Sample records for identify immunogenic proteins

  1. Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva.

    PubMed

    Becker, Martin; Felsberger, André; Frenzel, André; Shattuck, Wendy M C; Dyer, Megan; Kügler, Jonas; Zantow, Jonas; Mather, Thomas N; Hust, Michael

    2015-05-30

    Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.

  2. Immunoproteomic identification of immunogenic proteins in Cronobacter sakazakii strain BAA-894.

    PubMed

    Wang, Jian; Du, Xin-Jun; Lu, Xiao-Nan; Wang, Shuo

    2013-03-01

    Cronobacter spp. are emerging opportunistic pathogens. Cronobacter sakazakii is considered as the predominant species in all infections. So far, our understanding of the species' immunogens and potential virulence factors of Cronobacter spp. remains limited. In this study, an immunoproteomic approach was used to investigate soluble and insoluble proteins from the genome-sequenced strain C. sakazakii ATCC BAA-894. Proteins were separated using two-dimensional electrophoresis, detected by Western blotting with polyclonal antibodies of C. sakazakii BAA-894, and identified using tandem mass spectrometry (MALDI-MS and MALDI-MS/MS, MS/MSMS). A total of 11 immunoreactive proteins were initially identified in C. sakazakii BAA-894, including two outer membrane proteins, four periplasmic proteins, and five cytoplasmic proteins. In silico functional analysis of the 11 identified proteins indicated three proteins that were initially described as immunogens of pathogenic bacteria. For the remaining eight proteins, one protein was categorized as a potential virulence factor involved in protection against reactive oxygen species, and seven proteins were considered to play potential roles in adhesion, invasion, and biofilm formation. To our knowledge, this is the first time that immunogenic proteins of C. sakazakii BAA-894 have been identified as immunogens and potential virulence factors by an immunoproteomics approach. Future studies should investigate the roles of these proteins in bacterial pathogenesis and modulation of host immune responses during infection to identify their potential as molecular therapeutic targets.

  3. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus).

    PubMed

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-05-31

    Vibrio anguillarum is a severe bacterial pathogen that can infect a wide range of fish species. Identification of immunogenic proteins and development of vaccine are essential for disease prevention. In this study, immunogenic proteins were screened and identified from V. anguillarum, and then protective efficacy of the immunogenic proteins was evaluated. Immunogenic proteins in V. anguillarum whole cell were detected by Western blotting (WB) using immunized flounder (Paralichthys olivaceus) serum, and then identified by Mass spectrometry (MS). The recombinant proteins of four identified immunogenic proteins were produced and immunized to fish, and then percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBL), total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were measured, respectively. The results showed that five immunogenic proteins, VAA, Groel, OmpU, PteF and SpK, were identified; their recombinant proteins, rOmpU, rGroel, rSpK and rVAA, could induce the proliferation of sIg+ cells in PBL and production of total antibodies, antibodies against V. anguillarum and antibodies against the recombinant proteins; their protection against V. anguillarum showed 64.86%, 72.97%, 21.62% and 78.38% RPS, respectively. The results revealed that the immunoproteomic technique using fish anti-V. anguillarum serum provided an efficient way to screen the immunogenic protein for vaccine antigen. Moreover, the rVAA, rGroel and rOmpU had potential to be vaccine candidates against V. anguillarum infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Immunogenicity of therapeutic proteins: the use of animal models.

    PubMed

    Brinks, Vera; Jiskoot, Wim; Schellekens, Huub

    2011-10-01

    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far.

  5. Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity

    PubMed Central

    Scaria, Puthupparampil V.; Jones, David S.; Barnafo, Emma; Fischer, Elizabeth R.; Anderson, Charles; MacDonald, Nicholas J.; Lambert, Lynn; Rausch, Kelly M.; Narum, David L.

    2017-01-01

    Chemical conjugation of polysaccharide to carrier proteins has been a successful strategy to generate potent vaccines against bacterial pathogens. We developed a similar approach for poorly immunogenic malaria protein antigens. Our lead candidates in clinical trials are the malaria transmission blocking vaccine antigens, Pfs25 and Pfs230D1, individually conjugated to the carrier protein Exoprotein A (EPA) through thioether chemistry. These conjugates form nanoparticles that show enhanced immunogenicity compared to unconjugated antigens. In this study, we examined the broad applicability of this technology as a vaccine development platform, by comparing the immunogenicity of conjugates prepared by four different chemistries using different malaria antigens (PfCSP, Pfs25 and Pfs230D1), and carriers such as EPA, TT and CRM197. Several conjugates were synthesized using thioether, amide, ADH and glutaraldehyde chemistries, characterized for average molecular weight and molecular weight distribution, and evaluated in mice for humoral immunogenicity. Conjugates made with the different chemistries, or with different carriers, showed no significant difference in immunogenicity towards the conjugated antigens. Since particle size can influence immunogenicity, we tested conjugates with different average size in the range of 16–73 nm diameter, and observed greater immunogenicity of smaller particles, with significant differences between 16 and 73 nm particles. These results demonstrate the multiple options with respect to carriers and chemistries that are available for protein-protein conjugate vaccine development. PMID:29281708

  6. Immunogenic proteins of Brucella abortus to minimize cross reactions in brucellosis diagnosis.

    PubMed

    Ko, Kyung Yuk; Kim, Jong-Wan; Her, Moon; Kang, Sung-Il; Jung, Suk Chan; Cho, Dong Hee; Kim, Ji-Yeon

    2012-05-04

    To overcome the limitations of serological diagnosis, including false positive reactions caused by other pathogens, specific antigens for diagnosis of brucellosis other than LPS have been required. The present study was conducted to separate and identify immuno-dominant insoluble proteins of Brucella abortus against the antisera of cattle infected with B. abortus, or/and Yersinia enterocolitica, or the sera of non-infected cattle. After separating insoluble proteins of B. abortus by two dimensional electrophoresis (2-DE), their immuno-reactivity was determined by western blotting. A portion of the immunogenic spots against the positive antisera of B. abortus that have the potential for use as specific antigens were identified by MS/MS analysis. Overall, 18 immunogenic insoluble proteins of B. abortus 1119-3 showed immuno-reactivity against only the positive antisera of B. abortus, but failed to have immunogenicity toward both the positive sera of Y. enterocolitica and the negative sera of B. abortus. Identification of these proteins revealed the following: F0F1 ATP synthase subunit β, solute-binding family 5 protein, 28 kDa OMP, Leu/Ile/Val-binding family protein, Histidinol dehyddrogenase, Hypothetical protein, Twin-arginine translocation pathway signal sequence domain-containing protein, Dihydroorotase, Serine protease family protein, β-hydroxyacyl-(acyl-carrier-protein) dehydratase FabA, Short-chain dehydrogenase-/reductase carbonic anhydrase, Orinithine carbamoyltransferase, Leucyl aminopeptidase, Cold shock DNA-binding domain-containing protein, Cu/Zn superoxide dismutase, and Methionine aminopeptidase. The 18 immunogenic proteins separated in the present study can be considered candidate antigens to minimize cross reaction in the diagnosis of brucellosis and useful sources for Brucella vaccine development. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Preclinical models used for immunogenicity prediction of therapeutic proteins.

    PubMed

    Brinks, Vera; Weinbuch, Daniel; Baker, Matthew; Dean, Yann; Stas, Philippe; Kostense, Stefan; Rup, Bonita; Jiskoot, Wim

    2013-07-01

    All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.

  8. Determinants of immunogenic response to protein therapeutics.

    PubMed

    Singh, Satish K; Cousens, Leslie P; Alvarez, David; Mahajan, Pramod B

    2012-09-01

    Protein therapeutics occupy a very significant position in the biopharmaceutical market. In addition to the preclinical, clinical and post marketing challenges common to other drugs, unwanted immunogenicity is known to affect efficacy and/or safety of most biotherapeutics. A standard set of immunogenicity risk factors are routinely used to inform monitoring strategies in clinical studies. A number of in-silico, in vivo and in vitro approaches have also been employed to predict immunogenicity of biotherapeutics, but with limited success. Emerging data also indicates the role of immune tolerance mechanisms and impact of several product-related factors on modulating host immune responses. Thus, a comprehensive discussion of the impact of innate and adaptive mechanisms and molecules involved in induction of host immune responses on immunogenicity of protein therapeutics is needed. A detailed understanding of these issues is essential in order to fully exploit the therapeutic potential of this class of drugs. This Roundtable Session was designed to provide a common platform for discussing basic immunobiological and pharmacological issues related to the role of biotherapeutic-associated risk factors, as well as host immune system in immunogenicity against protein therapeutics. The session included overview presentations from three speakers, followed by a panel discussion with audience participation. Copyright © 2012. Published by Elsevier Ltd.. All rights reserved.

  9. Immunogenicity assessment during the development of protein therapeutics.

    PubMed

    Rosenberg, Amy S; Sauna, Zuben E

    2018-05-01

    Here we provide a critical review of the state of the art with respect to non-clinical assessments of immunogenicity for therapeutic proteins. The number of studies on immunogenicity published annually has more than doubled in the last 5 years. The science and technology, which have reached a critical mass, provide multiple of non-clinical approaches (computational, in vitro, ex vivo and animal models) to first predict and then to modify or eliminate T-cell or B-cell epitopes via de-immunization strategies. We discuss how these may be used in the context of drug development in assigning the immunogenicity risk of new and marketed therapeutic proteins. Protein therapeutics represents a large share of the pharma market and provide medical interventions for some of the most complex and intractable diseases. Immunogenicity (the development of antibodies to therapeutic proteins) is an important concern for both the safety and efficacy of protein therapeutics as immune responses may neutralize the activity of life-saving and highly effective protein therapeutics and induce hypersensitivity responses including anaphylaxis. The non-clinical computational tools and experimental technologies that offer a comprehensive and increasingly accurate estimation of immunogenic potential are surveyed here. This critical review also discusses technologies which are promising but are not as yet ready for routine use. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  10. Immunogenicity of therapeutic proteins. Part 2: impact of container closures.

    PubMed

    Sharma, Basant

    2007-01-01

    Immunogenicity as a potential consequence of therapeutic protein administration is increasingly being scrutinized in the biopharmaceuticals industry, particularly with the imminent introduction of biosimilar products. Immunogenicity is an important safety aspect requiring rigorous investigation to fully appreciate its impact. Factors involved in product handling, such as storage temperature, light exposure, and shaking, have been implicated in immunogenicity, while container closure systems are no less important. Intended to provide a stable environment for the dosage form, container closures may also interact with a product, affecting performance and potentially enhancing immunogenicity. Glass surfaces, air-liquid interfaces, and lubricants can mediate protein denaturation, while phthalates in plastics and latex rubber are sources of extractables and leachates that may contaminate a product, causing allergic reactions and increasing immunogenicity. The manufacture of therapeutic proteins therefore requires rigorous safety evaluations not just in the context of the product, but also product containment.

  11. CHOPPI: A Web Tool for the Analysis of Immunogenicity Risk from Host Cell Proteins in CHO-Based Protein Production

    PubMed Central

    Bailey-Kellogg, Chris; Gutiérrez, Andres H; Moise, Leonard; Terry, Frances; Martin, William D; De Groot, Anne S

    2014-01-01

    Despite high quality standards and continual process improvements in manufacturing, host cell protein (HCP) process impurities remain a substantial risk for biological products. Even at low levels, residual HCPs can induce a detrimental immune response compromising the safety and efficacy of a biologic. Consequently, advanced-stage clinical trials have been cancelled due to the identification of antibodies against HCPs. To enable earlier and rapid assessment of the risks in Chinese Hamster Ovary (CHO)-based protein production of residual CHO protein impurities (CHOPs), we have developed a web tool called CHOPPI, for CHO Protein Predicted Immunogenicity. CHOPPI integrates information regarding the possible presence of CHOPs (expression and secretion) with characterizations of their immunogenicity (T cell epitope count and density, and relative conservation with human counterparts). CHOPPI can generate a report for a specified CHO protein (e.g., identified from proteomics or immunoassays) or characterize an entire specified subset of the CHO genome (e.g., filtered based on confidence in transcription and similarity to human proteins). The ability to analyze potential CHOPs at a genomic scale provides a baseline to evaluate relative risk. We show here that CHOPPI can identify clear differences in immunogenicity risk among previously validated CHOPs, as well as identify additional “risky” CHO proteins that may be expressed during production and induce a detrimental immune response upon delivery. We conclude that CHOPPI is a powerful tool that provides a valuable computational complement to existing experimental approaches for CHOP risk assessment and can focus experimental efforts in the most important directions. Biotechnol. Bioeng. 2014;111: 2170–2182. PMID:24888712

  12. Perspectives on Subcutaneous Route of Administration as an Immunogenicity Risk Factor for Therapeutic Proteins.

    PubMed

    Hamuro, Lora; Kijanka, Grzegorz; Kinderman, Francis; Kropshofer, Harald; Bu, De-Xiu; Zepeda, Monica; Jawa, Vibha

    2017-10-01

    An increasing number of therapeutic proteins are being developed for delivery through the subcutaneous (SC) route of administration. Relative to intravenous (IV) administration, the SC route offers more convenience to patients, flexibility in dosing, and potential to reduce health care costs. There is a perception that SC administration can pose a higher immunogenicity risk than IV administration for a given protein. To evaluate whether there is a difference in therapeutic protein immunogenicity associated with administration routes, a more detailed understanding of the interactions with the immune system by each route is needed. Few approved therapeutic proteins have available clinical immunogenicity data sets in the public domain that represent both IV and SC administration routes. This has prevented a direct comparison of the 2 routes of administration across a large sample size. Of the 6 marketed products where SC and IV route-related incidences of anti-drug antibody (ADA) were available, 4 were associated with higher immunogenicity incidence with SC. In other cases, there was no apparent difference between the SC and IV routes. Overall, the ADA incidence was low (<15%) with no impact on safety or efficacy. The challenges associated with identifying specific risk factors unique to SC administration are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    PubMed

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  14. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins

    PubMed Central

    2018-01-01

    ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant

  15. Identification of In Vivo-Expressed Immunogenic Proteins by Serological Proteome Analysis of the Bacillus anthracis Secretome▿ †

    PubMed Central

    Chitlaru, Theodor; Gat, Orit; Grosfeld, Haim; Inbar, Itzhak; Gozlan, Yael; Shafferman, Avigdor

    2007-01-01

    In a previous comparative proteomic study of Bacillus anthracis examining the influence of the virulence plasmids and of various growth conditions on the composition of the bacterial secretome, we identified 64 abundantly expressed proteins (T. Chitlaru, O. Gat, Y. Gozlan, N. Ariel, and A. Shafferman, J. Bacteriol. 188:3551-3571, 2006). Using a battery of sera from B. anthracis-infected animals, in the present study we demonstrated that 49 of these proteins are immunogenic. Thirty-eight B. anthracis immunogens are documented in this study for the first time. The relative immunogenicities of the 49 secreted proteins appear to span a >10,000-fold range. The proteins eliciting the highest humoral response in the course of infection include, in addition to the well-established immunogens protective antigen (PA), Sap, and EA1, GroEL (BA0267), AhpC (BA0345), MntA (BA3189), HtrA (BA3660), 2,3-cyclic nucleotide diesterase (BA4346), collagen adhesin (BAS5205), an alanine amidase (BA0898), and an endopeptidase (BA1952), as well as three proteins having unknown functions (BA0796, BA0799, and BA0307). Of these 14 highly potent secreted immunogens, 11 are known to be associated with virulence and pathogenicity in B. anthracis or in other bacterial pathogens. Combining the results reported here with the results of a similar study of the membranal proteome of B. anthracis (T. Chitlaru, N. Ariel, A. Zvi, M. Lion, B. Velan, A. Shafferman, and E. Elhanany, Proteomics 4:677-691, 2004) and the results obtained in a functional genomic search for immunogens (O. Gat, H. Grosfeld, N. Ariel, I. Inbar, G. Zaide, Y. Broder, A. Zvi, T. Chitlaru, Z. Altboum, D. Stein, S. Cohen, and A. Shafferman, Infect. Immun. 74:3987-4001, 2006), we generated a list of 84 in vivo-expressed immunogens for future evaluation for vaccine development, diagnostics, and/or therapeutic intervention. In a preliminary study, the efficacies of eight immunogens following DNA immunization of guinea pigs were compared to

  16. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins.

    PubMed

    Walz, Alexander; Mujer, Cesar V; Connolly, Joseph P; Alefantis, Tim; Chafin, Ryan; Dake, Clarissa; Whittington, Jessica; Kumar, Srikanta P; Khan, Akbar S; DelVecchio, Vito G

    2007-07-27

    The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2-) during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites), lipoprotein signal peptides (13 have SpII sites), and N-terminal membrane helices (9 have transmembrane helices). The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa) of protective antigen (PA) were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and accumulation may be relevant in elucidation of the

  17. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    PubMed Central

    Walz, Alexander; Mujer, Cesar V; Connolly, Joseph P; Alefantis, Tim; Chafin, Ryan; Dake, Clarissa; Whittington, Jessica; Kumar, Srikanta P; Khan, Akbar S; DelVecchio, Vito G

    2007-01-01

    Background The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2-) during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. Results A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites), lipoprotein signal peptides (13 have SpII sites), and N-terminal membrane helices (9 have transmembrane helices). The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa) of protective antigen (PA) were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. Conclusion This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and accumulation may be

  18. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    PubMed

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  19. Development of a strategy and computational application to select candidate protein analogues with reduced HLA binding and immunogenicity.

    PubMed

    Dhanda, Sandeep Kumar; Grifoni, Alba; Pham, John; Vaughan, Kerrie; Sidney, John; Peters, Bjoern; Sette, Alessandro

    2018-01-01

    Unwanted immune responses against protein therapeutics can reduce efficacy or lead to adverse reactions. T-cell responses are key in the development of such responses, and are directed against immunodominant regions within the protein sequence, often associated with binding to several allelic variants of HLA class II molecules (promiscuous binders). Herein, we report a novel computational strategy to predict 'de-immunized' peptides, based on previous studies of erythropoietin protein immunogenicity. This algorithm (or method) first predicts promiscuous binding regions within the target protein sequence and then identifies residue substitutions predicted to reduce HLA binding. Further, this method anticipates the effect of any given substitution on flanking peptides, thereby circumventing the creation of nascent HLA-binding regions. As a proof-of-principle, the algorithm was applied to Vatreptacog α, an engineered Factor VII molecule associated with unintended immunogenicity. The algorithm correctly predicted the two immunogenic peptides containing the engineered residues. As a further validation, we selected and evaluated the immunogenicity of seven substitutions predicted to simultaneously reduce HLA binding for both peptides, five control substitutions with no predicted reduction in HLA-binding capacity, and additional flanking region controls. In vitro immunogenicity was detected in 21·4% of the cultures of peptides predicted to have reduced HLA binding and 11·4% of the flanking regions, compared with 46% for the cultures of the peptides predicted to be immunogenic. This method has been implemented as an interactive application, freely available online at http://tools.iedb.org/deimmunization/. © 2017 John Wiley & Sons Ltd.

  20. Conjugate-like immunogens produced as protein capsular matrix vaccines.

    PubMed

    Thanawastien, Ann; Cartee, Robert T; Griffin, Thomas J; Killeen, Kevin P; Mekalanos, John J

    2015-03-10

    Capsular polysaccharides are the primary antigenic components involved in protective immunity against encapsulated bacterial pathogens. Although immunization of adolescents and adults with polysaccharide antigens has reduced pathogen disease burden, pure polysaccharide vaccines have proved ineffective at conferring protective immunity to infants and the elderly, age cohorts that are deficient in their adaptive immune responses to such antigens. However, T-cell-independent polysaccharide antigens can be converted into more potent immunogens by chemically coupling to a "carrier protein" antigen. Such "conjugate vaccines" efficiently induce antibody avidity maturation, isotype switching, and immunological memory in immunized neonates. These immune responses have been attributed to T-cell recognition of peptides derived from the coupled carrier protein. The covalent attachment of polysaccharide antigens to the carrier protein is thought to be imperative to the immunological properties of conjugate vaccines. Here we provide evidence that covalent attachment to carrier proteins is not required for conversion of T-independent antigens into T-dependent immunogens. Simple entrapment of polysaccharides or a d-amino acid polymer antigen in a cross-linked protein matrix was shown to be sufficient to produce potent immunogens that possess the key characteristics of conventional conjugate vaccines. The versatility and ease of manufacture of these antigen preparations, termed protein capsular matrix vaccines (PCMVs), will likely provide improvements in the manufacture of vaccines designed to protect against encapsulated microorganisms. This in turn could improve the availability of such vaccines to the developing world, which has shown only a limited capacity to afford the cost of conventional conjugate vaccines.

  1. Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates

    PubMed Central

    1980-01-01

    A method is presented for covalently bonding Haemophilus influenzae type b capsular polysaccharide (HIB Ps) to several proteins. The method is efficient and relies upon the use of adipic dihydrazide as a spacer between the capsular polysaccharide and the carrier protein. In contrast to the poor immunogenicity of the purified HIB Ps in mice and rabbits, the HIB Ps-protein conjugates induced serum anti-type b antibodies having bactericidal activity at levels shown to be protective in humans when low doses were injected subcutaneously in a saline solution. The antibody response in mice was related to the dose of the conjugates, increased with the number of injections, and could be primed by the previous injection of the carrier protein. The HIB Ps- protein conjugates were immunogenic in three different mouse strains. The importance of the carrier molecule for the enhanced immunogenicity of the HIB Ps-protein conjugates was shown by the failure of HIB Ps hybrids prepared with either the homologous polysaccharide or pneumococcus type 3 polysaccharide to induce antibodie in mice. Rabbits injected with the HIB Ps-protein conjugates emulsified in Freund's adjuvant produced high levels of serum anti-type b antibodies which induced a bactericidal effect upon H. influenzae type b organisms. It is proposed that the HIB Ps component of the polysaccharide protein conjugates has been converted to a thymic-dependent immunogen. This method may be used to prepare protein-polysaccharide conjugates with HIB Ps and other polysaccharides to be considered for human use. PMID:6967514

  2. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    PubMed

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G P S

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  3. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation.

    PubMed

    Jawa, Vibha; Cousens, Leslie P; Awwad, Michel; Wakshull, Eric; Kropshofer, Harald; De Groot, Anne S

    2013-12-01

    Protein therapeutics hold a prominent and rapidly expanding place among medicinal products. Purified blood products, recombinant cytokines, growth factors, enzyme replacement factors, monoclonal antibodies, fusion proteins, and chimeric fusion proteins are all examples of therapeutic proteins that have been developed in the past few decades and approved for use in the treatment of human disease. Despite early belief that the fully human nature of these proteins would represent a significant advantage, adverse effects associated with immune responses to some biologic therapies have become a topic of some concern. As a result, drug developers are devising strategies to assess immune responses to protein therapeutics during both the preclinical and the clinical phases of development. While there are many factors that contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) responses appear to play a critical role in the development of antibody responses to biologic therapeutics. A range of methodologies to predict and measure Td immune responses to protein drugs has been developed. This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td immunogenicity. © 2013. Published by Elsevier Inc. All rights reserved.

  4. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.

    PubMed

    Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert

    2015-04-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis using purified recombinant immunogenic proteins.

    PubMed

    Jiang, Yanfen; Kulkarni, Raveendra R; Parreira, Valeria R; Prescott, John F

    2009-09-01

    This study identified and assessed secreted proteins of Clostridium perfringens additional to those previously described for their ability to protect broiler chickens against necrotic enteritis (NE). Secreted proteins of virulent and avirulent C. perfringens were electrophoretically separated and reacted with serum of chickens immune to NE. Three immunoreactive protein bands unique to the virulent C. perfringens were identified by mass spectrometry as the toxin C. perfringens large cytotoxin (TpeL), endo-beta-N-acetylglucosaminidase (Naglu), and phosphoglyceromutase (Pgm). The genes encoding Naglu and Pgm proteins were cloned, and their gene products were purified as histidine-tagged recombinant proteins from Escherichia coli and used in immunizing chickens. Immunized and nonimmunized control broiler chickens were then challenged with two different strains (CP1, CP4) of C. perfringens and assessed for the development of NE. Of the two immunogens, Pgm immunization showed significant protection of broiler chickens against experimental NE, although protection reduced as challenge severity increased. However, birds immunized with Naglu were protected from challenge only with strain CP4. Birds immunized with these proteins had antigen-specific antibodies when tested in an enzyme-linked immunosorbent assay. In conclusion, this study demonstrated the partial efficacy of additional secreted proteins in immunity of broiler chickens to NE. The study also showed that there may be differences in the protective ability of immunogens depending on the infecting C. perfringens strain.

  6. Towards Preserving the Immunogenicity of Protein Antigens Carried by Nanoparticles While Avoiding the Cold Chain

    PubMed Central

    Sloat, Brian R.; Sandoval, Michael A.; Cui, Zhengrong

    2010-01-01

    Nanoparticles are an attractive vaccine carrier with potent adjuvant activity. Data from our previous studies showed that immunization of mice with lecithin/glyceryl monostearate-based nanoparticles with protein antigens conjugated onto their surface induced a strong, quick, and long-lasting antigen-specific immune response. In the present study, we evaluated the feasibility of preserving the immunogenicity of protein antigens carried by nanoparticles without refrigeration using these antigen-conjugated nanoparticles as a model. The nanoparticles were lyophilized, and the immunogenicity of the antigens was evaluated in a mouse model using bovine serum albumin or the Bacillus anthracis protective antigen protein as model antigens. With proper excipients, the nanoparticles can be lyophilized while maintaining the immunogenicity of the antigens. Moreover, the immunogenicity of the model antigen conjugated onto the nanoparticles was undamaged after a relatively extended period of storage at room temperature or under accelerated conditions (37°C) when the nanoparticles were lyophilized with 5% mannitol plus 1% polyvinylpyrrolidone. To our knowledge, the present study represents an early attempt to preserve the immunogenicity of the protein antigens carried by nanoparticles without refrigeration. PMID:20416366

  7. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformationalmore » changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.« less

  8. Towards preserving the immunogenicity of protein antigens carried by nanoparticles while avoiding the cold chain.

    PubMed

    Sloat, Brian R; Sandoval, Michael A; Cui, Zhengrong

    2010-06-30

    Nanoparticles are an attractive vaccine carrier with potent adjuvant activity. Data from our previous studies showed that immunization of mice with lecithin/glyceryl monostearate-based nanoparticles with protein antigens conjugated onto their surface induced a strong, quick, and long-lasting antigen-specific immune response. In the present study, we evaluated the feasibility of preserving the immunogenicity of protein antigens carried by nanoparticles without refrigeration using these antigen-conjugated nanoparticles as a model. The nanoparticles were lyophilized, and the immunogenicity of the antigens was evaluated in a mouse model using bovine serum albumin or the Bacillus anthracis protective antigen protein as model antigens. With proper excipients, the nanoparticles can be lyophilized while maintaining the immunogenicity of the antigens. Moreover, the immunogenicity of the model antigen conjugated onto the nanoparticles was undamaged after a relatively extended period of storage at room temperature or under accelerated conditions (37 degrees C) when the nanoparticles were lyophilized with 5% mannitol plus 1% polyvinylpyrrolidone. To our knowledge, the present study represents an early attempt to preserve the immunogenicity of the protein antigens carried by nanoparticles without refrigeration. 2010 Elsevier B.V. All rights reserved.

  9. Identification of Immunogenic Hot Spots within Plum Pox Potyvirus Capsid Protein for Efficient Antigen Presentation

    PubMed Central

    Fernández-Fernández, M. Rosario; Martínez-Torrecuadrada, Jorge L.; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-01-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-γ, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence. PMID:12438590

  10. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    PubMed

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  11. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    PubMed

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  12. Identification of whole pathogenic cells by monoclonal antibodies generated against a specific peptide from an immunogenic cell wall protein.

    PubMed

    Kaba, Hani E J; Maier, Natalia; Schliebe-Ohler, Nicole; Mayer, Yvonne; Müller, Peter P; van den Heuvel, Joop; Schuchhardt, Johannes; Hanack, Katja; Bilitewski, Ursula

    2015-01-01

    We selected the immunogenic cell wall ß-(1,3)-glucosyltransferase Bgl2p from Candida albicans as a target protein for the production of antibodies. We identified a unique peptide sequence in the protein and generated monoclonal anti- C. albicans Bgl2p antibodies, which bound in particular to whole C. albicans cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Recombinant Brucella abortus gene expressing immunogenic protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayfield, J.E.; Tabatabai, L.B.

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  14. Immunogenicity of virus-like particles containing modified goose parvovirus VP2 protein.

    PubMed

    Chen, Zongyan; Li, Chuanfeng; Zhu, Yingqi; Wang, Binbin; Meng, Chunchun; Liu, Guangqing

    2012-10-01

    The major capsid protein VP2 of goose parvovirus (GPV) expressed using a baculovirus expression system (BES) assembles into virus-like particles (VLPs). To optimize VP2 gene expression in Sf9 cells, we converted wild-type VP2 (VP2) codons into codons that are more common in insect genes. This change greatly increased VP2 protein production in Sf9 cells. The protein generated from the codon-optimized VP2 (optVP2) was detected by immunoblotting and an indirect immunofluorescence assay (IFA). Transmission electron microscopy analysis revealed the formation of VLPs. These findings indicate that optVP2 yielded stable and high-quality VLPs. Immunogenicity assays revealed that the VLPs are highly immunogenic, elicit a high level of neutralizing antibodies and provide protection against lethal challenge. The antibody levels appeared to be directly related to the number of GP-Ag-positive hepatocytes. The variation trends for GP-Ag-positive hepatocytes were similar in the vaccine groups. In comparison with the control group, the optVP2 VLPs groups exhibited obviously better responses. These data indicate that the VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Thus, GPV optVP2 appears to be a good candidate for the vaccination of goslings. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Immunoproteomic Analysis To Identify Shiga Toxin-Producing Escherichia coli Outer Membrane Proteins Expressed during Human Infection

    PubMed Central

    Montero, David; Orellana, Paz; Gutiérrez, Daniela; Araya, Daniela; Salazar, Juan Carlos; Prado, Valeria; Oñate, Ángel; del Canto, Felipe

    2014-01-01

    Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization–tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development. PMID:25156722

  16. Differential Expression of Immunogenic Proteins on Virulent Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Klepp, Laura; Vazquez, Camila; Rocha, Roxana Valeria; Blanco, Federico Carlos; López, Beatriz; Bigi, Fabiana; Sasiain, María del Carmen

    2014-01-01

    Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb), formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM) and from Haarlem (H) lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB. PMID:25105140

  17. Identification of immunogenic polypeptides from a Mycoplasma hyopneumoniae genome library by phage display.

    PubMed

    Kügler, Jonas; Nieswandt, Simone; Gerlach, Gerald F; Meens, Jochen; Schirrmann, Thomas; Hust, Michael

    2008-09-01

    The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen-host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.

  18. The formulation and immunogenicity of therapeutic proteins: Product quality as a key factor.

    PubMed

    Richard, Joel; Prang, Nadia

    2010-08-01

    The formation of anti-drug antibodies represents a risk that should be assessed carefully during biopharmaceutical drug product (DP) development, as such antibodies compromise safety and efficacy and may alter the pharmacokinetic properties of a compound. This feature review discusses immunogenicity issues in biopharmaceutical DP development, with a focus on product quality. Excipient-induced and aggregate-induced immunogenicity are reviewed based on the concepts of 'aggregation-competent' species and 'provocative' aggregates. In addition, the influence of formulation parameters, such as particulates and contaminants appearing in the DP during processing and storage, on aggregate-induced immunogenicity are presented, including the role of fill-and-finish equipments and the effect of interactions with container materials. Furthermore, methods to detect and quantify aggregation and precursor conformational changes in a protein formulation are reviewed, and immunological mechanisms that may lead to aggregate-induced immunogenicity are proposed and discussed.

  19. Identification of an immunogenic protein of Actinobacillus seminis that is present in microvesicles

    PubMed Central

    2006-01-01

    Abstract Actinobacillus seminis is a gram-negative bacterium of the Pasteurellaceae family that is involved in ovine epididymitis. Looking for a protein specific to this species, we determined the protein profile of subcellular fractions of A. seminis (American Type Culture Collection number 15768): proteins from the outer membrane (OMPs), inner membrane (IMPs), and cytoplasm (CPs). These profiles provide the first data, to our knowledge, regarding subcellular fractions of A. seminis. In the OMP fraction, we identified a protein with a molecular mass of 75 kDa that proved to be immunogenic and apparently specific for A. seminis. This conclusion was based on the reaction of hyperimmune serum of rabbits inoculated with whole cells of A. seminis that was tested against sonicated complete cells of reference strains and field isolates of Brucella ovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. No protein of these bacteria cross-reacted with the 75-kDa protein of A. seminis. Furthermore, when each type of hyperimmune serum was tested against the sonicated cells and each of the subcellular fractions of A. seminis, it did not recognize the A. seminis 75-kDa protein. We also isolated and identified this protein in microvesicles released to the culture supernatant. The results suggest that the 75-kDa protein could be used to establish a diagnostic test specific for ovine epididymitis caused by A. seminis. PMID:16548331

  20. Major immunogenic proteins of phocid herpes-viruses and their relationships to proteins of canine and feline herpesviruses.

    PubMed

    Harder, T C; Harder, M; de Swart, R L; Osterhaus, A D; Liess, B

    1998-04-01

    The immunogenic proteins of cells infected with the alpha- or the gamma-herpesvirus of seals, phocid herpesvirus-1 and -2 (PhHV-1, -2), were examined in radioimmunoprecipitation assays as a further step towards the development of a PhHV-1 vaccine. With sera obtained from convalescent seals of different species or murine monoclonal antibodies (Mabs), at least seven virus-induced glycoproteins were detected in lysates of PhHV-1-infected CrFK cells. A presumably disulphide-linked complex composed of glycoproteins of 59, 67 and 113/120 kDa, expressed on the surface of infected cells, was characterized as a major immunogenic infected cell protein of PhHV-1. This glycoprotein complex has previously been identified as the proteolytically cleavable glycoprotein B homologue of PhHV-1 (14). At least three distinct neutralization-relevant epitopes were operationally mapped, by using Mabs, on the glycoprotein B of PhHV-1. Among the infected cell proteins of the antigenically closely related feline and canine herpesvirus, the glycoprotein B equivalent proved to be the most highly conserved glycoprotein. Sera obtained from different seal species from Arctic, Antarctic, and European habitats did not precipitate uniform patterns of infected cell proteins from PhHV-1-infected cell lysates although similar titres of neutralizing antibodies were displayed. Thus, antigenic differences among the alphaherpesvirus species prevalent in the different pinniped populations cannot be excluded. PhHV-2 displayed a different pattern of infected cell proteins and only limited cross-reactivity to PhHV-1 at the protein level was detected, which is in line with its previous classification as a distinct species, based on nucleotide sequence analysis, of the gammaherpesvirus linenge. A Mab raised against PhHV-2 and specific for a major glycoprotein of 117 kDa, cross reacted with the glycoprotein B of PhHV-1. The 117-kDa glycoprotein could represent the uncleaved PhHV-2 glycoprotein B homologue.

  1. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development.

    PubMed

    Connolly, Joseph P; Comerci, Diego; Alefantis, Timothy G; Walz, Alexander; Quan, Marian; Chafin, Ryan; Grewal, Paul; Mujer, Cesar V; Ugalde, Rodolfo A; DelVecchio, Vito G

    2006-07-01

    Brucella abortus is the etiologic agent of bovine brucellosis and causes a chronic disease in humans known as undulant fever. In livestock the disease is characterized by abortion and sterility. Live, attenuated vaccines such as S19 and RB51 have been used to control the spread of the disease in animals; however, they are considered unsafe for human use and they induce abortion in pregnant cattle. For the development of a safer and equally efficacious vaccine, immunoproteomics was utilized to identify novel candidate proteins from B. abortus cell envelope (CE). A total of 163 proteins were identified using 2-DE with MALDI-TOF MS and LC-MS/MS. Some of the major protein components include outer-membrane protein (OMP) 25, OMP31, Omp2b porin, and 60 kDa chaperonin GroEL. 2-DE Western blot analyses probed with antiserum from bovine and a human patient infected with Brucella identified several new immunogenic proteins such as fumarate reductase flavoprotein subunit, F0F1-type ATP synthase alpha subunit, and cysteine synthase A. The elucidation of the immunome of B. abortus CE identified a number of candidate proteins for developing vaccines against Brucella infection in bovine and humans.

  2. Canarypox virus expressing infectious bursal disease VP2 protein as immunogen for chickens

    PubMed Central

    Zanetti, Flavia Adriana; Grand, María Daniela Conte; Mitarotonda, Romina Cristina; Taboga, Oscar Alberto; Calamante, Gabriela

    2014-01-01

    Canarypox viruses (CNPV) carrying the coding sequence of VP2 protein from infectious bursal disease virus (IBDV) were obtained. These viruses were able to express VP2 protein in vitro and to induce IBDV-neutralizing antibodies when inoculated in specific pathogen-free chickens demonstrating that CNPV platform is usefulness to develop immunogens for chickens. PMID:24948937

  3. Tracking the fate of pasta (T. Durum semolina) immunogenic proteins by in vitro simulated digestion.

    PubMed

    Mamone, Gianfranco; Nitride, Chiara; Picariello, Gianluca; Addeo, Francesco; Ferranti, Pasquale; Mackie, Alan

    2015-03-18

    The aim of the present study was to identify and characterize the celiacogenic/immunogenic proteins and peptides released during digestion of pasta (Triticum durum semolina). Cooked pasta was digested using a harmonized in vitro static model of oral-gastro-duodenal digestion. The course of pasta protein digestion was monitored by SDS-PAGE, and gluten proteins were specifically analyzed by Western blot using sera of celiac patients. Among the allergens, nonspecific lipid-transfer protein was highly resistant to gastro-duodenal hydrolysis, while other digestion-stable allergens such as α-amylase/trypsin inhibitors were not detected being totally released in the pasta cooking water. To simulate the final stage of intestinal degradation, the gastro-duodenal digesta were incubated with porcine jejunal brush-border membrane hydrolases. Sixty-one peptides surviving the brush-border membrane peptidases were identified by liquid chromatography-mass spectrometry, including several gluten-derived sequences encrypting different motifs responsible for the induction of celiac disease. These results provide new insights into the persistence of wheat-derived peptides during digestion of cooked pasta samples.

  4. Models for evaluation of relative immunogenic potential of protein particles in biopharmaceutical protein formulations.

    PubMed

    Johnson, Richard; Jiskoot, Wim

    2012-10-01

    An immune response to a therapeutic protein that compromises the biopharmaceutical activity or cross-reacts with an endogenous protein is a serious clinical event. The role of protein aggregates and particles in biopharmaceutical formulations in mediating this immune response has gained considerable attention over the recent past. Model systems that could consistently and reliably predict the relative immunogenicity of biopharmaceutical protein formulations would be extremely valuable. Several approaches have been developed in an attempt to provide this insight, including in silico algorithms, in vitro tests utilizing human leukocytes and in vivo animal models. This commentary provides an update of these various approaches as well as the author's perspectives on the pros and cons of these different methods. Copyright © 2012 Wiley Periodicals, Inc.

  5. Screening of primary gp120 immunogens to formulate the next generation polyvalent DNA prime-protein boost HIV-1 vaccines

    PubMed Central

    Wang, Shixia; Chou, Te-hui; Hackett, Anthony; Efros, Veronica; Wang, Yan; Han, Dong; Wallace, Aaron; Chen, Yuxin; Hu, Guangnan; Liu, Shuying; Clapham, Paul; Arthos, James; Montefiori, David; Lu, Shan

    2017-01-01

    ABSTRACT Our previous preclinical studies and a Phase I clinical trial DP6-001 have indicated that a polyvalent Env formulation was able to elicit broadly reactive antibody responses including low titer neutralizing antibody responses against viral isolates of subtypes A, B, C and AE. In the current report, a panel of 62 gp120 immunogens were screened in a rabbit model to identify gp120 immunogens that can elicit improved binding and neutralizing antibody responses and some of them can be included in the next polyvalent formulation. Only about 19% of gp120 immunogens in this panel were able to elicit neutralizing antibodies against greater than 50% of the viruses included in a high throughput PhenoSense neutralization assay when these immuongens were tested as a DNA prime followed by a fixed 5-valent gp120 protein vaccine boost. The new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation. More significantly, this new polyvalent formulation elicited higher antibody responses against a panel of gp70V1/V2 antigens expressing V1/V2 sequences from diverse subtypes. Bioinformatics analysis supports the design of a 4-valent or 5-valent formulation using gp120 immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes. PMID:28933684

  6. Protective Immunogenicity of Group A Streptococcal M-Related Proteins

    PubMed Central

    Niedermeyer, Shannon E.; Agbaosi, Tina; Hysmith, Nicholas D.; Penfound, Thomas A.; Hohn, Claudia M.; Pullen, Matthew; Bright, Michael I.; Murrell, Daniel S.; Shenep, Lori E.; Courtney, Harry S.

    2015-01-01

    Many previous studies have focused on the surface M proteins of group A streptococci (GAS) as virulence determinants and protective antigens. However, the majority of GAS isolates express M-related protein (Mrp) in addition to M protein, and both have been shown to be required for optimal virulence. In the current study, we evaluated the protective immunogenicity of Mrp to determine its potential as a vaccine component that may broaden the coverage of M protein-based vaccines. Sequence analyses of 33 mrp genes indicated that there are three families of structurally related Mrps (MrpI, MrpII, and MrpIII). N-terminal peptides of Mrps were cloned, expressed, and purified from M type 2 (M2) (MrpI), M4 (MrpII), and M49 (MrpIII) GAS. Rabbit antisera against the Mrps reacted at high titers with the homologous Mrp, as determined by enzyme-linked immunosorbent assay, and promoted bactericidal activity against GAS emm types expressing Mrps within the same family. Mice passively immunized with rabbit antisera against MrpII were protected against challenge infections with M28 GAS. Assays for Mrp antibodies in serum samples from 281 pediatric subjects aged 2 to 16 indicated that the Mrp immune response correlated with increasing age of the subjects. Affinity-purified human Mrp antibodies promoted bactericidal activity against a number of GAS representing different emm types that expressed an Mrp within the same family but showed no activity against emm types expressing an Mrp from a different family. Our results indicate that Mrps have semiconserved N-terminal sequences that contain bactericidal epitopes which are immunogenic in humans. These findings may have direct implications for the development of GAS vaccines. PMID:25630406

  7. Immunogenicity of therapeutics: a matter of efficacy and safety.

    PubMed

    Nechansky, Andreas; Kircheis, Ralf

    2010-11-01

    The unwanted immunogenicity of therapeutic proteins is a major concern regarding patient safety. Furthermore, pharmacokinetic, pharmacodynamic and clinical efficacy can be seriously affected by the immunogenicity of therapeutic proteins. Authorities have fully recognized this issue and demand appropriate and well-characterized assays to detect anti-drug antibodies (ADAs). We provide an overview of the immunogenicity topic in general, the regulatory background and insight into underlying immunological mechanisms and the limited ability to predict clinical immunogenicity a priori. Furthermore, we comment on the analytical testing approach and the status-quo of appropriate method validation. The review provides insight regarding the analytical approach that is expected by regulatory authorities overseeing immunogenicity testing requirements. Additionally, the factors influencing immunogenicity are summarized and key references regarding immunogenicity testing approaches and method validation are discussed. The unwanted immunogenicity of protein therapeutics is of major concern because of its potential to affect patient safety and drug efficacy. Analytical testing is sophisticated and requires more than one assay. Because immunogenicity in humans is hardly predictable, assay development has to start in a timely fashion and for clinical studies immunogenicity assay validation is mandatory prior to analyzing patient serum samples. Regarding ADAs, the question remains as to when such antibodies are regarded of clinical relevance and what levels are, if at all, acceptable. In summary, the detection of ADAs should raise the awareness of the physician concerning patient safety and of the sponsor/manufacture concerning the immunogenic potential of the drug product.

  8. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins

    PubMed Central

    Teodorowicz, Malgorzata; van Neerven, Joost

    2017-01-01

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers’ choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins. PMID:28777346

  9. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins.

    PubMed

    Teodorowicz, Malgorzata; van Neerven, Joost; Savelkoul, Huub

    2017-08-04

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers' choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins.

  10. Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins

    USDA-ARS?s Scientific Manuscript database

    Classical swine fever virus (CSFV) harbors three envelope glycoproteins (E(rns), E1 and E2). Previous studies have demonstrated that removal of specific glycosylation sites within these proteins yielded attenuated and immunogenic CSFV mutants. Here we analyzed the effects of lack of glycosylation of...

  11. Approaches to Mitigate the Unwanted Immunogenicity of Therapeutic Proteins during Drug Development.

    PubMed

    Salazar-Fontana, Laura I; Desai, Dharmesh D; Khan, Tarik A; Pillutla, Renuka C; Prior, Sandra; Ramakrishnan, Radha; Schneider, Jennifer; Joseph, Alexandra

    2017-03-01

    All biotherapeutics have the potential to induce an immune response. This immunological response is complex and, in addition to antibody formation, involves T cell activation and innate immune responses that could contribute to adverse effects. Integrated immunogenicity data analysis is crucial to understanding the possible clinical consequences of anti-drug antibody (ADA) responses. Because patient- and product-related factors can influence the immunogenicity of a therapeutic protein, a risk-based approach is recommended and followed by most drug developers to provide insight over the potential harm of unwanted ADA responses. This paper examines mitigation strategies currently implemented and novel under investigation approaches used by drug developers. The review describes immunomodulatory regimens used in the clinic to mitigate deleterious ADA responses to replacement therapies for deficiency syndromes, such as hemophilia A and B, and high risk classical infantile Pompe patients (e.g., cyclophosphamide, methotrexate, rituximab); novel in silico and in vitro prediction tools used to select candidates based on their immunogenicity potential (e.g., anti-CD52 antibody primary sequence and IFN beta-1a formulation); in vitro generation of tolerogenic antigen-presenting cells (APCs) to reduce ADA responses to factor VIII and IX in murine models of hemophilia; and selection of novel delivery systems to reduce in vivo ADA responses to highly immunogenic biotherapeutics (e.g., asparaginase). We conclude that mitigation strategies should be considered early in development for biotherapeutics based on our knowledge of existing clinical data for biotherapeutics and the immune response involved in the generation of these ADAs.

  12. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice.

    PubMed

    Magnusson, Sofia E; Altenburg, Arwen F; Bengtsson, Karin Lövgren; Bosman, Fons; de Vries, Rory D; Rimmelzwaan, Guus F; Stertman, Linda

    2018-04-01

    Influenza viruses continuously circulate in the human population and escape recognition by virus neutralizing antibodies induced by prior infection or vaccination through accumulation of mutations in the surface proteins hemagglutinin (HA) and neuraminidase (NA). Various strategies to develop a vaccine that provides broad protection against different influenza A viruses are under investigation, including use of recombinant (r) viral vectors and adjuvants. The replication-deficient modified vaccinia virus Ankara (MVA) is a promising vaccine vector that efficiently induces B and T cell responses specific for the antigen of interest. It is assumed that live vaccine vectors do not require an adjuvant to be immunogenic as the vector already mediates recruitment and activation of immune cells. To address this topic, BALB/c mice were vaccinated with either protein- or rMVA-based HA influenza vaccines, formulated with or without the saponin-based Matrix-M™ adjuvant. Co-formulation with Matrix-M significantly increased HA vaccine immunogenicity, resulting in antigen-specific humoral and cellular immune responses comparable to those induced by unadjuvanted rMVA-HA. Of special interest, rMVA-HA immunogenicity was also enhanced by addition of Matrix-M, demonstrated by enhanced HA inhibition antibody titres and cellular immune responses. Matrix-M added to either protein- or rMVA-based HA vaccines mediated recruitment and activation of antigen-presenting cells and lymphocytes to the draining lymph node 24 and 48 h post-vaccination. Taken together, these results suggest that adjuvants can be used not only with protein-based vaccines but also in combination with rMVA to increase vaccine immunogenicity, which may be a step forward to generate new and more effective influenza vaccines.

  13. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins.

    PubMed

    Gcebe, Nomakorinte; Michel, Anita; Gey van Pittius, Nicolaas C; Rutten, Victor

    2016-01-01

    identified a total of 609 proteins in the six PPDs and 22 of these were identified as shared between PPD of M.bovis and one or more of the NTM PPDs. Previously characterized M tuberculosis/M. bovis homologous immunogenic proteins detected in one or more of the nonpathogenic NTM in this study included CFP-10 (detected in M. malmesburii sp. nov. PPD), GroES (detected in all NTM PPDs but M. malmesburii sp. nov.), DnaK (detected in all NTM PPDs), and GroEL (detected in all NTM PPDs). This study confirms reports that the ESX-1, ESX-3, and ESX-4 regions are ancestral regions and thus found in the genomes of most mycobacteria. Identification of NTM homologs of immunogenic proteins warrants further investigation of their ability to cause cross-reactive immune responses with MTBC antigens.

  14. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Huanyu; Wei, Na; Wang, Qian

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particlesmore » (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.« less

  15. Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in mice with cashew allergy.

    PubMed

    Kulis, Mike; Macqueen, Ian; Li, Yifan; Guo, Rishu; Zhong, Xiao-Ping; Burks, A Wesley

    2012-09-01

    IgE-mediated allergic reactions to cashews and other nuts can trigger life-threatening anaphylaxis. Proactive therapies to decrease reaction severity do not exist. We aimed to determine the efficacy of pepsin-digested cashew proteins used as immunotherapy in a murine model of cashew allergy. Mice were sensitized to cashew and then underwent challenges with digested or native cashew allergens to assess the allergenicity of the protein preparations. Using native or pepsinized cashew proteins, mice underwent oral or intraperitoneal sensitization protocols to determine the immunogenic properties of the protein preparations. Finally, cashew-sensitized mice underwent an immunotherapy protocol with native or pepsinized cashew proteins and subsequent provocation challenges. Pepsinized cashew proteins elicited weaker allergic reactions than native cashew proteins but importantly retained the ability to stimulate cellular proliferation and cytokine production. Mice sensitized with pepsinized proteins reacted on challenge with native allergens, demonstrating that pepsinized allergens retain immunogenicity in vivo. Immunotherapy with pepsinized cashew allergens significantly decreased allergic symptoms and body temperature decrease relative to placebo after challenge with native and pepsinized proteins. Immunologic changes were comparable after immunotherapy with native or pepsinized allergens: T(H)2-type cytokine secretion from splenocytes was decreased, whereas specific IgG(1) and IgG(2a) levels were increased. Pepsinized cashew proteins are effective in treating cashew allergy in mice and appear to work through the same mechanisms as native protein immunotherapy. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats

    PubMed Central

    Rostad, Christina A.; Stobart, Christopher C.; Gilbert, Brian E.; Pickles, Ray J.; Hotard, Anne L.; Meng, Jia; Blanco, Jorge C. G.; Moin, Syed M.; Graham, Barney S.; Piedra, Pedro A.

    2016-01-01

    ABSTRACT Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. IMPORTANCE RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV

  17. Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

    PubMed Central

    Schwarz, Alexandra; Helling, Stefan; Collin, Nicolas; Teixeira, Clarissa R.; Medrano-Mercado, Nora; Hume, Jen C. C.; Assumpção, Teresa C.; Marcus, Katrin; Stephan, Christian; Meyer, Helmut E.; Ribeiro, José M. C.; Billingsley, Peter F.; Valenzuela, Jesus G.; Sternberg, Jeremy M.; Schaub, Günter A.

    2009-01-01

    Background Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. Methodology/Principal Findings T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. Conclusions/Significance The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for

  18. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins

    PubMed Central

    Gcebe, Nomakorinte; Michel, Anita; Gey van Pittius, Nicolaas C.; Rutten, Victor

    2016-01-01

    identified a total of 609 proteins in the six PPDs and 22 of these were identified as shared between PPD of M.bovis and one or more of the NTM PPDs. Previously characterized M tuberculosis/M. bovis homologous immunogenic proteins detected in one or more of the nonpathogenic NTM in this study included CFP-10 (detected in M. malmesburii sp. nov. PPD), GroES (detected in all NTM PPDs but M. malmesburii sp. nov.), DnaK (detected in all NTM PPDs), and GroEL (detected in all NTM PPDs). This study confirms reports that the ESX-1, ESX-3, and ESX-4 regions are ancestral regions and thus found in the genomes of most mycobacteria. Identification of NTM homologs of immunogenic proteins warrants further investigation of their ability to cause cross-reactive immune responses with MTBC antigens. PMID:27375559

  19. Enhancing the Thermostability and Immunogenicity of a Respiratory Syncytial Virus (RSV) Live-Attenuated Vaccine by Incorporating Unique RSV Line19F Protein Residues.

    PubMed

    Rostad, Christina A; Stobart, Christopher C; Todd, Sean O; Molina, Samuel A; Lee, Sujin; Blanco, Jorge C G; Moore, Martin L

    2018-03-15

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, and an effective vaccine is not yet available. We previously generated an RSV live-attenuated vaccine (LAV) candidate, DB1, which was attenuated by a low-fusion subgroup B F protein (BAF) and codon-deoptimized nonstructural protein genes. DB1 was immunogenic and protective in cotton rats but lacked thermostability and stability of the prefusion conformation of F compared to strains with the line19F gene. We hypothesized that substitution of unique residues from the thermostable A2-line19F strain could thermostabilize DB1 and boost its immunogenicity. We therefore substituted 4 unique line19F residues into the BAF protein of DB1 by site-directed mutagenesis and rescued the recombinant virus, DB1-QUAD. Compared to DB1, DB1-QUAD had improved thermostability at 4°C and higher levels of prefusion F as measured by enzyme-linked immunosorbent assays (ELISAs). DB1-QUAD was attenuated in normal human bronchial epithelial cells, in BALB/c mice, and in cotton rats but grew to wild-type titers in Vero cells. In mice, DB1-QUAD was highly immunogenic and generated significantly higher neutralizing antibody titers to a panel of RSV A and B strains than did DB1. DB1-QUAD was also efficacious against wild-type RSV challenge in mice and cotton rats. Thus, substitution of unique line19F residues into RSV LAV DB1 enhanced vaccine thermostability, incorporation of prefusion F, and immunogenicity and generated a promising vaccine candidate that merits further investigation. IMPORTANCE We boosted the thermostability and immunogenicity of an RSV live-attenuated vaccine candidate by substituting 4 unique residues from the RSV line19F protein into the F protein of the heterologous vaccine strain DB1. The resultant vaccine candidate, DB1-QUAD, was thermostable, attenuated in vivo , highly immunogenic, and protective against RSV challenge in mice and cotton rats. Copyright © 2018

  20. Using Fitness Landscapes for Rational Hepatitis C Immunogen Design

    NASA Astrophysics Data System (ADS)

    Hart, Gregory; Ferguson, Andrew

    2015-03-01

    Hepatitis C virus afflicts 170 million people worldwide, 2-3% of the global population. Prophylactic vaccination offers the most realistic and cost effective hope of controlling this epidemic, particularly in the developing world where expensive drug therapies are unavailable. Despite 20 years of research, the high mutability of the virus, and lack of knowledge of what constitutes effective immune responses, have impeded development of an effective vaccine. Coupling data mining of sequence databases with the Potts model, we have developed a computational approach to systematically identify viral vulnerabilities and perform rational design of vaccine immunogens. We applied our approach to the nonstructural proteins NS3, NSA, NSA, and NSB which are crucial for viral replication.The predictions of our model are in good accord with experimental measurements and clinical observations, and we have used our model to design immunogen candidates to elicit T-cell responses against vulnerable regions of theseviral proteins.

  1. EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.

    PubMed

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E; Bailey-Kellogg, Chris

    2017-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein

  2. EpiSweep: Computationally-driven Reengineering of Therapeutic Proteins to Reduce immunogenicity while Maintaining Function

    PubMed Central

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E.; Bailey-Kellogg, Chris

    2016-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics renders them subject to immune surveillance within the patient’s body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity. To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure- based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new

  3. The Optimisation of the Expression of Recombinant Surface Immunogenic Protein of Group B Streptococcus in Escherichia coli by Response Surface Methodology Improves Humoral Immunity.

    PubMed

    Díaz-Dinamarca, Diego A; Jerias, José I; Soto, Daniel A; Soto, Jorge A; Díaz, Natalia V; Leyton, Yessica Y; Villegas, Rodrigo A; Kalergis, Alexis M; Vásquez, Abel E

    2018-03-01

    Group B Streptococcus (GBS) is the leading cause of neonatal meningitis and a common pathogen in livestock and aquaculture industries around the world. Conjugate polysaccharide and protein-based vaccines are under development. The surface immunogenic protein (SIP) is a conserved protein in all GBS serotypes and has been shown to be a good target for vaccine development. The expression of recombinant proteins in Escherichia coli cells has been shown to be useful in the development of vaccines, and the protein purification is a factor affecting their immunogenicity. The response surface methodology (RSM) and Box-Behnken design can optimise the performance in the expression of recombinant proteins. However, the biological effect in mice immunised with an immunogenic protein that is optimised by RSM and purified by low-affinity chromatography is unknown. In this study, we used RSM for the optimisation of the expression of the rSIP, and we evaluated the SIP-specific humoral response and the property to decrease the GBS colonisation in the vaginal tract in female mice. It was observed by NI-NTA chromatography that the RSM increases the yield in the expression of rSIP, generating a better purification process. This improvement in rSIP purification suggests a better induction of IgG anti-SIP immune response and a positive effect in the decreased GBS intravaginal colonisation. The RSM applied to optimise the expression of recombinant proteins with immunogenic capacity is an interesting alternative in the evaluation of vaccines in preclinical phase, which could improve their immune response.

  4. Vaccination Against Whipworm: Identification of Potential Immunogenic Proteins in Trichuris muris Excretory/Secretory Material.

    PubMed

    Shears, Rebecca K; Bancroft, Allison J; Sharpe, Catherine; Grencis, Richard K; Thornton, David J

    2018-03-14

    Trichuris trichiura (whipworm) is one of the four major soil-transmitted helminth infections of man, affecting an estimated 465 million people worldwide. An effective vaccine that induces long-lasting protective immunity against T. trichiura would alleviate the morbidity associated with this intestinal-dwelling parasite, however the lack of known host protective antigens has hindered vaccine development. Here, we show that vaccination with ES products stimulates long-lasting protection against chronic infection in male C57BL/6 mice. We also provide a framework for the identification of immunogenic proteins within T. muris ES, and identify eleven candidates with direct homologues in T. trichiura that warrant further study. Given the extensive homology between T. muris and T. trichiura at both the genomic and transcriptomic levels, this work has the potential to advance vaccine design for T. trichiura.

  5. Applying biotin-streptavidin binding for iscom (immunostimulating complex) association of recombinant immunogens.

    PubMed

    Wikman, Maria; Friedman, Mikaela; Pinitkiatisakul, Sunan; Hemphill, Andrew; Lövgren-Bengtsson, Karin; Lundén, Anna; Ståhl, Stefan

    2005-04-01

    We have previously reported strategies for Escherichia coli production of recombinant immunogens fused to hydrophobic peptide or lipid tags to improve their capacity to be incorporated into an adjuvant formulation. In the present study, we have explored the strong interaction between biotin and SA (streptavidin) (K(D) approximately 10(-15) M) to couple recombinant immunogens to iscoms (immunostimulating complexes). Two different concepts were evaluated. In the first concept, a His(6)-tagged SA fusion protein (His(6)-SA) was bound to Ni(2+)-loaded iscom matrix (iscom without associated protein), and biotinylated immunogens were thereafter associated with the SA-coated iscoms. The immunogens were either biotinylated in vivo on E. coli expression or double biotinylated in vivo and in vitro. In the second concept, the recombinant immunogens were expressed as SA fusion proteins, which were directly bound to a biotinylated iscom matrix. A 53-amino-acid malaria peptide (M5), derived from the central repeat region of the Plasmodium falciparum blood-stage antigen Pf155/RESA, and a 232-amino-acid segment (SRS2') from the central region (from Pro-97 to Lys-328) of the major surface antigen NcSRS2 of the protozoan parasite Neospora caninum, served as model immunogens in the present study. All fusion proteins generated were found to be efficiently expressed and could be recovered to high purity using affinity chromatography. The association between the different immunogen-containing fusion proteins and the corresponding iscom matrix was demonstrated by analytical ultracentrifugation in a sucrose density gradient. However, some fusion proteins were, to a certain extent, also found to associate unspecifically with a regular iscom matrix. Furthermore, selected iscom fractions were demonstrated to induce high-titre antigen-specific antibody responses on immunization of mice. For the particular target immunogen SRS2', the induced antibodies demonstrated reactivity to the native

  6. A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats.

    PubMed

    Rostad, Christina A; Stobart, Christopher C; Gilbert, Brian E; Pickles, Ray J; Hotard, Anne L; Meng, Jia; Blanco, Jorge C G; Moin, Syed M; Graham, Barney S; Piedra, Pedro A; Moore, Martin L

    2016-08-15

    Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by

  7. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity

    PubMed Central

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane. PMID:19531344

  8. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity.

