Sample records for identify molecular switch

  1. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    NASA Astrophysics Data System (ADS)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on

  2. Molecular switches and motors on surfaces.

    PubMed

    Pathem, Bala Krishna; Claridge, Shelley A; Zheng, Yue Bing; Weiss, Paul S

    2013-01-01

    Molecular switches and motors respond structurally, electronically, optically, and/or mechanically to external stimuli, testing and potentially enabling extreme miniaturization of optoelectronic devices, nanoelectromechanical systems, and medical devices. The assembly of motors and switches on surfaces makes it possible both to measure the properties of individual molecules as they relate to their environment and to couple function between assembled molecules. In this review, we discuss recent progress in assembling molecular switches and motors on surfaces, measuring static and dynamic structures, understanding switching mechanisms, and constructing functional molecular materials and devices. As demonstrative examples, we choose a representative molecule from three commonly studied classes including molecular switches, photochromic molecules, and mechanically interlocked molecules. We conclude by offering perspectives on the future of molecular switches and motors on surfaces.

  3. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the

  4. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues.

    PubMed

    Konar, Arpita; Singh, Padmanabh; Thakur, Mahendra K

    2016-03-01

    Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets.

  5. An electrically actuated molecular toggle switch

    NASA Astrophysics Data System (ADS)

    Gerhard, Lukas; Edelmann, Kevin; Homberg, Jan; Valášek, Michal; Bahoosh, Safa G.; Lukas, Maya; Pauly, Fabian; Mayor, Marcel; Wulfhekel, Wulf

    2017-03-01

    Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.

  6. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  7. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.

    PubMed

    Niroui, Farnaz; Wang, Annie I; Sletten, Ellen M; Song, Yi; Kong, Jing; Yablonovitch, Eli; Swager, Timothy M; Lang, Jeffrey H; Bulović, Vladimir

    2015-08-25

    Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications.

  8. Molecular mechanism of the Syk activation switch.

    PubMed

    Tsang, Emily; Giannetti, Anthony M; Shaw, David; Dinh, Marie; Tse, Joyce K Y; Gandhi, Shaan; Ho, Hoangdung; Wang, Sandra; Papp, Eva; Bradshaw, J Michael

    2008-11-21

    Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.

  9. Organic-based molecular switches for molecular electronics.

    PubMed

    Fuentes, Noelia; Martín-Lasanta, Ana; Alvarez de Cienfuegos, Luis; Ribagorda, Maria; Parra, Andres; Cuerva, Juan M

    2011-10-05

    In a general sense, molecular electronics (ME) is the branch of nanotechnology which studies the application of molecular building blocks for the fabrication of electronic components. Among the different types of molecules, organic compounds have been revealed as promising candidates for ME, due to the easy access, great structural diversity and suitable electronic and mechanical properties. Thanks to these useful capabilities, organic molecules have been used to emulate electronic devices at the nanoscopic scale. In this feature article, we present the diverse strategies used to develop organic switches towards ME with special attention to non-volatile systems.

  10. Single molecular orientation switching of an endohedral metallofullerene.

    PubMed

    Yasutake, Yuhsuke; Shi, Zujin; Okazaki, Toshiya; Shinohara, Hisanori; Majima, Yutaka

    2005-06-01

    The single molecular orientation switching of the Tb@C82 endohedral metallofullerene has been studied by using low-temperature ultrahigh vacuum (UHV) scanning tunneling microscopy (STM). An octanethiol self-assembled monolayer (SAM) was introduced between Tb@C82 and the Au111 substrate to control the thermal rotational states of Tb@C82. Scanning tunneling spectroscopy (STS) of Tb@C82 on an octanethiol SAM at 13 K demonstrated hysteresis including negative differential conductance (NDC). This observed hysteresis and NDC is interpreted in terms of a switching of the Tb@C82 molecular orientation caused by the interaction between its electric dipole moment and an external electric field.

  11. Allosteric Fine-Tuning of the Binding Pocket Dynamics in the ITK SH2 Domain by a Distal Molecular Switch: An Atomistic Perspective.

    PubMed

    Momin, Mohamed; Xin, Yao; Hamelberg, Donald

    2017-06-29

    Although the regulation of function of proteins by allosteric interactions has been identified in many subcellular processes, molecular switches are also known to induce long-range conformational changes in proteins. A less well understood molecular switch involving cis-trans isomerization of a peptidyl-prolyl bond could induce a conformational change directly to the backbone that is propagated to other parts of the protein. However, these switches are elusive and hard to identify because they are intrinsic to biomolecules that are inherently dynamic. Here, we explore the conformational dynamics and free energy landscape of the SH2 domain of interleukin-2-inducible T-cell or tyrosine kinase (ITK) to fully understand the conformational coupling between the distal cis-trans molecular switch and its binding pocket of the phosphotyrosine motif. We use multiple microsecond-long all-atom molecular dynamics simulations in explicit water for over a total of 60 μs. We show that cis-trans isomerization of the Asn286-Pro287 peptidyl-prolyl bond is directly coupled to the dynamics of the binding pocket of the phosphotyrosine motif, in agreement with previous NMR experiments. Unlike the cis state that is localized and less dynamic in a single free energy basin, the trans state samples two distinct conformations of the binding pocket-one that recognizes the phosphotyrosine motif and the other that is somewhat similar to that of the cis state. The results provide an atomic-level description of a less well understood allosteric regulation by a peptidyl-prolyl cis-trans molecular switch that could aid in the understanding of normal and aberrant subcellular processes and the identification of these elusive molecular switches in other proteins.

  12. Design and characterization of molecular nonlinear optical switches.

    PubMed

    Castet, Frédéric; Rodriguez, Vincent; Pozzo, Jean-Luc; Ducasse, Laurent; Plaquet, Aurélie; Champagne, Benoît

    2013-11-19

    Nanoscale structures, including molecules, supramolecules, polymers, functionalized surfaces, and crystalline/amorphous solids, can commute between two or more forms, displaying contrasts in their nonlinear optical (NLO) properties. Because of this property, they have high potential for applications in data storage, signal processing, and sensing. As potential candidates for integration into responsive materials, scientists have been intensely studying organic and organometallic molecules with switchable first hyperpolarizability over the past two decades. As a result of this, researchers have been able to synthesize and characterize several families of molecular NLO switches that differ by the stimulus used to trigger the commutation. These stimuli can include light irradiation, pH variation, redox reaction, and ion recognition, among others. The design of multistate (including several switchable units) and multifunctional (triggered with different stimuli) systems has also motivated a large amount of work, aiming at the improvement of the storage capacity of optical memories or the diversification of the addressability of the devices. In complement to the synthesis of the compounds and the characterization of their NLO responses by means of hyper-Rayleigh scattering, quantum chemical calculations play a key role in the design of molecular switches with high first hyperpolarizability contrasts. Through the latter, we can gain a fundamental understanding of the various factors governing the efficiency of the switches. These are not easily accessible experimentally, and include donor/acceptor contributions, frequency dispersion, and solvent effects. In this Account, we illustrate the similarities of the experimental and theoretical tools to design and characterize highly efficient NLO switches but also the difficulties in comparing them. After providing a critical overview of the different theoretical approaches used for evaluating the first hyperpolarizabilities

  13. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.

    PubMed

    Lee, Lawrence K; Ginsburg, Michael A; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-08-19

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  14. Solid-state reversible quadratic nonlinear optical molecular switch with an exceptionally large contrast.

    PubMed

    Sun, Zhihua; Luo, Junhua; Zhang, Shuquan; Ji, Chengmin; Zhou, Lei; Li, Shenhui; Deng, Feng; Hong, Maochun

    2013-08-14

    Exceptional nonlinear optical (NLO) switching behavior, including an extremely large contrast (on/off) of ∼35 and high NLO coefficients, is displayed by a solid-state reversible quadratic NLO switch. The favorable results, induced by very fast molecular motion and anionic ordering, provides impetus for the design of a novel second-harmonic-generation switch involving molecular motion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Axon growth regulation by a bistable molecular switch.

    PubMed

    Padmanabhan, Pranesh; Goodhill, Geoffrey J

    2018-04-25

    For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms. © 2018 The Author(s).

  16. Research Update: Molecular electronics: The single-molecule switch and transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotthewes, Kai; Heimbuch, René, E-mail: r.heimbuch@utwente.nl; Kumar, Avijit

    2014-01-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage dropmore » across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.« less

  17. Molecular switches from benzene derivatives adsorbed on metal surfaces

    PubMed Central

    Liu, Wei; Filimonov, Sergey N.; Carrasco, Javier; Tkatchenko, Alexandre

    2013-01-01

    Transient precursor states are often experimentally observed for molecules adsorbing on surfaces. However, such precursor states are typically rather short-lived, quickly yielding to more stable adsorption configurations. Here we employ first-principles calculations to systematically explore the interaction mechanism for benzene derivatives on metal surfaces, enabling us to selectively tune the stability and the barrier between two metastable adsorption states. In particular, in the case of the tetrachloropyrazine molecule, two equally stable adsorption states are identified with a moderate and conceivably reversible barrier between them. We address the feasibility of experimentally detecting the predicted bistable behaviour and discuss its potential usefulness in a molecular switch. PMID:24157660

  18. Quinonoid metal complexes: toward molecular switches.

    PubMed

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo

    2004-11-01

    The peculiar redox-active character of quinonoid metal complexes makes them extremely appealing to design materials of potential technological interest. We show here how the tuning of the properties of these systems can be pursued by using appropriate molecular synthetic techniques. In particular, we focus our attention on metal polyoxolene complexes exhibiting intramolecular electron transfer processes involving either the ligand and the metal ion or the two dioxolene moieties of a properly designed ligand thus inducing electronic bistability. The transition between the two metastable electronic states can be induced by different external stimuli such as temperature, pressure, light, or pH suggesting the use of these systems for molecular switches.

