.60-1.81), clinical outcome (tumor size, lymph nodes commitment and/or distant metastasis, TNM staging and nuclear grade) or therapeutic response (recurrence and survival). However, it was found a significant correlation between CCR2-V64I allelic variant and HER2 immunohistochemical positive samples (p = 0.026). All in all, we demonstrate, for the first time, a positive correlation between CCR2 receptor gene polymorphism and a subgroup of BC related to poor prognosis, which deserves further investigation in larger samples for validation.

  13. PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases.

    PubMed Central

    Darrasse, A; Priou, S; Kotoujansky, A; Bertheau, Y

    1994-01-01

    Using a sequenced pectate lyase-encoding gene (pel gene), we developed a PCR test for Erwinia carotovora. A set of primers allowed the amplification of a 434-bp fragment in E. carotovora strains. Among the 89 E. carotovora strains tested, only the Erwinia carotovora subsp. betavasculorum strains were not detected. A restriction fragment length polymorphism (RFLP) study was undertaken on the amplified fragment with seven endonucleases. The Sau3AI digestion pattern specifically identified the Erwinia carotovora subsp. atroseptica strains, and the whole set of data identified the Erwinia carotovora subsp. wasabiae strains. However, Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. odorifera could not be separated. Phenetic and phylogenic analyses of RFLP results showed E. carotovora subsp. atroseptica as a homogeneous group while E. carotovora subsp. carotovora and E. carotovora subsp. odorifera strains exhibited a genetic diversity that may result from a nonmonophyletic origin. The use of RFLP on amplified fragments in epidemiology and for diagnosis is discussed. Images PMID:7912502

  14. Common polymorphic variation in the genetically diverse African insulin gene and its association with size at birth.

    PubMed

    Petry, Clive J; Rayco-Solon, Pura; Fulford, Anthony J C; Stead, John D H; Wingate, Dianne L; Ong, Ken K; Sirugo, Giorgio; Prentice, Andrew M; Dunger, David B

    2009-09-01

    The insulin variable number of tandem repeats (INS VNTR) has been variably associated with size at birth in non-African populations. Small size at birth is a major determinant of neonatal mortality, so the INS VNTR may influence survival. We tested the hypothesis, therefore, that genetic variation around the INS VNTR in a rural Gambian population, who experience seasonal variation in nutrition and subsequently birth weight, may be associated with foetal and early growth. Six polymorphisms flanking the INS VNTR were genotyped in over 2,500 people. Significant associations were detected between the maternally inherited SNP 27 (rs689) allele and birth length [effect size 17.5 (5.2-29.8) mm; P = 0.004; n = 361]. Significant associations were also found between the maternally inherited African-specific SNP 28 (rs5506) allele and post-natal weight gain [effect size 0.19 (0.05-0.32) z score points/year; P = 0.005; n = 728). These results suggest that in the Gambian population studied there are associations between polymorphic variation in the genetically diverse INS gene and foetal and early growth characteristics, which contribute to overall polygenic associations with these traits.

  15. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanism-based model.

    PubMed

    Fransson, Martin N; Gréen, Henrik; Litton, Jan-Eric; Friberg, Lena E

    2011-02-01

    The formulation vehicle Cremophor EL has previously been shown to affect paclitaxel kinetics, but it is not known whether it also affects the kinetics of paclitaxel metabolites. This information may be important for understanding paclitaxel metabolism in vivo and in the investigation of the role of genetic polymorphisms in the metabolizing enzymes CYP2C8 and CYP3A4/CYP3A5 and the ABCB1 transporter. In this study we used the population pharmacokinetic approach to explore the influence of predicted Cremophor EL concentrations on paclitaxel (Taxol) metabolites. In addition, correlations between genetic polymorphisms and enzyme activity with clearance of paclitaxel, its two primary metabolites, 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel, and its secondary metabolite, 6α-p-3'-dihydroxypaclitaxel were investigated. Model building was based on 1156 samples from a study with 33 women undergoing paclitaxel treatment for gynecological cancer. Total concentrations of paclitaxel were fitted to a model described previously. One-compartment models characterized unbound metabolite concentrations. Total concentrations of 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel were strongly dependent on predicted Cremophor EL concentrations, but this association was not found for 6α-p-3'-dihydroxypaclitaxel. Clearance of 6α-hydroxypaclitaxel (fraction metabolized) was significantly correlated (p < 0.05) to the ABCB1 allele G2677T/A. Individuals carrying the polymorphisms G/A (n = 3) or G/G (n = 5) showed a 30% increase, whereas individuals with polymorphism T/T (n = 8) showed a 27% decrease relative to those with the polymorphism G/T (n = 17). The correlation of G2677T/A with 6α-hydroxypaclitaxel has not been described previously but supports other findings of the ABCB1 transporter playing a part in paclitaxel metabolism.

  16. Genetic association analysis of CNR1 and CNR2 polymorphisms with schizophrenia in a Korean population.

    PubMed

    Bae, Joon Seol; Kim, Jason Yongha; Park, Byung-Lae; Kim, Jeong-Hyun; Kim, Bomi; Park, Chul Soo; Kim, Bong-Jo; Lee, Cheol-Soon; Lee, Migyung; Choi, Woo Hyuk; Shin, Tae-Min; Hwang, Jaeuk; Shin, Hyoung Doo; Woo, Sung-Il

    2014-10-01

    Located on 6q15 and 1p36.11, cannabinoid receptor 1 (CNR1) and cannabinoid receptor 2 (CNR2) genes are considered to be a positional and functional candidate gene for the development of mental disorders such as schizophrenia because CNR1 is known as a regulator of dopamine signaling in the hippocampus and the cerebral cortex. However, few genetic studies have been carried out to investigate an association of CNR1 and CNR2 polymorphisms and the risk of schizophrenia. In this study, although the result indicates that CNR1 and CNR2 variations are unlikely to influence schizophrenia susceptibility in a Korean population, the findings would provide meaningful information for further genetic studies.

  17. CCR5 gene polymorphism is a genetic risk factor for radiographic severity of rheumatoid arthritis.

    PubMed

    Han, S W; Sa, K H; Kim, S I; Lee, S I; Park, Y W; Lee, S S; Yoo, W H; Soe, J S; Nam, E J; Lee, J; Park, J Y; Kang, Y M

    2012-11-01

    The chemokine receptor [C-C chemokine receptor 5 (CCR5)] is expressed on diverse immune effecter cells and has been implicated in the pathogenesis of rheumatoid arthritis (RA). This study sought to determine whether single-nucleotide polymorphisms (SNPs) in the CCR5 gene and their haplotypes were associated with susceptibility to and severity of RA. Three hundred fifty-seven patients with RA and 383 healthy unrelated controls were recruited. Using a pyrosequencing assay, we examined four polymorphisms -1118 CTAT(ins) (/del) (rs10577983), 303 A>G (rs1799987), 927 C>T (rs1800024), and 4838 G>T (rs1800874) of the CCR5 gene, which were distributed over the promoter region as well as the 5' and 3' untranslated regions. No significant difference in the genotype, allele, and haplotype frequencies of the four selected SNPs was observed between RA patients and controls. CCR5 polymorphisms of -1118 CTAT(del) (P = 0.012; corrected P = 0.048) and 303 A>G (P = 0.012; corrected P = 0.048) showed a significant association with radiographic severity in a recessive model, and, as a result of multivariate logistic regression analysis, were found to be an independent predictor of radiographic severity. When we separated the erosion score from the total Sharp score, the statistical significance of CCR5 polymorphisms showed an increase; -1118 CTAT(ins) (/del) (P = 0.007; corrected P = 0.028) and 303 A>G (P = 0.007; corrected P = 0.028). Neither SNPs nor haplotypes of the CCR5 gene showed a significant association with joint space narrowing score. These results indicate that genetic polymorphisms of CCR5 are an independent risk factor for radiographic severity denoted by modified Sharp score, particularly joint erosion in RA. © 2012 John Wiley & Sons A/S.

  18. Polymorphisms for ghrelin with consequences on satiety and metabolic alterations.

    PubMed

    Perret, Jason; De Vriese, Carine; Delporte, Christine

    2014-07-01

    To understand the current trend of ghrelin genetic variations on the control of satiety, eating behaviours, obesity, and metabolic alterations, and its development over the last 18 months. Several polymorphisms of the ghrelin gene, its receptor gene and ghrelin's acylating enzyme, ghrelin O-acyl transferase, have been identified and studied over the last decade in relation to control of satiety, obesity, eating behaviours, metabolic syndrome, glucose homeostasis, and type 2 diabetes. However, the effects described are either small or nonsignificant and often subjected to contradictory conclusions between studies. In the last 18 months, several of these areas of investigations have been revisited under more controlled conditions or have been subjected to meta-analysis. The effects of ghrelin gene polymorphism, is a complex area of investigation, due to ghrelin's interplay with a host of various factors part of an integrative network. However, taken together, results suggest that there are no or nonsignificant effects of the common genetic variants. A better understanding of the network, probably by a systems biology type approach, will be necessary to assign the exact role played by gene polymorphism of the component of the ghrelin axis.

  19. Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information.

    PubMed

    van Binsbergen, R; Veerkamp, R F; Calus, M P L

    2012-04-01

    The correlated responses between traits may differ depending on the makeup of genetic covariances, and may differ from the predictions of polygenic covariances. Therefore, the objective of the present study was to investigate the makeup of the genetic covariances between the well-studied traits: milk yield, fat yield, protein yield, and their percentages in more detail. Phenotypic records of 1,737 heifers of research farms in 4 different countries were used after homogenizing and adjusting for management effects. All cows had a genotype for 37,590 single nucleotide polymorphisms (SNP). A bayesian stochastic search variable selection model was used to estimate the SNP effects for each trait. About 0.5 to 1.0% of the SNP had a significant effect on 1 or more traits; however, the SNP without a significant effect explained most of the genetic variances and covariances of the traits. Single nucleotide polymorphism correlations differed from the polygenic correlations, but only 10 regions were found with an effect on multiple traits; in 1 of these regions the DGAT1 gene was previously reported with an effect on multiple traits. This region explained up to 41% of the variances of 4 traits and explained a major part of the correlation between fat yield and fat percentage and contributes to asymmetry in correlated response between fat yield and fat percentage. Overall, for the traits in this study, the infinitesimal model is expected to be sufficient for the estimation of the variances and covariances. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Genetic polymorphism of natural Epstein-Barr virus isolates from infectious mononucleosis patients and healthy carriers.

    PubMed Central

    Lung, M L; Chang, R S; Jones, J H

    1988-01-01

    We analyzed Epstein-Barr virus (EBV) genomes from lymphoblastoid cell lines isolated from patients with infectious mononucleosis and from healthy subjects from California, Hawaii, and Hong Kong between 1970 and 1987. Using genetic polymorphism as epidemiological markers, we found that several genotypes of EBV cocirculate in a community and that although most EBV strains isolated from California and Southern China may be differentiated genotypically, there was no specific association between genotype and disease or time of isolation. Images PMID:2901499

  1. Association of "ADAM10" and "CAMK2A" Polymorphisms with Conduct Disorder: Evidence from Family-Based Studies

    ERIC Educational Resources Information Center

    Jian, Xue-Qiu; Wang, Ke-Sheng; Wu, Tie-Jian; Hillhouse, Joel J.; Mullersman, Jerald E.

    2011-01-01

    Twin and family studies have shown that genetic factors play a role in the development of conduct disorder (CD). The purpose of this study was to identify genetic variants associated with CD using a family-based association study. We used 4,720 single nucleotide polymorphisms (SNPs) from the Illumina Panel and 11,120 SNPs from the Affymetrix 10K…

  2. Genetic factors contribute to bleeding after cardiac surgery.

    PubMed

    Welsby, I J; Podgoreanu, M V; Phillips-Bute, B; Mathew, J P; Smith, P K; Newman, M F; Schwinn, D A; Stafford-Smith, M

    2005-06-01

    Postoperative bleeding remains a common, serious problem for cardiac surgery patients, with striking inter-patient variability poorly explained by clinical, procedural, and biological markers. We tested the hypothesis that genetic polymorphisms of coagulation proteins and platelet glycoproteins are associated with bleeding after cardiac surgery. Seven hundred and eighty patients undergoing aortocoronary surgery with cardiopulmonary bypass were studied. Clinical covariates previously associated with bleeding were recorded and DNA isolated from preoperative blood. Matrix Assisted Laser Desorption/Ionization, Time-Of-Flight (MALDI-TOF) mass spectroscopy or polymerase chain reaction were used for genotype analysis. Multivariable linear regression modeling, including all genetic main effects and two-way gene-gene interactions, related clinical and genetic predictors to bleeding from the thorax and mediastinum. Nineteen candidate polymorphisms were assessed; seven [GPIaIIa-52C>T and 807C>T, GPIb alpha 524C>T, tissue factor-603A>G, prothrombin 20210G>A, tissue factor pathway inhibitor-399C>T, and angiotensin converting enzyme (ACE) deletion/insertion] demonstrate significant association with bleeding (P < 0.01). Adding genetic to clinical predictors results improves the model, doubling overall ability to predict bleeding (P < 0.01). We identified seven genetic polymorphisms associated with bleeding after cardiac surgery. Genetic factors appear primarily independent of, and explain at least as much variation in bleeding as clinical covariates; combining genetic and clinical factors double our ability to predict bleeding after cardiac surgery. Accounting for genotype may be necessary when stratifying risk of bleeding after cardiac surgery.

  3. Association of TCF7L2 Genetic Polymorphisms with Type 2 Diabetes Mellitus in the Uygur Population of China.

    PubMed

    Yao, Hua; Wang, Zhiqiang; Wang, Tingting; Ma, Yan; Su, Yinxia; Ma, Qi; Wang, Li; Zhu, Jun

    2015-09-18

    Genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene have been reported to be strongly associated with type 2 diabetes mellitus (T2DM) in Icelandic, Danish and American populations and further replicated in other European populations, African Americans, Mexican Americans, and Asian populations. The aim of the present study was to investigate the association of TCF7L2 gene polymorphisms with T2DM in a Uygur population of China. 877 T2DM patients and 871 controls were selected for the present study. Two single nucleotide polymorphisms (SNPs) (rs12255372 and rs7901695) were genotyped by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The associations of SNPs and haplotypes with T2DM and linkage disequilibrium (LD) structure of the TCF7L2 gene were analyzed. For total participants and male, the distribution of rs12255372 alleles and the dominant model (Guanine Guanine (GG) genotype vs. Guanine Thymine (GT) genotype + Thymine Thymine (TT) genotype) showed significant difference between T2DM and control subjects (for allele: p = 0.013 and p = 0.002, respectively; for dominant model: p = 0.028 and p = 0.008, respectively). The distribution of rs7901695 alleles and the dominant model (TT genotype vs. Thymine Cytosine (TC) genotype + Cytosine Cytosine (CC) genotype) for total participants and male showed significant difference between T2DM and control subjects (for allele: both p = 0.001; for dominant model: p = 0.006 and p = 0.008, respectively). Our data suggested that the genetic polymorphisms of the TCF7L2 gene were associated with T2DM in the Uygur population of China.

  4. Genetic diversity of pigeon pea (Cajanus cajan (l.) Millsp.) based on molecular characterization using randomly amplified polymorphic DNA (RAPD) markers

    NASA Astrophysics Data System (ADS)

    Khoiriyah, N.; Yuniastuti, E.; Purnomo, D.

    2018-03-01

    Pigeon pea (Cajanus cajan (L.) Millsp.) is an annual leguminous crop (perennial) which has advantages over other local leguminous crops as drought resistant, hold collapsed and strong pods. The research on drought resistance plant is very important to adapt to climate change adverse impact to support food security. The potential of pigeon pie has not been supported by accurate data. To explore the potential of pigeon pea, it is necessary to record the important properties by characterization, one of which is molecular. Increasing genetic diversity can be done through mutation which widely used gamma ray for the induction. The purpose of this study was to identify the genetic diversity of pigeon pea of black, white and brown seeds type resulted by gamma-ray irradiation with a wavelength of 100, 200 and 300 grays by using RAPD method. The experiment resulted 14 bands, 12 of them are polymorphic bands and 2 of them are monomorphic with size varied from 300 bp to 1.3 kbp. The dendrogram showed from 30 accessions are divided into two main clusters, B shows clear genetical divergence from other clusters and some others split randomly. The range of similarity coefficient is from 0.43 to 1.00

  5. Serotonin transporter gene promoter polymorphism and autism: a family-based genetic association study in Japanese population.

    PubMed

    Koishi, Shinko; Yamamoto, Kenji; Matsumoto, Hideo; Koishi, Seiji; Enseki, Youichi; Oya, Akitoshi; Asakura, Arata; Aoki, Yutaka; Atsumi, Mariko; Iga, Tomiei; Inomata, Jyoji; Inoko, Hidetoshi; Sasaki, Tsukasa; Nanba, Eiji; Kato, Nobumasa; Ishii, Tetsuo; Yamazaki, Kosuke

    2006-05-01

    Autism is now widely accepted as a biological disorder which, by and large, starts before birth. It has been shown that serotonin (5-HT) is associated with several psychological processes and hyperserotoninemia is observed in some autistic patients. The results of previous reports about family-based association studies between the serotonin transporter (5-HTT) gene promoter polymorphism and autism are controversial. In this study, an analysis using the transmission/disequilibrium test (TDT) between the 5-HTT gene promoter polymorphism and autism in 104 trios, all ethnically Japanese, showed no significant linkage disequilibrium (P=0.17). Recently, it has been reported that some haplotypes at the serotonin transporter locus may be associated with the pathogenesis of autism. Therefore, further investigations by haplotype analyses are necessary to confirm the implications of genetic variants of the serotonin transporter in the etiology of autism.

  6. Genetic Diversity of Pinus Roxburghii Sarg. Collected from Different Himalayan Regions of India Assessed by Random Amplified Polymorphic DNA Analysis

    PubMed Central

    Sinha, Dwaipayan; Singh, Jyotsna; Tandon, P. K.; Kakkar, Poonam

    2013-01-01

    Present study was aimed at molecular genetic fingerprint profile of 15 genotypes of three populations of Pinus roxburghii Sarg. from Himalayan regions of India using random amplified polymorphic DNA (RAPD) based markers. Needles of Pinus roxburghii Sarg. were collected from Dharamshala, Himachal Pradesh (HP), Nainital, Uttarakhand (UK) and Darjeeling, West Bengal (WB) regions of India. The samples were subjected to DNA extraction and RAPD analysis using oligonucleotide purification cartridge (OPC) primers. Out of 15 primers tested, nine primers gave scorable bands. Altogether 48 bands were obtained, out of which 43 were found to be polymorphic. Number of amplified fragments with RAPD primers ranged from four to eight with the size of amplicon ranging from 500 to 7,000bp. Investigation of natural diversity at intraspecies level was performed with 15 genotypes. Forty-eight amplification products were scored by RAPD and showed 89.58% polymorphism with a mean intrapopulation genetic diversity (Hpop) of 0.2754. A significant inter- and intrapopulation diversity was observed, with the percentage of polymorphic loci (Pp) ranging from 50.09 to 70.83%, Shannon's information index (I) from 0.3262 to 0.4689 and Nei's gene diversity (h) from 0.2032 to 0.3335 with mean Nei's gene diversity 0.377 and the overall estimate of gene flow being (Nm) 1.3555. Unweighted pair-group method with arithmetic average (UPGMA) analysis based Dendrogram showed single cluster. The variation amongst the samples of the three ecological regions can be attributed to varied climatic conditions and may help in conservation/future cultivation of these species. PMID:24403729

  7. Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus

    PubMed Central

    Schoville, Sean D.; Flowers, Jonathan M.; Burton, Ronald S.