    PubMed

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane.

  9. In vivo screen of genetically conserved Streptococcus pneumoniae proteins for protective immunogenicity.

    PubMed

    Anderson, Richard J; Guru, Siradanahalli; Weeratna, Risini; Makinen, Shawn; Falconer, Derek J; Sheppard, Neil C; Lang, Susanne; Chang, Bingsheng; Goenaga, Anne-Laure; Green, Bruce A; Merson, James R; Gracheck, Stephen J; Eyles, Jim E

    2016-12-07

    We evaluated 52 different E. coli expressed pneumococcal proteins as immunogens in a BALB/c mouse model of S. pneumoniae lung infection. Proteins were selected based on genetic conservation across disease-causing serotypes and bioinformatic prediction of antibody binding to the target antigen. Seven proteins induced protective responses, in terms of reduced lung burdens of the serotype 3 pneumococci. Three of the protective proteins were histidine triad protein family members (PhtB, PhtD and PhtE). Four other proteins, all bearing LPXTG linkage domains, also had activity in this model (PrtA, NanA, PavB and Eng). PrtA, NanA and Eng were also protective in a CBA/N mouse model of lethal pneumococcal infection. Despite data inferring widespread genomic conservation, flow-cytometer based antisera binding studies confirmed variable levels of antigen expression across a panel of pneumococcal serotypes. Finally, BALB/c mice were immunized and intranasally challenged with a viulent serotype 8 strain, to help understand the breadth of protection. Those mouse studies reaffirmed the effectiveness of the histidine triad protein grouping and a single LPXTG protein, PrtA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Recombinant VP1 protein of duck hepatitis virus 1 expressed in Pichia pastoris and its immunogenicity in ducks.

    PubMed

    Wang, C; Li, X K; Wu, T C; Wang, Y; Zhang, C J; Cheng, X C; Chen, P Y

    2014-01-01

    The VP1 gene of duck hepatitis virus type 1 (DHV-1) strain VJ09 was amplified by reverse transcription PCR from the liver of a duckling with clinical symptoms of viral hepatitis. The resulting VP1 cDNA was 720 bp in length and encoded a 240-amino-acid protein. In VP1 gene-based phylogenetic analysis, the VJ09 strain grouped with DHV-1 genotype C. The VP1 gene was inserted into the expression vector pPICZαA and expressed in Pichia pastoris. The expressed VP1 protein was purified and identified by western blot analysis. To evaluate the recombinant VP1's immunogenic potential in ducklings, the antibodies raised in the immunized ducklings were titrated by ELISA, and lymphocyte proliferation and virus neutralization assays were performed. The results show that the recombinant VP1 protein induced a significant immune response in ducklings and this could be a candidate for the development of a subunit vaccine against DHV-1 genotype C.

  11. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system

    PubMed Central

    Costa, Sofia; Almeida, André; Castro, António; Domingues, Lucília

    2014-01-01

    Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide’s immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system. PMID:24600443

  12. Immunoreactive Coxiella burnetii Nine Mile proteins separated by 2D electrophoresis and identified by tandem mass spectrometry

    PubMed Central

    Deringer, James R.; Chen, Chen; Samuel, James E.; Brown, Wendy C.

    2011-01-01

    Coxiella burnetii is a Gram-negative obligate intracellular pathogen and the causative agent of Q fever in humans. Q fever causes acute flu-like symptoms and may develop into a chronic disease leading to endocarditis. Its potential as a bioweapon has led to its classification as a category B select agent. An effective inactivated whole-cell vaccine (WCV) currently exists but causes severe granulomatous/necrotizing reactions in individuals with prior exposure, and is not licensed for use in most countries. Current efforts to reduce or eliminate the deleterious reactions associated with WCVs have focused on identifying potential subunit vaccine candidates. Both humoral and T cell-mediated responses are required for protection in animal models. In this study, nine novel immunogenic C. burnetii proteins were identified in extracted whole-cell lysates using 2D electrophoresis, immunoblotting with immune guinea pig sera, and tandem MS. The immunogenic C. burnetii proteins elicited antigen-specific IgG in guinea pigs vaccinated with whole-cell killed Nine Mile phase I vaccine, suggesting a T cell-dependent response. Eleven additional proteins previously shown to react with immune human sera were also antigenic in guinea pigs, showing the relevance of the guinea pig immunization model for antigen discovery. The antigens described here warrant further investigation to validate their potential use as subunit vaccine candidates. PMID:21030434

  13. Safety, reactogenicity and immunogenicity of a booster dose of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) in Malian children.

    PubMed

    Dicko, Alassane; Santara, Gaoussou; Mahamar, Almahamoudou; Sidibe, Youssoufa; Barry, Amadou; Dicko, Yahia; Diallo, Aminata; Dolo, Amagana; Doumbo, Ogobara; Shafi, Fakrudeen; François, Nancy; Strezova, Ana; Borys, Dorota; Schuerman, Lode

    2013-02-01

    Primary vaccination with the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) was previously shown to be immunogenic and well tolerated in Malian children. Data on booster vaccination with a fourth consecutive dose of PHiD-CV are available for Europe, Asia and Latin America but are lacking for Africa. The present study evaluated further the safety, reactogenicity and immunogenicity of a fourth consecutive (booster) dose of PHiD-CV. Low incidences of AEs with grade 3 intensity (2.1% of subjects) were observed. There were no reports of large swelling reactions and serious adverse events. One month post-booster vaccination, for each vaccine pneumococcal serotype, at least 97.8% of subjects had antibody concentrations ≥ 0.2 μg/ml, and at least 97.1% of subjects had opsonophagocytic activity ≥ 8. From pre- to post-booster, a 12.3-fold increase in anti-protein D geometric mean concentration was observed. This phase III, open-label study was conducted in Ouelessebougou, Mali, between November 2009 and June 2010. The study population consisted of Malian children previously primed (3 doses) with PHiD-CV in study NCT00678301 receiving a fourth consecutive (booster) dose of PHiD-CV in the second year of life. The incidences of adverse events (AEs) with grade 3 intensity (primary objective) or of any intensity (secondary objective), and the immunogenicity (secondary objective) of the PHiD-CV booster dose were assessed. A booster dose of PHiD-CV was well tolerated when administered to Malian children in the second year of life and was highly immunogenic for all 10 vaccine pneumococcal serotypes and NTHi protein D. (ClinicalTrials.gov identifier: NCT00985465).

  14. Immunogenicity of biologic therapies: causes and consequences.

    PubMed

    Boehncke, Wolf-Henning; Brembilla, Nicolo Costantino

    2018-04-25

    Antibodies or fusion proteins termed biologics allow the targeted therapy of diseases. Many of these agents have proven superior efficacy and safety to conventional therapies, and subsequently revolutionized the management of numerous chronic diseases. Repetitive administration of these protein-based therapeutics to immunocompetent patients elicit immune responses in the form of Anti Drug Antibodies (ADAs), which in turn impact their pharmacological properties and may trigger adverse events. Areas covered: Structural characteristics determining the immunogenicity of biologics are reviewed along with strategies to minimize it. Next, the different types of treatment-emerging ADAs, their potential clinical implications, and assays to detect them are addressed. Emphasis is put on the review of data on the immunogenicity of different types of biologics across numerous indications. Finally, practical considerations are discussed on how to manage patients with issues around the immunogenicity of their biologic treatment. Expert commentary: Immunogenicity is a clinically relevant criterion when selecting a biologic. Besides intrinsic properties of the agent (namely its structure), its respective mode of action, dosing regimen, comedication, and the indication treated must be considered. ADA detection assays need to be standardized to improve comparability of available data and to allow clinical decision-making.

  15. Identification of Novel Immunogenic Proteins from Mycoplasma bovis and Establishment of an Indirect ELISA Based on Recombinant E1 Beta Subunit of the Pyruvate Dehydrogenase Complex

    PubMed Central

    Wei, Kai; Zhang, Haiyan; Zhang, Yuewei; Xu, Jian; Jiang, Fei; Liu, Xu; Xu, Wei; Wu, Wenxue

    2014-01-01

    The pathogen Mycoplasma bovis (M. bovis) is a major cause of respiratory disease, mastitis, and arthritis in cattle. Screening the key immunogenic proteins and updating rapid diagnostic techniques are necessary to the prevention and control of M. bovis infection. In this study, 19 highly immunogenic proteins from M. bovis strain PD were identified using 2-dimensional gel electrophoresis, immunoblotting and MALDI-TOF/TOF MS. Of these 19 proteins, pyruvate dehydrogenase E1 component beta subunit (PDHB) showed excellent immune reactivity and repeatability. PDHB was found to be conserved in different M. bovis isolates, as indicated by Western blot analysis. On the basis of these results, a rPDHB-based indirect ELISA (iELISA) was established for the detection of serum antibodies using prokaryotically expressed recombinant PDHB protein as the coating antigen. The specificity analysis result showed that rPDHB-based iELISA did not react with other pathogens assessed in our study except M. agalactiae (which infects sheep and goats). Moreover, 358 serum samples from several disease-affected cattle feedlots were tested using this iELISA system and a commercial kit, which gave positive rates of 50.8% and 39.9%, respectively. The estimated Kappa agreement coefficient between the two methods was 0.783. Notably, 39 positive serum samples that had been missed by the commercial kit were all found to be positive by Western blot analysis. The detection rate of rPDHB-based iELISA was significantly higher than that of the commercial kit at a serum dilution ratio of 1∶5120 to 1∶10,240 (P<0.05). Taken together, these results provide important information regarding the novel immunogenic proteins of M. bovis. The established rPDHB-based iELISA may be suitable for use as a new method of antibody detection in M. bovis. PMID:24520369

  16. A Novel Immunogenic Spore Coat-Associated Protein in Bacillus Anthracis: Characterization via Proteomics Approaches and a Vector-Based Vaccine System

    PubMed Central

    Liu, Yu-Tsueng; Lin, Shwu-Bin; Huang, Cheng-Po; Huang, Chun-Ming

    2007-01-01

    New generation anthrax vaccines have been actively explored with the aim of enhancing efficacies and decreasing undesirable side effects that could be caused by licensed vaccines. Targeting novel antigens and/or eliminating the requirements for multiple needle injections and adjuvants are major objectives in the development of new anthrax vaccines. Using proteomics approaches, we identified a spore coat-associated protein (SCAP) in Bacillus anthracis. An E. coli vector-based vaccine system was used to determine the immunogenicity of SCAP. Mice generated detectable SCAP antibodies three weeks after intranasal immunization with an intact particle of ultraviolet (UV)-irradiated E. coli vector overproducing SCAP. The production of SCAP antibodies was detected via western blotting and SCAP-spotted antigen-arrays. The adjuvant effect of a UV-irradiated E. coli vector eliminates the necessity of boosting and the use of other immunomodulators which will foster the screening and manufacturing of new generation anthrax vaccines. More importantly, the immunogenic SCAP may potentially be a new candidate for the development of anthrax vaccines. PMID:18029197

  17. Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination.

    PubMed

    Michel, Nico; Osen, Wolfram; Gissmann, Lutz; Schumacher, Ton N M; Zentgraf, Hanswalter; Müller, Martin

    2002-03-01

    DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. For immunotherapy of HPV-16-associated diseases the E7 protein is considered a prime candidate, as it is expressed in all HPV-16-positive tumors. Unfortunately, the E7 protein is a very poor inducer of a cytotoxic T-cell response, when being used as antigen in DNA vaccination. Here we demonstrate that after fusion to protein export/import signals such as the herpes simplex virus ferry protein VP22, E7 can translocate in vitro from VP22-E7-expressing cells to neighboring cells that do not carry the VP22-E7 gene. In vivo, the VP22-E7 fusion shows significantly increased efficiency in inducing a cytotoxic T-cell response. Our data suggest that the export function of VP22 plays a major role in this phenomenon, since VP22 can be replaced by classical protein export signals, without impairing the induction of the E7-specific cellular immune response. However, all E7 fusion constructs showed significantly elevated protein steady-state levels, which might also account for the observed boost in immunogenicity. (C)2002 Elsevier Science (USA).

  18. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    PubMed Central

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies. PMID:28574434

  19. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immunogenic proteins for humans.

    PubMed

    Abdeladhim, Maha; Jochim, Ryan C; Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M C; Valenzuela, Jesus G

    2012-01-01

    Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.

  20. Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY

    PubMed Central

    2010-01-01

    Background Porphyromonas gingivalis is a major etiological agent of chronic periodontitis. The aim of this study was to examine the species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of the P. gingivalis heme-binding protein HmuY. Results HmuY is a unique protein of P. gingivalis since only low amino-acid sequence homology has been found to proteins encoded in other species. It is exposed on the cell surface and highly abundant in the outer membrane of the cell, in outer-membrane vesicles, and is released into culture medium in a soluble form. The protein is produced constitutively at low levels in bacteria grown under high-iron/heme conditions and at higher levels in bacteria growing under the low-iron/heme conditions typical of dental plaque. HmuY is immunogenic and elicits high IgG antibody titers in rabbits. It is also engaged in homotypic biofilm formation by P. gingivalis. Anti-HmuY antibodies exhibit inhibitory activity against P. gingivalis growth and biofilm formation. Conclusions Here it is demonstrated that HmuY may play a significant role not only in heme acquisition, but also in biofilm accumulation on abiotic surfaces. The data also suggest that HmuY, as a surface-exposed protein, would be available for recognition by the immune response during chronic periodontitis and the production of anti-HmuY antibodies may inhibit biofilm formation. PMID:20438645

  1. Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products.

    PubMed

    Yin, Liusong; Chen, Xiaoying; Vicini, Paolo; Rup, Bonita; Hickling, Timothy P

    2015-06-01

    Therapeutic protein products (TPPs) are of considerable value in the treatment of a variety of diseases, including cancer, hemophilia, and autoimmune diseases. The success of TPP mainly results from prolonged half-life, increased target specificity and decreased intrinsic toxicity compared with small molecule drugs. However, unwanted immune responses against TPP, such as generation of anti-drug antibody, can impact both drug efficacy and patient safety, which has led to requirements for increased monitoring in regulatory studies and clinical practice, termination of drug development, or even withdrawal of marketed products. We present an overview of current knowledge on immunogenicity of TPP and its impact on efficacy and safety. We also discuss methods for measurement and prediction of immunogenicity and review both product-related and patient-related risk factors that affect its development, and efforts that may be taken to mitigate it. Lastly, we discuss gaps in knowledge and technology and what is needed to fill these. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose.

    PubMed

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Influence of protein fold stability on immunogenicity and its implications for vaccine design

    PubMed Central

    Scheiblhofer, Sandra; Laimer, Josef; Machado, Yoan; Weiss, Richard; Thalhamer, Josef

    2017-01-01

    ABSTRACT Introduction: In modern vaccinology and immunotherapy, recombinant proteins more and more replace whole organisms to induce protective or curative immune responses. Structural stability of proteins is of crucial importance for efficient presentation of antigenic peptides on MHC, which plays a decisive role for triggering strong immune reactions. Areas covered: In this review, we discuss structural stability as a key factor for modulating the potency of recombinant vaccines and its importance for antigen proteolysis, presentation, and stimulation of B and T cells. Moreover, the impact of fold stability on downstream events determining the differentiation of T cells into effector cells is reviewed. We summarize studies investigating the impact of protein fold stability on the outcome of the immune response and provide an overview on computational methods to estimate the effects of point mutations on protein stability. Expert commentary: Based on this information, the rational design of up-to-date vaccines is discussed. A model for predicting immunogenicity of proteins based on their conformational stability at different pH values is proposed. PMID:28290225

  4. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: a phase I/II randomized clinical study.

    PubMed

    Leroux-Roels, Geert; Maes, Cathy; De Boever, Fien; Traskine, Magali; Rüggeberg, Jens U; Borys, Dorota

    2014-11-28

    New vaccines containing highly conserved Streptococcus pneumoniae proteins such as pneumolysin toxoid (dPly) and histidine-triad protein D (PhtD) are being developed to provide broader protection against pneumococcal disease. This study evaluated the safety, reactogenicity and immunogenicity of different pneumococcal protein-containing formulations in adults. In a phase I double-blind study (www.clinicaltrials.gov: NCT00707798), healthy adults (18-40 years) were randomized (1:2:2:2:2:2:2) to receive two doses of one of six investigational vaccine formulations 2 months apart, or a single dose of the control 23-valent pneumococcal polysaccharide vaccine (23PPV; Pneumovax23™, Sanofi Pasteur MSD) followed by placebo. The investigational formulations contained dPly alone (10 or 30 μg), or both dPly and PhtD (10 or 30 μg each) alone or combined with the polysaccharide conjugates of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV; Synflorix™, GlaxoSmithKline Vaccines). Two groups primed with a formulation containing dPly and PhtD (10 or 30 μg each) continued to the follow-up phase II study (NCT00896064), in which they received a booster dose at 5-9 months after primary vaccination. Of 156 enrolled and vaccinated adults, 146 completed the primary immunization and 43 adults received a booster dose. During primary and booster vaccination, for any formulation, ≤ 8.9% of doses were followed by grade 3 solicited local or general adverse events. No fever >39.5°C (oral temperature) was reported. Unsolicited adverse events considered causally related to vaccination were reported following ≤ 33.3% of investigational vaccine doses. No serious adverse events were reported for adults receiving investigational vaccine formulations. Formulations containing dPly with or without PhtD were immunogenic for these antigens; polysaccharide conjugate-containing formulations were also immunogenic for those 10 polysaccharides

  5. Safety and immunogenicity of pneumococcal protein vaccine candidates: monovalent choline-binding protein A (PcpA) vaccine and bivalent PcpA-pneumococcal histidine triad protein D vaccine.

    PubMed

    Bologa, Monica; Kamtchoua, Thierry; Hopfer, Robert; Sheng, Xiaohua; Hicks, Bryony; Bixler, Garvin; Hou, Victor; Pehlic, Vildana; Yuan, Tao; Gurunathan, Sanjay

    2012-12-14

    Pneumococcal vaccines based on protein antigens may provide expanded protection against Streptococcus pneumoniae. To evaluate safety and immunogenicity in adults of pneumococcal vaccine candidates comprising S. pneumoniae pneumococcal histidine triad protein D (PhtD) and pneumococcal choline-binding protein A (PcpA) in monovalent and bivalent formulations. This was a phase I, randomized, observer-blinded, placebo-controlled, step-wise dose-escalation study. Following a pilot safety study in which participants received one intramuscular injection of either aluminum hydroxide (AH)-adjuvanted PcpA (25 μg) or PhtD-PcpA (10 μg each), participants in the main study received AH-adjuvanted PcpA (25 μg), AH-adjuvanted PhtD-PcpA (10, 25, or 50 μg each), unadjuvanted PhtD-PcpA (25 μg each), or placebo as 2 injections 30 days apart. Assignment of successive dose cohorts was made after blinded safety reviews after each dose level. Safety endpoints included rates of solicited injection site and systemic reactions, unsolicited adverse events (AEs), serious AEs (SAEs), and safety laboratory tests. Immunogenicity endpoints included levels of anti-PhtD and anti-PcpA antibodies (ELISA). Six adults 18-50 years of age were included in the pilot study and 125 in the main study. No obvious increases in solicited reactions or unsolicited AEs were reported with escalating doses (adjuvanted vaccine) after either injection, or with repeated administration. Adjuvanted vaccine candidates were associated with a higher incidence of solicited reactions (particularly injection site reactions) than unadjuvanted vaccine candidates. However, no SAE or discontinuation due to an AE occurred. Geometric mean concentrations of anti-PhtD IgG and anti-PcpA IgG increased significantly after injection 2 compared with injection 1 at each dose level. No enhancement of immune responses was shown with adjuvanted vaccine candidates compared with the unadjuvanted vaccine candidate. In the dose

  6. Updating the Salivary Gland Transcriptome of Phlebotomus papatasi (Tunisian Strain): The Search for Sand Fly-Secreted Immunogenic Proteins for Humans

    PubMed Central

    Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M. C.; Valenzuela, Jesus G.

    2012-01-01

    Introduction Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi–a model sand fly for Leishmania-vector-host molecular interactions–is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. Methods and Findings A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Conclusions Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas. PMID:23139741

  7. Generation of the bovine viral diarrhea virus e0 protein in transgenic astragalus and its immunogenicity in sika deer.

    PubMed

    Gao, Yugang; Zhao, Xueliang; Zang, Pu; Liu, Qun; Wei, Gongqing; Zhang, Lianxue

    2014-01-01

    The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR), transcription was verified by reverse transcription- (RT-) PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine.

  8. Generation of the Bovine Viral Diarrhea Virus E0 Protein in Transgenic Astragalus and Its Immunogenicity in Sika Deer

    PubMed Central

    Gao, Yugang; Zang, Pu; Liu, Qun; Wei, Gongqing

    2014-01-01

    The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR), transcription was verified by reverse transcription- (RT-) PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine. PMID:24963321

  9. Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost

    PubMed Central

    Hulot, Sandrine L.; Korber, Bette; Giorgi, Elena E.; Vandergrift, Nathan; Saunders, Kevin O.; Balachandran, Harikrishnan; Mach, Linh V.; Lifton, Michelle A.; Pantaleo, Giuseppe; Tartaglia, Jim; Phogat, Sanjay; Jacobs, Bertram; Kibler, Karen; Perdiguero, Beatriz; Gomez, Carmen E.; Esteban, Mariano; Rosati, Margherita; Felber, Barbara K.; Pavlakis, George N.; Parks, Robert; Lloyd, Krissey; Sutherland, Laura; Scearce, Richard; Letvin, Norman L.; Seaman, Michael S.; Alam, S. Munir; Montefiori, David; Liao, Hua-Xin; Haynes, Barton F.

    2015-01-01

    ABSTRACT An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4+ and CD8+ T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1

  10. Immunogenicity of Japanese encephalitis virus envelope protein by Hyphantria cunea nuclear polyhedrosis virus vector in guinea pig.

    PubMed

    Lee, Hyung-Hoan; Hong, Seung-Kuk; Yoon, Sang-Ho; Jang, Sung-Jae; Bahk, Young-Yil; Song, Min-Dong; Park, Pyo-Jam; Lee, Kwang-Ho; Kim, Chan-Gil; Kim, Bokyung; Park, Tae-Kyu; Kang, Hyun

    2012-05-01

    Japanese encephalitis virus (JEV) is an important pathogen causing febrile syndrome, encephalitis, and death. Envelop (E) glycoprotein is the major target of inducing neutralizing antibodies and protective immunity in host. In this study, E glycoprotein of JEV was expressed in Spodoptera frugiperd 9 cells as a fusion protein containing a gX signal sequence of pseudorabies virus. This purified HcE recombinant protein was evaluated for their immunogenicity and protective efficacy in guinea pig. The survival rates of guinea pig immunized with HcE protein was significantly increased over that of JE vaccine. This result indicates helpful information for developing a subunit vaccine against JEV.

  11. Immunogenicity of variable regions of hepatitis C virus proteins: selection and modification of peptide epitopes to assess hepatitis C virus genotypes by ELISA.

    PubMed

    Rodríguez-López, M; Riezu-Boj, J I; Ruiz, M; Berasain, C; Civeira, M P; Prieto, J; Borrás-Cuesta, F

    1999-03-01

    The immunogenicity of variable regions of hepatitis C virus (HCV) proteins was studied by ELISA by using 543 synthetic peptides from 120 variable regions and 90 sera from HCV-infected patients. Some regions from certain genotypes were less immunogenic, or even non-immunogenic, compared with their equivalents in other genotypes. However, the mean recognition of all peptides from genotypes 1a, 1b and 3 by sera infected with genotypes 1a, 1b and 3, respectively, showed no significant differences, suggesting a similar overall immunogenicity of variable regions from these genotypes. Proteins NS4a, NS4b and NS5a were found to be the most immunogenic. Recognition of individual peptides by the sera of infected patients showed that the humoral response against HCV is patient-dependent. The work shows that 15-mer peptides may encompass several B-cell epitopes. These epitopes may lie in slightly different positions in different genotypes. Thirty-one percent of the 543 peptides were recognized by some of the 35 healthy donors. This may be a reflection of the large number of antigens to which they had been exposed, but it may also reflect a strategy of HCV to respond to immune pressure. After selection and modification, a set of 40 peptides was used to assess genotypes 1a, 1b, 1, 2 and 3 in the sera of HCV-infected patients, with sensitivities of 34.1, 48.5, 68.8, 58.3 and 48.9% and specificities of 100, 99.1, 97.1, 99.5 and 99%, respectively. The overall sensitivity and specificity for the assessment of genotypes 1, 2 and 3 were 64 and 98%, respectively.

  12. Leptospira borgpetersenii hybrid leucine-rich repeat protein: Cloning and expression, immunogenic identification and molecular docking evaluation.

    PubMed

    Sritrakul, Tepyuda; Nitipan, Supachai; Wajjwalku, Worawidh; La-Ard, Anchalee; Suphatpahirapol, Chattip; Petkarnjanapong, Wimol; Ongphiphadhanakul, Boonsong; Prapong, Siriwan

    2017-11-01

    Leptospirosis is an important zoonotic disease, and the major outbreak of this disease in Thailand in 1999 was due largely to the Leptospira borgpetersenii serovar Sejroe. Identification of the leucine-rich repeat (LRR) LBJ_2271 protein containing immunogenic epitopes and the discovery of the LBJ_2271 ortholog in Leptospira serovar Sejroe, KU_Sej_R21_2271, led to further studies of the antigenic immune properties of KU_Sej_LRR_2271. The recombinant hybrid (rh) protein was created and expressed from a hybrid PCR fragment of KU_Sej_R21_2271 fused with DNA encoding the LBJ_2271 signal sequence for targeting protein as a membrane-anchoring protein. The fusion DNA was cloned into pET160/GW/D-TOPO® to form the pET160_hKU_R21_2271 plasmid. The plasmid was used to express the rhKU_Sej_LRR_2271 protein in Escherichia coli BL21 Star™ (DE3). The expressed protein was immunologically detected by Western blotting and immunoreactivity detection with hyperimmune sera, T cell epitope prediction by HLA allele and epitope peptide binding affinity, and potential T cell reactivity analysis. The immunogenic epitopes of the protein were evaluated and verified by HLA allele and epitope peptide complex structure molecular docking. Among fourteen best allele epitopes of this protein, binding affinity values of 12 allele epitopes remained unchanged compared to LBJ_2271. Two epitopes for alleles HLA-A0202 and -A0301 had higher IC 50 values, while T cell reactivity values of these peptides were better than values from LBJ_2271 epitopes. Eight of twelve epitope peptides had positive T-cell reactivity scores. Although the molecular docking of two epitopes, 3FPLLKEFLV11/47FPLLKEFLV55 and 50KLSTVPEGV58, into an HLA-A0202 model revealed a good fit in the docked structures, 50KLSTVPEGV58 and 94KLSTVPEEV102 are still considered as the proteins' best epitopes for allele HLA-A0202. The results of this study showed that rhKU_Sej_LRR_2271 protein contained natural immunological properties that should

  13. The Role of Immunogenicity in Cardiovascular Disease

    PubMed Central

    Jan, Michael; Virtue, Anthony T.; Pansuria, Meghanaben; Liu, Jingshan; Xiong, Xinyu; Fang, Pu; Meng, Shu; Wang, Hong; Yang, Xiao-Feng

    2012-01-01

    Recently, many of the complexities associated with cardiovascular diseases (CVD) have been unlocked. However, despite these breakthroughs, CVD and its related complications are the leading contributors of morbidity and mortality worldwide, which indicates the shortcomings of current treatment regimens and the need for continued research. Published data within the field clearly indicates that CVD are built on inflammation and autoimmune platforms, though a strong, fundamental understanding of the mechanisms remains elusive. Areas such as the mechanisms underlying increased immunogenicity of self-proteins in the cardiovascular system, the roles of immunogenic auto-antigens in eliciting inflammatory autoimmune responses, and the immunosuppressive mechanisms involved in controlling inflammatory and autoimmune cardiovascular diseases remain to be well-understood. We will delve into these topics and the advancements made within the field in this review. Specifically, we will concentrate on the innate and adaptive immune responses mediating immunogenicity; the mechanisms of inflammation and autoimmunity in atherogenesis; the mechanisms of inflammation and autoimmunity in diabetic atherosclerosis; immunogenicity and stem cell therapy; as well as immunogenicity and immunosuppression. In depth examination and comprehension of these topics will provide insight into the recent progress of the field and bring to the forefront potentially novel therapeutic avenues. PMID:24511305

  14. The effect of in silico targeting Pseudomonas aeruginosa patatin-like protein D, for immunogenic administration.

    PubMed

    Chirani, Alireza Salimi; Majidzadeh, Robabeh; Pouriran, Ramin; Heidary, Mohsen; Nasiri, Mohammad Javad; Gholami, Mehrdad; Goudarzi, Mehdi; Omrani, Vahid Fallah

    2018-02-05

    The vaccine candidates that have been introduced for immunization against Pseudomonas aeruginosa (P. aeruginosa) strains are quite diverse. In fact, there has been no proper antigen to act as an effective immunogenic substance against this ubiquitous pathogen in the market as yet. The complications caused by this bacterium due to the rapid development of multiple drug resistant strains have led to clinical problems worldwide. P. aeruginosa encodes many specific virulence elements that could be used as appropriate vaccine candidates. Type Vd secretion system, also known as patatin-like protein D, is a novel P. aeruginosa auto-transporter system. It is known that cellular or humoral immune responses could be elevated by chimeric proteins carrying epitopes. It has been recognized that in silico tools are essential for the evaluation of new chimeric antigens. In this study, we have considered the patatin-like protein D (PlpD) molecule from P. aeruginosa and predicted some immunogenic properties of this strong cytotoxic phospholipase A2 with the use of in-depth computational and immunoinformatics assessment methods The novelty of our in silico study is the modeling and assessment of both humoral and cellular immune potential against the PlpD molecule. The molecule was considered by multiple sequence alignment and homology valuation. The extremely conserved regions in the PlpD were predicted. The allergenic and physicochemical property predictions on the PlpD state that the molecule is a non-allergic and stable molecule. High-resolution secondary and tertiary conformations were created. Indeed, the B-cell and T-cell epitope mapping on the chimeric target protein confirmed that the engineered protein contained a tremendous number of both B-cell and T-cell corresponding epitopes. This investigation magnificently attained the chimeric molecule as being a potent lipolytic enzyme composed of numerous B-cell and T-cell restricted epitopes and could induce both humoral and

  15. Impact of product-related factors on immunogenicity of biotherapeutics.

    PubMed

    Singh, Satish Kumar

    2011-02-01

    All protein therapeutics have the potential to be immunogenic. Several factors, including patient characteristics, disease state, and the therapy itself, influence the generation of an immune response. Product-related factors such as the molecule design, the expression system, post-translational modifications, impurities, contaminants, formulation and excipients, container, closure, as well as degradation products are all implicated. However, a critical examination of the available data shows that clear unequivocal evidence for the impact of these latter factors on clinical immunogenicity is lacking. No report could be found that clearly deconvolutes the clinical impact of the product attributes on patient susceptibility. Aggregation carries the greatest concern as a risk factor for immunogenicity, but the impact of aggregates is likely to depend on their structure as well as on the functionality (e.g., immunostimulatory or immunomodulatory) of the therapeutic. Preclinical studies are not yet capable of assessing the clinically relevant immunogenicity potential of these product-related factors. Simply addressing these risk factors as part of product development will not eliminate immunogenicity. Minimization of immunogenicity has to begin at the molecule design stage by reducing or eliminating antigenic epitopes and building in favorable physical and chemical properties. Copyright © 2010 Wiley-Liss, Inc.

  16. Ten tandem repeats of {beta}-hCG 109-118 enhance immunogenicity and anti-tumor effects of {beta}-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yankai; Yan Rong; He Yi

    2006-07-14

    The {beta}-subunit of human chorionic gonadotropin ({beta}-hCG) is secreted by many kinds of tumors and it has been used as an ideal target antigen to develop vaccines against tumors. In view of the low immunogenicity of this self-peptide,we designed a method based on isocaudamer technique to repeat tandemly the 10-residue sequence X of {beta}-hCG (109-118), then 10 tandemly repeated copies of the 10-residue sequence combined with {beta}-hCG C-terminal 37 peptides were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-X10-{beta}hCGCTP37 as an immunogen. In this study, we examined the effect of the tandem repeats of this 10-residuemore » sequence in eliciting an immune by comparing the immunogenicity and anti-tumor effects of the two immunogens, HSP65-X10-{beta}hCGCTP37 and HSP65-{beta}hCGCTP37 (without the 10 tandem repeats). Immunization of mice with the fusion protein HSP65-X10-{beta}hCGCTP37 elicited much higher levels of specific anti-{beta}-hCG antibodies and more effectively inhibited the growth of Lewis lung carcinoma (LLC) in vivo than with HSP65-{beta}hCGCTP37, which should suggest that HSP65-X10-{beta}hCGCTP37 may be an effective protein vaccine for the treatment of {beta}-hCG-dependent tumors and multiple tandem repeats of a certain epitope are an efficient method to overcome the low immunogenicity of self-peptide antigens.« less

  17. Investigations of immunogenic, allergenic and adjuvant properties of Cry1Ab protein after intragastric exposure in a food allergy model in mice.

    PubMed

    Andreassen, Monica; Bøhn, Thomas; Wikmark, Odd-Gunnar; Bodin, Johanna; Traavik, Terje; Løvik, Martinus; Nygaard, Unni Cecilie

    2016-05-04

    In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses. Previous investigations have primarily measured antibody responses to the protein, while investigations of clinical food allergy symptoms, or allergy promotion (adjuvant effect) associated with the Cry1Ab protein are largely missing. We aimed to investigate immunogenic, allergenic and adjuvant properties of purified Cry1Ab toxin (trypCry1Ab, i.e., trypsin activated Cry1Ab) in a mouse model of food allergy. Female C3H/HeJ mice were immunized by intragastric gavage of 10 μg purified, trypsin activated Cry1Ab toxin (trypCry1Ab) alone or together with the food allergen lupin. Cholera toxin was added as a positive control for adjuvant effect to break oral tolerance. Clinical symptoms (anaphylaxis) as well as humoral and cellular responses were assessed. In contrast to results from previous airway investigations, we observed no indication of immunogenic properties of trypCry1Ab protein after repeated intragastric exposures to one dose, with or without CT as adjuvant. Moreover, the results indicated that trypCry1Ab given by the intragastric route was not able to promote allergic responses or anaphylactic reactions against the co-administered allergen lupin at the given dose. The study suggests no immunogenic, allergenic or adjuvant capacity of the given dose of trypCry1Ab protein after intragastric exposure of prime aged mice.

  18. Empirical fitness models for hepatitis C virus immunogen design

    NASA Astrophysics Data System (ADS)

    Hart, Gregory R.; Ferguson, Andrew L.

    2015-12-01

    Hepatitis C virus (HCV) afflicts 170 million people worldwide, 2%-3% of the global population, and kills 350 000 each year. Prophylactic vaccination offers the most realistic and cost effective hope of controlling this epidemic in the developing world where expensive drug therapies are not available. Despite 20 years of research, the high mutability of the virus and lack of knowledge of what constitutes effective immune responses have impeded development of an effective vaccine. Coupling data mining of sequence databases with spin glass models from statistical physics, we have developed a computational approach to translate clinical sequence databases into empirical fitness landscapes quantifying the replicative capacity of the virus as a function of its amino acid sequence. These landscapes explicitly connect viral genotype to phenotypic fitness, and reveal vulnerable immunological targets within the viral proteome that can be exploited to rationally design vaccine immunogens. We have recovered the empirical fitness landscape for the HCV RNA-dependent RNA polymerase (protein NS5B) responsible for viral genome replication, and validated the predictions of our model by demonstrating excellent accord with experimental measurements and clinical observations. We have used our landscapes to perform exhaustive in silico screening of 16.8 million T-cell immunogen candidates to identify 86 optimal formulations. By reducing the search space of immunogen candidates by over five orders of magnitude, our approach can offer valuable savings in time, expense, and labor for experimental vaccine development and accelerate the search for a HCV vaccine. Abbreviations: HCV—hepatitis C virus, HLA—human leukocyte antigen, CTL—cytotoxic T lymphocyte, NS5B—nonstructural protein 5B, MSA—multiple sequence alignment, PEG-IFN—pegylated interferon.

  19. Design of Fusion Proteins for Efficient and Soluble Production of Immunogenic Ebola Virus Glycoprotein in Escherichia coli.

    PubMed

    Ji, Yang; Lu, Yuan; Yan, Yishu; Liu, Xinxin; Su, Nan; Zhang, Chong; Bi, Shengli; Xing, Xin-Hui

    2018-03-03

    The Ebola hemorrhagic fever caused by Ebola virus is an extremely dangerous disease, and effective therapeutic agents are still lacking. Platforms for the efficient production of vaccines are crucial to ensure quick response against an Ebola virus outbreak. Ebola virus glycoprotein (EbolaGP) on the virion surface is responsible for membrane binding and virus entry, thus becoming the key target for vaccine development. However, heterologous expression of this protein still faces engineering challenges such as low production levels and insoluble aggregation. Here, the authors design and compare various fusion strategies, attaching great importance to the solubility-enhancing effect, and tag removal process. It is found that a C-terminal intein-based tag greatly enhances the solubility of EbolaGP and allows one-step chromatographic purification of the untagged EbolaGP through thiol-catalyzed self-cleavage. The purified untagged EbolaGP alone or with Freund's adjuvant are highly immunogenic, as confirmed in a mouse model. Consequently, the present study puts forward a new strategy for the efficient and soluble expression of untagged immunogenic EbolaGP. The intein-based protein fusion approach may be of importance for the large-scale production of Ebola virus subunit vaccine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Analysis of the immunoproteome of Mycoplasma mycoides subsp. mycoides small colony type reveals immunogenic homologues to other known virulence traits in related Mycoplasma species.

    PubMed

    Jores, Joerg; Meens, Jochen; Buettner, Falk F R; Linz, Bodo; Naessens, Jan; Gerlach, Gerald F

    2009-10-15

    Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small colony type (MmmSC) has been eradicated in the developed world, but it is still present in many countries of sub-Saharan Africa. After initially successful control measures in the 1960s it has been spreading due to a lack of money, fragmentation of veterinary services, uncontrolled cattle movement, insufficient vaccine efficacy and sensitivity of current diagnostic tests. In this study we used two-dimensional polyacrylamide gel electrophoresis followed by immunoblot with sera from MmmSC-infected animals and MALDI-ToF mass spectrometry to identify novel immunogenic proteins as candidate molecules for improved diagnostics and vaccines. We identified 24 immunogens recognized by pooled sera from experimentally infected cattle. Furthermore, a serum from an animal with acute clinical disease as well as severe pathomorphological lesions recognized 13 additional immunogens indicating variation in the antibody responses to CBPP amongst cattle. Most immunogens showed compelling similarity to protein/gene sequences in the two ruminant pathogens M. capricolum subsp. capricolum and M. mycoides subsp. mycoides large colony type both belonging to the mycoides cluster. Three of these proteins, namely glycerol-3-phosphate oxidase, adenylosuccinate synthase, and glyceraldehyde-3-phosphate dehydrogenase, had no compelling homologue in the other distantly related bovine pathogen M. agalactiae. In addition, translation elongation factor Tu, heat shock protein 70, pyruvate dehydrogenase, and FKBP-type peptidyl-prolyl isomerase, which have been found to mediate adhesion to host tissue in other mycoplasmas were shown to be expressed and recognized by sera. These proteins have potential for the development of improved diagnostic tests and possibly vaccines.

  1. Statistical Linkage Analysis of Substitutions in Patient-Derived Sequences of Genotype 1a Hepatitis C Virus Nonstructural Protein 3 Exposes Targets for Immunogen Design

    PubMed Central

    Quadeer, Ahmed A.; Louie, Raymond H. Y.; Shekhar, Karthik; Chakraborty, Arup K.; Hsing, I-Ming

    2014-01-01

    ABSTRACT Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver failure and liver cancer, affecting around 3% of the world's population. The extreme sequence variability of the virus resulting from error-prone replication has thwarted the discovery of a universal prophylactic vaccine. It is known that vigorous and multispecific cellular immune responses, involving both helper CD4+ and cytotoxic CD8+ T cells, are associated with the spontaneous clearance of acute HCV infection. Escape mutations in viral epitopes can, however, abrogate protective T-cell responses, leading to viral persistence and associated pathologies. Despite the propensity of the virus to mutate, there might still exist substitutions that incur a fitness cost. In this paper, we identify groups of coevolving residues within HCV nonstructural protein 3 (NS3) by analyzing diverse sequences of this protein using ideas from random matrix theory and associated methods. Our analyses indicate that one of these groups comprises a large percentage of residues for which HCV appears to resist multiple simultaneous substitutions. Targeting multiple residues in this group through vaccine-induced immune responses should either lead to viral recognition or elicit escape substitutions that compromise viral fitness. Our predictions are supported by published clinical data, which suggested that immune genotypes associated with spontaneous clearance of HCV preferentially recognized and targeted this vulnerable group of residues. Moreover, mapping the sites of this group onto the available protein structure provided insight into its functional significance. An epitope-based immunogen is proposed as an alternative to the NS3 epitopes in the peptide-based vaccine IC41. IMPORTANCE Despite much experimental work on HCV, a thorough statistical study of the HCV sequences for the purpose of immunogen design was missing in the literature. Such a study is vital to identify epistatic couplings among

  2. Identification and cloning of two immunogenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO) of C. perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium-related diseases such as gangrenous dermatitis (GD) and necrotic enteritis (NE) are increasingly emerging as major diseases in recent years with high economic loss around the world. In this report, we characterized two immunogenic Clostridium perfringens (CP) proteins (e.g., elongation f...

  3. Generation of a More Immunogenic Measles Vaccine by Increasing Its Hemagglutinin Expression

    PubMed Central

    Julik, Emily

    2016-01-01

    ABSTRACT Imported measles virus (MV) outbreaks are maintained by poor vaccine responders and unvaccinated people. A convenient but more immunogenic vaccination strategy would enhance vaccine performance, contributing to measles eradication efforts. We report here the generation of alternative pediatric vaccines against MV with increased expression of the H protein in the background of the current MV vaccine strain. We generated two recombinants: MVvac2-H2, with increased full-length H expression resulting in a 3-fold increase in H incorporation into virions, and MVvac2-Hsol, vectoring a truncated, soluble form of the H protein that is secreted into the supernatants of infected cells. Replication fitness was conserved despite the duplication of the H cistron for both vectors. The modification to the envelope of MVvac2-H2 conferred upon this virus a measurable level of resistance to in vitro neutralization by MV polyclonal immune sera without altering its thermostability. Most interestingly, both recombinant MVs with enhanced H expression were significantly more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic after a single, human-range dose in genetically modified MV-susceptible mice. IMPORTANCE Measles incidence was reduced drastically following the introduction of attenuated vaccines, but progress toward the eradication of this virus has stalled, and MV still threatens unvaccinated populations. Due to the contributions of primary vaccine failures and too-young-to-be-vaccinated infants to this problem, more immunogenic measles vaccines are highly desirable. We generated two experimental MV vaccines based on a current vaccine's genome but with enriched production of the H protein, the main MV antigen in provoking immunity. One vaccine incorporated H at higher rates in the viral envelope, and the other secreted a soluble H protein from infected cells. The increased expression of H by these vectors improved

  4. Polyvalent immunogen

    DOEpatents

    Haynes, Barton F [Durham, NC; Korber, Bette T [Los Alamos, NM; De Lorimier, Robert M [Durham, NC; Liao, Hua-Xin [Chapel Hill, NC

    2007-02-06

    The present invention relates, generally, to a polyvalent immunogen and, more particularly, to a method of inducing neutralizing antibodies against HIV and to a polyvalent immunogen suitable for use in such a method.

  5. Polyvalent immunogen

    DOEpatents

    Haynes, Barton F [Durham, NC; Korber, Bette T [Los Alamos, NM; De Lorimier, Robert M [Durham, NC

    2007-03-27

    The present invention relates, generally, to a polyvalent immunogen and, more particularly, to a method of inducing neutralizing antibodies against HIV and to a polyvalent immunogen suitable for use in such a method.

  6. Key points in evaluating immunogenicity of pandemic influenza vaccines: A lesson from immunogenicity studies of influenza A(H1N1)pdm09 vaccine.

    PubMed

    Ohfuji, Satoko; Kobayashi, Masayuki; Ide, Yuichiro; Egawa, Yumi; Saito, Tomoko; Kondo, Kyoko; Ito, Kazuya; Kase, Tetsuo; Maeda, Akiko; Fukushima, Wakaba; Hirota, Yoshio

    2017-09-18

    Immunogenicity studies on pandemic influenza vaccine are necessary to inform rapid development and implementation of a vaccine during a pandemic. Thus, strategies for immunogenicity assessment are required. To identify essential factors to consider when evaluating the immunogenicity of pandemic influenza vaccines using the experience in Japan with the influenza A(H1N1)pdm09 vaccine. We conducted a search of observational studies using PubMed and IchushiWeb. Search terms included "influenza vaccine AND (immunogenicity OR immune response) AND Japan AND (2009 OR pdm09) NOT review," and was limited to studies conducted in humans. A total of 33 articles were identified, of which 16 articles met the inclusion criteria. Immunogenicity of the commercially available influenza A(H1N1)pdm09 vaccine satisfied the international criteria for influenza vaccine immunogenicity in all study populations. The most remarkable immune response was observed in junior high school students, while the lowest immune response was observed in hematological malignancy patients. Similar to immunogenicity studies on seasonal influenza vaccines, factors such as patient background (e.g., age, underlying condition, pre-vaccination titer, body mass index, etc.) and study procedure (e.g., concurrent measurement of pre- and post-vaccination antibody titer, effects of infection during the study period) may have affected the assessment of immunogenicity to the influenza A(H1N1)pdm09 vaccine. In addition, prior vaccination with the seasonal influenza vaccine may inhibit antibody induction by the influenza A(H1N1)pdm09 vaccine. This review discusses factors and strategies that must be considered and addressed during immunogenicity assessments of pandemic influenza vaccines, which may provide useful information for future influenza pandemics. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. New FDA draft guidance on immunogenicity.

    PubMed

    Parenky, Ashwin; Myler, Heather; Amaravadi, Lakshmi; Bechtold-Peters, Karoline; Rosenberg, Amy; Kirshner, Susan; Quarmby, Valerie

    2014-05-01

    A "Late Breaking" session was held on May 20 at the 2013 American Association of Pharmaceutical Scientists-National Biotech Conference (AAPS-NBC) to discuss the US Food and Drug Administration's (FDA) 2013 draft guidance on Immunogenicity Assessment for Therapeutic Protein Products. The session was initiated by a presentation from the FDA which highlighted several key aspects of the 2013 draft guidance pertaining to immunogenicity risk, the potential impact on patient safety and product efficacy, and risk mitigation. This was followed by an open discussion on the draft guidance which enabled delegates from biopharmaceutical companies to engage the FDA on topics that had emerged from their review of the draft guidance. The multidisciplinary audience fostered an environment that was conducive to scientific discussion on a broad range of topics such as clinical impact, immune mitigation strategies, immune prediction and the role of formulation, excipients, aggregates, and degradation products in immunogenicity. This meeting report highlights several key aspects of the 2013 draft guidance together with related dialog from the session.

  8. Recombinant sheep pox virus proteins elicit neutralizing antibodies

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to evaluate the immunogenicity and neutralizing activity of bacterially-expressed sheep pox virus (SPPV) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins from vaccinia...

  9. Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella typhimurium.

    PubMed

    Bargieri, Daniel Y; Leite, Juliana A; Lopes, Stefanie C P; Sbrogio-Almeida, Maria Elisabete; Braga, Catarina J M; Ferreira, Luis C S; Soares, Irene S; Costa, Fabio T M; Rodrigues, Mauricio M

    2010-04-01

    In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coli and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His(6)FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund's adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP1(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.

  10. A poliovirus hybrid expressing a neutralization epitope from the major outer membrane protein of Chlamydia trachomatis is highly immunogenic.

    PubMed Central

    Murdin, A D; Su, H; Manning, D S; Klein, M H; Parnell, M J; Caldwell, H D

    1993-01-01

    Trachoma and sexually transmitted diseases caused by Chlamydia trachomatis are major health problems worldwide. Epitopes on the major outer membrane protein (MOMP) of C. trachomatis have been identified as important targets for the development of vaccines. In order to examine the immunogenicity of a recombinant vector expressing a chlamydial epitope, a poliovirus hybrid was constructed in which part of neutralization antigenic site I of poliovirus type 1 Mahoney (PV1-M) was replaced by a sequence from variable domain I of the MOMP of C. trachomatis serovar A. The chlamydial sequence included the neutralization epitope VAGLEK. This hybrid was viable, grew very well compared with PV1-M, and expressed both poliovirus and chlamydial antigenic determinants. When inoculated into rabbits, this hybrid was highly immunogenic, inducing a strong response against both PV1-M and C. trachomatis serovar A. Antichlamydia titers were 10- to 100-fold higher than the titers induced by equimolar amounts of either purified MOMP or a synthetic peptide expressing the VAGLEK epitope. Furthermore, rabbit antisera raised against this hybrid neutralized chlamydial infectivity both in vitro, for hamster kidney cells, and passively in vivo, for conjunctival epithelia of cynomolgus monkeys. Because poliovirus infection induces a strong mucosal immune response in primates and humans, these results indicate that poliovirus-chlamydia hybrids could become powerful tools for the study of mucosal immunity to chlamydial infection and for the development of recombinant chlamydial vaccines. Images PMID:7691749

  11. Prolonging microtubule dysruption enhances the immunogenicity of chronic lymphocytic leukaemia cells

    PubMed Central

    Shaha, S P; Tomic, J; Shi, Y; Pham, T; Mero, P; White, D; He, L; Baryza, J L; Wender, P A; Booth, J W; Spaner, D E

    2009-01-01

    Cytotoxic chemotherapies do not usually mediate the expression of an immunogenic gene programme in tumours, despite activating many of the signalling pathways employed by highly immunogenic cells. Concomitant use of agents that modulate and complement stress-signalling pathways activated by chemotherapeutic agents may then enhance the immunogenicity of cancer cells, increase their susceptibility to T cell-mediated controls and lead to higher clinical remission rates. Consistent with this hypothesis, the microtubule inhibitor, vincristine, caused chronic lymphocytic leukaemia (CLL) cells to die rapidly, without increasing their immunogenicity. Protein kinase C (PKC) agonists (such as bryostatin) delayed the death of vincristine-treated CLL cells and made them highly immunogenic, with increased stimulatory abilities in mixed lymphocyte responses, production of proinflammatory cytokines, expression of co-stimulatory molecules and activation of c-Jun N-terminal kinase (JNK), p38 and nuclear factor kappa B (NF-κB) signalling pathways. This phenotype was similar to the result of activating CLL cells through Toll-like receptors (TLRs), which communicate ‘danger’ signals from infectious pathogens. Use of PKC agonists and microtubule inhibitors to mimic TLR-signalling, and increase the immunogenicity of CLL cells, has implications for the design of chemo-immunotherapeutic strategies. PMID:19737143

  12. Ribosomal vaccines. I. Immunogenicity of ribosomal fractions isolated from Salmonella typhimurium and Yersinia pestis.

    PubMed

    Johnson, W

    1972-06-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein.

  13. Utilization of phage display to identify antigenic regions in the PCV2 capsid protein for the evaluation of serological responses in mice and pigs.

    PubMed

    Santos, Marcus Rebouças; Assao, Viviane Sisdelli; Santos, Fabiana de Almeida Araújo; Salgado, Rafael Locatelli; Carneiro, Ana Paula; Fietto, Juliana Lopes Rangel; Bressan, Gustavo Costa; de Almeida, Márcia Rogéria; Lobato, Zelia Inês Portela; Ueira-Veira, Carlos; Goulart, Luíz Ricardo; Silva-Júnior, Abelardo

    2018-07-01

    Porcine circovirus 2 (PCV2) is associated with a series of swine diseases. There is a great interest in improving our understanding of the immunology of PCV2, especially the properties of the viral capsid protein Cap-PCV2 and how they relate to the immunogenicity of the virus and the subsequent development of vaccines. Phage display screening has been widely used to study binding affinities for target proteins. The aim of this study was to use phage display screening to identify antigenic peptides in the PCV2 capsid protein. After the selection of peptides, five of them presented similarity to sequences found in cap-PCV2, and four peptides were synthesized and used for immunization in mice: 51-CTFGYTIKRTVT-62 (PS14), 127-CDNFVTKATALTY-138 (PS34), 164-CKPVLDSTIDY-173 (PC12), and 79-CFLPPGGGSNT-88 (PF1). Inoculation with the PC12 peptide led to the highest production of antibodies. Furthermore, we used the PC12 peptide as an antigen to examine the humoral response of swine serum by ELISA. The sensitivity and specificity of this assay was 88.9% and 92.85%, respectively. Altogether, characterization of immunogenic epitopes in the capsid protein of PCV2 may contribute to the improvement of vaccines and diagnostics.

  14. Ribosomal Vaccines I. Immunogenicity of Ribosomal Fractions Isolated from Salmonella typhimurium and Yersinia pestis

    PubMed Central

    Johnson, William

    1972-01-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein. Images PMID:4564407

  15. Immunogenicity and efficacy of immunodeficiency virus-like particles pseudotyped with the G protein of vesicular stomatitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Stoiber, Heribert

    2006-07-20

    Vaccination with exogenous antigens such as recombinant viral proteins, immunodeficiency virus-derived whole inactivated virus particles, or virus-like particles (VLP) has generally failed to provide sufficient protection in animal models for AIDS. Pseudotyping VLPs with the vesicular stomatitis virus G protein (VSV-G), which is known to mediate entry into dendritic cells, might allow more efficient stimulation of immune responses. Therefore, we pseudotyped noninfectious immunodeficiency virus-like particles with VSV-G and carried out a preliminary screen of their immunogenicity and vaccination efficacy. Incorporation of VSV-G into HIV-1 VLPs led to hundred-fold higher antibody titers to HIV-1 Gag and enhancement of T cell responsesmore » in mice. Repeated vaccination of rhesus monkeys for 65 weeks with VSV-G pseudotyped simian immunodeficiency virus (SIV)-like particles (VLP[G]) provided initial evidence for efficient suppression of viral load after mucosal challenge with the SIVmac239 virus. Challenge of monkeys after a 28 week vaccination regimen with VLP[G] led to a reduction in peak viremia, but persistent suppression of viral load was not achieved. Due to limitations in the number of animals available for this study, improved efficacy of VSV-G pseudotyped VLPs in nonhuman primates could not be demonstrated. However, mouse experiments revealed that pseudotyping of VLPs with fusion-competent VSV-G clearly improves their immunogenicity. Additional strategies, particularly adjuvants, should be considered to provide greater protection against a challenge with pathogenic immunodeficiency virus.« less

  16. Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants.

    PubMed

    Rosales-Mendoza, Sergio; Soria-Guerra, Ruth E; Moreno-Fierros, Leticia; Govea-Alonso, Dania O; Herrera-Díaz, Areli; Korban, Schuyler S; Alpuche-Solís, Ángel G

    2011-06-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the main causative agents of diarrhea in infants and for travelers. Inclusion of a heat-stable (ST) toxin into vaccine formulations is mandatory as most ETEC strains can produce both heat-labile (LT) and ST enterotoxins. In this study, a genetic fusion gene encoding for an LTB:ST protein has been constructed and transferred into tobacco via Agrobacterium tumefaciens-mediated transformation. Transgenic tobacco plants carrying the LTB:ST gene are then subjected to GM1-ELISA revealing that the LTB:ST has assembled into pentamers and displays antigenic determinants from both LTB and ST. Protein accumulation of up to 0.05% total soluble protein is detected. Subsequently, mucosal and systemic humoral responses are elicited in mice orally dosed with transgenic tobacco leaves. This has suggested that the plant-derived LTB:ST is immunogenic via the oral route. These findings are critical for the development of a plant-based vaccine capable of eliciting broader protection against ETEC and targeting both LTB and ST. Features of this platform in comparison to transplastomic approaches are discussed.

  17. Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion

    PubMed Central

    Liao, Hua-Xin; Tomaras, Georgia D.; Bonsignori, Mattia; Tsao, Chun-Yen; Hwang, Kwan-Ki; Chen, Haiyan; Lloyd, Krissey E.; Bowman, Cindy; Sutherland, Laura; Jeffries, Thomas L.; Kozink, Daniel M.; Stewart, Shelley; Anasti, Kara; Jaeger, Frederick H.; Parks, Robert; Yates, Nicole L.; Overman, R. Glenn; Sinangil, Faruk; Berman, Phillip W.; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Karasavva, Nicos; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Zolla-Pazner, Susan; Santra, Sampa; Letvin, Norman L.; Harrison, Stephen C.

    2013-01-01

    An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity. PMID:23175357

  18. Immunogenicity of a recombinant fusion protein of tandem repeat epitopes of foot-and-mouth disease virus type Asia 1 for guinea pigs.

    PubMed

    Zhang, Q; Yang, Y Q; Zhang, Z Y; Li, L; Yan, W Y; Jiang, W J; Xin, A G; Lei, C X; Zheng, Z X

    2002-01-01

    In this study, the sequences of capsid protein VPI regions of YNAs1.1 and YNAs1.2 isolates of foot-and-mouth disease virus (FMDV) were analyzed and a peptide containing amino acids (aa) 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia I was assumed to contain B and T cell epitopes, because it is hypervariable and includes a cell attachment site RGD located in the G-H loop. The DNA fragments encoding aa 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia 1 were chemically synthesized and ligated into a tandem repeat of aa 133-158-20 approximately 34-133-158. In order to enhance its immunogenicity, the tandem repeat was inserted downstream of the beta-galactosidase gene in the expression vector pWR590. This insertion yielded a recombinant expression vector pAS1 encoding the fusion protein. The latter reacted with sera from FMDV type Asia 1-infected animals in vitro and elicited high levels of neutralizing antibodies in guinea pigs. The T cell proliferation in immunized animals increased following stimulation with the fusion protein. It is reported for the first time that a recombinant fusion protein vaccine was produced using B and T cell epitopes of FMDV type Asia 1 and that this fusion protein was immunogenic. The fusion protein reported here can serve as a candidate of fusion epitopes for design of a vaccine against FMDV type Asia 1.

  19. Identification of immunodominant proteins from Mannheimia haemolytica and Histophilus somni by an immunoproteomic approach.

    PubMed

    Alvarez, Angel H; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo

    2015-10-01

    Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD.

  20. Identification of immunodominant proteins from Mannheimia haemolytica and Histophilus somni by an immunoproteomic approach

    PubMed Central

    Alvarez, Angel H.; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo

    2015-01-01

    Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD. PMID:26424916

  1. Tip-alpha (hp0596 gene product) is a highly immunogenic Helicobacter pylori protein involved in colonization of mouse gastric mucosa.

    PubMed

    Godlewska, Renata; Pawlowski, Marcin; Dzwonek, Artur; Mikula, Michal; Ostrowski, Jerzy; Drela, Nadzieja; Jagusztyn-Krynicka, Elzbieta K

    2008-03-01

    A product of the Helicobacter pylori hp0596 gene (Tip-alpha) is a highly immunogenic homodimeric protein, unique for this bacterium. Cell fractionation experiments indicate that Tip-alpha is anchored to the inner membrane. In contrast, the three-dimensional model of the protein suggests that Tip-alpha is soluble or, at least, largely exposed to the solvent. hp0596 gene knockout resulted in a significant decrease in the level of H. pylori colonization as measured by real-time PCR assay. In addition, the Tip-alpha recombinant protein was determined to stimulate macrophage to produce IL-1alpha and TNF-alpha. Both results imply that Tip-alpha is rather loosely connected to the inner membrane and potentially released during infection.