  19. High-Dimensional Mutant and Modular Thermodynamic Cycles, Molecular Switching, and Free Energy Transduction

    PubMed Central

    Carter, Charles W.

    2017-01-01

    Understanding how distinct parts of proteins produce coordinated behavior has driven and continues to drive advances in protein science and enzymology. However, despite consensus about the conceptual basis for allostery, the idiosyncratic nature of allosteric mechanisms resists general approaches. Computational methods can identify conformational transition states from structural changes, revealing common switching mechanisms that impose multistate behavior. Thermodynamic cycles use factorial perturbations to measure coupling energies between side chains in molecular switches that mediate shear during domain motion. Such cycles have now been complemented by modular cycles that measure energetic coupling between separable domains. For one model system, energetic coupling between domains has been shown to be quantitatively equivalent to that between dynamic side chains. Linkages between domain motion, switching residues, and catalysis make nucleoside triphosphate hydrolysis conditional on domain movement, confirming an essential yet neglected aspect of free energy transduction and suggesting the potential generality of these studies. PMID:28375734

  20. Action of molecular switches in GPCRs--theoretical and experimental studies.

    PubMed

    Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S

    2012-01-01

    G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called "molecular switches" buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homoand heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor

  1. Molecular Simulations of Mutually Exclusive Folding in a Two-Domain Protein Switch

    PubMed Central

    Mills, Brandon M.; Chong, Lillian T.

    2011-01-01

    A major challenge with testing designs of protein conformational switches is the need for experimental probes that can independently monitor their individual protein domains. One way to circumvent this issue is to use a molecular simulation approach in which each domain can be directly observed. Here we report what we believe to be the first molecular simulations of mutually exclusive folding in an engineered two-domain protein switch, providing a direct view of how folding of one protein drives unfolding of the other in a barnase-ubiquitin fusion protein. These simulations successfully capture the experimental effects of interdomain linker length and ligand binding on the extent of unfolding in the less stable domain. In addition, the effect of linker length on the potential for oligomerization, which eliminates switch activity, is in qualitative agreement with analytical ultracentrifugation experiments. We also perform what we believe to be the first study of protein unfolding via progressive localized compression. Finally, we are able to explore the kinetics of mutually exclusive folding by determining the effect of linker length on rates of unfolding and refolding of each protein domain. Our results demonstrate that molecular simulations can provide seemingly novel biological insights on the behavior of individual protein domains, thereby aiding in the rational design of bifunctional switches. PMID:21281591

  2. Molecular switching behavior in isosteric DNA base pairs.

    PubMed

    Jissy, A K; Konar, Sukanya; Datta, Ayan

    2013-04-15

    The structures and proton-coupled behavior of adenine-thymine (A-T) and a modified base pair containing a thymine isostere, adenine-difluorotoluene (A-F), are studied in different solvents by dispersion-corrected density functional theory. The stability of the canonical Watson-Crick base pair and the mismatched pair in various solvents with low and high dielectric constants is analyzed. It is demonstrated that A-F base pairing is favored in solvents with low dielectric constant. The stabilization and conformational changes induced by protonation are also analyzed for the natural as well as the mismatched base pair. DNA sequences capable of changing their sequence conformation on protonation are used in the construction of pH-based molecular switches. An acidic medium has a profound influence in stabilizing the isostere base pair. Such a large gain in stability on protonation leads to an interesting pH-controlled molecular switch, which can be incorporated in a natural DNA tract. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies

    PubMed Central

    Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S

    2012-01-01

    G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor

  4. Molecular engineering and measurements to test hypothesized mechanisms in single molecule conductance switching.

    PubMed

    Moore, Amanda M; Dameron, Arrelaine A; Mantooth, Brent A; Smith, Rachel K; Fuchs, Daniel J; Ciszek, Jacob W; Maya, Francisco; Yao, Yuxing; Tour, James M; Weiss, Paul S

    2006-02-15

    Six customized phenylene-ethynylene-based oligomers have been studied for their electronic properties using scanning tunneling microscopy to test hypothesized mechanisms of stochastic conductance switching. Previously suggested mechanisms include functional group reduction, functional group rotation, backbone ring rotation, neighboring molecule interactions, bond fluctuations, and hybridization changes. Here, we test these hypotheses experimentally by varying the molecular designs of the switches; the ability of the molecules to switch via each hypothetical mechanism is selectively engineered into or out of each molecule. We conclude that hybridization changes at the molecule-surface interface are responsible for the switching we observe.

  5. On the field-induced switching of molecular organization in a biaxial nematic cell and its relaxation

    NASA Astrophysics Data System (ADS)

    Ricci, Matteo; Berardi, Roberto; Zannoni, Claudio

    2015-08-01

    We investigate the switching of a biaxial nematic filling a flat cell with planar homogeneous anchoring using a coarse-grained molecular dynamics simulation. We have found that an aligning field applied across the film, and acting on specific molecular axes, can drive the reorientation of the secondary biaxial director up to one order of magnitude faster than that for the principal director. While the π/2 switching of the secondary director does not affect the alignment of the long molecular axes, the field-driven reorientation of the principal director proceeds via a concerted rotation of the long and transversal molecular axes. More importantly, while upon switching off a (relatively) weak or intermediate field, the biaxial nematic liquid crystal is always able to relax to the initial surface aligned director state; this is not the case when using fields above a certain threshold. In that case, while the secondary director always recovers the initial state, the principal one remains, occasionally, trapped in a nonuniform director state due to the formation of domain walls.

  6. Mycobacterium tuberculosis Exploits a Molecular Off Switch of the Immune System for Intracellular Survival.

    PubMed

    von Both, Ulrich; Berk, Maurice; Agapow, Paul-Michael; Wright, Joseph D; Git, Anna; Hamilton, Melissa Shea; Goldgof, Greg; Siddiqui, Nazneen; Bellos, Evangelos; Wright, Victoria J; Coin, Lachlan J; Newton, Sandra M; Levin, Michael

    2018-01-12

    Mycobacterium tuberculosis (M. tuberculosis) survives and multiplies inside human macrophages by subversion of immune mechanisms. Although these immune evasion strategies are well characterised functionally, the underlying molecular mechanisms are poorly understood. Here we show that during infection of human whole blood with M. tuberculosis, host gene transcriptional suppression, rather than activation, is the predominant response. Spatial, temporal and functional characterisation of repressed genes revealed their involvement in pathogen sensing and phagocytosis, degradation within the phagolysosome and antigen processing and presentation. To identify mechanisms underlying suppression of multiple immune genes we undertook epigenetic analyses. We identified significantly differentially expressed microRNAs with known targets in suppressed genes. In addition, after searching regions upstream of the start of transcription of suppressed genes for common sequence motifs, we discovered novel enriched composite sequence patterns, which corresponded to Alu repeat elements, transposable elements known to have wide ranging influences on gene expression. Our findings suggest that to survive within infected cells, mycobacteria exploit a complex immune "molecular off switch" controlled by both microRNAs and Alu regulatory elements.

  7. A network of molecular switches controls the activation of the two-component response regulator NtrC

    NASA Astrophysics Data System (ADS)

    Vanatta, Dan K.; Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S.

    2015-06-01

    Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching.

  8. Humidity-controlled rectification switching in ruthenium-complex molecular junctions

    NASA Astrophysics Data System (ADS)

    Atesci, Huseyin; Kaliginedi, Veerabhadrarao; Celis Gil, Jose A.; Ozawa, Hiroaki; Thijssen, Joseph M.; Broekmann, Peter; Haga, Masa-aki; van der Molen, Sense Jan

    2018-02-01

    Although molecular rectifiers were proposed over four decades ago1,2, until recently reported rectification ratios (RR) were rather moderate2-11 (RR 101). This ceiling was convincingly broken using a eutectic GaIn top contact12 to probe molecular monolayers of coupled ferrocene groups (RR 105), as well as using scanning tunnelling microscopy-break junctions13-16 and mechanically controlled break junctions17 to probe single molecules (RR 102-103). Here, we demonstrate a device based on a molecular monolayer in which the RR can be switched by more than three orders of magnitude (between RR 100 and RR ≥ 103) in response to humidity. As the relative humidity is toggled between 5% and 60%, the current-voltage (I-V) characteristics of a monolayer of di-nuclear Ru-complex molecules reversibly change from symmetric to strongly asymmetric (diode-like). Key to this behaviour is the presence of two localized molecular orbitals in series, which are nearly degenerate in dry circumstances but become misaligned under high humidity conditions, due to the displacement of counter ions (PF6-). This asymmetric gating of the two relevant localized molecular orbital levels results in humidity-controlled diode-like behaviour.