    2012-01-01

    The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations. PMID:22768211

  8. Genetic Architectures of Quantitative Variation in RNA Editing Pathways

    PubMed Central

    Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.

    2016-01-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740

  9. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum bicolor Seed Element Composition.

    PubMed

    Shakoor, Nadia; Ziegler, Greg; Dilkes, Brian P; Brenton, Zachary; Boyles, Richard; Connolly, Erin L; Kresovich, Stephen; Baxter, Ivan

    2016-04-01

    Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Failure to Replicate a Genetic Association May Provide Important Clues About Genetic Architecture

    PubMed Central

    Greene, Casey S.; Penrod, Nadia M.; Williams, Scott M.; Moore, Jason H.

    2009-01-01

    Replication has become the gold standard for assessing statistical results from genome-wide association studies. Unfortunately this replication requirement may cause real genetic effects to be missed. A real result can fail to replicate for numerous reasons including inadequate sample size or variability in phenotype definitions across independent samples. In genome-wide association studies the allele frequencies of polymorphisms may differ due to sampling error or population differences. We hypothesize that some statistically significant independent genetic effects may fail to replicate in an independent dataset when allele frequencies differ and the functional polymorphism interacts with one or more other functional polymorphisms. To test this hypothesis, we designed a simulation study in which case-control status was determined by two interacting polymorphisms with heritabilities ranging from 0.025 to 0.4 with replication sample sizes ranging from 400 to 1600 individuals. We show that the power to replicate the statistically significant independent main effect of one polymorphism can drop dramatically with a change of allele frequency of less than 0.1 at a second interacting polymorphism. We also show that differences in allele frequency can result in a reversal of allelic effects where a protective allele becomes a risk factor in replication studies. These results suggest that failure to replicate an independent genetic effect may provide important clues about the complexity of the underlying genetic architecture. We recommend that polymorphisms that fail to replicate be checked for interactions with other polymorphisms, particularly when samples are collected from groups with distinct ethnic backgrounds or different geographic regions. PMID:19503614

  11. FLT-1 gene polymorphisms and protein expression profile in rheumatoid arthritis

    PubMed Central

    Paradowska-Gorycka, Agnieszka; Sowinska, Anna; Pawlik, Andrzej; Malinowski, Damian; Stypinska, Barbara; Haladyj, Ewa; Romanowska-Prochnicka, Katarzyna; Olesinska, Marzena

    2017-01-01

    Objectives Inflammation and angiogenesis are a significant element of pathogenesis in rheumatoid arthritis (RA). The FLT-1- triggering factor for production of proinflammatory cytokines-might contributes to inflammation in patients with RA. Association of the FLT-1 polymorphisms with different “angiogenic diseases” suggests that it may be a novel genetic risk factor also for RA. The aim of the study was to identify FLT-1 genetic variants and their possible association with sFLT-1 levels, susceptibility to and severity of RA. Methods The FLT-1 gene polymorphisms were genotyped for 471 RA patients and 684 healthy individuals. Correlation analysis was performed with clinical parameters, cardiovascular disease (CVD) and anti-citrullinated peptide/protein antibody (ACPA) presence. The sFLT-1 serum levels were evaluated. Results The FLT-1 gene polymorphisms showed no significant differences in the proportion of cases and controls. Furthermore, the FLT-1 rs2296188 T/C polymorphism was associated with ACPA-positive RA. Overall, rs9943922 T/C and rs2296283 G/A are in almost completed linkage disequilibrium (LD) with D’ = 0.97 and r2 = 0.83. The FLT-1 rs7324510 A allele has shown association with VAS score (p = 0.035), DAS-28 score (p = 0.013) and ExRA presence (p = 0.027). Moreover, other clinical parameters were also higher in RA patients with this allele. In addition, FLT-1 genetic variants conferred higher sFLT-1 levels in RA patients compared to controls. Conclusion FLT-1 rs7324510 C/A variant may be a new genetic risk factor for severity of RA. Examined factor highly predispose to more severe disease activity as well as higher sFLT-1 levels in RA. PMID:28323906

  12. Recent genetic discoveries in osteoporosis, sarcopenia and obesity.

    PubMed

    Urano, Tomohiko; Inoue, Satoshi

    2015-01-01

    Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.

  13. A 3'UTR polymorphism of IL-6R is associated with Chinese pediatric tuberculosis.

    PubMed

    Shen, Chen; Qi, Hui; Sun, Lin; Xiao, Jing; Yin, Qing-qin; Jiao, Wei-wei; Wu, Xi-rong; Tian, Jian-ling; Han, Rui; Shen, A-dong

    2014-01-01

    IL-6 is a proinflammatory cytokine that plays a critical role in host defense against tuberculosis (TB). Genetic polymorphisms of IL-6 and its receptor IL-6R had been discussed in adult TB recently. However, their role in pediatric TB is still unclear. Due to the obvious differences in TB pathophysiology in children, which may also reflect differences in genetic background, further association studies in pediatric populations are needed. A case-control study was carried out in a Chinese pediatric population including 353 TB patients and 400 healthy controls. Tag-SNPs of IL-6 and IL-6R genes were selected by Haploview software, genotyped using MassArray, and analyzed statistically. One polymorphism, rs2229238, in the 3'UTR region of IL-6R was observed to be associated with increased resistance to TB (adjusted P = 0.03). The rs2229238 T allele contributed to a reduced risk to TB in recessive heritable model (OR, 0.53; 95% CI, 0.35-0.78). By tag-SNP genotyping based case-control study, we identified a genetic polymorphism in the IL-6R 3'UTR that regulates host resistance to pediatric TB in a Chinese population.

  14. Genetic polymorphisms in varied environments.

    PubMed

    Powell, J R

    1971-12-03

    Thirteen experimenital populationis of Drosophila willistoni were maintained in cages, in some of which the environments were relatively constant and in others varied. After 45 weeks, the populations were assayed by gel electrophoresis for polymorphisms at 22 protein loci. The average heterozygosity per individual and the average unmber of alleles per locus were higher in populations maintained in heterogeneous environments than in populations in more constant enviroments.

  15. Genetic Polymorphism of Inosine Triphosphate Pyrophosphatase Is a Determinant of Mercaptopurine Metabolism and Toxicity During Treatment for Acute Lymphoblastic Leukemia

    PubMed Central

    Stocco, G; Cheok, MH; Crews, KR; Dervieux, T; French, D; Pei, D; Yang, W; Cheng, C; Pui, C-H; Relling, MV; Evans, WE

    2009-01-01

    The influence of genetic polymorphism in inosine triphosphate pyrophosphatase (ITPA) on thiopurine-induced adverse events has not been investigated in the context of combination chemotherapy for acute lymphoblastic leukemia (ALL). This study investigated the effects of a common ITPA variant allele (rs41320251) on mercaptopurine metabolism and toxicity during treatment of children with ALL. Significantly higher concentrations of methyl mercaptopurine nucleotides were found in patients with the nonfunctional ITPA allele. Moreover, there was a significantly higher probability of severe febrile neutropenia in patients with a variant ITPA allele among patients whose dose of mercaptopurine had been adjusted for TPMT genotype. In a cohort of patients whose mercaptopurine dose was not adjusted for TPMT phenotype, the TPMT genotype had a greater effect than the ITPA genotype. In conclusion, genetic polymorphism of ITPA is a significant determinant of mercaptopurine metabolism and of severe febrile neutropenia, after combination chemotherapy for ALL in which mercaptopurine doses are individualized on the basis of TPMT genotype. PMID:18685564

  16. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia.

    PubMed

    Stocco, G; Cheok, M H; Crews, K R; Dervieux, T; French, D; Pei, D; Yang, W; Cheng, C; Pui, C-H; Relling, M V; Evans, W E

    2009-02-01

    The influence of genetic polymorphism in inosine triphosphate pyrophosphatase (ITPA) on thiopurine-induced adverse events has not been investigated in the context of combination chemotherapy for acute lymphoblastic leukemia (ALL). This study investigated the effects of a common ITPA variant allele (rs41320251) on mercaptopurine metabolism and toxicity during treatment of children with ALL. Significantly higher concentrations of methyl mercaptopurine nucleotides were found in patients with the nonfunctional ITPA allele. Moreover, there was a significantly higher probability of severe febrile neutropenia in patients with a variant ITPA allele among patients whose dose of mercaptopurine had been adjusted for TPMT genotype. In a cohort of patients whose mercaptopurine dose was not adjusted for TPMT phenotype, the TPMT genotype had a greater effect than the ITPA genotype. In conclusion, genetic polymorphism of ITPA is a significant determinant of mercaptopurine metabolism and of severe febrile neutropenia, after combination chemotherapy for ALL in which mercaptopurine doses are individualized on the basis of TPMT genotype.

  17. The First Genetic Map in Sweet Osmanthus (Osmanthus fragrans Lour.) Using Specific Locus Amplified Fragment Sequencing

    PubMed Central

    He, Yanxia; Yuan, Wangjun; Dong, Meifang; Han, Yuanji; Shang, Fude

    2017-01-01

    Osmanthus fragrans is an ornamental plant of substantial commercial value, and no genetic linkage maps of this species have previously been reported. Specific-locus amplified fragment sequencing (SLAF-seq) is a recently developed technology that allows massive single nucleotide polymorphisms (SNPs) to be identified and high-resolution genotyping. In our current research, we generated the first genetic map of O. fragrans using SLAF-seq, which is composed with 206.92 M paired-end reads and 173,537 SLAF markers. Among total 90,715 polymorphic SLAF markers, 15,317 polymorphic SLAFs could be used for genetic map construction. The integrated map contained 14,189 high quality SLAFs that were grouped in 23 genetic linkage groups, with a total length of 2962.46 cM and an average distance of 0.21 cM between two adjacent markers. In addition, 23,664 SNPs were identified from the mapped markers. As far as we know, this is the first of the genetic map of O. fragrans. Our results are further demonstrate that SLAF-seq is a very effective method for developing markers and constructing high-density linkage maps. The SNP markers and the genetic map reported in this study should be valuable resource in future research. PMID:29018460

  18. The genetic architecture of 3'untranslated region of the MICA gene: polymorphisms and haplotypes.

    PubMed

    Luo, Jia; Tian, Wei; Liu, Xue Xiang; Yu, JunLong; Li, LiXin; Pan, FengHua

    2013-10-01

    In this study, the 3'untranslated region (3'UTR) of MHC class I chain-related gene A (MICA) were investigated in 104 healthy, unrelated Han individuals recruited from northern China, using PCR-sequencing method. Nine polymorphic sites were detected, which were in very strong linkage disequilibrium with each other .Seven different MICA 3'UTR alleles were identified, among which UTR1 predominated (0.6971),followed by UTR2 (0.2356). Twenty-one extended haplotypes incorporating the 3'UTR and MICA exons 2-5 were observed in this population. Phylogenetic analysis revealed the existence of two MICA lineages, each with multiple subsets. The 2 lineages were primarily linked to UTR1 and UTR2 in the 3'UTR, respectively. Ewens-Watterson homozygosity statistics at MICA coding and 3'UTR regions were consistent with neutral expectations. Our data provided for the first time the data of genetic variation in the 3'UTR of MICA gene in human populations. The findings are valuable for future studies of the mechanisms underlying MICA post-transcriptional regulation, and will inform studies of evolution of the MHC gene complex. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  19. Single nucleotide polymorphisms in specific candidate genes are associated with phenotypic differences in days open for first lactation in Holstein cows

    USDA-ARS?s Scientific Manuscript database

    Previously, a candidate gene approach identified 51 single nucleotide polymorphisms (SNP) associated with genetic merit for reproductive traits and 26 associated with genetic merit for production in dairy bulls. We evaluated association of the 77 SNPs with days open (DO) for first lactation in a pop...

  20. Polymorphisms in inflammation pathway genes and endometrial cancer risk

    PubMed Central

    Delahanty, Ryan J.; Xiang, Yong-Bing; Spurdle, Amanda; Beeghly-Fadiel, Alicia; Long, Jirong; Thompson, Deborah; Tomlinson, Ian; Yu, Herbert; Lambrechts, Diether; Dörk, Thilo; Goodman, Marc T.; Zheng, Ying; Salvesen, Helga B.; Bao, Ping-Ping; Amant, Frederic; Beckmann, Matthias W.; Coenegrachts, Lieve; Coosemans, An; Dubrowinskaja, Natalia; Dunning, Alison; Runnebaum, Ingo B.; Easton, Douglas; Ekici, Arif B.; Fasching, Peter A.; Halle, Mari K.; Hein, Alexander; Howarth, Kimberly; Gorman, Maggie; Kaydarova, Dylyara; Krakstad, Camilla; Lose, Felicity; Lu, Lingeng; Lurie, Galina; O’Mara, Tracy; Matsuno, Rayna K.; Pharoah, Paul; Risch, Harvey; Corssen, Madeleine; Trovik, Jone; Turmanov, Nurzhan; Wen, Wanqing; Lu, Wei; Cai, Qiuyin; Zheng, Wei; Shu, Xiao-Ou

    2013-01-01

    Background Experimental and epidemiological evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. Methods To investigate this hypothesis, a two-stage study was carried out to evaluate single nucleotide polymorphisms (SNPs) in inflammatory pathway genes in association with endometrial cancer risk. In stage 1, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage 1 SNPs significantly associated with endometrial cancer (P<0.05) indicated that the majority of associations could be linked to one of 24 distinct loci. One SNP from each of the 24 loci was then selected for follow-up genotyping. Of these, 21 SNPs were successfully designed and genotyped in stage 2, which consisted of ten additional studies including 6,604 endometrial cancer cases and 8,511 controls. Results Five of the 21 SNPs had significant allelic odds ratios and 95% confidence intervals as follows: FABP1, 0.92 (0.85-0.99); CXCL3, 1.16 (1.05-1.29); IL6, 1.08 (1.00-1.17); MSR1, 0.90 (0.82-0.98); and MMP9, 0.91 (0.87-0.97). Two of these polymorphisms were independently significant in the replication sample (rs352038 in CXCL3 and rs3918249 in MMP9). The association for the MMP9 polymorphism remained significant after Bonferroni correction and showed a significant association with endometrial cancer in both Asian- and European-ancestry samples. Conclusions These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact Statement This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis. PMID:23221126

  1. Recipient But Not Donor Adiponectin Polymorphisms Are Associated With Early Posttransplant Hepatic Steatosis in Patients Transplanted for Non-Nonalcoholic Fatty Liver Disease Indications.

    PubMed

    John, Binu V; Aiken, Taylor; Garber, Ari; Thomas, Dawn; Lopez, Rocio; Patil, Deepa; Konjeti, Venkata Rajesh; Fung, John J; McCollough, Arthur J; Askar, Medhat

    2018-06-01

    De novo steatosis after liver transplant is common and can occur in up to one-third of patients who are transplanted for liver disease other than for nonalcoholic fatty liver disease. Genetic factors may influence posttransplant steatosis; in a posttransplant setting, donor or recipient genetic factors could also play roles. Genetic polymorphisms in the adiponectin gene have been associated with metabolic syndrome in the pretransplant setting. We aimed to assess the association between donor and recipient adiponectin polymorphisms and early posttransplant hepatic steatosis identified on liver biopsies. Clinical data were collected for 302 liver transplant patients who underwent protocol biopsies for hepatitis C. Of these, 111 patients had available biopsies and donor/recipient DNA. Patients with grade 1 steatosis or greater (35% of patients) were compared with patients without posttransplant steatosis with respect to clinical features and donor/recipient adiponectin polymorphism genotypes. Patients who developed posttransplant steatosis and those without steatosis were similar with respect to individual components of metabolic syndrome. The adiponectin polymorphisms rs1501299 G/G and rs17300539 G/G genotypes in recipients were associated with early posttransplant graft steatosis. We found no associations between graft steatosis and donor adiponectin polymorphisms. Genetic polymorphisms in the adiponectin gene of recipients (but not donors) are associated with early de novo posttransplant hepatic steatosis, independent of components of metabolic syndrome.

  2. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer.

    PubMed

    Kerns, Sarah L; Dorling, Leila; Fachal, Laura; Bentzen, Søren; Pharoah, Paul D P; Barnes, Daniel R; Gómez-Caamaño, Antonio; Carballo, Ana M; Dearnaley, David P; Peleteiro, Paula; Gulliford, Sarah L; Hall, Emma; Michailidou, Kyriaki; Carracedo, Ángel; Sia, Michael; Stock, Richard; Stone, Nelson N; Sydes, Matthew R; Tyrer, Jonathan P; Ahmed, Shahana; Parliament, Matthew; Ostrer, Harry; Rosenstein, Barry S; Vega, Ana; Burnet, Neil G; Dunning, Alison M; Barnett, Gillian C; West, Catharine M L

    2016-08-01

    Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity) and single nucleotide polymorphism (SNP) associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08-4.69, p-value 4.16×10(-8)) and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90-3.86, p-value=3.21×10(-8)). These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling. Copyright © 2016 The Ohio State University Wexner Medical Center. Published by Elsevier B.V. All rights reserved.

  3. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America.

    PubMed

    Jovel, Irina T; Mejía, Rosa E; Banegas, Engels; Piedade, Rita; Alger, Jackeline; Fontecha, Gustavo; Ferreira, Pedro E; Veiga, Maria I; Enamorado, Irma G; Bjorkman, Anders; Ursing, Johan

    2011-12-19

    In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P

  4. Single Nucleotide Polymorphism (SNP)-Strings: An Alternative Method for Assessing Genetic Associations

    PubMed Central

    Goodin, Douglas S.; Khankhanian, Pouya

    2014-01-01

    Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that

  5. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  6. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  7. Association between genetic polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes and radiosensitivity in breast cancer patients.

    PubMed

    Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca; Sani, Cristina; Biti, Giampaolo; Livi, Lorenzo; Barletta, Emanuela; Costantini, Adele Seniori; Gorini, Giuseppe

    2011-09-01

    Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Individual genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR=53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR=38.26; 95% CI, 1.19-1232.52). To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be involved in cellular response to radiotherapy. Genetic

  8. Replicative genetic association study between functional polymorphisms in AVPR1A and social behavior scales of autism spectrum disorder in the Korean population.