  2. Identification of immunogenic proteins from ovarian tissue and recognized in larval extracts of Rhipicephalus (Boophilus) microplus, through an immunoproteomic approach.

    PubMed

    Ramírez Rodríguez, Patricia Berenice; Rosario Cruz, Rodrigo; Domínguez García, Delia Inés; Hernández Gutiérrez, Rodolfo; Lagunes Quintanilla, Rodolfo Esteban; Ortuño Sahagún, Daniel; González Castillo, Celia; Gutiérrez Ortega, Abel; Herrera Rodríguez, Sara Elisa; Vallejo Cardona, Adriana; Martínez Velázquez, Moisés

    2016-11-01

    Rhipicephalus (Boophilus) microplus ticks are obligatory hematophagous ectoparasites of cattle and act as vectors for disease-causing microorganisms. Conventional tick control is based on the use of chemical acaricides; however, their uncontrolled use has increased tSresistant tick populations, as well as food and environmental contamination. Alternative immunological tick control has shown to be partially effective. The only anti-tick vaccine commercially available at present in the world is based on intestinal Bm86 protein, and shows a variable effectiveness depending on tick strains or geographic isolates. Therefore, there is a need to characterize new antigens in order to improve immunological protection. The aim of this work was to identify immunogenic proteins from ovarian tissue extracts of R. microplus, after cattle immunization. Results showed that ovarian proteins complexed with the adjuvant Montanide ISA 50 V generated a strong humoral response on vaccinated cattle. IgG levels peaked at fourth post-immunization week and remained high until the end of the experiment. 1D and 2D SDS-PAGE-Western blot assays with sera from immunized cattle recognized several ovarian proteins. Reactive bands were cut and analyzed by LC-MS/MS. They were identified as Vitellogenin, Vitellogenin-2 precursor and Yolk Cathepsin. Our findings along with bioinformatic analysis indicate that R. microplus has several Vitellogenin members, which are proteolytically processed to generate multiple polypeptide fragments. This apparent complexity of vitellogenic tick molecular targets gives the opportunity to explore their potential usefulness as vaccine candidates but, at the same time, imposes a challenge on the selection of the appropriate set of antigens. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases.

    PubMed

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-10-18

    Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at

  4. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases

    PubMed Central

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-01-01

    Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and

  5. [Immunogenicity of biosimilars].

    PubMed

    van Aerts, L A G J M; Franken, A A M; Leufkens, H G M

    2016-01-01

    Biosimilars of more complex recombinant protein drugs, such as monoclonal antibodies and fusion proteins, are entering the market. The manufacturer should demonstrate that its product does not show any relevant differences in terms of quality characteristics, biological activity, safety and efficacy compared to the reference product, as outlined in EMA guidelines. This should be established with an extensive comparability exercise. One aspect that is subject to particular scrutiny is the immunogenicity of the biosimilar and the reference medicinal product. For three cases, one etanercept and two infliximab biosimilars, we describe how data are assessed and an opinion is reached by authorities. Not in all cases unanimity exists whether all remaining uncertainties on biosimilarity have been resolved satisfactorily before marketing authorisation. The Dutch Medicines Evaluation Board therefore emphasises that even after marketing authorisation, biosimilars and other biologicals should be properly monitored.

  6. Factors contributing to the immunogenicity of meningococcal conjugate vaccines

    PubMed Central

    Bröker, Michael; Berti, Francesco; Costantino, Paolo

    2016-01-01

    ABSTRACT Various glycoprotein conjugate vaccines have been developed for the prevention of invasive meningococcal disease, having significant advantages over pure polysaccharide vaccines. One of the most important features of the conjugate vaccines is the induction of a T-cell dependent immune response, which enables both the induction of immune memory and a booster response after repeated immunization. The nature of the carrier protein to which the polysaccharides are chemically linked, is often regarded as the main component of the vaccine in determining its immunogenicity. However, other factors can have a significant impact on the vaccine's profile. In this review, we explore the physico-chemical properties of meningococcal conjugate vaccines, which can significantly contribute to the vaccine's immunogenicity. We demonstrate that the carrier is not the sole determining factor of the vaccine's profile, but, moreover, that the conjugate vaccine's immunogenicity is the result of multiple physico-chemical structures and characteristics. PMID:26934310

  7. Immunogenicity of recombinant measles vaccine expressing fusion protein of respiratory syncytial virus in cynomolgus monkeys.

    PubMed

    Sawada, Akihito; Yunomae, Kiyokazu; Nakayama, Tetsuo

    2018-02-01

    Respiratory syncytial virus (RSV) is a common cause of respiratory infections in infants. Effective vaccines are currently being sought, but no vaccine is thus far available. In our previous study, recombinant AIK-C measles vaccine expressing the RSV fusion protein (MVAIK/RSV/F) was developed and protective immunity against RSV demonstrated in cotton rats. In the present study, the immunogenicity and protective effects were investigated in three cynomolgus monkeys immunized with MVAIK/RSV/F. Neutralizing test antibodies against RSV were detected and no infectious virus was recovered from the lungs of monkeys immunized with MVAIK/RSV/F after challenge. MVAIK/RSV/F has the potential to inhibit RSV infection. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  8. Immunogenicity moderation effect of interleukin-24 on myelogenous leukemia cells.

    PubMed

    Yu, Xin; Miao, Jingcheng; Xia, Wei; Gu, Zong-Jiang

    2018-04-01

    Previous studies have shown that interleukin-24 (IL-24) has tumor-suppressing activity by multiple pathways. However, the immunogenicity moderation effect of IL-24 on malignant cells has not been explored extensively. In this study, we investigated the role of IL-24 in immunogenicity modulation of the myelogenous leukemia cells. Data show that myelogenous leukemia cells express low levels of immunogenicity molecules. Treatment with IL-24 could enhance leukemia cell immunogenicity, predominantly regulate leukemia cells to produce immune-associated cytokines, and improve the cytotoxic sensitivity of these cells to immune effector cells. IL-24 expression could retard transplanted leukemia cell tumor growth in vivo in athymic nude mice. Moreover, IL-24 had marked effects on downregulating the expression of angiogenesis-related proteins vascular endothelial growth factor, cluster of differentiation (CD) 31, CD34, collagen IV and metastasis-related factors CD147, membrane type-1 matrix metalloproteinase (MMP), and MMP-2 and MMP-9 in transplanted tumors. These findings indicated novel functions of this antitumor gene and characterized IL-24 as a promising agent for further clinical trial for hematologic malignancy immunotherapy.

  9. Identification and immunogenicity of immunodominant mimotopes of outer membrane protein U (OmpU) of Vibrio mimicus from phage display peptide library.

    PubMed

    Cen, Junyu; Liu, Xueqin; Li, Jinnian; Zhang, Ming; Wang, Wei

    2013-01-01

    Vibrio mimicus (V. mimicus) is the causative agent of ascites disease in aquatic animals. Outer membrane protein U (OmpU) is an important antigen of V. mimicus, but its protective epitopes are still unclear. A random 12-mer phage-displayed peptide library was used to screen and identify immunodominant mimotopes of the OmpU protein in V. mimicus by panning against purified OmpU-specific polyclonal antibody. Then the immunogenicity and immunoprotection in fish of these mimotopes was evaluated. Nine positive phage clones presented seven different 12- peptide sequences and more than 50% of them carried a consensus core motif of DSSK-P. These positive clones reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by OmpU protein. Intraperitoneal injection of seven positive phage clones into fish induced a specific antibody response to OmpU protein. The fish immunized respectively with the positive phage clones C17, C24, C60 and C66 obtained 100% immunoprotective effect against experimental V. mimicus challenge. Taken together, these mimotopes presented by clone C17, C24, C60 and C66 were immunodominant mimotopes of the OmpU protein and exhibited a more appropriate candidate as epitope-based vaccine against V. mimicus infection in aquatic animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Immunogenic properties of alpha (1----6) dextran, its protein conjugates, and conjugates of its breakdown products in mice.

    PubMed

    Mäkelä, O; Péterfy, F; Outschoorn, I G; Richter, A W; Seppälä, I

    1984-06-01

    Mice were immunized with alpha (1-6) dextran, either as such or coupled to protein carriers, and their anti-dextran response was measured by a solid-phase radioimmunoassay and the Farr assay. Like earlier investigators we found that protein-conjugated dextran was more antigenic than plain dextran. Our novel findings were that (1) a standard dose (30 micrograms of dextran per injection) coupled to strongly antigenic protein (chicken serum albumin (CSA) was three times more antigenic than dextran coupled to weakly antigenic bovine serum albumin (BSA); (2) dextrans of low molecular weight (1000-10,000 daltons) coupled to CSA induced at least ten times stronger secondary responses than did a similarly coupled macromolecular dextran (5-40 million daltons); (3) variation of the CHO/protein ratio from 0.3 to 1 had little effect on the antigenicity of the dextran. Increase of the ratio from one appeared to decrease immunogenicity when BSA was the carrier but not when CSA was the carrier.

  11. Evaluation of the immunogenicity of dietary proteins in cats and the influence of the canning process.

    PubMed

    Cave, Nicholas J; Marks, Stanley L

    2004-10-01

    To characterize the antigen-specific immune response to dietary proteins in cats and evaluate whether there was a qualitative or quantitative difference between the responses to dietary proteins when those proteins were fed unprocessed or as part of a canned diet. 14 healthy domestic shorthair cats. Cats were fed 2 dietary proteins (soy and casein) either as unprocessed aqueous suspensions or as part of canned diets for 21 days. Serum IgG and IgA and salivary IgA were assayed by indirect ELISA, and antigen-specific proliferation of mesenteric lymph node-derived lymphocytes was determined. Robust serum IgG and IgA responses to dietary proteins were elicited, irrespective of the form in which they were fed. Salivary IgA responses to unprocessed proteins were not detected. However, a significant salivary IgA response to the protein isolated from the canned casein diet was observed in cats fed canned casein but not in those fed unprocessed casein. Lymphocyte proliferation to the antigens was slight, and there were no significant differences between groups. Results indicated that cats develop robust serum IgG and IgA responses to dietary proteins when fed as either aqueous suspensions or as part of canned diets. For certain proteins, there may be an increase and a qualitative difference in the immunogenicity of canned diets, compared with unprocessed proteins. Canned diets may not be ideal for management of cats with enteritis.

  12. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen

    PubMed Central

    Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano

    2015-01-01

    In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive

  13. Quality, immunogenicity and stability of meningococcal serogroup ACWY-CRM197, DT and TT glycoconjugate vaccines.

    PubMed

    Beresford, Nicola J; Martino, Angela; Feavers, Ian M; Corbel, Michael J; Bai, Xilian; Borrow, Ray; Bolgiano, Barbara

    2017-06-16

    A physicochemical and immunological study of the stability of three different meningococcal (Men) ACWY conjugate vaccines was performed to evaluate any patterns of serogroup oligo- or polysaccharide-specific or carrier protein-specific stability that would affect immunogenicity. Critical quality and stability-indicating characteristics were measured, with the study supporting the suitability of both HPLC-SEC and HPAEC-PAD methods to detect changes following inappropriate vaccine storage. All three final products, ACWY-CRM 197 , -DT and -TT conjugate vaccines had expected quality indicator values and similar immunogenicity in a mouse model (anti-PS IgG and rSBA) when stored at +2-8°C. When stored at ≥+37°C, all conjugated carrier proteins and serogroup saccharides were affected. Direct correlations were observed between the depolymerization of the MenA saccharide as evidenced by a size-reduction in the MenA conjugates (CRM 197 , DT and TT) and their immunogenicity. MenA was the most labile serogroup, followed by MenC; then MenW and Y, which were similar. At high temperatures, the conjugated carrier proteins were prone to unfolding and/or aggregation. The anti-MenC IgG responses of the multivalent conjugate vaccines in mice were equivalent to those observed in monovalent MenC conjugate vaccines, and were independent of the carrier protein. For any newly developing MenACWY saccharide-protein conjugate vaccines, a key recommendation would be to consider the lyophilization of final product to prevent deleterious degradation that would affect immunogenicity. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. An efficient method for native protein purification in the selected range from prostate cancer tissue digests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Rumana; Nicora, Carrie D.; Shukla, Anil K.

    Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in a clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead tomore » useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen.« less

  15. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Juan; Department of Microbiology and Immunology, Nanjing Medical University; Wang, Shixia

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71more » (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.« less

  16. Immunogenicity and immune tolerance coagulation Factors VIII and IX.

    PubMed

    Rup, B

    2003-01-01

    Some of the major issues related to the development and control of antibodies that occur during treatment of haemophilia with replacement factors (Factor VIII and Factor IX) are reviewed. Information on analytical issues, immunogenicity, and immune tolerance may be applicable to the study of other therapeutic proteins. Conversely, new information obtained from evaluation of other therapeutic protein products may address issues that remain unresolved for Factor VIII and FIX replacement therapy.

  17. Identification of Microcystis aeruginosa Peptides Responsible for Allergic Sensitization and Characterization of Functional Interactions between Cyanobacterial Toxins and Immunogenic Peptides

    PubMed Central

    Geh, Esmond N.; Ghosh, Debajyoti; McKell, Melanie; de la Cruz, Armah A.; Stelma, Gerard

    2015-01-01

    Background The cyanobacterium species Microcystis aeruginosa produces microcystin and an array of diverse metabolites believed responsible for their toxicity and/or immunogenicity. Previously, chronic rhinitis patients were demonstrated to elicit a specific IgE response to nontoxic strains of M. aeruginosa by skin-prick testing, indicating that cyanobacteria allergenicity resides in a non-toxin–producing component of the organism. Objectives We sought to identify and characterize M. aeruginosa peptide(s) responsible for allergic sensitization in susceptible individuals, and we investigated the functional interactions between cyanobacterial toxins and their coexpressed immunogenic peptides. Methods Sera from patients and extracts from M. aeruginosa toxic [MC(+)] and nontoxic [MC(–)] strains were used to test IgE-specific reactivity by direct and indirect ELISAs; 2D gel electrophoresis, followed by immunoblots and mass spectrometry (MS), was performed to identify the relevant sensitizing peptides. Cytotoxicity and mediator release assays were performed using the MC(+) and MC(–) lysates. Results We found specific IgE to be increased more in response to the MC(–) strain than the MC(+) strain. This response was inhibited by preincubation of MC(–) lysate with increasing concentrations of microcystin. MS revealed that phycocyanin and the core-membrane linker peptide are the responsible allergens, and MC(–) extracts containing these proteins induced β-hexosaminidase release in rat basophil leukemia cells. Conclusions Phycobiliprotein complexes in M. aeruginosa have been identified as the relevant sensitizing proteins. Our finding that allergenicity is inhibited in a dose-dependent manner by microcystin toxin suggests that further investigation is warranted to understand the interplay between immunogenicity and toxicity of cyanobacteria under diverse environmental conditions. Citation Geh EN, Ghosh D, McKell M, de la Cruz AA, Stelma G, Bernstein JA. 2015

  18. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilinskaya, Anna N.; Dobrovolskaia, Marina A., E-ma

    Nanoparticle immunogenicity and antigenicity have been under investigation for many years. During the past decade, significant progress has been made in understanding what makes a nanoparticle immunogenic, how immune cells respond to nanoparticles, what consequences of nanoparticle-specific antibody formation exist and how they challenge the application of nanoparticles for drug delivery. Moreover, it has been recognized that accidental contamination of therapeutic protein formulations with nanosized particulate materials may contribute to the immunogenicity of this type of biotechnology products. While the immunological properties of engineered nanomaterials and their application as vaccine carriers and adjuvants have been given substantial consideration in themore » current literature, little attention has been paid to nanoparticle immuno- and antigenicity. To fill in this gap, we herein provide an overview of this subject to highlight the current state of the field, review past and present research, and discuss future research directions. - Highlights: • Most engineered nanomaterials are not immunogenic per se. • Generation of nanoparticle-specific antibody can be T-cell dependent or independent. • Antibodies can be generated to particle core, terminal groups or surface coatings. • Engineered and accidental nanomaterials have distinct contribution to immunogenicity. • Tunable physicochemical properties make each nanoparticle unique.« less

  19. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    PubMed Central

    Chervyakova, Olga V.; Zaitsev, Valentin L.; Iskakov, Bulat K.; Tailakova, Elmira T.; Strochkov, Vitaliy M.; Sultankulova, Kulyaisan T.; Sandybayev, Nurlan T.; Stanbekova, Gulshan E.; Beisenov, Daniyar K.; Abduraimov, Yergali O.; Mambetaliyev, Muratbay; Sansyzbay, Abylay R.; Kovalskaya, Natalia Y.; Nemchinov, Lev. G.; Hammond, Rosemarie W.

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  20. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies.

    PubMed

    Chervyakova, Olga V; Zaitsev, Valentin L; Iskakov, Bulat K; Tailakova, Elmira T; Strochkov, Vitaliy M; Sultankulova, Kulyaisan T; Sandybayev, Nurlan T; Stanbekova, Gulshan E; Beisenov, Daniyar K; Abduraimov, Yergali O; Mambetaliyev, Muratbay; Sansyzbay, Abylay R; Kovalskaya, Natalia Y; Nemchinov, Lev G; Hammond, Rosemarie W

    2016-06-07

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  1. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species

    PubMed Central

    Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Aleixo, José Antonio G.

    2016-01-01

    Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus. PMID:27489951

  2. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species.

    PubMed

    Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Bhunia, Arun K; Aleixo, José Antonio G

    2016-01-01

    Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.

  3. Influence of Oxidation and Multimerization on the Immunogenicity of a Thioredoxin-L2 Prophylactic Papillomavirus Vaccine

    PubMed Central

    Seitz, Hanna; Dantheny, Tatiana; Burkart, Frank; Ottonello, Simone

    2013-01-01

    Current commercial prophylactic human papillomavirus (HPV) vaccines are based on virus-like particles assembled from the major capsid protein L1 and show excellent safety and efficacy profiles. Still, a major limitation is their rather narrow range of protection against different HPV types. In contrast, the minor capsid protein L2 contains a so-called major cross-neutralizing epitope that can induce broad-range protective responses against multiple HPV types. This epitope is conserved among different papillomaviruses (PV) and contains two cysteine residues that are present in the L2 proteins of all known PV types. The main challenge in developing L2-directed vaccines is to overcome the intrinsically low immunogenicity of the L2 protein. Previously, we developed a recombinant L2-based prototype vaccine by inserting peptide epitopes spanning the cross-neutralizing L2 sequence into a bacterial thioredoxin (Trx) scaffold. These antigens induced high-titer neutralizing antibodies in mice. Here, we address the question of whether Trx scaffold multimerization may further enhance the immunogenicity of the TrxL2 vaccine. We also demonstrate that the oxidation state of the conserved cysteine residues is not essential for vaccine functionality, but it contributes to immunogenicity. PMID:23677323

  4. Immunogenicity and protective efficacy of heparan sulphate binding proteins of Entamoeba histolytica in a guinea pig model of intestinal amoebiasis.

    PubMed

    Kaur, Upninder; Khurana, Sumeeta; Saikia, Uma Nahar; Dubey, M L

    2013-11-01

    Entamoeba histolytica infection is associated with considerable morbidity and mortality in the form of intestinal and extraintestinal amoebiasis. No vaccine is yet available for amoebiasis. Heparan Sulphate Binding Proteins (HSBPs) from E. histolytica were evaluated for immunogenicity and protective efficacy in a Guinea pig model. Animals were immunized subcutaneously with 30μg of HSBP by three weekly inoculations. The immunogenicity of HSBP was determined by antibody response (IgG, IgM and IgA), splenocyte proliferation assay and in vitro direct amoebicidal assay with splenic lymphocytes and monocytes from vaccinated and control animals. The efficacy of the vaccine was evaluated by challenge infection to vaccinated and control animals by intra-caecal inoculation of E. histolytica trophozoites and comparing gross and histopathological findings in caeca of these animals. HSBP was found to induce specific anti-amoebic response as seen by specific antibody production and direct amoebicidal activity of splenocytes. The vaccine also showed partial protection against challenge infection in vaccinated animals as shown by mild/absent lesions and histopathological findings. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Native-like aggregates of Factor VIII (FVIII) are immunogenic von Willebrand Factor deficient and hemophilia A mice

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Middaugh, C. Russell; Bankert, Richard B.; Balu-Iyer, Sathy V.

    2013-01-01

    The administration of recombinant Factor VIII (FVIII) is the first line therapy for Hemophilia A (HA), but 25–35% of patients develop an inhibitory antibody response. In general, the presence of aggregates contributes to unwanted immunogenic responses against therapeutic proteins. FVIII has been shown to form both native-like and non-native aggregates. Previously, we showed that non-native aggregates of FVIII are less immunogenic compared to the native protein. Here we investigated the effect of native-like aggregates of FVIII on immunogenicity in HA and von Willebrand Factor knockout (vWF−/−) mice. Mice immunized with native-like aggregates showed significantly higher inhibitory antibody titers compared to animals that received native FVIII. Following re-stimulation in vitro with native FVIII, the activation of CD4+ T cells isolated from mice immunized with native-like aggregates is ~4 fold higher than mice immunized with the native protein. Furthermore, this is associated with increases in the secretion of pro-inflammatory cytokines IL-6 and IL-17 in the native-like aggregate treatment group. The results indicate that the native-like aggregates of FVIII are more immunogenic than native FVIII for both the B cell and T cell responses. PMID:22388918

  6. Immunogenic activity of the fish tapeworm Pterobothrium heteracanthum (Trypanorhyncha: Pterobothriidae) in BALB/c mice.

    PubMed

    Mattos, D P B G; Verícimo, M A; Lopes, L M S; São Clemente, S C

    2015-03-01

    The aim of this study was to verify the immunogenicity of Pterobothrium heteracanthum (Cestoda: Trypanorhyncha) crude protein extract (PH-CPE) in BALB/c mice. The parasites were obtained from Micropogonias furnieri (Osteichthyes: Sciaenidae). Groups of six mice were each immunized with 10, 50 or 100 μg of PH-CPE, on days 0 and 35. Both specific IgG and IgE responses were developed after immunization. The immunoblot assay revealed that specific IgG recognizes PH-CPE proteins with two molecular weight ranges, 60-75 and 30-40 kDa, and that IgE recognizes larger proteins over 120 kDa. This appears to be the first report on the immunogenicity of metacestodes within the Pterobothriidae and that PH-CPE is a potential inducer of a specific IgE response.

  7. Investigation of the immunogenicity of different types of aggregates of a murine monoclonal antibody in mice.

    PubMed

    Freitag, Angelika J; Shomali, Maliheh; Michalakis, Stylianos; Biel, Martin; Siedler, Michael; Kaymakcalan, Zehra; Carpenter, John F; Randolph, Theodore W; Winter, Gerhard; Engert, Julia

    2015-02-01

    The potential contribution of protein aggregates to the unwanted immunogenicity of protein pharmaceuticals is a major concern. In the present study a murine monoclonal antibody was utilized to study the immunogenicity of different types of aggregates in mice. Samples containing defined types of aggregates were prepared by processes such as stirring, agitation, exposure to ultraviolet (UV) light and exposure to elevated temperatures. Aggregates were analyzed by size-exclusion chromatography, light obscuration, turbidimetry, infrared (IR) spectroscopy and UV spectroscopy. Samples were separated into fractions based on aggregate size by asymmetrical flow field-flow fractionation or by centrifugation. Samples containing different types and sizes of aggregates were subsequently administered to C57BL/6 J and BALB/c mice, and serum was analyzed for the presence of anti-IgG1, anti-IgG2a, anti-IgG2b and anti-IgG3 antibodies. In addition, the pharmacokinetic profile of the murine antibody was investigated. In this study, samples containing high numbers of different types of aggregates were administered in order to challenge the in vivo system. The magnitude of immune response depends on the nature of the aggregates. The most immunogenic aggregates were of relatively large and insoluble nature, with perturbed, non-native structures. This study shows that not all protein drug aggregates are equally immunogenic.

  8. Cloning and Molecular Characterization of an Immunogenic LigA Protein of Leptospira interrogans

    PubMed Central

    Palaniappan, Raghavan U. M.; Chang, Yung-Fu; Jusuf, S. S. D.; Artiushin, S.; Timoney, John F.; McDonough, Sean P.; Barr, Steve C.; Divers, Thomas J.; Simpson, Kenneth W.; McDonough, Patrick L.; Mohammed, Hussni O.

    2002-01-01

    A clone expressing a novel immunoreactive leptospiral immunoglobulin-like protein A of 130 kDa (LigA) from Leptospira interrogans serovar pomona type kennewicki was isolated by screening a genomic DNA library with serum from a mare that had recently aborted due to leptospiral infection. LigA is encoded by an open reading frame of 3,675 bp, and the deduced amino acid sequence consists of a series of 90-amino-acid tandem repeats. A search of the NCBI database found that homology of the LigA repeat region was limited to an immunoglobulin-like domain of the bacterial intimin binding protein of Escherichia coli, the cell adhesion domain of Clostridium acetobutylicum, and the invasin of Yersinia pestis. Secondary structure prediction analysis indicates that LigA consists mostly of beta sheets with a few alpha-helical regions. No LigA was detectable by immunoblot analysis of lysates of the leptospires grown in vitro at 30°C or when cultures were shifted to 37°C. Strikingly, immunohistochemistry on kidney from leptospira-infected hamsters demonstrated LigA expression. These findings suggest that LigA is specifically induced only in vivo. Sera from horses, which aborted as a result of natural Leptospira infection, strongly recognize LigA. LigA is the first leptospiral protein described to have 12 tandem repeats and is also the first to be expressed only during infection. Thus, LigA may have value in serodiagnosis or as a protective immunogen in novel vaccines. PMID:12379666

  9. Safety and immunogenicity of a Sf9 insect cell-derived respiratory syncytial virus fusion protein nanoparticle vaccine.

    PubMed

    Glenn, Gregory M; Smith, Gale; Fries, Louis; Raghunandan, Rama; Lu, Hanxin; Zhou, Bin; Thomas, D Nigel; Hickman, Somia P; Kpamegan, Eloi; Boddapati, Sarathi; Piedra, Pedro A

    2013-01-07

    We performed a Phase 1 randomized, observer-blinded, placebo-controlled trial to evaluate the safety and immunogenicity of a recombinant respiratory syncytial virus (RSV) fusion (F) protein nanoparticle vaccine. Six formulations with (5, 15, 30 and 60 μg) and without (30 and 60 μg) aluminum phosphate (AdjuPhos) were administered intramuscularly on day 0 and 30 in a dose escalating fashion to healthy adults 18-49 years of age. Solicited and unsolicited events were collected through day 210. Immunogenicity measures taken at day 0, 30 and 60 included RSV A and B microneutralization, anti-F IgG, antigenic site II peptide and palivizumab competitive antibodies. The vaccine was well-tolerated, with no evident dose-related toxicity or attributable SAEs. At day 60 both RSV A and B microneutralization was significantly increased in vaccinees versus placebo. Across all vaccinees there was a 7- to 19-fold increase in the anti-F IgG and a 7- to 24-fold increase in the antigenic site II binding and palivizumab competitive antibodies. The RSV F nanoparticle vaccine candidate was well tolerated without dose-related increases in adverse events. Measures of immunity indicate that neutralization, anti-RSV F IgG titers and palivizumab competing antibodies were induced at levels that have been associated with decreased risk of hospitalization. NCT01290419. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Formulation and Immunogenicity studies of Type III Secretion System needle antigens as Vaccine Candidates

    PubMed Central

    Barrett, Brooke S.; Markham, Aaron P.; Esfandiary, Reza; Picking, Wendy L.; Picking, William D.; Joshi, Sangeeta B.; Middaugh, C. Russell

    2013-01-01

    Bacterial infections caused by Shigella flexneri, Salmonella typhimurium and Burkholderia pseudomallei are currently difficult to prevent due to the lack of a licensed vaccine. Here we present formulation and immunogenicity studies for the three type III secretion system (TTSS) needle proteins MxiHΔ5, PrgIΔ5 and BsaLΔ5 (each truncated by five residues at its C terminus) as potential candidates for vaccine development. These antigens are found to be thermally stabilized by the presence of carbohydrates and polyols. Additionally, all adsorb readily to aluminum hydroxide apparently through a combination of hydrogen bonds and/or Van der Waals forces. The interaction of these proteins with the aluminum-based adjuvant changes with time to resulting in varying degrees of irreversible binding. Peptide maps of desorbed protein, however, suggest that chemical changes are not responsible for this irreversible association. The ability of MxiHΔ5 and PrgIΔ5 to elicit strong humoral immune responses was tested in a murine model. When administered intramuscularly as monomers, the needle components exhibited dose dependent immunogenic behavior. The polymerized version of MxiH was exceptionally immunogenic even at low doses. The responses of both monomeric and polymerized forms were boosted by adsorption to an aluminum salt adjuvant. PMID:20845448

  11. Safety and immunogenicity of 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) in Nigerian children

    PubMed Central

    Odusanya, Olumuyiwa O; Kuyinu, Yetunde A; Kehinde, Omolara A; Shafi, Fakrudeen; François, Nancy; Yarzabal, Juan Pablo; Dobbelaere, Kurt; Rüggeberg, Jens U; Borys, Dorota; Schuerman, Lode

    2014-01-01

    In a previous study, 3-dose primary vaccination of Nigerian infants with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) was immunogenic for vaccine pneumococcal serotypes, with comparable tolerability between PHiD-CV and control groups. In an open-label study (ClinicalTrials.gov, NCT01153893), 68 primed children received a PHiD-CV booster dose co-administered with a diphtheria-tetanus-acellular pertussis (DTPa) booster dose at 15–21 months and 36 children unprimed for pneumococcal vaccination received two PHiD-CV catch-up doses (first dose co-administered with DTPa booster dose) at 15–21 and 17–23 months. Adverse events were recorded and immune responses were measured before and one month after vaccination. In both groups, pain was the most frequent solicited local symptom and fever was the most frequent solicited general symptom after the booster dose and each catch-up dose. Few grade 3 solicited symptoms and no vaccine-related serious adverse events were reported. After booster vaccination, for each vaccine serotype, at least 98.5% of children had an antibody concentration ≥0.2 µg/ml and at least 94.0% had an opsonophagocytic activity (OPA) titer ≥8. After 2-dose catch-up, for each vaccine serotype, at least 97.1% had an antibody concentration ≥0.2 µg/ml, except for serotypes 6B (82.9%) and 23F (88.6%), and at least 91.4% had an OPA titer ≥8, except for serotypes 6B (77.4%) and 19F (85.3%). PHiD-CV induced antibody responses against protein D in both groups. In conclusion, PHiD-CV administered to Nigerian toddlers as a booster dose or 2-dose catch-up was well tolerated and immunogenic for vaccine pneumococcal serotypes and protein D. PMID:24356787

  12. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults.

    PubMed

    Fries, Louis; Shinde, Vivek; Stoddard, Jeffrey J; Thomas, D Nigel; Kpamegan, Eloi; Lu, Hanxin; Smith, Gale; Hickman, Somia P; Piedra, Pedro; Glenn, Gregory M

    2017-01-01

    A preventative strategy for Respiratory Syncytial Virus (RSV) infection constitutes an under-recognized unmet medical need among older adults. Four formulations of a novel recombinant RSV F nanoparticle vaccine (60 or 90 μg RSV F protein, with or without aluminum phosphate adjuvant) administered concurrently with a licensed inactivated trivalent influenza vaccine (TIV) in older adult subjects were evaluated for safety and immunogenicity in this randomized, observer-blinded study. A total of 220 healthy males and females ≥ 60 years of age, without symptomatic cardiopulmonary disease, were vaccinated concurrently with TIV and RSV F vaccine or placebo. All vaccine formulations produced an acceptable safety profile, with no vaccine-related serious adverse events or evidence of systemic toxicity. Vaccine-induced immune responses were rapid, rising as early as 7 days post-vaccination; and were comparable in all formulations in terms of magnitude, with maximal levels attained within 28 (unadjuvanted) or 56 (adjuvanted) days post-vaccination. Peak anti-F protein IgG antibody levels rose 3.6- to 5.6-fold, with an adjuvant effect observed at the 60 μg dose, and a dose-effect observed between the unadjuvanted 60 and 90 μg regimens. The anti-F response persisted through 12 months post-vaccination. Palivizumab-competitive antibodies were below quantifiable levels (<33 μg/mL) at day 0. The rise of antibodies with specificity for Site II peptide, and the palivizumab-competitive binding activity, denoting antibodies binding at, or in proximity to, antigenic Site II on the F protein, closely paralleled the anti-F response. However, a larger proportion of antibodies in adjuvanted vaccine recipients bound to the Site II peptide at high avidity. Day 0 neutralizing antibodies were high in all subjects and rose 1.3- to 1.7-fold in response to vaccination. Importantly, the RSV F vaccine co-administered with TIV did not impact the serum hemagglutination inhibition

  13. DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity.

    PubMed

    Jiang, Yunbo; Xiao, Shaobo; Fang, Liurong; Yu, Xiaolan; Song, Yunfeng; Niu, Chuanshuang; Chen, Huanchun

    2006-04-05

    The two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus (PRRSV), GP5 and M (encoded by ORF5 and ORF6 genes, respectively), are associated as disulfide-linked heterodimers (GP5/M) in the virus particle. In the present study, three different DNA vaccine constructs, expressing GP5 alone (pCI-ORF5), M alone (pCI-ORF6) or GP5 and M proteins simultaneously (pCI-ORF5/ORF6), were constructed. In vitro, the co-expressed GP5 and M proteins could form heterodimeric complexes in transfected cells and heterodimerization altered the subcellular localization of GP5. The immunogenicities of these DNA vaccine constructs were firstly investigated in a mouse model. Mice inoculated with pCI-ORF5/ORF6 developed PRRSV-specific neutralizing antibodies at 6 and 8 weeks after primary immunization. However, only some mice developed low levels of neutralizing antibodies in groups immunized with pCI-ORF5 or pCI-ORF6. The highest lymphocyte proliferation responses were also observed in mice immunized with pCI-ORF5/ORF6. Interestingly, significantly enhanced GP5-specific ELISA antibody could be detected in mice immunized with pCI-ORF5/ORF6 compared to mice immunized with pCI-ORF5. The immunogenicities of pCI-ORF5/ORF6 were further evaluated in piglets (the natural host) and all immunized piglets developed neutralizing antibodies at 10 weeks after primary immunization, whereas there was no detectable neutralizing antibodies in piglets immunized with pCI-ORF5. These results indicate that the formation of GP5/M heterodimers may be involved in post-translational modification and transport of GP5 and may play an important role in immune responses against PRRSV infection. More importantly, co-expression of GP5 and M protein in heterodimers can significantly improve the potency of DNA vaccination and could be used as a strategy to develop a new generation of vaccines against PRRSV.

  14. A Therapeutic Uricase with Reduced Immunogenicity Risk and Improved Development Properties

    PubMed Central

    Nyborg, Andrew C.; Ward, Chris; Zacco, Anna; Grinberg, Luba; Geoghegan, James C.; Bean, Ryan; Wendeler, Michaela; Bartnik, Frank; O’Connor, Ellen; Gruia, Flaviu; Iyer, Vidyashankara; Feng, Hui; Roy, Varnika; Berge, Mark; Miner, Jeffrey N.; Wilson, David M.; Zhou, Dongmei; Nicholson, Simone; Wilker, Clynn; Wu, Chi Y.; Wilson, Susan; Jermutus, Lutz; Wu, Herren; Owen, David A.; Osbourn, Jane; Coats, Steven; Baca, Manuel

    2016-01-01

    Humans and higher primates are unique in that they lack uricase, the enzyme capable of oxidizing uric acid. As a consequence of this enzyme deficiency, humans have high serum uric acid levels. In some people, uric acid levels rise above the solubility limit resulting in crystallization in joints, acute inflammation in response to those crystals causes severe pain; a condition known as gout. Treatment for severe gout includes injection of non-human uricase to reduce serum uric acid levels. Krystexxa® is a hyper-PEGylated pig-baboon chimeric uricase indicated for chronic refractory gout that induces an immunogenic response in 91% of treated patients, including infusion reactions (26%) and anaphylaxis (6.5%). These properties limit its use and effectiveness. An innovative approach has been used to develop a therapeutic uricase with improved properties such as: soluble expression, neutral pH solubility, high E. coli expression level, thermal stability, and excellent activity. More than 200 diverse uricase sequences were aligned to guide protein engineering and reduce putative sequence liabilities. A single uricase lead candidate was identified, which showed low potential for immunogenicity in >200 human donor samples selected to represent diverse HLA haplotypes. Cysteines were engineered into the lead sequence for site specific PEGylation and studies demonstrated >95% PEGylation efficiency. PEGylated uricase retains enzymatic activity in vitro at neutral pH, in human serum and in vivo (rats and canines) and has an extended half-life. In canines, an 85% reduction in serum uric acid levels was observed with a single subcutaneous injection. This PEGylated, non-immunogenic uricase has the potential to provide meaningful benefits to patients with gout. PMID:28002433

  15. A Therapeutic Uricase with Reduced Immunogenicity Risk and Improved Development Properties.

    PubMed

    Nyborg, Andrew C; Ward, Chris; Zacco, Anna; Chacko, Benoy; Grinberg, Luba; Geoghegan, James C; Bean, Ryan; Wendeler, Michaela; Bartnik, Frank; O'Connor, Ellen; Gruia, Flaviu; Iyer, Vidyashankara; Feng, Hui; Roy, Varnika; Berge, Mark; Miner, Jeffrey N; Wilson, David M; Zhou, Dongmei; Nicholson, Simone; Wilker, Clynn; Wu, Chi Y; Wilson, Susan; Jermutus, Lutz; Wu, Herren; Owen, David A; Osbourn, Jane; Coats, Steven; Baca, Manuel

    2016-01-01

    Humans and higher primates are unique in that they lack uricase, the enzyme capable of oxidizing uric acid. As a consequence of this enzyme deficiency, humans have high serum uric acid levels. In some people, uric acid levels rise above the solubility limit resulting in crystallization in joints, acute inflammation in response to those crystals causes severe pain; a condition known as gout. Treatment for severe gout includes injection of non-human uricase to reduce serum uric acid levels. Krystexxa® is a hyper-PEGylated pig-baboon chimeric uricase indicated for chronic refractory gout that induces an immunogenic response in 91% of treated patients, including infusion reactions (26%) and anaphylaxis (6.5%). These properties limit its use and effectiveness. An innovative approach has been used to develop a therapeutic uricase with improved properties such as: soluble expression, neutral pH solubility, high E. coli expression level, thermal stability, and excellent activity. More than 200 diverse uricase sequences were aligned to guide protein engineering and reduce putative sequence liabilities. A single uricase lead candidate was identified, which showed low potential for immunogenicity in >200 human donor samples selected to represent diverse HLA haplotypes. Cysteines were engineered into the lead sequence for site specific PEGylation and studies demonstrated >95% PEGylation efficiency. PEGylated uricase retains enzymatic activity in vitro at neutral pH, in human serum and in vivo (rats and canines) and has an extended half-life. In canines, an 85% reduction in serum uric acid levels was observed with a single subcutaneous injection. This PEGylated, non-immunogenic uricase has the potential to provide meaningful benefits to patients with gout.

  16. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    PubMed

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  17. Tetraspanins displayed in retrovirus-derived virus-like particles and their immunogenicity.

    PubMed

    Soares, H R; Castro, R; Tomás, H A; Rodrigues, A F; Gomes-Alves, P; Bellier, B; Klatzmann, D; Carrondo, M J T; Alves, P M; Coroadinha, A S

    2016-03-18

    Virus-like particles (VLPs) are a particular subset of subunit vaccines which are currently explored as safer alternatives to live attenuated or inactivated vaccines. VLPs derived from retrovirus (retroVLPs) are commonly used as scaffolds for vaccine candidates due to their ability to incorporate heterologous envelope proteins. Pseudotyping retroVLPs is however not a selective process therefore, host cellular proteins such as tetraspanins are also included in the membrane. The contribution of these host-proteins to retrovirus immunogenicity remains unclear. In this work, human cells silenced and not silenced for tetraspanin CD81 were used to produce CD81(-) or CD81(+) retroVLPs. We first analyzed mice immune response against human CD81. Despite effective silencing of CD81 in retroVLP producing cells, both humoral and cellular immune responses showed persistent anti-CD81 immunogenicity, suggesting cross reactivity to related antigens. We thus compared the incorporation of related tetraspanins in retroVLPs and showed that decreased CD81 incorporation in CD81(-) retro-VLPs is compensated by an increased incorporation of CD9 and CD63 tetraspanins. These results highlight the dynamic nature of host-derived proteins incorporation in retroVLPs membrane, which should be considered when retrovirus-based biopharmaceuticals are produced in xenogeneic cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Low immunogenicity predicted for emerging avian-origin H7N9

    PubMed Central

    De Groot, Anne S.; Ardito, Matthew; Terry, Frances; Levitz, Lauren; Ross, Ted; Moise, Leonard; Martin, William

    2013-01-01

    A new avian-origin influenza virus emerged near Shanghai in February 2013, and by the beginning of May it had caused over 130 human infections and 36 deaths. Human-to-human transmission of avian-origin H7N9 influenza A has been limited to a few family clusters, but the high mortality rate (27%) associated with human infection has raised concern about the potential for this virus to become a significant human pathogen. European, American, and Asian vaccine companies have already initiated the process of cloning H7 antigens such as hemagglutinin (HA) into standardized vaccine production vehicles. Unfortunately, previous H7 HA-containing vaccines have been poorly immunogenic. We used well-established immunoinformatics tools to analyze the H7N9 protein sequences and compare their T cell epitope content to other circulating influenza A strains as a means of estimating the immunogenic potential of the new influenza antigen. We found that the HA proteins derived from closely related human-derived H7N9 strains contain fewer T cell epitopes than other recently circulating strains of influenza, and that conservation of T cell epitopes with other strains of influenza was very limited. Here, we provide a detailed accounting of the type and location of T cell epitopes contained in H7N9 and their conservation in other H7 and circulating (A/California/07/2009, A/Victoria/361/2011, and A/Texas/50/2012) influenza A strains. Based on this analysis, avian-origin H7N9 2013 appears to be a “stealth” virus, capable of evading human cellular and humoral immune response. Should H7N9 develop pandemic potential, this analysis predicts that novel strategies for improving vaccine immunogenicity for this unique low-immunogenicity strain of avian-origin influenza will be urgently needed. PMID:23807079

  19. Immunogenicity of an HPV-16 L2 DNA vaccine

    PubMed Central

    Hitzeroth, Inga I.; Passmore, Jo-Ann S.; Shephard, Enid; Stewart, Debbie; Müller, Martin; Williamson, Anna-Lise; Rybicki, Edward P.; Kast, W. Martin

    2009-01-01

    The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunised with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralising antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. PMID:19559114

  20. Generation of the Fluorescent HMGB1-GFP Fusion Protein in Insect Cells and Evaluation of its Immunogenicity in Two Mice Models.

    PubMed

    Anvar, Ali; Vahabpour, Rouhollah; Salahshourifar, Iman; Bolhassani, Azam

    2017-01-01

    High mobility group box 1 (HMGB1) is a highly conserved protein present in the nuclei and cytoplasm of cells which has an important role as a mediator of inflammation in the extracellular environment. HMGB1 was identified as an innate adjuvant that induces immune responses against soluble antigens in vivo. Our goal is the generation of recombinant HMGB1-GFP fusion protein in insect cells for evaluation of immune responses in mouse model. In the current study, we used a baculovirus expression system for insect cells that was based on expression of HMGB1 with target gene (GFP), and purified the recombinant HMGB1- GFP fusion protein. We then demonstrated whether immunogenicity of GFP changes in the presence or absence of recombinant HMGB1 acting as an adjuvant in C57BL/6 and BALB/c mice. Our data showed that HMGB1 had a major influence on antibody immune responses induced by GFP in both animal models. The groups receiving HMGB1-GFP fusion protein showed total IgG and IgG2a responses significantly higher than IgG1 in BALB/c mice. Indeed, a mixed IgG1/IgG2a response was observed with high intensity toward IgG2a. In contrast, C57BL/6 mice immunized by HMGB1-GFP protein elicited the same levels of IgG1 and IgG2a. However, the levels of IgG2a and total IgG against the recombinant GFP (rGFP) in C57BL/6 mice were lower than those in BALB/c mice. We concluded that fusion of HMGB1 with GFP was immunologically more effective than GFP alone. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Antigenic Structure of the Human Muscle Nicotinic Acetylcholine Receptor Main Immunogenic Region

    PubMed Central

    Luo, Jie; Lindstrom, Jon

    2009-01-01

    The main immunogenic region on the α1 subunits of muscle nicotinic acetylcholine receptors provokes half or more of the autoantibodies in myasthenia gravis and its animal model. Many of these autoantibodies depend on the native conformation of the receptor for their ability to bind with high affinity. We mapped this region and explained the conformation-dependence of its epitopes by making chimeras in which sequences of human muscle α1 subunits were replaced in human neuronal α7 subunits or Aplysia acetylcholine binding protein. These chimeras also revealed that the main immunogenic region can play a major role in promoting conformational maturation, and, consequently, assembly of receptor subunits. PMID:19705087

  2. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis.

    PubMed

    Chen, Yuhuang; Duan, Ran; Li, Xu; Li, Kewei; Liang, Junrong; Liu, Chang; Qiu, Haiyan; Xiao, Yuchun; Jing, Huaiqi; Wang, Xin

    2015-12-01

    The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level and at the amino acid sequence level. The identity of ompA sequences for 262 Y. pestis strains, 134 Y. pseudotuberculosis strains and 219 pathogenic Y. enterocolitica strains are 100%, 98.8% and 97.7% similar. The main pattern of OmpA of pathogenic Yersinia are 86.2% and 88.8% identical at the nucleotide and amino acid sequence levels, respectively. Immunological analysis showed the immunogenicity of each OmpA and cross-immunogenicity of OmpA for pathogenic Yersinia where OmpA may be a vaccine candidate for Y. pestis and other pathogenic Yersinia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments.

    PubMed

    Ansari, Amir Mehdi; Ahmed, A Karim; Matsangos, Aerielle E; Lay, Frank; Born, Louis J; Marti, Guy; Harmon, John W; Sun, Zhaoli

    2016-10-01

    Green Fluorescent protein (GFP), used as a cellular tag, provides researchers with a valuable method of measuring gene expression and cell tracking. However, there is evidence to suggest that the immunogenicity and cytotoxicity of GFP potentially confounds the interpretation of in vivo experimental data. Studies have shown that GFP expression can deteriorate over time as GFP tagged cells are prone to death. Therefore, the cells that were originally marked with GFP do not survive and cannot be accurately traced over time. This review will present current evidence for the immunogenicity and cytotoxicity of GFP in in vivo studies by characterizing these responses.

  4. Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice.

    PubMed

    Altenburg, A F; Magnusson, S E; Bosman, F; Stertman, L; de Vries, R D; Rimmelzwaan, G F

    2017-10-01

    Because of the high variability of seasonal influenza viruses and the eminent threat of influenza viruses with pandemic potential, there is great interest in the development of vaccines that induce broadly protective immunity. Most probably, broadly protective influenza vaccines are based on conserved proteins, such as nucleoprotein (NP). NP is a vaccine target of interest as it has been shown to induce cross-reactive antibody and T cell responses. Here we tested and compared various NP-based vaccine preparations for their capacity to induce humoral and cellular immune responses to influenza virus NP. The immunogenicity of protein-based vaccine preparations with Matrix-M™ adjuvant as well as recombinant viral vaccine vector modified Vaccinia virus Ankara (MVA) expressing the influenza virus NP gene, with or without modifications that aim at optimization of CD8 + T cell responses, was addressed in BALB/c mice. Addition of Matrix-M™ adjuvant to NP wild-type protein-based vaccines significantly improved T cell responses. Furthermore, recombinant MVA expressing the influenza virus NP induced strong antibody and CD8 + T cell responses, which could not be improved further by modifications of NP to increase antigen processing and presentation. © 2017 British Society for Immunology.

  5. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

    PubMed

    Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E

    2017-06-27

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

  6. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    PubMed

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  7. Evaluation of immunogenicity and protective efficacy of orally delivered Shigella type III secretion system proteins IpaB and IpaD

    PubMed Central

    Heine, Shannon J.; Diaz-McNair, Jovita; Martinez-Becerra, Francisco J.; Choudhari, Shyamal P.; Clements, John D.; Picking, Wendy L.; Pasetti, Marcela F.

    2013-01-01

    Shigella spp. are food- and water-borne pathogens that cause shigellosis, a severe diarrheal and dysenteric disease that is associated with a high morbidity and mortality in resource-poor countries. No licensed vaccine is available to prevent shigellosis. We have recently demonstrated that Shigella invasion plasmid antigens (Ipas), IpaB and IpaD, which are components of the bacterial type III secretion system (TTSS), can prevent infection in a mouse model of intranasal immunization and lethal pulmonary challenge. Because they are conserved across Shigella spp. and highly immunogenic, these proteins are excellent candidates for a cross-protective vaccine. Ideally, such a vaccine could be administered to humans orally to induce mucosal and systemic immunity. In this study, we investigated the immunogenicity and protective efficacy of Shigella IpaB and IpaD administered orally with a double mutant of the Escherichia coli heat labile toxin (dmLT) as a mucosal adjuvant. We characterized the immune responses induced by oral vs. intranasal immunization and the protective efficacy using a mouse pulmonary infection model. Serum IgG and fecal IgA against IpaB were induced after oral immunization. These responses, however, were lower than those obtained after intranasal immunization despite a 100-fold dosage increase. The level of protection induced by oral immunization with IpaB and IpaD was 40%, while intranasal immunization resulted in 90% protective efficacy. IpaB- and IpaD-specific IgA antibody-secreting cells in the lungs and spleen and T-cell-derived IL-2, IL-5, IL-17 and IL-10 were associated with protection. These results demonstrate the immunogenicity of orally administered IpaB and IpaD and support further studies in humans. PMID:23644075

  8. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model.

    PubMed

    Xue, Miaoge; Yu, Linqi; Jia, Lianzhi; Li, Yijian; Zeng, Yuanjun; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2016-11-01

    In attempts to develop recombinant subunit vaccines against rotavirus disease, it was previously shown that the N-terminal truncated VP8* protein, VP8-1 (aa26-231), is a good vaccine candidate when used for immunization in combination with Freund's adjuvant. However, this protein stimulated only weak immune response when aluminum hydroxide was used as an adjuvant. In this study, the nontoxic B subunit of cholera toxin (CTB) was employed as intra-molecular adjuvant to improve the immunogenicity of VP8-1. Both, the N-terminal and C-terminal fusion proteins, were purified to homogeneity, at which stage they formed pentamers, and showed significantly higher immunogenicity and protective efficacy than a VP8-1/aluminum hydroxide mixture in a mouse model. Compared to VP8-1-CTB, CTB-VP8-1 showed higher binding activity to both, GM1 and the conformation sensitive neutralizing monoclonal antibodies specific to VP8. More importantly, CTB-VP8-1 elicited higher titers of neutralizing antibodies and conferred higher protective efficacy than VP8-1-CTB. Therefore, the protein CTB-VP8-1, with enhanced immunogenicity and immunoprotectivity, could be considered as a viable candidate for further development of an alternative, replication-incompetent, parenterally administered vaccine against rotavirus disease.

  9. Post hoc assessment of the immunogenicity of bioengineered factor VIIa demonstrates the use of preclinical tools.

    PubMed

    Lamberth, Kasper; Reedtz-Runge, Stine Louise; Simon, Jonathan; Klementyeva, Ksenia; Pandey, Gouri Shankar; Padkjær, Søren Berg; Pascal, Véronique; León, Ileana R; Gudme, Charlotte Nini; Buus, Søren; Sauna, Zuben E

    2017-01-11

    Immunogenicity is an important consideration in the licensure of a therapeutic protein because the development of neutralizing anti-drug antibodies (ADAs) can affect both safety and efficacy. Neoantigens introduced by bioengineering of a protein drug are a particular cause for concern. The development of a bioengineered recombinant factor VIIa (rFVIIa) analog was discontinued after phase 3 trials because of the development of ADAs. The unmodified parent molecule (rFVIIa), on the other hand, has been successfully used as a drug for more than two decades with no reports of immunogenicity in congenital hemophilia patients with inhibitors. We used computational and experimental methods to demonstrate that the observed ADAs could have been elicited by neoepitopes in the engineered protein. The human leukocyte antigen type of the patients who developed ADAs is consistent with this hypothesis of a neoepitope-driven immune response, a finding that might have implications for the preclinical screening of therapeutic protein analogs. Copyright © 2017, American Association for the Advancement of Science.

  10. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions.

    PubMed

    Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder

    2011-05-01

    Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.

  11. Improved Prefusion Stability, Optimized Codon Usage, and Augmented Virion Packaging Enhance the Immunogenicity of Respiratory Syncytial Virus Fusion Protein in a Vectored-Vaccine Candidate

    PubMed Central

    Liang, Bo; Ngwuta, Joan O.; Surman, Sonja; Kabatova, Barbora; Liu, Xiang; Lingemann, Matthias; Liu, Xueqiao; Yang, Lijuan; Herbert, Richard; Swerczek, Joanna; Chen, Man; Moin, Syed M.; Kumar, Azad; McLellan, Jason S.; Kwong, Peter D.; Graham, Barney S.; Collins, Peter L.

    2017-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo, and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation. IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not

  12. Immunogenicity of Mycobacterium leprae unique antigens in leprosy endemic populations in Asia and Africa.

    PubMed

    Bobosha, Kidist; Van Der Ploeg-Van Schip, Jolien J; Zewdie, Martha; Sapkota, Bishwa Raj; Hagge, Deanna A; Franken, Kees L M C; Inbiale, Wondmagegn; Aseffa, Abraham; Ottenhoff, Tom H M; Geluk, Annemieke

    2011-12-01

    Ongoing transmission of leprosy is evident from the stable disease incidence in high burden areas. Tools for early detection of Mycobacterium leprae (M. leprae) infection, particularly in sub-clinically infected individuals, are urgently required to reduce transmission. Following the sequencing of the M. leprae genome, many M. leprae-unique candidate proteins have been identified, several of which have been tested for induction of M. leprae specific T cell responses in different leprosy endemic areas. In this study, 21 M. leprae-unique proteins and 10 peptide pools covering the complete sequence of five M. leprae-unique proteins (ML0576, ML1989, ML1990, ML2283, and ML2567) were evaluated in 160 individuals in Nepal and Ethiopia. These included: tuberculoid and borderline tuberculoid (TT/BT), borderline borderline and borderline lepromatous (BB/BL) leprosy patients; healthy household contacts (HHC); tuberculosis (TB) patients and endemic controls (EC). Immunogenicity of the proteins was determined by IFN-gamma secretion via stimulation of PBMC in 6 days lymphocyte stimulation tests (LST) or in whole blood assays (WBA). In LST, BB/BL patients (40%) responded to ML0573 and ML1601 whereas ML1604 was most immunogenic in TT/BT (35%) and HHC (36%). Additionally, significant numbers of EC displayed IFN-gamma production in response to ML0573 (54%), ML1601 (50%) and ML1604 (54%). TB patients on the other hand, hardly responded to any of the proteins except for ML1989. Comparison of IFN-gamma responses to ML0121, ML0141 and ML0188 for TT/BT patients showed specific increase in diluted 6 days WBA compared to the undiluted 24 hours WBA, whereas EC showed a reduced response in the diluted WBA, which may indicate detection of disease-specific responses in the 6 days WBA. In summary, identification of multiple M. leprae proteins inducing M. leprae-specific T cell responses in groups at high risk of developing leprosy may contribute to improve early detection for M. leprae

  13. Comparative Protein Profiling of Intraphagosomal Expressed Proteins of Mycobacterium bovis BCG.

    PubMed

    Singhal, Neelja; Kumar, Manish; Sharma, Divakar; Bisht, Deepa

    2016-01-01

    BCG, the only available vaccine against tuberculosis affords a variable protection which wanes with time. In this study we have analyzed and compared the proteins which are expressed differentially during broth-culture and intraphagosomal growth of M.bovis BCG. Eight proteins which showed increased expression during the intraphagosomal growth were identified by MALDI-TOF/MS. These were - a precursor of alanine and proline-rich secreted protein apa, isoforms of malate dehydrogenase, large subunit alpha (Alpha-ETF) of electron transfer flavoprotein, immunogenic protein MPB64 precursor, UPF0036 protein, and two proteins with unknown function. Based on these findings we speculate that higher expression of these proteins has a probable role in intracellular survival, adaptation and/or immunoprotective effect of BCG. Further, these proteins might also be used as gene expression markers for endosome trafficking events of BCG.

  14. Identifying Protein-Calorie Malnutrition Workshop.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Barker, Ellen M.

    Instructional materials are provided for a workshop to enable participants to assist in identifying patients at risk with protein-calorie malnutrition and in corrrecting this nutritional deficiency. Representative topics are nutrients; protein, mineral, and vitamin sources, functions, and deficiency symptoms; malnutrition; nutritional deficiency…

  15. Comparison of immune responses against foot-and-mouth disease virus induced by fusion proteins using the swine IgG heavy chain constant region or beta-galactosidase as a carrier of immunogenic epitopes.

    PubMed

    Li, Guangjin; Chen, Weizao; Yan, Weiyao; Zhao, Kai; Liu, Mingqiu; Zhang, Jun; Fei, Liang; Xu, Quanxing; Sheng, Zutian; Lu, Yonggan; Zheng, Zhaoxin

    2004-10-25

    Previously, we demonstrated that a fusion protein (Gal-FMDV) consisting of beta-galactosidase and an immunogenic peptide, amino acids (141-160)-(21-40)-(141-160), of foot-and-mouth disease virus (FMDV) VP1 protein induced protective immune responses in guinea pigs and swine. We now designed a new potential recombinant protein vaccine against FMDV in swine. The immunogenic peptide, amino acids (141-160)-(21-40)-(141-160) from the VP1 protein of serotype O FMDV, was fused to the carboxy terminus of a swine immunoglobulin G single heavy chain constant region and expressed in Escherichia coli. The expressed fusion protein (IgG-FMDV) was purified and emulsified with oil adjuvant. Vaccination twice at an interval of 3 weeks with the emulsified IgG-FMDV fusion protein induced an FMDV-specific spleen proliferative T-cell response in guinea pigs and elicited high levels of neutralizing antibody in guinea pigs and swine. All of the immunized animals were efficiently protected against FMDV challenge. There was no significant difference between IgG-FMDV and Gal-FMDV in eliciting immunity after vaccination twice in swine. However, when evaluating the efficacy of a single inoculation of the fusion proteins, we found that IgG-FMDV could elicit a protective immune response in swine, while Gal-FMDV only elicited a weak neutralizing activity and could not protect the swine against FMDV challenge. Our results suggest that the IgG-FMDV fusion protein is a promising vaccine candidate for FMD in swine.

  16. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells

    PubMed Central

    Tkachenko, Anastasiya; Richter, Vladimir

    2017-01-01

    Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity. PMID:28951871

  17. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines.

    PubMed

    Liljeqvist, S; Ståhl, S

    1999-07-30

    The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.

  18. Canine Parvovirus VP2 Protein Expressed in Silkworm Pupae Self-Assembles into Virus-Like Particles with High Immunogenicity

    PubMed Central

    Wang, Hua-lei; Liang, Meng; Liang, Hongru; Guo, He; Zhao, Pingsen; Yang, Yu-jiao; Zheng, Xue-xing; Zhang, Zhi-fang; Zhao, Yong-kun; Gao, Yu-wei; Yang, Song-tao; Xia, Xian-zhu

    2014-01-01

    The VP2 structural protein of parvovirus can produce virus-like particles (VLPs) by a self-assembly process in vitro, making VLPs attractive vaccine candidates. In this study, the VP2 protein of canine parvovirus (CPV) was expressed using a baculovirus expression system and assembled into parvovirus-like particles in insect cells and pupae. Electron micrographs of VLPs showed that they were very similar in size and morphology when compared to the wild-type parvovirus. The immunogenicity of the VLPs was investigated in mice and dogs. Mice immunized intramuscularly with purified VLPs, in the absence of an adjuvant, elicited CD4+ and CD8+ T cell responses and were able to elicit a neutralizing antibody response against CPV, while the oral administration of raw homogenates containing VLPs to the dogs resulted in a systemic immune response and long-lasting immunity. These results demonstrate that the CPV-VLPs stimulate both cellular and humoral immune responses, and so CPV-VLPs may be a promising candidate vaccine for the prevention of CPV-associated disease. PMID:24465364

  19. Canine parvovirus VP2 protein expressed in silkworm pupae self-assembles into virus-like particles with high immunogenicity.