  9. Transport dynamics of molecular motors that switch between an active and inactive state

    NASA Astrophysics Data System (ADS)

    Pinkoviezky, I.; Gov, N. S.

    2013-08-01

    Molecular motors are involved in key transport processes in the cell. Many of these motors can switch from an active to a nonactive state, either spontaneously or depending on their interaction with other molecules. When active, the motors move processively along the filaments, while when inactive they are stationary. We treat here the simple case of spontaneously switching motors, between the active and inactive states, along an open linear track. We use our recent analogy with vehicular traffic, where we go beyond the mean-field description. We map the phase diagram of this system, and find that it clearly breaks the symmetry between the different phases, as compared to the standard total asymmetric exclusion process. We make several predictions that may be testable using molecular motors in vitro and in living cells.

  10. Nucleotide Dependent Switching in Rho GTPase: Conformational Heterogeneity and Competing Molecular Interactions

    PubMed Central

    Kumawat, Amit; Chakrabarty, Suman; Kulkarni, Kiran

    2017-01-01

    Ras superfamily of GTPases regulate myriad cellular processes through a conserved nucleotide (GTP/GDP) dependent switching mechanism. Unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence of “sub-states” such as state 1 & state 2 in the GTP bound form. To explore the nucleotide dependent conformational space of the Switch I loop and also to look for existence of state 1 like conformations in Rho GTPases, atomistic molecular dynamics and metadynamics simulations on RhoA were performed. These studies demonstrate that both the nucleotide-free state and the GDP bound “OFF” state have very similar conformations, whereas the GTP bound “ON” state has unique conformations with signatures of two intermediate states. The conformational free energy landscape for these systems suggests the presence of multiple intermediate states. Interestingly, the energetic penalty of exposing the non-polar residues in the GTP bound form is counter balanced by the favourable hydrogen bonded interactions between the γ-phosphate group of GTP with the highly conserved Tyr34 and Thr37 residues. These competing molecular interactions lead to a tuneable energy landscape of the Switch I conformation, which can undergo significant changes based on the local environment including changes upon binding to effectors. PMID:28374773

  11. Nucleotide Dependent Switching in Rho GTPase: Conformational Heterogeneity and Competing Molecular Interactions

    NASA Astrophysics Data System (ADS)

    Kumawat, Amit; Chakrabarty, Suman; Kulkarni, Kiran

    2017-04-01

    Ras superfamily of GTPases regulate myriad cellular processes through a conserved nucleotide (GTP/GDP) dependent switching mechanism. Unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence of “sub-states” such as state 1 & state 2 in the GTP bound form. To explore the nucleotide dependent conformational space of the Switch I loop and also to look for existence of state 1 like conformations in Rho GTPases, atomistic molecular dynamics and metadynamics simulations on RhoA were performed. These studies demonstrate that both the nucleotide-free state and the GDP bound “OFF” state have very similar conformations, whereas the GTP bound “ON” state has unique conformations with signatures of two intermediate states. The conformational free energy landscape for these systems suggests the presence of multiple intermediate states. Interestingly, the energetic penalty of exposing the non-polar residues in the GTP bound form is counter balanced by the favourable hydrogen bonded interactions between the γ-phosphate group of GTP with the highly conserved Tyr34 and Thr37 residues. These competing molecular interactions lead to a tuneable energy landscape of the Switch I conformation, which can undergo significant changes based on the local environment including changes upon binding to effectors.

  12. Molecular switch-like regulation in motor proteins.

    PubMed

    Tafoya, Sara; Bustamante, Carlos

    2018-06-19

    Motor proteins are powered by nucleotide hydrolysis and exert mechanical work to carry out many fundamental biological tasks. To ensure their correct and efficient performance, the motors' activities are allosterically regulated by additional factors that enhance or suppress their NTPase activity. Here, we review two highly conserved mechanisms of ATP hydrolysis activation and repression operating in motor proteins-the glutamate switch and the arginine finger-and their associated regulatory factors. We examine the implications of these regulatory mechanisms in proteins that are formed by multiple ATPase subunits. We argue that the regulatory mechanisms employed by motor proteins display features similar to those described in small GTPases, which require external regulatory elements, such as dissociation inhibitors, exchange factors and activating proteins, to switch the protein's function 'on' and 'off'. Likewise, similar regulatory roles are taken on by the motor's substrate, additional binding factors, and even adjacent subunits in multimeric complexes. However, in motor proteins, more than one regulatory factor and the two mechanisms described here often underlie the machine's operation. Furthermore, ATPase regulation takes place throughout the motor's cycle, which enables a more complex function than the binary 'active' and 'inactive' states.This article is part of a discussion meeting issue 'Allostery and molecular machines'. © 2018 The Author(s).

  13. Molecular Dynamics of the Proline Switch and Its Role in Crk Signaling

    PubMed Central

    2015-01-01

    The Crk adaptor proteins play a central role as a molecular timer for the formation of protein complexes including various growth and differentiation factors. The loss of regulation of Crk results in many kinds of cancers. A self-regulatory mechanism for Crk was recently proposed, which involves domain–domain rearrangement. It is initiated by a cis–trans isomerization of a specific proline residue (Pro238 in chicken Crk II) and can be accelerated by Cyclophilin A. To understand how the proline switch controls the autoinhibition at the molecular level, we performed large-scale molecular dynamics and metadynamics simulations in the context of short peptides and multidomain constructs of chicken Crk II. We found that the equilibrium and kinetic properties of the macrostates are regulated not only by the local environments of specified prolines but also by the global organization of multiple domains. We observe the two macrostates (cis closed/autoinhibited and trans open/uninhibited) consistent with NMR experiments and predict barriers. We also propose an intermediate state, the trans closed state, which interestingly was reported to be a prevalent state in human Crk II. The existence of this macrostate suggests that the rate of switching off the autoinhibition by Cyp A may be limited by the relaxation rate of this intermediate state. PMID:24702481

  14. Molecular dynamics of the proline switch and its role in Crk signaling.

    PubMed

    Xia, Junchao; Levy, Ronald M

    2014-05-01

    The Crk adaptor proteins play a central role as a molecular timer for the formation of protein complexes including various growth and differentiation factors. The loss of regulation of Crk results in many kinds of cancers. A self-regulatory mechanism for Crk was recently proposed, which involves domain-domain rearrangement. It is initiated by a cis-trans isomerization of a specific proline residue (Pro238 in chicken Crk II) and can be accelerated by Cyclophilin A. To understand how the proline switch controls the autoinhibition at the molecular level, we performed large-scale molecular dynamics and metadynamics simulations in the context of short peptides and multidomain constructs of chicken Crk II. We found that the equilibrium and kinetic properties of the macrostates are regulated not only by the local environments of specified prolines but also by the global organization of multiple domains. We observe the two macrostates (cis closed/autoinhibited and trans open/uninhibited) consistent with NMR experiments and predict barriers. We also propose an intermediate state, the trans closed state, which interestingly was reported to be a prevalent state in human Crk II. The existence of this macrostate suggests that the rate of switching off the autoinhibition by Cyp A may be limited by the relaxation rate of this intermediate state.

  15. Cholecystokinin: A multi-functional molecular switch of neuronal circuits

    PubMed Central

    Lee, Soo Yeun; Soltesz, Ivan

    2010-01-01

    Cholecystokinin (CCK), a peptide originally discovered in the gastrointestinal tract, is one of the most the abundant and widely distributed neuropeptides in the brain. In spite of its abundance, recent data indicate that that CCK modulates intrinsic neuronal excitability and synaptic transmission in a surprisingly cell-type specific manner, acting as a key molecular switch to regulate the functional output of neuronal circuits. The central importance of CCK in neuronal networks is also reflected in its involvement in a variety of neuropsychiatric and neurological disorders including panic attacks and epilepsy. PMID:21154912

  16. Mapping reversible photoswitching of molecular-resistance fluctuations during the conformational transformation of azobenzene-terminated molecular switches.

    PubMed

    Cho, Duckhyung; Yang, Myungjae; Shin, Narae; Hong, Seunghun

    2018-06-07

    We report a direct mapping and analysis of electrical noise in azobenzene-terminated molecular monolayers, revealing reversible photoswitching of the molecular-resistance fluctuations in the layers. In this work, a conducting atomic force microscope combined with a homemade spectrum analyzer was used to image electrical current and noise at patterned self-assembled monolayers (SAMs) of azobenzene-terminated molecular wires on a gold substrate. We analyzed the current and noise imaging data to obtain maps of molecular resistances and amount of mean-square fluctuations in the resistances of the regions of trans-azobenzene and a cis/trans-azobenzene mixture. We revealed that the fluctuations in the molecular resistances in the SAMs were enhanced after the trans-to-cis isomerization, while the resistances were reduced. This result could be attributed to enhanced disorders in the molecular arrangements in the cis-SAMs. Furthermore, we observed that the changes in the resistance fluctuations were reversible with respect to repeated trans-to-cis and cis-to-trans isomerizations, indicating that the effects originated from reversible photoswitching of the molecular structures rather than irreversible damages of the molecules. These findings provide valuable insights into the electrical fluctuations in photoswitchable molecules, which could be utilized in further studies on molecular switches and molecular electronics in general. © 2018 IOP Publishing Ltd.