    PubMed

    Yang, So Young; Kim, Soon Ae; Hur, Gang Min; Park, Mira; Park, Jong-Eun; Yoo, Hee Jeong

    2017-01-01

    Arginine vasopressin has been shown to affect social and emotional behaviors, which is mediated by the arginine vasopressin receptor (AVPR1A). Genetic polymorphisms in the AVPR1A promoter region have been identified to be associated with susceptibility to social deficits in autism spectrum disorder (ASD). We hypothesize that alleles of polymorphisms in the promoter region of AVPR1A may differentially interact with certain transcriptional factors, which in turn affect quantitative traits, such as sociality, in children with autism. We performed an association study between ASD and polymorphisms in the AVPR1A promoter region in the Korean population using a family-based association test (FBAT). We evaluated the correlation between genotypes and the quantitative traits that are related to sociality in children with autism. We also performed a promoter assay in T98G cells and evaluated the binding affinities of transcription factors to alleles of rs7294536. The polymorphisms-RS1, RS3, rs7294536, and rs10877969-were analyzed. Under the dominant model, RS1-310, the shorter allele, was preferentially transmitted. The FBAT showed that the rs7294536 A allele was also preferentially transmitted in an additive and dominant model under the bi-allelic mode. When quantitative traits were used in the FBAT, rs7294536 and rs10877969 were statistically significant in all genotype models and modes. Luciferase and electrophoretic mobility-shift assays suggest that the rs7294536 A/G allele results in a Nf-κB binding site that exhibits differential binding affinities depending on the allele. These results demonstrate that polymorphisms in the AVPR1A promoter region might be involved in pathophysiology of ASD and in functional regulation of the expression of AVPR1A .

  9. Polymorphisms in the canine monoamine oxidase a (MAOA) gene: identification and variation among five broad dog breed groups.

    PubMed

    Sacco, James; Ruplin, Andrew; Skonieczny, Paul; Ohman, Michael

    2017-01-01

    In humans, reduced activity of the enzyme monoamine oxidase type A (MAOA) due to genetic polymorphisms within the MAOA gene leads to increased brain neurotransmitter levels associated with aggression. In order to study MAOA genetic diversity in dogs, we designed a preliminary study whose objectives were to identify novel alleles in functionally important regions of the canine MAOA gene, and to investigate whether the frequencies of these polymorphisms varied between five broad breed groups (ancient, herding, mastiff, modern European, and mountain). Fifty dogs representing these five breed groups were sequenced. A total of eleven polymorphisms were found. Seven were single nucleotide polymorphisms (SNPs; two exonic, two intronic and three in the promoter), while four were repeat intronic variations. The most polymorphic loci were repeat regions in introns 1, 2 (7 alleles) and 10 (3 alleles), while the exonic and the promoter regions were highly conserved. Comparison of the allele frequencies of certain microsatellite polymorphisms among the breed groups indicated a decreasing or increasing trend in the number of repeats at different microsatellite loci, as well as the highest genetic diversity for the ancient breeds and the lowest for the most recent mountain breeds, perhaps attributable to canine domestication and recent breed formation. While a specific promoter SNP (-212A > G) is rare in the dog, it is the major allele in wolves. Replacement of this ancestral allele in domestic dogs may lead to the deletion of heat shock factor binding sites on the MAOA promoter. Dogs exhibit significant variation in certain intronic regions of the MAOA gene, while the coding and promoter regions are well-conserved. Distinct genetic differences were observed between breed groups. Further studies are now required to establish whether such polymorphisms are associated in any way with MAOA level and canine behaviour including aggression.

  10. Short Communication: Genetic linkage map of Cucurbita maxima with molecular and morphological markers.

    PubMed

    Ge, Y; Li, X; Yang, X X; Cui, C S; Qu, S P

    2015-05-22

    Cucurbita maxima is one of the most widely cultivated vegetables in China and exhibits distinct morphological characteristics. In this study, genetic linkage analysis with 57 simple-sequence repeats, 21 amplified fragment length polymorphisms, 3 random-amplified polymorphic DNA, and one morphological marker revealed 20 genetic linkage groups of C. maxima covering a genetic distance of 991.5 cM with an average of 12.1 cM between adjacent markers. Genetic linkage analysis identified the simple-sequence repeat marker 'PU078072' 5.9 cM away from the locus 'Rc', which controls rind color. The genetic map in the present study will be useful for better mapping, tagging, and cloning of quantitative trait loci/gene(s) affecting economically important traits and for breeding new varieties of C. maxima through marker-assisted selection.

  11. Genetic alterations affecting cholesterol metabolism and human fertility.

    PubMed

    DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-11-01

    Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.

  12. Generalization of Associations of Kidney-Related Genetic Loci to American Indians

    PubMed Central

    Haack, Karin; Almasy, Laura; Laston, Sandra; Lee, Elisa T.; Best, Lyle G.; Fabsitz, Richard R.; MacCluer, Jean W.; Howard, Barbara V.; Umans, Jason G.; Cole, Shelley A.

    2014-01-01

    Summary Background and objectives CKD disproportionally affects American Indians, who similar to other populations, show genetic susceptibility to kidney outcomes. Recent studies have identified several loci associated with kidney traits, but their relevance in American Indians is unknown. Design, setting, participants, & measurements This study used data from a large, family-based genetic study of American Indians (the Strong Heart Family Study), which includes 94 multigenerational families enrolled from communities located in Oklahoma, the Dakotas, and Arizona. Individuals were recruited from the Strong Heart Study, a population-based study of cardiovascular disease in American Indians. This study selected 25 single nucleotide polymorphisms in 23 loci identified from recently published kidney-related genome-wide association studies in individuals of European ancestry to evaluate their associations with kidney function (estimated GFR; individuals 18 years or older, up to 3282 individuals) and albuminuria (urinary albumin to creatinine ratio; n=3552) in the Strong Heart Family Study. This study also examined the association of single nucleotide polymorphisms in the APOL1 region with estimated GFR in 1121 Strong Heart Family Study participants. GFR was estimated using the abbreviated Modification of Diet in Renal Disease Equation. Additive genetic models adjusted for age and sex were used. Results This study identified significant associations of single nucleotide polymorphisms with estimated GFR in or nearby PRKAG2, SLC6A13, UBE2Q2, PIP5K1B, and WDR72 (P<2.1 × 10-3 to account for multiple testing). Single nucleotide polymorphisms in these loci explained 2.2% of the estimated GFR total variance and 2.9% of its heritability. An intronic variant of BCAS3 was significantly associated with urinary albumin to creatinine ratio. APOL1 single nucleotide polymorphisms were not associated with estimated GFR in a single variant test or haplotype analyses, and the at

  13. Human cancer xenografts in outbred nude mice can be confounded by polymorphisms in a modifier of tumorigenesis.

    PubMed

    Zeineldin, Maged; Jensen, Derek; Paranjape, Smita R; Parelkar, Nikhil K; Jokar, Iman; Vielhauer, George A; Neufeld, Kristi L

    2014-08-01

    Tumorigenicity studies often employ outbred nude mice, in the absence of direct evidence that this mixed genetic background will negatively affect experimental outcome. Here we show that outbred nude mice carry two different alleles of Pla2g2a, a genetic modifier of intestinal tumorigenesis in mice. Here, we identify previous unreported linked polymorphisms in the promoter, noncoding and coding sequences of Pla2g2a and show that outbred nude mice from different commercial providers are heterogeneous for this polymorphic Pla2g2a allele. This heterogeneity even extends to mice obtained from a single commercial provider, which display mixed Pla2g2a genotypes. Notably, we demonstrated that the polymorphic Pla2g2a allele affects orthotopic xenograft establishment of human colon cancer cells in outbred nude mice. This finding establishes a non-cell-autonomous role for Pla2g2a in suppressing intestinal tumorigenesis. Using in vitro reporter assays and pharmacological inhibitors, we show promoter polymorphisms and nonsense-mediated RNA decay (NMD) as underlying mechanisms that lead to low Pla2g2a mRNA levels in tumor-sensitive mice. Together, this study provides mechanistic insight regarding Pla2g2a polymorphisms and demonstrates a non-cell-autonomous role for Pla2g2a in suppressing tumors. Moreover, our direct demonstration that mixed genetic backgrounds of outbred nude mice can significantly affect baseline tumorigenicity cautions against future use of outbred mice for tumor xenograft studies. Copyright © 2014 by the Genetics Society of America.

  14. Association of Genetic Polymorphisms of Renin–Angiotensin–Aldosterone System-Related Genes with Arterio-Venous Fistula Malfunction in Hemodialysis Patients

    PubMed Central

    Chen, Yu-Wei; Wu, Yu-Te; Lin, Jhin-Shyaun; Yang, Wu-Chang; Hsu, Yung-Ho; Lee, Kuo-Hua; Ou, Shou-Ming; Chen, Yung-Tai; Shih, Chia-Jen; Lee, Pui-Ching; Chan, Chia-Hao; Chung, Ming-Yi; Lin, Chih-Ching

    2016-01-01

    Hemodialysis (HD) is the most commonly-used renal replacement therapy for patients with end-stage renal disease worldwide. Arterio-venous fistula (AVF) is the vascular access of choice for HD patients with lowest risk of infection and thrombosis. In addition to environmental factors, genetic factors may also contribute to malfunction of AVF. Previous studies have demonstrated the effect of genotype polymorphisms of angiotensin converting enzyme on vascular access malfunction. We conducted a multicenter, cross-sectional study to evaluate the association between genetic polymorphisms of renin-angiotensin-aldosterone system and AVF malfunction. Totally, 577 patients were enrolled. Their mean age was 60 years old and 53% were male. HD patients with AVF malfunction had longer duration of HD (92.5 ± 68.1 vs. 61.2 ± 51.9 months, p < 0.001), lower prevalence of hypertension (44.8% vs. 55.3%, p = 0.025), right-sided (31.8% vs. 18.4%, p = 0.002) and upper arm AVF (26.6% vs. 9.7%, p < 0.001), and higher mean dynamic venous pressure (DVP) (147.8 ± 28.3 vs. 139.8 ± 30.0, p = 0.021). In subgroup analysis of different genders, location of AVF and DVP remained significant clinical risk factors of AVF malfunction in univariate and multivariate binary logistic regression in female HD patients. Among male HD patients, univariate binary logistic regression analysis revealed that right-side AVF and upper arm location are two important clinical risk factors. In addition, two single nucleotide polymorphisms (SNPs), rs275653 (Odds ratio 1.90, p = 0.038) and rs1492099 (Odds ratio 2.29, p = 0.017) of angiotensin II receptor 1 (AGTR1), were associated with increased risk of AVF malfunction. After adjustment for age and other clinical factors, minor allele-containing genotype polymorphisms (AA and CA) of rs1492099 still remained to be a significant risk factor of AVF malfunction (Odds ratio 3.63, p = 0.005). In conclusion, we demonstrated that rs1492099, a SNP of AGTR1 gene, could be a

  15. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelini, S.; Urbanek, M.; Goldman, D.

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two allelesmore » occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.« less

  16. The Role of Genetic Polymorphisms as Related to One-Carbon Metabolism, Vitamin B6, and Gene-Nutrient Interactions in Maintaining Genomic Stability and Cell Viability in Chinese Breast Cancer Patients.

    PubMed

    Wu, Xiayu; Xu, Weijiang; Zhou, Tao; Cao, Neng; Ni, Juan; Zou, Tianning; Liang, Ziqing; Wang, Xu; Fenech, Michael

    2016-06-24

    Folate-mediated one-carbon metabolism (FMOCM) is linked to DNA synthesis, methylation, and cell proliferation. Vitamin B6 (B6) is a cofactor, and genetic polymorphisms of related key enzymes, such as serine hydroxymethyltransferase (SHMT), methionine synthase reductase (MTRR), and methionine synthase (MS), in FMOCM may govern the bioavailability of metabolites and play important roles in the maintenance of genomic stability and cell viability (GSACV). To evaluate the influences of B6, genetic polymorphisms of these enzymes, and gene-nutrient interactions on GSACV, we utilized the cytokinesis-block micronucleus assay (CBMN) and PCR-restriction fragment length polymorphism (PCR-RFLP) techniques in the lymphocytes from female breast cancer cases and controls. GSACV showed a significantly positive correlation with B6 concentration, and 48 nmol/L of B6 was the most suitable concentration for maintaining GSACV in vitro. The GSACV indexes showed significantly different sensitivity to B6 deficiency between cases and controls; the B6 effect on the GSACV variance contribution of each index was significantly higher than that of genetic polymorphisms and the sample state (tumor state). SHMT C1420T mutations may reduce breast cancer susceptibility, whereas MTRR A66G and MS A2756G mutations may increase breast cancer susceptibility. The role of SHMT, MS, and MTRR genotype polymorphisms in GSACV is reduced compared with that of B6. The results appear to suggest that the long-term lack of B6 under these conditions may increase genetic damage and cell injury and that individuals with various genotypes have different sensitivities to B6 deficiency. FMOCM metabolic enzyme gene polymorphism may be related to breast cancer susceptibility to a certain extent due to the effect of other factors such as stress, hormones, cancer therapies, psychological conditions, and diet. Adequate B6 intake may be good for maintaining genome health and preventing breast cancer.

  17. Identifying environmental correlates of intraspecific genetic variation.

    PubMed

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution).

  18. Development of gene polymorphisms in meditators of nonalcoholic fatty liver disease

    PubMed Central

    Wang, Chun; Gong, Jianping; Wu, Hao

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, the morbidity of which closely correlates with diversity of ethnicity, minority, family and location. Its histology spans from simple steatosis, to nonalcoholic steatohepatitis, which ultimately results in fibrosis, cirrhosis and hepatocellular carcinoma. The accelerating prevalence of NAFLD is due to an incremental incidence of metabolic syndrome that is distinguished by dyslipidemia, glucose impairment, obesity, excessive oxidative stress and adipocytokine impairment. Additionally, the pathogenesis of NAFLD is thought to be a multifactorial and complicated disease associated with lifestyle habits, nutritional factors and genetics. However, the pathogenesis and underlying mechanism in the development of NAFLD caused by genetics remains unclear. People have been increasingly emphasizing on the relationship between NAFLD and gene polymorphisms in recent years, with the aim of having a comprehensive elucidation of associated gene polymorphisms influencing the pathogenesis of the disease. In the current article, the authors attempted to critically summarize the most recently identified gene polymorphisms from the facets of glucose metabolism, fatty acid metabolism, oxidative stress and related cytokines in NAFLD that contribute to promoting the progression of the disease. PMID:28804621

  19. Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers.

    PubMed

    Igwe, David Okeh; Afiukwa, Celestine Azubike; Ubi, Benjamin Ewa; Ogbu, Kenneth Idika; Ojuederie, Omena Bernard; Ude, George Nkem

    2017-11-17

    Assessment of genetic diversity of Vigna unguiculata (L.) Walp (cowpea) accessions using informative molecular markers is imperative for their genetic improvement and conservation. Use of efficacious molecular markers to obtain the required knowledge of the genetic diversity within the local and regional germplasm collections can enhance the overall effectiveness of cowpea improvement programs, hence, the comparative assessment of Inter-simple sequence repeat (ISSR) and Start codon targeted (SCoT) markers in genetic diversity of V. unguiculata accessions from different regions in Nigeria. Comparative analysis of the genetic diversity of eighteen accessions from different locations in Nigeria was investigated using ISSR and SCoT markers. DNA extraction was done using Zymogen Kit according to its manufacturer's instructions followed by amplifications with ISSR and SCoT and agarose gel electrophoresis. The reproducible bands were scored for analyses of dendrograms, principal component analysis, genetic diversity, allele frequency, polymorphic information content, and population structure. Both ISSR and SCoT markers resolved the accessions into five major clusters based on dendrogram and principal component analyses. Alleles of 32 and 52 were obtained with ISSR and SCoT, respectively. Numbers of alleles, gene diversity and polymorphic information content detected with ISSR were 9.4000, 0.7358 and 0.7192, while SCoT yielded 11.1667, 0.8158 and 0.8009, respectively. Polymorphic loci were 70 and 80 in ISSR and SCoT, respectively. Both markers produced high polymorphism (94.44-100%). The ranges of effective number of alleles (Ne) were 1.2887 ± 0.1797-1.7831 ± 0.2944 and 1.7416 ± 0.0776-1.9181 ± 0.2426 in ISSR and SCoT, respectively. The Nei's genetic diversity (H) ranged from 0.2112 ± 0.0600-0.4335 ± 0.1371 and 0.4111 ± 0.0226-0.4778 ± 0.1168 in ISSR and SCoT, respectively. Shannon's information index (I) from ISSR and SCoT were 0

  20. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.).

    PubMed

    Keyte, Anna L; Percifield, Ryan; Liu, Bao; Wendel, Jonathan F

    2006-01-01

    Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.

  1. Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuguang Leng; Yufei Dai; Yong Niu

    Exploring the associations between genetic polymorphisms of metabolic enzymes and susceptibility to polycyclic aromatic hydrocarbon (PAH)-induced chromosomal damage is of great significance for understanding PAH carcinogenesis. Cytochrome P450, glutathione S-transferase, microsomal epoxide hydrolase, NAD(P)H:quinone oxidoreductase, and N-acetyltransferase are PAH-metabolizing enzymes. In this study, we genotyped for the polymorphisms of these genes and assessed their effects on cytokinesis-block micronucleus (CBMN) frequencies in peripheral blood lymphocytes among 141 coke-oven workers and 66 non-coke-oven worker controls. The geometric means of urinary 1-hydroxypyrene levels in coke-oven workers and the controls were 12.0 and 0.7 {mu}mol/mol creatinine, respectively. The CBMN frequency (number of micronuclei permore » 1,000 binucleated lymphocytes) was significantly higher in coke-oven workers (9.5 {+-} 6.6) than in the controls. Among the coke-oven workers, age was positively associated with CBMN frequency; the mEH His{sup 113} variant genotype exhibited significantly lower CBMN frequency than did the Tyr{sup 113}/Tyr{sup 113} genotype; the low mEH activity phenotype exhibited a lower CBMN frequency than did the high mEH activity phenotype; the GSTP1 Val{sup 105}/Val{sup 105} genotype exhibited a higher CBMN frequency than did the GSTP1 Ile{sup 105}/Ile{sup 105} or Ile{sup 105}/Val{sup 105} genotypes; the joint effect of high mEH activity phenotype and GSTM1 null genotype on CBMN frequencies was also found. Gene-environment interactions between occupational PAH exposure and polymorphisms of mEH and/or GSTM1 were also evident. These results indicate that the mEH, GSTP1, and GSTM1 polymorphisms may play a role in sensitivity or genetic susceptibility to the genotoxic effects of PAH exposure in the coke-oven workers.« less

  2. Association between the Angiotensin-Converting Enzyme (ACE) Genetic Polymorphism and Diabetic Retinopathy-A Meta-Analysis Comprising 10,168 Subjects.