    PubMed

    Feng, Hao; Hu, Gui-qiu; Wang, Hua-lei; Liang, Meng; Liang, Hongru; Guo, He; Zhao, Pingsen; Yang, Yu-jiao; Zheng, Xue-xing; Zhang, Zhi-fang; Zhao, Yong-kun; Gao, Yu-wei; Yang, Song-tao; Xia, Xian-zhu

    2014-01-01

    The VP2 structural protein of parvovirus can produce virus-like particles (VLPs) by a self-assembly process in vitro, making VLPs attractive vaccine candidates. In this study, the VP2 protein of canine parvovirus (CPV) was expressed using a baculovirus expression system and assembled into parvovirus-like particles in insect cells and pupae. Electron micrographs of VLPs showed that they were very similar in size and morphology when compared to the wild-type parvovirus. The immunogenicity of the VLPs was investigated in mice and dogs. Mice immunized intramuscularly with purified VLPs, in the absence of an adjuvant, elicited CD4(+) and CD8(+) T cell responses and were able to elicit a neutralizing antibody response against CPV, while the oral administration of raw homogenates containing VLPs to the dogs resulted in a systemic immune response and long-lasting immunity. These results demonstrate that the CPV-VLPs stimulate both cellular and humoral immune responses, and so CPV-VLPs may be a promising candidate vaccine for the prevention of CPV-associated disease.

  20. Reactogenicity, safety and immunogenicity of a protein-based pneumococcal vaccine in Gambian children aged 2-4 years: A phase II randomized study.

    PubMed

    Odutola, A; Ota, M O; Ogundare, E O; Antonio, M; Owiafe, P; Worwui, A; Greenwood, B; Alderson, M; Traskine, M; Verlant, V; Dobbelaere, K; Borys, D

    2016-01-01

    Pneumococcal conjugate vaccines (PCVs) have been successful in preventing invasive pneumococcal disease but effectiveness has been challenged by replacement of vaccine serotypes with non-vaccine serotypes. Vaccines targeting common pneumococcal protein(s) found in most/all pneumococci may overcome this limitation. This phase II study assessed safety and immunogenicity of a new protein-based pneumococcal vaccine containing polysaccharide conjugates of 10 pneumococcal serotypes combined with pneumolysin toxoid(dPly) and pneumococcal histidine triad protein D(PhtD) (PHiD-CV/dPly/PhtD-30) in African children. 120 Gambian children (2-4 years, not previously vaccinated against Streptococcus pneumoniae) randomized (1:1) received a single dose of PHiD-CV/dPly/PhtD-30 or PCV13. Adverse events occurring over 4 d post-vaccination were reported, and blood samples obtained pre- and 1-month post-vaccination. Serious adverse events were reported for 6 months post-vaccination. Solicited local and systemic adverse events were reported at similar frequency in each group. One child (PHiD-CV/dPly/PhtD-30 group) reported a grade 3 local reaction to vaccination. Haematological and biochemical parameters seemed similar pre- and 1-month post-vaccination in each group. High pre-vaccination Ply and PhtD antibody concentrations were observed in each group, but only increased in PHiD-CV/dPly/PhtD-30 vaccinees one month post-vaccination. One month post-vaccination, for each vaccine serotype ≥96.2% of PHiD-CV/dPly/PhtD-30 vaccinees had serotype-specific polysaccharide antibody concentrations ≥0.20µg/mL except serotypes 6B (80.8%) and 23F (65.4%), and ≥94.1% had OPA titres of ≥8 except serotypes 1 (51.9%), 5 (38.5%) and 6B (78.0%), within ranges seen in PCV13-vaccinated children. A single dose of PHiD-CV/dPly/PhtD-30 vaccine, administered to Gambian children aged 2-4 y not previously vaccinated with a pneumococcal vaccine, was well-tolerated and immunogenic.

  1. A 70-Kilodalton Recombinant Heat Shock Protein of Candida albicans Is Highly Immunogenic and Enhances Systemic Murine Candidiasis

    PubMed Central

    Bromuro, Carla; La Valle, Roberto; Sandini, Silvia; Urbani, Francesca; Ausiello, Clara M.; Morelli, Luisella; Fé d’ostiani, Cristiana; Romani, Luigina; Cassone, Antonio

    1998-01-01

    The 70-kDa recombinant Candida albicans heat shock protein (CaHsp70) and its 21-kDa C-terminal and 28-kDa N-terminal fragments (CaHsp70-Cter and CaHsp70-Nter, respectively) were studied for their immunogenicity, including proinflammatory cytokine induction in vitro and in vivo, and protection in a murine model of hematogenous candidiasis. The whole protein and its two fragments were strong inducers of both antibody (Ab; immunoglobulin G1 [IgG1] and IgG2b were the prevalent isotypes) and cell-mediated immunity (CMI) responses in mice. CaHsp70 preparations were also recognized as CMI targets by peripheral blood mononuclear cells of healthy human subjects. Inoculation of CaHsp70 preparations into immunized mice induced rapid production of interleukin-6 (IL-6) and tumor necrosis factor alpha, peaking at 2 to 5 h and declining within 24 h. CaHsp70 and CaHsp70-Cter also induced gamma interferon (IFN-γ), IL-12, and IL-10 but not IL-4 production by CD4+ lymphocytes cocultured with splenic accessory cells from nonimmunized mice. In particular, the production of IFN-γ was equal if not superior to that induced in the same cells by whole, heat-inactivated fungal cells or the mitogenic lectin concanavalin A. In immunized mice, however, IL-4 but not IL-12 was produced in addition to IFN-γ upon in vitro stimulation of CD4+ cells with CaHsp70 and CaHsp70-Cter. These animals showed a decreased median survival time compared to nonimmunized mice, and their mortality was strictly associated with organ invasion by fungal hyphae. Their enhanced susceptibility was attributable to the immunization state, as it did not occur in congenitally athymic nude mice, which were unable to raise either Ab or CMI responses to CaHsp70 preparations. Together, our data demonstrate the elevated immunogenicity of CaHsp70, with which, however, no protection against but rather some enhancement of Candida infection seemed to occur in the mouse model used. PMID:9573102

  2. The modulation of Dicer regulates tumor immunogenicity in melanoma

    PubMed Central

    Hoffend, Nicholas C.; Magner, William J.; Tomasi, Thomas B.

    2016-01-01

    MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma. PMID:27356752

  3. The modulation of Dicer regulates tumor immunogenicity in melanoma.

    PubMed

    Hoffend, Nicholas C; Magner, William J; Tomasi, Thomas B

    2016-07-26

    MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma.

  4. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens

    PubMed Central

    Liljeroos, Lassi; Malito, Enrico; Ferlenghi, Ilaria; Bottomley, Matthew James

    2015-01-01

    Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease. PMID:26526043

  5. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens.

    PubMed

    Liljeroos, Lassi; Malito, Enrico; Ferlenghi, Ilaria; Bottomley, Matthew James

    2015-01-01

    Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10-20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.

  6. ORFeome Phage Display.

    PubMed

    Zantow, Jonas; Moreira, Gustavo Marçal Schmidt Garcia; Dübel, Stefan; Hust, Michael

    2018-01-01

    ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.

  7. Immunogenicity and immunoprotection of porcine circovirus type 2 (PCV2) Cap protein displayed by Lactococcus lactis.

    PubMed

    Li, Peng-Cheng; Qiao, Xu-Wen; Zheng, Qi-Sheng; Hou, Ji-Bo

    2016-01-27

    The capsid (Cap) protein, an important immunoprotective protein of porcine circovirus type 2 (PCV2), was expressed on the cell surface of the Gram-positive food-grade bacterium, Lactococcus lactis. Cap protein was fused to the peptidoglycan binding domain (known as the protein anchor domain, PA) of the lactococcal AcmA cell-wall hydrolase. The Cap protein fusion was non-covalently rebound to the surface of non-genetically modified, non-living high-binder L. lactis cells (designated Gram-positive enhancer matrix (GEM) particles). Expression of the recombinant GEM-displaying capsid protein (GEM-PA-Cap) was verified by Western blotting and immunofluorescence and transmission electron microscopy assays. To evaluate the immunogenicity of the recombinant Cap protein (rCap), 20 PCV2-seronegative piglets were immunized with the GEM-PA-Cap subunit vaccine, GEM alone, or phosphate-buffered saline (PBS, challenge control and empty control). Each group consisted of five piglets. The results showed that the level of PCV2-specific antibodies in piglets immunized with the GEM-PA-Cap subunit vaccine was significantly higher than that of the piglets immunized with GEM alone or the control group at all the time points post-vaccination (P<0.01). After challenge with the PCV2 wild-type strain, piglets that received the GEM-PA-Cap subunit vaccine showed significantly higher average daily weight gain (DWG) and shorter fever duration than the other two groups (P<0.001). Furthermore, a significant reduction in the gross lung lesion scores and lymph node lesion scores was noted in the GEM-PA-Cap-immunized group compared with the scores of the GEM or PBS-treated group (P<0.01). The results suggest that recombinant rCap displayed by L. lactis GEM particles provided the piglets with significant immunoprotection from PCV2-associated disease. Thus, the novel GEM-PA-Cap subunit vaccine has potential to be considered an effective and safe candidate vaccine against PCV2 infection in piglets

  8. 2012 AAPS National Biotech Conference Open Forum: a perspective on the current state of immunogenicity prediction and risk management.

    PubMed

    Rajadhyaksha, Manoj; Subramanyam, Meena; Rup, Bonnie

    2013-10-01

    The immunogenicity profile of a biotherapeutic is determined by multiple product-, process- or manufacturing-, patient- and treatment-related factors and the bioanalytical methodology used to monitor for immunogenicity. This creates a complex situation that limits direct correlation of individual factors to observed immunogenicity rates. Therefore, mechanistic understanding of how these factors individually or in concert could influence the overall incidence and clinical risk of immunogenicity is crucial to provide the best benefit/risk profile for a given biotherapeutic in a given indication and to inform risk mitigation strategies. Advances in the field of immunogenicity have included development of best practices for monitoring anti-drug antibody development, categorization of risk factors contributing to immunogenicity, development of predictive tools, and development of effective strategies for risk management and mitigation. Thus, the opportunity to ask "where we are now and where we would like to go from here?" was the main driver for organizing an Open Forum on Improving Immunogenicity Risk Prediction and Management, conducted at the 2012 American Association of Pharmaceutical Scientists' (AAPS) National Biotechnology Conference in San Diego. The main objectives of the Forum include the following: to understand the nature of immunogenicity risk factors, to identify analytical tools used and animal models and management strategies needed to improve their predictive value, and finally to identify collaboration opportunities to improve the reliability of risk prediction, mitigation, and management. This meeting report provides the Forum participant's and author's perspectives on the barriers to advancing this field and recommendations for overcoming these barriers through collaborative efforts.

  9. Mucosal immunogenicity of plant lectins in mice

    PubMed Central

    Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; O’Hagan, D T

    2000-01-01

    The mucosal immunogenicity of a number of plant lectins with different sugar specificities was investigated in mice. Following intranasal (i.n.) or oral administration, the systemic and mucosal antibody responses elicited were compared with those induced by a potent mucosal immunogen (cholera toxin; CT) and a poorly immunogenic protein (ovalbumin; OVA). After three oral or i.n. doses of CT, high levels of specific serum antibodies were measured and specific IgA was detected in the serum, saliva, vaginal wash, nasal wash and gut wash of mice. Immunization with OVA elicited low titres of serum IgG but specific IgA was not detected in mucosal secretions. Both oral and i.n. delivery of all five plant lectins investigated [Viscum album (mistletoe lectin 1; ML‐1), Lycospersicum esculentum (tomato lectin; LEA), Phaseolus vulgaris (PHA), Triticum vulgaris (wheat germ agglutinin (WGA), Ulex europaeus I (UEA‐1)] stimulated the production of specific serum IgG and IgA antibody after three i.n. or oral doses. Immunization with ML‐1 induced high titres of serum IgG and IgA in addition to specific IgA in mucosal secretions. The response to orally delivered ML‐1 was comparable to that induced by CT, although a 10‐fold higher dose was administered. Immunization with LEA also induced high titres of serum IgG, particularly after i.n. delivery. Low specific IgA titres were also detected to LEA in mucosal secretions. Responses to PHA, WGA and UEA‐1 were measured at a relatively low level in the serum, and little or no specific mucosal IgA was detected. PMID:10651938

  10. Identifying Key Attributes for Protein Beverages.

    PubMed

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P < 0.05) but had no effect on overall liking (P > 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P < 0.05). Protein beverages must have desirable flavor for wide consumer appeal. © 2015 Institute of Food Technologists®

  11. Immunogenicity in Swine of Orally Administered Recombinant Lactobacillus plantarum Expressing Classical Swine Fever Virus E2 Protein in Conjunction with Thymosin α-1 as an Adjuvant

    PubMed Central

    Xu, Yi-Gang; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong

    2015-01-01

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV. PMID:25819954

  12. A Y527A mutation in the fusion protein of Newcastle disease virus strain LaSota leads to a hyperfusogenic virus with increased replication and immunogenicity.

    PubMed

    Manoharan, Vinoth K; Khattar, Sunil K; Paldurai, Anandan; Kim, Shin-Hee; Samal, Siba K

    2016-02-01

    Newcastle disease is a highly contagious and economically important disease of poultry. Low-virulence Newcastle disease virus (NDV) strains such as B1 and LaSota have been used as live vaccines, with a proven track record of safety and efficacy. However, these vaccines do not completely prevent infection or virus shedding. Therefore, there is a need to enhance the immunogenicity of these vaccine strains. In this study, the effect of mutations in the conserved tyrosine residues of the F protein of vaccine strain LaSota was investigated. Our results showed that substitution of tyrosine at position 527 by alanine resulted in a hyperfusogenic virus with increased replication and immunogenicity. Challenge study with highly virulent NDV strain Texas GB showed that immunization of chickens with Y527A mutant virus provided 100% protection and no shedding of the challenge virus. This study suggests that the strain LaSota harbouring the Y527A mutation may represent a more efficacious vaccine.

  13. HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine.

    PubMed

    Shen, Xiaoying; Basu, Rahul; Sawant, Sheetal; Beaumont, David; Kwa, Sue Fen; LaBranche, Celia; Seaton, Kelly E; Yates, Nicole L; Montefiori, David C; Ferrari, Guido; Wyatt, Linda S; Moss, Bernard; Alam, S Munir; Haynes, Barton F; Tomaras, Georgia D; Robinson, Harriet L

    2017-12-15

    An important goal of human immunodeficiency virus (HIV) vaccine design is identification of strategies that elicit effective antiviral humoral immunity. One novel approach comprises priming with DNA and boosting with modified vaccinia virus Ankara (MVA) expressing HIV-1 Env on virus-like particles. In this study, we evaluated whether the addition of a gp120 protein in alum or MVA-expressed secreted gp140 (MVAgp140) could improve immunogenicity of a DNA prime-MVA boost vaccine. Five rhesus macaques per group received two DNA primes at weeks 0 and 8 followed by three MVA boosts (with or without additional protein or MVAgp140) at weeks 18, 26, and 40. Both boost immunogens enhanced the breadth of HIV-1 gp120 and V1V2 responses, antibody-dependent cellular cytotoxicity (ADCC), and low-titer tier 1B and tier 2 neutralizing antibody responses. However, there were differences in antibody kinetics, linear epitope specificity, and CD4 T cell responses between the groups. The gp120 protein boost elicited earlier and higher peak responses, whereas the MVAgp140 boost resulted in improved antibody durability and comparable peak responses after the final immunization. Linear V3 specific IgG responses were particularly enhanced by the gp120 boost, whereas the MVAgp140 boost also enhanced responses to linear C5 and C2.2 epitopes. Interestingly, gp120, but not the MVAgp140 boost, increased peak CD4 + T cell responses. Thus, both gp120 and MVAgp140 can augment potential protection of a DNA/MVA vaccine by enhancing gp120 and V1/V2 antibody responses, whereas potential protection by gp120, but not MVAgp140 boosts, may be further impacted by increased CD4 + T cell responses. IMPORTANCE Prior immune correlate analyses with humans and nonhuman primates revealed the importance of antibody responses in preventing HIV-1 infection. A DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine has proven to be potent in eliciting antibody responses. Here we explore the ability of boosts with

  14. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice.

    PubMed Central

    Mason, H S; Ball, J M; Shi, J J; Jiang, X; Estes, M K; Arntzen, C J

    1996-01-01

    Alternatives to cell culture systems for production of recombinant proteins could make very safe vaccines at a lower cost. We have used genetically engineered plants for expression of candidate vaccine antigens with the goal of using the edible plant organs for economical delivery of oral vaccines. Transgenic tobacco and potato plants were created that express the capsid protein of Norwalk virus, a calicivirus that causes epidemic acute gastroenteritis in humans. The capsid protein could be extracted from tobacco leaves in the form of 38-nm Norwalk virus-like particles. Recombinant Norwalk virus-like particle (rNV) was previously recovered when the same gene was expressed in recombinant baculovirus-infected insect cells. The capsid protein expressed in tobacco leaves and potato tubers cosedimented in sucrose gradients with insect cell-derived rNV and appeared identical to insect cell-derived rNV on immunoblots of SDS/polyacrylamide gels. The plant-expressed rNV was orally immunogenic in mice. Extracts of tobacco leaf expressing rNV were given to CD1 mice by gavage, and the treated mice developed both serum IgG and secretory IgA specific for rNV. Furthermore, when potato tubers expressing rNV were fed directly to mice, they developed serum IgG specific for rNV. These results indicate the potential usefulness of plants for production and delivery of edible vaccines. This is an appropriate technology for developing countries where vaccines are urgently needed. Images IMG Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643575

  15. An Approach to Identify and Characterize a Subunit Candidate Shigella Vaccine Antigen.

    PubMed

    Pore, Debasis; Chakrabarti, Manoj K

    2016-01-01

    Shigellosis remains a serious issue throughout the developing countries, particularly in children under the age of 5. Numerous strategies have been tested to develop vaccines targeting shigellosis; unfortunately despite several years of extensive research, no safe, effective, and inexpensive vaccine against shigellosis is available so far. Here, we illustrate in detail an approach to identify and establish immunogenic outer membrane proteins from Shigella flexneri 2a as subunit vaccine candidates.

  16. Immunoreactive Proteins of Bifidobacterium longum ssp. longum CCM 7952 and Bifidobacterium longum ssp. longum CCDM 372 Identified by Gnotobiotic Mono-Colonized Mice Sera, Immune Rabbit Sera and Non-immune Human Sera

    PubMed Central

    Górska, Sabina; Dylus, Ewa; Rudawska, Angelika; Brzozowska, Ewa; Srutkova, Dagmar; Schwarzer, Martin; Razim, Agnieszka; Kozakova, Hana; Gamian, Andrzej

    2016-01-01

    The Bifidobacteria show great diversity in the cell surface architecture which may influence the physicochemical properties of the bacterial cell and strain specific properties. The immunomodulatory role of bifidobacteria has been extensively studied, however studies on the immunoreactivity of their protein molecules are very limited. Here, we compared six different methods of protein isolation and purification and we report identification of immunogenic and immunoreactive protein of two human Bifidobacterium longum ssp. longum strains. We evaluated potential immunoreactive properties of proteins employing polyclonal sera obtained from germ free mouse, rabbit and human. The protein yield was isolation method-dependent and the reactivity of proteins detected by SDS-PAGE and Western blotting was heterogeneous and varied between different serum samples. The proteins with the highest immunoreactivity were isolated, purified and have them sequenced. Among the immunoreactive proteins we identified enolase, aspartokinase, pyruvate kinase, DnaK (B. longum ssp. longum CCM 7952) and sugar ABC transporter ATP-binding protein, phosphoglycerate kinase, peptidoglycan synthethase penicillin-binding protein 3, transaldolase, ribosomal proteins and glyceraldehyde 3-phosphate dehydrogenase (B. longum ssp. longum CCDM 372). PMID:27746766

  17. Immunoreactive Proteins of Bifidobacterium longum ssp. longum CCM 7952 and Bifidobacterium longum ssp. longum CCDM 372 Identified by Gnotobiotic Mono-Colonized Mice Sera, Immune Rabbit Sera and Non-immune Human Sera.

    PubMed

    Górska, Sabina; Dylus, Ewa; Rudawska, Angelika; Brzozowska, Ewa; Srutkova, Dagmar; Schwarzer, Martin; Razim, Agnieszka; Kozakova, Hana; Gamian, Andrzej

    2016-01-01

    The Bifidobacteria show great diversity in the cell surface architecture which may influence the physicochemical properties of the bacterial cell and strain specific properties. The immunomodulatory role of bifidobacteria has been extensively studied, however studies on the immunoreactivity of their protein molecules are very limited. Here, we compared six different methods of protein isolation and purification and we report identification of immunogenic and immunoreactive protein of two human Bifidobacterium longum ssp. longum strains. We evaluated potential immunoreactive properties of proteins employing polyclonal sera obtained from germ free mouse, rabbit and human. The protein yield was isolation method-dependent and the reactivity of proteins detected by SDS-PAGE and Western blotting was heterogeneous and varied between different serum samples. The proteins with the highest immunoreactivity were isolated, purified and have them sequenced. Among the immunoreactive proteins we identified enolase, aspartokinase, pyruvate kinase, DnaK ( B. longum ssp. longum CCM 7952) and sugar ABC transporter ATP-binding protein, phosphoglycerate kinase, peptidoglycan synthethase penicillin-binding protein 3, transaldolase, ribosomal proteins and glyceraldehyde 3-phosphate dehydrogenase ( B. longum ssp. longum CCDM 372).

  18. Duck hepatitis A virus structural proteins expressed in insect cells self-assemble into virus-like particles with strong immunogenicity in ducklings.

    PubMed

    Wang, Anping; Gu, Lingling; Wu, Shuang; Zhu, Shanyuan

    2018-02-01

    Duck hepatitis A virus (DHAV), a non-enveloped ssRNA virus, can cause a highly contagious disease in young ducklings. The three capsid proteins of VP0, VP1 and VP3 are translated within a single large open reading frame (ORF) and hydrolyzed by protease 3CD. However, little is known on whether the recombinant viral structural proteins (VPs) expressed in insect cells could spontaneously assemble into virus-like particles (VLPs) and whether these VLPs could induce protective immunity in young ducklings. To address these issues, the structural polyprotein precursor gene P1 and the protease gene 3CD were amplified by PCR, and the recombinant proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures and immunogenicity. The recombinant proteins expressed in Sf9 cells were detected by indirect immunofluorescence assay and Western blot analysis. Electron microscopy showed that the recombinant proteins spontaneously assembled into VLPs in insect cells. Western blot analysis of the purified VLPs revealed that the VLPs were composed with the three structural proteins. In addition, vaccination with the VLPs induced high humoral immune response and provided strong protection. Therefore, our findings may provide a framework for development of new vaccines for the prevention of duck viral hepatitis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The inducers of immunogenic cell death for tumor immunotherapy.

    PubMed

    Li, Xiuying

    2018-01-01

    Immunotherapy is a promising treatment modality that acts by selectively harnessing the host immune defenses against cancer. An effective immune response is often needed to eliminate tumors following treatment which can trigger the immunogenicity of dying tumor cells. Some treatment modalities (such as photodynamic therapy, high hydrostatic pressure or radiotherapy) and agents (some chemotherapeutic agents, oncolytic viruses) have been used to endow tumor cells with immunogenicity and/or increase their immunogenicity. These treatments and agents can boost the antitumor capacity by inducing immune responses against tumor neoantigens. Immunogenic cell death is a manner of cell death that can induce the emission of immunogenic damage-associated molecular patterns (DAMPs). DAMPs are sufficient for immunocompetent hosts to trigger the immune system. This review focuses on the latest developments in the treatment modalities and agents that can induce and/or enhance the immunogenicity of cancer cells.

  20. Immunological responses induced by a DNA vaccine expressing RON4 and by immunogenic recombinant protein RON4 failed to protect mice against chronic toxoplasmosis.

    PubMed

    Rashid, Imran; Hedhli, Dorsaf; Moiré, Nathalie; Pierre, Josette; Debierre-Grockiego, Françoise; Dimier-Poisson, Isabelle; Mévélec, Marie Noëlle

    2011-11-08

    The development of an effective vaccine against Toxoplasma gondii infection is an important issue due to the seriousness of the related public health problems, and the economic importance of this parasitic disease worldwide. Rhoptry neck proteins (RONs) are components of the moving junction macromolecular complex formed during invasion. The aim of this study was to evaluate the vaccine potential of RON4 using two vaccination strategies: DNA vaccination by the intramuscular route, and recombinant protein vaccination by the nasal route. We produced recombinant RON4 protein (RON4S2) using the Schneider insect cells expression system, and validated its antigenicity and immunogenicity. We also constructed optimized plasmids encoding full length RON4 (pRON4), or only the N-terminal (pNRON4), or the C-terminal part (pCRON4) of RON4. CBA/J mice immunized with pRON4, pNRON4 or pCRON4 plus a plasmid encoding the granulocyte-macrophage-colony-stimulating factor showed high IgG titers against rRON4S2. Mice immunized by the nasal route with rRON4S2 plus cholera toxin exhibited low levels of anti-RON4S2 IgG antibodies, and no intestinal IgA antibodies specific to RON4 were detected. Both DNA and protein vaccination generated a mixed Th1/Th2 response polarized towards the IgG1 antibody isotype. Both DNA and protein vaccination primed CD4+ T cells in vivo. In addition to the production of IFN-γ, and IL-2, Il-10 and IL-5 were also produced by the spleen cells of the immunized mice stimulated with RON4S2, suggesting that a mixed Th1/Th2 type immune response occurred in all the immunized groups. No cytokine was detectable in stimulated mesenteric lymph nodes from mice immunized by the nasal route. Immune responses were induced by both DNA and protein vaccination, but failed to protect the mice against a subsequent oral challenge with T. gondii cysts. In conclusion, strategies designed to enhance the immunogenicity and to redirect the cellular response towards a Th1 type response

  1. Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics.

    PubMed

    Hato, Stanleyson V; Khong, Andrea; de Vries, I Jolanda M; Lesterhuis, W Joost

    2014-06-01

    The platinum-based drugs cisplatin, carboplatin, and oxaliplatin belong to the most widely used chemotherapeutics in oncology, showing clinical efficacy against many solid tumors. Their main mechanism of action is believed to be the induction of cancer cell apoptosis as a response to their covalent binding to DNA. In recent years, this picture has increased in complexity, based on studies indicating that cellular molecules other than DNA may potentially act as targets, and that part of the antitumor effects of platinum drugs occurs through modulation of the immune system. These immunogenic effects include modulation of STAT signaling; induction of an immunogenic type of cancer cell death through exposure of calreticulin and release of ATP and high-mobility group protein box-1 (HMGB-1); and enhancement of the effector immune response through modulation of programmed death receptor 1-ligand and mannose-6-phosphate receptor expression. Both basic and clinical studies indicate that at least part of the antitumor efficacy of platinum chemotherapeutics may be due to immune potentiating mechanisms. Clinical studies exploiting this novel mechanism of action of these old cancer drugs have been initiated. Here, we review the literature on the immunogenic effects of platinum, summarize the clinical advances using platinum as a cytotoxic compound with immune adjuvant properties, and discuss the limitations to these studies and the gaps in our understanding of the immunologic effects of these drugs. Clin Cancer Res; 20(11); 2831-7. ©2014 AACR. ©2014 American Association for Cancer Research.

  2. Evaluation of the immunogenicity of a recombinant HSV-1 vector expressing human group C rotavirus VP6 protein.

    PubMed

    Rota, Rosana P; Palacios, Carlos A; Temprana, C Facundo; Argüelles, Marcelo H; Mandile, Marcelo G; Mattion, Nora; Laimbacher, Andrea S; Fraefel, Cornell; Castello, Alejandro A; Glikmann, Graciela

    2018-06-01

    Group C Rotavirus (RVC) has been associated globally with sporadic outbreaks of gastroenteritis in children and adults. RVC also infects animals, and interspecies transmission has been reported as well as its zoonotic potential. Considering its genetic diversity and the absence of effective vaccines, it is important and necessary to develop new generation vaccines against RVC for both humans and animals. The aim of the present study was to develop and characterize an HSV-1-based amplicon vector expressing a human RVC-VP6 protein and evaluate the humoral immune response induced after immunizing BALB/c mice. Local fecal samples positive for RVC were used for isolation and sequencing of the vp6 gene, which phylogenetically belongs to the I2 genotype. We show here that cells infected with the HSV[VP6C] amplicon vector efficiently express the VP6 protein, and induced specific anti-RVC antibodies in mice immunized with HSV[VP6C], in a prime-boost schedule. This work highlights that amplicon vectors are an attractive platform for the generation of safe genetic immunogens against RVC, without the addition of external adjuvants. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Immunoproteomic Identification of In Vivo-Produced Propionibacterium acnes Proteins in a Rabbit Biofilm Infection Model

    PubMed Central

    Achermann, Yvonne; Tran, Bao; Kang, Misun; Harro, Janette M.

    2015-01-01

    Propionibacterium acnes is well-known as a human skin commensal but can also act as an invasive pathogen causing implant-associated infections. In order to resolve these types of P. acnes infections, the implants must be removed, due to the presence of an established biofilm that is recalcitrant to antibiotic therapy. In order to identify those P. acnes proteins produced in vivo during a biofilm infection, we established a rabbit model of implant-associated infection with this pathogen. P. acnes biofilms were anaerobically grown on dextran beads that were then inoculated into the left tibias of rabbits. At 4 weeks postinoculation, P. acnes infection was confirmed by radiograph, histology, culture, and PCR. In vivo-produced and immunogenic P. acnes proteins were detected on Western blot using serum samples from rabbits infected with P. acnes after these bacterial proteins were separated by two-dimensional gel electrophoresis. Those proteins that bound host antibodies were then isolated and identified by tandem mass spectrometry. Radiographs and histology demonstrated a disruption in the normal bone architecture and adherent biofilm communities in those animals with confirmed infections. A total of 24 immunogenic proteins were identified; 13 of these proteins were upregulated in both planktonic and biofilm modes, including an ABC transporter protein. We successfully adapted a rabbit model of implant-associated infection for P. acnes to identify P. acnes proteins produced during a chronic biofilm-mediated infection. Further studies are needed to evaluate the potential of these proteins for either a diagnostic test or a vaccine to prevent biofilm infections caused by P. acnes. PMID:25694647

  4. Proposal for a new protein therapeutic immunogenicity titer assay cutpoint.

    PubMed

    Wakshull, Eric; Hendricks, Robert; Amaya, Caroline; Coleman, Daniel

    2011-12-01

    Generally, immunogenicity assessment strategies follow this assay triage schema: screen→confirm→titer. Each requires the determination of a threshold value (cutpoint) for decision making. No guidance documents exist for the determination of a specific titration assay cutpoint. The default practice is to use the screening assay cutpoint, frequently leading to controls or samples not reaching this cutpoint. We propose a method for determination of a titration cutpoint based upon the variance of the negative-control sample. Positive-control samples that did not cross a screening cutpoint did cross the titer cutpoint, albeit generating slightly lower titer values. Our approach is consistent with the statistical methods currently recommended for the screening and confirmatory assay cutpoints and is operationally simple and efficient.

  5. The influence of different cucumariosides on immunogenicity of OmpF porin from Yersinia pseudotuberulosis as a model protein antigen of tubular immunostimulating complex

    NASA Astrophysics Data System (ADS)

    Sanina, N. M.; Chopenko, N. S.; Davydova, L. A.; Mazeika, A. N.; Portnyagina, O. Yu.; Kim, N. Yu.; Golotin, V. A.; Kostetsky, E. Y.; Shnyrov, V. L.

    2017-09-01

    Nanoparticulate tubular immunostimulating complex (TI-complex) is a novel promising adjuvant carrier of antigens allowing to create safe and effective vaccines of new generation. The adjuvant activity of TI-complexes based on monogalactosyldyacylglycerol (MGDG) from the sea alga Ulva lactuca and different triterpene glycosides cucumariosides (CDs) from marine invertebrate Cucumaria japonica and their fractions was studied to assess effects of different CDs on the immunogenicity of porin OmpF from Yersinia pseudotuberculosis (YOmpF). TI-complexes with cucumarioside A2-2 (CDA2-2) maximally stimulated anti-porin antibody production. Studies of protein intrinsic fluorescence showed that all CDs had a relaxing effect on the conformation of YOmpF, loosening peripheral region of protein and promoting exposure of the protein antigenic determinants to the water environment. The greatest immunostimulating effect of TI-complexes comprising CDA2-2 was accompanied by mild effect of this CD on the tertiary structure of protein antigen YOmpF, whereas cucumarioside E (CDE) and cucumarioside A2-4 (CDA2-4) caused especially sharp redistribution of spectral form of the YOmpF corresponding to the emission of an intrinsic protein fluorophore tryptophan.

  6. Comparative effects of carrier proteins on vaccine-induced immune response.

    PubMed

    Knuf, Markus; Kowalzik, Frank; Kieninger, Dorothee

    2011-07-12

    The efficacy of vaccines against major encapsulated bacterial pathogens -Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae type b (Hib) - has been significantly enhanced by conjugating the respective polysaccharides with different carrier proteins: diphtheria toxoid; non-toxic cross-reactive material of diphtheria toxin(197), tetanus toxoid, N. meningitidis outer membrane protein, and non-typeable H. influenzae-derived protein D. Hib, meningococcal, and pneumococcal conjugate vaccines have shown good safety and immunogenicity profiles regardless of the carrier protein used, although data are conflicting as to which carrier protein is the most immunogenic. Coadministration of conjugate vaccines bearing the same carrier protein has the potential for inducing either positive or negative effects on vaccine immunogenicity (immune interference). Clinical studies on the coadministration of conjugate vaccines reveal conflicting data with respect to immune interference and vaccine efficacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis.

    PubMed

    Qin, Mei; Tang, Xinming; Yin, Guangwen; Liu, Xianyong; Suo, Jingxia; Tao, Geru; Ei-Ashram, Saeed; Li, Yuan; Suo, Xun

    2016-03-21

    Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.

  8. Safety and Immunogenicity of a Mycoplasma ovipneumoniae bacterin for domestic sheep (Ovis aries).

    PubMed

    Ziegler, Jessie C; Lahmers, Kevin K; Barrington, George M; Parish, Steven M; Kilzer, Katherine; Baker, Katherine; Besser, Thomas E

    2014-01-01

    Mortality from epizootic pneumonia is hindering re-establishment of bighorn sheep populations in western North America. Mycoplasma ovipneumoniae, a primary agent of this disease, is frequently carried asymptomatically by the domestic sheep and goats that constitute the reservoir of this agent for transmission to bighorn sheep. Our long-term objective is to reduce the risk of M. ovipneumoniae infection of bighorn sheep; one approach to this objective is to control the pathogen in its reservoir hosts. The safety and immunogenicity of M. ovipneumoniae for domestic sheep was evaluated in three experimental immunization protocols: 1) live M. ovipneumoniae (50 ug protein); 2) killed M. ovipneumoniae (50 ug whole cell protein) in oil adjuvant; and 3) killed M. ovipneumoniae (250 ug whole cell protein) in oil adjuvant. Immunogenicity was assessed by two serum antibody measures: competitive enzyme-linked immunosorbent assay (cELISA) (experiments 1-3) and serum growth inhibition (Experiment 3). Passive immunogenicity was also assessed in the third experiment using the same assays applied to blood samples obtained from the lambs of immunized ewes. Adverse reactions to immunization were generally minor, but local reactions were regularly observed at immunization sites with bacterins in oil adjuvants. No evidence of M. ovipneumoniae specific antibody responses were observed in the first or second experiments and no resistance to colonization was observed in the first experiment. However, the ewes in the third experiment developed strong cELISA serum antibody responses and significant serum M. ovipneumoniae inhibition activity, and these responses were passively transferred to their lambs. The results of these trials indicate that immunization with relatively large antigenic mass combined with an adjuvant is capable of inducing strong active antibody responses in ewes and passively immunizing lambs.

  9. Safety and Immunogenicity of a Mycoplasma ovipneumoniae Bacterin for Domestic Sheep (Ovis aries)

    PubMed Central

    Ziegler, Jessie C.; Lahmers, Kevin K.; Barrington, George M.; Parish, Steven M.; Kilzer, Katherine; Baker, Katherine; Besser, Thomas E.

    2014-01-01

    Background Mortality from epizootic pneumonia is hindering re-establishment of bighorn sheep populations in western North America. Mycoplasma ovipneumoniae, a primary agent of this disease, is frequently carried asymptomatically by the domestic sheep and goats that constitute the reservoir of this agent for transmission to bighorn sheep. Our long-term objective is to reduce the risk of M. ovipneumoniae infection of bighorn sheep; one approach to this objective is to control the pathogen in its reservoir hosts. Methods The safety and immunogenicity of M. ovipneumoniae for domestic sheep was evaluated in three experimental immunization protocols: 1) live M. ovipneumoniae (50 ug protein); 2) killed M. ovipneumoniae (50 ug whole cell protein) in oil adjuvant; and 3) killed M. ovipneumoniae (250 ug whole cell protein) in oil adjuvant. Immunogenicity was assessed by two serum antibody measures: competitive enzyme-linked immunosorbent assay (cELISA) (experiments 1–3) and serum growth inhibition (Experiment 3). Passive immunogenicity was also assessed in the third experiment using the same assays applied to blood samples obtained from the lambs of immunized ewes. Results and Conclusions Adverse reactions to immunization were generally minor, but local reactions were regularly observed at immunization sites with bacterins in oil adjuvants. No evidence of M. ovipneumoniae specific antibody responses were observed in the first or second experiments and no resistance to colonization was observed in the first experiment. However, the ewes in the third experiment developed strong cELISA serum antibody responses and significant serum M. ovipneumoniae inhibition activity, and these responses were passively transferred to their lambs. The results of these trials indicate that immunization with relatively large antigenic mass combined with an adjuvant is capable of inducing strong active antibody responses in ewes and passively immunizing lambs. PMID:24752006

  10. Immunogenicity of hydrolysate formulas in children (part 1). Analysis of 202 reactions.

    PubMed

    Cantani, A; Micera, M

    2000-01-01

    Cow's milk protein hydrolyzed formulas appeared in the 1940s with the aim of decreasing or eliminating the allergenicity of cow's milk proteins, in addition to reducing the risk of sensitization. In recent years, the so-called "hypoallergenic" formulas have been developed. The use of such hydrolyzed formulas is based on the premise that predigested proteins, when fed as amino acids and peptides, provide nutrients in a nonantigenic form. Thus, protein hydrolyzed formulas have been classified as hypoallergenic. These formulas are processed by heat and enzymatic hydrolysis, and the conformational and sequential structures are more or less changed. The formulas contain peptides of lower molecular weight than the native protein source, which are thought to be less immunogenic. Hydrolyzed formulas appear to be nutritionally adequate and infants generally gain weight until they refuse the formula because of its bad taste. However, caution should be taken when such formulas are given for prolonged periods since no data are available on nutritional assessment of infants exclusively fed hydrolyzed formulas for several months. In this paper we report and discuss more than 202 reactions to different hydrolyzed formulas, including cases of anaphylactic shock and apparent life-threatening events. The cross-reactivity between different hydrolyzed formulas and cow's milk proteins, and the potential immunogenicity of such formulas are discussed. We conclude that none of the hydrolyzed formulas are nonallergenic, both for allergic children and for high-risk babies. Moreover, we suggest that double-blind placebo-controlled food challenge studies in larger cohorts of babies evaluated with well-defined and well-validated diagnostic methods may establish a more reliable prevalence of allergy to hydrolyzed formulas.

  11. Mosaic HIV envelope immunogenic polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in amore » subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.« less

  12. Novel isoprenylated proteins identified by an expression library screen.

    PubMed

    Biermann, B J; Morehead, T A; Tate, S E; Price, J R; Randall, S K; Crowell, D N

    1994-10-14

    Isoprenylated proteins are involved in eukaryotic cell growth and signal transduction. The protein determinant for prenylation is a short carboxyl-terminal motif containing a cysteine, to which the isoprenoid is covalently attached via thioether linkage. To date, isoprenylated proteins have almost all been identified by demonstrating the attachment of an isoprenoid to previously known proteins. Thus, many isoprenylated proteins probably remain undiscovered. To identify novel isoprenylated proteins for subsequent biochemical study, colony blots of a Glycine max cDNA expression library were [3H]farnesyl-labeled in vitro. Proteins identified by this screen contained several different carboxyl termini that conform to consensus farnesylation motifs. These proteins included known farnesylated proteins (DnaJ homologs) and several novel proteins, two of which contained six or more tandem repeats of a hexapeptide having the consensus sequence (E/G)(G/P)EK(P/K)K. Thus, plants contain a diverse array of genes encoding farnesylated proteins, and our results indicate that fundamental differences in the identities of farnesylated proteins may exist between plants and other eukaryotes. Expression library screening by direct labeling can be adapted to identify isoprenylated proteins from other organisms, as well as proteins with other post-translational modifications.

  13. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice.

    PubMed

    Soleimanpour, Saman; Farsiani, Hadi; Mosavat, Arman; Ghazvini, Kiarash; Eydgahi, Mohammad Reza Akbari; Sankian, Mojtaba; Sadeghian, Hamid; Meshkat, Zahra; Rezaee, Seyed Abdolrahim

    2015-12-01

    Numerous studies have demonstrated that targeting immunogens to FcγR on antigen-presenting cells (APCs) can selectively uptake and increase cellular immunity in vitro and in vivo. Therefore, the present study was conducted to evaluate immunogenicity of a novel multistage tuberculosis vaccine, a combination of an early and a dormant immunogenic protein, ESAT6 and HspX, fused to Fcγ2a fragment of mouse IgG2a to target all forms of tuberculosis. Codon-optimized genes consisting of ESAT6, a linker, and HspX fused either to mouse Fcγ2a (ESAT6:HspX:mFcγ2a) or 6× His-tag (ESAT6:HspX:His) were synthesized. The resulting proteins were then produced in Pichia pastoris. The fusion proteins were separately emulsified in dimethyldioctadecylammonium bromide(DDA)-trehalose-6,6-dibehenate(TDB) adjuvant, and their immunogenicity with and without bacille Calmette-Guérin (BCG) was assessed in C57BL/6 mice. Th1, Th2, Th17, and T-reg cytokine patterns were evaluated using the ELISA method. Both multistage vaccines induced very strong IL-12 and IFN-γ secretion from splenic cells; the Fc-tagged subunit vaccine induced a more effective Th1 immune response (IFN-γ, 910 pg/mL, and IL-12, 854 pg/mL) with a very low increase in IL-17 (∼0.1 pg/mL) and IL-4 (37 pg/mL) and a mild increase in TGF-β (543 pg/mL) compared to the BCG or ESAT6:HspX:His primed and boosted groups. The production of IFN-γ to ESAT6:HspX:Fcγ2a was very consistent and showed an increasing trend for IL-12 compared to the BCG or ESAT6:HspX:His primed and boosted groups. Fcγ2a used as a delivery vehicle supported the idea of selective uptake, inducing cross-presentation and forming a proper anti-tuberculosis response in context of Th1/Th2 and Th17/T-reg balances, which is important for protection and prevention of damage.

  14. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  15. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    PubMed

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  16. Properties of MHC Class I Presented Peptides That Enhance Immunogenicity

    PubMed Central

    Calis, Jorg J. A.; Maybeno, Matt; Greenbaum, Jason A.; Weiskopf, Daniela; De Silva, Aruna D.; Sette, Alessandro; Keşmir, Can; Peters, Bjoern

    2013-01-01

    T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4–6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/) was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self) peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses. PMID:24204222

  17. Immunoproteomic Identification of In Vivo-Produced Propionibacterium acnes Proteins in a Rabbit Biofilm Infection Model.

    PubMed

    Achermann, Yvonne; Tran, Bao; Kang, Misun; Harro, Janette M; Shirtliff, Mark E

    2015-05-01

    Propionibacterium acnes is well-known as a human skin commensal but can also act as an invasive pathogen causing implant-associated infections. In order to resolve these types of P. acnes infections, the implants must be removed, due to the presence of an established biofilm that is recalcitrant to antibiotic therapy. In order to identify those P. acnes proteins produced in vivo during a biofilm infection, we established a rabbit model of implant-associated infection with this pathogen. P. acnes biofilms were anaerobically grown on dextran beads that were then inoculated into the left tibias of rabbits. At 4 weeks postinoculation, P. acnes infection was confirmed by radiograph, histology, culture, and PCR. In vivo-produced and immunogenic P. acnes proteins were detected on Western blot using serum samples from rabbits infected with P. acnes after these bacterial proteins were separated by two-dimensional gel electrophoresis. Those proteins that bound host antibodies were then isolated and identified by tandem mass spectrometry. Radiographs and histology demonstrated a disruption in the normal bone architecture and adherent biofilm communities in those animals with confirmed infections. A total of 24 immunogenic proteins were identified; 13 of these proteins were upregulated in both planktonic and biofilm modes, including an ABC transporter protein. We successfully adapted a rabbit model of implant-associated infection for P. acnes to identify P. acnes proteins produced during a chronic biofilm-mediated infection. Further studies are needed to evaluate the potential of these proteins for either a diagnostic test or a vaccine to prevent biofilm infections caused by P. acnes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Immunoproteomic and bioinformatic approaches to identify secreted Leishmania amazonensis, L. braziliensis, and L. infantum proteins with specific reactivity using canine serum.

    PubMed

    Lima, B S S; Fialho, L C; Pires, S F; Tafuri, W L; Andrade, H M

    2016-06-15

    Leishmania spp have a wide range of hosts, and each host can harbor several Leishmania species. Dogs, for example, are frequently infected by Leishmania infantum, where they constitute its main reservoir, but they also serve as hosts for L. braziliensis and L. amazonensis. Serological tests for antibody detection are valuable tools for diagnosis of L. infantum infection due to the high levels of antibodies induced, unlike what is observed in L. amazonensis and L. braziliensis infections. Likewise, serology-based antigen-detection can be useful as an approach to diagnose any Leishmania species infection using different corporal fluid samples. Immunogenic and secreted proteins constitute powerful targets for diagnostic methods in antigen detection. As such, we performed immunoproteomic (2-DE, western blot and mass spectrometry) and bioinformatic screening to search for reactive and secreted proteins from L. amazonensis, L. braziliensis, and L. infantum. Twenty-eight non-redundant proteins were identified, among which, six were reactive only in L. amazonensis extracts, 10 in L. braziliensis extracts, and seven in L. infantum extracts. After bioinformatic analysis, seven proteins were predicted to be secreted, two of which were reactive only in L. amazonensis extracts (52kDa PDI and the glucose-regulated protein 78), one in L. braziliensis extracts (pyruvate dehydrogenase E1 beta subunit) and three in L. infantum extracts (two conserved hypothetical proteins and elongation factor 1-beta). We propose that proteins can be suitable targets for diagnostic methods based on antigen detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Immunocontraception of Eastern Grey kangaroos (Macropus giganteus) with recombinant brushtail possum (Trichosurus vulpecula) ZP3 protein.

    PubMed

    Kitchener, Anne L; Harman, Amanda; Kay, David J; McCartney, Carmen A; Mate, Karen E; Rodger, John C

    2009-01-01

    This study examined the potential of a recombinant marsupial zona pellucida 3 protein as a contraceptive vaccine for the Eastern Grey kangaroo, a marsupial that is locally overabundant in several regions of eastern Australia. First, a pilot study using porcine zona pellucidae (PZP) demonstrated that ZP proteins, primarily the ZP3 component of PZP, are highly immunogenic in the grey kangaroo and produce a long-lasting humoral response to a single immunisation, as found in other marsupials. Immunisation with 300 microg of a non-glycosylated recombinant brushtail possum ZP3 (recBP-ZP3) protein in complete Freund's adjuvant produced a similar, significant and sustained antibody response, and none of the immunised kangaroos (n=7) produced offspring during the following breeding season compared with four out of the six control animals. An epitope analysis of the B-cell response to recBP-ZP3 using a brushtail possum ZP3 identified numerous B-cell epitope regions clustered around the N- and C-terminal regions of the protein. Two regions of interest for further fertility vaccine development based on their immunogenicity and fertility trials and functional studies in other species were found to be immunogenic. These results suggest that immunocontraception based on targeting the ZP3 protein within the zona pellucida may be an effective strategy for fertility reduction in Eastern Grey kangaroos.

  20. Developing novel immunogens for a safe and effective Alzheimer's disease vaccine.

    PubMed

    Lemere, Cynthia A

    2009-01-01

    Alzheimer's disease (AD) is the most prevalent form of neurodegeneration; however, therapies to prevent or treat AD are inadequate. Amyloid-beta (Abeta) protein accrues in cortical senile plaques, one of the key neuropathological hallmarks of AD, and is elevated in brains of early onset AD patients in a small number of families that bear certain genetic mutations, further implicating its role in this devastating neurological disease. In addition, soluble Abeta oligomers have been shown to be detrimental to neuronal function. Therapeutic strategies aimed at lowering cerebral Abeta levels are currently under development. One strategy is to immunize AD patients with Abeta peptides so that they will generate antibodies that bind to Abeta protein and enhance its clearance. As of 1999, Abeta immunotherapy, either through active immunization with Abeta peptides or through passive transfer of Abeta-specific antibodies, has been shown to reduce cerebral Abeta levels and improve cognitive deficits in AD mouse models and lower plaque load in nonhuman primates. However, a Phase II clinical trial of active immunization using full-length human Abeta1-42 peptide and a strong Th1-biased adjuvant, QS-21, ended prematurely in 2002 because of the onset of meningoencephalitis in approximately 6% of the AD patients enrolled in the study. It is possible that T cell recognition of the human full-length Abeta peptide as a self-protein may have induced an adverse autoimmune response in these patients. Although only approximately 20% of immunized patients generated anti-Abeta titers, responders showed some general slowing of cognitive decline. Focal cortical regions devoid of Abeta plaques were observed in brain tissues of several immunized patients who have since come to autopsy. In order to avoid a deleterious immune response, passive Abeta immunotherapy is under investigation by administering monthly intravenous injections of humanized Abeta monoclonal antibodies to AD patients. However

  1. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines.

    PubMed

    Prisilla, A; Prathiviraj, R; Sasikala, R; Chellapandi, P

    2016-10-01

    Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE PAGES

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; ...

    2016-04-20

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  3. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  4. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins.

    PubMed

    Grzybowski, Marcin M; Dziadek, Bożena; Gatkowska, Justyna M; Dzitko, Katarzyna; Długońska, Henryka

    2015-12-01

    Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.

  5. Immunogenicity and immunomodulatory properties of hepatocyte-like cells derived from human amniotic epithelial cells.

    PubMed

    Tee, Jing Yang; Vaghjiani, Vijesh; Liu, Yu Han; Murthi, Padma; Chan, James; Manuelpillai, Ursula

    2013-01-01

    Hepatocyte transplantation is being trialled as an alternative to whole organ transplant for patients with acute liver failure and liver specific metabolic diseases. Due to the scarcity of human hepatocytes, hepatocyte-like cells (HLC) generated from stem cells may become a viable alternative to hepatocyte transplantation. Human amniotic epithelial cells (hAEC) from the placenta have stem cell-like properties and can be differentiated into HLC. Naïve hAEC have low immunogenicity and exert immunomodulatory effects that may facilitate allogeneic transplantation. However, whether the immunogenicity and immunomodulatory properties alter with differentiation into HLC are unknown. We further characterized HLC generated from hAEC, examined changes in human leucocyte antigens (HLA) and co-stimulatory molecules and effects exerted by the HLC on human peripheral blood mononuclear cells (PBMC). HLC derived from hAEC expressed proteins found in hepatocytes, had CYP3A4 drug metabolizing enzyme activity and secreted urea. IFN-γ treatment increased HLA Class IA, Class II and co-stimulatory molecule CD40 expression in the HLC. IFN-γ treated HLC stimulated proliferation of PBMC in one-way mixed lymphocyte reactions and were more immunogenic than undifferentiated hAEC. However, the HLC showed immunomodulatory properties and inhibited mitogen induced PBMC proliferation in vitro. PBMC proliferation may have been inhibited by IL-6, TGF-β1, PGE2 and HLA-G secreted by the HLC. The retention of immunomodulatory properties may enable HLC grafts to survive for longer periods despite the immunogenicity of the HLC.

  6. Fusion proteins of flagellin and the major birch pollen allergen Bet v 1 show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity.

    PubMed

    Kitzmüller, Claudia; Kalser, Julia; Mutschlechner, Sonja; Hauser, Michael; Zlabinger, Gerhard J; Ferreira, Fatima; Bohle, Barbara

    2018-01-01

    Recombinant fusion proteins of flagellin and antigens have been demonstrated to induce strong innate and adaptive immune responses. Such fusion proteins can enhance the efficacy of allergen-specific immunotherapy. We sought to characterize different fusion proteins of flagellin and the major birch pollen allergen Bet v 1 for suitability as allergy vaccines. A truncated version of flagellin (NtCFlg) was genetically fused to the N- or C-terminus of Bet v 1. Toll-like receptor (TLR) 5 binding was assessed with HEK293 cells expressing TLR5. Upregulation of CD40, CD80, CD83, and CD86 on monocyte-derived dendritic cells from allergic patients was analyzed by using flow cytometry. The T cell-stimulatory capacity of the fusion proteins was assessed with naive and Bet v 1-specific T cells. IgE binding was tested in inhibition ELISAs and basophil activation tests. Mice were immunized with the fusion proteins in the absence and presence of aluminum hydroxide. Cellular and antibody responses were monitored. Murine antibodies were tested for blocking capacity in basophil activation tests. Both fusion proteins matured monocyte-derived dendritic cells through TLR5. Compared with Bet v 1, the fusion proteins showed stronger T cell-stimulatory and reduced IgE-binding capacity and induced murine Bet v 1-specific antibodies in the absence of aluminum hydroxide. However, only antibodies induced by means of immunization with NtCFlg fused to the C-terminus of Bet v 1 inhibited binding of patients' IgE antibodies to Bet v 1. Bet v 1-flagellin fusion proteins show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity and thus represent promising vaccines for birch pollen allergen-specific immunotherapy. However, the sequential order of allergen and adjuvant within a fusion protein determines its immunologic characteristics. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Introduction to current and future protein therapeutics: a protein engineering perspective.

    PubMed

    Carter, Paul J

    2011-05-15

    Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies to address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Introduction to current and future protein therapeutics: A protein engineering perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Paul J., E-mail: pjc@gene.com

    2011-05-15

    Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies tomore » address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies.« less

  9. Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates

    PubMed Central

    García-Arriaza, Juan; Perdiguero, Beatriz; Heeney, Jonathan; Seaman, Michael; Montefiori, David C.; Labranche, Celia; Yates, Nicole L.; Shen, Xiaoying; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; McDermott, Adrian; Kao, Shing-Fen; Roederer, Mario; Hawkins, Natalie; Self, Steve; Yao, Jiansheng; Farrell, Patrick; Phogat, Sanjay; Tartaglia, Jim; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony; Weiss, Deborah; Lee, Carter; Kibler, Karen; Jacobs, Bert; Asbach, Benedikt; Wagner, Ralf; Ding, Song; Pantaleo, Giuseppe

    2015-01-01

    ABSTRACT We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4+ T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8+ T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that

  10. Interaction of Proteins Identified in Human Thyroid Cells

    PubMed Central

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  11. Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis

    PubMed Central

    Irrgang, A.; Weise, C.; Murugaiyan, J.; Roesler, U.

    2014-01-01

    Prototheca zopfii associated with bovine mastitis and human protothecosis exists as two genotypes, of which genotype 1 is considered as non-infectious and genotype 2 as infectious. The mechanism of infection has not yet been described. The present study was aimed to identify genotype 2-specific immunodominant proteins. Prototheca proteins were separated using two-dimensional gel electrophoresis. Subsequent western blotting with rabbit hyperimmune serum revealed 28 protein spots. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis resulted in the identification of 15 proteins including malate dehydrogenase, elongation factor 1-alpha, heat shock protein 70, and 14-3-3 protein, which were previously described as immunogenic proteins of other eukaryotic pathogens. PMID:25755891

  12. Multivalent Immunogenic Vaccines for Treating Prostate and Breast Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the NCI have developed a treatment for prostate and breast cancer using multivalent peptides derived from TARP, the T cell receptor gamma alternate reading frame protein. These immunogenic peptides from TARP elicit an immune response, triggering T cells to kill only the cancer cells within a patient. NCI seeks licensees or co-development partners to commercialize this invention.

  13. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes

    PubMed Central

    Mazor, Ronit; Eberle, Jaime A.; Hu, Xiaobo; Vassall, Aaron N.; Onda, Masanori; Beers, Richard; Lee, Elizabeth C.; Kreitman, Robert J.; Lee, Byungkook; Baker, David; King, Chris; Hassan, Raffit; Benhar, Itai; Pastan, Ira

    2014-01-01

    Nonhuman proteins have valuable therapeutic properties, but their efficacy is limited by neutralizing antibodies. Recombinant immunotoxins (RITs) are potent anticancer agents that have produced many complete remissions in leukemia, but immunogenicity limits the number of doses that can be given to patients with normal immune systems. Using human cells, we identified eight helper T-cell epitopes in PE38, a portion of the bacterial protein Pseudomonas exotoxin A which consists of the toxin moiety of the RIT, and used this information to make LMB-T18 in which three epitopes were deleted and five others diminished by point mutations in key residues. LMB-T18 has high cytotoxic and antitumor activity and is very resistant to thermal denaturation. The new immunotoxin has a 93% decrease in T-cell epitopes and should have improved efficacy in patients because more treatment cycles can be given. Furthermore, the deimmunized toxin can be used to make RITs targeting other antigens, and the approach we describe can be used to deimmunize other therapeutically useful nonhuman proteins. PMID:24799704

  14. Immunogenic Peptides (Vaccines) for the Treatment of Prostate and Breast Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the NCI have developed a novel treatment for prostate and breast cancer using synthetic peptides derived from TARP, the T cell receptor gamma alternate reading frame protein. These immunogenic peptides from TARP elicit an immune response, triggering T cells to kill only the cancer cells within a patient.

  15. Molecular and Immunogenic Properties of Apyrase SP01B and D7-Related SP04 Recombinant Salivary Proteins of Phlebotomus perniciosus from Madrid, Spain

    PubMed Central

    Martín-Martín, Inés

    2013-01-01

    Sand fly salivary proteins are on the spotlight to become vaccine candidates against leishmaniasis and to markers of exposure to sand fly bites due to the host immune responses they elicit. Working with the whole salivary homogenate entails serious drawbacks such as the need for maintaining sand fly colonies and the laborious task of glands dissection. In order to overcome these difficulties, producing recombinant proteins of different vectors has become a major task. In this study, a cDNA library was constructed with the salivary glands of Phlebotomus perniciosus from Madrid, Spain, the most widespread vector of Leishmania infantum in the Mediterranean basin. Analysis of the cDNA sequences showed several polymorphisms among the previously described salivary transcripts. The apyrase SP01B and the D7-related protein SP04 were successfully cloned, expressed in Escherichia coli, and purified. Besides, recombinant proteins were recognized by sera of hamsters and mice previously immunized with saliva through the exposure to uninfected sand fly bites. These results suggest that these two recombinant proteins conserved their immunogenic properties after expression in a prokaryote system. Therefore, this work contributes to expand the knowledge of P. perniciosus saliva that would be eventually used for the development of tools for vector control programs. PMID:24171166

  16. Immunological Properties of Hepatitis B Core Antigen Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.

    1990-04-01

    The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.