  17. Understanding the On-Off Switching Mechanism in Cationic Tetravalent Group-V-Based Fluoride Molecular Sensors Using Orbital Analysis.

    PubMed

    Usui, Kosuke; Ando, Mikinori; Yokogawa, Daisuke; Irle, Stephan

    2015-12-24

    The precise control of on-off switching is essential to the design of ideal molecular sensors. To understand the switching mechanism theoretically, we selected as representative example a 9-anthryltriphenylstibonium cation, which was reported as a fluoride ion sensor. In this molecule, the first excited singlet state exhibits two minimum geometries, where one of them is emissive and the other one dark. The excited state at the geometry with bright emission is of π-π* character, whereas it is of π-σ* character at the "dark" geometry. Geometry changes in the excited state were identified by geometry optimization and partial potential energy surface (PES) mapping. We also studied Group V homologues of this molecule. A barrierless relaxation pathway after vertical excitation to the "dark" geometry was found for the Sb-containing compound on the excited-states PES, whereas barriers appear in the case of P and As. Molecular orbital analysis suggests that the σ* orbital of the antimony compound is stabilized along such relaxation and that the excited state changes its nature correspondingly. Our results indicate that the size of the central atom is crucial for the design of fluoride sensors with this ligand framework.

  18. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  19. Negative differential resistance and switch behavior of T-BxNy (x, y = 5, 6, 11) molecular junctions

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Liang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Xin, Jian-Guo

    2017-05-01

    The electronic transport properties of T-BxNy (x, y = 5, 6, 11) molecular junction are investigated based on first-principle density functional theory and non-equilibrium Green's function method. Strong negative differential resistance (NDR) behavior is observed for T-B5N6 molecule under negative and positive bias voltages, with an obvious switch effect for T-B6N5. However, only small NDR is shown for the complex of the two molecules. The projected device density of states, the spatial distribution of molecular orbitals, and the effect of transmission spectra under various bias voltages on the electronic transport properties are analyzed. The obvious effect of bias voltage on the changes in the electronic distribution of frontier molecular orbitals is responsible for the NDR or switch behavior. Therefore, different functional molecular devices can be obtained with different structures of T-BxNy.

  20. Reactive molecular dynamics simulations of switching processes of azobenzene-based monolayer on surface

    NASA Astrophysics Data System (ADS)

    Tian, Ziqi; Wen, Jin; Ma, Jing

    2013-07-01

    It is a challenge to simulate the switching process of functional self-assembled monolayers (SAMs) on metal surfaces, since the systems consist of thousands of atoms and the switching is triggered by quantum-mechanical events. Herein a molecular dynamics simulation with a reactive rotation potential of N=N bond is implemented to investigate the dynamic conformational changes and packing effects on the stimuli-responsive isomerization of the terminally thiol functionalized azobiphenyls (AZOs), which are bound on the Au(111) surface. To, respectively, distinguish the time evolutions that start from cis and trans initial configurations, two different functions are established to model the potential energy curves for cis-to-trans and trans-to-cis transitions, instead of the only one cosine function used in the conventional non-reactive force fields. In order to simulate the conformation transitions of the AZO film on surface, a random switching function, depending on the N=N twisting angle, is constructed to consider both forward and backward cis/trans isomerization events and to trigger the reaction by changing the N atom types automatically. The factors that will influence the isomerization process, including the choice of ensembles and thermostat algorithms, the time intervals separating each switching, and the forms of the switching function, are systematically tested. Most AZO molecules switch from the cis to trans configuration with a coverage of 5.76 × 10-6 mol/m2 on a picosecond time scale, and a low coverage might make the switching irreversible, which is in agreement with the experiments.

  1. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    PubMed

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  2. Probabilistic switching circuits in DNA

    PubMed Central

    Wilhelm, Daniel; Bruck, Jehoshua

    2018-01-01

    A natural feature of molecular systems is their inherent stochastic behavior. A fundamental challenge related to the programming of molecular information processing systems is to develop a circuit architecture that controls the stochastic states of individual molecular events. Here we present a systematic implementation of probabilistic switching circuits, using DNA strand displacement reactions. Exploiting the intrinsic stochasticity of molecular interactions, we developed a simple, unbiased DNA switch: An input signal strand binds to the switch and releases an output signal strand with probability one-half. Using this unbiased switch as a molecular building block, we designed DNA circuits that convert an input signal to an output signal with any desired probability. Further, this probability can be switched between 2n different values by simply varying the presence or absence of n distinct DNA molecules. We demonstrated several DNA circuits that have multiple layers and feedback, including a circuit that converts an input strand to an output strand with eight different probabilities, controlled by the combination of three DNA molecules. These circuits combine the advantages of digital and analog computation: They allow a small number of distinct input molecules to control a diverse signal range of output molecules, while keeping the inputs robust to noise and the outputs at precise values. Moreover, arbitrarily complex circuit behaviors can be implemented with just a single type of molecular building block. PMID:29339484

  3. Simultaneous and coordinated rotational switching of all molecular rotors in a network

    DOE PAGES

    Zhang, Y.; Kersell, H.; Stefak, R.; ...

    2016-05-09

    A range of artificial molecular systems have been created that can exhibit controlled linear and rotational motion. In the development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching by applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above ±1 V at 80 K. The phenomenon is observedmore » only in a hexagonal rotor network due to the degeneracy of the ground state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur resulting in the rotator arms pointing in different directions. In conclusion, analysis reveals that the rotator arm directions here are not random, but are coordinated to minimize energy via cross talk among the rotors through dipolar interactions.« less

  4. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    PubMed Central

    Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.

    2015-01-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  5. Neurotransmitter Switching? No Surprise

    PubMed Central

    Spitzer, Nicholas C.

    2015-01-01

    Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed. PMID:26050033

  6. Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; Sylvester, O'Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S; Bartoli, Manuela; Jahng, Wan Jin

    2016-02-01

    Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.

  7. A Predictive Model of Intein Insertion Site for Use in the Engineering of Molecular Switches

    PubMed Central

    Apgar, James; Ross, Mary; Zuo, Xiao; Dohle, Sarah; Sturtevant, Derek; Shen, Binzhang; de la Vega, Humberto; Lessard, Philip; Lazar, Gabor; Raab, R. Michael

    2012-01-01

    Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch. PMID:22649521

  8. Systematic identification of phosphorylation-mediated protein interaction switches

    PubMed Central

    Wichmann, Oliver; Utz, Mathias; Andre, Timon; Minguez, Pablo; Parca, Luca; Roth, Frederick P.; Gavin, Anne-Claude; Bork, Peer; Russell, Robert B.

    2017-01-01

    Proteomics techniques can identify thousands of phosphorylation sites in a single experiment, the majority of which are new and lack precise information about function or molecular mechanism. Here we present a fast method to predict potential phosphorylation switches by mapping phosphorylation sites to protein-protein interactions of known structure and analysing the properties of the protein interface. We predict 1024 sites that could potentially enable or disable particular interactions. We tested a selection of these switches and showed that phosphomimetic mutations indeed affect interactions. We estimate that there are likely thousands of phosphorylation mediated switches yet to be uncovered, even among existing phosphorylation datasets. The results suggest that phosphorylation sites on globular, as distinct from disordered, parts of the proteome frequently function as switches, which might be one of the ancient roles for kinase phosphorylation. PMID:28346509

  9. Identifying Read/Write Speeds for Field-Induced Interfacial Resistive Switching.

    NASA Astrophysics Data System (ADS)

    Tsui, Stephen; Das, Nilanjan; Wang, Yaqi; Xue, Yuyi; Chu, C. W.

    2007-03-01

    Efforts continue to explore new phenomena that may allow for next generation nonvolatile memory technology. Much attention has been drawn to the field-induced resistive switch occurring at the interface between a metal electrode and perovskite oxide. The switch between high (off) and low (on) resistance states is controlled by the polarity of applied voltage pulsing. Characterization of Ag-Pr0.7Ca0.3MnO3 interfaces via impedance spectroscopy shows that the resistances above 10^6 Hz are the same at the on and off states, which limits the reading speed to far slower than the applied switching pulses, or device write speed at the order of 10^7 Hz. We deduce that the switching interface is percolative in nature and that small local rearrangement of defect structures may play a major role.