    PubMed

    Luo, Shasha; Shi, Chao; Wang, Furu; Wu, Zhifeng

    2016-11-15

    Aims-to address the inconclusive findings of the association of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism on risk of diabetic retinopathy (DR), a meta-analysis was conducted. Methods-we conducted a meta-analysis on 4252 DR cases and 5916 controls from 40 published studies by searching electronic databases and reference lists of relevant articles. A random-effects or fixed-effects model was used to estimate the overall and stratification effect sizes on ACE I/D polymorphism on the risk of DR. Results-we found a significant association between the ACE I/D polymorphism and the risk of DR for all genetic model (ID vs. II: OR = 1.14, 95% CI: 1.00-1.30; DD vs. II: OR = 1.38, 95% CI: 1.11-1.71; Allele contrast: OR = 1.17, 95% CI: 1.05-1.30; recessive model: OR = 1.24, 95% CI: 1.02-1.51 and dominant model: OR = 1.21, 95% CI: 1.06-1.38, respectively). In stratified analysis by ethnicity and DM type, we further found that the Asian group with T2DM showed a significant association for all genetic models (ID vs. II: OR = 1.14, 95% CI: 1.01-1.30; DD vs. II: OR = 1.54, 95% CI: 1.14-2.08; Allele contrast: OR = 1.26, 95% CI: 1.09-1.47; recessive model: OR = 1.42, 95% CI: 1.07-1.88 and dominant model: OR = 1.26, 95% CI: 1.07-1.49, respectively). Conclusion-our study suggested that the ACE I/D polymorphism may contribute to DR development, especially in the Asian group with type 2 diabetes mellitus (T2DM). Prospective and more genome-wide association studies (GWAS) are needed to clarify the real role of the ACE gene in determining susceptibility to DR.

  3. Identifying future research needs in landscape genetics: Where to from here?

    Treesearch

    Niko Balkenhol; Felix Gugerli; Sam A. Cushman; Lisette P. Waits; Aurelie Coulon; J. W. Arntzen; Rolf Holderegger; Helene H. Wagner

    2009-01-01

    Landscape genetics is an emerging interdisciplinary field that combines methods and concepts from population genetics, landscape ecology, and spatial statistics. The interest in landscape genetics is steadily increasing, and the field is evolving rapidly. We here outline four major challenges for future landscape genetic research that were identified during an...

  4. Association of Anxiety-Related Polymorphisms with Sports Performance in Chilean Long Distance Triathletes: A Pilot Study

    PubMed Central

    Sanhueza, Jorge A.; Zambrano, Tomás; Bahamondes-Avila, Carlos; Salazar, Luis A.

    2016-01-01

    Different factors affecting athletic performance are well established: intensity and type of training, anthropometric characteristics as well as an important psychological component. However, the contribution of the genetic background has been less investigated. The aim of the present study was to investigate the influence of polymorphisms within genes associated with stress and anxiety (5HTT, CRH2R, ACE, NK1R, 5HT1AR and CRF-BP) on the physical capability and sports performance in triathletes. One hundred and ninety two (192) unrelated Chilean triathletes who participated in the 2014 70.3 Pucón city triathlon were divided into opposite subgroups of sports performance according to their time results. We identified significant associations for five polymorphisms (5HTT 5-HTTLPR, ACE I/D, NK1R rs6715729, 5HT1AR -1019C>G and CRF-BP CRF-BPs11) with athletic performance. Our results indicate that these polymorphisms are associated with differential sports performance in Chilean triathletes, establishing an initial background for better understanding the relationship between physical performance, genetics and anxiety disorders. Key points Genetic factors influencing sports performance in the Chilean population are unknown. Differential outcomes from athletes who completed a triathlon competition were associated with five polymorphisms (5HTT 5-HTTLPR, ACE I/D, NK1R rs6715729, 5HT1AR -1019C>G and CRF-BP CRF-BPs11). We show that genetic variants within stress- and anxiety-related genes affect athletic performance. PMID:27928199

  5. [Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula].

    PubMed

    Khrustaleva, A M; Gritsenko, O F; Klovach, N V

    2013-11-01

    The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected.

  6. Sexually antagonistic polymorphism in simultaneous hermaphrodites

    PubMed Central

    Jordan, Crispin Y.; Connallon, Tim

    2015-01-01

    In hermaphrodites, pleiotropic genetic tradeoffs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. While an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self-fertilization, and population size, on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self-fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female-beneficial alleles, and restricts invasion criteria for male-beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes”. PMID:25311368

  7. Toll-like receptor polymorphisms in malaria-endemic populations

    PubMed Central

    Greene, Jennifer A; Moormann, Ann M; Vulule, John; Bockarie, Moses J; Zimmerman, Peter A; Kazura, James W

    2009-01-01

    Background Toll-like receptors (TLR) and related downstream signaling pathways of innate immunity have been implicated in the pathogenesis of Plasmodium falciparum malaria. Because of their potential role in malaria pathogenesis, polymorphisms in these genes may be under selective pressure in populations where this infectious disease is endemic. Methods A post-PCR Ligation Detection Reaction-Fluorescent Microsphere Assay (LDR-FMA) was developed to determine the frequencies of TLR2, TLR4, TLR9, MyD88-Adaptor Like Protein (MAL) single nucleotide polymorphisms (SNPs), and TLR2 length polymorphisms in 170 residents of two regions of Kenya where malaria transmission is stable and high (holoendemic) or episodic and low, 346 residents of a malaria holoendemic region of Papua New Guinea, and 261 residents of North America of self-identified ethnicity. Results The difference in historical malaria exposure between the two Kenyan sites has significantly increased the frequency of malaria protective alleles glucose-6-phoshpate dehydrogenase (G6PD) and Hemoglobin S (HbS) in the holoendemic site compared to the episodic transmission site. However, this study detected no such difference in the TLR2, TLR4, TLR9, and MAL allele frequencies between the two study sites. All polymorphisms were in Hardy Weinberg Equilibrium in the Kenyan and Papua New Guinean populations. TLR9 SNPs and length polymorphisms within the TLR2 5' untranslated region were the only mutant alleles present at a frequency greater than 10% in all populations. Conclusion Similar frequencies of TLR2, TLR4, TLR9, and MAL genetic polymorphisms in populations with different histories of malaria exposure suggest that these innate immune pathways have not been under strong selective pressure by malaria. Genotype frequencies are consistent with Hardy-Weinberg Equilibrium and the Neutral Theory, suggesting that genetic drift has influenced allele frequencies to a greater extent than selective pressure from malaria or any

  8. Genetic Diversity of Toll-Like Receptors and Immunity to M. leprae Infection

    PubMed Central

    Hart, Bryan E.; Tapping, Richard I.

    2012-01-01

    Genetic association studies of leprosy cohorts across the world have identified numerous polymorphisms which alter susceptibility and outcome to infection with Mycobacterium leprae. As expected, many of the polymorphisms reside within genes that encode components of the innate and adaptive immune system. Despite the preponderance of these studies, our understanding of the mechanisms that underlie these genetic associations remains sparse. Toll-like receptors (TLRs) have emerged as an essential family of innate immune pattern recognition receptors which play a pivotal role in host defense against microbes, including pathogenic strains of mycobacteria. This paper will highlight studies which have uncovered the association of specific TLR gene polymorphisms with leprosy or tuberculosis: two important diseases resulting from mycobacterial infection. This analysis will focus on the potential influence these polymorphic variants have on TLR expression and function and how altered TLR recognition or signaling may contribute to successful antimycobacterial immunity. PMID:22529866

  9. USP38, FREM3, SDC1, DDC, and LOC727982 Gene Polymorphisms and Differential Susceptibility to Severe Malaria in Tanzania.

    PubMed

    Manjurano, Alphaxard; Sepúlveda, Nuno; Nadjm, Behzad; Mtove, George; Wangai, Hannah; Maxwell, Caroline; Olomi, Raimos; Reyburn, Hugh; Drakeley, Christopher J; Riley, Eleanor M; Clark, Taane G

    2015-10-01

    Populations exposed to Plasmodium falciparum infection develop genetic mechanisms of protection against severe malarial disease. Despite decades of genetic epidemiological research, the sickle cell trait (HbAS) sickle cell polymorphism, ABO blood group, and other hemoglobinopathies remain the few major determinants in severe malaria to be replicated across different African populations and study designs. Within a case-control study in a region of high transmission in Tanzania (n = 983), we investigated the role of 40 new loci identified in recent genome-wide studies. In 32 loci passing quality control procedures, we found polymorphisms in USP38, FREM3, SDC1, DDC, and LOC727982 genes to be putatively associated with differential susceptibility to severe malaria. Established candidates explained 7.4% of variation in severe malaria risk (HbAS polymorphism, 6.3%; α-thalassemia, 0.3%; ABO group, 0.3%; and glucose-6-phosphate dehydrogenase deficiency, 0.5%) and the new polymorphisms, another 4.3%. The regions encompassing the loci identified are promising targets for the design of future treatment and control interventions. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  10. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation

    PubMed Central

    Tsai, Chia-Ti; Hsieh, Chia-Shan; Chang, Sheng-Nan; Chuang, Eric Y.; Ueng, Kwo-Chang; Tsai, Chin-Feng; Lin, Tsung-Hsien; Wu, Cho-Kai; Lee, Jen-Kuang; Lin, Lian-Yu; Wang, Yi-Chih; Yu, Chih-Chieh; Lai, Ling-Ping; Tseng, Chuen-Den; Hwang, Juey-Jen; Chiang, Fu-Tien; Lin, Jiunn-Lee

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10−24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. PMID:26831368

  11. Genetic association of CCR5 promoter single nucleotide polymorphism in seronegative and seropositive rheumatoid arthritis.

    PubMed

    Lima, Guadalupe; Furuzawa-Carballeda, Janette; Ramos-Bello, Dolores; Jakez-Ocampo, Juan; Pascual-Ramos, Virginia; Núñez-Alvarez, Carlos A; Granados, Julio; Llorente, Luis

    2012-06-01

    The aim of this study was to investigate the possible role of the CCR5 59029 A→G promoter point mutation polymorphism in determining the susceptibility to rheumatoid factor-positive and rheumatoid factor-negative rheumatoid arthritis. This polymorphism was assessed in 85 seropositive and 39 seronegative rheumatoid arthritis patients and in 126 healthy individuals of the same geographic and ethnic origin. We found an increase in the genetic frequency of the A allele in the 59029 A→G promoter region of the CCR5 receptor in patients with rheumatoid arthritis compared with healthy controls (p = 0.01; OR = 1.5, 95% CI (1.0-2.2). Likewise, the homozygous state for the A allele was found to be more frequent in rheumatoid arthritis patients, again when compared with healthy controls (p = 0.03; OR = 1.8, 95% CI 1.0-3.0). The increased frequency of the A allele was more evident in the more benign, seronegative rheumatoid arthritis group when compared with controls (p = 0.003; OR 2.4 95% CI 1.3-4.4), and when combining the A homozygous and the AG heterozygous patients compared with healthy subjects. These results suggest that this CCR5 promoter polymorphism seems to play an important role in determining different clinical courses in both forms of rheumatoid arthritis.

  12. Tumour necrosis factor-alpha polymorphism as one of the complex inherited factors in pemphigus.

    PubMed Central

    Torzecka, Jolanta Dorota; Narbutt, Joanna; Sysa-Jedrzejowska, Anna; Borowiec, Maciej; Ptasinska, Anetta; Woszczek, Grzegorz; Kowalski, Marek L

    2003-01-01

    The aim of our study was to analyse a significance of tumour necrosis factor (TNF)-alpha promoter gene polymorphisms in relation to the HLA-DR locus in genetic predisposition to pemphigus. TNF-alpha gene polymorphisms in position -238 and -308 were identified using a modified polymerase chain reaction-restriction fragment length polymorphism method in 53 patients with pemphigus (38 with pemphigus vulgaris, 15 with pemphigus foliaceus) and 87 healthy controls. The HLA-DRB1 locus was typed using the polymerase chain reaction SSO method in all the patients and 152 population controls. Carriers of the TNF-alpha polymorphic -308 A allele were found to be more frequent in the pemphigus foliaceus group in comparison with the control group (odds ratio (OR) = 8.12; p = 0.0005). A significant association between HLA-DRB1*04 (OR = 3.86; pcor = 0.0001) and DRB1*14 (OR = 8.4; pcor = 0.0001) and pemphigus vulgaris was found. In this group of patients a decreased frequency of HLA-DRB1*07 (OR = 0.08; pcor = 0.006) was also identified. We have shown for the first time a positive association of TNF-alpha polymorphism in position -308 with pemphigus foliaceus. PMID:14760938

  13. Tumour necrosis factor-alpha polymorphism as one of the complex inherited factors in pemphigus.

    PubMed

    Torzecka, Jolanta Dorota; Narbutt, Joanna; Sysa-Jedrzejowska, Anna; Borowiec, Maciej; Ptasinska, Anetta; Woszczek, Grzegorz; Kowalski, Marek L

    2003-10-01

    The aim of our study was to analyse a significance of tumour necrosis factor (TNF)-alpha promoter gene polymorphisms in relation to the HLA-DR locus in genetic predisposition to pemphigus. TNF-alpha gene polymorphisms in position -238 and -308 were identified using a modified polymerase chain reaction-restriction fragment length polymorphism method in 53 patients with pemphigus (38 with pemphigus vulgaris, 15 with pemphigus foliaceus) and 87 healthy controls. The HLA-DRB1 locus was typed using the polymerase chain reaction SSO method in all the patients and 152 population controls. Carriers of the TNF-alpha polymorphic -308 A allele were found to be more frequent in the pemphigus foliaceus group in comparison with the control group (odds ratio (OR) = 8.12; p = 0.0005). A significant association between HLA-DRB1*04 (OR = 3.86; pcor = 0.0001) and DRB1*14 (OR = 8.4; pcor = 0.0001) and pemphigus vulgaris was found. In this group of patients a decreased frequency of HLA-DRB1*07 (OR = 0.08; pcor = 0.006) was also identified. We have shown for the first time a positive association of TNF-alpha polymorphism in position -308 with pemphigus foliaceus.

  14. Association of VAMP5 and MCC genetic polymorphisms with increased risk of Hirschsprung disease susceptibility in Southern Chinese children.

    PubMed

    Zhao, Jinglu; Xie, Xiaoli; Yao, Yuxiao; He, Qiuming; Zhang, Ruizhong; Xia, Huimin; Zhang, Yan

    2018-04-25

    Hirschsprung disease (HSCR) is a genetic disorder characterized by the absence of neural crest cells in parts of the intestine. This study aims to investigate the association of vesicle-associated membrane protein 5 ( VAMP5 ) and mutated in colorectal cancer ( MCC ) genetic polymorphisms and their correlated risks with HSCR. We examined the association in four polymorphisms (rs10206961, rs1254900 and rs14242 in VAMP5 , rs11241200 in MCC ) and HSCR susceptibility in a Southern Chinese population composed of 1473 cases and 1469 controls. Two variants in VAMP5 were replicated as associated with HSCR. Interestingly, we clarified SNPs rs10206961 and rs1254900 in VAMP5 are more essential for patients with long-segment aganglionosis (LHSCR). Relatively high expression correlation was observed between VAMP5 and MCC using data from public database showing there may exist potential genetic interactions. SNP interaction was cross-examined by logistic regression and multifactor dimensionality reduction analysis revealing that VAMP5 rs1254900 and MCC rs11241200 were interacting significantly, thereby contributing to the risk of HSCR. The results suggest that significant associations of the rs10206961 and rs14242 in VAMP5 with an increased risk of HSCR in Southern Chinese, especially in LHSCR patients. This study provided new evidence of epistatic association of VAMP5 and MCC with increased risk of HSCR.

  15. Single-nucleotide polymorphisms in the SEPTIN12 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    PubMed

    Miyakawa, Hiroe; Miyamoto, Toshinobu; Koh, Eitetsu; Tsujimura, Akira; Miyagawa, Yasushi; Saijo, Yasuaki; Namiki, Mikio; Sengoku, Kazuo

    2012-01-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis, including human SEPTIN12, were identified by expression microarray analysis of human testicular tissue. Septin12 is a member of the septin family of conserved cytoskeletal GTPases that form heteropolymeric filamentous structures in interphase cells. It is expressed specifically in the testis. Therefore, we hypothesized that mutation or polymorphisms of SEPTIN12 participate in male infertility, especially Sertoli cell-only syndrome (SCOS). To investigate whether SEPTIN12 gene defects are associated with azoospermia caused by SCOS, mutational analysis was performed in 100 Japanese patients by direct sequencing of coding regions. Statistical analysis was performed in patients with SCOS and in 140 healthy control men. No mutations were found in SEPTIN12 ; however, 8 coding single-nucleotide polymorphisms (SNP1-SNP8) could be detected in the patients with SCOS. The genotype and allele frequencies in SNP3, SNP4, and SNP6 were notably higher in the SCOS group than in the control group (P < .001). These results suggest that SEPTIN12 might play a critical role in human spermatogenesis.

  16. Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.).

    PubMed

    Sun, Lidan; Zhang, Qixiang; Xu, Zongda; Yang, Weiru; Guo, Yu; Lu, Jiuxing; Pan, Huitang; Cheng, Tangren; Cai, Ming

    2013-10-06

    Mei (Prunus mume Sieb. et Zucc.) is a famous ornamental plant and fruit crop grown in East Asian countries. Limited genetic resources, especially molecular markers, have hindered the progress of mei breeding projects. Here, we performed low-depth whole-genome sequencing of Prunus mume 'Fenban' and Prunus mume 'Kouzi Yudie' to identify high-quality polymorphic markers between the two cultivars on a large scale. A total of 1464.1 Mb and 1422.1 Mb of 'Fenban' and 'Kouzi Yudie' sequencing data were uniquely mapped to the mei reference genome with about 6-fold coverage, respectively. We detected a large number of putative polymorphic markers from the 196.9 Mb of sequencing data shared by the two cultivars, which together contained 200,627 SNPs, 4,900 InDels, and 7,063 SSRs. Among these markers, 38,773 SNPs, 174 InDels, and 418 SSRs were distributed in the 22.4 Mb CDS region, and 63.0% of these marker-containing CDS sequences were assigned to GO terms. Subsequently, 670 selected SNPs were validated using an Agilent's SureSelect solution phase hybridization assay. A subset of 599 SNPs was used to assess the genetic similarity of a panel of mei germplasm samples and a plum (P. salicina) cultivar, producing a set of informative diversity data. We also analyzed the frequency and distribution of detected InDels and SSRs in mei genome and validated their usefulness as DNA markers. These markers were successfully amplified in the cultivars and in their segregating progeny. A large set of high-quality polymorphic SNPs, InDels, and SSRs were identified in parallel between 'Fenban' and 'Kouzi Yudie' using low-depth whole-genome sequencing. The study presents extensive data on these polymorphic markers, which can be useful for constructing high-resolution genetic maps, performing genome-wide association studies, and designing genomic selection strategies in mei.