  17. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Saikat; Shi, Heliang; Habte, Habtom H.

    The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; {sup 671}NWFDITNWLWYIK{sup 683}) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies inmore » rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies. - Highlights: • Four gp41 MPER-based immunogens that resemble fusion intermediates were generated. • C-terminal region of MPER that contains 4E10/10E8 epitopes was highly immunogenic. • Altering 6HB structure can influence immunogenic properties of the MPER. • Induced antibodies targeted multiple residues critical for 4E10/10E8 binding. • Development of immunogens based on fusion intermediates is a promising strategy.« less

  18. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments

    PubMed Central

    Inoue, H; Tani, K

    2014-01-01

    Apoptotic cell death generally characterized by a morphologically homogenous entity has been considered to be essentially non-immunogenic. However, apoptotic cancer cell death, also known as type 1 programmed cell death (PCD), was recently found to be immunogenic after treatment with several chemotherapeutic agents and oncolytic viruses through the emission of various danger-associated molecular patterns (DAMPs). Extensive studies have revealed that two different types of immunogenic cell death (ICD) inducers, recently classified by their distinct actions in endoplasmic reticulum (ER) stress, can reinitiate immune responses suppressed by the tumor microenvironment. Indeed, recent clinical studies have shown that several immunotherapeutic modalities including therapeutic cancer vaccines and oncolytic viruses, but not conventional chemotherapies, culminate in beneficial outcomes, probably because of their different mechanisms of ICD induction. Furthermore, interests in PCD of cancer cells have shifted from its classical form to novel forms involving autophagic cell death (ACD), programmed necrotic cell death (necroptosis), and pyroptosis, some of which entail immunogenicity after anticancer treatments. In this review, we provide a brief outline of the well-characterized DAMPs such as calreticulin (CRT) exposure, high-mobility group protein B1 (HMGB1), and adenosine triphosphate (ATP) release, which are induced by the morphologically distinct types of cell death. In the latter part, our review focuses on how emerging oncolytic viruses induce different forms of cell death and the combinations of oncolytic virotherapies with further immunomodulation by cyclophosphamide and other immunotherapeutic modalities foster dendritic cell (DC)-mediated induction of antitumor immunity. Accordingly, it is increasingly important to fully understand how and which ICD inducers cause multimodal ICD, which should aid the design of reasonably multifaceted anticancer modalities to

  19. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    PubMed

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  20. Reporting, Visualization, and Modeling of Immunogenicity Data to Assess Its Impact on Pharmacokinetics, Efficacy, and Safety of Monoclonal Antibodies.

    PubMed

    Passey, Chaitali; Suryawanshi, Satyendra; Sanghavi, Kinjal; Gupta, Manish

    2018-02-26

    The rapidly increasing number of therapeutic biologics in development has led to a growing recognition of the need for improvements in immunogenicity assessment. Published data are often inadequate to assess the impact of an antidrug antibody (ADA) on pharmacokinetics, safety, and efficacy, and enable a fully informed decision about patient management in the event of ADA development. The recent introduction of detailed regulatory guidance for industry should help address many past inadequacies in immunogenicity assessment. Nonetheless, careful analysis of gathered data and clear reporting of results are critical to a full understanding of the clinical relevance of ADAs, but have not been widely considered in published literature to date. Here, we review visualization and modeling of immunogenicity data. We present several relatively simple visualization techniques that can provide preliminary information about the kinetics and magnitude of ADA responses, and their impact on pharmacokinetics and clinical endpoints for a given therapeutic protein. We focus on individual sample- and patient-level data, which can be used to build a picture of any trends, thereby guiding analysis of the overall study population. We also discuss methods for modeling ADA data to investigate the impact of immunogenicity on pharmacokinetics, efficacy, and safety.

  1. Expression, Purification, and Evaluation of Diagnostic Potential and Immunogenicity of a Recombinant NS3 Protein from All Serotypes of Dengue Virus

    PubMed Central

    Álvarez-Rodríguez, Laura Mónica; Ramos-Ligonio, Angel; Rosales-Encina, José Luis; Martínez-Cázares, María Teresa; Parissi-Crivelli, Aurora; López-Monteon, Aracely

    2012-01-01

    Dengue is one of the major public health concerns in the world. Since all the four serotypes are actively circulating in Mexico, there is a need to develop an efficient diagnosis system to improve case management of the patients. There exist few studies evaluating the use of the NS3 protein as a protective antigen against dengue virus (DENV). In this paper we show the expression of a recombinant NS3 protein from all serotypes of dengue virus (GST-DVNS3-1-4) and report a reliable “in-house detection system” for the diagnosis of dengue infection which was field-tested in a small village (Tezonapa) in the state of Veracruz, Mexico. The fusion proteins were immunogenic, inducing antibodies to be able to recognize to antigens up to a 1 : 3200 dilution. The purified proteins were used to develop an in-house detection system (ELISA) and were further tested with a panel of 239 serum samples. The in-house results were in excellent agreement with the commercial kits with κ = 0.934 ± 0.064 (95%  CI = 0.808–1.061), and κ = 0.872 ± 0.048 (95%  CI = 0.779–0.965) for IgM and IgG, respectively. The agreement between the NS1 antigen detection versus the rNS3 ELISA, κ = 0.837 ± 0.066 (95%  CI = 0.708–0.966), was very good. Thus, these results demonstrate that recombinant NS3 proteins have potential in early diagnosis of dengue infections. PMID:23258983

  2. Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean.

    PubMed

    Piller, Kenneth J; Clemente, Thomas E; Jun, Sang Mu; Petty, Cynthia C; Sato, Shirley; Pascual, David W; Bost, Kenneth L

    2005-09-01

    Enterotoxigenic Escherichia coli (ETEC) cause acute diarrhea in humans and farm animals, and can be fatal if the host is left untreated. As a potential alternative to traditional needle vaccination of cattle, we investigated the feasibility of expressing the major K99 fimbrial subunit, FanC, in soybean (Glycine max) for use as an edible subunit vaccine. As a first step in this developmental process, a synthetic version of fanC was optimized for expression in the cytosol and transferred to soybean via Agrobacterium-mediated transformation. Western analysis of T(0) events revealed the presence of a peptide with the expected mobility for FanC in transgenic protein extracts, and immunofluorescense confirmed localization to the cytosol. Two T(0) lines, which accumulated FanC to levels near 0.5% of total soluble protein, were chosen for further molecular characterization in the T(1) and T(2) generations. Mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing synthetic FanC developed significant antibody titers against bacterially derived FanC and produced antigen-specific CD4(+) T lymphocytes, demonstrating the ability of transgenic FanC to function as an immunogen. These experiments are the first to demonstrate the expression and immunogenicity of a model subunit antigen in the soybean system, and mark the first steps toward the development of a K99 edible vaccine to protect against ETEC.

  3. Phase I Safety and Immunogenicity Trial of Plasmodium vivax CS Derived Long Synthetic Peptides Adjuvanted with Montanide ISA 720 or Montanide ISA 51

    PubMed Central

    Herrera, Sócrates; Fernández, Olga Lucía; Vera, Omaira; Cárdenas, William; Ramírez, Oscar; Palacios, Ricardo; Chen-Mok, Mario; Corradin, Giampietro; Arévalo-Herrera, Myriam

    2011-01-01

    We assessed the safety, tolerability, and immunogenicity of a mixture of three synthetic peptides derived from the Plasmodium vivax circumsporozoite protein formulated in Montanide ISA 720 or Montanide ISA 51. Forty healthy malaria-naive volunteers were allocated to five experimental groups (A–E): four groups (A–D) were immunized intramuscularly with 50 and 100 μg/dose injections of a mixture of N, R, and C peptides formulated in the two different adjuvants at 0, 2, and 4 months and one group was administered placebo. Vaccines were immunogenic, safe, well tolerated, and no serious adverse events related to the vaccine occurred. Seroconversion occurred in > 90% of the vaccines and antibodies recognized the sporozoite protein on immunofluorescent antibody test. Vaccines in Montanide ISA 51 showed a higher sporozoite protein recognition and interferon production. Results encourage further testing of the vaccine protective efficacy. PMID:21292873

  4. Real-Life Efficacy, Immunogenicity and Safety of Biosimilar Infliximab.

    PubMed

    Vegh, Zsuzsanna; Kurti, Zsuzsanna; Lakatos, Peter L

    2017-01-01

    Recently, the use of biosimilar infliximab (IFX) in the treatment of inflammatory bowel diseases has become widespread in some European and non-European countries. Data on the efficacy, safety and immunogenicity from real-life cohorts are accumulating. The first reports showed similar outcomes in the induction and maintenance of remission, mucosal healing, safety and immunogenicity profile to the originator IFX. In the present review, we aimed to summarize the existing knowledge on the efficacy, safety and immunogenicity profile of biosimilar IFX reported from real-life cohorts. © 2017 S. Karger AG, Basel.

  5. [Prokaryotic expression of trigeminy artificial fusion gene of Leptospira interrogans and the immunogenicity of its products].

    PubMed

    Luo, Dong-jiao; Qiu, Xiao-feng; Wang, Jiang; Yan, Jin; Wang, Hai-bin; Zhou, Jin-cheng; Yan, Jie

    2008-11-01

    To construct lipL32/1-lipL21-OmpL1/2 fusion gene of Leptospira interrogans and its prokaryotic expression system, and to identify the immunogenicity of its products. PCR using linking primers was applied to construct lipL32/1-lipL21-OmpL1/2 fusion gene and a prokaryotic expression system of the fusion gene was then established using routine genetic engineering technique. SDS-PAGE was used to examine output of the target recombinant protein rLipL32/1-LipL21-OmpL1/2. Double immunodiffusion and Western Blot assay were applied to identify immunogenicity of rLipL32/1-LipL21-OmpL1/2. lipL32/1-lipL21-OmpL1/2 fusion gene with correct sequence and its prokaryotic expression system E.coli BL21DE3pET42a-lipL32/1-lipL21-ompL1/2 was obtained in this study. The output of rLipL32/1-LipL21- OmpL1/2 after optimisation was 37.78 mg/L. The immunodiffusion titer of rabbit antiserum against rLipL32/1-LipL21-OmpL1/2 was 1:4. The rLipL32/1-LipL21-OmpL1/2 antiserum was able to recognize rLipL32/1-LipL21-OmpL1/2, rLipL32/1, rLipL21 and rOmpL1/2. Positive Western hybridization signals were found among rLipL32/1-LipL21-OmpL1/2 and rabbit antiserum against whole cell of strain 56601 and serum from patients infected with L.interrogans serogroups Icterohaemorrhagiae, Grippotyphosa, Autumnalis and Pomona. The fusion gene lipL32/1-lipL21-OmpL1/2 and its prokaryotic expression system were successfully constructed in this study. The expressed fusion protein can be used as the antigen for developing universal genetic engineering vaccine and universal serological tests of leptospirosis.

  6. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice.

    PubMed

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J

    2016-06-30

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans.

  7. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: Impacts on immunity and metabolism

    PubMed Central

    2011-01-01

    Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA), occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS) is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA), haptoglobin (Hp), LPS binding protein (LBP), and C-reactive protein (CRP) in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydoxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn) are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP) are associated with declines in milk fat content, milk

  8. The type IV pilin of Burkholderia mallei is highly immunogenic but fails to protect against lethal aerosol challenge in a murine model.

    PubMed

    Fernandes, Paula J; Guo, Qin; Waag, David M; Donnenberg, Michael S

    2007-06-01

    Burkholderia mallei is the cause of glanders and a proven biological weapon. We identified and purified the type IV pilin protein of this organism to study its potential as a subunit vaccine. We found that purified pilin was highly immunogenic. Furthermore, mice infected via sublethal aerosol challenge developed significant increases in titers of antibody against the pilin, suggesting that it is expressed in vivo. Nevertheless, we found no evidence that high-titer antipilin antisera provided passive protection against a sublethal or lethal aerosol challenge and no evidence of protection afforded by active immunization with purified pilin. These results contrast with the utility of type IV pilin subunit vaccines against other infectious diseases and highlight the need for further efforts to identify protective responses against this pathogen.

  9. Preparation of monoclonal antibody bank against whole water-soluble proteins from rapid-growing bamboo shoots.

    PubMed

    Wu, Yu-Jen; Chen, Han-Min; Wu, Tai-Tse; Wu, Jiann-Shing; Chu, Rea-Min; Juang, Rong-Huay

    2006-11-01

    An antibody bank against the whole proteins in a proteome is a useful tool for biological research. Using the standard cell fusion method, and a modified screening protocol, we produced an mAb bank against the total water-soluble proteins extracted from the rapid-growing green bamboo shoots. An improved two-stage strategy was employed to enrich those poor immunogenic or lower expressed proteins. Totally, we obtained a bank of 192 mAb which were identified as distinctive to each other by 2-DE and immunostaining.

  10. Infective and inactivated filamentous phage as carriers for immunogenic peptides.

    PubMed

    Samoylova, Tatiana I; Norris, Mandy D; Samoylov, Alexandre M; Cochran, Anna M; Wolfe, Karen G; Petrenko, Valery A; Cox, Nancy R

    2012-07-01

    The focus of this study is on development of vaccines using filamentous phage as a delivery vector for immunogenic peptides. The use of phage as a carrier for immunogenic peptides provides significant benefits such as high immunogenicity, low production costs, and high stability of phage preparations. However, introduction of live recombinant phage into the environment might represent a potential ecological problem. This, for example, may occur when vaccines are used in oral or nasal formulations in field conditions for wild and feral animals. To address this issue, comparative studies of antigenic properties of live and inactivated (non-viable) phage were accomplished. Inactivated phage, if released, will not propagate and will degrade as any other protein. In these experiments, a model phage clone that was previously selected from a phage display library and shown to stimulate production of anti-sperm antibodies with contraceptive properties was used. Multiple methods of phage inactivation were tested, including drying, freezing, autoclaving, heating, and UV irradiation. Under studied conditions, heating at 76°C for 3h, UV irradiation, and autoclaving resulted in complete phage inactivation. Phage samples treated by heat and UV were characterized by spectrophotometry and electron microscopy. To test antigenicity, live and inactivated phage preparations were injected into mice and antibody responses assayed by ELISA. It was found that phage killed by heat causes little to no immune responses, probably due to destruction of phage particles. In contrast, UV-inactivated phage stimulated production of IgG serum antibodies at the levels comparable to live phage. Thus, vaccines formulated to include UV-inactivated filamentous phage might represent environmentally safe alternatives to live phage vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Immunogenic Subviral Particles Displaying Domain III of Dengue 2 Envelope Protein Vectored by Measles Virus

    PubMed Central

    Harahap-Carrillo, Indira S.; Ceballos-Olvera, Ivonne; Reyes-del Valle, Jorge

    2015-01-01

    Vaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII) from DV 2 envelope protein (E), which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S) in order to display DV 2 DIII on a virus-like particle (VLP), thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV) vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU) and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNarko), eliciting robust neutralizing responses (averages) against MV (1:1280 NT90), hepatitis B virus (787 mIU/mL), and DV2 (1:160 NT50) in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV. PMID:26350592

  12. Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice.

    PubMed

    Chen, Xinxin; Yang, Jifei; Ji, Yanhong; Okoth, Edward; Liu, Bin; Li, Xiaoyang; Yin, Hong; Zhu, Qiyun

    2016-04-01

    African swine fever (ASF) is a lethal hemorrhagic disease that affects wild and domestic swine. The etiological agent of ASF is African swine fever virus (ASFV). Since the first case was described in Kenya in 1921, the disease has spread to many other countries. No commercial vaccines are available to prevent ASF. In this study, we generated a recombinant Newcastle disease virus (rNDV) expressing ASFV protein 72 (p72) by reverse genetics and evaluated its humoral and cellular immunogenicity in a mouse model. The recombinant virus, rNDV/p72, replicated well in embryonated chicken eggs and was safe to use in chicks and mice. The p72 gene in rNDV/p72 was stably maintained through ten passages. Mice immunized with rNDV/p72 developed high titers of ASFV p72 specific IgG antibody, and had higher levels of IgG1 than IgG2a. Immunization also elicited T-cell proliferation and secretion of IFN-γ and IL-4. Taken together, these results indicate that rNDV expressing ASFV p72 might be a potential vaccine candidate for preventing ASF.

  13. The grafting of universal T-helper epitopes enhances immunogenicity of HIV-1 Tat concurrently improving its safety profile.

    PubMed

    Kashi, Venkatesh P; Jacob, Rajesh A; Shamanna, Raghavendra A; Menon, Malini; Balasiddaiah, Anangi; Varghese, Rebu K; Bachu, Mahesh; Ranga, Udaykumar

    2014-01-01

    Extracellular Tat (eTat) plays an important role in HIV-1 pathogenesis. The presence of anti-Tat antibodies is negatively correlated with disease progression, hence making Tat a potential vaccine candidate. The cytotoxicity and moderate immunogenicity of Tat however remain impediments for developing Tat-based vaccines. Here, we report a novel strategy to concurrently enhance the immunogenicity and safety profile of Tat. The grafting of universal helper T-lymphocyte (HTL) epitopes, Pan DR Epitope (PADRE) and Pol711 into the cysteine rich domain (CRD) and the basic domain (BD) abolished the transactivation potential of the Tat protein. The HTL-Tat proteins elicited a significantly higher titer of antibodies as compared to the wild-type Tat in BALB/c mice. While the N-terminal epitope remained immunodominant in HTL-Tat immunizations, an additional epitope in exon-2 was recognized with comparable magnitude suggesting a broader immune recognition. Additionally, the HTL-Tat proteins induced cross-reactive antibodies of high avidity that efficiently neutralized exogenous Tat, thus blocking the activation of a Tat-defective provirus. With advantages such as presentation of multiple B-cell epitopes, enhanced antibody response and importantly, transactivation-deficient Tat protein, this approach has potential application for the generation of Tat-based HIV/AIDS vaccines.

  14. Hydroxyl Radical Modification of Collagen Type II Increases Its Arthritogenicity and Immunogenicity

    PubMed Central

    Shahab, Uzma; Ahmad, Saheem; Moinuddin; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif

    2012-01-01

    Background The oxidation of proteins by endogenously generated free radicals causes structural modifications in the molecules that lead to generation of neo-antigenic epitopes that have implications in various autoimmune disorders, including rheumatoid arthritis (RA). Collagen induced arthritis (CIA) in rodents (rats and mice) is an accepted experimental model for RA. Methodology/Principal Findings Hydroxyl radicals were generated by the Fenton reaction. Collagen type II (CII) was modified by •OH radical (CII-OH) and analysed by ultraviolet-visible (UV-VIS), fluorescence and circular dichroism (CD) spectroscopy. The immunogenicity of native and modified CII was checked in female Lewis rats and specificity of the induced antibodies was ascertained by enzyme linked immunosorbent assay (ELISA). The extent of CIA was evaluated by visual inspection. We also estimated the oxidative and inflammatory markers in the sera of immunized rats. A slight change in the triple helical structure of CII as well as fragmentation was observed after hydroxyl radical modification. The modified CII was found to be highly arthritogenic and immunogenic as compared to the native form. The CII-OH immunized rats exhibited increased oxidative stress and inflammation as compared to the CII immunized rats in the control group. Conclusions/Significance Neo-antigenic epitopes were generated on •OH modified CII which rendered it highly immunogenic and arthritogenic as compared to the unmodified form. Since the rodent CIA model shares many features with human RA, these results illuminate the role of free radicals in human RA. PMID:22319617

  15. LipC (Rv0220) Is an Immunogenic Cell Surface Esterase of Mycobacterium tuberculosis

    PubMed Central

    Shen, Guomiao; Singh, Krishna; Chandra, Dinesh; Serveau-Avesque, Carole; Maurin, Damien; Canaan, Stéphane; Singla, Rupak; Behera, Digambar

    2012-01-01

    We have reported previously the identification of novel proteins of Mycobacterium tuberculosis by the immunoscreening of an expression library of M. tuberculosis genomic DNA with sera obtained from M. tuberculosis-infected rabbits at 5 weeks postinfection. In this study, we report the further characterization of one of these antigens, LipC (Rv0220). LipC is annotated as a member of the Lip family based on the presence of the consensus motif “GXSXG” characteristic of esterases. Although predicted to be a cytoplasmic enzyme, we provide evidence that LipC is a cell surface protein that is present in both the cell wall and the capsule of M. tuberculosis. Consistent with this localization, LipC elicits strong humoral immune responses in both HIV-negative (HIV−) and HIV-positive (HIV+) tuberculosis (TB) patients. The absence of anti-LipC antibodies in sera from purified protein derivative-positive (PPD+) healthy subjects confirms its expression only during active M. tuberculosis infection. Epitope mapping of LipC identified 6 immunodominant epitopes, 5 of which map to the exposed surface of the modeled LipC protein. The recombinant LipC (rLipC) protein also elicits proinflammatory cytokine and chemokine responses from macrophages and pulmonary epithelial cells. rLipC can hydrolyze short-chain esters with the carbon chain containing 2 to 10 carbon atoms. Together, these studies demonstrate that LipC is a novel cell surface-associated esterase of M. tuberculosis that is highly immunogenic and elicits both antibodies and cytokines/chemokines. PMID:22038913

  16. Foreignness as a matter of degree: the relative immunogenicity of peptide/MHC ligands.

    PubMed

    van den Berg, Hugo A; Rand, David A

    2004-12-21

    The ability of T lymphocytes (T cells) to recognize and attack foreign invaders while leaving healthy cells unharmed is often analysed as a discrete self/non-self dichotomy, with each peptide/MHC ligand classified as either self or non-self. We argue that the ligand immunogenicity is more naturally treated as a continuous quantity, and show how to define and quantitate relative ligand immunogenicity. In our theory, self-tolerance is acquired through reduction of the relative immunogenicity of autoantigens, whereas xenoantigens, typically not presented during induction of deletional tolerance, retain a high degree of relative immunogenicity. Autoantigens that are not prominently presented in deletional tolerance likewise retain a high relative immunogenicity and remain essentially foreign. According to our analysis, any given autoantigen can attain a high level of relative immunogenicity, provided it is presented at sufficiently high levels. Our theory provides a quantitative tool to analyse the immunogenicity of tumour-associated neoantigens and the aetiology of autoimmune disease.

  17. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein

    PubMed Central

    1992-01-01

    The immunogenicity of a chimeric T/B cell peptide corresponding to antigenically characterized epitopes of the Chlamydia trachomatis major outer membrane protein (MOMP) was studied in mice to further define its potential use in the development of a subunit vaccine in preventing blinding trachoma in humans. The chimeric peptide, designated A8-VDI, corresponds to a conserved MOMP T helper (Th) cell epitope(s) (A8, residues 106-130) and serovar A VDI (residues 66-80), which contains the serovar-specific neutralizing epitope 71VAGLEK76. Mice immunized with peptide A8-VDI produced high-titered polyclonal IgG antibodies which recognized the VAGLEK-neutralizing epitope. Peptide A8-VDI primed A/J mice to produce high-titered serum-neutralizing antibodies in response to a secondary immunization with intact chlamydial elementary bodies (EBs). Peptide A8-VDI, but not peptide VDI alone, was immunogenic in six different inbred strains of mice disparate at H-2, indicating that the Th cell epitope(s) contained in the A8 portion of the chimera was recognized in the context of multiple major histocompatibility complex (MHC) haplotypes. An unexpected finding of this work was that different inbred strains of mice immunized with the chimeric peptide produced antibodies of differing fine specificities to the VDI portion of the chimera. Some mouse strains produced anti-VDI antibodies that did not recognize the VAGLEK-neutralizing epitope. The ability of mice to respond to the VAGLEK-neutralizing site was not dependent on MHC haplotype since mouse strains of the same H-2 haplotype produced anti-VDI antibodies of differing fine specificity. PMID:1370528

  18. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death

    PubMed Central

    Garg, Abhishek D; Krysko, Dmitri V; Verfaillie, Tom; Kaczmarek, Agnieszka; Ferreira, Gabriela B; Marysael, Thierry; Rubio, Noemi; Firczuk, Malgorzata; Mathieu, Chantal; Roebroek, Anton J M; Annaert, Wim; Golab, Jakub; de Witte, Peter; Vandenabeele, Peter; Agostinis, Patrizia

    2012-01-01

    Surface-exposed calreticulin (ecto-CRT) and secreted ATP are crucial damage-associated molecular patterns (DAMPs) for immunogenic apoptosis. Inducers of immunogenic apoptosis rely on an endoplasmic reticulum (ER)-based (reactive oxygen species (ROS)-regulated) pathway for ecto-CRT induction, but the ATP secretion pathway is unknown. We found that after photodynamic therapy (PDT), which generates ROS-mediated ER stress, dying cancer cells undergo immunogenic apoptosis characterized by phenotypic maturation (CD80high, CD83high, CD86high, MHC-IIhigh) and functional stimulation (NOhigh, IL-10absent, IL-1βhigh) of dendritic cells as well as induction of a protective antitumour immune response. Intriguingly, early after PDT the cancer cells displayed ecto-CRT and secreted ATP before exhibiting biochemical signatures of apoptosis, through overlapping PERK-orchestrated pathways that require a functional secretory pathway and phosphoinositide 3-kinase (PI3K)-mediated plasma membrane/extracellular trafficking. Interestingly, eIF2α phosphorylation and caspase-8 signalling are dispensable for this ecto-CRT exposure. We also identified LRP1/CD91 as the surface docking site for ecto-CRT and found that depletion of PERK, PI3K p110α and LRP1 but not caspase-8 reduced the immunogenicity of the cancer cells. These results unravel a novel PERK-dependent subroutine for the early and simultaneous emission of two critical DAMPs following ROS-mediated ER stress. PMID:22252128

  19. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    PubMed Central

    Ren, Jun; Zhou, Wei; Wang, Jianxin

    2014-01-01

    Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945

  20. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8(+) T cell responses in mice.

    PubMed

    Zhou, Weibin; Moguche, Albanus O; Chiu, David; Murali-Krishna, Kaja; Baneyx, François

    2014-04-01

    Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration "cold chain". Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8(+) T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8(+) T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. This paper reports that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize into a biocompatible adjuvant in a single step, enabling distributed and on-demand vaccine production and eliminating the need for refrigeration of vaccines. The findings highlight the possibility of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.

  2. [Immunogenicity and safety of the influenza vaccine, in a population older than 55-years in Mexico].

    PubMed

    Ayala-Montiel, Octavio; Mascareñas, César; García-Hernández, Delfino; Rendón-Muñiz, Jorge; López, Irma; Felipe Montaño, Luis; Zenteno, I; Franco-Paredes, C

    2005-01-01

    To confirm the immunogenicity and tolerance of the inactivated, fractionated, and purified influenza vaccine, in a Mexican adult population aged 55 and older, medically served at a Petróleos Mexicanos Hospital (Pemex, Mexican Oil Company). The study was conducted between November and December, 2000, among ninety adult subjects aged 55 years and older who were seen at the Hospital Central Sur Pemex. The primary endpoints regarding immunogenicity were the percentage of individuals with protective antibodies targeting hemagglutinins higher than or equal to 1:40, and the percentage of subjects who seroconverted as measured by a four-fold increase in protective antibody production. Secondary endpoints included the frequency of local and systemic reactions to the vaccine. An additional criterion that was evaluated included antigen-antibody affinity assays to measure the polyclonal antibody response to the vaccine and the specific generation of high-affinity antibodies to viral proteins, before and after vaccination. The antibody protection rate was 95.6% against the HINI strain, 98.9% against the H3N2 strain, and a 100% against the B/Yamanashi strain. Seroconversion to the HINI strain was elicited in 74.4% of subjects, to the H3N2 strain in 88.9%, and to the B/Yamanashi strain in 82.2%. Eighteen (20%) subjects developed local reactions; 17 (18.8%) developed a systemic reaction post vaccination at day 5 and nine subjects (10%) at day 28. Local reactions consisted of pain in 10 (11.1%) subjects, redness in 8 (8.8%), and induration in 6 (6.6%). General malaise, headache, and fever were identified in 10, 8.8, and 0% of subjects, respectively, at day 5, and in 4.4, 6.6, and 0%, respectively, at day 28. Influenza vaccine was highly immunogenic in a healthy Mexican adult population aged 55 years and older. The generation of high-affinity antibodies to the virus after vaccination was also demonstrated. Local and systemic adverse reactions to the vaccine identified in our study

  3. Improvements in the Protein Identifier Cross-Reference service.

    PubMed

    Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A

    2012-07-01

    The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.

  4. Structure-guided Design and Immunological Characterization of Immunogens Presenting the HIV-1 gp120 V3 Loop on a CTB Scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Totrov; X Jiang; X Kong

    2011-12-31

    V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boostingmore » with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.« less

  5. Immunogenicity of peptides of measles virus origin and influence of adjuvants.

    PubMed

    Halassy, Beata; Mateljak, Sanja; Bouche, Fabienne B; Pütz, Mike M; Muller, Claude P; Frkanec, Ruza; Habjanec, Lidija; Tomasić, Jelka

    2006-01-12

    Epitope-based peptide antigens have been under development for protection against measles virus. The immunogenicity of five peptides composed of the same B cell epitope (BCE) (H236-250 of the measles virus hemagglutinin), and different T cell epitopes of measles virus fusion protein (F421-435, F256-270, F288-302) and nucleoprotein (NP335-345) was studied in mice (subcutaneous immunisation). The adjuvant effects of peptidoglycan monomer (PGM), Montanide ISA 720 and 206 were also investigated. Results showed basic differences in peptide immunogenicity that were consistent with already described structural differences. PGM elevated peptide-specific IgG when applied together with four of five tested peptides. A strong synergistic effect was observed after co-immunisation of mice with a mixture containing all five chimeric peptides in small and equal amounts. Results revealed for the first time that immunisation with several peptides having the common BCE generated significantly higher levels of both anti-peptide and anti-BCE IgG in comparison to those obtained after immunisation with a single peptide in much higher quantity. Further improvement of immune response was obtained after incorporation of such a peptide mixture into oil-based adjuvants.

  6. Development of designed site-directed pseudopeptide-peptido-mimetic immunogens as novel minimal subunit-vaccine candidates for malaria.

    PubMed

    Lozano, José Manuel; Lesmes, Liliana P; Carreño, Luisa F; Gallego, Gina M; Patarroyo, Manuel Elkin

    2010-12-06

    Synthetic vaccines constitute the most promising tools for controlling and preventing infectious diseases. When synthetic immunogens are designed from the pathogen native sequences, these are normally poorly immunogenic and do not induce protection, as demonstrated in our research. After attempting many synthetic strategies for improving the immunogenicity properties of these sequences, the approach consisting of identifying high binding motifs present in those, and then performing specific changes on amino-acids belonging to such motifs, has proven to be a workable strategy. In addition, other strategies consisting of chemically introducing non-natural constraints to the backbone topology of the molecule and modifying the α-carbon asymmetry are becoming valuable tools to be considered in this pursuit. Non-natural structural constraints to the peptide backbone can be achieved by introducing peptide bond isosters such as reduced amides, partially retro or retro-inverso modifications or even including urea motifs. The second can be obtained by strategically replacing L-amino-acids with their enantiomeric forms for obtaining both structurally site-directed designed immunogens as potential vaccine candidates and their Ig structural molecular images, both having immuno-therapeutic effects for preventing and controlling malaria.

  7. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II.

    PubMed

    Ilchmann, Anne; Burgdorf, Sven; Scheurer, Stephan; Waibler, Zoe; Nagai, Ryoji; Wellner, Anne; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Henle, Thomas; Kurts, Christian; Kalinke, Ulrich; Vieths, Stefan; Toda, Masako

    2010-01-01

    The Maillard reaction occurs between reducing sugars and proteins during thermal processing of foods. It produces chemically glycated proteins termed advanced glycation end products (AGEs). The glycation structures of AGEs are suggested to function as pathogenesis-related immune epitopes in food allergy. This study aimed at defining the T-cell immunogenicity of food AGEs by using ovalbumin (OVA) as a model allergen. AGE-OVA was prepared by means of thermal processing of OVA in the presence of glucose. Activation of OVA-specific CD4(+) T cells by AGE-OVA was evaluated in cocultures with bone marrow-derived murine myeloid dendritic cells (mDCs) as antigen-presenting cells. The uptake mechanisms of mDCs for AGE-OVA were investigated by using inhibitors of putative cell-surface receptors for AGEs, as well as mDCs deficient for these receptors. Compared with the controls (native OVA and OVA thermally processed without glucose), AGE-OVA enhanced the activation of OVA-specific CD4(+) T cells on coculture with mDCs, indicating that the glycation of OVA enhanced the T-cell immunogenicity of the allergen. The mDC uptake of AGE-OVA was significantly higher than that of the controls. We identified scavenger receptor class A type I and II (SR-AI/II) as a mediator of the AGE-OVA uptake, whereas the receptor for AGEs and galectin-3 were not responsible. Importantly, the activation of OVA-specific CD4(+) T cells by AGE-OVA was attenuated on coculture with SR-AI/II-deficient mDCs. SR-AI/II targets AGE-OVA to the MHC class II loading pathway in mDCs, leading to an enhanced CD4(+) T-cell activation. The Maillard reaction might thus play an important role in the T-cell immunogenicity of food allergens. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis

    PubMed Central

    Serra-Vidal, Mᵃdel Mar; Latorre, Irene; Franken, Kees L. C. M.; Díaz, Jéssica; de Souza-Galvão, Maria Luiza; Casas, Irma; Maldonado, José; Milà, Cèlia; Solsona, Jordi; Jimenez-Fuentes, M. Ángeles; Altet, Neus; Lacoma, Alícia; Ruiz-Manzano, Juan; Ausina, Vicente; Prat, Cristina; Ottenhoff, Tom H. M.; Domínguez, José

    2014-01-01

    The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed Mycobacterium tuberculosis (IVE-TB) antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI) vs. patients with active tuberculosis (TB). Following an overnight and 7 days stimulation of whole blood with purified recombinant M. tuberculosis antigens, interferon-γ (IFN-γ) levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups [dormancy survival regulon (DosR regulon) encoded antigens; resuscitation-promoting factors (Rpf) antigens; IVE-TB antigens; reactivation associated antigens]. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to TB immunodiagnosis candidates. PMID:25339944

  9. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis.

    PubMed

    Serra-Vidal, Mᵃdel Mar; Latorre, Irene; Franken, Kees L C M; Díaz, Jéssica; de Souza-Galvão, Maria Luiza; Casas, Irma; Maldonado, José; Milà, Cèlia; Solsona, Jordi; Jimenez-Fuentes, M Ángeles; Altet, Neus; Lacoma, Alícia; Ruiz-Manzano, Juan; Ausina, Vicente; Prat, Cristina; Ottenhoff, Tom H M; Domínguez, José

    2014-01-01

    The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed Mycobacterium tuberculosis (IVE-TB) antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI) vs. patients with active tuberculosis (TB). Following an overnight and 7 days stimulation of whole blood with purified recombinant M. tuberculosis antigens, interferon-γ (IFN-γ) levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups [dormancy survival regulon (DosR regulon) encoded antigens; resuscitation-promoting factors (Rpf) antigens; IVE-TB antigens; reactivation associated antigens]. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to TB immunodiagnosis candidates.

  10. Immune response to oligopeptide permease A (OppA) protein in pigs naturally and experimentally infected with Haemophilus parasuis.

    PubMed

    Macedo, Nubia; Oliveira, Simone; Torremorell, Montserrat; Rovira, Albert

    2016-08-01

    Haemophilus parasuis is an important swine pathogen that causes Glasser's disease, characterized by pneumonia, polyserositis and meningitis. Protection against H. parasuis infection is associated with the presence of homologous antibodies in serum. However, a H. parasuis antigen that can elicit a protective immune response against all H. parasuis strains has yet to be found. A novel immunogenic and species-specific H. parasuis protein was identified by screening H. parasuis whole cell proteins using swine convalescent sera. One protein of 52kDa was clearly immunodominant and conserved among different H. parasuis strains. This protein was further identified as an oligopeptide permease A (OppA). Because OppA elicited a specific antibody response in pigs that recovered from H. parasuis infection, we investigated its potential role in diagnostics and protective immunity. An ELISA test using recombinant OppA (rOppA) as its coating antigen was further developed and tested. H. parasuis specific antibodies to rOppA were detected in serum from convalescent pigs but not in serum from specific pathogen free (SPF) or conventional pigs. Pigs immunized with rOppA protein had robust serological responses. However, the antibodies were not protective against challenge infection. We conclude that OppA is a universal species-specific H. parasuis immunogen, and a good marker for previous systemic infection with H. parasuis. Copyright © 2016. Published by Elsevier Ltd.

  11. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    PubMed

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  12. Safety and immunogenicity of a CRM or TT conjugated meningococcal vaccine in healthy toddlers.

    PubMed

    Bona, Gianni; Castiglia, Paolo; Zoppi, Giorgio; de Martino, Maurizio; Tasciotti, Annaelisa; D'Agostino, Diego; Han, Linda; Smolenov, Igor

    2016-06-17

    MenACWY-CRM (Menveo(®); GlaxoSmithKline) and MenACWY-TT (Nimenrix(®); Pfizer) are two meningococcal vaccines licensed in the European Union for use in both children and adults. While both vaccines target meningococcal serogroups A, C, W and Y, immunogenicity and reactogenicity of these quadrivalent meningococcal conjugate vaccines may differ due to differences in formulation processes and chemical structure. Yet data on the comparability of these two vaccines are limited. The reactogenicity and immunogenicity of one dose of either MenACWY-CRM or MenACWY-TT were evaluated in healthy toddlers aged 12-15 months. Immunogenicity was assessed using serum bactericidal antibody assays (SBA) with human (hSBA) and rabbit (rSBA) complement. A total of 202 children aged 12-15 months were enrolled to receive one dose of MenACWY-CRM or MenACWY-TT. Similar numbers of subjects reported solicited reactions within 7 days following either vaccination. Tenderness at the injection site was the most common local reaction. Systemic reactions reported were similar for both vaccines and mostly mild to moderate in severity: irritability, sleepiness and change in eating habits were most commonly reported. Immunogenicity at 1 month post-vaccination was generally comparable for both vaccines across serogroups. At 6 months post-vaccination antibody persistence against serogroups C, W, and Y was substantial for both vaccines, as measured by both assay methodologies. For serogroup A, hSBA titers declined in both groups, while rSBA titers remained high. Despite differences in composition, the MenACWY-CRM and MenACWY-TT vaccines have comparable reactogenicity and immunogenicity profiles. Immediate immune responses and short-term antibody persistence were largely similar between groups. Both vaccines were well-tolerated and no safety concerns were identified. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A randomised trial to evaluate the immunogenicity, reactogenicity, and safety of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) co-administered with routine childhood vaccines in Singapore and Malaysia.

    PubMed

    Lim, Fong Seng; Koh, Mia Tuang; Tan, Kah Kee; Chan, Poh Chong; Chong, Chia Yin; Shung Yehudi, Yeo Wee; Teoh, Yee Leong; Shafi, Fakrudeen; Hezareh, Marjan; Swinnen, Kristien; Borys, Dorota

    2014-10-02

    The immunogenicity, reactogenicity, and safety of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) co-administered with routine childhood vaccines were evaluated among infants from Singapore and Malaysia, where PHiD-CV has been licensed. In the primary vaccination phase, 298 infants from Singapore and 168 infants from Malaysia were randomised to receive the Phase III Clinical (Clin) or the Commercial (Com) lot of PHiD-CV at 2, 3, and 5 months of age. In the booster vaccination phase, 238 toddlers from Singapore received one dose of the PHiD-CV Commercial lot at 18-21 months of age. Immune responses to pneumococcal polysaccharides were measured using 22F-inhibition enzyme-linked immunosorbent assay (ELISA) and functional opsonophagocytic activity (OPA) assay and to protein D, using ELISA. Immune responses induced by primary vaccination with the PHiD-CV Commercial lot were non-inferior to the Phase III Clinical lot in terms of adjusted antibody geometric mean concentration (GMC) ratios for each vaccine pneumococcal serotype and protein D. For each vaccine pneumococcal serotype, ≥93.6% and ≥88.5% of infants from Malaysia and Singapore had post-primary vaccination antibody concentrations ≥0.2 μg/mL and OPA titres ≥8, in the Clin and Com groups, respectively. For each vaccine pneumococcal serotype, ≥60.8% and ≥98.2% of toddlers from Singapore had pre- and post-booster antibody concentrations ≥0.2 μg/mL, in the Clin and Com groups, respectively. All children, except one, had measurable anti-protein D antibodies and the primary and booster doses of the co-administered vaccines were immunogenic. The incidence of each grade 3 solicited symptom was ≤11.1% in both study phases. No serious adverse events considered causally related to vaccination were reported throughout the study. PHiD-CV given as three-dose primary vaccination to infants in Singapore and Malaysia and booster vaccination to toddlers in

  14. InterPred: A pipeline to identify and model protein-protein interactions.

    PubMed

    Mirabello, Claudio; Wallner, Björn

    2017-06-01

    Protein-protein interactions (PPI) are crucial for protein function. There exist many techniques to identify PPIs experimentally, but to determine the interactions in molecular detail is still difficult and very time-consuming. The fact that the number of PPIs is vastly larger than the number of individual proteins makes it practically impossible to characterize all interactions experimentally. Computational approaches that can bridge this gap and predict PPIs and model the interactions in molecular detail are greatly needed. Here we present InterPred, a fully automated pipeline that predicts and model PPIs from sequence using structural modeling combined with massive structural comparisons and molecular docking. A key component of the method is the use of a novel random forest classifier that integrate several structural features to distinguish correct from incorrect protein-protein interaction models. We show that InterPred represents a major improvement in protein-protein interaction detection with a performance comparable or better than experimental high-throughput techniques. We also show that our full-atom protein-protein complex modeling pipeline performs better than state of the art protein docking methods on a standard benchmark set. In addition, InterPred was also one of the top predictors in the latest CAPRI37 experiment. InterPred source code can be downloaded from http://wallnerlab.org/InterPred Proteins 2017; 85:1159-1170. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    PubMed

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  16. Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers.

    PubMed

    Ringe, Rajesh P; Ozorowski, Gabriel; Rantalainen, Kimmo; Struwe, Weston B; Matthews, Katie; Torres, Jonathan L; Yasmeen, Anila; Cottrell, Christopher A; Ketas, Thomas J; LaBranche, Celia C; Montefiori, David C; Cupo, Albert; Crispin, Max; Wilson, Ian A; Ward, Andrew B; Sanders, Rogier W; Klasse, P J; Moore, John P

    2017-08-01

    Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such "off-target" immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N -glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man 6 GlcNAc 2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence

  17. Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers

    PubMed Central

    Ringe, Rajesh P.; Ozorowski, Gabriel; Rantalainen, Kimmo; Struwe, Weston B.; Matthews, Katie; Torres, Jonathan L.; Yasmeen, Anila; Cottrell, Christopher A.; Ketas, Thomas J.; LaBranche, Celia C.; Montefiori, David C.; Cupo, Albert; Crispin, Max; Wilson, Ian A.; Ward, Andrew B.; Sanders, Rogier W.; Klasse, P. J.

    2017-01-01

    ABSTRACT Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such “off-target” immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N-glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man6GlcNAc2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against

  18. An ensemble framework for identifying essential proteins.

    PubMed

    Zhang, Xue; Xiao, Wangxin; Acencio, Marcio Luis; Lemke, Ney; Wang, Xujing

    2016-08-25

    Many centrality measures have been proposed to mine and characterize the correlations between network topological properties and protein essentiality. However, most of them show limited prediction accuracy, and the number of common predicted essential proteins by different methods is very small. In this paper, an ensemble framework is proposed which integrates gene expression data and protein-protein interaction networks (PINs). It aims to improve the prediction accuracy of basic centrality measures. The idea behind this ensemble framework is that different protein-protein interactions (PPIs) may show different contributions to protein essentiality. Five standard centrality measures (degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and subgraph centrality) are integrated into the ensemble framework respectively. We evaluated the performance of the proposed ensemble framework using yeast PINs and gene expression data. The results show that it can considerably improve the prediction accuracy of the five centrality measures individually. It can also remarkably increase the number of common predicted essential proteins among those predicted by each centrality measure individually and enable each centrality measure to find more low-degree essential proteins. This paper demonstrates that it is valuable to differentiate the contributions of different PPIs for identifying essential proteins based on network topological characteristics. The proposed ensemble framework is a successful paradigm to this end.

  19. Antigenicity, Immunogenicity and Protective Efficacy of Three Proteins Expressed in the Promastigote and Amastigote Stages of Leishmania infantum against Visceral Leishmaniasis

    PubMed Central

    Martins, Vivian Tamietti; Chávez-Fumagalli, Miguel Angel; Lage, Daniela Pagliara; Duarte, Mariana Costa; Garde, Esther; Costa, Lourena Emanuele; da Silva, Viviane Gomes; Oliveira, Jamil Silvano; de Magalhães-Soares, Danielle Ferreira; Teixeira, Santuza Maria Ribeiro; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Coelho, Eduardo Antonio Ferraz

    2015-01-01

    In the present study, two Leishmania infantum hypothetical proteins present in the amastigote stage, LiHyp1 and LiHyp6, were combined with a promastigote protein, IgE-dependent histamine-releasing factor (HRF); to compose a polyproteins vaccine to be evaluated against L. infantum infection. Also, the antigenicity of the three proteins was analyzed, and their use for the serodiagnosis of canine visceral leishmaniasis (CVL) was evaluated. The LiHyp1, LiHyp6, and HRF DNA coding sequences were cloned in prokaryotic expression vectors and the recombinant proteins were purified. When employed in ELISA assays, all proteins were recognized by sera from visceral leishmaniasis (VL) dogs, and presented no cross-reactivity with either sera from dogs vaccinated with a Brazilian commercial vaccine, or sera of Trypanosoma cruzi-infected or Ehrlichia canis-infected animals. In addition, the antigens were not recognized by antibodies from non-infected animals living in endemic or non-endemic areas for leishmaniasis. The immunogenicity and protective efficacy of the three proteins administered in the presence of saponin, individually or in combination (composing a polyproteins vaccine), were evaluated in a VL murine model: BALB/c mice infected with L. infantum. Spleen cells from mice inoculated with the individual proteins or with the polyproteins vaccine plus saponin showed a protein-specific production of IFN-γ, IL-12, and GM-CSF after an in vitro stimulation, which was maintained after infection. These animals presented significant reductions in the parasite burden in different evaluated organs, when compared to mice inoculated with saline or saponin. The decrease in parasite burden was associated with an IL-12-dependent production of IFN-γ against parasite total extracts (produced mainly by CD4+ T cells), correlated to the induction of parasite proteins-driven NO production. Mice inoculated with the recombinant protein-based vaccines showed also high levels of parasite

  20. Benchmark data for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-09-01

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predicting multi-functional types of membrane proteins.

  1. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    PubMed

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  2. Salk's HIV immunogen: an immune-based therapy in human trials since 1988.

    PubMed

    Jonas Salk, the developer of the first polio vaccine, has created a therapeutic vaccine for HIV which helps the immune system fight disease progression. Salk uses inactivated HIV-1 virus combined with Incomplete Freund's Adjuvant (IFA) in the vaccine preparation. The resulting HIV-1 immunogen was first studied in 1987, and since then, 235 seropositive individuals have received inoculations without serious adverse effects. Data from the first 25 subjects indicate that immunization with the HIV-1 immunogen results in improvement of cell-mediated response against the virus, a slower increase in the amount of virus present, and a reduced rate of clinical progression. Subsequent studies also show that higher doses of immunogen may produce stronger cell-mediated responses and high HIV-DTH (delayed-type hypersensitivity responsiveness immunogen) is associated with better outcome. Additional trials of HIV-1 immunogen are awaiting Food and Drug Administration approval.

  3. Sequence characterization and immunogenicity of cystatins from the cattle tick Rhipicephalus (Boophilus) microplus.

    PubMed

    Parizi, Luís F; Githaka, Naftaly W; Acevedo, Carolina; Benavides, Uruguaysito; Seixas, Adriana; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko; Masuda, Aoi; da Silva Vaz, Itabajara

    2013-12-01

    Various classes of endopeptidases and their inhibitors facilitate blood feeding and digestion in ticks. Cystatins, a family of tight-binding and reversible inhibitors of cysteine endopeptidases, have recently been found in several tick tissues. Moreover, vaccine trials using tick cystatins have been found to induce protective immune responses against tick infestation. However, the mode of action of tick cystatins is still poorly understood, limiting the elucidation of their physiological role. Against this background, we have investigated sequence characteristics and immunogenic properties of 5 putative cystatins from Rhipicephalus (Boophilus) microplus from Brazil and Uruguay. The similarity of the deduced amino acid sequences among cystatins from the Brazilian tick strain was 27-42%, all of which had a secretory signal peptide. The cystatin motif (QxVxG), a glycine in the N-terminal region, and the PW motif in the second hairpin loop in the C-terminal region are highly conserved in all 5 cystatins identified in this study. Four cysteine residues in the C terminus characteristic of type 2 cystatins are also present. qRT-PCR revealed differential expression patterns among the 5 cystatins identified, as well as variation in mRNA transcripts present in egg, larva, gut, salivary glands, ovary, and fat body tissues. One R. microplus cystatin showed 97-100% amino acid similarity between Brazilian and Uruguayan isolates. Furthermore, by in silico analysis, antigenic amino acid regions from R. microplus cystatins showed high degrees of homology (54-92%) among Rhipicephalus spp. cystatins. Three Brazilian R. microplus cystatins were expressed in Escherichia coli, and immunogenicity of the recombinant proteins were determined by vaccinating mice. Western blotting using mice sera indicated cross-reactivity between the cystatins, suggesting shared epitopes. The present characterization of Rhipicephalus spp. cystatins represents an empirical approach in an effort to evaluate

  4. A Non-parametric Cutout Index for Robust Evaluation of Identified Proteins*

    PubMed Central

    Serang, Oliver; Paulo, Joao; Steen, Hanno; Steen, Judith A.

    2013-01-01

    This paper proposes a novel, automated method for evaluating sets of proteins identified using mass spectrometry. The remaining peptide-spectrum match score distributions of protein sets are compared to an empirical absent peptide-spectrum match score distribution, and a Bayesian non-parametric method reminiscent of the Dirichlet process is presented to accurately perform this comparison. Thus, for a given protein set, the process computes the likelihood that the proteins identified are correctly identified. First, the method is used to evaluate protein sets chosen using different protein-level false discovery rate (FDR) thresholds, assigning each protein set a likelihood. The protein set assigned the highest likelihood is used to choose a non-arbitrary protein-level FDR threshold. Because the method can be used to evaluate any protein identification strategy (and is not limited to mere comparisons of different FDR thresholds), we subsequently use the method to compare and evaluate multiple simple methods for merging peptide evidence over replicate experiments. The general statistical approach can be applied to other types of data (e.g. RNA sequencing) and generalizes to multivariate problems. PMID:23292186

  5. Immunogenicity of biologics in inflammatory bowel disease

    PubMed Central

    Vermeire, Séverine; Gils, Ann; Accossato, Paola; Lula, Sadiq; Marren, Amy

    2018-01-01

    Crohn’s disease and ulcerative colitis are chronic inflammatory disorders of the gastrointestinal tract. Treatment options include biologic therapies; however, a proportion of patients lose response to biologics, partly due to the formation of anti-drug antibodies (ADAbs). Concomitant immunosuppressive agents reduce the development of ADAbs. This review article aims to assess the immunogenicity of biologic therapies and their clinical implications. A comprehensive literature search was conducted for articles published January 2009 to August 2015 reporting immunogenicity to adalimumab (ADM), certolizumab pegol (CZP), golimumab, infliximab (IFX), ustekinumab, and vedolizumab in inflammatory bowel disease (IBD). Eligible articles were reviewed and quality assessed by independent reviewers. Overall, 122 publications reporting 114 studies were assessed. ADAbs were reported for all agents, but the percentage of patients developing ADAbs was extremely variable, with the highest (65.3%) being for IFX administration to patients with IBD. ADAb presence was frequently associated with a reduction in primary efficacy and a loss of response, and, for IFX, an increase in adverse events (AEs). Lower serum levels of ADM, CZP and IFX were seen in ADAbs-positive rather than ADAbs-negative patients; pharmacokinetic data were unavailable for other therapies. Little information was available regarding the timing of ADAb development; studies reported their detection from as early as 10–14 days up to months after treatment initiation. Biologic therapies carry an intrinsic risk of immunogenicity, although reported rates of ADAbs vary considerably. The clinical implications of immunogenicity are a concern for effective treatment; further research, particularly into the more recently approved biologics, is required. PMID:29383030

  6. Identifying protein kinase target preferences using mass spectrometry

    PubMed Central

    Douglass, Jacqueline; Gunaratne, Ruwan; Bradford, Davis; Saeed, Fahad; Hoffert, Jason D.; Steinbach, Peter J.; Pisitkun, Trairak

    2012-01-01

    A general question in molecular physiology is how to identify candidate protein kinases corresponding to a known or hypothetical phosphorylation site in a protein of interest. It is generally recognized that the amino acid sequence surrounding the phosphorylation site provides information that is relevant to identification of the cognate protein kinase. Here, we present a mass spectrometry-based method for profiling the target specificity of a given protein kinase as well as a computational tool for the calculation and visualization of the target preferences. The mass spectrometry-based method identifies sites phosphorylated in response to in vitro incubation of protein mixtures with active recombinant protein kinases followed by standard phosphoproteomic methodologies. The computational tool, called “PhosphoLogo,” uses an information-theoretic algorithm to calculate position-specific amino acid preferences and anti-preferences from the mass-spectrometry data (http://helixweb.nih.gov/PhosphoLogo/). The method was tested using protein kinase A (catalytic subunit α), revealing the well-known preference for basic amino acids in positions −2 and −3 relative to the phosphorylated amino acid. It also provides evidence for a preference for amino acids with a branched aliphatic side chain in position +1, a finding compatible with known crystal structures of protein kinase A. The method was also employed to profile target preferences and anti-preferences for 15 additional protein kinases with potential roles in regulation of epithelial transport: CK2, p38, AKT1, SGK1, PKCδ, CaMK2δ, DAPK1, MAPKAPK2, PKD3, PIM1, OSR1, STK39/SPAK, GSK3β, Wnk1, and Wnk4. PMID:22723110

  7. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike

    2009-01-20

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/{delta}F-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/{delta}F-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface,more » the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/{delta}F-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.« less

  8. ORF phage display to identify cellular proteins with different functions.

    PubMed

    Li, Wei

    2012-09-01

    Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan

    PubMed Central

    Kaplan, Joshua M.

    2008-01-01

    Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554

  10. Identifying protein complexes based on brainstorming strategy.

    PubMed

    Shen, Xianjun; Zhou, Jin; Yi, Li; Hu, Xiaohua; He, Tingting; Yang, Jincai

    2016-11-01

    Protein complexes comprising of interacting proteins in protein-protein interaction network (PPI network) play a central role in driving biological processes within cells. Recently, more and more swarm intelligence based algorithms to detect protein complexes have been emerging, which have become the research hotspot in proteomics field. In this paper, we propose a novel algorithm for identifying protein complexes based on brainstorming strategy (IPC-BSS), which is integrated into the main idea of swarm intelligence optimization and the improved K-means algorithm. Distance between the nodes in PPI network is defined by combining the network topology and gene ontology (GO) information. Inspired by human brainstorming process, IPC-BSS algorithm firstly selects the clustering center nodes, and then they are separately consolidated with the other nodes with short distance to form initial clusters. Finally, we put forward two ways of updating the initial clusters to search optimal results. Experimental results show that our IPC-BSS algorithm outperforms the other classic algorithms on yeast and human PPI networks, and it obtains many predicted protein complexes with biological significance. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Identifying Floppy and Rigid Regions in Proteins

    NASA Astrophysics Data System (ADS)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  12. Analysis of the temperature sensitivity of Japanese rubella vaccine strain TO-336.vac and its effect on immunogenicity in the guinea pig.

    PubMed

    Okamoto, Kiyoko; Ami, Yasushi; Suzaki, Yuriko; Otsuki, Noriyuki; Sakata, Masafumi; Takeda, Makoto; Mori, Yoshio

    2016-04-01

    The marker of Japanese domestic rubella vaccines is their lack of immunogenicity in guinea pigs. This has long been thought to be related to the temperature sensitivity of the viruses, but supporting evidence has not been described. In this study, we generated infectious clones of TO-336.vac, a Japanese domestic vaccine, TO-336.GMK5, the parental virus of TO-336.vac, and their mutants, and determined the molecular bases of their temperature sensitivity and immunogenicity in guinea pigs. The results revealed that Ser(1159) in the non-structural protein-coding region was responsible for the temperature sensitivity of TO-336.vac dominantly, while the structural protein-coding region affected the temperature sensitivity subordinately. The findings further suggested that the temperature sensitivity of TO-336.vac affected the antibody induction in guinea pigs after subcutaneous inoculation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Overexpression of heat shock GroEL stress protein in leptospiral biofilm.

    PubMed

    Vinod Kumar, K; Lall, Chandan; Vimal Raj, R; Vedhagiri, K; Kartick, C; Surya, P; Natarajaseenivasan, K; Vijayachari, P

    2017-01-01

    Leptospira is the causative agent of leptospirosis, which is an emerging zoonotic disease. Recent studies on Leptospira have demonstrated biofilm formation on abiotic surfaces. The protein expressed in the biofilm was investigated by using SDS-PAGE and immunoblotting in combination with MALDI-TOF mass spectrometry. The proteins expressed in Leptospira biofilm and planktonic cells was analyzed and compared. Among these proteins, one (60 kDa) was found to overexpress in biofilm as compared to the planktonic cells. MALDI-TOF analysis identified this protein as stress and heat shock chaperone GroEL. Our findings demonstrate that GroEL is associated with Leptospira biofilm. GroEL is conserved, highly immunogenic and a prominent stress response protein in pathogenic Leptospira spp., which may have clinical relevance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks

    PubMed Central

    Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi

    2014-01-01

    Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481

  15. Technology evaluation: C242-DM1, ImmunoGen Inc.

    PubMed

    Smith, S

    2001-04-01

    C242-DM1 is a tumor-activated immunotoxin under development by GlaxoSmithKline plc (formerly SmithKline Beecham plc), under licence from ImmunoGen Inc, as a potential treatment for colon tumor. It consists of a colon cancer-specific humanized antibody, C242, conjugated to the maytansine derivative DM1. In preclinical studies, C242-DM1 caused complete tumor regression in animal models of both human pancreatic and non-small cell lung cancer (NSCLC) at non-toxic doses. C242-DM1 has also been evaluated in an immunoconjugate combination with J-591 (Cornell University). The J591-DM1 immunoconjugate demonstrated effective, antigen-specific delivery of a highly cytotoxic drug to PSMA-positive Pca cells in vitro and in vivo with low systemic toxicity. Results from studies in monkeys showed that C242-DM1 had no significant toxicity or side effects, when administered at doses higher than those that were previously shown to completely eradicate human colon tumors in mice [271420]. ImmunoGen acquired the right to evaluate, and an option to license, technology related to maytansines from Takeda. In February 1999, ImmunoGen and SmithKline Beecham signed a US $45 million development and commercialization agreement for C242-DM1 [313493]. In August 1997, Immunogen received an SBIR grant to advance development of huC242-DM1 [258356]. EP-00425235, held by ImmunoGen, covers conjugated forms of ansamitocin (maytansine) derivatives. Takeda holds several patents for the production of ansamitocin and its analogs, the first one being JP-53124692.