  10. Spin filter and molecular switch based on bowtie-shaped graphene nanoflake

    NASA Astrophysics Data System (ADS)

    Kang, Jun; Wu, Fengmin; Li, Jingbo

    2012-11-01

    The magnetic and transport properties of bowtie-shaped graphene nanoflake (BGNF) are investigated from first principles calculations. The eigen states of ferromagnetic (FM) BGNF near Fermi level are found to be delocalized over the whole flake, whereas those of antiferromagnetic (AFM) BGNF are localized in one side. The different characters result in different transport properties for FM and AFM BGNFs. FM BGNF exhibits perfect spin filtering effect and can serve as a spin filter. Moreover, the conductance of BGNF is much larger in FM state than in AFM state, thus BGNF can serve as a molecular switch. These results suggest that BGNF is a good candidate for future nanoelectronics.

  11. Spiers Memorial Lecture. Molecular mechanics and molecular electronics.

    PubMed

    Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R

    2006-01-01

    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

  12. Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase

    PubMed Central

    Ma, Wen; Whitley, Kevin D; Schulten, Klaus

    2018-01-01

    Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines. PMID:29664402

  13. Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase.

    PubMed

    Ma, Wen; Whitley, Kevin D; Chemla, Yann R; Luthey-Schulten, Zaida; Schulten, Klaus

    2018-04-17

    Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines. © 2018, Ma et al.

  14. Ferroelectric switching of elastin

    PubMed Central

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  15. Advances in methods to characterize ligand-induced ionic lock and rotamer toggle molecular switch in G protein-coupled receptors.

    PubMed

    Xie, Xiang-Qun; Chowdhury, Ananda

    2013-01-01

    Structural biology of GPCRs has made significant progress upon recently developed technologies for GPCRs expression/purification and elucidation of GPCRs crystal structures. The crystal structures provide a snapshot of the receptor structural disposition of GPCRs itself or with cocrystallized ligands, and the results are congruent with biophysical and computer modeling studies reported about GPCRs conformational and dynamics flexibility, regulated activation, and the various stabilizing interactions, such as "molecular switches." The molecular switches generally constitute the most conserved domains within a particular GPCR superfamily. Often agonist-induced receptor activation proceeds by the disruption of majority of these interactions, while antagonist and inverse agonist act as blockers and structural stabilizers, respectively. Several elegant studies, particularly for the β2AR, have demonstrated the relationship between ligand structure, receptor conformational changes, and corresponding pharmacological outcomes. Thus, it is of great importance to understand GPCRs activation related to cell signaling pathways. Herein, we summarize the steps to produce functional GPCRs, generate suitably fluorescent labeled GPCRs and the procedure to use that to understand if ligand-induced activation can proceed by activation of the GPCRs via ionic lock switch and/or rotamer toggle switch mechanisms. Such understanding of ligand structure and mechanism of receptor activation will provide great insight toward uncovering newer pathways of GPCR activation and aid in structure-based drug design. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Plastic Transition to Switch Nonlinear Optical Properties Showing the Record High Contrast in a Single-Component Molecular Crystal.

    PubMed

    Sun, Zhihua; Chen, Tianliang; Liu, Xitao; Hong, Maochun; Luo, Junhua

    2015-12-23

    To switch bulk nonlinear optical (NLO) effects represents an exciting new branch of NLO material science, whereas it remains a great challenge to achieve high contrast for "on/off" of quadratic NLO effects in crystalline materials. Here, we report the supereminent NLO-switching behaviors of a single-component plastic crystal, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (1), which shows a record high contrast of at least ∼150, exceeding all the known crystalline switches. Such a breakthrough is clearly elucidated from the slowing down of highly isotropic molecular motions during plastic-to-rigid transition. The deep understanding of its intrinsic plasticity and superior NLO property allows the construction of a feasible switching mechanism. As a unique class of substances with short-range disorder embedded in long-range ordered crystalline lattice, plastic crystals enable response to external stimuli and fulfill specific photoelectric functions, which open a newly conceptual avenue for the designing of new functional materials.

  17. A cytosolic carbonic anhydrase molecular switch occurs in the gills of metamorphic sea lamprey

    USGS Publications Warehouse

    Ferreira-Martins, D.; McCormick, Stephen; Campos, A.; Lopes-Marques, M.; Osorio, H.; Coimbra, J.; Castro, L.F.C.; Wilson, Jonthan M

    2016-01-01

    Carbonic anhydrase plays a key role in CO2 transport, acid-base and ion regulation and metabolic processes in vertebrates. While several carbonic anhydrase isoforms have been identified in numerous vertebrate species, basal lineages such as the cyclostomes have remained largely unexamined. Here we investigate the repertoire of cytoplasmic carbonic anhydrases in the sea lamprey (Petromyzon marinus), that has a complex life history marked by a dramatic metamorphosis from a benthic filter-feeding ammocoete larvae into a parasitic juvenile which migrates from freshwater to seawater. We have identified a novel carbonic anhydrase gene (ca19) beyond the single carbonic anhydrase gene (ca18) that was known previously. Phylogenetic analysis and synteny studies suggest that both carbonic anhydrase genes form one or two independent gene lineages and are most likely duplicates retained uniquely in cyclostomes. Quantitative PCR of ca19 and ca18 and protein expression in gill across metamorphosis show that the ca19 levels are highest in ammocoetes and decrease during metamorphosis while ca18 shows the opposite pattern with the highest levels in post-metamorphic juveniles. We propose that a unique molecular switch occurs during lamprey metamorphosis resulting in distinct gill carbonic anhydrases reflecting the contrasting life modes and habitats of these life-history stages.

  18. Necroptosis: Modules and molecular switches with therapeutic implications.

    PubMed

    Arora, Deepika; Sharma, Pradeep Kumar; Siddiqui, Mohammed Haris; Shukla, Yogeshwer

    2017-06-01

    Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Conformational switching between protein substates studied with 2D IR vibrational echo spectroscopy and molecular dynamics simulations.

    PubMed

    Bagchi, Sayan; Thorpe, Dayton G; Thorpe, Ian F; Voth, Gregory A; Fayer, M D

    2010-12-30

    Myoglobin is an important protein for the study of structure and dynamics. Three conformational substates have been identified for the carbonmonoxy form of myoglobin (MbCO). These are manifested as distinct peaks in the IR absorption spectrum of the CO stretching mode. Ultrafast 2D IR vibrational echo chemical exchange experiments are used to observed switching between two of these substates, A(1) and A(3), on a time scale of <100 ps for two mutants of wild-type Mb. The two mutants are a single mutation of Mb, L29I, and a double mutation, T67R/S92D. Molecular dynamics (MD) simulations are used to model the structural differences between the substates of the two MbCO mutants. The MD simulations are also employed to examine the substate switching in the two mutants as a test of the ability of MD simulations to predict protein dynamics correctly for a system in which there is a well-defined transition over a significant potential barrier between two substates. For one mutant, L29I, the simulations show that translation of the His64 backbone may differentiate the two substates. The simulations accurately reproduce the experimentally observed interconversion time for the L29I mutant. However, MD simulations exploring the same His64 backbone coordinate fail to display substate interconversion for the other mutant, T67R/S92D, thus pointing to the likely complexity of the underlying protein interactions. We anticipate that understanding conformational dynamics in MbCO via ultrafast 2D IR vibrational echo chemical exchange experiments can help to elucidate fast conformational switching processes in other proteins.

  20. A Multiaxial Molecular Ferroelectric with Highest Curie Temperature and Fastest Polarization Switching.

    PubMed

    Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Wan-Ying; Ye, Heng-Yun; You, Yu-Meng; Xiong, Ren-Gen

    2017-10-04

    The classical organic ferroelectric, poly(vinylidene fluoride) (PVDF), has attracted much attention as a promising candidate for data storage applications compatible with all-organic electronics. However, it is the low crystallinity, the large coercive field, and the limited thermal stability of remanent polarization that severely hinder large-scale integration. In light of that, we show a molecular ferroelectric thin film of [Hdabco][ReO 4 ] (dabco = 1,4-diazabicyclo[2.2.2]octane) (1), belonging to another class of typical organic ferroelectrics. Remarkably, it displays not only the highest Curie temperature of 499.6 K but also the fastest polarization switching of 100k Hz among all reported molecular ferroelectrics. Combined with the large remanent polarization values (∼9 μC/cm 2 ), the low coercive voltages (∼10 V), and the unique multiaxial ferroelectric nature, 1 becomes a promising and viable alternative to PVDF for data storage applications in next-generation flexible devices, wearable devices, and bionics.

  1. "Off-On"switching electrochemiluminescence biosensor for mercury(II) detection based on molecular recognition technology.