  17. BDNF and TNF-α polymorphisms in memory.

    PubMed

    Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R

    2013-09-01

    Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.

  18. CYP1A1 and GSTM1 genetic polymorphisms in lung cancer populations exposed to arsenic in drinking water.

    PubMed

    Adonis, M; Martínez, V; Marín, P; Gil, L

    2005-05-01

    Region II of Chile is the most important copper mining area in the world and it shows the highest lung cancer mortality rate in the country (35/100,000). The population in Antofagasta, the main city of Region II, was exposed from 1958 to 1970 to 860 microg m(-3) arsenic (As) in drinking water and has currently been declining to 40 microg m(-3). Glutathione serves as a reducing agent and glutathione S-transferase (GST) may have an important role in As methylation capacity and body retention. In the current study, the null genotype of GSTM1 and the MspI polymorphism of CYP450 1A1 were investigated in lung cancer patients and in healthy volunteers of Region II. In males, the 2A genotype of MspI represented a highly significant estimated relative lung cancer risk (OR=2.60). Relative lung cancer risk for the combined 2A/null GSTM1 genotypes was 2.51, which increased with the smoking habit (OR=2.98). In Region II, the cancer mortality rate for As-associated cancers at least partly might be related to differences in As biotransformation. Genetic biomarkers such as 2A and GSTM1 polymorphisms in addition to DR70 as screening biomarkers might provide relevant information to identify individuals with a high risk for lung cancer as prevention and protection actions to protect public health.

  19. Genetic Diversity Analysis of Medicinally Important Horticultural Crop Aegle marmelos by ISSR Markers.

    PubMed

    Mujeeb, Farina; Bajpai, Preeti; Pathak, Neelam; Verma, Smita Rastogi

    2017-01-01

    Inter simple sequence repeat (ISSR) markers help in identifying and determining the extent of genetic diversity in cultivars. Here, we describe their application in determining the genetic diversity of bael (Aegle marmelos Corr.). Universal ISSR primers are selected and their marker characteristics such as polymorphism information content, effective multiplex ratio and marker index have been evaluated. ISSR-PCR is then performed using universal ISSR primers to generate polymorphic bands. This information is used to determine the degree of genetic similarity among the bael varieties/accessions by cluster analysis using unweighted pair-group method with arithmetic averages (UPGMA). This technology is valuable for biodiversity conservation and for making an efficient choice of parents in breeding programs.

  20. Genetic Alterations Affecting Cholesterol Metabolism and Human Fertility1

    PubMed Central

    DeAngelis, Anthony M.; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-01-01

    ABSTRACT Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. PMID:25122065

  1. Isolation and characterization of polymorphic microsatellite markers for blue fox (Alopex lagopus).

    PubMed

    Li, Y M; Guo, P C; Lu, J Y; Bai, C Y; Zhao, Z H; Yan, S Q

    2016-06-03

    The blue fox, belonging to the family Canidae, is a coat color variant of the native arctic fox (Alopex lagopus). To date, microsatellite loci in blue fox are typically amplified using canine simple sequence repeat primers. In the present study, we constructed an (AC)n enrichment library, and isolated and identified 17 polymorphic microsatellite markers for blue fox. The number of alleles per locus is from two to seven based on 24 examined individuals. The expected and observed heterozygosities were in the range of 0.3112 to 0.8236 and 0.2917 to 0.8750, respectively. The polymorphic information content per locus ranged from 0.2583 to 0.8022. These polymorphic markers can be useful for future population genetic studies of both farmed blue foxes and wild arctic foxes.

  2. Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting (Emberiza jankowskii)

    PubMed Central

    Li, Dan; Zhao, Yunjiao; Lin, Aiqing; Li, Shi; Feng, Jiang

    2017-01-01

    Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0

  3. The genetic validation of heterogeneity in schizophrenia.

    PubMed

    Tsutsumi, Atsushi; Glatt, Stephen J; Kanazawa, Tetsufumi; Kawashige, Seiya; Uenishi, Hiroyuki; Hokyo, Akira; Kaneko, Takao; Moritani, Makiko; Kikuyama, Hiroki; Koh, Jun; Matsumura, Hitoshi; Yoneda, Hiroshi

    2011-10-07

    Schizophrenia is a heritable disorder, however clear genetic architecture has not been detected. To overcome this state of uncertainty, the SZGene database has been established by including all published case-control genetic association studies appearing in peer-reviewed journals. In the current study, we aimed to determine if genetic variants strongly suggested by SZGene are associated with risk of schizophrenia in our case-control samples of Japanese ancestry. In addition, by employing the additive model for aggregating the effect of seven variants, we aimed to verify the genetic heterogeneity of schizophrenia diagnosed by an operative diagnostic manual, the DSM-IV. Each positively suggested genetic polymorphism was ranked according to its p-value, then the seven top-ranked variants (p < 0.0005) were selected from DRD2, DRD4, GRIN2B, TPH1, MTHFR, and DTNBP1 (February, 2007). 407 Schizophrenia cases and 384 controls participated in this study. To aggregate the vulnerability of the disorder based on the participants' genetic information, we calculated the "risk-index" by adding the number of genetic risk factors. No statistically significant deviation between cases and controls was observed in the genetic risk-index derived from all seven variants on the top-ranked polymorphisms. In fact, the average risk-index score in the schizophrenia group (6.5+/-1.57) was slightly lower than among controls (6.6+/-1.39). The current work illustrates the difficulty in identifying universal and definitive risk-conferring polymorphisms for schizophrenia. Our employed number of samples was small, so we can not preclude the possibility that some or all of these variants are minor risk factors for schizophrenia in the Japanese population. It is also important to aggregate the updated positive variants in the SZGene database when the replication work is conducted.

  4. Ancient Genetic Signatures of Orang Asli Revealed by Killer Immunoglobulin-Like Receptor Gene Polymorphisms

    PubMed Central

    NurWaliyuddin, Hanis Z. A.; Norazmi, Mohd N.; Edinur, Hisham A.; Chambers, Geoffrey K.; Panneerchelvam, Sundararajulu; Zafarina, Zainuddin

    2015-01-01

    The aboriginal populations of Peninsular Malaysia, also known as Orang Asli (OA), comprise three major groups; Semang, Senoi and Proto-Malays. Here, we analyzed for the first time KIR gene polymorphisms for 167 OA individuals, including those from four smallest OA subgroups (Che Wong, Orang Kanaq, Lanoh and Kensiu) using polymerase chain reaction-sequence specific primer (PCR-SSP) analyses. The observed distribution of KIR profiles of OA is heterogenous; Haplotype B is the most frequent in the Semang subgroups (especially Batek) while Haplotype A is the most common type in the Senoi. The Semang subgroups were clustered together with the Africans, Indians, Papuans and Australian Aborigines in a principal component analysis (PCA) plot and shared many common genotypes (AB6, BB71, BB73 and BB159) observed in these other populations. Given that these populations also display high frequencies of Haplotype B, it is interesting to speculate that Haplotype B may be generally more frequent in ancient populations. In contrast, the two Senoi subgroups, Che Wong and Semai are displaced toward Southeast Asian and African populations in the PCA scatter plot, respectively. Orang Kanaq, the smallest and the most endangered of all OA subgroups, has lost some degree of genetic variation, as shown by their relatively high frequency of the AB2 genotype (0.73) and a total absence of KIR2DL2 and KIR2DS2 genes. Orang Kanaq tradition that strictly prohibits intermarriage with outsiders seems to have posed a serious threat to their survival. This present survey is a demonstration of the value of KIR polymorphisms in elucidating genetic relationships among human populations. PMID:26565719

  5. Systematic review: genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases.

    PubMed

    Bek, S; Nielsen, J V; Bojesen, A B; Franke, A; Bank, S; Vogel, U; Andersen, V

    2016-09-01

    Personalised medicine, including biomarkers for treatment selection, may provide new algorithms for more effective treatment of patients. Genetic variation may impact drug response and genetic markers could help selecting the best treatment strategy for the individual patient. To identify polymorphisms and candidate genes from the literature that are associated with anti-tumour necrosis factor (TNF) treatment response in patients with inflammatory bowel diseases (IBD), Crohn's disease (CD) and ulcerative colitis. We performed a PubMed literature search and retrieved studies reporting original data on association between polymorphisms and anti-TNF treatment response and conducted a meta-analysis. A functional polymorphism in FCGR3A was significantly associated with anti-TNF treatment response among CD patients using biological response criterion (decrease in C-reactive protein, levels). Meta-analyses showed that polymorphisms in TLR2 (rs3804099, OR (95% CI) = 2.17 (1.35-3.47)], rs11938228 [OR = 0.64 (0.43-0.96)], TLR4 (rs5030728) [OR = 3.18 (1.63-6.21)], TLR9 (rs352139) [OR = 0.43 (0.21-0.88)], TNFRSF1A (rs4149570) [OR = 2.06 (1.02-4.17)], IFNG (rs2430561) [OR = 1.66 (1.05-2.63)], IL6 (rs10499563) [OR = 1.65 (1.04-2.63)] and IL1B (rs4848306) [OR = 1.88 (1.05-3.35)] were significantly associated with response among IBD patients using clinical response criteria. A positive predictive value of 0.96 was achieved by combining five genetic markers in an explorative analysis. There are no genetic markers currently available which are adequately predictive of anti-TNF response for use in the clinic. Genetic markers bear the advantage that they do not change over time. Therefore, hypothesis-free approaches, testing a large number of polymorphisms in large, well-characterised cohorts, are required in order to identify genetic profiles with larger effect sizes, which could be employed as biomarkers for treatment selection in clinical settings. © 2016 The Authors. Alimentary

  6. The KCNH2 genetic polymorphism (1956, C>T) is a novel biomarker that is associated with CCB and α,β-ADR blocker response in EH patients in China.

    PubMed

    He, Fazhong; Luo, Jianquan; Luo, Zhiying; Fan, Lan; He, Yijing; Zhu, Dingliang; Gao, Jinping; Deng, Sheng; Wang, Yan; Qian, Yuesheng; Zhou, Honghao; Chen, Xiaoping; Zhang, Wei

    2013-01-01

    KCNH2 (hERG) potassium channels have an integral role in regulating the excitability of smooth muscle cells. Some pathways driven by angiotensin II, nitric oxide and adrenergic receptors blocker are involved in modulating the properties of KCNH2 potassium channels. And these pathways are closely related to blood pressure regulation. Therefore, we hypothesized that KCNH2 genetic polymorphisms may affect blood pressure response to the antihypertensive drug therapies. To evaluate the interactions between KCNH2 genetic polymorphisms and individual blood pressure response to antihypertensive drugs, 370 subjects with essential hypertension (EH) were studied. In evaluating the interactions between KCNH2 genetic polymorphisms and drug response to blood pressure, multivariable ANOVA analysis followed by Bonferroni correction were carried out. There were statistically significant interactions between KCNH2 (1956, C>T) polymorphism and DBP change (P = 0.010), MAP change (P = 0.014) on azelnidipine or nitrendipine therapy patients at the end of 6 weeks. We found that the KCNH2 (1956,C>T) polymorphism was associated with the hypotensive effects of α,β-ADR blockers of DBP change at the end of 4 and 6 weeks' treatment in an age- and gender-dependent manner (P = 0.007 and 0.019, respectively). Similar results were also observed for changes in MAP at the end of 4 and 6 weeks (P-values were 0.035 and 0.078, respectively). While patients who received imidapril, candesartan and irbesartan therapy, no significant difference in drug response among KCNH2(1956,C>T) genotype was observed. We have reported for the first time that KCNH2 (1956, C>T) polymorphism is associated with efficacy of antihypertensive drugs CCBs and ADR blockers, and may serve as a novel biomarker for individualized therapy for certain antihypertensive drugs.

  7. Genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy population.

    PubMed

    Mehboob, Huma; Iqbal, Tahira; Jamil, Amer; Khaliq, Tanweer

    2016-05-01

    Inter individual variability in polymorphic UDP-glucuronosyltransferase (UGT2B15) has been associated with varied glucuronidation level. The present project was designed to determine the genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy (male=59 and female=50) population. The association between genotype (UGT2B15) and phenotype (paracetamol glucuronidation) has been evaluated. According to trimodal model, genotypes and phenotypes were categorized as fast, intermediate and slow glucuronidators. Presence of wild type allele illustrated a UGT2B15 genotype as fast glucuronidator. The glucuronidation status was investigated by HPLC analysis of paracetamol. Ratio of paracetamol glucuronide to paracetamol was determined with two antimodes at glucuronidation ratio of 0.3 and 1.8. In our study, 7% and 12% of population was distributed as slow glucuronidators by phenotype and genotype, respectively and association between phenotype and genotype was good for analysis of glucuronidation status as displayed by kappa value (0.792).

  8. Challenges of Identifying Clinically Actionable Genetic Variants for Precision Medicine

    PubMed Central

    2016-01-01

    Advances in genomic medicine have the potential to change the way we treat human disease, but translating these advances into reality for improving healthcare outcomes depends essentially on our ability to discover disease- and/or drug-associated clinically actionable genetic mutations. Integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a big data infrastructure can provide an efficient and effective way to identify clinically actionable genetic variants for personalized treatments and reduce healthcare costs. We review bioinformatics processing of next-generation sequencing (NGS) data, bioinformatics infrastructures for implementing precision medicine, and bioinformatics approaches for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs. PMID:27195526

  9. Gender-related associations of genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase and bradykinin B2 receptor with treadmill exercise test responses.

    PubMed

    Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José

    2014-01-01

    Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301-303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related.

  10. Gender-related associations of genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase and bradykinin B2 receptor with treadmill exercise test responses

    PubMed Central

    Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José

    2014-01-01

    Background Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. Methods We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301–303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Results Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). Conclusions The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests

  11. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis1[W][OPEN

    PubMed Central

    Verslues, Paul E.; Lasky, Jesse R.; Juenger, Thomas E.; Liu, Tzu-Wen; Kumar, M. Nagaraj

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods. PMID:24218491

  12. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    USGS Publications Warehouse

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  13. Genetic differences in ChTLR15 gene polymorphism and expression involved in Salmonella enterica natural and artificial infection respectively, of Chinese native chicken breeds, with a focus on sexual dimorphism.

    PubMed

    Hu, Y; Chen, W W; Liu, H X; Shan, Y J; Zhu, C H; Li, H F; Zou, J M

    2016-01-01

    Chicken Toll-like receptor 15 (ChTLR15) has been shown to participate in immune activation in response to various pathogens and in the innate defence against infection. Two genetically distinct Chinese breeds of chicken (Qinyuan Partridge and Baier breeds) were used to study the correlation between ChTLR15 single nucleotide polymorphisms and the natural infection status of salmonella in hens, and also to examine genetic and sex-specific effects on ChTLR15 mRNA expression in heterophils and spleen during acute infection with Salmonella enterica serovar Enteritidis (SE) from 1 to 10 days after experimental infection. Three single-nucleotide polymorphisms (G168A, C726T and A1166G) in a single exon of ChTLR15 were identified in the two breeds, but only C726T showed a significant association with salmonella infection. Compared with layer-type Baier chicks, meat-type Qingyuan chicks showed a higher tolerance for capture stress and (SE) infection, as measured, respectively, by the modified body weight of chicks in the control group and in the infection group. Meanwhile, ChTLR15 down-regulation in heterophils and up-regulation in spleen were involved in the response to pathogenic SE colonization during the acute infection period. These significant genetic effects in females led to greater differences in both innate and adaptive immune responses than those exhibited in males. These results suggest that genetics, time and gender play important roles in the modulation of ChTLR15 mRNA level elicited by the SE-mediated immune response differentially in the two genetically distinct breeds, with a focus on sexual dimorphism.

  14. Genetic association of angiogenesis- and hypoxia-related gene polymorphisms with osteonecrosis of the femoral head

    PubMed Central

    Hong, Jung Min; Kim, Tae-Ho; Kim, Hyun-Ju; Park, Eui-Kyun

    2010-01-01

    Multiple factors have been implicated in the development of osteonecrosis of the femoral head (ONFH). In particular, non-traumatic ONFH is directly or indirectly related to injury of the vascular supply to the femoral head. Thus, hypoxia in the femoral head caused by impaired blood flow may be an important risk factor for ONFH. In this study, we investigated whether genetic variations of angiogenesis- and hypoxia-related genes contribute to an increased risk for the development of ONFH. Candidate genes were selected based on known hypoxia and angiogenesis pathways. An association study was performed using an Affymetrix Targeted Genotyping 3K Chip array with 460 ONFH patients and 300 control subjects. We showed that single nucleotide polymorphisms (SNPs) in the genes TF, VEGFC, IGFBP3, and ACE were associated with an increased risk of ONFH. On the other hand, SNPs in the KDR and NRP1 genes were associated with protection against ONFH. The most important finding was that one SNP (rs2453839) in the IGFBP3 gene was significantly associated with a higher risk of ONFH (P = 0.0061, OR 7.74). In subgroup analysis, most candidate gene variations that were associated with ONFH occurred in the idiopathic subgroup. Among other SNPs, ACE SNPs were associated with steroid-induced ONFH (P = 0.0018-0.0037, OR > 3). Collectively, our findings suggest that genetic variations in angiogenesis- and hypoxia-related genes may help to identify susceptibility factors for the development of ONFH in the Korean population. PMID:20215856

  15. Pharmacogenetic association between GSTP1 genetic polymorphism and febrile neutropenia in Japanese patients with early breast cancer.

    PubMed

    Sugishita, Mihoko; Imai, Tsuneo; Kikumori, Toyone; Mitsuma, Ayako; Shimokata, Tomoya; Shibata, Takashi; Morita, Sachi; Inada-Inoue, Megumi; Sawaki, Masataka; Hasegawa, Yoshinori; Ando, Yuichi

    2016-03-01

    Genetic risk factors for febrile neutropenia (FN), the major adverse event of perioperative chemotherapy for early breast cancer, remain unclear. This study retrospectively explored pharmacogenetic associations of single nucleotide polymorphisms (SNPs) of the uridine glucuronosyltransferase 2B7 (UGT2B7, rs7668258), glutathione-S-transferase pi 1 (GSTP1, rs1695), and microcephalin 1 (MCPH1, rs2916733) genes with chemotherapy-related adverse events in 102 Japanese women who received epirubicin and cyclophosphamide as perioperative chemotherapy for early breast cancer. The allele frequencies for all of the SNPs were in concordance with the Hap-Map data of Japanese individuals. Among the 24 patients who had FN at least once during all courses of chemotherapy, 23 had the A/A genotype, and 1 had the A/G genotype of the GSTP1 polymorphism (rs1695, P = 0.001); 23 of the 70 patients with the A/A genotype had FN, as compared with only 1 of the 32 patients with the A/G and G/G genotypes. The genotype distributions of the UGT2B7 and MCPH1 polymorphisms did not differ between the patients who had FN or grade 3/4 neutropenia and those who did not. Among Japanese women who received epirubicin and cyclophosphamide as perioperative chemotherapy for early breast cancer, those with the A/A genotype of the GSTP1 polymorphism (rs1695) were more likely to have FN.