  16. Immunogenicity and immunologic memory of meningococcal C conjugate vaccine in premature infants.

    PubMed

    Collins, Clare L; Ruggeberg, Jens U; Balfour, Gail; Tighe, Helen; Archer, Marion; Bowen-Morris, Jane; Diggle, Linda; Borrow, Ray; Balmer, Paul; Buttery, Jim P; Moxon, E Richard; Pollard, Andrew J; Heath, Paul T

    2005-11-01

    Protein-polysaccharide conjugate vaccines against Neisseria meningitidis serogroup C were introduced into the U.K. routine immunization schedule in 1999. This study is the first to describe both persistence of antibody and evidence for induction of immune memory using meningococcal C conjugate (MCC) vaccine in preterm infants. Immunogenicity and induction of immunologic memory by as MCC vaccine was assessed in premature infants; 62 preterm and 60 term controls received MCC at the accelerated schedule (2, 3 and 4 months of age). A meningococcal C polysaccharide challenge was administered at 12 months of age. Both groups achieved similar protective titers after primary immunization that then waned significantly by 1 year of age. Postchallenge serum bactericidal activity was significantly lower in preterm infants (P = 0.03); 73% of preterm versus 88% of term controls achieved a 4-fold rise in serum bactericidal activity (P = 0.07). MCC vaccine is immunogenic and primes for immunologic memory in preterm infants. The decreased memory responses in these preterm infants in conjunction with waning clinical efficacy data for all U.K. infants suggest a role for a routine booster dose of vaccine in all infants receiving MCC, especially those born preterm.

  17. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGES

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; ...

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  18. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8+ T cell responses in mice

    PubMed Central

    Zhou, Weibin; Moguche, Albanus; Chiu, David; Murali-Krishna, Kaja; Baneyx, François

    2014-01-01

    Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration “cold chain”. Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8+ T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8+ T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. PMID:24275478

  19. The 'tubulin-like' S1 protein of Spirochaeta is a member of the hsp65 stress protein family

    NASA Technical Reports Server (NTRS)

    Munson, D.; Obar, R.; Tzertzinis, G.; Margulis, L.

    1993-01-01

    A 65-kDa protein (called S1) from Spirochaeta bajacaliforniensis was identified as 'tubulin-like' because it cross-reacted with at least four different antisera raised against tubulin and was isolated, with a co-polymerizing 45-kDa protein, by warm-cold cycling procedures used to purify tubulin from mammalian brain. Furthermore, at least three genera of non-cultivable symbiotic spirochetes (Pillotina, Diplocalyx, and Hollandina) that contain conspicuous 24-nm cytoplasmic tubules displayed a strong fluorescence in situ when treated with polyclonal antisera raised against tubulin. Here we summarize results that lead to the conclusion that this 65-kDa protein has no homology to tubulin. S1 is an hsp65 stress protein homologue. Hsp65 is a highly immunogenic family of hsp60 proteins which includes the 65-kDa antigens of Mycobacterium tuberculosis (an active component of Freund's complete adjuvant), Borrelia, Treponema, Chlamydia, Legionella, and Salmonella. The hsp60s, also known as chaperonins, include E. coli GroEL, mitochondrial and chloroplast chaperonins, the pea aphid 'symbionin' and many other proteins involved in protein folding and the stress response.

  20. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks.

    PubMed

    Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia

    2012-06-21

    Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

  1. Tryptophan 375 stabilizes the outer-domain core of gp120 for HIV vaccine immunogen design.

    PubMed

    Hu, Duoyi; Bowder, Dane; Wei, Wenzhong; Thompson, Jesse; Wilson, Mark A; Xiang, Shi-Hua

    2017-05-25

    The outer-domain core of gp120 may serve as a better HIV vaccine immunogen than the full-length gp120 because of its greater stability and immunogenicity. In our previous report, we introduced two disulfide bonds to the outer-domain core of gp120 to fix its conformation into a CD4-bound state, which resulted in a significant increase in its immunogenicity when compared to the wild-type outer-domain core. In this report, to further improve the immunogenicity of the outer-domain core based immunogen, we have introduced a Tryptophan residue at gp120 amino acid sequence position 375 (375S/W). Our data from immunized guinea pigs indeed shows a striking increase in the immune response due to this stabilized core outer-domain. Therefore, we conclude that the addition of 375W to the outer-domain core of gp120 further stabilizes the structure of immunogen and increases the immunogenicity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  3. TvMP50 is an Immunogenic Metalloproteinase during Male Trichomoniasis*

    PubMed Central

    Quintas-Granados, Laura Itzel; Villalpando, José Luis; Vázquez-Carrillo, Laura Isabel; Arroyo, Rossana; Mendoza-Hernández, Guillermo; Álvarez-Sánchez, María Elizbeth

    2013-01-01

    Trichomonas vaginalis, a human urogenital tract parasite, is capable of surviving in the male microenvironment, despite of the presence of Zn2+. Concentrations > 1.6 mm of Zn2+ have a trichomonacidal effect; however, in the presence of ≤1.6 mm Zn2+, several trichomonad proteins are up- or down-regulated. Herein, we analyzed the proteome of a T. vaginalis male isolate (HGMN01) grown in the presence of Zn2+ and found 32 protein spots that were immunorecognized by male trichomoniasis patient serum. Using mass spectrometry (MS), the proteins were identified and compared with 23 spots that were immunorecognized in the proteome of a female isolate using the same serum. Interestingly, we found a 50-kDa metallopeptidase (TvMP50). Unexpectedly, this proteinase was immunodetected by the serum of male trichomoniasis patients but not by the female patient serum or sera from healthy men and women. We analyzed the T. vaginalis genome and localized the mp50 gene in locus TVAG_403460. Using an RT-PCR assay, we amplified a 1320-bp mp50 mRNA transcript that was expressed in the presence of Zn2+ in the HGMN01 and CNCD147 T. vaginalis isolates. According to a Western blot assay, native TvMP50 was differentially expressed in the presence of Zn2+. The TvMP50 proteolytic activity increased in the presence of Zn2+ in both isolates and was inhibited by EDTA but not by ptosyl-L-lysine chloromethyl ketone (TLCK), E64, leupeptin, or phenylmethane sulfonyl fluoride. Furthermore, the recombinant TvMP50 had proteolytic activity that was inhibited by EDTA. These data suggested that TvMP50 is immunogenic during male trichomoniasis, and Zn2+ induces its expression. PMID:23579185

  4. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice.

    PubMed

    Alvarez, M Lucrecia; Pinyerd, Heidi L; Crisantes, Jason D; Rigano, M Manuela; Pinkhasov, Julia; Walmsley, Amanda M; Mason, Hugh S; Cardineau, Guy A

    2006-03-24

    Yersinia pestis, the causative agent of plague, is an extremely virulent bacterium but there are no approved vaccines for protection against it. Our goal was to produce a vaccine that would address: ease of delivery, mucosal efficacy, safety, rapid scalability, and cost. We developed a novel production and delivery system for a plague vaccine of a Y. pestis F1-V antigen fusion protein expressed in tomato. Immunogenicity of the F1-V transgenic tomatoes was confirmed in mice that were primed subcutaneously with bacterially-produced F1-V and boosted orally with transgenic tomato fruit. Expression of the plague antigens in fruit allowed producing an oral vaccine candidate without protein purification and with minimal processing technology.

  5. Identifying cooperative transcriptional regulations using protein–protein interactions

    PubMed Central

    Nagamine, Nobuyoshi; Kawada, Yuji; Sakakibara, Yasubumi

    2005-01-01

    Cooperative transcriptional activations among multiple transcription factors (TFs) are important to understand the mechanisms of complex transcriptional regulations in eukaryotes. Previous studies have attempted to find cooperative TFs based on gene expression data with gene expression profiles as a measure of similarity of gene regulations. In this paper, we use protein–protein interaction data to infer synergistic binding of cooperative TFs. Our fundamental idea is based on the assumption that genes contributing to a similar biological process are regulated under the same control mechanism. First, the protein–protein interaction networks are used to calculate the similarity of biological processes among genes. Second, we integrate this similarity and the chromatin immuno-precipitation data to identify cooperative TFs. Our computational experiments in yeast show that predictions made by our method have successfully identified eight pairs of cooperative TFs that have literature evidences but could not be identified by the previous method. Further, 12 new possible pairs have been inferred and we have examined the biological relevances for them. However, since a typical problem using protein–protein interaction data is that many false-positive data are contained, we propose a method combining various biological data to increase the prediction accuracy. PMID:16126847

  6. Critical review: assessment of interferon-β immunogenicity in multiple sclerosis.

    PubMed

    Bendtzen, Klaus

    2010-10-01

    This review discusses type I interferon (IFN) immunogenicity with focus on methods of detection of anti-IFN antibodies in patients treated with human recombinant IFN-β. Pitfalls involved in the clinical use of various types of assays for binding antibodies and neutralizing antibodies against IFN-β are presented, and the widely held distinction between binding antibodies and neutralizing antibodies is questioned both in terms of detection and clinical importance. The article also addresses important bioavailability and pharmacokinetic issues occurring with prolonged use of protein drugs. The rationale for individualized or personalized medicine, ie, optimizing therapies according to individual needs rather than using standardized trial-and-error regimens to all patients, is highlighted.

  7. Exploiting genomic data to identify proteins involved in abalone reproduction.

    PubMed

    Mendoza-Porras, Omar; Botwright, Natasha A; McWilliam, Sean M; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L

    2014-08-28

    Aside from their critical role in reproduction, abalone gonads serve as an indicator of sexual maturity and energy balance, two key considerations for effective abalone culture. Temperate abalone farmers face issues with tank restocking with highly marketable abalone owing to inefficient spawning induction methods. The identification of key proteins in sexually mature abalone will serve as the foundation for a greater understanding of reproductive biology. Addressing this knowledge gap is the first step towards improving abalone aquaculture methods. Proteomic profiling of female and male gonads of greenlip abalone, Haliotis laevigata, was undertaken using liquid chromatography-mass spectrometry. Owing to the incomplete nature of abalone protein databases, in addition to searching against two publicly available databases, a custom database comprising genomic data was used. Overall, 162 and 110 proteins were identified in females and males respectively with 40 proteins common to both sexes. For proteins involved in sexual maturation, sperm and egg structure, motility, acrosomal reaction and fertilization, 23 were identified only in females, 18 only in males and 6 were common. Gene ontology analysis revealed clear differences between the female and male protein profiles reflecting a higher rate of protein synthesis in the ovary and higher metabolic activity in the testis. A comprehensive mass spectrometry-based analysis was performed to profile the abalone gonad proteome providing the foundation for future studies of reproduction in abalone. Key proteins involved in both reproduction and energy balance were identified. Genomic resources were utilised to build a database of molluscan proteins yielding >60% more protein identifications than in a standard workflow employing public protein databases. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. An efficient method for native protein purification in the selected range from prostate cancer tissue digests.

    PubMed

    Ahmad, Rumana; Nicora, Carrie D; Shukla, Anil K; Smith, Richard D; Qian, Wei-Jun; Liu, Alvin Y

    2016-12-01

    Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in the clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead to useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen. In the present investigation, ten cancer specimens obtained from cases scored Gleason 3+3, 3+4 and 4+3 were digested by collagenase to single cells in serum-free tissue culture media. Cells were pelleted after collagenase digestion, and the cell-free supernatant from each specimen were pooled and used for isolation of proteins in the 10-30 kDa molecular weight range using a combination of sonication, dialysis and Amicon ultrafiltration. Western blotting and mass spectrometry (MS) proteomics were performed to identify the proteins in the selected size fraction. The presence of cancer-specific anterior gradient 2 (AGR2) and absence of prostate-specific antigen (PSA)/KLK3 were confirmed by Western blotting. Proteomics also detected AGR2 among many other proteins, some outside the selected molecular weight range, as well. Using this approach, the potentially harmful (to the mouse host) exogenously added collagenase was removed as well as other abundant prostatic proteins like ACPP/PAP and AZGP1 to preclude the generation of antibodies against these species. The paper presents an optimized scheme for convenient and rapid isolation of native proteins in any

  9. Immunogenic Activity of a Ribosomal Fraction Obtained from Mycobacterium tuberculosis

    PubMed Central

    Youmans, Anne S.; Youmans, Guy P.

    1965-01-01

    Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Immunogenic activity of a ribosomal fraction obtained from Mycobacterium tuberculosis. J. Bacteriol. 89:1291–1298. 1965.—The highly immunogenic particulate fraction obtained from mechanically ruptured cells of the H37Ra strain of Mycobacterium tuberculosis was suspended and centrifuged at 20,360 × g. The supernatant liquid from this centrifugation was centrifuged at 56,550 × g to remove the larger particles, and the supernatant liquid from this was centrifuged at 144,000 × g to obtain a ribosomal fraction. The sediments from the first two centrifugations were highly immunogenic, but the ribosomal fraction showed only slight capacity to immunize mice. However, when the ribosomal fraction was mixed with Freund's incomplete adjuvant, the immunogenic activity was equivalent to the particulate fraction from which it was prepared. To test the hypothesis that some membranous substance in the particulate fraction was acting as an adjuvant for the smaller particles in the ribosomal fraction, portions of the particulate fraction were treated separately with each of the membrane-disrupting agents, sodium deoxycholate, sodium lauryl sulfate, and 1 m sodium chloride. The treated materials were then centrifuged at 144,000 × g, and the sediments were tested for immunogenicity both with and without the addition of Freund's incomplete adjuvant. Without the adjuvant, the immunizing activities were very weak or absent; with the adjuvant, they were equivalent to that of the particulate fraction from which they were prepared. Other factors which have been found to damage or destroy membranes, such as freezing and thawing, and heat, also significantly decreased the immunogenic activity of the particulate fraction unless it was incorporated into Freund's incomplete adjuvant. The larger particles which sedimented at 56,550 × g were also treated with sodium lauryl sulfate and sodium

  10. Drug Target Interference in Immunogenicity Assays: Recommendations and Mitigation Strategies.

    PubMed

    Zhong, Zhandong Don; Clements-Egan, Adrienne; Gorovits, Boris; Maia, Mauricio; Sumner, Giane; Theobald, Valerie; Wu, Yuling; Rajadhyaksha, Manoj

    2017-11-01

    Sensitive and specific methodology is required for the detection and characterization of anti-drug antibodies (ADAs). High-quality ADA data enables the evaluation of potential impact of ADAs on the drug pharmacokinetic profile, patient safety, and efficacious response to the drug. Immunogenicity assessments are typically initiated at early stages in preclinical studies and continue throughout the drug development program. One of the potential bioanalytical challenges encountered with ADA testing is the need to identify and mitigate the interference mediated by the presence of soluble drug target. A drug target, when present at sufficiently high circulating concentrations, can potentially interfere with the performance of ADA and neutralizing antibody (NAb) assays, leading to either false-positive or, in some cases, false-negative ADA and NAb assay results. This publication describes various mechanisms of assay interference by soluble drug target, as well as strategies to recognize and mitigate such target interference. Pertinent examples are presented to illustrate the impact of target interference on ADA and NAb assays as well as several mitigation strategies, including the use of anti-target antibodies, soluble versions of the receptors, target-binding proteins, lectins, and solid-phase removal of targets. Furthermore, recommendations for detection and mitigation of such interference in different formats of ADA and NAb assays are provided.

  11. Immunogenicity of biotherapy used in psoriasis: the science behind the scenes.

    PubMed

    Jullien, Denis; Prinz, Jörg C; Nestle, Frank O

    2015-01-01

    A potential limitation in the use of biologic drugs used to treat psoriasis is the development of anti-drug antibodies (ADAs). Many factors contribute to this unwanted immune response, from the product itself, to its mode of administration, the underlying disease, and patient characteristics. ADAs may decrease the efficacy of biologic drugs by neutralizing them or modifying their clearance and may account for hypersensitivity reactions. This article reviews the scientific basis of immunogenicity and the mechanisms by which it affects clinical outcomes. It also considers testing for immunogenicity and how biologic therapy of psoriasis may be tailored on the basis of immunogenicity.

  12. Immunogenic apoptosis in human acute myeloid leukemia (AML): primary human AML cells expose calreticulin and release heat shock protein (HSP) 70 and HSP90 during apoptosis.

    PubMed

    Fredly, Hanne; Ersvær, Elisabeth; Gjertsen, Bjørn-Tore; Bruserud, Oystein

    2011-06-01

    Several previous studies have demonstrated that both conventional cytotoxic drugs as well as targeted therapeutics can induce apoptosis in primary human acute myelogenous leukemia (AML) cells. However, the apoptotic phenotype of dying AML cells has been less extensively characterized. Even though specific antileukemic immune reactivity is important in AML, especially for allotransplanted patients, it has not been investigated whether dying primary human AML cells show phenotypic characteristics consistent with immunogenic apoptosis [calreticulin exposure, heat shock protein (HSP) release]. We therefore investigated whether in vitro cultured primary human acute myeloid leukemia (AML) cells show calreticulin exposure and HSP70/HSP90 release during spontaneous (stress-induced) apoptosis when cultured in medium alone and when cultured in the presence of antileukemic drugs. Both surface exposure of calreticulin and release of HSP70 and HSP90 was detected but showed a wide variation between patients. This variation was also maintained when the AML cells were cultured in the presence of cytotoxic drugs (cytarabine, daunorubicin, mitomycin), all-trans retinoic acid (ATRA) and valproic acid. Finally, AML cells collected during in vivo ATRA therapy showed increased calreticulin exposure during spontaneous in vitro apoptosis, suggesting that in vivo pharmacotherapy can modulate the apoptotic phenotype. To conclude, apoptotic AML cells can show phenotypic characteristics consistent with immunogenic apoptosis, but there is a wide variation between patients and the level of calreticulin exposure/HSP release seems to depend on individual patient characteristics rather than the apoptosis-inducing agent.

  13. Cancer vaccine development: Designing tumor cells for greater immunogenicity

    PubMed Central

    Bozeman, Erica N.; Shashidharamurthy, Rangaiah; Paulos, Simon A.; Palaniappan, Ravi; D’Souza, Martin; Selvaraj, Periasamy

    2014-01-01

    Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host’s immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology. PMID:20036822

  14. First-in-Human Randomized Controlled Trial of Mosaic HIV-1 Immunogens Delivered via a Modified Vaccinia Ankara Vector.

    PubMed

    Baden, Lindsey R; Walsh, Stephen R; Seaman, Michael S; Cohen, Yehuda Z; Johnson, Jennifer A; Licona, J Humberto; Filter, Rachel D; Kleinjan, Jane A; Gothing, Jon A; Jennings, Julia; Peter, Lauren; Nkolola, Joseph; Abbink, Peter; Borducchi, Erica N; Kirilova, Marinela; Stephenson, Kathryn E; Pegu, Poonam; Eller, Michael A; Trinh, Hung V; Rao, Mangala; Ake, Julie A; Sarnecki, Michal; Nijs, Steven; Callewaert, Katleen; Schuitemaker, Hanneke; Hendriks, Jenny; Pau, Maria G; Tomaka, Frank; Korber, Bette T; Alter, Galit; Dolin, Raphael; Earl, Patricia L; Moss, Bernard; Michael, Nelson L; Robb, Merlin L; Barouch, Dan H

    2018-04-13

    Mosaic immunogens are bioinformatically engineered HIV-1 sequences designed to elicit clade independent coverage against globally circulating HIV-1 strains. This Phase 1 double-blind, randomized, placebo-controlled trial enrolled healthy HIV uninfected adults who received two doses of a modified vaccinia Ankara (MVA) vectored HIV-1 bivalent mosaic immunogen vaccine or placebo on days 0 and 84. Two groups were enrolled: those who were HIV-1 vaccine naïve (N=15) and those who had received an HIV-1 vaccine four to six years earlier (Ad26.ENVA.01, N=10). We performed pre-specified blinded cellular and humoral immunogenicity analyses at days 0, 14, 28, 84, 98, 112, 168, 270, and 365. All 50 planned vaccinations were administered. Vaccination was safe and generally well tolerated. No vaccine-related serious adverse events occurred. Both cellular and humoral cross-clade immune responses were elicited after one or two vaccinations in all participants in the HIV-1 vaccine naïve group. Env-specific responses were induced after a single immunization in nearly all subjects who had previously received the prototype Ad26.ENVA.01 vaccine. No safety concerns were identified and multi-clade HIV-1 specific immune responses were elicited. http://www.clinicaltrials.gov/ Identifier: NCT02218125.

  15. Bioinformatics analysis of ROP8 protein to improve vaccine design against Toxoplasma gondii.

    PubMed

    Foroutan, Masoud; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhosein; Pirestani, Majid

    2018-04-26

    Rhoptry proteins (ROPs) are involved in the different stages of Toxoplasma gondii (T. gondii) invasion and are also critical for survival within host cells. ROP8 is expressed in the early stages of infection and have a key role in the parasitophorous vacuole (PV) formation. In this paper, we have combined several bioinformatics online servers for immunogenicity prediction of ROP8 protein. In this study, several bioinformatics approaches were used to analyze the different aspects of ROP8 protein, including the physico-chemical properties, transmembrane domain, subcellular localization, secondary and tertiary structure, B and T-cell potential epitopes, and other important characteristics of this protein. The findings showed that ROP8 protein had 60 potential post-translational modification sites. Also, only one transmembrane domain was recognized for this protein. The secondary structure of ROP8 protein comprises 33.04% alpha-helix, 18.26% extended strand, and 48.70% random coil. Moreover, several potential B and T-cell epitopes were identified for ROP8. In addition, the obtained findings from antigenicity and allergenicity evaluation remarked that this protein is immunogenic and non-allergen. Based on the results of Ramachandran plot, 94.8%, 4.1%, and 1.1% of amino acid residues were incorporated in the favored, allowed, and outlier regions, respectively. This paper provides a foundation for further investigations, and laid a theoretical basis for the development of an appropriate vaccine against toxoplasmosis. More studies are needed experimentally using the ROP8 alone or in combination with other antigens in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Stronger T Cell Immunogenicity of Ovalbumin Expressed Intracellularly in Gram-Negative than in Gram-Positive Bacteria

    PubMed Central

    Martner, Anna; Östman, Sofia; Lundin, Samuel; Rask, Carola; Björnsson, Viktor; Telemo, Esbjörn; Collins, L. Vincent; Axelsson, Lars; Wold, Agnes E.

    2013-01-01

    This study aimed to clarify whether Gram-positive (G+) and Gram-negative (G−) bacteria affect antigen-presenting cells differently and thereby influence the immunogenicity of proteins they express. Lactobacilli, lactococci and Escherichia coli strains were transformed with plasmids conferring intracellular ovalbumin (OVA) production. Murine splenic antigen presenting cells (APCs) were pulsed with washed and UV-inactivated OVA-producing bacteria, control bacteria, or soluble OVA. The ability of the APCs to activate OVA-specific DO11.10 CD4+ T cells was assessed by measurments of T cell proliferation and cytokine (IFN-γ, IL-13, IL-17, IL-10) production. OVA expressed within E. coli was strongly immunogenic, since 500 times higher concentrations of soluble OVA were needed to achieve a similar level of OVA-specific T cell proliferation. Furthermore, T cells responding to soluble OVA produced mainly IL-13, while T cells responding to E. coli-expressed OVA produced high levels of both IFN-γ and IL-13. Compared to E. coli, G+ lactobacilli and lactococci were poor inducers of OVA-specific T cell proliferation and cytokine production, despite efficient intracellular expression and production of OVA and despite being efficiently phagocytosed. These results demonstrate a pronounced difference in immunogenicity of intracellular antigens in G+ and G− bacteria and may be relevant for the use of bacterial carriers in vaccine development. PMID:23741469

  17. Safety, Tolerability and Immunogenicity of Pentavalent Rotavirus Vaccine Manufactured by a Modified Process.

    PubMed

    Martinón-Torres, Federico; Greenberg, David; Varman, Meera; Killar, John A; Hille, Darcy; Strable, Erica L; Stek, Jon E; Kaplan, Susan S

    2017-04-01

    Rotavirus is the leading cause of severe diarrhea in infants and young children. The current formulation of pentavalent rotavirus vaccine (RV5) must be stored refrigerated at 2-8°C. A modified formulation of RV5 (RV5mp) has been developed with stability at 37°C for 7 days and an expiry extended to 36 months when stored at 2-8°C. This study (ClinicalTrials.gov identifier: NCT01600092; EudraCT number: 2012-001611-23) evaluated the safety, tolerability and immunogenicity of RV5mp versus the currently marketed RV5 in infants. To maintain blinding, both vaccine formulations were stored refrigerated at 2-8°C for the duration of the study. Immunogenicity endpoints were (1) serum neutralizing antibody titers to human rotavirus serotypes G1, G2, G3, G4 and P1A[8] and (2) proportion of subjects with a ≥3-fold rise from baseline for serum neutralizing antibody to human rotavirus serotypes G1, G2, G3, G4 and P1A[8] and serum antirotavirus immunoglobulin A. The RV5mp group (n = 505) and RV5 group (n = 509) had comparable safety profiles. There were no deaths and no vaccine-related serious adverse events in this study. With respect to immunogenicity, RV5mp was noninferior compared with RV5. Serum neutralizing antibody responses by country and breast-feeding status were generally consistent with the overall results. RV5mp enhances storage requirements while maintaining the immunogenicity and safety profile of the currently licensed RV5. A vaccine that is stable at room temperature may be more convenient for vaccinators, particularly in places where the cold chain is unreliable, and ultimately will permit more widespread use.

  18. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE PAGES

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; ...

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  19. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  20. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. Copyright © 2016, American Association for the Advancement of Science.

  1. Safety and Immunogenicity Testing of a Pilot Polysaccharide Vaccine Preparation to Pseudomonas aeruginosa.

    DTIC Science & Technology

    1981-09-01

    8217-NAL." BUR-._,AL)- ’..O,.-,.S.AN--DA. .-D-S.... . . . .A AD___________ Safety and Immunogenicity Testing of a Pilot Polysaccharide Vaccine Preparation...COVERED Safety and Immunogenicity Testing of a Pilot Annual Report Polysaccharide Vaccine Preparation to (16 Aug. 80 - 1 Aug. 81) Pseudomonas...immunogenic or biologically active component of the vaccine. The vaccine is a high molecu- lar weight polysaccharide (PS) material isolated from the outer

  2. Biological and immunogenic properties of rabies virus glycoprotein expressed by canine herpesvirus vector.

    PubMed

    Xuan, X; Tuchiya, K; Sato, I; Nishikawa, Y; Onoderaz, Y; Takashima, Y; Yamamoto, A; Katsumata, A; Iwata, A; Ueda, S; Mikami, T; Otsuka, H

    1998-01-01

    In order to evaluate whether canine herpesvirus (CHV) could be used as a live vector for the expression of heterologous immunogenes, we constructed a recombinant canine herpesvirus (CHV) expressing glycoprotein (G protein) of rabies virus (RV). The gene of G protein was inserted within the thymidine kinase gene of CHV YP11mu strain under the control of the human cytomegalovirus immediate early promoter. The G protein expressed by the recombinant CHV was processed and transported to the cell surface as in RV infected cells, and showed the same biological activities such as low pH dependent cell fusion and hemadsorption. The antigenic authenticity of the recombinant G protein was confirmed by a panel of monoclonal antibodies specific for G protein. Dogs inoculated intransally with the recombinant CHV produced higher titres of virus neutralizing antibodies against RV than those inoculated with a commercial, inactivated rabies vaccine. These results suggest that the CHV recombinant expressing G protein can be used as a vaccine to control canine rabies and that CHV may be useful as a vector to develop live recombinant against other infectious diseases in dogs.

  3. Factors influencing preclinical in vivo evaluation of mumps vaccine strain immunogenicity

    PubMed Central

    Halassy, B; Kurtović, T; Brgles, M; Lang Balija, M; Forčić, D

    2015-01-01

    Immunogenicity testing in animals is a necessary preclinical assay for demonstration of vaccine efficacy the results of which are often the basis for the decision whether to proceed or withdraw the further development of the novel vaccine candidate. However, in vivo assays are rarely, if at all, optimized and validated. Here we clearly demonstrate the importance of in vivo assay (mumps virus immunogenicity testing in guinea pigs) optimization for gaining reliable results and the suitability of Fractional factorial design of experiments (DoE) for such a purpose. By the use of DoE with resolution IV (2IV(4-1)) we clearly revealed that the parameters significantly increasing assay sensitivity were interval between animal immunizations followed by the body weight of experimental animals. The quantity (0 versus 2%) of the stabilizer (fetal bovine serum, FBS) in the sample was shown as non-influencing parameter in DoE setup. However, the separate experiment investigating only the FBS influence, and performed under other parameters optimally set, showed that FBS also influences the results of immunogenicity assay. Such finding indicated that (a) factors with strong influence on the measured outcome can hide the effects of parameters with modest/low influence and (b) the matrix of mumps virus samples to be compared for immunogenicity must be identical for reliable virus immunogenicity comparison. Finally the 3 mumps vaccine strains widely used for decades in the licensed vaccines were for the first time compared in an animal model, and results obtained were in line with their reported immunogenicity in human population supporting the predictive power of the optimized in vivo assay. PMID:26376015

  4. Factors influencing preclinical in vivo evaluation of mumps vaccine strain immunogenicity.

    PubMed

    Halassy, B; Kurtović, T; Brgles, M; Lang Balija, M; Forčić, D

    2015-01-01

    Immunogenicity testing in animals is a necessary preclinical assay for demonstration of vaccine efficacy the results of which are often the basis for the decision whether to proceed or withdraw the further development of the novel vaccine candidate. However, in vivo assays are rarely, if at all, optimized and validated. Here we clearly demonstrate the importance of in vivo assay (mumps virus immunogenicity testing in guinea pigs) optimization for gaining reliable results and the suitability of Fractional factorial design of experiments (DoE) for such a purpose. By the use of DoE with resolution IV (2IV((4-1))) we clearly revealed that the parameters significantly increasing assay sensitivity were interval between animal immunizations followed by the body weight of experimental animals. The quantity (0 versus 2%) of the stabilizer (fetal bovine serum, FBS) in the sample was shown as non-influencing parameter in DoE setup. However, the separate experiment investigating only the FBS influence, and performed under other parameters optimally set, showed that FBS also influences the results of immunogenicity assay. Such finding indicated that (a) factors with strong influence on the measured outcome can hide the effects of parameters with modest/low influence and (b) the matrix of mumps virus samples to be compared for immunogenicity must be identical for reliable virus immunogenicity comparison. Finally the 3 mumps vaccine strains widely used for decades in the licensed vaccines were for the first time compared in an animal model, and results obtained were in line with their reported immunogenicity in human population supporting the predictive power of the optimized in vivo assay.

  5. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    PubMed

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV ∆024 RABV-G or ORFV ∆121 RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV ∆024 RABV-G and ORFV ∆121 RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV ∆121 RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV ∆024 RABV-G-immunized animals, indicating a higher immunogenicity of ORFV Δ121 -based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A recombinant truncated surface immunogenic protein (tSip) plus adjuvant FIA confers active protection against Group B streptococcus infection in tilapia.

    PubMed

    He, Yang; Wang, Kai-Yu; Xiao, Dan; Chen, De-Fang; Huang, Lingyuan; Liu, Tianqiang; Wang, Jun; Geng, Yi; Wang, Er-Long; Yang, Qian

    2014-12-05

    Tilapia is an important agricultural fish that has been plagued by Group B streptococcus (GBS) infections in recent years, some of them severe. It is well-known that surface immunogenicity protein (Sip) is an effective vaccine against GBS. Since Sip was not expressed in either E. coli BL21 or E. coli Rosetta, we removed the N-terminal signal peptide and LysM of the virus to produce purified truncated Sip (tSip(1)), which multiplied easily in an E. coli host. The antibody's ability to recognize and combine with GBS was determined by Western-blot and specific staining in vitro. The relative percentage of survival (RPS), antibody titers, bacterial recovery, and pathologic morphology were monitored in vivo to evaluate the immune effects. Freund's incomplete adjuvant (FIA) plus tSip and aluminum hydroxide gel (AH) plus tSip were also evaluated. It revealed that tSip mixed with FIA was an effective vaccine against GBS in tilapia, while AH is toxic to tilapia. Copyright © 2014. Published by Elsevier Ltd.

  7. Evaluation of Immunogenicity and Protective Efficacy Elicited by Mycobacterium bovis BCG Overexpressing Ag85A Protein against Mycobacterium tuberculosis Aerosol Infection.

    PubMed

    Xu, Zheng Zhong; Chen, Xiang; Hu, Ting; Meng, Chuang; Wang, Xiao Bo; Rao, Yan; Zhang, Xiao Ming; Yin, Yue Lan; Pan, Zhi Ming; Jiao, Xin An

    2016-01-01

    Mycobacterium bovis bacillus Calmette-Guérin (BCG) is currently the only vaccine available for preventing tuberculosis (TB), however, BCG has varying success in preventing pulmonary TB. In this study, a recombinant BCG (rBCG::Ag85A) strain overexpressing the immunodominant Ag85A antigen was constructed, and its immunogenicity and protective efficacy were evaluated. Our results indicated that the Ag85A protein was successfully overexpressed in rBCG::Ag85A, and the Ag85A peptide-MHC complexes on draining lymph node dendritic cells of C57BL/6 mice infected with rBCG::Ag85A were detectable 4 h post-infection. The C57BL/6 mice infected with this strain had stronger antigen-specific interferon-gamma (IFN-γ) responses and higher antibody titers than those immunized with BCG, and the protective experiments showed that rBCG::Ag85A can enhance protection against Mycobacterium tuberculosis (M. tuberculosis) H37Rv infection compared to the BCG vaccine alone. Our results demonstrate the potential of rBCG::Ag85A as a candidate vaccine against TB.

  8. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    PubMed

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  9. Cross-protective efficacy from a immunogen firstly identified in Leishmania infantum against tegumentary leishmaniasis.

    PubMed

    Martins, V T; Lage, D P; Duarte, M C; Costa, L E; Chávez-Fumagalli, M A; Roatt, B M; Menezes-Souza, D; Tavares, C A P; Coelho, E A F

    2016-02-01

    Experimental vaccine candidates have been evaluated to prevent leishmaniasis, but no commercial vaccine has been proved to be effective against more than one parasite species. LiHyT is a Leishmania-specific protein that was firstly identified as protective against Leishmania infantum. In this study, LiHyT was evaluated as a vaccine to against two Leishmania species causing tegumentary leishmaniasis (TL): Leishmania major and Leishmania braziliensis. BALB/c mice were immunized with rLiHyT plus saponin and lately challenged with promastigotes of the two parasite species. The immune response generated was evaluated before and 10 weeks after infection, as well as the parasite burden at this time after infection. The vaccination induced a Th1 response, which was characterized by the production of IFN-γ, IL-12 and GM-CSF, as well as by high levels of IgG2a antibodies, after in vitro stimulation using both the protein and parasite extracts. After challenge, vaccinated mice showed significant reductions in their infected footpads, as well as in the parasite burden in the tissue and organs evaluated, when compared to the control groups. The anti-Leishmania Th1 response was maintained after infection, being the IFN-γ production based mainly on CD4(+) T cells. We described one conserved Leishmania-specific protein that could compose a pan-Leishmania vaccine. © 2016 John Wiley & Sons Ltd.

  10. Novel royal jelly proteins identified by gel-based and gel-free proteomics.

    PubMed

    Han, Bin; Li, Chenxi; Zhang, Lan; Fang, Yu; Feng, Mao; Li, Jianke

    2011-09-28

    Royal jelly (RJ) plays an important role in caste determination of the honeybee; the genetically same female egg develops into either a queen or worker bee depending on the time and amount of RJ fed to the larvae. RJ also has numerous health-promoting properties for humans. Gel-based and gel-free proteomics approaches and high-performance liquid chromatography-chip quadruple time-of-flight tandem mass spectrometry were applied to comprehensively investigate the protein components of RJ. Overall, 37 and 22 nonredundant proteins were identified by one-dimensional gel electrophoresis and gel-free analysis, respectively, and 19 new proteins were found by these two proteomics approaches. Major royal jelly proteins (MRJPs) were identified as the principal protein components of RJ, and proteins related to carbohydrate metabolism such as glucose oxidase, α-glucosidase precursor, and glucose dehydrogenase were also successfully identified. Importantly, the 19 newly identified proteins were mainly classified into three functional categories: oxidation-reduction (ergic53 CG6822-PA isoform A isoform 1, Sec61 CG9539-PA, and ADP/ATP translocase), protein binding (regucalcin and translationally controlled tumor protein CG4800-PA isoform 1), and lipid transport (apolipophorin-III-like protein). These new findings not only significantly increase the RJ proteome coverage but also help to provide new knowledge of RJ for honeybee biology and potential use for human health promotion.

  11. Immunogenicity of recombinant vaccinia virus vaccines co-expressing GP3/GP5 of European PRRSV and Cap protein of PCV2 in pigs.

    PubMed

    Han, Jicheng; Ma, Haibin; Cao, Liang; Jing, Jie; Xiao, Pengpeng; Sun, Wenchao; Xie, Changzhan; Wen, Shubo; Li, Yiquan; Tian, Mingyao; Lu, Huijun; Jin, Ningyi

    2018-02-01

    Porcine reproductive and respiratory syndrome (PRRS) is almost always caused by the North American strain of PRRS virus (PRRSV) in China; the European genotype of PRRSV has emerged in China. The mixed infection of PRRSV and Porcine circovirus type 2 virus (PCV2) are always found in pigs and PRRSV-augmented PCV2 replication and serious clinical symptoms. Current vaccines cannot protect mixed European PRRSV and PCV2 infections. Therefore, the development of a safe and effective new vaccine to prevent and control the mixed infection of European PRRSV and PCV2 is both urgent and necessary. In this study, we developed a recombinant vaccinia vaccine co-expressing the GP3 and GP5 proteins of European PRRSV and the ORF2 protein of PCV2 and evaluated the immunogenicity and its protective effects and its inactivated vaccine in pigs. The recombinant vaccinia vaccine and its inactivated vaccine both elicited significant humoral and cellular immune responses with a higher level of specific antibody responses and T-lymphocyte proliferation than the control group. Furthermore, the pigs inoculated with the recombinant vaccinia vaccine were completely protected against challenge with 10 5 TCID 50 of European PRRSV strain LV. These data suggest that the recombinant vaccinia vaccine is a potential candidate vaccine against European PRRSV and PCV2.

  12. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  13. A coevolution analysis for identifying protein-protein interactions by Fourier transform.

    PubMed

    Yin, Changchuan; Yau, Stephen S-T

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI).

  14. A coevolution analysis for identifying protein-protein interactions by Fourier transform

    PubMed Central

    Yin, Changchuan; Yau, Stephen S. -T.

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI). PMID:28430779

  15. [Expression of goat IL-18 mature protein in insect/baculovirus and determination of bioactivity of the recombinant protein].

    PubMed

    Wang, Ting-Ting; Wang, Xi-Hui; Fan, Zhong-Ling; Chen, Jin-Long; Cao, Bing-Lei; Kong, Na; Hu, Jing-Dong; Zhao, Hong-Kun

    2011-02-01

    To express goat IL-18 in insect/baculovirus and detect the bioactivity of the recombinant protein. The mature goat interleukin-18(gIL-18) gene was cloned into the baculovirus transfer vector pFastBac Dual, and then the resulting eukaryotic expression plasmid pFastBac Dual-gIL18 was transformed into DH10Bac, followed by the identification of Bacmid-gIL18 recombinat plosmid by three antibiotics and blue-white patch. Finally, the recombinant bacmid was transfected into sf9 insect cells by Cellfectin and the transfected cells were harvested at different times. Then the expressed protein was identified by SDS-PAGE, Western blot and bioactivity assay. The recombinant protein recognized and bound to its specific antibody. Bioactivity assay showed that the recombinant protein stimulated the proliferation of lymphocytes and induced IFN-γproduction in spleen lymphocytes. The mature gIL-18 protein has been expressed successfully in insect/baculovirus expression system, and have good immunogenicity and bioactivity. The study paves a way for application of gIL-18 as an immunomodulator or immune adjuvant.

  16. New proteins identified in epididymal fluid from the platypus (Ornithorhynchus anatinus).

    PubMed

    Dacheux, Jean-Louis; Dacheux, Francoise; Labas, Valerie; Ecroyd, Heath; Nixon, Brett; Jones, Russell C

    2009-01-01

    The platypus epididymal proteome is being studied because epididymal proteins are essential for male fertility in mammals and it is considered that knowledge of the epididymal proteome in an early mammal would be informative in assessing the convergence and divergence of proteins that are important in the function of the mammalian epididymis. Few of the epididymal proteins that have been identified in eutherian mammals were found in platypus caudal epididymal fluid, and the major epididymal proteins in the platypus (PXN-FBPL, SPARC and E-OR20) have never been identified in the epididymis of any other mammal.

  17. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  18. [Prokaryotic expression and immunogenicity analysis of the chimeric HBcAg containing APP beta cleavage site peptide and Aβ(1-15);].

    PubMed

    Feng, Gai-feng; Wang, Jun-yang; Jin, Hui; Wang, Wei-xi; Qian, Yi-hua; Yang, Wei-na; Wang, Quan-ying; Yang, Guang-xiao

    2011-11-01

    To construct the recombinant prokaryotic expression plasmid pET/c-ABCSP-Aβ(15-c);, and evaluate the immunogenicity of the fusion protein expressed in E.coli. The gene fragment HBc88-144 was amplified by PCR and subcloned to pUC19. The APP beta cleavage site peptide(ABCSP) and Aβ(1-15); gene(ABCSP-Aβ(15);) was amplified by PCR and inserted downstream of HBc1-71 in pGEMEX/c1-71. After restriction enzyme digestion, c1-17-ABCSP-Aβ(15); were connected with HBc88-144, yielding the recombinant gene c-ABCSP-Aβ(15-c);. c-ABCSP-Aβ(15-c); gene was subcloned into pET-28a(+).The fusion protein expressed in transformed E.coli BL21 was induced with IPTG and analyzed by SDS-PAGE. The virus-like particles (VLP) formed by fusion protein was observed with Transmission Electron Microscope (TEM). 4 Kunming (KM) mice received intraperitoneal injection (i.p) of fusion protein VLP. The antibody was detected by indirect ELISA. The recombinant gene was confirmed by restriction enzyme digestion and DNA sequencing. After IPTG induction, fusion protein was expressed and mainly existed in the sediment of the bacterial lysate. The expression level was 40% of all the proteins in the sediment. The fusion protein could form VLP. After 5 times of immunization, the titer of anti-ABCSP and anti-Aβantibody in sera of KM mice reached up to 1:5 000 and 1:10 000 respectively, while the anti-HBc antibody was undetectable. Recombinant c-ABCSP-Aβ(15-c); gene can be expressed in E.coli. The expressed protein could form VLP and has a strong immunogenicity. This study lays the foundation for the study of AD genetic engineering vaccine.

  19. Protein carriers of conjugate vaccines

    PubMed Central

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  20. Proteomics-based approach identified differentially expressed proteins with potential roles in endometrial carcinoma.

    PubMed

    Li, Zhengyu; Min, Wenjiao; Huang, Canhua; Bai, Shujun; Tang, Minghai; Zhao, Xia

    2010-01-01

    We used proteomic approaches to identify altered expressed proteins in endometrial carcinoma, with the aim of discovering potential biomarkers or therapeutic targets for endometrial carcinoma. The global proteins extracted from endometrial carcinoma and normal endometrial tissues were separated by 2-dimensional electrophoresis and analyzed with PDQuest (Bio-Rad, Hercules, Calif) software. The differentially expressed spots were identified by mass spectrometry and searched against NCBInr protein database. Those proteins with potential roles were confirmed by Western blotting and immunohistochemical assays. Ninety-nine proteins were identified by mass spectrometry, and a cluster diagram analysis indicated that these proteins were involved in metabolism, cell transformation, protein folding, translation and modification, proliferation and apoptosis, signal transduction, cytoskeleton, and so on. In confirmatory immunoblotting and immunohistochemical analyses, overexpressions of epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A were also observed in endometrial carcinoma tissues, which were consistent with the proteomic results. Our results suggested that these identified proteins, including epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A, might be of potential values in the studies of endometrial carcinogenesis or investigations of diagnostic biomarkers or treatment targets for endometrial carcinoma.

  1. The polymeric stability of the Escherichia coli F4 (K88) fimbriae enhances its mucosal immunogenicity following oral immunization.

    PubMed

    Verdonck, Frank; Joensuu, Jussi Joonas; Stuyven, Edith; De Meyer, Julie; Muilu, Mikko; Pirhonen, Minna; Goddeeris, Bruno Maria; Mast, Jan; Niklander-Teeri, Viola; Cox, Eric

    2008-10-23

    Only a few vaccines are commercially available against intestinal infections since the induction of a protective intestinal immune response is difficult to achieve. For instance, oral administration of most proteins results in oral tolerance instead of an antigen-specific immune response. We have shown before that as a result of oral immunization of piglets with F4 fimbriae purified from pathogenic enterotoxigenic Escherichia coli (ETEC), the fimbriae bind to the F4 receptor (F4R) in the intestine and induce a protective F4-specific immune response. F4 fimbriae are very stable polymeric structures composed of some minor subunits and a major subunit FaeG that is also the fimbrial adhesin. In the present study, the mutagenesis experiments identified FaeG amino acids 97 (N to K) and 201 (I to V) as determinants for F4 polymeric stability. The interaction between the FaeG subunits in mutant F4 fimbriae is reduced but both mutant and wild type fimbriae behaved identically in F4R binding and showed equal stability in the gastro-intestinal lumen. Oral immunization experiments indicated that a higher degree of polymerisation of the fimbriae in the intestine was correlated with a better F4-specific mucosal immunogenicity. These data suggest that the mucosal immunogenicity of soluble virulence factors can be increased by the construction of stable polymeric structures and therefore help in the development of effective mucosal vaccines.

  2. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    PubMed

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rhesus macaque and mouse models for down-selecting circumsporozoite protein based malaria vaccines differ significantly in immunogenicity and functional outcomes.

    PubMed

    Phares, Timothy W; May, Anthony D; Genito, Christopher J; Hoyt, Nathan A; Khan, Farhat A; Porter, Michael D; DeBot, Margot; Waters, Norman C; Saudan, Philippe; Dutta, Sheetij

    2017-03-13

    Non-human primates, such as the rhesus macaques, are the preferred model for down-selecting human malaria vaccine formulations, but the rhesus model is expensive and does not allow for direct efficacy testing of human malaria vaccines. Transgenic rodent parasites expressing genes of human Plasmodium are now routinely used for efficacy studies of human malaria vaccines. Mice have however rarely predicted success in human malaria trials and there is scepticism whether mouse studies alone are sufficient to move a vaccine candidate into the clinic. A comparison of immunogenicity, fine-specificity and functional activity of two Alum-adjuvanted Plasmodium falciparum circumsporozoite protein (CSP)-based vaccines was conducted in mouse and rhesus models. One vaccine was a soluble recombinant protein (CSP) and the other was the same CSP covalently conjugated to the Qβ phage particle (Qβ-CSP). Mice showed different kinetics of antibody responses and different sensitivity to the NANP-repeat and N-terminal epitopes as compared to rhesus. While mice failed to discern differences between the protective efficacy of CSP versus Qβ-CSP vaccine following direct challenge with transgenic Plasmodium berghei parasites, rhesus serum from the Qβ-CSP-vaccinated animals induced higher in vivo sporozoite neutralization activity. Despite some immunologic parallels between models, these data demonstrate that differences between the immune responses induced in the two models risk conflicting decisions regarding potential vaccine utility in humans. In combination with historical observations, the data presented here suggest that although murine models may be useful for some purposes, non-human primate models may be more likely to predict the human response to investigational vaccines.

  4. Combined radiotherapy and Corynebacterium parvum treatment of rat tumors with different immunogenicity. [X rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroson, H.; Stowe, S.; Rotman, M.

    1978-01-01

    Evidence is presented that combined radiotherapy and Corynebacterium parvum treatment gives better results than radiotherapy alone in rats bearing a chemically-induced highly-immunogenic transplanted fibrosarcoma termed BP 179; however, similar behavior is not observed with either of two weakly-immunogenic mammary carcinomas, 13762 or ME/H. Relative immunogenicity is determined by the ability of immunized rats to reject tumor cell challenge. Both 13762 and ME/H carcinomata grow progressively and metastasize early to the retroperitoneal cavity and lungs if they are left untreated. Local radiotherapy of the primary tumor has no influence on growth of metastases whether it is combined with C. parvum ormore » not. Results of cell-mediated cytotoxicity studies with lymphocytes from BP 179 and ME/H tumor bearing rats treated with radiation or radiation plus C. parvum support the in vivo findings of combined radiotherapy. These data suggest that unlike strongly immunogenic tumors, weakly immunogenic tumors will not respond better to C. parvum combined with radiation therapy.« less

  5. A Streptococcus mutans immunogen that reacts equally with S. mutans antibody of all serotypes.

    PubMed

    Everhart, D L; Miglietta, L M; Maresca, V A; Kelly-Hatfield, P

    1984-01-01

    We have studied a possible immunogen from S. mutans that has the capability of producing antibody to S. mutans which reacts equally well with all serotypes. This immunogen, a ribosomal preparation, is immunogenic in mice, is antigenic with rabbit anti-S. mutans, and is antigenic with the human antibody that also reacts with S. mutans. The human antibody is of the IgG class and S-IgA class.

  6. Diverse manifestations of tumorigenicity and immunogenicity displayed by the poorly immunogenic B16-BL6 melanoma transduced with cytokine genes.

    PubMed

    Arca, M J; Krauss, J C; Strome, S E; Cameron, M J; Chang, A E

    1996-05-01

    We evaluated the in vivo response to the poorly immunogenic B16-BL6 (BL6) murine melanoma genetically altered to secrete interleukin-2 (IL-2), IL-4, interferon gamma (IFN gamma) and granulocyte/macrophage-colony-stimulating factor (GM-CSF). Three parameters were evaluated: (1) tumorigenicity, (2) vaccination of naive animals, and (3) assessment of antitumor reactivity of T cells derived from tumor-draining lymph nodes (TDLN). Secretion of IL-2 abrogated the tumorigenicity of BL6, while IFN gamma and IL-4 partially reduced tumorigenicity, and GM-CSF had no effect. Protective immunity to wild-type tumor challenge could not be achieved by vaccination with irradiated cytokine-secreting tumors, although IL-2 and IL-4 secretion appeared to retard the growth of the challenge inoculum significantly. An alternative method to evaluate the immunogenicity of the cytokine-secreting tumors was to measure the ability of T cells obtained from TDLN to mediate regression of wild-type tumor in adoptive immunotherapy. Neither IL-2 nor IFN gamma secretion resulted in the induction of immune T cells. By contrast, GM-CSF and IL-4 secretion were found to induce immune T cells in the TDLN with GM-CSF being superior to IL-4. The combined secretion of GM-CSF and IL-4 did not lead to enhanced induction of immune T cells. GM-CSF secretion was found to upregulate B7-1 expression in TDLN, consistent with an increase in the population of antigen-presenting cells. These studies demonstrated that reduced tumorigenicity by cytokine secretion did not correlate with increased immunogenicity. With the cytokines examined, there was limited capability of developing protective immunity against the BL6 tumor. Nevertheless, GM-CSF and IL-4 secretion significantly enhanced T cell immune reactivity to the poorly immunogenic BL6 tumor.

  7. Identifying protein domains by global analysis of soluble fragment data.

    PubMed

    Bulloch, Esther M M; Kingston, Richard L

    2014-11-15

    The production and analysis of individual structural domains is a common strategy for studying large or complex proteins, which may be experimentally intractable in their full-length form. However, identifying domain boundaries is challenging if there is little structural information concerning the protein target. One experimental procedure for mapping domains is to screen a library of random protein fragments for solubility, since truncation of a domain will typically expose hydrophobic groups, leading to poor fragment solubility. We have coupled fragment solubility screening with global data analysis to develop an effective method for identifying structural domains within a protein. A gene fragment library is generated using mechanical shearing, or by uracil doping of the gene and a uracil-specific enzymatic digest. A split green fluorescent protein (GFP) assay is used to screen the corresponding protein fragments for solubility when expressed in Escherichia coli. The soluble fragment data are then analyzed using two complementary approaches. Fragmentation "hotspots" indicate possible interdomain regions. Clustering algorithms are used to group related fragments, and concomitantly predict domain location. The effectiveness of this Domain Seeking procedure is demonstrated by application to the well-characterized human protein p85α. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Safety and immunogenicity of a trivalent recombinant PcpA, PhtD, and PlyD1 pneumococcal protein vaccine in adults, toddlers, and infants: A phase I randomized controlled study.

    PubMed

    Brooks, W Abdullah; Chang, Lee-Jah; Sheng, Xiaohua; Hopfer, Robert

    2015-08-26

    Pneumococcal protein vaccines (PPrVs) may provide improved protection over currently available polysaccharide and conjugated polysaccharide vaccines. Here, we examined the safety and immunogenicity of a trivalent recombinant PPrV containing PcpA, PhtD, and PlyD1. This was a phase I, single-center, randomized, observer-blind study with safety review between cohorts. Adults (18-50 years; n=30) and then toddlers (12-13 months; n=30) were randomized 2:1 to receive aluminum-adjuvanted trivalent PPrV (PPrV + adj) containing 50 μg per antigen or placebo. Infants (42-49 days; n=220) were next randomized to be injected at 6, 10, and 14 weeks of age with 10 μg PPrV + adj or placebo (n=60; 2:1); 25 μg PPrV + adj, 25 μg unadjuvanted PPrV, or placebo (n=100; 2:2:1); and 50 μg PPrV + adj or placebo (n=60; 2:1). Solicited reactions were recorded for 7 days and unsolicited adverse events for 30 days after each vaccination. Concentrations of antibodies to the three vaccine antigens were measured by enzyme-linked immunosorbent assay. Tenderness/pain was the most frequent injection-site reaction. Abnormal crying and irritability (infants), loss of appetite (toddlers), and headache, malaise, and myalgia (adults) were the most frequent systemic reactions. Reactions were mostly mild or moderate, resolved within 3 days, were not adjuvant- or dose-dependent, and were not increased by repeated vaccination. No immediate adverse events, hypersensitivity reactions, or treatment-related serious adverse events were reported. In all PPrV + adj cohorts, at least 75% of subjects had a ≥2-fold increase in all three antibody concentrations. In infants, antibody concentrations were higher with PPrV + adj than with unadjuvanted PPrV, higher with three than two vaccinations, and similar at the different vaccine doses. The candidate trivalent PPrV was safe and immunogenic in adults, toddlers, and infants. Addition of aluminum adjuvant improved immunogenicity in infants without changing the safety

  9. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    PubMed

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  10. Safety and immunogenicity of 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) in Nigerian children: Booster dose and 2-dose catch-up regimens in the second year of life.

    PubMed

    Odusanya, Olumuyiwa O; Kuyinu, Yetunde A; Kehinde, Omolara A; Shafi, Fakrudeen; François, Nancy; Yarzabal, Juan Pablo; Dobbelaere, Kurt; Rüggeberg, Jens U; Borys, Dorota; Schuerman, Lode

    2014-01-01

    In a previous study, 3-dose primary vaccination of Nigerian infants with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) was immunogenic for vaccine pneumococcal serotypes, with comparable tolerability between PHiD-CV and control groups. In an open-label study (ClinicalTrials.gov, NCT01153893), 68 primed children received a PHiD-CV booster dose co-administered with a diphtheria-tetanus-acellular pertussis (DTPa) booster dose at 15-21 months and 36 children unprimed for pneumococcal vaccination received two PHiD-CV catch-up doses (first dose co-administered with DTPa booster dose) at 15-21 and 17-23 months. Adverse events were recorded and immune responses were measured before and one month after vaccination. In both groups, pain was the most frequent solicited local symptom and fever was the most frequent solicited general symptom after the booster dose and each catch-up dose. Few grade 3 solicited symptoms and no vaccine-related serious adverse events were reported. After booster vaccination, for each vaccine serotype, at least 98.5% of children had an antibody concentration ≥ 0.2 µg/ml and at least 94.0% had an opsonophagocytic activity (OPA) titer ≥ 8. After 2-dose catch-up, for each vaccine serotype, at least 97.1% had an antibody concentration ≥ 0.2 µg/ml, except for serotypes 6B (82.9%) and 23F (88.6%), and at least 91.4% had an OPA titer ≥8, except for serotypes 6B (77.4%) and 19F (85.3%). PHiD-CV induced antibody responses against protein D in both groups. In conclusion, PHiD-CV administered to Nigerian toddlers as a booster dose or 2-dose catch-up was well tolerated and immunogenic for vaccine pneumococcal serotypes and protein D.

  11. Carboxylator: incorporating solvent-accessible surface area for identifying protein carboxylation sites

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Tsung; Chen, Shu-An; Bretaña, Neil Arvin; Cheng, Tzu-Hsiu; Lee, Tzong-Yi

    2011-10-01

    In proteins, glutamate (Glu) residues are transformed into γ-carboxyglutamate (Gla) residues in a process called carboxylation. The process of protein carboxylation catalyzed by γ-glutamyl carboxylase is deemed to be important due to its involvement in biological processes such as blood clotting cascade and bone growth. There is an increasing interest within the scientific community to identify protein carboxylation sites. However, experimental identification of carboxylation sites via mass spectrometry-based methods is observed to be expensive, time-consuming, and labor-intensive. Thus, we were motivated to design a computational method for identifying protein carboxylation sites. This work aims to investigate the protein carboxylation by considering the composition of amino acids that surround modification sites. With the implication of a modified residue prefers to be accessible on the surface of a protein, the solvent-accessible surface area (ASA) around carboxylation sites is also investigated. Radial basis function network is then employed to build a predictive model using various features for identifying carboxylation sites. Based on a five-fold cross-validation evaluation, a predictive model trained using the combined features of amino acid sequence (AA20D), amino acid composition, and ASA, yields the highest accuracy at 0.874. Furthermore, an independent test done involving data not included in the cross-validation process indicates that in silico identification is a feasible means of preliminary analysis. Additionally, the predictive method presented in this work is implemented as Carboxylator (http://csb.cse.yzu.edu.tw/Carboxylator/), a web-based tool for identifying carboxylated proteins with modification sites in order to help users in investigating γ-glutamyl carboxylation.

  12. Proteomic Screening of Antigenic Proteins from the Hard Tick, Haemaphysalis longicornis (Acari: Ixodidae)

    PubMed Central

    Kim, Young-Ha; slam, Mohammad Saiful; You, Myung-Jo

    2015-01-01

    Proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. For detection of antigens from Haemaphysalis longicornis, 1-dimensional electrophoresis (1-DE) quantitative immunoblotting technique combined with 2-dimensional electrophoresis (2-DE) immunoblotting was used for whole body proteins from unfed and partially fed female ticks. Reactivity bands and 2-DE immunoblotting were performed following 2-DE electrophoresis to identify protein spots. The proteome of the partially fed female had a larger number of lower molecular weight proteins than that of the unfed female tick. The total number of detected spots was 818 for unfed and 670 for partially fed female ticks. The 2-DE immunoblotting identified 10 antigenic spots from unfed females and 8 antigenic spots from partially fed females. Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF) of relevant spots identified calreticulin, putative secreted WC salivary protein, and a conserved hypothetical protein from the National Center for Biotechnology Information and Swiss Prot protein sequence databases. These findings indicate that most of the whole body components of these ticks are non-immunogenic. The data reported here will provide guidance in the identification of antigenic proteins to prevent infestation and diseases transmitted by H. longicornis. PMID:25748713

  13. Mass Spectrometry of Human Leukocyte Antigen Class I Peptidomes Reveals Strong Effects of Protein Abundance and Turnover on Antigen Presentation*

    PubMed Central

    Bassani-Sternberg, Michal; Pletscher-Frankild, Sune; Jensen, Lars Juhl; Mann, Matthias

    2015-01-01

    HLA class I molecules reflect the health state of cells to cytotoxic T cells by presenting a repertoire of endogenously derived peptides. However, the extent to which the proteome shapes the peptidome is still largely unknown. Here we present a high-throughput mass-spectrometry-based workflow that allows stringent and accurate identification of thousands of such peptides and direct determination of binding motifs. Applying the workflow to seven cancer cell lines and primary cells, yielded more than 22,000 unique HLA peptides across different allelic binding specificities. By computing a score representing the HLA-I sampling density, we show a strong link between protein abundance and HLA-presentation (p < 0.0001). When analyzing overpresented proteins – those with at least fivefold higher density score than expected for their abundance – we noticed that they are degraded almost 3 h faster than similar but nonpresented proteins (top 20% abundance class; median half-life 20.8h versus 23.6h, p < 0.0001). This validates protein degradation as an important factor for HLA presentation. Ribosomal, mitochondrial respiratory chain, and nucleosomal proteins are particularly well presented. Taking a set of proteins associated with cancer, we compared the predicted immunogenicity of previously validated T-cell epitopes with other peptides from these proteins in our data set. The validated epitopes indeed tend to have higher immunogenic scores than the other detected HLA peptides. Remarkably, we identified five mutated peptides from a human colon cancer cell line, which have very recently been predicted to be HLA-I binders. Altogether, we demonstrate the usefulness of combining MS-analysis with immunogenesis prediction for identifying, ranking, and selecting peptides for therapeutic use. PMID:25576301

  14. A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    PubMed Central

    Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.