    PubMed

    Cheng, Lin; Wei, BingGuo; He, Ling Ling; Mao, Ling; Zhang, Jie; Ceng, JinXiang; Kong, DeRong; Chen, ChaDan; Cui, HanFeng; Hong, Nian; Fan, Hao

    2017-02-01

    A novel "off-On" electrogenerated chemiluminescence (ECL) biosensor has been developed for the detection of mercury(II) based on molecular recognition technology. The ECL mercury(II) biosensor comprises two main parts: an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Ruthenium(II) tris-(bipyridine)(Ru(bpy) 3 2+ )/Cyclodextrins-Au nanoparticles(CD-AuNps)/Nafion on the surface of glass carbon electrode (GCE), and the ECL intensity switch is the single hairpin DNA probe designed according to the "molecular recognition" strategy which was functionalized with ferrocene tag at one end and attached to Cyclodextrins (CD) on modified GCE through supramolecular noncovalent interaction. We demonstrated that, in the absence of Hg(II) ion, the probe keeps single hairpin structure and resulted in a quenching of ECL of Ru(bpy) 3 2+ . Whereas, in the presence of Hg(II) ion, the probe prefers to form the T-Hg(II)-T complex and lead to an obvious recovery of ECL of Ru(bpy) 3 2+ , which provided a sensing platform for the detection of Hg(II) ion. Using this sensing platform, a simple, rapid and selective "off-On" ECL biosensor for the detection of mercury(II) with a detection limit of 0.1 nM has been developed. Copyright © 2016. Published by Elsevier Inc.

  2. A pH-responsive molecular switch with tricolor luminescence.

    PubMed

    Ahn, Hyungmin; Hong, Jaewan; Kim, Sung Yeon; Choi, Ilyoung; Park, Moon Jeong

    2015-01-14

    We developed a new ratiometric pH sensor based on poly(N-phenylmaleimide) (PPMI)-containing block copolymer that emits three different fluorescent colors depending on the pH. The strong solvatochromism and tautomerism of the PPMI derivatives enabled precise pH sensing for almost the entire range of the pH scale. Theoretical calculations have predicted largely dissimilar band gaps for the keto, enol, and enolate tautomers of PPMI owing to low-dimensional conjugation effects. The tunable emission wavelength and intensity of our sensors, as well as the reversible color switching with high-luminescent contrast, were achieved using rational molecular design of PPMI analogues as an innovative platform for accurate H(+) detection. The self-assembly of block copolymers on the nanometer length scale was particularly highlighted as a novel prospective means of regulating fluorescence properties while avoiding the self-quenching phenomenon, and this system can be used as a fast responsive pH sensor in versatile device forms.

  3. Molecular Switch for Sub-Diffraction Laser Lithography by Photoenol Intermediate-State Cis-Trans Isomerization.

    PubMed

    Mueller, Patrick; Zieger, Markus M; Richter, Benjamin; Quick, Alexander S; Fischer, Joachim; Mueller, Jonathan B; Zhou, Lu; Nienhaus, Gerd Ulrich; Bastmeyer, Martin; Barner-Kowollik, Christopher; Wegener, Martin

    2017-06-27

    Recent developments in stimulated-emission depletion (STED) microscopy have led to a step change in the achievable resolution and allowed breaking the diffraction limit by large factors. The core principle is based on a reversible molecular switch, allowing for light-triggered activation and deactivation in combination with a laser focus that incorporates a point or line of zero intensity. In the past years, the concept has been transferred from microscopy to maskless laser lithography, namely direct laser writing (DLW), in order to overcome the diffraction limit for optical lithography. Herein, we propose and experimentally introduce a system that realizes such a molecular switch for lithography. Specifically, the population of intermediate-state photoenol isomers of α-methyl benzaldehydes generated by two-photon absorption at 700 nm fundamental wavelength can be reversibly depleted by simultaneous irradiation at 440 nm, suppressing the subsequent Diels-Alder cycloaddition reaction which constitutes the chemical core of the writing process. We demonstrate the potential of the proposed mechanism for STED-inspired DLW by covalently functionalizing the surface of glass substrates via the photoenol-driven STED-inspired process exploiting reversible photoenol activation with a polymerization initiator. Subsequently, macromolecules are grown from the functionalized areas and the spatially coded glass slides are characterized by atomic-force microscopy. Our approach allows lines with a full-width-at-half-maximum of down to 60 nm and line gratings with a lateral resolution of 100 nm to be written, both surpassing the diffraction limit.

  4. Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-a molecules

    PubMed Central

    Iancu, Violeta; Hla, Saw-Wai

    2006-01-01

    Single chlorophyll-a molecules, a vital resource for the sustenance of life on Earth, have been investigated by using scanning tunneling microscope manipulation and spectroscopy on a gold substrate at 4.6 K. Chlorophyll-a binds on Au(111) via its porphyrin unit while the phytyl-chain is elevated from the surface by the support of four CH3 groups. By injecting tunneling electrons from the scanning tunneling microscope tip, we are able to bend the phytyl-chain, which enables the switching of four molecular conformations in a controlled manner. Statistical analyses and structural calculations reveal that all reversible switching mechanisms are initiated by a single tunneling-electron energy-transfer process, which induces bond rotation within the phytyl-chain. PMID:16954201

  5. Triple-helix molecular switch-based aptasensors and DNA sensors.

    PubMed

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Isolation of Ion-Driven Conformations in Diphenylacetylene Molecular Switches Using Cryogenic Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wolk, Arron B.; Garand, Etienne; Jones, Ian M.; Kamrath, Michael Z.; Hamilton, Rew; Johnson, Mark A.

    2012-06-01

    We report the infrared predissociation spectra of a family of ionic diphenylacetylene molecular switch complexes. The electrosprayed complexes were trapped and cooled in a cryogenic (10K) quadrupole ion trap and tagged with molecular deuterium. The infrared spectra of the vibrationally cold species reveal sharp transitions over a wide energy range (800 - 3800 cm-1), facilitating comparison to harmonic spectra. The evolution of the band pattern upon derivatization of the complexes exposes the signatures of the amide, urea, and carbonyl functionalities, enabling unambiguous identification of the non-covalent interactions that control the secondary structure of the molecule. Complexation with the tetramethylammonium cation reveals a conformation analogous to that of the neutral molecule, while halide ion attachment induces a conformational change similar to that observed earlier in solution. In several cases, both the donor and acceptor groups involved in the multidentate H-bonds are observed, providing a microscopic mechanical picture of the interactions at play. I. Jones, and A. Hamilton, Angew. Chem. Intl. Edit. 50, 4597 (2011).

  7. Molecular Dynamic Simulation Reveals Damaging Impact of RAC1 F28L Mutation in the Switch I Region

    PubMed Central

    Sethumadhavan, Rao; Purohit, Rituraj

    2013-01-01

    Ras-related C3 botulinum toxin substrate 1 (RAC1) is a plasma membrane-associated small GTPase which cycles between the active GTP-bound and inactive GDP-bound states. There is wide range of evidences indicating its active participation in inducing cancer-associated phenotypes. RAC1 F28L mutation (RACF28L) is a fast recycling mutation which has been implicated in several cancer associated cases. In this work we have performed molecular docking and molecular dynamics simulation (~0.3 μs) to investigate the conformational changes occurring in the mutant protein. The RMSD, RMSF and NHbonds results strongly suggested that the loss of native conformation in the Switch I region in RAC1 mutant protein could be the reason behind its oncogenic transformation. The overall results suggested that the mutant protein attained compact conformation as compared to the native. The major impact of mutation was observed in the Switch I region which might be the crucial reason behind the loss of interaction between the guanine ring and F28 residue. PMID:24146998

  8. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways

    PubMed Central

    Simons, Matias; Gloy, Joachim; Ganner, Athina; Bullerkotte, Axel; Bashkurov, Mikhail; Krönig, Corinna; Schermer, Bernhard; Benzing, Thomas; Cabello, Olga A; Jenny, Andreas; Mlodzik, Marek; Polok, Bozena; Driever, Wolfgang; Obara, Tomoko; Walz, Gerd

    2013-01-01

    Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells1. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure2. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development. PMID:15852005

  9. Molecular Dynamics of Flexible Polar Cations in a Variable Confined Space: Toward Exceptional Two-Step Nonlinear Optical Switches.

    PubMed

    Xu, Wei-Jian; He, Chun-Ting; Ji, Cheng-Min; Chen, Shao-Li; Huang, Rui-Kang; Lin, Rui-Biao; Xue, Wei; Luo, Jun-Hua; Zhang, Wei-Xiong; Chen, Xiao-Ming

    2016-07-01

    The changeable molecular dynamics of flexible polar cations in the variable confined space between inorganic chains brings about a new type of two-step nonlinear optical (NLO) switch with genuine "off-on-off" second harmonic generation (SHG) conversion between one NLO-active state and two NLO-inactive states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching

    PubMed Central

    Horns, Felix; Vollmers, Christopher; Croote, Derek; Mackey, Sally F; Swan, Gary E; Dekker, Cornelia L; Davis, Mark M; Quake, Stephen R

    2016-01-01

    Antibody class switching is a feature of the adaptive immune system which enables diversification of the effector properties of antibodies. Even though class switching is essential for mounting a protective response to pathogens, the in vivo patterns and lineage characteristics of antibody class switching have remained uncharacterized in living humans. Here we comprehensively measured the landscape of antibody class switching in human adult twins using antibody repertoire sequencing. The map identifies how antibodies of every class are created and delineates a two-tiered hierarchy of class switch pathways. Using somatic hypermutations as a molecular clock, we discovered that closely related B cells often switch to the same class, but lose coherence as somatic mutations accumulate. Such correlations between closely related cells exist when purified B cells class switch in vitro, suggesting that class switch recombination is directed toward specific isotypes by a cell-autonomous imprinted state. DOI: http://dx.doi.org/10.7554/eLife.16578.001 PMID:27481325