  16. Genetic contribution of catechol-O-methyltransferase polymorphism (Val158Met) in children with chronic tension-type headache.

    PubMed

    Fernández-de-las-Peñas, César; Ambite-Quesada, Silvia; Rivas-Martínez, Inés; Ortega-Santiago, Ricardo; de-la-Llave-Rincón, Ana Isabel; Fernández-Mayoralas, Daniel M; Pareja, Juan A

    2011-10-01

    Our aim was to investigate the relationship between Val158Met polymorphisms, headache, and pressure hypersensitivity in children with chronic tension-type headache (CTTH). A case-control study with blinded assessor was conducted. Seventy children with CTTH associated with pericranial tenderness and 70 healthy children participated. After amplifying Val158Met polymorphism by polymerase chain reactions, we assessed genotype frequencies and allele distributions. We classified children according to their Val158Met polymorphism: Val/Val, Val/Met, Met/Met. Pressure pain thresholds (PPT) were bilaterally assessed over the temporalis, upper trapezius, second metacarpal, and tibialis anterior muscles. The distribution of Val158Met genotypes was not significantly different (p = 0.335), between children with CTTH and healthy children, and between boys and girls (p = 0.872). Children with CTTH with the Met/Met genotype showed a longer headache history compared with those with Met/Val (p = 0.001) or Val/Val (p = 0.002) genotype. Children with CTTH with Met/Met genotype showed lower PPT over upper trapezius and temporalis muscles than children with CTTH with Met/Val or Val/Val genotype (p < 0.01). The Val158Met catechol-O-methyltransferase (COMT) polymorphism does not appear to be involved in predisposition to suffer from CTTH in children; nevertheless, this genetic factor may be involved in the phenotypic expression, as pressure hypersensitivity was greater in those CTTH children with the Met/Met genotype.

  17. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce

    PubMed Central

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444

  18. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus

    PubMed Central

    Mohamed, Zahurin; Abdullah, Nor Azizan; Haghvirdizadeh, Pantea; Haerian, Monir Sadat

    2015-01-01

    Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM. PMID:26448950

  19. Impact of cytokine genetic polymorphisms on the risk of renal parenchymal infection in children.

    PubMed

    Hussein, Almontaser; Askar, Eman; Badawy, Ahlam; Saad, Khaled; Zahran, Asmaa; Elderwy, Ahmad A

    2017-12-01

    Acute pyelonephritis is associated with renal scarring in up to 30% of patients. Renal scarring may cause significant long-term morbidity. The pathogenesis of acute pyelonephritis remains unclear, although it involves interaction among uroepithelium, the immune system cells, and the locally produced cytokines. That some UTI-prone children develop acute pyelonephritis, and eventually renal parenchymal scarring, suggests a genetic role. Interleukin-6, interleukin-8, chemokine receptor-1 (CXCR1), and tumor necrosis factor-alpha (TNFα), the key regulators of the host immune responses, are proteins whose secretion is controlled by genes. We postulated that functional polymorphic variants of their genes might have a role in APN susceptibility. We sought to investigate a possible association of the common functional polymorphisms in genes encoding IL-6, IL-8, CXCR1, and TNFα with the risk of APN in children. Urine culture was used to diagnose 300 children with UTI, of mean age of 51.31 ± 37.4 months (2-180 months). 99Tc-DMSA scans diagnosed 86 children with APN. Follow-up scans identified new renal scars in 18 children. Six functional single-nucleotide polymorphisms (SNPs) in genes encoding IL-6, IL-8, CXCR1, and TNFα were genotyped in all subjects (IL-6 rs1800795 (-174G/C), IL-6 rs1800796 (-572G/C), IL-8 rs2227306 (781C/T), IL8 rs4073 (-251A/T), CXCR1 rs2234671 (2607G/C), and TNFα rs1800629 (-308G/A)). TT genotype of IL-8 -251A/T polymorphism was significantly higher in APN patients (26.7%) than those with lower UTI (11.7%, p = 0.01) and control individuals (12.2%, p = 0.002). T allele was significantly more common in APN than in lower UTI (p = 0.025) and was significantly more common in APN (46%) than in the controls (p = 0.001). Similarly, TT genotype of IL-8 781C/T polymorphism was significantly more common in APN patients (31.4%) than those with lower UTI (17.3%, p = 0.003) and the controls (14.3%, p = 0.001). T allele was significantly more common

  20. Population genetic structure of rare and endangered plants using molecular markers

    USGS Publications Warehouse

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  1. MTLRP genetic polymorphism (214C>A) was associated with Type 2 diabetes in Caucasian population: a meta-analysis

    PubMed Central

    2014-01-01

    Background Previous studies reported the relation between MTLRP genetic polymorphism and type 2 diabetes, however, the conclusion were conflicting. In the present study, we performed a meta-analysis to reveal this association. Methods Literature retrieval, selection and assessment, data extraction, and meta-analyses were performed according to the RevMan 5.0 guidelines. In the meta-analysis, we utilized random-effect model or fixed-effect model to pool the Odds ratio (OR) according to the test of heterogeneity. Results A total of nine case–control studies included 4460 type 2 diabetes patients and 4114 healthy control subjects were analyzed. We did not found association between the MTLRP polymorphism and type 2 diabetes risk in the overall population (CC vs CA + AA: OR = 1.02; 95% CI: 0.89-1.17, P = 0.77; A vs C: OR = 1.02; 95% CI: 0.84-0.96, P = 0.62). However, in subgroup analyses stratified by ethnicity, we found significant association of MTLRP polymorphism with type 2 diabetes in Caucasians (CC vs CA + AA: OR = 1.27; 95% CI: 1.02-1.57, P = 0.03; A vs C: OR = 0.74, 95% CI: 0.60–0.91, P = 0.005). Conclusion The MTLRP polymorphism was associated with type 2 diabetes in Caucasians. PMID:25095788

  2. MTLRP genetic polymorphism (214C>A) was associated with Type 2 diabetes in Caucasian population: a meta-analysis.

    PubMed

    Chen, Li-Li; Han, Song-Mei; Tang, Fei-Fei; Li, Qiang

    2014-08-05

    Previous studies reported the relation between MTLRP genetic polymorphism and type 2 diabetes, however, the conclusion were conflicting. In the present study, we performed a meta-analysis to reveal this association. Literature retrieval, selection and assessment, data extraction, and meta-analyses were performed according to the RevMan 5.0 guidelines. In the meta-analysis, we utilized random-effect model or fixed-effect model to pool the Odds ratio (OR) according to the test of heterogeneity. A total of nine case-control studies included 4460 type 2 diabetes patients and 4114 healthy control subjects were analyzed. We did not found association between the MTLRP polymorphism and type 2 diabetes risk in the overall population (CC vs CA + AA: OR = 1.02; 95% CI: 0.89-1.17, P = 0.77; A vs C: OR = 1.02; 95% CI: 0.84-0.96, P = 0.62). However, in subgroup analyses stratified by ethnicity, we found significant association of MTLRP polymorphism with type 2 diabetes in Caucasians (CC vs CA + AA: OR = 1.27; 95% CI: 1.02-1.57, P = 0.03; A vs C: OR = 0.74, 95% CI: 0.60-0.91, P = 0.005). The MTLRP polymorphism was associated with type 2 diabetes in Caucasians.

  3. Genetic Polymorphisms Associated with Rubella Virus-Specific Cellular Immunity Following MMR Vaccination

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Lambert, Nathaniel D.; Pankratz, V. Shane; Poland, Gregory A.

    2014-01-01

    Rubella virus causes a relatively benign disease in most cases, although infection during pregnancy can result in serious birth defects. An effective vaccine has been available since the early 1970s and outbreaks typically do not occur among highly vaccinated (≥2 doses) populations. Nevertheless, considerable inter-individual variation in immune response to rubella immunization does exist, with single dose seroconversion rates ~95%. Understanding the mechanisms behind this variability may provide important insights into rubella immunity. In the current study, we examined associations between single nucleotide polymorphisms (SNPs) in selected cytokine, cytokine receptor, and innate/antiviral genes and immune responses following rubella vaccination in order to understand genetic influences on vaccine response. Our approach consisted of a discovery cohort of 887 subjects ages 11–22 at the time of enrollment and a replication cohort of 542 older adolescents and young adults (ages 18–40). Our data indicate that SNPs near the butyrophilin genes (BTN3A3/BTN2A1) and cytokine receptors (IL10RB/IFNAR1) are associated with variations in IFNγ secretion and that multiple SNPs in the PVR gene, as well as SNPs located in the ADAR gene, exhibit significant associations with rubella virus-specific IL-6 secretion. This information may be useful, not only in furthering our understanding immune responses to rubella vaccine, but also in identifying key pathways for targeted adjuvant use to boost immunity in those with weak or absent immunity following vaccination. PMID:25098560

  4. Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination.

    PubMed

    Kennedy, Richard B; Ovsyannikova, Inna G; Haralambieva, Iana H; Lambert, Nathaniel D; Pankratz, V Shane; Poland, Gregory A

    2014-11-01

    Rubella virus causes a relatively benign disease in most cases, although infection during pregnancy can result in serious birth defects. An effective vaccine has been available since the early 1970s and outbreaks typically do not occur among highly vaccinated (≥2 doses) populations. Nevertheless, considerable inter-individual variation in immune response to rubella immunization does exist, with single-dose seroconversion rates ~95 %. Understanding the mechanisms behind this variability may provide important insights into rubella immunity. In the current study, we examined associations between single nucleotide polymorphisms (SNPs) in selected cytokine, cytokine receptor, and innate/antiviral genes and immune responses following rubella vaccination in order to understand genetic influences on vaccine response. Our approach consisted of a discovery cohort of 887 subjects aged 11-22 at the time of enrollment and a replication cohort of 542 older adolescents and young adults (age 18-40). Our data indicate that SNPs near the butyrophilin genes (BTN3A3/BTN2A1) and cytokine receptors (IL10RB/IFNAR1) are associated with variations in IFNγ secretion and that multiple SNPs in the PVR gene, as well as SNPs located in the ADAR gene, exhibit significant associations with rubella virus-specific IL-6 secretion. This information may be useful, not only in furthering our understanding immune responses to rubella vaccine, but also in identifying key pathways for targeted adjuvant use to boost immunity in those with weak or absent immunity following vaccination.

  5. A Polymorphic p53 Response Element in KIT Ligand Influences Cancer Risk and Has Undergone Natural Selection

    PubMed Central

    Zeron-Medina, Jorge; Wang, Xuting; Repapi, Emmanouela; Campbell, Michelle R.; Su, Dan; Castro-Giner, Francesc; Davies, Benjamin; Peterse, Elisabeth F.P.; Sacilotto, Natalia; Walker, Graeme J.; Terzian, Tamara; Tomlinson, Ian P.; Box, Neil F.; Meinshausen, Nicolai; De Val, Sarah; Bell, Douglas A.; Bond, Gareth L.

    2014-01-01

    SUMMARY The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans. PMID:24120139

  6. Interaction of soy food and tea consumption with CYP19A1 genetic polymorphisms in the development of endometrial cancer.

    PubMed

    Xu, Wang Hong; Dai, Qi; Xiang, Yong Bing; Long, Ji Rong; Ruan, Zhi Xian; Cheng, Jia Rong; Zheng, Wei; Shu, Xiao Ou

    2007-12-15

    Certain polyphenols inhibit the activity of aromatase, a critical enzyme in estrogen synthesis that is coded by the CYP19A1 gene. Consumption of polyphenol-rich foods and beverages, thus, may interact with CYP19A1 genetic polymorphisms in the development of endometrial cancer. The authors tested this hypothesis in the Shanghai Endometrial Cancer Study (1997-2003), a population-based case-control study of 1,204 endometrial cancer cases and 1,212 controls. Dietary information was obtained by use of a validated food frequency questionnaire. Genotypes of CYP19A1 at rs28566535, rs1065779, rs752760, rs700519, and rs1870050 were available for 1,042 cases and 1,035 controls. Unconditional logistic regression models were used to calculate odds ratios and their 95% confidence intervals after adjustment for potential confounding factors. Higher intake of soy foods and tea consumption were both inversely associated with the risk of endometrial cancer, with odds ratios of 0.8 (95% confidence interval: 0.6, 1.0) for the highest versus the lowest tertiles of intake of soy and 0.8 (95% confidence interval: 06, 0.9) for ever tea consumption. The association of single nucleotide polymorphisms rs1065779, rs752760, and rs1870050 with endometrial cancer was modified by tea consumption (p(interaction) < 0.05) but not by soy isoflavone intake. The authors' findings suggest that tea polyphenols may modify the effect of CYP19A1 genetic polymorphisms on the development of endometrial cancer.

  7. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: Application for diagnosis, genetic counseling, and therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiort, O.; Huang, Q.; Sinnecker, G.H.G.

    Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis andmore » direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.« less

  8. Human Alu insertion polymorphisms in North African populations.

    PubMed

    Cherni, Loth; Frigi, Sabeh; Ennafaa, Hajer; Mtiraoui, Nabil; Mahjoub, Touhami; Benammar-Elgaaied, Amel

    2011-10-01

    Several features make Alu insertions a powerful tool used in population genetic studies: the polymorphic nature of many Alu insertions, the stability of an Alu insertion event and, furthermore, the ancestral state of an Alu insertion is known to be the absence of the Alu element at a particular locus and the presence of an Alu insertion at the site that forward mutational change. This study analyses seven Alu insertion polymorphisms in a sample of 297 individuals from the autochthonous population of Tunisia (Thala, Smar, Zarzis, and Bou Salem) and Libya with the aim of studying their genetic structure with respect to the populations of North Africa, Western, Eastern and Central Europe. The comparative analyses carried out using the MDS and AMOVA methods reveal the existence of spatial heterogeneity, and identify four population groups. Study populations (Libya, Smar, Zarzis, and Bou Salem) are closest to North African populations whereas Thala is isolated and is closest to Western European populations. In conclusion, Results of the present study support the important role that migratory movements have played in the North African gene pool, at least since the Neolithic period.

  9. The 894G>T endothelial nitric oxide synthase genetic polymorphism affects hemodynamic responses to mental stress performed before and after exercise.

    PubMed

    Rocha, Natália Galito; Neves, Fabricia Junqueira; Silva, Bruno Moreira; Sales, Allan Robson Kluser; Nóbrega, Antonio Claudio

    2012-03-01

    Nitric oxide is the primary mediator of vasodilation during mental stress. Since genetic polymorphisms in the nitric oxide synthase (eNOS) gene seem to impair the production of NO, this study aimed to evaluate the effect of an exercise bout on hemodynamic responses to mental stress in subjects with the 894G>T polymorphism of eNOS. Subjects without (wild-type group; n = 16) or with (polymorphic-type group; n = 19) the 894G>T polymorphism underwent a mental stress challenge before and after a maximal cardiopulmonary exercise test. Blood pressure was measured by auscultation and forearm blood flow by venous occlusion plethysmography. The groups were similar regarding anthropometric, metabolic, resting blood pressure and exercise variables. Before exercise, systolic blood pressure response during mental stress was higher in the polymorphic-type group (∆wild-type: 8.0 ± 2.0% vs. ∆polymorphic-type: 12.5 ± 1.8%, P = 0.01), while the increase in forearm vascular conductance was similar between the groups (∆wild-type 90.8 ± 26.4% vs. ∆polymorphic-type: 86.3 ± 24.1%, P = 0.44). After exercise, the systolic blood pressure at baseline and during mental stress was lower than before exercise in the whole group (P < 0.05), but the pressure response during mental stress was still higher in the polymorphic-type group (∆wild-type: 5.8 ± 1.5% vs. ∆polymorphic-type: 10.2 ± 1.4%, P = 0.01). The increase in forearm vascular conductance was inhibited only in the polymorphic-type group (∆before exercise 86.3 ± 24.1% vs. ∆after exercise: 41.5 ± 12.6%, P = 0.04). In conclusion, these results suggest the 894G>T eNOS polymorphism is associated with altered hemodynamic responses to mental stress both before and after a single bout of dynamic exercise with potential clinical implications.

  10. Deep Resequencing Unveils Genetic Architecture of ADIPOQ and Identifies a Novel Low-Frequency Variant Strongly Associated With Adiponectin Variation

    PubMed Central

    Warren, Liling L.; Li, Li; Nelson, Matthew R.; Ehm, Margaret G.; Shen, Judong; Fraser, Dana J.; Aponte, Jennifer L.; Nangle, Keith L.; Slater, Andrew J.; Woollard, Peter M.; Hall, Matt D.; Topp, Simon D.; Yuan, Xin; Cardon, Lon R.; Chissoe, Stephanie L.; Mooser, Vincent; Morris, Andrew D.; Palmer, Colin N.A.; Perry, John R.; Frayling, Timothy M.; Whittaker, John C.; Waterworth, Dawn M.

    2012-01-01

    Increased adiponectin levels have been shown to be associated with a lower risk of type 2 diabetes. To understand the relations between genetic variation at the adiponectin-encoding gene, ADIPOQ, and adiponectin levels, and subsequently its role in disease, we conducted a deep resequencing experiment of ADIPOQ in 14,002 subjects, including 12,514 Europeans, 594 African Americans, and 567 Indian Asians. We identified 296 single nucleotide polymorphisms (SNPs), including 30 amino acid changes, and carried out association analyses in a subset of 3,665 subjects from two independent studies. We confirmed multiple genome-wide association study findings and identified a novel association between a low-frequency SNP (rs17366653) and adiponectin levels (P = 2.2E–17). We show that seven SNPs exert independent effects on adiponectin levels. Together, they explained 6% of adiponectin variation in our samples. We subsequently assessed association between these SNPs and type 2 diabetes in the Genetics of Diabetes Audit and Research in Tayside Scotland (GO-DARTS) study, comprised of 5,145 case and 6,374 control subjects. No evidence of association with type 2 diabetes was found, but we were also unable to exclude the possibility of substantial effects (e.g., odds ratio 95% CI for rs7366653 [0.91–1.58]). Further investigation by large-scale and well-powered Mendelian randomization studies is warranted. PMID:22403302

  11. A pilot genetic study of the continuum between compulsivity and impulsivity in females: the serotonin transporter promoter polymorphism.