    2011-01-01

    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594

  15. The molecular adjuvant mC3d enhances the immunogenicity of FimA from type I fimbriae of Salmonella enterica serovar Enteritidis.

    PubMed

    Musa, Hassan-Hussein; Zhang, Wei-Juan; Lv, Jing; Duan, Xiao-Li; Yang, Yang; Zhu, Chun-Hong; Li, Hui-Fang; Chen, Kuan-Wei; Meng, Xia; Zhu, Guo-Qiang

    2014-02-01

    The fimbriae of Salmonella enterica serovar Enteritidis are used for colonization and invasion into host cells, and have drawn considerable interest because fimbriae can serve as potential immunogens against many pathogenic bacteria that colonize on epithelial surfaces. The purpose of the study is to use a molecular adjuvant, C3d, to enhance the immunogenicity of FimA proteins against Salmonella enterica serovar Enteritidis. FimA of type I fimbriae from Salmonella enteritidis and FimA with one copy of mC3d, two copies of mC3d2 and three copies of mC3d3 were cloned into the expression vector pCold-TF. Soluble fusion proteins of FimA with different copy of mC3d were induced by IPTG and expressed into Escherichia coli BL21 (DE3). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant proteins from pCold-TF-fimA, TF-fimA-mC3d, TF-fimA-mC3d2, TF-fimA-mC3d3 were 70 kDa, 100 kDa, 130 kDa and 160 kDa, respectively. The fusion protein was recognized by rabbit anti-fimbriae polyclonal antibodies, and then visualized by goat anti-rabbit polyclonal antibodies with a chrome appearance by enzyme-subtract interaction. The recombinant proteins were purified by Ni-TED (tris-carboxymethyl ethylene diamine), immobilized metal ion affinity chromatography (IMAC). Balb/c mice were subcutaneously immunized with the purified proteins and the immune response was monitored by an enzyme-linked immunosorbent assay (ELISA) for FimA-specific antibody. The immunized mice were challenged with a 10-fold LD50 dose (i.e., 100 CFU) of Salmonella enterica serovar Enteritidis standard strain (SD-2) 1 week after the second immunization. The immunized mice with the fusion proteins FimA-mC3d2 and FimA-mC3d3 had increased levels of ELISA titer of antibody that were 2 and 4 logs, respectively, more immunogenic than the TF-FimA protein alone. The challenge results showed that immune protection rate in the mice immunized with 10 μg of FimA, FimA-mC3d2, and FimA-mC3d3

  16. Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation.

    PubMed

    Kolbach-Mandel, A M; Mandel, N S; Cohen, S R; Kleinman, J G; Ahmed, F; Mandel, I C; Wesson, J A

    2017-04-01

    Drug-related kidney stones are a diagnostic problem, since they contain a large matrix (protein) fraction and are frequently incorrectly identified as matrix stones. A urine proteomics study patient produced a guaifenesin stone during her participation, allowing us to both correctly diagnose her disease and identify proteins critical to this drug stone-forming process. The patient provided three random midday urine samples for proteomics studies; one of which contained stone-like sediment with two distinct fractions. These solids were characterized with optical microscopy and Fourier transform infrared spectroscopy. Immunoblotting and quantitative mass spectrometry were used to quantitatively identify the proteins in urine and stone matrix. Infrared spectroscopy showed that the sediment was 60 % protein and 40 % guaifenesin and its metabolite guaiacol. Of the 156 distinct proteins identified in the proteomic studies, 49 were identified in the two stone-components with approximately 50 % of those proteins also found in this patient's urine. Many proteins observed in this drug-related stone have also been reported in proteomic matrix studies of uric acid and calcium containing stones. More importantly, nine proteins were highly enriched and highly abundant in the stone matrix and 8 were reciprocally depleted in urine, suggesting a critical role for these proteins in guaifenesin stone formation. Accurate stone analysis is critical to proper diagnosis and treatment of kidney stones. Many matrix proteins were common to all stone types, but likely not related to disease mechanism. This protocol defined a small set of proteins that were likely critical to guaifenesin stone formation based on their high enrichment and high abundance in stone matrix, and it should be applied to all stone types.

  17. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography

    PubMed Central

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-01-01

    ABSTRACT Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples. PMID:29381421

  18. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography.

    PubMed

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-04-01

    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.

  19. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  20. Meningococcal vaccine development--from glycoconjugates against MenACWY to proteins against MenB--potential for broad protection against meningococcal disease.

    PubMed

    Dull, Peter M; McIntosh, E David

    2012-05-30

    Novartis Vaccines has a long-standing research and development interest in the prevention of invasive meningococcal disease. From the initial licensure of the monovalent meningococcal C glycoconjugate vaccine, Menjugate(®), in response to the emergence of a virulent serogroup C ST-11 strain in the United Kingdom to the more recent development and licensure of a quadrivalent meningococcal ACWY glycoconjugate vaccine, Menveo(®), Novartis has a continuing commitment to the development of more effective tools for the control of meningococcal disease. Menveo is now licensed for use in adolescents and adults in over 50 countries and results from phase III studies have shown the vaccine to be well-tolerated and highly immunogenic in infants with vaccination beginning from 2 months of age. The 'holy grail' of meningococcal disease control is a broadly protective vaccine against serogroup B (MenB), preferably a vaccine that protects all age groups including infants. As the serogroup B capsule is poorly immunogenic, efforts over the past 40 years have focused on identifying conserved proteins expressed on the bacterial surface that elicit bactericidal antibodies. Novartis has approached this problem utilizing genomic tools to identify proteins meeting these criteria in a process now known as 'reverse vaccinology'[1]. This process has resulted in a novel multicomponent MenB vaccine (4CMenB) that consists of four major immunogenic components (three subcapsular MenB protein antigens plus outer membrane vesicles (OMVs) which themselves provide multiple subcapsular antigens, the immunodominant one being PorA). These all induce bactericidal antibodies against the antigens that are important in determining the survival, function, and virulence of the meningococci. Phase II studies of 4CMenB have been completed and have demonstrated that the vaccine is highly immunogenic against reference meningococcal strains selected to support licensure. Post-vaccination sera from clinical

  1. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae.

    PubMed

    Miandare, Hamed Kolangi; Mirghaed, Ali Taheri; Hosseini, Marjan; Mazloumi, Nastaran; Zargar, Ashkan; Nazari, Sajad

    2017-11-01

    Pacific white shrimp Litopenaeus vannamei (Boone, 1931) is an important economical shrimp species worldwide, especially in the Middle East region, and farming activities of this species have been largely affected by diseases, mostly viral and bacterial diseases. Scientists have started to use prebiotics for bolstering the immune status of the animal. This study aimed to investigate the influence of Immunogen ® on growth, digestive enzyme activity and immune related gene expression of Litopenaeus vannamei post-larvae. All post-larvae were acclimated to the laboratory condition for 14 days. Upon acclimation, shrimps were fed on different levels of Immunogen ® (0, 0.5, 1 and 1.5 g kg -1 ) for 60 days. No significant differences were detected in weight gain, specific growth rate (SGR) and food conversion ratio (FCR) in shrimp post-larvae in which fed with different levels of Immunogen ® and control diet. The results showed that digestive enzymes activity including protease and lipase increased with different amounts of Immunogen ® in the shrimp diet. Protease activity increased with 1.5 g kg -1 Immunogen ® after 60 days and lipase activity increased with 1 and 1.5 g kg -1 Immunogen ® after 30 and 60 days of the trial respectively (P < 0.05), while amylase activity did not change in response to different levels of Immunogen ® (P > 0.05). The expression of immune related genes including, prophenoloxidase, crustin and g-type lysozyme increased with diet 1.5 g kg -1 Immunogen ® (P < 0.05) while expression of penaeidin gene increased only with experimental diet 1 g kg -1 of Immunogen ® . These results indicated that increase in digestive enzymes activity and expression of immune related genes could modulate the Immunogen ® in the innate immune system in L. vannamei in this study. Copyright © 2017. Published by Elsevier Ltd.

  2. Development of a Recombinant Protein-Based Enzyme-Linked Immunosorbent Assay for Diagnosis of Mycoplasma bovis Infection in Cattle

    PubMed Central

    Wawegama, Nadeeka K.; Kanci, Anna; Marenda, Marc S.; Markham, Philip F.

    2014-01-01

    Mycoplasma bovis causes a range of diseases in cattle, including mastitis, arthritis, and pneumonia. However, accurate serological diagnosis of infection remains problematic. The studies described here aimed to identify an antigen that might be used to develop a more specific and sensitive diagnostic assay. A 226-kDa immunogenic protein was consistently detected in Western blots by antibodies in sera from calves experimentally infected with M. bovis. This protein was shown to be a membrane protein with lipase activity and was named mycoplasma immunogenic lipase A (MilA). Different regions of MilA were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins and recombinant products from the amino-terminal end shown to have strong immunoreactivity with M. bovis-specific bovine sera. The most immunoreactive fusion protein, GST-MilA-ab, was used to develop indirect IgM and IgG enzyme-linked immunosorbent assays (ELISAs). The IgM ELISA detected M. bovis-specific IgM antibody 2 weeks after infection with 97.1% sensitivity and had a specificity of 63.3%, while the IgG ELISA detected M. bovis-specific IgG 3 weeks after infection with 92.86% sensitivity and had a specificity of 98.7%, demonstrating that the IgG ELISA has potential for use as a sensitive and specific assay for detecting infection in cattle. PMID:24334686

  3. Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59C.1.

    PubMed

    Ballou, W Ripley; Reed, Jennifer L; Noble, William; Young, Neal S; Koenig, Scott

    2003-02-15

    A recombinant human parvovirus B19 vaccine (MEDI-491; MedImmune) composed of the VP1 and VP2 capsid proteins and formulated with MF59C.1 adjuvant was evaluated in a randomized, double-blind, phase 1 trial. Parvovirus B19-seronegative adults (n=24) received either 2.5 or 25 microg MEDI-491 at 0, 1, and 6 months. MEDI-491 was safe and immunogenic. All volunteers developed neutralizing antibody titers that peaked after the third immunization and were sustained through study day 364.

  4. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.

    PubMed

    Silva, A L; Soema, P C; Slütter, B; Ossendorp, F; Jiskoot, W

    2016-04-02

    Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.

  5. Immunogenic peptides comprising a T-helper epitope and a B-cell neutralizing antibody epitope

    DOEpatents

    Haynes, Barton F [Durham, NC; Korber, Bette T [Los Alamos, NM; De Lorimier, Robert M [Durham, NC

    2006-12-26

    The present invention relates, generally, to a polyvalent immunogen and, more particularly, to a method of inducing neutralizing antibodies against HIV and to a polyvalent immunogen suitable for use in such a method.

  6. Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface

    PubMed Central

    Marín, Elvira; Parra-Giraldo, Claudia M.; Hernández-Haro, Carolina; Hernáez, María L.; Nombela, César; Monteoliva, Lucía; Gil, Concha

    2015-01-01

    Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in

  7. Characterization of celiac disease related oat proteins: bases for the development of high quality oat varieties suitable for celiac patients.

    PubMed

    Giménez, María J; Real, Ana; García-Molina, M Dolores; Sousa, Carolina; Barro, Francisco

    2017-02-17

    Some studies have suggested that the immunogenicity of oats depends on the cultivar. RP-HPLC has been proposed as a useful technique to select varieties of oats with reduced immunogenicity. The aim of this study was to identify both the avenin protein patterns associated with low gluten content and the available variability for the development of new non-toxic oat cultivars. The peaks of alcohol-soluble avenins of a collection of landraces and cultivars of oats have been characterized based on the RP-HPLC elution times. The immunotoxicity of oat varieties for patients with celiac disease (CD) has been tested using a competitive ELISA based on G12 monoclonal antibody. The oat lines show, on average, seven avenin peaks giving profiles with certain similarities. Based on this similarity, most of the accessions have been grouped into avenin patterns. The variability of RP-HPLC profiles of the collection is great, but not sufficient to uniquely identify the different varieties of the set. Overall, the immunogenicity of the collection is less than 20 ppm. However, there is a different distribution of toxicity ranges between the different peak patterns. We conclude that the RP-HPLC technique is useful to establish groups of varieties differing in degree of toxicity for CD patients.

  8. Characterization of celiac disease related oat proteins: bases for the development of high quality oat varieties suitable for celiac patients

    PubMed Central

    Giménez, María J.; Real, Ana; García-Molina, M. Dolores; Sousa, Carolina; Barro, Francisco

    2017-01-01

    Some studies have suggested that the immunogenicity of oats depends on the cultivar. RP-HPLC has been proposed as a useful technique to select varieties of oats with reduced immunogenicity. The aim of this study was to identify both the avenin protein patterns associated with low gluten content and the available variability for the development of new non-toxic oat cultivars. The peaks of alcohol-soluble avenins of a collection of landraces and cultivars of oats have been characterized based on the RP-HPLC elution times. The immunotoxicity of oat varieties for patients with celiac disease (CD) has been tested using a competitive ELISA based on G12 monoclonal antibody. The oat lines show, on average, seven avenin peaks giving profiles with certain similarities. Based on this similarity, most of the accessions have been grouped into avenin patterns. The variability of RP-HPLC profiles of the collection is great, but not sufficient to uniquely identify the different varieties of the set. Overall, the immunogenicity of the collection is less than 20 ppm. However, there is a different distribution of toxicity ranges between the different peak patterns. We conclude that the RP-HPLC technique is useful to establish groups of varieties differing in degree of toxicity for CD patients. PMID:28209962

  9. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  10. Genomes2Drugs: Identifies Target Proteins and Lead Drugs from Proteome Data

    PubMed Central

    Toomey, David; Hoppe, Heinrich C.; Brennan, Marian P.; Nolan, Kevin B.; Chubb, Anthony J.

    2009-01-01

    Background Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. Methodology/Principal Findings To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. Conclusions/Significance Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under ‘change-of-application’ patents. PMID:19593435

  11. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    PubMed

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  12. A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1.

    PubMed

    Tetteh, Kevin K A; Conway, David J

    2011-10-13

    Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems

    PubMed Central

    MacPherson, Jamie I.; Dickerson, Jonathan E.; Pinney, John W.; Robertson, David L.

    2010-01-01

    Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection. PMID:20686668

  14. Characterization of the protective capacity and immunogenicity of the 69-kD outer membrane protein of Bordetella pertussis

    PubMed Central

    1990-01-01

    Immunization with the 69-kD outer membrane protein (OMP) of Bordetella pertussis protected neonatal mice against lethal respiratory challenge with B. pertussis 18323. Active immunization elicited a serum IgG anti- 69-kD OMP response at the time of challenge, with IgG anti-69-kD OMP antibodies detected in bronchoalveolar lavage fluid after challenge. Intravenous administration of BPE8, a monoclonal IgG1 anti-69-kD OMP, also protected young mice against B. pertussis challenge. Intravenously injected BPE8 was detected in the lungs of mice at the time of aerosol challenge, suggesting that the presence of specific antibody in the lungs may mediate protection. Thus the 69-kD OMP of B. pertussis is a protective antigen in mice that elicits specific serum antibody that can transude to the lung. The 69-kD OMP was detected in a preparation of a Takeda acellular vaccine by immunoblot analysis and a serum antibody response to the 69-kD OMP was observed in 18-mo-old children boosted with this preparation of Japanese acellular vaccine. Our results demonstrate that the B. pertussis 69-kD OMP is a protective antigen in animals, is immunogenic in humans, and is present in a preparation of acellular pertussis vaccine that is widely used in Japan. These findings indicate that the 69-kD OMP should be seriously considered as a candidate for inclusion in new formulations of antigenically defined acellular pertussis vaccines. PMID:2295882

  15. Identifying DNA-binding proteins using structural motifs and the electrostatic potential

    PubMed Central

    Shanahan, Hugh P.; Garcia, Mario A.; Jones, Susan; Thornton, Janet M.

    2004-01-01

    Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290

  16. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  17. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.

    PubMed

    Paper, Janet M; Scott-Craig, John S; Adhikari, Neil D; Cuomo, Christina A; Walton, Jonathan D

    2007-09-01

    High-throughput MS/MS was used to identify proteins secreted by Fusarium graminearum (Gibberella zeae) during growth on 13 media in vitro and in planta during infection of wheat heads. In vitro secreted proteins were collected from the culture filtrates, and in planta proteins were collected by vacuum infiltration. A total of 289 proteins (229 in vitro and 120 in planta) were identified with high statistical confidence. Forty-nine of the in planta proteins were not found in any of the in vitro conditions. The majority (91-100%) of the in vitro proteins had predicted signal peptides, but only 56% of the in planta proteins. At least 13 of the nonsecreted proteins found only in planta were single-copy housekeeping enzymes, including enolase, triose phosphate isomerase, phosphoglucomutase, calmodulin, aconitase, and malate dehydrogenase. The presence of these proteins in the in planta but not in vitro secretome might indicate that significant fungal lysis occurs during pathogenesis. On the other hand, several of the proteins lacking signal peptides that were found in planta have been reported to be potent immunogens secreted by animal pathogenic fungi, and therefore could be important in the interaction between F. graminearum and its host plants.

  18. Integrated immunogenicity analysis of a tetravalent dengue vaccine up to 4 y after vaccination.

    PubMed

    Vigne, Claire; Dupuy, Martin; Richetin, Aline; Guy, Bruno; Jackson, Nicholas; Bonaparte, Matthew; Hu, Branda; Saville, Melanie; Chansinghakul, Danaya; Noriega, Fernando; Plennevaux, Eric

    2017-09-02

    Two large pivotal phase III studies demonstrated the efficacy of the tetravalent dengue vaccine (CYD-TDV; Dengvaxia®, Sanofi Pasteur) against all dengue serotypes. Here we present an unprecedented integrated summary of the immunogenicity of CYD-TDV to identify the parameters driving the neutralizing humoral immune response and evolution over time. We summarized the immunogenicity profiles of a 3-dose schedule of CYD-TDV administered 6 months apart across 10 phase II and 6 phase III trials undertaken in dengue endemic and non-endemic countries. Dengue neutralizing antibody titers in sera were determined at centralized laboratories using the 50% plaque reduction neutralization test (PRNT 50 ) at baseline, 28 d after the third dose, and annually thereafter for up to 4 y after the third dose in some studies. CYD-TDV elicits neutralizing antibody responses against all 4 dengue serotypes; geometric mean titers (GMTs) increased from baseline to post-dose 3. GMTs were influenced by several parameters including age, baseline dengue seropositivity and region. In the 2 pivotal studies, GMTs decreased initially during the first 2 y post-dose 3 but appear to stabilize or slightly increase again in the third year. GMTs persisted 1.2-3.2-fold higher than baseline levels for up to 4 y post-dose 3 in other studies undertaken in dengue endemic countries. Our integrated analysis captures the fullness of the CYD-TDV immunogenicity profile across studies, age groups and regions; by presenting the available data in this way general trends and substantial outliers within each grouping can be easily identified. CYD-TDV elicits neutralizing antibody responses against all dengue serotypes, with differences by age and endemicity, which persist above baseline levels in endemic countries.

  19. Integrated immunogenicity analysis of a tetravalent dengue vaccine up to 4 y after vaccination

    PubMed Central

    Vigne, Claire; Dupuy, Martin; Richetin, Aline; Guy, Bruno; Jackson, Nicholas; Bonaparte, Matthew; Hu, Branda; Saville, Melanie; Chansinghakul, Danaya; Noriega, Fernando; Plennevaux, Eric

    2017-01-01

    ABSTRACT Two large pivotal phase III studies demonstrated the efficacy of the tetravalent dengue vaccine (CYD-TDV; Dengvaxia®, Sanofi Pasteur) against all dengue serotypes. Here we present an unprecedented integrated summary of the immunogenicity of CYD-TDV to identify the parameters driving the neutralizing humoral immune response and evolution over time. We summarized the immunogenicity profiles of a 3-dose schedule of CYD-TDV administered 6 months apart across 10 phase II and 6 phase III trials undertaken in dengue endemic and non-endemic countries. Dengue neutralizing antibody titers in sera were determined at centralized laboratories using the 50% plaque reduction neutralization test (PRNT50) at baseline, 28 d after the third dose, and annually thereafter for up to 4 y after the third dose in some studies. CYD-TDV elicits neutralizing antibody responses against all 4 dengue serotypes; geometric mean titers (GMTs) increased from baseline to post-dose 3. GMTs were influenced by several parameters including age, baseline dengue seropositivity and region. In the 2 pivotal studies, GMTs decreased initially during the first 2 y post-dose 3 but appear to stabilize or slightly increase again in the third year. GMTs persisted 1.2–3.2-fold higher than baseline levels for up to 4 y post-dose 3 in other studies undertaken in dengue endemic countries. Our integrated analysis captures the fullness of the CYD-TDV immunogenicity profile across studies, age groups and regions; by presenting the available data in this way general trends and substantial outliers within each grouping can be easily identified. CYD-TDV elicits neutralizing antibody responses against all dengue serotypes, with differences by age and endemicity, which persist above baseline levels in endemic countries. PMID:28598256

  20. Use of In Vitro Assays to Assess Immunogenicity Risk of Antibody-Based Biotherapeutics

    PubMed Central

    Joubert, Marisa K.; Deshpande, Meghana; Yang, Jane; Reynolds, Helen; Bryson, Christine; Fogg, Mark; Baker, Matthew P.; Herskovitz, Jonathan; Goletz, Theresa J.; Zhou, Lei; Moxness, Michael; Flynn, Gregory C.; Narhi, Linda O.; Jawa, Vibha

    2016-01-01

    An In Vitro Comparative Immunogenicity Assessment (IVCIA) assay was evaluated as a tool for predicting the potential relative immunogenicity of biotherapeutic attributes. Peripheral blood mononuclear cells from up to 50 healthy naïve human donors were monitored up to 8 days for T-cell proliferation, the number of IL-2 or IFN-γ secreting cells, and the concentration of a panel of secreted cytokines. The response in the assay to 10 monoclonal antibodies was found to be in agreement with the clinical immunogenicity, suggesting that the assay might be applied to immunogenicity risk assessment of antibody biotherapeutic attributes. However, the response in the assay is a measure of T-cell functional activity and the alignment with clinical immunogenicity depends on several other factors. The assay was sensitive to sequence variants and could differentiate single point mutations of the same biotherapeutic. Nine mAbs that were highly aggregated by stirring induced a higher response in the assay than the original mAbs before stirring stress, in a manner that did not match the relative T-cell response of the original mAbs. In contrast, mAbs that were glycated by different sugars (galactose, glucose, and mannose) showed little to no increase in response in the assay above the response to the original mAbs before glycation treatment. The assay was also used successfully to assess similarity between multiple lots of the same mAb, both from the same manufacturer and from different manufacturers (biosimilars). A strategy for using the IVCIA assay for immunogenicity risk assessment during the entire lifespan development of biopharmaceuticals is proposed. PMID:27494246

  1. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  2. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii

    PubMed Central

    Irrgang, Alexandra; Murugaiyan, Jayaseelan; Weise, Christoph; Azab, Walid; Roesler, Uwe

    2015-01-01

    Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI—TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae. PMID:26484314

  3. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines

    PubMed Central

    Kafi, Kamran; Betting, David J.; Yamada, Reiko E.; Bacica, Michael; Steward, Kristopher K.; Timmerman, John M.

    2009-01-01

    The collection of epitopes present within the variable regions of the tumor-specific clonal immunoglobulin expressed by B cell lymphomas (idiotype, Id) can serve as a target for active immunotherapy. Traditionally, tumor-derived Id protein is chemically-conjugated to the immunogenic foreign carrier protein keyhole limpet hemocyanin (KLH) using glutaraldehyde to serve as a therapeutic vaccine. While this approach offered promising results for some patients treated in early clinical trials, glutaraldehyde Id-KLH vaccines have failed to induce immune and clinical responses in many vaccinated subjects. We recently described an alternative conjugation method employing maleimide-sulfhydryl chemistry that significantly increased the therapeutic efficacy of Id-KLH vaccines in three different murine B cell lymphoma models, with protection mediated by either CD8+ T cells or antibodies. We now define in detail the methods and parameters critical for enhancing the in vivo immunogenicity of human as well as murine Id-KLH conjugate vaccines. Optimal conditions for Id sulfhydryl pre-reduction were determined, and maleimide Id-KLH conjugates maintained stability and potency even after prolonged storage. Field flow fractionation analysis of Id-KLH particle size revealed that maleimide conjugates were far more uniform in size than glutaraldehyde conjugates. Under increasingly stringent conditions, maleimide Id-KLH vaccines maintained superior efficacy over glutaraldehyde Id-KLH in treating established, disseminated murine lymphoma. More importantly, human maleimide Id-KLH conjugates were consistently superior to glutaraldehyde Id-KLH conjugates in inducing Id-specific antibody and T cell responses. The described methods should be easily adaptable to the production of clinical grade vaccines for human trials in B cell malignancies. PMID:19046770

  4. Deletion of Specific Immune-Modulatory Genes from Modified Vaccinia Virus Ankara-Based HIV Vaccines Engenders Improved Immunogenicity in Rhesus Macaques

    PubMed Central

    O'Mara, Leigh A.; Gangadhara, Sailaja; McQuoid, Monica; Zhang, Xiugen; Zheng, Rui; Gill, Kiran; Verma, Meena; Yu, Tianwei; Johnson, Brent; Li, Bing; Derdeyn, Cynthia A.; Ibegbu, Chris; Altman, John D.; Hunter, Eric; Feinberg, Mark B.

    2012-01-01

    Modified vaccinia virus Ankara (MVA) is a safe, attenuated orthopoxvirus that is being developed as a vaccine vector but has demonstrated limited immunogenicity in several early-phase clinical trials. Our objective was to rationally improve the immunogenicity of MVA-based HIV/AIDS vaccines via the targeted deletion of specific poxvirus immune-modulatory genes. Vaccines expressing codon-optimized HIV subtype C consensus Env and Gag antigens were generated from MVA vector backbones that (i) harbor simultaneous deletions of four viral immune-modulatory genes, encoding an interleukin-18 (IL-18) binding protein, an IL-1β receptor, a dominant negative Toll/IL-1 signaling adapter, and CC-chemokine binding protein (MVAΔ4-HIV); (ii) harbor a deletion of an additional (fifth) viral gene, encoding uracil-DNA glycosylase (MVAΔ5-HIV); or (iii) represent the parental MVA backbone as a control (MVA-HIV). We performed head-to-head comparisons of the cellular and humoral immune responses that were elicited by these vectors during homologous prime-boost immunization regimens utilizing either high-dose (2 × 108 PFU) or low-dose (1 × 107 PFU) intramuscular immunization of rhesus macaques. At all time points, a majority of the HIV-specific T cell responses, elicited by all vectors, were directed against Env, rather than Gag, determinants, as previously observed with other vector systems. Both modified vectors elicited up to 6-fold-higher frequencies of HIV-specific CD8 and CD4 T cell responses and up to 25-fold-higher titers of Env (gp120)-specific binding (nonneutralizing) antibody responses that were relatively transient in nature. While the correlates of protection against HIV infection remain incompletely defined, our results indicate that the rational deletion of specific genes from MVA vectors can positively alter their cellular and humoral immunogenicity profiles in nonhuman primates. PMID:22973033

  5. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    PubMed

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of <3%, we identified 111 candidates from conditioned medium, including 44 proteins that have signal peptides or are described as secreted proteins in the UniProt database. As validation, we confirmed that one of these proteins, insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  6. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunitymore » to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.« less

  7. Analysis of membrane protein genes in a Brazilian isolate of Anaplasma marginale.

    PubMed

    G Junior, Daniel S; Araújo, Flábio R; Almeida Junior, Nalvo F; Adi, Said S; Cheung, Luciana M; Fragoso, Stenio P; Ramos, Carlos A N; Oliveira, Renato Henrique M de; Santos, Caroline S; Bacanelli, Gisele; Soares, Cleber O; Rosinha, Grácia M S; Fonseca, Adivaldo H

    2010-11-01

    The sequencing of the complete genome of Anaplasma marginale has enabled the identification of several genes that encode membrane proteins, thereby increasing the chances of identifying candidate immunogens. Little is known regarding the genetic variability of genes that encode membrane proteins in A. marginale isolates. The aim of the present study was to determine the degree of conservation of the predicted amino acid sequences of OMP1, OMP4, OMP5, OMP7, OMP8, OMP10, OMP14, OMP15, SODb, OPAG1, OPAG3, VirB3, VirB9-1, PepA, EF-Tu and AM854 proteins in a Brazilian isolate of A. marginale compared to other isolates. Hence, primers were used to amplify these genes: omp1, omp4, omp5, omp7, omp8, omp10, omp14, omp15, sodb, opag1, opag3, virb3, VirB9-1, pepA, ef-tu and am854. After polimerase chain reaction amplification, the products were cloned and sequenced using the Sanger method and the predicted amino acid sequence were multi-aligned using the CLUSTALW and MEGA 4 programs, comparing the predicted sequences between the Brazilian, Saint Maries, Florida and A. marginale centrale isolates. With the exception of outer membrane protein (OMP) 7, all proteins exhibited 92-100% homology to the other A. marginale isolates. However, only OMP1, OMP5, EF-Tu, VirB3, SODb and VirB9-1 were selected as potential immunogens capable of promoting cross-protection between isolates due to the high degree of homology (over 72%) also found with A. (centrale) marginale.

  8. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142) administered intramuscularly with adjuvant system AS01

    PubMed Central

    2013-01-01

    Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions Given that the primary effector mechanism for

  9. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ({sup 3}H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of {sup 3}H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked {sup 3}H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked {sup 3}H-EFDA in toluene alone, and of the protein-linked {sup 3}H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) formore » binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III.« less

  10. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies.

    PubMed

    Ponce, Rafael; Abad, Leslie; Amaravadi, Lakshmi; Gelzleichter, Thomas; Gore, Elizabeth; Green, James; Gupta, Shalini; Herzyk, Danuta; Hurst, Christopher; Ivens, Inge A; Kawabata, Thomas; Maier, Curtis; Mounho, Barbara; Rup, Bonita; Shankar, Gopi; Smith, Holly; Thomas, Peter; Wierda, Dan

    2009-07-01

    An evaluation of potential antibody formation to biologic therapeutics during the course of nonclinical safety studies and its impact on the toxicity profile is expected under current regulatory guidance and is accepted standard practice. However, approaches for incorporating this information in the interpretation of nonclinical safety studies are not clearly established. Described here are the immunological basis of anti-drug antibody formation to biopharmaceuticals (immunogenicity) in laboratory animals, and approaches for generating and interpreting immunogenicity data from nonclinical safety studies of biotechnology-derived therapeutics to support their progression to clinical evaluation. We subscribe that immunogenicity testing strategies should be adapted to the specific needs of each therapeutic development program, and data generated from such analyses should be integrated with available clinical and anatomic pathology, pharmacokinetic, and pharmacodynamic data to properly interpret nonclinical studies.

  11. Immunogenicity of HPV prophylactic vaccines: Serology assays and their use in HPV vaccine evaluation and development.

    PubMed

    Pinto, Ligia A; Dillner, Joakim; Beddows, Simon; Unger, Elizabeth R

    2018-01-17

    When administered as standard three-dose schedules, the licensed HPV prophylactic vaccines have demonstrated extraordinary immunogenicity and efficacy. We summarize the immunogenicity of these licensed vaccines and the most commonly used serology assays, with a focus on key considerations for one-dose vaccine schedules. Although immune correlates of protection against infection are not entirely clear, both preclinical and clinical evidence point to neutralizing antibodies as the principal mechanism of protection. Thus, immunogenicity assessments in vaccine trials have focused on measurements of antibody responses to the vaccine. Non-inferiority of antibody responses after two doses of HPV vaccines separated by 6 months has been demonstrated and this evidence supported the recent WHO recommendations for two-dose vaccination schedules in both boys and girls 9-14 years of age. There is also some evidence suggesting that one dose of HPV vaccines may provide protection similar to the currently recommended two-dose regimens but robust data on efficacy and immunogenicity of one-dose vaccine schedules are lacking. In addition, immunogenicity has been assessed and reported using different methods, precluding direct comparison of results between different studies and vaccines. New head-to-head vaccine trials evaluating one-dose immunogenicity and efficacy have been initiated and an increase in the number of trials relying on immunobridging is anticipated. Therefore, standardized measurement and reporting of immunogenicity for the up to nine HPV types targeted by the current vaccines is now critical. Building on previous HPV serology assay standardization and harmonization efforts initiated by the WHO HPV LabNet in 2006, new secondary standards, critical reference reagents and testing guidelines will be generated as part of a new partnership to facilitate harmonization of the immunogenicity testing in new HPV vaccine trials. Copyright © 2018 Elsevier Ltd. All rights

  12. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Experimental and Theoretical Approaches To Investigate the Immunogenicity of Taenia solium-Derived KE7 Antigen

    PubMed Central

    Bobes, Raúl J.; Navarrete-Perea, José; Ochoa-Leyva, Adrián; Anaya, Víctor Hugo; Hernández, Marisela; Cervantes-Torres, Jacquelynne; Estrada, Karel; Sánchez-Lopez, Filiberto; Soberón, Xavier; Rosas, Gabriela; Nunes, Cáris Maroni; García-Varela, Martín; Sotelo-Mundo, Rogerio Rafael; López-Zavala, Alonso Alexis; Gevorkian, Goar; Acero, Gonzalo; Laclette, Juan P.; Fragoso, Gladis

    2017-01-01

    ABSTRACT Taenia solium cysticercosis, a parasitic disease that affects human health in various regions of the world, is preventable by vaccination. Both the 97-amino-acid-long KETc7 peptide and its carboxyl-terminal, 18-amino-acid-long sequence (GK-1) are found in Taenia crassiceps. Both peptides have proven protective capacity against cysticercosis and are part of the highly conserved, cestode-native, 264-amino-acid long protein KE7. KE7 belongs to a ubiquitously distributed family of proteins associated with membrane processes and may participate in several vital cell pathways. The aim of this study was to identify the T. solium KE7 (TsKE7) full-length protein and to determine its immunogenic properties. Recombinant TsKE7 (rTsKE7) was expressed in Escherichia coli Rosetta2 cells and used to obtain mouse polyclonal antibodies. Anti-rTsKE7 antibodies detected the expected native protein among the 350 spots developed from T. solium cyst vesicular fluid in a mass spectrometry-coupled immune proteomic analysis. These antibodies were then used to screen a phage-displayed 7-random-peptide library to map B-cell epitopes. The recognized phages displayed 9 peptides, with the consensus motif Y(F/Y)PS sequence, which includes YYYPS (named GK-1M, for being a GK-1 mimotope), exactly matching a part of GK-1. GK-1M was recognized by 58% of serum samples from cysticercotic pigs with 100% specificity but induced weak protection against murine cysticercosis. In silico analysis revealed a universal T-cell epitope(s) in native TsKE7 potentially capable of stimulating cytotoxic T lymphocytes and helper T lymphocytes under different major histocompatibility complex class I and class II mouse haplotypes. Altogether, these results provide a rationale for the efficacy of the KETc7, rTsKE7, and GK-1 peptides as vaccines. PMID:28923896

  14. Identification of the gene encoding a 38-kilodalton immunogenic and protective antigen of Streptococcus suis.

    PubMed

    Okwumabua, Ogi; Chinnapapakkagari, Sharmila

    2005-04-01

    In our continued effort to search for a Streptococcus suis protein(s) that can serve as a vaccine candidate or a diagnostic reagent, we constructed and screened a gene library with a polyclonal antibody raised against the whole-cell protein of S. suis type 2. A clone that reacted with the antibody was identified and characterized. Analysis revealed that the gene encoding the protein is localized within a 2.0-kbp EcoRI DNA fragment. The nucleotide sequence contained an open reading frame that encoded a polypeptide of 445 amino acid residues with a calculated molecular mass of 46.4 kDa. By in vitro protein synthesis and Western blot experiments, the protein exhibited an electrophoretic mobility of approximately 38 kDa. At the amino acid level the deduced primary sequence shared homology with sequences of unknown function from Streptococcus pneumoniae (89%), Streptococcus mutans (86%), Lactococcus lactis (80%), Listeria monocytogenes (74%), and Clostridium perfringens (64%). Except for strains of serotypes 20, 26, 32, and 33, Southern hybridization analysis revealed the presence of the gene in strains of other S. suis serotypes and demonstrated restriction fragment length differences caused by a point mutation in the EcoRI recognition sequence. We confirmed expression of the 38-kDa protein in the hybridization-positive isolates using specific antiserum against the purified protein. The recombinant protein was reactive with serum from pigs experimentally infected with virulent strains of S. suis type 2, suggesting that the protein is immunogenic and may serve as an antigen of diagnostic importance for the detection of most S. suis infections. Pigs immunized with the recombinant 38-kDa protein mounted antibody responses to the protein and were completely protected against challenge with a strain of a homologous serotype, the wild-type virulent strain of S. suis type 2, suggesting that it may be a good candidate for the development of a vaccine that can be used as

  15. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with

  16. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed Central

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  17. Cross-reactive and pre-existing antibodies to therapeutic antibodies—Effects on treatment and immunogenicity

    PubMed Central

    van Schie, Karin A; Wolbink, Gerrit-Jan; Rispens, Theo

    2015-01-01

    The potential for immunogenicity is an ever-present concern during the development of biopharmaceuticals. Therapeutic antibodies occasionally elicit an antibody response in patients, which can result in loss of response or adverse effects. However, antibodies that bind a drug are sometimes found in pre-treatment serum samples, with the amount depending on drug, assay, and patient population. This review summarizes published data on pre-existing antibodies to therapeutic antibodies, including rheumatoid factors, anti-allotype antibodies, anti-hinge antibodies, and anti-glycan antibodies. Unlike anti-idiotype antibodies elicited by the drug, pre-formed antibodies in general appear to have little consequences during treatment. In the few cases where (potential) clinical consequences were encountered, antibodies were characterized and found to bind a distinct, unusual epitope of the therapeutic. Immunogenicity testing strategies should therefore always include a proper level of antibody characterization, especially when pre-formed antibodies are present. This minimizes false-positives, particularly due to rheumatoid factors, and helps to judge the potential threat in case a genuine pre-dose antibody reactivity is identified. PMID:25962087

  18. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  19. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  20. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  1. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  2. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  3. The effect of hypofractionated radiation and magnetic nanoparticle hyperthermia on tumor immunogenicity and overall treatment response

    NASA Astrophysics Data System (ADS)

    Hoopes, P. Jack; Wagner, Robert J.; Song, Ailin; Osterberg, Bjorn; Gladstone, David J.; Bursey, Alicea A.; Fiering, Steven N.; Giustini, Andrew J.

    2017-02-01

    It is now known that many tumors develop molecular signals (immune checkpoint modulators) that inhibit an effective tumor immune response. New information also suggest that even well-known cancer treatment modalities such as radiation and hyperthermia generate potentially beneficial immune responses that have been blocked or mitigated by such immune checkpoints, or similar molecules. The cancer therapy challenge is to; a) identify these treatment-based immune signals (proteins, antigens, etc.); b) the treatment doses or regimens that produce them; and c) the mechanisms that block or have the potential to promote them. The goal of this preliminary study, using the B6 mouse - B16 tumor model, clinically relevant radiation doses and fractionation schemes (including those used clinically in hypofractionated radiation therapy), magnetic nanoparticle hyperthermia (mNPH) and sophisticated protein, immune and tumor growth analysis techniques and modulators, is to determine the effect of specific radiation or hyperthermia alone and combined on overall treatment efficacy and immunologic response mechanisms. Preliminary analysis suggests that radiation dose (10 Gy vs. 2 Gy) significantly alters the mechanism of cell death (apoptosis vs. mitosis vs. necrosis) and the resulting immunogenicity. Our hypothesis and data suggest this difference is protein/antigen and immune recognition-based. Similarly, our evidence suggest that radiation doses larger than the conventional 2 Gy dose and specific hyperthermia doses and techniques (including mNP hyperthermia treatment) can be immunologically different, and potentially superior to, the radiation and heat therapy regimens that are typically used in research and clinical practice.

  4. Studies on Nanoparticle Based Avian Influenza Vaccines to Present Immunogenic Epitopes of the Virus with Concentration on Ectodomain of Matrix 2 (M2e) Protein

    NASA Astrophysics Data System (ADS)

    Babapoor Dighaleh, Sankhiros

    2011-12-01

    Avian influenza is an infectious disease of avian species caused by type A influenza viruses with a significant economic impact on the poultry industry. Vaccination is the main prevention strategy in many countries worldwide. However, available vaccines elicit antibodies against two major surface protein of the virus hemagglutinin (HA) and neuraminidase (NA), where they constantly change by point mutations. Influenza viruses can also easily undergo gene reassortment. Therefore, to protect chickens against new strain of avian influenza virus, as well as control and prevent virus spread among farms, new vaccines needed to be designed which is a tedious, time consuming and expensive. Recently, conserved regions of the influenza genome have been evaluated as possible universal vaccines to eliminate constant vaccine updates based on circulating virus. In this study, peptide nanotechnology was used to generate vaccine nanoparticles that carry the highly conserved external domain of matrix 2 protein (M2e). These nanoparticles presented M2e in monomeric or tetrameric forms, designated as PSC-M2e-CH and BNSC-M2eN-CH. respectively. First, to demonstrate immunogenicity of these nanoparticles, we measured anti-M2e antibody in chickens, particularly when a high dose was applied. Prior to vaccination-challenge study, the challenge dose were determined by oculonasal inoculation of 10 6 EID50 or 107.7 EID50 of low pathogenicity AI virus HSN2 followed by measuring cloacal and tracheal virus shedding. A biphasic virus shedding pattern was observed with two peaks of virus shedding at days 4 and 8 for both tracheal and cloacal swabs. The chickens infected with 107.7 EID50 had significant virus shedding as compared with 106 EID50. Based on results of mentioned studies, a vaccination-challenge study was conducted by using 75mug of each vaccine construct per inoculation (with and without adjuvant) and higher dose of virus for challenge. BN5C-M2e-CH with adjuvant significantly reduced the

  5. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    PubMed

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  6. Identify High-Quality Protein Structural Models by Enhanced K-Means.

    PubMed

    Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.

  7. Identify High-Quality Protein Structural Models by Enhanced K-Means

    PubMed Central

    Li, Haiou; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K-means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K-means clustering (SK-means), whereas the other employs squared distance to optimize the initial centroids (K-means++). Our results showed that SK-means and K-means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K-means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK-means and K-means++ demonstrated substantial improvements relative to results from SPICKER and classical K-means. PMID:28421198

  8. Preclinical immunogenicity and safety of a Group A streptococcal M protein-based vaccine candidate.

    PubMed

    Batzloff, Michael R; Fane, Anne; Gorton, Davina; Pandey, Manisha; Rivera-Hernandez, Tania; Calcutt, Ainslie; Yeung, Grace; Hartas, Jon; Johnson, Linda; Rush, Catherine M; McCarthy, James; Ketheesan, Natkunam; Good, Michael F

    2016-12-01

    Streptococcus pyogenes (group A streptococcus, GAS) causes a wide range of clinical manifestations ranging from mild self-limiting pyoderma to invasive diseases such as sepsis. Also of concern are the post-infectious immune-mediated diseases including rheumatic heart disease. The development of a vaccine against GAS would have a large health impact on populations at risk of these diseases. However, there is a lack of suitable models for the safety evaluation of vaccines with respect to post-infectious complications. We have utilized the Lewis Rat model for cardiac valvulitis to evaluate the safety of the J8-DT vaccine formulation in parallel with a rabbit toxicology study. These studies demonstrated that the vaccine did not induce abnormal pathology. We also show that in mice the vaccine is highly immunogenic but that 3 doses are required to induce protection from a GAS skin challenge even though 2 doses are sufficient to induce a high antibody titer.

  9. Preclinical immunogenicity and safety of a Group A streptococcal M protein-based vaccine candidate

    PubMed Central

    Batzloff, Michael R.; Fane, Anne; Gorton, Davina; Pandey, Manisha; Rivera-Hernandez, Tania; Calcutt, Ainslie; Yeung, Grace; Hartas, Jon; Johnson, Linda; Rush, Catherine M.; McCarthy, James; Ketheesan, Natkunam; Good, Michael F.

    2016-01-01

    ABSTRACT Streptococcus pyogenes (group A streptococcus, GAS) causes a wide range of clinical manifestations ranging from mild self-limiting pyoderma to invasive diseases such as sepsis. Also of concern are the post-infectious immune-mediated diseases including rheumatic heart disease. The development of a vaccine against GAS would have a large health impact on populations at risk of these diseases. However, there is a lack of suitable models for the safety evaluation of vaccines with respect to post-infectious complications. We have utilized the Lewis Rat model for cardiac valvulitis to evaluate the safety of the J8-DT vaccine formulation in parallel with a rabbit toxicology study. These studies demonstrated that the vaccine did not induce abnormal pathology. We also show that in mice the vaccine is highly immunogenic but that 3 doses are required to induce protection from a GAS skin challenge even though 2 doses are sufficient to induce a high antibody titer. PMID:27541593

  10. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine.

    PubMed

    David, Shannon C; Lau, Josyane; Singleton, Eve V; Babb, Rachelle; Davies, Justin; Hirst, Timothy R; McColl, Shaun R; Paton, James C; Alsharifi, Mohammed

    2017-02-15

    Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants

    PubMed Central

    Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2015-01-01

    Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5°C or 25°C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40°C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion. PMID:26090563

  12. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools.

    PubMed

    Felgueiras, Juliana; Silva, Joana Vieira; Fardilha, Margarida

    2018-01-16

    "A man is known by the company he keeps" is a popular expression that perfectly fits proteins. A common approach to characterize the function of a target protein is to identify its interacting partners and thus infer its roles based on the known functions of the interactors. Protein-protein interaction networks (PPINs) have been created for several organisms, including humans, primarily as results of high-throughput screenings, such as yeast two-hybrid (Y2H). Their unequivocal use to understand events underlying human pathophysiology is promising in identifying genes and proteins associated with diseases. Therefore, numerous opportunities have emerged for PPINs as tools for clinical management of diseases: network-based disease classification systems, discovery of biomarkers and identification of therapeutic targets. Despite the great advantages of PPINs, their use is still unrecognised by several researchers who generate high-throughput data to generally characterize interactions in a certain model or to select an interaction to study in detail. We strongly believe that both approaches are not exclusive and that we can use PPINs as a complementary methodology and rich-source of information to the initial study proposal. Here, we suggest a pipeline to deal with Y2H results using bioinformatics tools freely available for academics. Yeast two-hybrid is widely-used to identify protein-protein interactions. Conventionally, the positive clones that result from a yeast two-hybrid screening are sequenced to identify the interactors of the protein of interest (also known as bait protein), and few interactions, thought as potentially relevant for the model in study, are selected for further validation using biochemical methods (e.g. co-immunoprecipitation and co-localization). The huge amount of data that is potentially lost during this conservative approach motivated us to write this tutorial-like review, so that researchers feel encouraged to take advantage of

  13. Immunogenicity to poliovirus type 2 following two doses of fractional intradermal inactivated poliovirus vaccine: A novel dose sparing immunization schedule.

    PubMed

    Anand, Abhijeet; Molodecky, Natalie A; Pallansch, Mark A; Sutter, Roland W

    2017-05-19

    The polio eradication endgame strategic plan calls for the sequential removal of Sabin poliovirus serotypes from the trivalent oral poliovirus vaccine (tOPV), starting with type 2, and the introduction of ≥1 dose of inactivated poliovirus vaccine (IPV), to maintain an immunity base against poliovirus type 2. The global removal of oral poliovirus type 2 was successfully implemented in May 2016. However, IPV supply constraints has prevented introduction in 21 countries and led to complete stock-out in >20 countries. We conducted a literature review and contacted corresponding authors of recent studies with fractional-dose IPV (fIPV), one-fifth of intramuscular dose administered intradermally, to conduct additional type 2 immunogenicity analyses of two fIPV doses compared with one full-dose IPV. Four studies were identified that assessed immunogenicity of two fIPV doses compared to one full-dose IPV. Two fractional doses are more immunogenic than 1 full-dose, with type 2 seroconversion rates improving between absolute 19-42% (median: 37%, p<0.001) and relative increase of 53-125% (median: 82%), and antibody titer to type 2 increasing by 2-32-fold (median: 10-fold). Early age of administration and shorter intervals between doses were associated with lower immunogenicity. Overall, two fIPV doses are more immunogenic than a single full-dose, associated with significantly increased seroconversion rates and antibody titers. Two fIPV doses together use two-fifth of the vaccine compared to one full-dose IPV. In response to the current IPV shortage, a schedule of two fIPV doses at ages 6 and 14weekshas been endorsed by technical oversight committees and has been introduced in some affected countries. Copyright © 2017. Published by Elsevier Ltd.

  14. CD4 T cell-mediated masking effects of the immunogenicity of tumor-associated antigens are qualitatively and quantitatively different depending on the individual antigens.

    PubMed

    Okano, Shinji; Matsumoto, Yoshihiro; Yoshiya, Shohei; Yamashita, Yo-ichi; Harimoto, Norifumi; Ikegami, Toru; Shirabe, Ken; Harada, Mamoru; Yoshikai, Yasunobu; Maehara, Yoshihiko

    2013-01-01

    The use of cancer immunotherapy as part of multidisciplinary therapies for cancer is a promising strategy for the cure of advanced cancer patients. In cancer immunotherapy, the effective priming of tumor-associated antigen (TAA)-specific CD8+ T cells is essential, and therefore, the appropriate selection of the best peptide for targeting the cancer is a most important concern. One criticism in the selection of a TAA is the immunogenicity of the TAA, the vaccination of which effectively elicits clinical responses. However, the critical basic immunological factors that affect the differences in the immunogenicity of TAAs remain to be elucidated. Here we found that CD4 T-cell responses suppressed the immunogenicity of the concomitant TAA in a murine melanoma model in which intratumoral activated dendritic therapy (ITADT) was used for treatment of the established cancer, and we observed that the antitumor effects were largely dependent on the CD8 T-cell response. CD4 T-cell depletion simply enhanced the tyrosinase-related protein (TRP)-2(180-188) peptide-specific cytotoxic T-cell (CTL) responses, and CD4 T-cell depletion provided immunogenicity for mgp100(25-33) peptide, to which a CTL response could not be detected at all in CD4 T-cell-intact mice in the early therapeutic phase. Further, the mgp100(25-33) peptide-specific CTL response again became undetectable after the recovery of CD4 T cells in previously CD4-depleted, tumor-eradicated mice, whereas the TRP-2(180-188) peptide-specific CTL response was still much stronger in CD4-depleted mice than in CD4-intact mice. These findings suggest that the CD4 T cell-mediated masking effects of the immunogenicity of tumor-associated antigens are qualitatively and quantitatively different depending on the individual antigens.

  15. Immunogenicity of Novel Mumps Vaccine Candidates Generated by Genetic Modification

    PubMed Central

    Xu, Pei; Chen, Zhenhai; Phan, Shannon; Pickar, Adrian

    2014-01-01

    Mumps is a highly contagious human disease, characterized by lateral or bilateral nonsuppurative swelling of the parotid glands and neurological complications that can result in aseptic meningitis or encephalitis. A mumps vaccination program implemented since the 1960s reduced mumps incidence by more than 99% and kept the mumps case numbers as low as hundreds of cases per year in the United States before 2006. However, a large mumps outbreak occurred in vaccinated populations in 2006 and again in 2009 in the United States, raising concerns about the efficacy of the vaccination program. Previously, we have shown that clinical isolate-based recombinant mumps viruses lacking expression of either the V protein (rMuVΔV) or the SH protein (rMuVΔSH) are attenuated in a neurovirulence test using newborn rat brains (P. Xu et al., Virology 417:126–136, 2011, http://dx.doi.org/10.1016/j.virol.2011.05.003; P. Xu et al., J. Virol. 86:1768–1776, 2012, http://dx.doi.org/10.1128/JVI.06019-11) and may be good candidates for vaccine development. In this study, we examined immunity induced by rMuVΔSH and rMuVΔV in mice. Furthermore, we generated recombinant mumps viruses lacking expression of both the V protein and the SH protein (rMuVΔSHΔV). Analysis of rMuVΔSHΔV indicated that it was stable in tissue culture cell lines. Importantly, rMuVΔSHΔV was immunogenic in mice, indicating that it is a promising candidate for mumps vaccine development. PMID:24352450

  16. Immunogenicity of novel mumps vaccine candidates generated by genetic modification.

    PubMed

    Xu, Pei; Chen, Zhenhai; Phan, Shannon; Pickar, Adrian; He, Biao

    2014-03-01

    Mumps is a highly contagious human disease, characterized by lateral or bilateral nonsuppurative swelling of the parotid glands and neurological complications that can result in aseptic meningitis or encephalitis. A mumps vaccination program implemented since the 1960s reduced mumps incidence by more than 99% and kept the mumps case numbers as low as hundreds of cases per year in the United States before 2006. However, a large mumps outbreak occurred in vaccinated populations in 2006 and again in 2009 in the United States, raising concerns about the efficacy of the vaccination program. Previously, we have shown that clinical isolate-based recombinant mumps viruses lacking expression of either the V protein (rMuVΔV) or the SH protein (rMuVΔSH) are attenuated in a neurovirulence test using newborn rat brains (P. Xu et al., Virology 417:126-136, 2011, http://dx.doi.org/10.1016/j.virol.2011.05.003; P. Xu et al., J. Virol. 86:1768-1776, 2012, http://dx.doi.org/10.1128/JVI.06019-11) and may be good candidates for vaccine development. In this study, we examined immunity induced by rMuVΔSH and rMuVΔV in mice. Furthermore, we generated recombinant mumps viruses lacking expression of both the V protein and the SH protein (rMuVΔSHΔV). Analysis of rMuVΔSHΔV indicated that it was stable in tissue culture cell lines. Importantly, rMuVΔSHΔV was immunogenic in mice, indicating that it is a promising candidate for mumps vaccine development.

  17. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    PubMed

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  18. Identifying protein biomarkers in predicting disease severity of dengue virus infection using immune-related protein microarray.

    PubMed

    Soe, Hui Jen; Yong, Yean K; Al-Obaidi, Mazen M Jamil; Raju, Chandramathi Samudi; Gudimella, Ranganath; Manikam, Rishya; Sekaran, Shamala Devi

    2018-02-01

    Dengue virus is one of the most widespread flaviviruses that re-emerged throughout recent decades. The progression from mild dengue to severe dengue (SD) with the complications such as vascular leakage and hemorrhage increases the fatality rate of dengue. The pathophysiology of SD is not entirely clear. To investigate potential biomarkers that are suggestive of pathogenesis of SD, a small panel of serum samples selected from 1 healthy individual, 2 dengue patients without warning signs (DWS-), 2 dengue patients with warning signs (DWS+), and 5 patients with SD were subjected to a pilot analysis using Sengenics Immunome protein array. The overall fold changes of protein expressions and clustering heat map revealed that PFKFB4, TPM1, PDCL3, and PTPN20A were elevated among patients with SD. Differential expression analysis identified that 29 proteins were differentially elevated greater than 2-fold in SD groups than DWS- and DWS+. From the 29 candidate proteins, pathways enrichment analysis also identified insulin signaling and cytoskeleton pathways were involved in SD, suggesting that the insulin pathway may play a pivotal role in the pathogenesis of SD.

  19. T cell epitope definition by differential mass spectrometry: identification of a novel, immunogenic HLA-B8 ligand directly from renal cancer tissue.

    PubMed

    Flad, Thomas; Mueller, Ludmila; Dihazi, Hassan; Grigorova, Veneta; Bogumil, Ralf; Beck, Alexander; Thedieck, Cornelia; Mueller, Gerhard A; Kalbacher, Hubert; Mueller, Claudia A

    2006-01-01

    In this study, we describe a differential mass spectrometric technique for the immuno-proteomic analysis of the major histocompatibility complex (MHC) peptides of a renal cell carcinoma (RCC) biopsy compared with the healthy kidney tissue of the same patient after nephrectomy. Using a stable isotope labeling approach, we could directly compare and relatively quantify 43 MHC-peptide pairs, most of which were present in similar proportions on both normal kidney and tumor. Significantly, two dominant peptides of monoisotopic masses ([M+H](+)) 973.43 u and 967.59 u, respectively, were found exclusively in the tumor sample. One of these was identified as originating from heme oxygenase-1 (HO-1), a protein involved in induction of apoptosis resistance, immuno-suppression and neoangiogenesis and reported to be up-regulated in various cancer types. Moreover, the corresponding synthetic HO-1-derived peptide was shown to be immunogenic in vitro by generation of CD8+ T cell lines with peptide-specific cytolytic activity. Thus, this peptide is an example of a differentially identified T cell epitope that could be considered as a target for immunotherapy.

  20. Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins.

    PubMed

    Lázaro-Frías, Adrián; Gómez-Medina, Sergio; Sánchez-Sampedro, Lucas; Ljungberg, Karl; Ustav, Mart; Liljeström, Peter; Muñoz-Fontela, César; Esteban, Mariano; García-Arriaza, Juan

    2018-06-01

    Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV. IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths

  1. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  2. Immunoproteomic analysis of Plasmodium falciparum antigens using sera from patients with clinical history of imported malaria

    PubMed Central

    2013-01-01

    Background The malaria caused by Plasmodium falciparum remains a serious public health problem in the world, due largely to the absence of an effective vaccine. There is a lack of information on the structural properties and antigens capable of activating the immunological mechanisms for the induction of protective immunity. Therefore, the objective of this study is to evaluate the serological reactivity of sera from individuals with imported malaria and identify major immunogenic proteins. Methods The study was conducted in 227 individuals with imported malaria and 23 healthy individuals who had never been in areas endemic for malaria. The determination of anti-P. falciparum IgG antibodies was performed by an ELISA validated and optimized for this study. Sera showing higher reactivity to anti-P. falciparum by ELISA were analysed by immunoblotting and immunogenic proteins were identified by mass spectroscopy. Results The results of anti-P. falciparum antibodies research by ELISA indicates 78 positive, 137 negative and 12 indeterminate sera. Analysis of immunoblotting demonstrated a consistent pattern with respect to immunoreactivity of antigens with molecular weights in the range of 40 to 60 kDa. Between 40 and 60 kDa six immunogenic proteins were identified: elongation factor-1 alpha (EF-1α), protein disulphide isomerase (PDI); phosphoglycerate kinase (PGK); 78 kDa glucose-regulated protein homologue (GRP-78); rhoptry-associated protein 2 (RAP-2) and rhoptry-associated protein 3 (RAP-3). Conclusions It was identified immunogenic proteins essential for parasite survival in the host, two of which (RAP-2 and RAP-3) are already described in the literature as proteins that play an important role in the invasion of erythrocytes by extracellular merozoites. PMID:23506095

  3. Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses

    PubMed Central

    Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.

    2016-01-01

    ABSTRACT Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA

  4. Method for early detection of infectious mononucleosis by identifying inmono proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, K. E.

    1984-10-02

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  5. Method for early detection of infectious mononucleosis by identifying Inmono proteins

    DOEpatents

    Willard, Karen E.

    1984-01-01

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  6. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato.

    PubMed

    Tacket, C O; Mason, H S; Losonsky, G; Clements, J D; Levine, M M; Arntzen, C J

    1998-05-01

    Compared with vaccine delivery by injection, oral vaccines offer the hope of more convenient immunization strategies and a more practical means of implementing universal vaccination programs throughout the world. Oral vaccines act by stimulating the immune system at effector sites (lymphoid tissue) located in the gut. Genetic engineering has been used with variable success to design living and non-living systems as a means to deliver antigens to these sites and to stimulate a desired immune response. More recently, plant biotechnology techniques have been used to create plants which contain a gene derived from a human pathogen; the resultant plant tissues will accumulate an antigenic protein encoded by the foreign DNA. In pre-clinical trials, we found that antigenic proteins produced in transgenic plants retained immunogenic properties when purified; if injected into mice the antigen caused production of protein-specific antibodies. Moreover, in some experiments, if the plant tissues were simply fed to mice, a mucosal immune response occurred. The present study was conducted as a proof of principle to determine if humans would also develop a serum and/or mucosal immune response to an antigen delivered in an uncooked foodstuff.