  11. Plasma Switch Development.

    DTIC Science & Technology

    1984-06-08

    Appendix II), the progress to date will be detailed here. II° K -BEAM CONTROLLED SWITCH The EBCS is an opening switch concept that has the potential for...such plasma in ᝺ uis. To accurately assess the viability of this scheme, more effort than what was provided to date is required. 0 00 LL k CCj2 E - w...1962 e+A* -A +A (2) ... 2OOOz t~ -- whs A is, in enera, any positive molecular ion (simple or cluster ) of species A. We define the effective rate at

  12. Identifying molecular subtypes related to clinicopathologic factors in pancreatic cancer

    PubMed Central

    2014-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal tumors and usually presented with locally advanced and distant metastasis disease, which prevent curative resection or treatments. In this regard, we considered identifying molecular subtypes associated with clinicopathological factor as prognosis factors to stratify PDAC for appropriate treatment of patients. Results In this study, we identified three molecular subtypes which were significant on survival time and metastasis. We also identified significant genes and enriched pathways represented for each molecular subtype. Considering R0 resection patients included in each subtype, metastasis and survival times are significantly associated with subtype 1 and subtype 2. Conclusions We observed three PDAC molecular subtypes and demonstrated that those subtypes were significantly related with metastasis and survival time. The study may have utility in stratifying patients for cancer treatment. PMID:25560450

  13. Immunoglobulin class-switch recombination deficiencies.

    PubMed

    Durandy, Anne; Kracker, Sven

    2012-07-30

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.

  14. Photochemically and Thermally Driven Full-Color Reflection in a Self-Organized Helical Superstructure Enabled by a Halogen-Bonded Chiral Molecular Switch.

    PubMed

    Wang, Hao; Bisoyi, Hari Krishna; Wang, Ling; Urbas, Augustine M; Bunning, Timothy J; Li, Quan

    2018-02-05

    Supramolecular approaches toward the fabrication of functional materials and systems have been an enabling endeavor. Recently, halogen bonding has been harnessed as a promising supramolecular tool. Herein we report the synthesis and characterization of a novel halogen-bonded light-driven axially chiral molecular switch. The photoactive halogen-bonded chiral switch is able to induce a self-organized, tunable helical superstructure, that is, cholesteric liquid crystal (CLC), when doped into an achiral liquid crystal (LC) host. The halogen-bonded switch as a chiral dopant has a high helical twisting power (HTP) and shows a large change of its HTP upon photoisomerization. This light-driven dynamic modulation enables reversible selective reflection color tuning across the entire visible spectrum. The chiral switch also displays a temperature-dependent HTP change that enables thermally driven red, green, and blue (RGB) reflection colors in the self-organized helical superstructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p,more » for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.« less

  16. Evolution in Action: N and C Termini of Subunits in Related T=4 Viruses Exchange Roles as Molecular Switches

    PubMed Central

    Speir, Jeffrey A.; Taylor, Derek J.; Natarajan, Padmaja; Pringle, Fiona M.; Ball, L. Andrew; Johnson, John E.

    2010-01-01

    Summary The T=4 tetravirus and T=3 nodavirus capsid proteins undergo closely similar autoproteolysis to produce the N-terminal ß and C-terminal, lipophilic γ polypeptides. The γ peptides and N-termini of ß also act as molecular switches that determine their quasi-equivalent capsid structures. The crystal structure of Providence virus (PrV), only the second of a tetravirus (the first was NωV), reveals conserved folds and cleavage sites, but the protein termini have completely different structures and the opposite functions of those in N⌉V. N-termini of ß form the molecular switch in PrV, while γ peptides have this role in N⌉V. PrV γ peptides instead interact with packaged RNA at the particle 2-folds using a repeating sequence pattern found in only four other RNA or membrane binding proteins. The disposition of peptide termini in PrV is closely related to those in nodaviruses suggesting that PrV may be closer to the primordial T=4 particle than NωV. PMID:20541507

  17. Gate-controlled conductance switching in DNA

    PubMed Central

    Xiang, Limin; Palma, Julio L.; Li, Yueqi; Mujica, Vladimiro; Ratner, Mark A.; Tao, Nongjian

    2017-01-01

    Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated. Here we demonstrate conductance switching in DNA by replacing a DNA base with a redox group. By applying an electrochemical (EC) gate voltage to the molecule, we switch the redox group between the oxidized and reduced states, leading to reversible switching of the DNA conductance between two discrete levels. We further show that monitoring the individual conductance switching allows the study of redox reaction kinetics and thermodynamics at single molecular level using DNA as a probe. Our theoretical calculations suggest that the switch is due to the change in the energy level alignment of the redox states relative to the Fermi level of the electrodes. PMID:28218275

  18. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell

    PubMed Central

    Sotiropoulou, Georgia; Pampalakis, Georgios; Lianidou, Evi; Mourelatos, Zissimos

    2009-01-01

    Transformation of normal cells into malignant tumors requires the acquisition of six hallmark traits, e.g., self-sufficiency in growth signals, insensitivity to antigrowth signals and self-renewal, evasion of apoptosis, limitless replication potential, angiogenesis, invasion, and metastasis, which are common to all cancers (Hanahan and Weinberg 2000). These new cellular traits evolve from defects in major regulatory microcircuits that are fundamental for normal homeostasis. The discovery of microRNAs (miRNAs) as a new class of small non-protein-coding RNAs that control gene expression post-transcriptionally by binding to various mRNA targets suggests that these tiny RNA molecules likely act as molecular switches in the extensive regulatory web that involves thousands of transcripts. Most importantly, accumulating evidence suggests that numerous microRNAs are aberrantly expressed in human cancers. In this review, we discuss the emergent roles of microRNAs as switches that function to turn on/off known cellular microcircuits. We outline recent compelling evidence that deregulated microRNA-mediated control of cellular microcircuits cooperates with other well-established regulatory mechanisms to confer the hallmark traits of the cancer cell. Furthermore, these exciting insights into aberrant microRNA control in cancer-associated circuits may be exploited for cancer therapies that will target deregulated miRNA switches. PMID:19561119

  19. Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears

    USGS Publications Warehouse

    Jasmine Ware,; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey F.; Robbins, Charles T.; Joy Erlenbach,; Shannon Jensen,; Amy Cutting,; Nicole Nicassio-Hiskey,; Amy Hash,; Owen, Megan A.; Heiko Jansen,

    2015-01-01

    Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.

  20. Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium

    PubMed Central

    Sripathi, Srinivasa R.; Sylvester, O’Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S.; Bartoli, Manuela; Jahng, Wan Jin

    2016-01-01

    Previously, our study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate (PIP3) and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression. PMID:26661103

  1. Ferroelectric molecular field-switch based on double proton transfer process: Static and dynamical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, Michał F.; Sobolewski, Andrzej L.; Jankowska, Joanna

    2016-04-07

    In this work, we present a reversible ferroelectric molecular switch controlled by an external electric field. The studied (2Z)-1-(6-((Z)-2-hydroxy-2-phenylvinyl)pyridin-3-yl)-2-(pyridin-2(1H) -ylidene)ethanone (DSA) molecule is polarized by two uniaxial intramolecular hydrogen bonds. Two protons can be transferred along hydrogen bonds upon an electric field applied along the main molecular axis. The process results in reversion of the dipole moment of the system. Static ab initio and on-the-fly dynamical simulations of the DSA molecule placed in an external electric field give insight into the mechanism of the double proton transfer (DPT) in the system and allow for estimation of the time scale ofmore » this process. The results indicate that with increasing strength of the electric field, the step-wise mechanism of DPT changes into the downhill barrierless process in which the synchronous and asynchronous DPTs compete with each other.« less

  2. The allosteric switching mechanism in bacteriophage MS2

    NASA Astrophysics Data System (ADS)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.

    2016-07-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  3. The allosteric switching mechanism in bacteriophage MS2

    PubMed Central

    Perkett, Matthew R.; Mirijanian, Dina T.

    2016-01-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates. PMID:27448905

  4. Coupled Molecular Switching Processes in Ordered Mono- and Multilayers of Stimulus-Responsive Rotaxanes on Gold Surfaces

    PubMed Central

    2015-01-01

    Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. PMID:25782057

  5. Programmable DNA switches and their applications.

    PubMed

    Harroun, Scott G; Prévost-Tremblay, Carl; Lauzon, Dominic; Desrosiers, Arnaud; Wang, Xiaomeng; Pedro, Liliana; Vallée-Bélisle, Alexis

    2018-03-08

    DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.

  6. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  7. Immunoglobulin class-switch recombination deficiencies

    PubMed Central

    2012-01-01

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches. PMID:22894609

  8. Identifying Molecular Targets for PTSD Treatment Using Single Prolonged Stress

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0377 TITLE: Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0377 Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress 5b. GRANT...brain GR and β-AR expression alters glutamatergic and GABAergic function in neural circuits that mediate SPS-induced deficits in extinction retention

  9. Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype.