    PubMed

    Baca-García, Enrique; Salgado, Beatríz Rodríguez; Segal, Helen Dolengevich; Lorenzo, Concepción Vaquero; Acosta, Mercedes Navio; Romero, Manuel Arrojo; Hernández, Montserrat Díaz; Saiz-Ruiz, Jeronimo; Fernandez Piqueras, Jose; de Leon, Jose

    2005-06-01

    According to some authors the obsessive-compulsive (OC) spectrum includes on one extreme, the Obsessive-Compulsive Disorder (OCD) and on the other extreme the most impulsive behaviors. This is a controversial idea and other authors define the OC spectrum in different ways. The serotonin transporter (5-HTT) gene is one of the main genes that control serotonergic function. A polymorphism in the promoter area of this gene classifies subjects with low expression as S individuals (s/s or s/l) and subjects with high expression as L individuals (l/l). This polymorphism was studied in female OCD patients (n = 24), non-impulsive controls (n = 112) and impulsive suicidal patients (n = 118) to support the OC spectrum hypothesis from a genetic perspective. A linear association exists among the serotonin transporter promoter functional genotypes (S versus L individuals) (chi2 linear by linear association = 8.9; df = 1; p = 0.003). The frequency of S individuals (s/l or s/s) was lowest in OCD (54%, 13/24); intermediate in non-impulsive controls (71%, 80/112) and highest in impulsive suicide attempters (82%, 96/117). More importantly, future studies need to consider that genetics may be related to behavioral dimensions (compulsivity to impulsivity) instead of to specific psychiatric disorders defined in clinical terms.

  12. Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients

    PubMed Central

    2012-01-01

    Background The enzymes of the cytochrome P450 family (CYPs) play an important role in the metabolism of a great variety of anticancer agents; therefore, polymorphisms in genes encoding for metabolizing enzymes and drugs transporters can affect drug efficacy and toxicity. Methods The genetic polymorphisms of cytochrome P450 were studied in 395 patients with breast cancer by RLFP analysis. Results Here, we studied the association of functionally significant variant alleles of CYP3A4, CYP3A5, CYP2B6, CYP2C8, CYP2C9 and CYP2C19 with the clinical response to neoadjuvant chemotherapy in breast cancer patients. A significant correlation was observed between the CYP2C9*2 polymorphism and chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91), as well as between CYP2C9*2 heterozygotes and chemotherapy resistance in women with nodal forms of breast cancer and a cancer hereditary load (OR = 15.50; CI 95% = 1.08 – 826.12) when the potential combined effects were examined. No significant association between chemotherapy resistance and the other examined genotypes and the potential combined clinical and tumour-related parameters were discovered. Conclusion In conclusion, CYP2C9*2 was associated with neoadjuvant chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91) in the population of interest. PMID:22702493

  13. Adaptive Role of Inversion Polymorphism of Drosophila subobscura in Lead Stressed Environment

    PubMed Central

    Kenig, Bojan; Kurbalija Novičić, Zorana; Patenković, Aleksandra; Stamenković-Radak, Marina; Anđelković, Marko

    2015-01-01

    Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations. PMID:26102201

  14. Adaptive Role of Inversion Polymorphism of Drosophila subobscura in Lead Stressed Environment.

    PubMed

    Kenig, Bojan; Kurbalija Novičić, Zorana; Patenković, Aleksandra; Stamenković-Radak, Marina; Anđelković, Marko

    2015-01-01

    Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations.

  15. Single nucleotide polymorphisms associated with coronary heart disease predict incident ischemic stroke in the atherosclerosis risk in communities study.

    PubMed

    Morrison, Alanna C; Bare, Lance A; Luke, May M; Pankow, James S; Mosley, Thomas H; Devlin, James J; Willerson, James T; Boerwinkle, Eric

    2008-01-01

    Ischemic stroke and coronary heart disease (CHD) may share genetic factors contributing to a common etiology. This study investigates whether 51 single nucleotide polymorphisms (SNPs) associated with CHD in multiple antecedent studies are associated with incident ischemic stroke in the Atherosclerosis Risk in Communities (ARIC) study. From the multiethnic ARIC cohort of 14,215 individuals, 495 validated ischemic strokes were identified. Cox proportional hazards models, adjusted for age and gender, identified three SNPs in Whites and two SNPs in Blacks associated with incident stroke (p polymorphism in SERPINA9 was associated with incident stroke in Whites and Blacks, even after taking into account traditional risk factors. The idea that ischemic stroke and CHD may share some common genetic factors, such as variation in SERPINA9, should be investigated in other studies. Copyright 2008 S. Karger AG, Basel.

  16. Exploiting the extraordinary genetic polymorphism of ciona for developmental genetics with whole genome sequencing.

    PubMed

    Abdul-Wajid, Sarah; Veeman, Michael T; Chiba, Shota; Turner, Thomas L; Smith, William C

    2014-05-01

    Studies in tunicates such as Ciona have revealed new insights into the evolutionary origins of chordate development. Ciona populations are characterized by high levels of natural genetic variation, between 1 and 5%. This variation has provided abundant material for forward genetic studies. In the current study, we make use of deep sequencing and homozygosity mapping to map spontaneous mutations in outbred populations. With this method we have mapped two spontaneous developmental mutants. In Ciona intestinalis we mapped a short-tail mutation with strong phenotypic similarity to a previously identified mutant in the related species Ciona savignyi. Our bioinformatic approach mapped the mutation to a narrow interval containing a single mutated gene, α-laminin3,4,5, which is the gene previously implicated in C. savignyi. In addition, we mapped a novel genetic mutation disrupting neural tube closure in C. savignyi to a T-type Ca(2+) channel gene. The high efficiency and unprecedented mapping resolution of our study is a powerful advantage for developmental genetics in Ciona, and may find application in other outbred species.

  17. [Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP].

    PubMed

    Chen, Rong; Wang, Xiao-Yun; Song, Yu-Ning; Zhu, Yun-feng; Wang, Peng-liang; Li, Min; Zhong, Guo-Yue

    2014-12-01

    In order to reveal genetic diversity of domestic Andrographis paniculata and its impact on quality, genetic backgrounds of 103 samples from 7 provinces in China were analyzed using SRAP marker and SNP marker. Genetic structures of the A. paniculata populations were estimated with Powermarker V 3.25 and Mega 6.0 software, and polymorphic SNPs were identified with CodonCode Aligner software. The results showed that the genetic distances of domestic A. paniculata germplasm ranged from 0. 01 to 0.09, and no polymorphic SNPs were discovered in coding sequence fragments of ent-copalyl diphosphate synthase. A. paniculata germplasm from various regions in China had poor genetic diversity. This phenomenon was closely related to strict self-fertilization and earlier introduction from the same origin. Therefore, genetic background had little impact on variable qualities of A. paniculata in domestic market. Mutation breeding, polyploid breeding and molecular breeding were proposed as promising strategies in germplasm innovation.

  18. Polymorphism and haplotype analyses of swine leukocyte antigen DQA exons 2, 3, 4, and their associations with piglet diarrhea in Chinese native pig.

    PubMed

    Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B

    2015-09-08

    In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding.

  19. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America

    PubMed Central

    2011-01-01

    Background In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence

  20. Genetic polymorphisms of cytokine genes in type 2 diabetes mellitus

    PubMed Central

    Banerjee, Monisha; Saxena, Madhukar

    2014-01-01

    Diabetes mellitus is a combined metabolic disorder which includes hyperglycemia, dyslipidemia, stroke and several other complications. Various groups all over the world are relentlessly working out the possible role of a vast number of genes associated with type 2 diabetes (T2DM). Inflammation is an important outcome of any kind of imbalance in the body and is therefore an indicator of several diseases, including T2DM. Various ethnic populations around the world show different levels of variations in single nucleotide polymorphisms (SNPs). The present review was undertaken to explore the association of cytokine gene polymorphisms with T2DM in populations of different ethnicities. This will lead to the understanding of the role of cytokine genes in T2DM risk and development. Association studies of genotypes of SNPs present in cytokine genes will help to identify risk haplotype(s) for disease susceptibility by developing prognostic markers and alter treatment strategies for T2DM and related complications. This will enable individuals at risk to take prior precautionary measures and avoid or delay the onset of the disease. Future challenges will be to understand the genotypic interactions between SNPs in one cytokine gene or several genes at different loci and study their association with T2DM. PMID:25126395

  1. Music genetics research: Association with musicality of a polymorphism in the AVPR1A gene.

    PubMed

    Mariath, Luiza Monteavaro; Silva, Alexandre Mauat da; Kowalski, Thayne Woycinck; Gattino, Gustavo Schulz; Araujo, Gustavo Andrade de; Figueiredo, Felipe Grahl; Tagliani-Ribeiro, Alice; Roman, Tatiana; Vianna, Fernanda Sales Luiz; Schuler-Faccini, Lavínia; Schuch, Jaqueline Bohrer

    2017-01-01

    Musicality is defined as a natural tendency, sensibility, knowledge, or talent to create, perceive, and play music. Musical abilities involve a great range of social and cognitive behaviors, which are influenced by both environmental and genetic factors. Although a number of studies have yielded insights into music genetics research, genes and biological pathways related to these traits are not fully understood. Our hypothesis in the current study is that genes associated with different behaviors could also influence the musical phenotype. Our aim was to investigate whether polymorphisms in six genes (AVPR1A, SLC6A4, ITGB3, COMT, DRD2 and DRD4) related to social and cognitive traits are associated with musicality in a sample of children. Musicality was assessed through an individualized music therapy assessment profile (IMTAP) which has been validated in Brazil to measure musical ability. We show here that the RS1 microsatellite of the AVPR1A gene is nominally associated with musicality, corroborating previous results linking AVPR1A with musical activity. This study is one of the first to investigate musicality in a comprehensive way, and it contributes to better understand the genetic basis underlying musical ability.

  2. Music genetics research: Association with musicality of a polymorphism in the AVPR1A gene

    PubMed Central

    Mariath, Luiza Monteavaro; da Silva, Alexandre Mauat; Kowalski, Thayne Woycinck; Gattino, Gustavo Schulz; de Araujo, Gustavo Andrade; Figueiredo, Felipe Grahl; Tagliani-Ribeiro, Alice; Roman, Tatiana; Vianna, Fernanda Sales Luiz; Schuler-Faccini, Lavínia; Schuch, Jaqueline Bohrer

    2017-01-01

    Abstract Musicality is defined as a natural tendency, sensibility, knowledge, or talent to create, perceive, and play music. Musical abilities involve a great range of social and cognitive behaviors, which are influenced by both environmental and genetic factors. Although a number of studies have yielded insights into music genetics research, genes and biological pathways related to these traits are not fully understood. Our hypothesis in the current study is that genes associated with different behaviors could also influence the musical phenotype. Our aim was to investigate whether polymorphisms in six genes (AVPR1A, SLC6A4, ITGB3, COMT, DRD2 and DRD4) related to social and cognitive traits are associated with musicality in a sample of children. Musicality was assessed through an individualized music therapy assessment profile (IMTAP) which has been validated in Brazil to measure musical ability. We show here that the RS1 microsatellite of the AVPR1A gene is nominally associated with musicality, corroborating previous results linking AVPR1A with musical activity. This study is one of the first to investigate musicality in a comprehensive way, and it contributes to better understand the genetic basis underlying musical ability. PMID:28534928

  3. GTP cyclohydrolase I gene polymorphisms are associated with endothelial dysfunction and oxidative stress in patients with type 2 diabetes mellitus.

    PubMed

    Wolkow, Pawel P; Kosiniak-Kamysz, Wladyslaw; Osmenda, Grzegorz; Wilk, Grzegorz; Bujak-Gizycka, Beata; Ignacak, Adam; Kanitkar, Mihir; Walus-Miarka, Malgorzata; Harrison, David G; Korbut, Ryszard; Malecki, Maciej T; Guzik, Tomasz J

    2014-01-01

    The genetic background of atherosclerosis in type 2 diabetes mellitus (T2DM) is complex and poorly understood. Studying genetic components of intermediate phenotypes, such as endothelial dysfunction and oxidative stress, may aid in identifying novel genetic components for atherosclerosis in diabetic patients. Five polymorphisms forming two haplotype blocks within the GTP cyclohydrolase 1 gene, encoding a rate limiting enzyme in tetrahydrobiopterin synthesis, were studied in the context of flow and nitroglycerin mediated dilation (FMD and NMD), intima-media thickness (IMT), and plasma concentrations of von Willebrand factor (vWF) and malondialdehyde (MDA). Rs841 was associated with FMD (p = 0.01), while polymorphisms Rs10483639, Rs841, Rs3783641 (which form a single haplotype) were associated with both MDA (p = 0.012, p = 0.0015 and p = 0.003, respectively) and vWF concentrations (p = 0.016, p = 0.03 and p = 0.045, respectively). In addition, polymorphism Rs8007267 was also associated with MDA (p = 0.006). Haplotype analysis confirmed the association of both haplotypes with studied variables. Genetic variation of the GCH1 gene is associated with endothelial dysfunction and oxidative stress in T2DM patients.

  4. Population genetic analysis of insertion-deletion polymorphisms in a Brazilian population using the Investigator DIPplex kit.

    PubMed

    Ferreira Palha, Teresinha de Jesus Brabo; Ribeiro Rodrigues, Elzemar Martins; Cavalcante, Giovanna Chaves; Marrero, Andrea; de Souza, Ilíada Rainha; Seki Uehara, Clineu Julien; Silveira da Motta, Carlos Henrique Ares; Koshikene, Daniela; da Silva, Dayse Aparecida; de Carvalho, Elizeu Fagundes; Chemale, Gustavo; Freitas, Jorge M; Alexandre, Lídia; Paranaiba, Renato T F; Soler, Mirella Perruccio; Santos, Sidney

    2015-11-01

    The aim of this study was to estimate the diversity of 30 insertion/deletion (INDEL) markers (Investigator(®) DIPplex kit) in a sample of 519 individuals from six Brazilian states and to evaluate their applicability in forensic genetics. All INDEL markers were found to be highly polymorphic in the Brazilian population and were in Hardy-Weinberg equilibrium. To determine their forensic suitability in the Brazilian population, the markers were evaluated for discrimination power, match probability and exclusion power. The combined discrimination power (CDP), combined match power (CMP) and combined power of exclusion (CPE) were higher than 0.999999, 3.4 × 10(-13) and 0.9973, respectively. Further comparison of 29 worldwide populations revealed significant genetic differences between continental populations and a closer relationship between the Brazilian and European populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. MTHFR genetic polymorphisms may contribute to the risk of chronic myelogenous leukemia in adults: a meta-analysis of 12 genetic association studies.

    PubMed

    Li, Bin; Zhang, Jian; Wang, Lei; Li, Yan; Jin, Juping; Ai, Limei; Li, Chong; Li, Zhe; Mao, Shudan

    2014-05-01

    Chronic myelogenous leukemia (CML) is a complex disease with a genetic basis. The genetic association studies (GASs) that have investigated the association between adult CML and 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms have produced contradictory and inconclusive results. The aim of this meta-analysis is to provide a relatively comprehensive assessment of the association of these polymorphisms with adult CML risk. A literature search for eligible GAS published before September 15, 2013 was conducted in PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases. Pooled odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs) were used to evaluate the strength of the association under a fixed or random effect model according to heterogeneity test results. All analyses were performed using the Stata software, version 12.0. Twelve case-control studies were included in this meta-analysis with a total of 932 CML patients and 3,465 healthy controls. For MTHFR C677T (dbSNP: rs1801133, C>T), though the pooled ORs were not significant in the overall population, all the ORs greater than 1 suggested an increased risk of CML for carriers of the risk allele. However, stratified analysis based on genotyping method revealed a significant association in the PCR-restriction fragment length polymorphism (RFLP) subgroup, possibly as a result of heterogeneity. For MTHFR A1298C (dbSNP: rs1801131, A>C), the combined results showed that carriers of the C allele may be associated with a decreased risk of adult CML. Stratified analysis showed that the magnitude of this effect was especially significant among Asians, indicating ethnicity differences in adult CML susceptibility. This meta-analysis shows that the C allele of MTHFR A1298C may be associated with a decreased risk in adult CML, especially among Asians, while MTHFR C677T may not be associated with adult CML risk. However

  6. The interactions among organophosphate pesticide exposure, oxidative stress, and genetic polymorphisms of dopamine receptor D4 increase the risk of attention deficit/hyperactivity disorder in children.

    PubMed

    Chang, Chia-Huang; Yu, Ching-Jung; Du, Jung-Chieh; Chiou, Hsien-Chih; Chen, Hsin-Chang; Yang, Winnie; Chung, Ming-Yi; Chen, Ying-Sheue; Hwang, Betau; Mao, I-Fang; Chen, Mei-Lien

    2018-01-01

    The aim of this study was to clarify the association between organophosphate pesticides (OPs) and attention-deficit/hyperactivity disorder (ADHD) related to oxidative stress and genetic polymorphisms. This case-control study enrolled 93 children with ADHD and 112 control children in north Taiwan. Six dialkyl phosphate (DAP) metabolites of OPs and oxidative stress biomarkers were analyzed. Polymorphisms of the dopamine receptor D4 gene (DRD4) were identified. Children with ADHD had significantly higher dimethylphosphate (DMP, 236.69nmol/g cre. vs. 186.84nmol/g cre., p value = 0.01) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA, 28.95µg/g cre. vs. 16.55µg/g cre., p value<0.01) concentrations than control children. Children who carried DRD4 GA/AA genotypes (rs752306) were less likely than those who carried the DRD4 GG genotype to have ADHD (odds ratio [OR]: 0.45, 95% CI: 0.24-0.84). The estimated value of the AP (attributable proportion due to interaction) was 0.59 (95% CI: 0.13-1.05), indicating that 59% of ADHD cases in DMP-exposed children with the DRD4 GG genotype were due to the gene-environment interaction. After adjustment for other covariates, children who carried the DRD4 GG genotype, had been exposed to high DMP levels (more than the median), and had high HNE-MA levels had a significantly increased risk for developing ADHD (OR = 11.74, 95% CI: 2.12-65.04). This study indicated a gene-environment interaction in the risk of ADHD in children. The association between DMP and ADHD in children might relate to the mechanism of lipid peroxidation. Dose-response relationships and the combined effects of OPs, oxidative stress, and genetic polymorphism on ADHD should not be neglected. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Genetic predisposition toward suicidal ideation in patients with acute coronary syndrome.