  7. Immunogenicity of a plant-derived edible chimeric EspA, Intimin and Tir of Escherichia coli O157:H7 in mice.

    PubMed

    Amani, Jafar; Mousavi, Seyed Latif; Rafati, Sima; Salmanian, Ali Hatef

    2011-04-01

    Transgenic plants offer the possibility to produce and deliver an oral immunogen on a large-scale with low production costs and minimal purification or enrichment. Cattles are important reservoirs of Escherichia coli O157:H7 and developing a specific immunity in animals would be invaluable. Intimin, Tir, and EspA proteins are the virulence factors expressed by LEE locus of enterohemorrhagic E. coli. We hypothesized that the chimeric recombinant forms of these effectors delivered as an edible-base vaccine would reduce colonization of bacteria in mice. A synthetic gene (eit) composed of espA (e), eae (i) and tir (t) attached by linkers was constructed. The gene was codon optimized and cloned into plant expression vectors adjacent to CaMV35S and FAE promoters for expression in tobacco and canola plants. Of total soluble protein 0.2% and 0.3% (in average) were detected in transgenic tobacco leaves and canola seeds respectively. Mice immunized either subcutaneously or orally with recombinant EIT and challenged with E. coli O157:H7 significantly exhibited reduced bacterial shedding. Application of transgenic plants containing trivalent immunogen is an effective tool for protection against E. coli O157:H7. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the

  9. Allergenicity, immunogenicity and dose-relationship of three intact allergen vaccines and four allergoid vaccines for subcutaneous grass pollen immunotherapy

    PubMed Central

    Henmar, H; Lund, G; Lund, L; Petersen, A; Würtzen, P A

    2008-01-01

    Different vaccines containing intact allergens or chemically modified allergoids as active ingredients are commercially available for specific immunotherapy. Allergoids are claimed to have decreased allergenicity without loss of immunogenicity and this is stated to allow administration of high allergoid doses. We compared the allergenicity and immunogenicity of four commercially available chemically modified grass pollen allergoid products with three commercially available intact grass pollen allergen vaccines. The allergenicity was investigated with immunoglobulin (Ig)E-inhibition and basophil activation assays. Human T cell proliferation and specific IgG-titres following mouse immunizations were used to address immunogenicity. Furthermore, intact allergen vaccines with different contents of active ingredients were selected to study the influence of the allergen dose. In general, a lower allergenicity for allergen vaccines was clearly linked to a reduced immunogenicity. Compared with the vaccine with the highest amount of intact allergen, the allergoids caused reduced basophil activation as well as diminished immunogenicity demonstrated by reduced T cell activation and/or reduced induction of murine grass-specific IgG antibodies. Interestingly, intact allergen vaccines with lower content of active ingredient exhibited similarly reduced allergenicity, while immunogenicity was still higher or equal to that of allergoids. The low allergenicity observed for some allergoids was inherently linked to a significantly lower immunogenic response questioning the rationale behind the chemical modification into allergoids. In addition, the linkage between allergenicity, immunogenicity and dose found for intact allergen vaccines and the immunogen as well as allergenic immune responses observed for allergoids suggest that the modified allergen vaccines do not contain high doses of immunologically active ingredients. PMID:18647321

  10. Allergenicity, immunogenicity and dose-relationship of three intact allergen vaccines and four allergoid vaccines for subcutaneous grass pollen immunotherapy.

    PubMed

    Henmar, H; Lund, G; Lund, L; Petersen, A; Würtzen, P A

    2008-09-01

    Different vaccines containing intact allergens or chemically modified allergoids as active ingredients are commercially available for specific immunotherapy. Allergoids are claimed to have decreased allergenicity without loss of immunogenicity and this is stated to allow administration of high allergoid doses. We compared the allergenicity and immunogenicity of four commercially available chemically modified grass pollen allergoid products with three commercially available intact grass pollen allergen vaccines. The allergenicity was investigated with immunoglobulin (Ig)E-inhibition and basophil activation assays. Human T cell proliferation and specific IgG-titres following mouse immunizations were used to address immunogenicity. Furthermore, intact allergen vaccines with different contents of active ingredients were selected to study the influence of the allergen dose. In general, a lower allergenicity for allergen vaccines was clearly linked to a reduced immunogenicity. Compared with the vaccine with the highest amount of intact allergen, the allergoids caused reduced basophil activation as well as diminished immunogenicity demonstrated by reduced T cell activation and/or reduced induction of murine grass-specific IgG antibodies. Interestingly, intact allergen vaccines with lower content of active ingredient exhibited similarly reduced allergenicity, while immunogenicity was still higher or equal to that of allergoids. The low allergenicity observed for some allergoids was inherently linked to a significantly lower immunogenic response questioning the rationale behind the chemical modification into allergoids. In addition, the linkage between allergenicity, immunogenicity and dose found for intact allergen vaccines and the immunogen as well as allergenic immune responses observed for allergoids suggest that the modified allergen vaccines do not contain high doses of immunologically active ingredients.

  11. Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients.

    PubMed

    Adriani, Marsilio; Nytrova, Petra; Mbogning, Cyprien; Hässler, Signe; Medek, Karel; Jensen, Poul Erik H; Creeke, Paul; Warnke, Clemens; Ingenhoven, Kathleen; Hemmer, Bernhard; Sievers, Claudia; Lindberg Gasser, Raija Lp; Fissolo, Nicolas; Deisenhammer, Florian; Bocskei, Zsolt; Mikol, Vincent; Fogdell-Hahn, Anna; Kubala Havrdova, Eva; Broët, Philippe; Dönnes, Pierre; Mauri, Claudia; Jury, Elizabeth C

    2018-06-07

    Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-β is an established treatment for MS; however, up to 30% of IFN-β-treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-β. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-β administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-β administration.

  12. Safety and immunogenicity of heterologous prime-boost immunisation with Plasmodium falciparum malaria candidate vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in healthy Gambian and Kenyan adults.

    PubMed

    Ogwang, Caroline; Afolabi, Muhammed; Kimani, Domtila; Jagne, Ya Jankey; Sheehy, Susanne H; Bliss, Carly M; Duncan, Christopher J A; Collins, Katharine A; Garcia Knight, Miguel A; Kimani, Eva; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Spencer, Alexandra J; Soipei, Peninah; Mueller, Jenny; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Gantlett, Katherine; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Urban, Britta C; Flanagan, Katie L; Ewer, Katie J; Chilengi, Roma; Hill, Adrian V S; Bojang, Kalifa

    2013-01-01

    Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.

  13. Structural, functional and immunogenic insights on Cu,Zn superoxide dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    DOE PAGES

    Pratt, Ashley J.; DiDonato, Michael; Shin, David S.; ...

    2015-10-12

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen, general pathogenicity factors and therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomicmore » details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes and suggest general targets for anti-bacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors or vaccines against these harmful pathogens. IMPORTANCE By protecting microbes against reactive oxygen

  14. Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus

    PubMed Central

    Pratt, Ashley J.; DiDonato, Michael; Shin, David S.; Cabelli, Diane E.; Bruns, Cami K.; Belzer, Carol A.; Gorringe, Andrew R.; Langford, Paul R.; Tabatabai, Louisa B.; Kroll, J. Simon; Tainer, John A.

    2015-01-01

    ABSTRACT Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen and general pathogenicity factors and are therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomic details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and of SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly, and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes, and suggest general targets for antibacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors of or vaccines against these harmful pathogens. IMPORTANCE By protecting microbes against

  15. Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus.

    PubMed

    Pratt, Ashley J; DiDonato, Michael; Shin, David S; Cabelli, Diane E; Bruns, Cami K; Belzer, Carol A; Gorringe, Andrew R; Langford, Paul R; Tabatabai, Louisa B; Kroll, J Simon; Tainer, John A; Getzoff, Elizabeth D

    2015-12-01

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen and general pathogenicity factors and are therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomic details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and of SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly, and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes, and suggest general targets for antibacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors of or vaccines against these harmful pathogens. By protecting microbes against reactive oxygen

  16. Structural, functional and immunogenic insights on Cu,Zn superoxide dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Ashley J.; DiDonato, Michael; Shin, David S.

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen, general pathogenicity factors and therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomicmore » details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes and suggest general targets for anti-bacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors or vaccines against these harmful pathogens. IMPORTANCE By protecting microbes against reactive oxygen

  17. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization

    NASA Astrophysics Data System (ADS)

    Wang, Yujia; Bao, Ji; Wu, Xiujuan; Wu, Qiong; Li, Yi; Zhou, Yongjie; Li, Li; Bu, Hong

    2016-04-01

    Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host’s immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds.

  18. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins.

    PubMed Central

    Brown, W C; Zhao, S; Woods, V M; Tripp, C A; Tetzlaff, C L; Heussler, V T; Dobbelaere, D A; Rice-Ficht, A C

    1993-01-01

    Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1

  19. Preclinical Vaccine Study of Plasmodium vivax Circumsporozoite Protein Derived-Synthetic Polypeptides Formulated in Montanide ISA 720 and Montanide ISA 51 Adjuvants

    PubMed Central

    Arévalo-Herrera, Myriam; Vera, Omaira; Castellanos, Angélica; Céspedes, Nora; Soto, Liliana; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate previously assessed in animals and humans. Here, combinations of three synthetic polypeptides corresponding to amino (N), central repeat (R), and carboxyl (C) regions of the CS protein formulated in Montanide ISA 720 or Montanide ISA 51 adjuvants were assessed for immunogenicity in rodents and primates. BALB/c mice and Aotus monkeys were divided into test and control groups and were immunized three times with doses of 50 and 100 μg of vaccine or placebo. Antigen-specific antimalarial antibodies were determined by enzyme-linked immunosorbent assay, immunofluorescent antibody test, and IFN-γ responses by enzyme-linked immunosorbent spot (ELIspot). Both vaccine formulations were highly immunogenic in both species. Mice developed better antibody responses against C and R polypeptides, whereas the N polypeptide was more immunogenic in monkeys. Anti-peptide antibodies remained detectable for several months and recognized native proteins on sporozoites. Differences between Montanide ISA 720 and Montanide ISA 51 formulations were not significant. PMID:21292874

  20. Immunogenicity and safety of virus-like particle of the porcine encephalomyocarditis virus in pig

    PubMed Central

    2011-01-01

    Background In this study, porcine encephalomyocarditis virus (EMCV) virus-like particles (VLPs) were generated using a baculovirus expression system and were tested for immunogenicity and protective efficacy in vivo. Results VLPs were successfully generated from Sf9 cells infected with recombinant baculovirus and were confirmed to be approximately 30-40 nm by transmission electron microscopy (TEM). Immunization of mice with 0.5 μg crude protein containing the VLPs resulted in significant protection from EMCV infection (90%). In swine, increased neutralizing antibody titers were observed following twice immunization with 2.0 μg crude protein containing VLPs. In addition, high levels of neutralizing antibodies (from 64 to 512 fold) were maintained during a test period following the second immunization. No severe injection site reactions were observed after immunization and all swine were healthy during the immunization period Conclusion Recombinant EMCV VLPs could represent a new vaccine candidate to protect against EMCV infection in pig farms. PMID:21492483

  1. High pathogenicity and strong immunogenicity of a Chinese isolate of Eimeria magna Pérard, 1925.

    PubMed

    Tao, Geru; Wang, Yunzhou; Li, Chao; Gu, Xiaolong; Cui, Ping; Fang, Sufang; Suo, Xun; Liu, Xianyong

    2017-06-01

    Coccidia infection of rabbits with one or several species of parasites of the genus Eimeria causes coccidiosis, a disease leading to huge economic losses in the rabbit industry. Eimeria magna, one of the causal agents of rabbit coccidiosis, was characterized as mildly pathogenic and moderately immunogenic in previous studies. In this study, we identified a Chinese isolate of E. magna by testing its biological features (oocyst morphology and size, prepatent time) and sequencing its internal transcribed spacer 1 (ITS-1) DNA fragment. This isolate is highly pathogenic; infection of rabbits with only 1×10 2 oocysts caused a 55% reduction in weight gain in 14days. In addition, immunization with 1×10 2 oocysts prevented body weight loss against re-infection with 5×10 4 oocysts, indicating the high immunogenicity of this isolate. Our study described the distinctive phenotype of the Chinese isolate of E. magna and contributed to the research of geographic variation of rabbit coccidia. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Immunogenicity, safety and reactogenicity of the pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) in 2-17-year-old children with asplenia or splenic dysfunction: A phase 3 study.

    PubMed

    Szenborn, L; Osipova, I V; Czajka, H; Kharit, S M; Jackowska, T; François, N; Habib, M A; Borys, D

    2017-09-25

    Immunization with pneumococcal vaccines is an important prophylactic strategy for children with asplenia or splenic dysfunction, who are at high risk of bacterial infections (including S. pneumoniae). This study aimed to assess immunogenicity and safety of pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV, GSK) in this at-risk population. This phase III, multi-centre, open-label, controlled study, in which at-risk children with asplenia or splenic dysfunction were enrolled (age strata: 2-4, 5-10 and 11-17years), was conducted in Poland and the Russian Federation. For the 2-4years at-risk group, healthy age-matched children were enrolled as control. Unprimed children (not previously vaccinated with any pneumococcal vaccine) received 2 PHiD-CV doses (≥2months apart) and pneumococcal vaccine-primed children received 1 dose. Immune responses were assessed pre-vaccination and one month post-each dose. Solicited and unsolicited adverse events (AEs) were recorded for 4 and 31days post-vaccination, respectively, and serious AEs (SAEs) throughout the study. Of 52 vaccinated children (18 at-risk primed, 28 at-risk unprimed and 6 control unprimed), 45 (18, 23 and 4, respectively) were included in the according-to-protocol cohort for immunogenicity. Post-vaccination (post-dose 1 in primed and post-dose 2 in unprimed children), for each vaccine pneumococcal serotype and vaccine-related serotype 6A all at-risk children had antibody concentrations ≥0.2µg/mL, and for vaccine-related serotype 19A at least 94.4%. Increases in antibody geometric mean concentrations were observed. For most serotypes, all at-risk children had post-vaccination opsonophagocytic activity (OPA) titers ≥8 and increases in OPA geometric mean titers were observed. No safety concerns were raised. One non-fatal SAE (respiratory tract infection, considered not vaccine-related) was reported by one at-risk unprimed child. PHiD-CV was immunogenic and well tolerated in 2

  3. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    PubMed

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Stimuli-Responsive Nanomaterials for Therapeutic Protein Delivery

    PubMed Central

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-01-01

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. PMID:25151983

  5. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  6. Empirical Methods for Identifying Specific Peptide-protein Interactions for Smart Reagent Development

    DTIC Science & Technology

    2012-09-01

    orientated immobilization of proteins,” Biotechnology Progress, 22(2), 401-405 ( 2006 ). [26] J. M. Kogot, D. A. Sarkes , I. Val-Addo et al...Empirical Methods for Identifying Specific Peptide-protein Interactions for Smart Reagent Development by Joshua M. Kogot, Deborah A. Sarkes ...Peptide-protein Interactions for Smart Reagent Development Joshua M. Kogot, Deborah A. Sarkes , Dimitra N. Stratis-Cullum, and Paul M

  7. Covalent modification of proteins by cocaine

    NASA Astrophysics Data System (ADS)

    Deng, Shi-Xian; Bharat, Narine; Fischman, Marian C.; Landry, Donald W.

    2002-03-01

    Cocaine covalently modifies proteins through a reaction in which the methyl ester of cocaine acylates the -amino group of lysine residues. This reaction is highly specific in vitro, because no other amino acid reacts with cocaine, and only cocaine's methyl ester reacts with the lysine side chain. Covalently modified proteins were present in the plasma of rats and human subjects chronically exposed to cocaine. Modified endogenous proteins are immunogenic, and specific antibodies were elicited in mouse and detected in the plasma of human subjects. Covalent modification of proteins could explain cocaine's autoimmune effects and provide a new biochemical approach to cocaine's long-term actions.

  8. Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines.

    PubMed

    Dean, G; Whelan, A; Clifford, D; Salguero, F J; Xing, Z; Gilbert, S; McShane, H; Hewinson, R G; Vordermeier, M; Villarreal-Ramos, B

    2014-03-05

    There is a requirement for vaccines or vaccination strategies that confer better protection against TB than the current live attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine for use in cattle. Boosting with recombinant viral vectors expressing mycobacterial proteins, such as Ag85A, has shown a degree of promise as a strategy for improving on the protection afforded by BCG. Experiments in small animal models have indicated that broadening the immune response to include mycobacterial antigens other than Ag85A, such as Rv0288, induced by boosting with Ad5 constructs has a direct effect on the protection afforded against TB. Here, we compared the immunogenicity and protection against challenge with M. bovis afforded by boosting BCG-vaccinated cattle with a human type 5 (Ad5)-based vaccine expressing the mycobacterial antigens Ag85A (Ad5-85A); or Ag85A, Rv0251, Rv0287 and Rv0288 (Ad5-TBF); or with protein TBF emulsified in adjuvant (Adj-TBF). Boosting with TBF broaden the immune response. The kinetics of Ad5-TBF and Adj-TBF were shown to be different, with effector T cell responses from the latter developing more slowly but being more durable than those induced by Ad5-TBF. No increase in protection compared to BCG alone was afforded by Ad5-TBF or Adj-TBF by gross pathology or bacteriology. Using histopathology, as a novel parameter of protection, we show that boosting BCG vaccinated cattle with Ad5-85A induced significantly better protection than BCG alone. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. MEFA (multiepitope fusion antigen)-Novel Technology for Structural Vaccinology, Proof from Computational and Empirical Immunogenicity Characterization of an Enterotoxigenic Escherichia coli (ETEC) Adhesin MEFA

    PubMed Central

    Duan, Qiangde; Lee, Kuo Hao; Nandre, Rahul M; Garcia, Carolina; Chen, Jianhan; Zhang, Weiping

    2017-01-01

    Vaccine development often encounters the challenge of virulence heterogeneity. Enterotoxigenic Escherichia coli (ETEC) bacteria producing immunologically heterogeneous virulence factors are a leading cause of children’s diarrhea and travelers’ diarrhea. Currently, we do not have licensed vaccines against ETEC bacteria. While conventional methods continue to make progress but encounter challenge, new computational and structure-based approaches are explored to accelerate ETEC vaccine development. In this study, we applied a structural vaccinology concept to construct a structure-based multiepitope fusion antigen (MEFA) to carry representing epitopes of the seven most important ETEC adhesins [CFA/I, CFA/II (CS1–CS3), CFA/IV (CS4–CS6)], simulated antigenic structure of the CFA/I/II/IV MEFA with computational atomistic modeling and simulation, characterized immunogenicity in mouse immunization, and examined the potential of structure-informed vaccine design for ETEC vaccine development. A tag-less recombinant MEFA protein (CFA/I/II/IV MEFA) was effectively expressed and extracted. Molecular dynamics simulations indicated that this MEFA immunogen maintained a stable secondary structure and presented epitopes on the protein surface. Empirical data showed that mice immunized with the tagless CFA/I/II/IV MEFA developed strong antigen-specific antibody responses, and mouse serum antibodies significantly inhibited in vitro adherence of bacteria expressing these seven adhesins. These results revealed congruence of antigen immunogenicity between computational simulation and empirical mouse immunization and indicated this tag-less CFA/I/II/IV MEFA potentially an antigen for a broadly protective ETEC vaccine, suggesting a potential application of MEFA-based structural vaccinology for vaccine design against ETEC and likely other pathogens. PMID:28944092

  10. 2017 White Paper: rise of hybrid LBA/LCMS immunogenicity assays (Part 2: hybrid LBA/LCMS biotherapeutics, biomarkers & immunogenicity assays and regulatory agencies' inputs).

    PubMed

    Neubert, Hendrik; Song, An; Lee, Anita; Wei, Cong; Duggan, Jeff; Xu, Keyang; Woolf, Eric; Evans, Chris; Palandra, Joe; Laterza, Omar; Amur, Shashi; Berger, Isabella; Bustard, Mark; Cancilla, Mark; Chen, Shang-Chiung; Cho, Seongeun Julia; Ciccimaro, Eugene; Cludts, Isabelle; Cocea, Laurent; D'Arienzo, Celia; Danan-Leon, Lieza; Donato, Lorella Di; Garofolo, Fabio; Haidar, Sam; Ishii-Watabe, Akiko; Jiang, Hao; Kadavil, John; Kassim, Sean; Kurki, Pekka; Blaye, Olivier Le; Liu, Kai; Mathews, Rod; Lima Santos, Gustavo Mendes; Niwa, Makoto; Pedras-Vasconcelos, João; Qian, Mark; Rago, Brian; Saad, Ola; Saito, Yoshiro; Savoie, Natasha; Su, Dian; Szapacs, Matthew; Tampal, Nilufer; Vinter, Stephen; Wang, Jian; Welink, Jan; Whale, Emma; Wilson, Amanda; Xue, Y-J

    2017-12-01

    The 2017 11th Workshop on Recent Issues in Bioanalysis (11th WRIB) took place in Los Angeles/Universal City, California on 3-7 April 2017 with participation of close to 750 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - a full immersion week of bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid ligand binding assay (LBA)/LCMS and LBA approaches. This 2017 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2017 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations for biotherapeutics, biomarkers and immunogenicity assays using hybrid LBA/LCMS and regulatory agencies' inputs. Part 1 (LCMS for small molecules, peptides and small molecule biomarkers) and Part 3 (LBA: immunogenicity, biomarkers and pharmacokinetic assays) are published in Volume 9 of Bioanalysis, issues 22 and 24 (2017), respectively.

  11. Recombinant Zika virus envelope protein elicited protective immunity against Zika virus in immunocompetent mice

    PubMed Central

    Liu, Zhihua; Li, Min; Liu, Haitao

    2018-01-01

    Zika virus (ZIKV) has caused great public concerns due to its recent large outbreaks and a close association with microcephaly in fetus and Guillain-Barre syndrome in adults. Rapid development of vaccines against ZIKV is a public health priority. To this end, we have constructed and purified recombinant ZIKV envelope protein using both prokaryotic and eukaryotic expression systems, and then tested their immunogenicity and protective efficacy in immune competent mice. Both protein immunogens elicited humoral and cellular immune responses, and protected immune competent mice from ZIKV challenge in vivo. These products could be further evaluated either as stand-alone vaccine candidate, or used in a prime-and-boost regimen with other forms of ZIKV vaccine. PMID:29590178

  12. Oligopeptide M13 Phage Display in Pathogen Research

    PubMed Central

    Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael

    2013-01-01

    Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline. PMID:24136040

  13. Oligopeptide m13 phage display in pathogen research.

    PubMed

    Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael

    2013-10-16

    Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.

  14. Use of Phage Display to Identify Novel Mineralocorticoid Receptor-Interacting Proteins

    PubMed Central

    Yang, Jun; Fuller, Peter J.; Morgan, James; Shibata, Hirotaka; McDonnell, Donald P.; Clyne, Colin D.

    2014-01-01

    The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter. PMID:25000480

  15. Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research.

    PubMed

    Wieczorek, Lindsay; Krebs, Shelly J; Kalyanaraman, Vaniambadi; Whitney, Stephen; Tovanabutra, Sodsai; Moscoso, Carlos G; Sanders-Buell, Eric; Williams, Constance; Slike, Bonnie; Molnar, Sebastian; Dussupt, Vincent; Alam, S Munir; Chenine, Agnes-Laurence; Tong, Tina; Hill, Edgar L; Liao, Hua-Xin; Hoelscher, Michael; Maboko, Leonard; Zolla-Pazner, Susan; Haynes, Barton F; Pensiero, Michael; McCutchan, Francine; Malek-Salehi, Shawyon; Cheng, R Holland; Robb, Merlin L; VanCott, Thomas; Michael, Nelson L; Marovich, Mary A; Alving, Carl R; Matyas, Gary R; Rao, Mangala; Polonis, Victoria R

    2015-08-01

    Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected "fan blade" motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the

  16. Genomic analyses identify molecular subtypes of pancreatic cancer.

    PubMed

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-03

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  17. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that el...

  18. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that eli...

  19. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    PubMed

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looze, Christopher; Yui, David; Leung, Lester

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatorymore » cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.« less

  1. Decoding the Effect of Isobaric Substitutions on Identifying Missing Proteins and Variant Peptides in Human Proteome.

    PubMed

    Choong, Wai-Kok; Lih, Tung-Shing Mamie; Chen, Yu-Ju; Sung, Ting-Yi

    2017-12-01

    To confirm the existence of missing proteins, we need to identify at least two unique peptides with length of 9-40 amino acids of a missing protein in bottom-up mass-spectrometry-based proteomic experiments. However, an identified unique peptide of the missing protein, even identified with high level of confidence, could possibly coincide with a peptide of a commonly observed protein due to isobaric substitutions, mass modifications, alternative splice isoforms, or single amino acid variants (SAAVs). Besides unique peptides of missing proteins, identified variant peptides (SAAV-containing peptides) could also alternatively map to peptides of other proteins due to the aforementioned issues. Therefore, we conducted a thorough comparative analysis on data sets in PeptideAtlas Tiered Human Integrated Search Proteome (THISP, 2017-03 release), including neXtProt (2017-01 release), to systematically investigate the possibility of unique peptides in missing proteins (PE2-4), unique peptides in dubious proteins, and variant peptides affected by isobaric substitutions, causing doubtful identification results. In this study, we considered 11 isobaric substitutions. From our analysis, we found <5% of the unique peptides of missing proteins and >6% of variant peptides became shared with peptides of PE1 proteins after isobaric substitutions.

  2. Glycosylation Changes in Serum Proteins Identify Patients with Pancreatic Cancer.

    PubMed

    Drabik, Anna; Bodzon-Kulakowska, Anna; Suder, Piotr; Silberring, Jerzy; Kulig, Jan; Sierzega, Marek

    2017-04-07

    After more than a decade of biomarker discovery using advanced proteomic and genomic approaches, very few biomarkers have been involved in clinical diagnostics. Most candidate biomarkers are focused on the protein component. Targeting post-translational modifications (PTMs) in combination with protein sequences will provide superior diagnostic information with regards to sensitivity and specificity. Glycosylation is one of the most common and functionally important PTMs. It plays a central role in many biological processes, including protein folding, host-pathogen interactions, immune response, and inflammation. Cancer-associated aberrant glycosylation has been identified in various types of cancer. Expression of cancer-specific glycan epitopes represents an excellent opportunity for diagnostics and potentially specific detection of tumors. Here, we report four proteins (LIFR, CE350, VP13A, HPT) found in sera from pancreatic cancer patients carrying aberrant glycan structures as compared to those of controls.

  3. Production and Purification of Recombinant Filamentous Bacteriophages Displaying Immunogenic Heterologous Epitopes.

    PubMed

    Deng, Lei; Linero, Florencia; Saelens, Xavier

    2016-01-01

    Viruslike particles often combine high physical stability with robust immunogenicity. Furthermore, when such particles are based on bacteriophages, they can be produced in high amounts at minimal cost and typically will require only standard biologically contained facilities. We provide protocols for the characterization and purification of recombinant viruslike particles derived from filamentous bacteriophages. As an example, we focus on filamentous Escherichia coli fd phage displaying a conserved influenza A virus epitope that is fused genetically to the N-terminus of the major coat protein of this phage. A step-by-step procedure to obtain a high-titer, pure recombinant phage preparation is provided. We also describe a quality control experiment based on a biological readout of the purified fd phage preparation. These protocols together with the highlighted critical steps may facilitate generic implementation of the provided procedures for the display of other epitopes by recombinant fd phages.

  4. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody.

    PubMed

    Xue, L; Hickling, T; Song, R; Nowak, J; Rup, B

    2016-01-01

    Reliable risk assessment for biotherapeutics requires accurate evaluation of risk factors associated with immunogenicity. Immunogenicity risk assessment tools were developed and applied to investigate the immunogenicity of a fully human therapeutic monoclonal antibody, ATR-107 [anti-interleukin (IL)-21 receptor] that elicited anti-drug antibodies (ADA) in 76% of healthy subjects in a Phase 1 study. Because the ATR-107 target is expressed on dendritic cells (DCs), the immunogenicity risk related to engagement with DC and antigen presentation pathways was studied. Despite the presence of IL-21R on DCs, ATR-107 did not bind to the DCs more extensively than the control therapeutic antibody (PF-1) that had elicited low clinical ADA incidence. However, ATR-107, but not the control therapeutic antibody, was translocated to the DC late endosomes, co-localized with intracellular antigen-D related (HLA-DR) molecules and presented a dominant T cell epitope overlapping the complementarity determining region 2 (CDR2) of the light chain. ATR-107 induced increased DC activation exemplified by up-regulation of DC surface expression of CD86, CD274 (PD-L1) and CD40, increased expansion of activated DC populations expressing CD86(hi), CD40(hi), CD83(hi), programmed death ligand 1 (PD-L1)(hi), HLA-DR(hi) or CCR7(hi), as well as elevated secretion of tumour necrosis factor (TNF)-α by DCs. DCs exposed to ATR-107 stimulated an autologous T cell proliferative response in human donor cells, in concert with the detection of immunoglobulin (Ig)G-type anti-ATR-107 antibody response in clinical samples. Collectively, the enhanced engagement of antigen presentation machinery by ATR-107 was suggested. The approaches and findings described in this study may be relevant to identifying lower immunogenicity risk targets and therapeutic molecules. © 2015 British Society for Immunology.

  5. Proteins related to the functions of fibroblast-like synoviocytes identified by proteomic analysis.

    PubMed

    Zhang, Hui; Fan, Lie Ying; Zong, Ming; Sun, Li Shan; Lu, Liu

    2012-01-01

    It is well known that the fibroblast-like synoviocytes (FLS) play a key role in pathogenesis of rheumatoid arthritis (RA). This study was performed to separate the differentially expressed proteins of FLS from the patients with RA or osteoarthritis (OA) by two-dimensional electrophoresis (2-DE), and found proteins associated with the functions of FLS by mass spectrometry (MS). Total proteins were extracted and quantified from the primary cultured FLS from patients of RA (n=8) or OA (n=6). Proteins were separated by high-resolution 2-DE, and identified the differentially expressed proteins by MS. Western blot analyses was used to validated the expression of candidate proteins. The mRNA of these proteins was detected by semi-quantitative fluorescent PCR. There are 1147 protein spots from RA and 1324 protein spots from OA showed on 2-DE graphs, respectively. We have selected 84 protein spots for MS analysis, and 27 protein spots were successfully identified. We have found that protein isoaspartyl methyltransferase (PIMT) and pirin (iron-binding nuclear protein, PIR) with lower expression in RA, and thioredoxin 1(Trx-1) only expressed in RA may be associated with functions of FLS. Western Blot confirmed the expression of PIMT and pirin lower in RA, and Trx-1 expressed only in RA. The results of semi-quantitative fluorescent PCR are also consistent with 2-DE graphs. PIMT, pirin and Trx-1 affect the functions of FLS in some style and can be the drug targets of RA.

  6. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  7. Immune Responses Induced by Gene Gun or Intramuscular Injection of DNA Vaccines That Express Immunogenic Regions of the Serine Repeat Antigen from Plasmodium falciparum

    PubMed Central

    Belperron, Alexia A.; Feltquate, David; Fox, Barbara A.; Horii, Toshihiro; Bzik, David J.

    1999-01-01

    The liver- and blood-stage-expressed serine repeat antigen (SERA) of Plasmodium falciparum is a candidate protein for a human malaria vaccine. We compared the immune responses induced in mice immunized with SERA-expressing plasmid DNA vaccines delivered by intramuscular (i.m.) injection or delivered intradermally by Gene Gun immunization. Mice were immunized with a pcdna3 plasmid encoding the entire 47-kDa domain of SERA (amino acids 17 to 382) or the N-terminal domain (amino acids 17 to 110) of SERA. Minimal antibody responses were detected following DNA vaccination with the N-terminal domain of SERA, suggesting that the N-terminal domain alone is not highly immunogenic by this route of vaccine delivery. Immunization of mice by Gene Gun delivery of the 47-kDa domain of SERA elicited a significantly higher serum antibody titer to the antigen than immunization of mice by i.m. injection with the same plasmid did. The predominant isotype subclass of the antibodies elicited to the SERA protein following i.m. and Gene Gun immunizations with SERA plasmid DNA was immunoglobulin G1. Coimmunization of mice with SERA plasmid DNA and a plasmid expressing the hepatitis B surface antigen (pCMV-s) by the i.m. route resulted in higher anti-SERA titers than those generated in mice immunized with the SERA DNA plasmid alone. Vaccination with DNA may provide a viable alternative or may be used in conjunction with protein-based subunit vaccines to maximize the efficacy of a human malaria vaccine that includes immunogenic regions of the SERA protein. PMID:10496891

  8. Safety and Immunogenicity of Heterologous Prime-Boost Immunisation with Plasmodium falciparum Malaria Candidate Vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in Healthy Gambian and Kenyan Adults

    PubMed Central

    Kimani, Domtila; Jagne, Ya Jankey; Sheehy, Susanne H.; Bliss, Carly M.; Duncan, Christopher J. A.; Collins, Katharine A.; Garcia Knight, Miguel A.; Kimani, Eva; Anagnostou, Nicholas A.; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C.; Spencer, Alexandra J.; Soipei, Peninah; Mueller, Jenny; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K.; Roberts, Rachel; Gantlett, Katherine; Lawrie, Alison M.; Nicosia, Alfredo; Imoukhuede, Egeruan B.; Bejon, Philip; Urban, Britta C.; Flanagan, Katie L.; Ewer, Katie J.; Chilengi, Roma; Hill, Adrian V. S.; Bojang, Kalifa

    2013-01-01

    Background Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). Methodology We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. Results ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). Conclusions ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. Trial Registration Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430 PMID:23526949

  9. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Guangwen; Qin, Mei; Liu, Xianyong

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (amore » truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.« less

  10. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins

    PubMed Central

    Li, Hui; Wang, Rong; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area. PMID:28744305

  11. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins.

    PubMed

    Wang, Xiao; Li, Hui; Wang, Rong; Zhang, Qiuwen; Zhang, Weiwei; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.

  12. A Conformational Change of C Fragment of Tetanus Neurotoxin Reduces Its Ganglioside-Binding Activity but Does Not Destroy Its Immunogenicity

    PubMed Central

    Yu, Rui; Yi, Shaoqiong; Yu, Changming; Fang, Ting; Liu, Shuling; Yu, Ting; Song, Xiaohong; Fu, Ling; Hou, Lihua; Chen, Wei

    2011-01-01

    The C fragment of tetanus neurotoxin (TeNT-Hc) with different conformations was observed due to the four cysteine residues within it which could form different intramolecular disulfide bonds. In this study, we prepared and compared three types of monomeric TeNT-Hc with different conformational components: free sulfhydryls (50 kDa), bound sulfhydryls (44 kDa), and a mixture of the two conformational proteins (half 50 kDa and half 44 kDa). TeNT-Hc with bound sulfhydryls reduced its binding activity to ganglioside GT1b and neuronal PC-12 cells compared to what was seen for TeNT-Hc with free sulfhydryls. However, there was no significant difference among their immunogenicities in mice, including induction of antitetanus toxoid IgG titers, antibody types, and protective capacities against tetanus neurotoxin challenge. Our results showed that the conformational changes of TeNT-Hc resulting from disulfide bond formation reduced its ganglioside-binding activity but did not destroy its immunogenicity, and the protein still retained continuous B cell and T cell epitopes; that is, the presence of the ganglioside-binding site within TeNT-Hc may be not essential for the induction of a fully protective antitetanus response. TeNT-Hc with bound sulfhydryls may be developed into an ideal human vaccine with a lower potential for side effects. PMID:21813664

  13. Leishmania major large RAB GTPase is highly immunogenic in individuals immune to cutaneous and visceral leishmaniasis.

    PubMed

    Chamakh-Ayari, Rym; Chenik, Mehdi; Chakroun, Ahmed Sahbi; Bahi-Jaber, Narges; Aoun, Karim; Meddeb-Garnaoui, Amel

    2017-04-17

    We previously identified a Leishmania (L.) major large RAB GTPase (LmlRAB), a new atypical RAB GTPase protein. It is highly conserved in Leishmania species while displaying low level of homology with mammalian homologues. Leishmania small RAB GTPases proteins have been involved in regulation of exocytic and endocytic pathways whereas the role of large RAB GTPases proteins has not been characterized yet. We report here the immunogenicity of both recombinant rLmlRAB and rLmlRABC, in individuals with immunity against L. major or L. infantum. PBMC were isolated from individuals cured of L. major (CCLm) or from healthy individuals. The latter were subdivided into high or low IFN-γ responders. Healthy high IFN-γ responders, considered as asymptomatics, were living in an endemic area for L. major (HHRLm) or L. infantum (HHRLi). Healthy low IFN-γ responders (HLR) were considered as naïve controls. Cells from all volunteers were stimulated with rLmlRAB or rLmlRABC. Cytokines were analysed by CBA and ELISA and phenotypes of IFN-γ-producing cells were analysed by flow cytometry. Both rLmlRAB and rLmlRABC induced high significant levels of IFN-γ in CCLm, HHRLm and HHRLi groups. Phenotype analysis of rLmlRAB and rLmlRABC-stimulated T cells in CCLm individuals showed a significant increase in the percentage of specific IFN-γ-producing CD4+ and CD8+ T cells. rLmlRAB induced significant granzyme B levels in CCLm and HHRLm. Low but significant granzyme B levels were detected in naïve group. IL-10 was detected in immune and naïve individuals. We showed that rLmlRAB protein and its divergent carboxy-terminal part induced a predominant Th1 response in individuals immune to L. major or L. infantum. Our results suggest that rLmlRAB and rLmlRABC proteins are potential cross-species vaccine candidates against cutaneous and visceral leishmaniasis.

  14. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    PubMed

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  15. Non-Arrhenius protein aggregation.

    PubMed

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  16. Sequence and immunogenicity of a clinically approved novel measles virus vaccine vector

    PubMed Central

    Zuniga, Amando; Liniger, Mathias; Morin, Teldja Neige Azzouz; Marty, René R.; Wiegand, Marian; Ilter, Orhan; Weibel, Sara; Billeter, Martin A.; Knuchel, Marlyse C.; Naim, Hussein Y.

    2013-01-01

    The measles virus vaccine (MVbv) is a clinically certified and well-tolerated vaccine strain that has been given both parenterally and mucosally. It has been extensively used in children and has proven to be safe and effective in eliciting protective immunity. This specific strain was therefore chosen to generate a measles viral vector. The genome of the commercial MVbv vaccine strain was isolated, sequenced and a plasmid, p(+)MVb, enabling transcription of the viral antigenome and rescue of MVb, was constructed. Phylogenic and phenotypic analysis revealed that MVbv and the rescued MVb constitute another evolutionary branch within the hitherto classified measles vaccines. Plasmid p(+)MVb was modified by insertion of artificial MV-type transcription units (ATUs) for the generation of recombinant viruses (rMVb) expressing additional proteins. Replication characteristics and immunogenicity of rMVb vectors were similar to the parental MVbv and to other vaccine strains. The expression of the additional proteins was stable over 10 serial virus transfers, which corresponds to an amplification greater than 1020. The excellent safety record and its efficient application as aerosol may add to the usefulness of the derived vectors. PMID:23324616

  17. The safety and immunogenicity of influenza vaccine in children with asthma in Mexico.

    PubMed

    Pedroza, Alvaro; Huerta, José G; Garcia, Maria de la Luz; Rojas, Arsheli; López-Martínez, Irma; Penagos, Martín; Franco-Paredes, Carlos; Deroche, Christele; Mascareñas, Cesar

    2009-07-01

    The morbidity and mortality associated with influenza is substantial in children with asthma. There are no available data on the safety and immunogenicity of influenza vaccine in children with asthma in Latin America. Furthermore, it is unclear if influenza vaccination may cause asthma exacerbations. We conducted a placebo-controlled trial to investigate the safety and immunogenicity of an inactivated trivalent split virus influenza vaccine in children with asthma in Mexico. We also measured the impact of influenza vaccination on pulmonary function tests in this population. The inactivated influenza vaccine was immunogenic and safe in terms of local and systemic side effects compared to placebo. We observed no significant impact on pulmonary function tests among vaccine recipients. Given the significant morbidity associated with influenza in children, strategies to promote increased influenza vaccination coverage in this high-risk group in Latin America and elsewhere are urgently needed.

  18. Immunoproteomically identified GBAA_0345, alkyl hydroperoxide reductase subunit C is a potential target for multivalent anthrax vaccine.

    PubMed

    Kim, Yeon Hee; Kim, Kyung Ae; Kim, Yu-Ri; Choi, Min Kyung; Kim, Hye Kyeong; Choi, Ki Ju; Chun, Jeong-Hoon; Cha, Kiweon; Hong, Kee-Jong; Lee, Na Gyong; Yoo, Cheon-Kwon; Oh, Hee-Bok; Kim, Tae Sung; Rhie, Gi-eun

    2014-01-01

    Anthrax is caused by the spore-forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA-acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent-spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.

    PubMed

    Floyd, Brendan J; Wilkerson, Emily M; Veling, Mike T; Minogue, Catie E; Xia, Chuanwu; Beebe, Emily T; Wrobel, Russell L; Cho, Holly; Kremer, Laura S; Alston, Charlotte L; Gromek, Katarzyna A; Dolan, Brendan K; Ulbrich, Arne; Stefely, Jonathan A; Bohl, Sarah L; Werner, Kelly M; Jochem, Adam; Westphall, Michael S; Rensvold, Jarred W; Taylor, Robert W; Prokisch, Holger; Kim, Jung-Ja P; Coon, Joshua J; Pagliarini, David J

    2016-08-18

    Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. CYD-TDV dengue vaccine: systematic review and meta-analysis of efficacy, immunogenicity and safety.

    PubMed

    Godói, Isabella Piassi; Lemos, Livia Lovato Pires; de Araújo, Vânia Eloisa; Bonoto, Braúlio Cesar; Godman, Brian; Guerra Júnior, Augusto Afonso

    2017-03-01

    Dengue virus (DENV) is a serious global health problem. CYD-TDC (Dengvaxia ® ) was the first vaccine to gain regulatory approval to try and address this problem. Summarize all available evidence on the immunogenicity, efficacy and safety of the CYD-TDV dengue vaccine. Meta-analysis and systematic review. The best and worst immunogenicity results were for DENV4 and DENV1, respectively. Vaccine efficacy of 60% was derived from studies with participants aged 2-16 years old, with DENV4 and DENV2 presenting the best and worst results, respectively. Erythema and swelling were more frequent with CYD-TDV. No differences were detected for systemic adverse events. CYD-TDV showed moderate efficacy in children and adolescents. From the immunogenicity results in adults, we can expect satisfactory efficacy from vaccination in this population.

  1. A sequence-based hybrid predictor for identifying conformationally ambivalent regions in proteins.

    PubMed

    Liu, Yu-Cheng; Yang, Meng-Han; Lin, Win-Li; Huang, Chien-Kang; Oyang, Yen-Jen

    2009-12-03

    Proteins are dynamic macromolecules which may undergo conformational transitions upon changes in environment. As it has been observed in laboratories that protein flexibility is correlated to essential biological functions, scientists have been designing various types of predictors for identifying structurally flexible regions in proteins. In this respect, there are two major categories of predictors. One category of predictors attempts to identify conformationally flexible regions through analysis of protein tertiary structures. Another category of predictors works completely based on analysis of the polypeptide sequences. As the availability of protein tertiary structures is generally limited, the design of predictors that work completely based on sequence information is crucial for advances of molecular biology research. In this article, we propose a novel approach to design a sequence-based predictor for identifying conformationally ambivalent regions in proteins. The novelty in the design stems from incorporating two classifiers based on two distinctive supervised learning algorithms that provide complementary prediction powers. Experimental results show that the overall performance delivered by the hybrid predictor proposed in this article is superior to the performance delivered by the existing predictors. Furthermore, the case study presented in this article demonstrates that the proposed hybrid predictor is capable of providing the biologists with valuable clues about the functional sites in a protein chain. The proposed hybrid predictor provides the users with two optional modes, namely, the high-sensitivity mode and the high-specificity mode. The experimental results with an independent testing data set show that the proposed hybrid predictor is capable of delivering sensitivity of 0.710 and specificity of 0.608 under the high-sensitivity mode, while delivering sensitivity of 0.451 and specificity of 0.787 under the high-specificity mode. Though

  2. FDA advisory committees meet January 26 on Salk HIV-1 immunogen.

    PubMed

    1995-01-06

    Two advisory committees of the Food and Drug Administration (FDA) will meet to consider future trials of the HIV-1 immunogen developed by Dr. Jonas Salk. The Immune Response Corporation has already conducted several studies of the immunogen, and has found improvement in various immunological and other blood tests, and no adverse effects. However, the studies have not been large enough to show conclusively that the treatment has clinical benefit in delaying disease progression. The new, larger trials are intended to demonstrate a delay in disease progression and validate the use of blood-test markers of disease progression for studying an immune-based treatment.

  3. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases

    PubMed Central

    Jazurek, Magdalena; Ciesiolka, Adam; Starega-Roslan, Julia; Bilinska, Katarzyna; Krzyzosiak, Wlodzimierz J.

    2016-01-01

    RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases. PMID:27625393

  4. C-Terminal Helical Domains of Dengue Virus Type 4 E Protein Affect the Expression/Stability of prM Protein and Conformation of prM and E Proteins

    PubMed Central

    Tsai, Wen-Yang; Hsieh, Szu-Chia; Lai, Chih-Yun; Lin, Hong-En; Nerurkar, Vivek R.; Wang, Wei-Kung

    2012-01-01

    Background The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein during maturation. Recent reports of enhancement of DENV infectivity by anti-prM monoclonal antibodies (mAbs) suggest the presence of prM protein in dengue vaccine is potentially harmful. A better understanding of prM-E interaction and its effect on recognition of E and prM proteins by different antibodies would provide important information for future design of safe and effective subunit dengue vaccines. Methodology/Principal Findings In this study, we examined a series of C-terminal truncation constructs of DENV4 prME, E and prM. In the absence of E protein, prM protein expressed poorly. In the presence of E protein, the expression of prM protein increased in a dose-dependent manner. Radioimmunoprecipitation, sucrose gradient sedimentation and pulse-chase experiments revealed ET1 and EH2 were involved in prM-E interaction and EH2 in maintaining the stability of prM protein. Dot blot assay revealed E protein affected the recognition of prM protein by an anti-prM mAb; truncation of EH2 or EH1 affected the recognition of E protein by several anti-E mAbs, which was further verified by capture ELISA. The E protein ectodomain alone can be recognized well by all anti-E mAbs tested. Conclusions/Significance A C-terminal domain (EH2) of DENV E protein can affect the expression and stability of its chaperone prM protein. These findings not only add to our understanding of the interaction between prM and E proteins, but also suggest the ectodomain of E protein alone could be a potential subunit immunogen without inducing anti-prM response. PMID:23300717

  5. Identifying the missing proteins in human proteome by biological language model.

    PubMed

    Dong, Qiwen; Wang, Kai; Liu, Xuan

    2016-12-23

    With the rapid development of high-throughput sequencing technology, the proteomics research becomes a trendy field in the post genomics era. It is necessary to identify all the native-encoding protein sequences for further function and pathway analysis. Toward that end, the Human Proteome Organization lunched the Human Protein Project in 2011. However many proteins are hard to be detected by experiment methods, which becomes one of the bottleneck in Human Proteome Project. In consideration of the complicatedness of detecting these missing proteins by using wet-experiment approach, here we use bioinformatics method to pre-filter the missing proteins. Since there are analogy between the biological sequences and natural language, the n-gram models from Natural Language Processing field has been used to filter the missing proteins. The dataset used in this study contains 616 missing proteins from the "uncertain" category of the neXtProt database. There are 102 proteins deduced by the n-gram model, which have high probability to be native human proteins. We perform a detail analysis on the predicted structure and function of these missing proteins and also compare the high probability proteins with other mass spectrum datasets. The evaluation shows that the results reported here are in good agreement with those obtained by other well-established databases. The analysis shows that 102 proteins may be native gene-coding proteins and some of the missing proteins are membrane or natively disordered proteins which are hard to be detected by experiment methods.

  6. Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-M™.

    PubMed

    Venkatraman, Navin; Anagnostou, Nicholas; Bliss, Carly; Bowyer, Georgina; Wright, Danny; Lövgren-Bengtsson, Karin; Roberts, Rachel; Poulton, Ian; Lawrie, Alison; Ewer, Katie; V S Hill, Adrian

    2017-10-27

    The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identification of immunoreactive proteins of Streptococcus agalactiae isolated from cultured tilapia in China.

    PubMed

    Liu, Guangjin; Zhang, Wei; Lu, Chengping

    2013-12-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is an important zoonotic pathogen that can cause lethal infections in humans and animals, including aquatic species. Immunoreactive proteins of the S. agalactiae strain, GD201008-001, isolated from cultured tilapia in China, were screened by immunoproteomics using hyperimmune sera, convalescent guinea pig sera and GD201008-001-infected tilapia antisera as primary detection antibodies. A total of 16 different proteins were identified including 13 novel immunoreactive proteins of S. agalactiae. Four proteins, serine-rich repeat glycoprotein 1, branched-chain alpha-keto acid dehydrogenase (BKD) subunit E2, 5'-nucleotidase family protein and ornithine carbamoyltransferase, were shown to react with the three types of sera and thus were considered to represent novel S. agalactiae vaccine candidate antigens. Our findings represent the basis for vaccine development for piscine S. agalactiae and are necessary for understanding virulence factors and immunogenicity of S. agalactiae with different hosts. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Identifying protein complexes in PPI network using non-cooperative sequential game.

    PubMed

    Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta

    2017-08-21

    Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.

  9. Characterization of the in vitro expressed autoimmune rippling muscle disease immunogenic domain of human titin encoded by TTN exons 248-249

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelinka, L.; McCann, S.; Budde, J.

    2011-08-05

    Highlights: {yields} Affinity purification of the autoimmune rippling muscle disease immunogenic domain of titin. {yields} Partial sequence analysis confirms that the peptides is in the I band region of titin. {yields} This region of the human titin shows high degree of homology to mouse titin N2-A. -- Abstract: Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes tomore » screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: (EU428784)) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.« less

  10. Experimental and Theoretical Approaches To Investigate the Immunogenicity of Taenia solium-Derived KE7 Antigen.

    PubMed

    Bobes, Raúl J; Navarrete-Perea, José; Ochoa-Leyva, Adrián; Anaya, Víctor Hugo; Hernández, Marisela; Cervantes-Torres, Jacquelynne; Estrada, Karel; Sánchez-Lopez, Filiberto; Soberón, Xavier; Rosas, Gabriela; Nunes, Cáris Maroni; García-Varela, Martín; Sotelo-Mundo, Rogerio Rafael; López-Zavala, Alonso Alexis; Gevorkian, Goar; Acero, Gonzalo; Laclette, Juan P; Fragoso, Gladis; Sciutto, Edda

    2017-12-01

    Taenia solium cysticercosis, a parasitic disease that affects human health in various regions of the world, is preventable by vaccination. Both the 97-amino-acid-long KETc7 peptide and its carboxyl-terminal, 18-amino-acid-long sequence (GK-1) are found in Taenia crassiceps Both peptides have proven protective capacity against cysticercosis and are part of the highly conserved, cestode-native, 264-amino-acid long protein KE7. KE7 belongs to a ubiquitously distributed family of proteins associated with membrane processes and may participate in several vital cell pathways. The aim of this study was to identify the T. solium KE7 (TsKE7) full-length protein and to determine its immunogenic properties. Recombinant TsKE7 (rTsKE7) was expressed in Escherichia coli Rosetta2 cells and used to obtain mouse polyclonal antibodies. Anti-rTsKE7 antibodies detected the expected native protein among the 350 spots developed from T. solium cyst vesicular fluid in a mass spectrometry-coupled immune proteomic analysis. These antibodies were then used to screen a phage-displayed 7-random-peptide library to map B-cell epitopes. The recognized phages displayed 9 peptides, with the consensus motif Y(F/Y)PS sequence, which includes YYYPS (named GK-1M, for being a GK-1 mimotope), exactly matching a part of GK-1. GK-1M was recognized by 58% of serum samples from cysticercotic pigs with 100% specificity but induced weak protection against murine cysticercosis. In silico analysis revealed a universal T-cell epitope(s) in native TsKE7 potentially capable of stimulating cytotoxic T lymphocytes and helper T lymphocytes under different major histocompatibility complex class I and class II mouse haplotypes. Altogether, these results provide a rationale for the efficacy of the KETc7, rTsKE7, and GK-1 peptides as vaccines. Copyright © 2017 American Society for Microbiology.

  11. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  12. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga.

    PubMed

    Estrada-Gómez, Sebastian; Vargas-Muñoz, Leidy Johana; Saldarriaga-Córdoba, Mónica; Cifuentes, Yeimy; Perafan, Carlos

    2017-04-01

    Theraphosidae spider venoms are well known for possess a complex mixture of protein and non-protein compounds in their venom. The objective of this study was to report and identify different proteins translated from the venom gland DNA information of the recently described Theraphosidae spider Pamphobeteus verdolaga. Using a venom gland transcriptomic analysis, we reported a set of the first complete sequences of seven different proteins of the recenlty described Theraphosidae spider P. verdolaga. Protein analysis indicates the presence of different proteins on the venom composition of this new spider, some of them uncommon in the Theraphosidae family. MS/MS analysis of P. verdolaga showed different fragments matching sphingomyelinases (sicaritoxin), barytoxins, hexatoxins, latroinsectotoxins, and linear (zadotoxins) peptides. Only four of the MS/MS fragments showed 100% sequence similarity with one of the transcribed proteins. Transcriptomic analysis showed the presence of different groups of proteins like phospholipases, hyaluronidases, inhibitory cysteine knots (ICK) peptides among others. The three database of protein domains used in this study (Pfam, SMART and CDD) showed congruency in the search of unique conserved protein domain for only four of the translated proteins. Those proteins matched with EF-hand proteins, cysteine rich secretory proteins, jingzhaotoxins, theraphotoxins and hexatoxins, from different Mygalomorphae spiders belonging to the families Theraphosidae, Barychelidae and Hexathelidae. None of the analyzed sequences showed a complete 100% similarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells.

    PubMed

    Stenger, Rachel M; Meiring, Hugo D; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A M; Boog, Claire J P; de Jong, Ad P J M; van Els, Cécile A C M

    2014-05-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.

  14. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    PubMed

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective

  15. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy.

    PubMed

    Pol, Jonathan; Vacchelli, Erika; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-04-01

    The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.

  16. Brachyspira hyodysenteriae and B. pilosicoli Proteins Recognized by Sera of Challenged Pigs.

    PubMed

    Casas, Vanessa; Rodríguez-Asiain, Arantza; Pinto-Llorente, Roberto; Vadillo, Santiago; Carrascal, Montserrat; Abian, Joaquin

    2017-01-01

    The spirochetes Brachyspira hyodysenteriae and B. pilosicoli are pig intestinal pathogens that are the causative agents of swine dysentery (SD) and porcine intestinal spirochaetosis (PIS), respectively. Although some inactivated bacterin and recombinant vaccines have been explored as prophylactic treatments against these species, no effective vaccine is yet available. Immunoproteomics approaches hold the potential for the identification of new, suitable candidates for subunit vaccines against SD and PIS. These strategies take into account the gene products actually expressed and present in the cells, and thus susceptible of being targets of immune recognition. In this context, we have analyzed the immunogenic pattern of two B. pilosicoli porcine isolates (the Spanish farm isolate OLA9 and the commercial P43/6/78 strain) and one B. hyodysenteriae isolate (the Spanish farm V1). The proteins from the Brachyspira lysates were fractionated by preparative isoelectric focusing, and the fractions were analyzed by Western blot with hyperimmune sera from challenged pigs. Of the 28 challenge-specific immunoreactive bands detected, 21 were identified as single proteins by MS, while the other 7 were shown to contain several major proteins. None of these proteins were detected in the control immunoreactive bands. The proteins identified included 11 from B. hyodysenteriae and 28 from the two B. pilosicoli strains. Eight proteins were common to the B. pilosicoli strains (i.e., elongation factor G, aspartyl-tRNA synthase, biotin lipoyl, TmpB outer membrane protein, flagellar protein FlaA, enolase, PEPCK, and VspD), and enolase and PEPCK were common to both species . Many of the identified proteins were flagellar proteins or predicted to be located on the cell surface and some of them had been previously described as antigenic or as bacterial virulence factors. Here we report on the identification and semiquantitative data of these immunoreactive proteins which constitute a unique

  17. Dynamic Fluctuations of Protein-Carbohydrate Interactions Promote Protein Aggregation

    PubMed Central

    Voynov, Vladimir; Chennamsetty, Naresh; Kayser, Veysel; Helk, Bernhard; Forrer, Kurt; Zhang, Heidi; Fritsch, Cornelius; Heine, Holger; Trout, Bernhardt L.

    2009-01-01

    Protein-carbohydrate interactions are important for glycoprotein structure and function. Antibodies of the IgG class, with increasing significance as therapeutics, are glycosylated at a conserved site in the constant Fc region. We hypothesized that disruption of protein-carbohydrate interactions in the glycosylated domain of antibodies leads to the exposure of aggregation-prone motifs. Aggregation is one of the main problems in protein-based therapeutics because of immunogenicity concerns and decreased efficacy. To explore the significance of intramolecular interactions between aromatic amino acids and carbohydrates in the IgG glycosylated domain, we utilized computer simulations, fluorescence analysis, and site-directed mutagenesis. We find that the surface exposure of one aromatic amino acid increases due to dynamic fluctuations. Moreover, protein-carbohydrate interactions decrease upon stress, while protein-protein and carbohydrate-carbohydrate interactions increase. Substitution of the carbohydrate-interacting aromatic amino acids with non-aromatic residues leads to a significantly lower stability than wild type, and to compromised binding to Fc receptors. Our results support a mechanism for antibody aggregation via decreased protein-carbohydrate interactions, leading to the exposure of aggregation-prone regions, and to aggregation. PMID:20037630

  18. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    PubMed

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  19. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    PubMed

    Shen, Xianjun; Yi, Li; Jiang, Xingpeng; He, Tingting; Yang, Jincai; Xie, Wei; Hu, Po; Hu, Xiaohua

    2017-01-01

    How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI) data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  20. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B

    PubMed Central

    Gong, Xin; Yin, He; Shi, Yuhua; He, Xiaoqiu; Yu, Yongjiao; Guan, Shanshan; Kuai, Ziyu; Haji, Nasteha M; Haji, Nafisa M; Kong, Wei; Shan, Yaming

    2016-01-01

    The ectodomain of the influenza A virus (IAV) hemagglutinin (HA) stem is highly conserved across strains and has shown promise as a universal influenza vaccine in a mouse model. In this study, potential B-cell epitopes were found through sequence alignment and epitope prediction in a stem fragment, HA2:90-105, which is highly conserved among virus subtypes H1, H3 and B. A norovirus (NoV) P particle platform was used to express the HA2:90-105 sequences from subtypes H1, H3 and B in loops 1, 2 and 3 of the protrusion (P) domain, respectively. Through mouse immunization and microneutralization assays, the immunogenicity and protective efficacy of the chimeric NoV P particle (trivalent HA2-PP) were tested against infection with three subtypes (H1N1, H3N2 and B) of IAV in Madin–Darby canine kidney cells. The protective efficacy of the trivalent HA2-PP was also evaluated preliminarily in vivo by virus challenge in the mouse model. The trivalent HA2-PP immunogen induced significant IgG antibody responses, which could be enhanced by a virus booster vaccination. Moreover, the trivalent HA2-PP immunogen also demonstrated in vitro neutralization of the H3 and B viruses, and in vivo protection against the H3 virus. Our results support the notion that a broadly protective vaccine approach using an HA2-based NoV P particle platform can provide cross-protection against challenge viruses of different IAV subtypes. The efficacy of the immunogen should be further enhanced for practicality, and a better understanding of the protective immune mechanism will be critical for the development of HA2-based multivalent vaccines. PMID:27222326