    PubMed

    Kang, Hee-Ju; Bae, Kyung-Yeol; Kim, Sung-Wan; Shin, Il-Seon; Hong, Young Joon; Ahn, Youngkeun; Jeong, Myung Ho; Yoon, Jin-Sang; Kim, Jae-Min

    2017-11-07

    The genetic predisposition toward suicidal ideation has been explored to identify subgroups at high risk and to prevent suicide. Acute coronary syndrome (ACS) is associated with an increased risk of suicide, but few studies have explored the genetic predisposition toward suicide in ACS populations. Therefore, this longitudinal study explored the genetic predisposition toward suicidal ideation in ACS patients. In total, of 969 patients within 2 weeks after ACS, 711 were followed at 1 year after ACS. Suicidal ideation was evaluated with the relevant items on the Montgomery-Åsberg Depression Rating Scale. Ten genetic polymorphisms associated with serotonergic systems, neurotrophic factors, carbon metabolism, and inflammatory cytokines were examined. Associations between genetic polymorphisms and suicidal ideation within 2 weeks and 1 year of ACS were investigated using logistic regression models. The 5-HTTLPR s allele was significantly associated with suicidal ideation within 2 weeks of ACS after adjusting for covariates and after the Bonferroni correction. TNF-α -308 G/A , IL-1β -511 C/T , and IL-1β + 3953C/T were significantly associated with suicidal ideation within 2 weeks after ACS, but these associations did not reach significance after the Bonferroni correction in unadjusted analyses and after adjusting for covariance. However, no significant association between genetic polymorphisms and suicidal ideation was found at 1 year. Genetic predisposition, 5-HTTLPR s allele in particular, may confer susceptibility to suicidal ideation in ACS patients during the acute phase of ACS.

  8. Interleukin gene polymorphisms in Chinese Han population with breast cancer, a case-control study.

    PubMed

    Zuo, Xiaoxiao; Li, Miao; Yang, Ya; Liang, Tiansong; Yang, Hongyao; Zhao, Xinhan; Yang, Daoke

    2018-04-06

    Cytokines are known as important regulators of the cancer involved in inflammatory and immunological responses. This fact and plethora of gene polymorphism data prompted us to investigate IL1 gene polymorphisms in breast cancer (BC) patients. Totally, 530 patients with BC and 628 healthy control women were studied. The genetic polymorphisms for IL1 were analyzed by Massarray Sequencing method. Three single nucleotide polymorphisms (SNPs) identified in IL1B, IL1R1 gene are thought to influence breast cancer risk. The results of the association between IL-1B, IL1R1 polymorphisms and breast cancer risk have significant. We found that the variant TT genotype of rs10490571 was associated with a significantly increased breast cancer risk (TT vs. CC: OR = 2.82, 95% CI = 1.12-7.08, P = 0.047 for the codominant model). For rs16944 (AG vs. GG: OR = 0.60, 95% CI = 0.41-0.90, P = 0.034 for the codominant model) and rs1143623 (CG vs. CC: OR = 0.65, 95% CI = 0.45-0.94, P = 0.023 for the codominant model) have significant associations were found in genetic models. In conclusion, the present analysis suggests a correlation of polymorphic markers within the IL-1 gene locus with the risk in developing breast cancer. Taken together with our finding that IL1B, IL1R1 gene three SNP are also associated with the risk for the disease, we suggest that inflammation via innate and adaptive immunity contributes to multifactorial hereditary predisposition to pathogenesis of the breast cancer.

  9. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy.

    PubMed

    Shen, Chunhong; Zhang, Bijun; Liu, Zhirong; Tang, Yelei; Zhang, Yinxi; Wang, Shan; Guo, Yi; Ding, Yao; Wang, Shuang; Ding, Meiping

    2017-10-01

    The aim of the study is to investigate the effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on plasma oxcarbazepine (OXC) concentrations and therapeutic efficacy in Han Chinese patients with epilepsy. We recruited 116 Han Chinese patients with epilepsy who were receiving OXC monotherapy. Blood samples were taken and OXC levels were measured. The polymorphisms of ABCB1 rs1045642, ABCC2 rs2273697, UGT2B7 rs7439366, and HNF4α rs2071197 were determined. The therapeutic efficacy of OXC at the 1-year time-point was assessed. Data analysis was performed using IBM SPSS Statistics 22.0. The genetic polymorphism of ABCB1 rs1045642 was found to be associated with normalized OXC concentration and therapeutic efficacy in patients with epilepsy (P<0.05). As for UGT2B7 rs7439366, the allele polymorphism exhibited a correlation with treatment outcome, but not OXC concentration. The polymorphisms of ABCC2 rs2273697 and HNF4α rs2071197 was not associated with OXC concentrations and therapeutic efficacy. These results suggested that ABCB1 rs1045642 and UGT2B7 rs7439366 may affect OXC pharmacokinetics and therapeutic efficacy in Han Chinese patients with epilepsy. However, further studies in larger populations and other ethnic groups are required. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  10. Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross

    PubMed Central

    Ferris, Martin T.; Aylor, David L.; Bottomly, Daniel; Whitmore, Alan C.; Aicher, Lauri D.; Bell, Timothy A.; Bradel-Tretheway, Birgit; Bryan, Janine T.; Buus, Ryan J.; Gralinski, Lisa E.; Haagmans, Bart L.; McMillan, Leonard; Miller, Darla R.; Rosenzweig, Elizabeth; Valdar, William; Wang, Jeremy; Churchill, Gary A.; Threadgill, David W.; McWeeney, Shannon K.; Katze, Michael G.; Pardo-Manuel de Villena, Fernando; Baric, Ralph S.; Heise, Mark T.

    2013-01-01

    Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while

  11. Is There a Genetic Predisposition to Anterior Cruciate Ligament Tear? A Systematic Review.

    PubMed

    John, Rakesh; Dhillon, Mandeep Singh; Sharma, Siddhartha; Prabhakar, Sharad; Bhandari, Mohit

    2016-12-01

    Injuries to the anterior cruciate ligament (ACL) are among the most common knee ligament injuries and frequently warrant reconstruction. The etiopathogenesis of these injuries has focused mainly on mechanism of trauma, patient sex, and anatomic factors as predisposing causes. Several genetic factors that could predispose to an ACL tear have recently been reported. This systematic review summarizes the current evidence for a genetic predisposition to ACL tears. The principal research question was to identify genetic factors, based on the available literature, that could predispose an individual to an ACL tear. Systematic review. The PubMed, EMBASE, Cochrane, and HuGE databases were searched; the search was run from the period of inception until June 21, 2015. A secondary search was performed by screening the references of full-text articles obtained and by manually searching selected journals. Articles were screened with prespecified inclusion criteria. The quality of studies included in the review was assessed for risk of bias by 2 reviewers using the Newcastle-Ottawa Scale. A total of 994 records were identified by the search, out of which 17 studies (16 case-control studies and 1 cross-sectional study) were included in the final review. Two studies observed a familial predisposition to an ACL tear. Fourteen studies looked at specific gene polymorphisms in 20 genes, from which different polymorphisms in 10 genes were positively associated with an ACL tear. In addition to these polymorphisms, 8 haplotypes were associated with ACL tear. One study looked at gene expression analysis. Although specific gene polymorphisms and haplotypes have been identified, it is difficult to come to a conclusion on the basis of the existing literature. Several sources of bias have been identified in these studies, and the results cannot be extrapolated to the general population. More studies are needed in larger populations of different ethnicities. Gene-gene interactions and gene

  12. Genetic susceptibility to neuroblastoma

    PubMed Central

    Tolbert, Vanessa P.; Coggins, Grace E.; Maris, John M.

    2017-01-01

    Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma. PMID:28458126

  13. Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle.

    PubMed

    Zhao, Q; Davis, M E; Hines, H C

    2004-08-01

    The Pit-1 gene was studied as a candidate for genetic markers of growth and carcass traits. Angus beef cattle that were divergently selected for high- or low-blood serum IGF-I concentration were used in this study. The single-strand conformation polymorphism method was used to identify polymorphism in the Pit-1 gene including regions from intron 2 to exon 6. Two polymorphisms, Pit1I3H (HinfI) and Pit1I3NL (NlaIII), were detected in intron 3 of the Pit-1 gene. One polymorphism, Pit1I4N (BstNI), was found in intron 4, and a single nucleotide polymorphism, Pit1I5, was found in intron 5. The previously reported polymorphism in exon 6, Pit1E6H (HinfI), was also studied in 416 Angus beef cattle. Associations of the polymorphisms with growth traits, carcass traits, and IGF-I concentration were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and growth and carcass traits.

  14. [Association between genetic polymorphisms of DNA repair genes XRCC1, XPD, XRCC3 and the capacity of DNA repair induce by benzene].

    PubMed

    Xu, Jianning; Yang, Min; Huang, Huilong; Wang, Quankai

    2007-09-01

    To explore the correlation between genetic polymorphisms of XRCC1, XPD, XRCC3 and DNA repair capacity induced by benzene. Eighty patients suffered from chronic benzene poisoning were investigated. PCR-RFLP was applied to detect the single nucleotide polymorphisms on C26304T, G27466A, G28152A, G36189A of XRCC1, C22541A, C23591T, A35931C of XPD, C18067T of XRCC3. Cytokinesis-block micronucleus (CBMN) and alkaline comet were applied to detect the DNA repair capacity. The DNA repair capacity of the subjects carrying XPD 35931C variant allele or carrying XRCC3 18067 C/T variant genotype were higher than those carrying corresponding mild genotype. There could be a correlation between polymorphisms of XRCC3 and DNA repair capacity of DNA damage induced by benzene.

  15. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    PubMed

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  16. Molecular Characterization of Herpes Simplex Virus 2 Strains by Analysis of Microsatellite Polymorphism

    PubMed Central

    Ait-Arkoub, Zaïna; Voujon, Delphine; Deback, Claire; Abrao, Emiliana P.; Agut, Henri; Boutolleau, David

    2013-01-01

    The complete 154-kbp linear double-stranded genomic DNA sequence of herpes simplex virus 2 (HSV-2), consisting of two extended regions of unique sequences bounded by a pair of inverted repeat elements, was published in 1998 and since then has been widely employed in a wide range of studies. Throughout the HSV-2 genome are scattered 150 microsatellites (also referred to as short tandem repeats) of 1- to 6-nucleotide motifs, mainly distributed in noncoding regions. Microsatellites are considered reliable markers for genetic mapping to differentiate herpesvirus strains, as shown for cytomegalovirus and HSV-1. The aim of this work was to characterize 12 polymorphic microsatellites within the HSV-2 genome by use of 3 multiplex PCR assays in combination with length polymorphism analysis for the rapid genetic differentiation of 56 HSV-2 clinical isolates and 2 HSV-2 laboratory strains (gHSV-2 and MS). This new system was applied to a specific new HSV-2 variant recently identified in HIV-1-infected patients originating from West Africa. Our results confirm that microsatellite polymorphism analysis is an accurate tool for studying the epidemiology of HSV-2 infections. PMID:23966512

  17. [Association between genetic polymorphisms in pre-miR-146a and pre-miR-196a2 and genetic damage levels among coke oven workers].

    PubMed

    Wang, Tian; Deng, Qi-fei; Zhang, Xiao; Li, Xiao-liang; Deng, Si-yun; Dai, Xia-yun; Huang, Su-li; Feng, Jing; Li, Jun; Wu, Tang-chun; Guo, Huan

    2013-08-01

    To investigate the association of rs2910164 G > C polymorphism and rs11614913 T > C polymorphism in pre-miR-146a and pre-miR-196a2 with genetic damage levels in coke oven workers. A total of 575 nonsmoking workers who have worked for more than one year in a coke-oven plant at Wuhan, Hubei Province were enrolled in this study in September to October, 2010. The general characteristics as well as blood and urine samples were collected. The genetic damage levels were detected by cytokinesis-block micronucleus cytom assay and represented as micronucleus (MN) frequencies of binucleate cells in peripheral blood lymphocytes. The rs2910164 G > C polymorphisms in pre-miR-146a and rs11614913 T > C polymorphisms in pre-miR-196a2 were genotyped by using TaqMan assay. The plasma concentrations of benzo[a]pyrene-diolepoxide (BPDE)-albumin adducts were determined by using ELISA. All data were analyzed, the frequency ratio (FR) and 95%CI were calculated. Totally, 575 workers were taken into consideration. The rs2910164 C allele was associated with increased MN frequencies in the coke oven workers (P trend = 0.025), and the MN frequencies were higher in rs2910164 CC genotype carriers (4.38 ± 3.46) than in wild-type rs2910164 GG genotype carriers (4.02 ± 3.09) (FR = 1.18, 95%CI:1.04-1.34). The further stratified analyses by working years, gender, alcohol consumption, and the levels of BPDE-albumin adducts showed that the effects of rs2910164 C allele in increasing MN frequencies were robust in subjects who were males (FR = 1.11, 95%CI:1.02-1.20), nondrinkers (FR = 1.07, 95%CI:1.00-1.14), working years less than 20 (FR = 1.12, 95%CI:1.03-1.22), and workers with lower BPDE-albumin adducts levels (FR = 1.11, 95%CI:1.02-1.21) (P trend = 0.011, 0.044, 0.006 and 0.020, respectively). In addition, the MN frequencies were higher in workers with rs11614913 TC genotype (4.27 ± 2.91) than workers with rs11614913 TT genotype (3.90 ± 3.32) (FR = 1.12, 95%CI:1.02-1.23).Workers carried both rs

  18. Association of genetic polymorphisms of interleukins with gastric cancer and precancerous gastric lesions in a high-risk Chinese population.

    PubMed

    Wang, Yu-Mei; Li, Zhe-Xuan; Tang, Fu-Bing; Zhang, Yang; Zhou, Tong; Zhang, Lian; Ma, Jun-Ling; You, Wei-Cheng; Pan, Kai-Feng

    2016-02-01

    Helicobacter pylori (H. pylori) infection and cytokine-mediated inflammatory responses play important roles in gastric cancer (GC) pathogenesis. To investigate an association between genetic polymorphisms in interleukin (IL)-1β, IL-4R, IL-8, IL-10, IL-16, IL-18RAP, IL-22, and IL-32 and risks of GC and its precursors, a population-based study was conducted in Linqu County. Genotypes were determined by Sequenom MassARRAY platform in 132 GC cases and 1198 subjects with gastric lesions. The H. pylori status was determined by (13)C-urea breath test ((13)C-UBT) or enzyme-linked immunosorbent assay (ELISA). Among 11 candidate single nucleotide polymorphisms (SNPs), subjects carrying IL-18RAP rs917997 AA genotype were associated with risk of GC [adjusted odds ratio (OR) = 1.83, 95 % confidence interval (CI) 1.14-2.92] or chronic atrophic gastritis (CAG; OR = 1.55, 95 % CI 1.07-2.24). The risk of GC was also increased in subjects carrying IL-32 rs2015620 A allele (AA + AT; OR = 1.92, 95 % CI 1.09-3.39). Moreover, elevated risks of CAG (OR = 2.64, 95 % CI 1.89-3.69), intestinal metaplasia (IM; OR = 5.58, 95 % CI 3.86-8.05), and dysplasia (DYS; OR = 1.64, 95 % CI 1.18-2.26) were observed in subjects with IL-22 rs1179251 CC genotype. Stratified analysis indicated that risks of GC and its precursors were elevated in subjects with IL-32 rs2015620 A allele (AA + AT) or IL-22 rs1179251 CC genotype and H. pylori infection, and significant interactions between these two SNPs and H. pylori infection were found. These findings suggested that IL-18RAP rs917997, IL-32 rs2015620, IL-22 rs1179251, and interactions between these polymorphisms and H. pylori infection were associated with risks of gastric lesions. Genetic polymorphisms of interleukins may play crucial roles in H. pylori-induced gastric carcinogenesis.

  19. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet

    PubMed Central

    Curtin, Karen; Slattery, Martha L.; Ulrich, Cornelia M.; Bigler, Jeannette; Levin, Theodore R.; Wolff, Roger K.; Albertsen, Hans; Potter, John D.; Samowitz, Wade S.

    2008-01-01

    This study investigated associations between CpG island methylator phenotype (CIMP) colon cancer and genetic polymorphisms relevant to one-carbon metabolism and thus, potentially the provision of methyl groups and risk of colon cancer. Data from a large, population-based case–control study (916 incident colon cancer cases and 1972 matched controls) were used. Candidate polymorphisms in methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), transcobalamin II (TCNII), methionine synthase (MTR), reduced folate carrier (RFC), methylene-tetrahydrofolate dehydrogenase 1 (MTHFD1), dihydrofolate reductase (DHFR) and alcohol dehydrogenase 3 (ADH3) were evaluated. CIMP− or CIMP+ phenotype was based on five CpG island markers: MINT1, MINT2, MINT31, p16 and MLH1. The influence of specific dietary factors (folate, methionine, vitamin B12 and alcohol) on these associations was also analyzed. We hypothesized that polymorphisms involved in the provision of methyl groups would be associated with CIMP+ tumors (two or more of five markers methylated), potentially modified by diet. Few associations specific to CIMP+ tumors were observed overall, which does not support the hypothesis that the provision of methyl groups is important in defining a methylator phenotype. However, our data suggest that genetic polymorphisms in MTHFR 1298A > C, interacting with diet, may be involved in the development of highly CpG-methylated colon cancers. AC and CC genotypes in conjunction with a high-risk dietary pattern (low folate and methionine intake and high alcohol use) were associated with CIMP+ (OR = 2.1, 95% CI = 1.3–3.4 versus AA/high risk; P-interaction = 0.03). These results provide only limited support for a role of polymorphisms in one-carbon metabolism in the etiology of CIMP colon cancer. PMID:17449906

  20. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet.

    PubMed

    Curtin, Karen; Slattery, Martha L; Ulrich, Cornelia M; Bigler, Jeannette; Levin, Theodore R; Wolff, Roger K; Albertsen, Hans; Potter, John D; Samowitz, Wade S

    2007-08-01

    This study investigated associations between CpG island methylator phenotype (CIMP) colon cancer and genetic polymorphisms relevant to one-carbon metabolism and thus, potentially the provision of methyl groups and risk of colon cancer. Data from a large, population-based case-control study (916 incident colon cancer cases and 1,972 matched controls) were used. Candidate polymorphisms in methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), transcobalamin II (TCNII), methionine synthase (MTR), reduced folate carrier (RFC), methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), dihydrofolate reductase (DHFR) and alcohol dehydrogenase 3 (ADH3) were evaluated. CIMP- or CIMP+ phenotype was based on five CpG island markers: MINT1, MINT2, MINT31, p16 and MLH1. The influence of specific dietary factors (folate, methionine, vitamin B(12) and alcohol) on these associations was also analyzed. We hypothesized that polymorphisms involved in the provision of methyl groups would be associated with CIMP+ tumors (two or more of five markers methylated), potentially modified by diet. Few associations specific to CIMP+ tumors were observed overall, which does not support the hypothesis that the provision of methyl groups is important in defining a methylator phenotype. However, our data suggest that genetic polymorphisms in MTHFR 1,298A > C, interacting with diet, may be involved in the development of highly CpG-methylated colon cancers. AC and CC genotypes in conjunction with a high-risk dietary pattern (low folate and methionine intake and high alcohol use) were associated with CIMP+ (OR = 2.1, 95% CI = 1.3-3.4 versus AA/high risk; P-interaction = 0.03). These results provide only limited support for a role of polymorphisms in one-carbon metabolism in the etiology of CIMP colon cancer.