    PubMed

    Almog, Nava; Ma, Lili; Raychowdhury, Raktima; Schwager, Christian; Erber, Ralf; Short, Sarah; Hlatky, Lynn; Vajkoczy, Peter; Huber, Peter E; Folkman, Judah; Abdollahi, Amir

    2009-02-01

    Tumor dormancy has important implications for early detection and treatment of cancer. Lack of experimental models and limited clinical accessibility constitute major obstacles to the molecular characterization of dormant tumors. We have developed models in which human tumors remain dormant for a prolonged period of time (>120 days) until they switch to rapid growth and become strongly angiogenic. These angiogenic tumors retain their ability to grow fast once injected in new mice. We hypothesized that dormant tumors undergo a stable genetic reprogramming during their switch to the fast-growing phenotype. Genome-wide transcriptional analysis was done to dissect the molecular mechanisms underlying the switch of dormant breast carcinoma, glioblastoma, osteosarcoma, and liposarcoma tumors. A consensus expression signature distinguishing all four dormant versus switched fast-growing tumors was generated. In alignment with our phenotypic observation, the angiogenesis process was the most significantly affected functional gene category. The switch of dormant tumors was associated with down-regulation of angiogenesis inhibitor thrombospondin and decreased sensitivity of angiogenic tumors to angiostatin. The conversion of dormant tumors to exponentially growing tumors was also correlated with regulation and activation of pathways not hitherto linked to tumor dormancy process, such as endothelial cell-specific molecule-1, 5'-ecto-nucleotidase, tissue inhibitor of metalloproteinase-3, epidermal growth factor receptor, insulin-like growth factor receptor, and phosphatidylinositol 3-kinase signaling. Further, novel dormancy-specific biomarkers such as H2BK and Eph receptor A5 (EphA5) were discovered. EphA5 plasma levels in mice and mRNA levels in tumor specimens of glioma patients correlated with diseases stage. These data will be instrumental in identifying novel early cancer biomarkers and could provide a rationale for development of dormancy-promoting tumor therapy

  10. Intentional preparation of auditory attention-switches: Explicit cueing and sequential switch-predictability.

    PubMed

    Seibold, Julia C; Nolden, Sophie; Oberem, Josefa; Fels, Janina; Koch, Iring

    2018-06-01

    In an auditory attention-switching paradigm, participants heard two simultaneously spoken number-words, each presented to one ear, and decided whether the target number was smaller or larger than 5 by pressing a left or right key. An instructional cue in each trial indicated which feature had to be used to identify the target number (e.g., female voice). Auditory attention-switch costs were found when this feature changed compared to when it repeated in two consecutive trials. Earlier studies employing this paradigm showed mixed results when they examined whether such cued auditory attention-switches can be prepared actively during the cue-stimulus interval. This study systematically assessed which preconditions are necessary for the advance preparation of auditory attention-switches. Three experiments were conducted that controlled for cue-repetition benefits, modality switches between cue and stimuli, as well as for predictability of the switch-sequence. Only in the third experiment, in which predictability for an attention-switch was maximal due to a pre-instructed switch-sequence and predictable stimulus onsets, active switch-specific preparation was found. These results suggest that the cognitive system can prepare auditory attention-switches, and this preparation seems to be triggered primarily by the memorised switching-sequence and valid expectations about the time of target onset.

  11. The allosteric switching mechanism in bacteriophage MS2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we usemore » all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.« less

  12. TIDEL-II: first-line use of imatinib in CML with early switch to nilotinib for failure to achieve time-dependent molecular targets

    PubMed Central

    Yeung, David T.; Osborn, Michael P.; White, Deborah L.; Branford, Susan; Braley, Jodi; Herschtal, Alan; Kornhauser, Michael; Issa, Samar; Hiwase, Devendra K.; Hertzberg, Mark; Schwarer, Anthony P.; Filshie, Robin; Arthur, Christopher K.; Kwan, Yiu Lam; Trotman, Judith; Forsyth, Cecily J.; Taper, John; Ross, David M.; Beresford, Jennifer; Tam, Constantine; Mills, Anthony K.; Grigg, Andrew P.

    2015-01-01

    The Therapeutic Intensification in De Novo Leukaemia (TIDEL)-II study enrolled 210 patients with chronic phase chronic myeloid leukemia (CML) in two equal, sequential cohorts. All started treatment with imatinib 600 mg/day. Imatinib plasma trough level was performed at day 22 and if <1000 ng/mL, imatinib 800 mg/day was given. Patients were then assessed against molecular targets: BCR-ABL1 ≤10%, ≤1%, and ≤0.1% at 3, 6, and 12 months, respectively. Cohort 1 patients failing any target escalated to imatinib 800 mg/day, and subsequently switched to nilotinib 400 mg twice daily for failing the same target 3 months later. Cohort 2 patients failing any target switched to nilotinib directly, as did patients with intolerance or loss of response in either cohort. At 2 years, 55% of patients remained on imatinib, and 30% on nilotinib. Only 12% were >10% BCR-ABL1 at 3 months. Confirmed major molecular response was achieved in 64% at 12 months and 73% at 24 months. MR4.5 (BCR-ABL1 ≤0.0032%) at 24 months was 34%. Overall survival was 96% and transformation-free survival was 95% at 3 years. This trial supports the feasibility and efficacy of an imatinib-based approach with selective, early switching to nilotinib. This trial was registered at www.anzctr.org.au as #12607000325404. PMID:25519749

  13. Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka

    2016-03-01

    Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.

  14. Molecular-channel driven actuator with considerations for multiple configurations and color switching.

    PubMed

    Mu, Jiuke; Wang, Gang; Yan, Hongping; Li, Huayu; Wang, Xuemin; Gao, Enlai; Hou, Chengyi; Pham, Anh Thi Cam; Wu, Lianjun; Zhang, Qinghong; Li, Yaogang; Xu, Zhiping; Guo, Yang; Reichmanis, Elsa; Wang, Hongzhi; Zhu, Meifang

    2018-02-09

    The ability to achieve simultaneous intrinsic deformation with fast response in commercially available materials that can safely contact skin continues to be an unresolved challenge for artificial actuating materials. Rather than using a microporous structure, here we show an ambient-driven actuator that takes advantage of inherent nanoscale molecular channels within a commercial perfluorosulfonic acid ionomer (PFSA) film, fabricated by simple solution processing to realize a rapid response, self-adaptive, and exceptionally stable actuation. Selective patterning of PFSA films on an inert soft substrate (polyethylene terephthalate film) facilitates the formation of a range of different geometries, including a 2D (two-dimensional) roll or 3D (three-dimensional) helical structure in response to vapor stimuli. Chemical modification of the surface allowed the development of a kirigami-inspired single-layer actuator for personal humidity and heat management through macroscale geometric design features, to afford a bilayer stimuli-responsive actuator with multicolor switching capability.

  15. Tyrosine phosphorylation switching of a G protein.

    PubMed

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Rotaxane liquid crystals with variable length: The effect of switching efficiency on the isotropic-nematic transition

    NASA Astrophysics Data System (ADS)

    He, Hao; Sevick, Edith M.; Williams, David R. M.

    2018-04-01

    We examine a solution of non-adaptive two-state rotaxane molecules which can switch from a short state of length L to a long state of length qL, using statistical thermodynamics. This molecular switching is externally driven and can result in an isotropic-nematic phase transition without altering temperature and concentration. Here we concentrate on the limitation imposed by switching inefficiency, i.e., on the case where molecular switching is not quantitative, leading to a solution of rotaxanes in different states. We present switching diagrams that can guide in the design of rotaxanes which affect a macroscopic phase change.

  17. Effects of molecular chirality on self-assembly and switching in liquid crystals at the cross-over between rod-like and bent shapes.

    PubMed

    Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten

    2016-09-21

    A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override

  18. Denoising of genetic switches based on Parrondo's paradox

    NASA Astrophysics Data System (ADS)

    Fotoohinasab, Atiyeh; Fatemizadeh, Emad; Pezeshk, Hamid; Sadeghi, Mehdi

    2018-03-01

    Random decision making in genetic switches can be modeled as tossing a biased coin. In other word, each genetic switch can be considered as a game in which the reactive elements compete with each other to increase their molecular concentrations. The existence of a very small number of reactive element molecules has caused the neglect of effects of noise to be inevitable. Noise can lead to undesirable cell fate in cellular differentiation processes. In this paper, we study the robustness to noise in genetic switches by considering another switch to have a new gene regulatory network (GRN) in which both switches have been affected by the same noise and for this purpose, we will use Parrondo's paradox. We introduce two networks of games based on possible regulatory relations between genes. Our results show that the robustness to noise can increase by combining these noisy switches. We also describe how one of the switches in network II can model lysis/lysogeny decision making of bacteriophage lambda in Escherichia coli and we change its fate by another switch.

  19. A molecular-sized optical logic circuit for digital modulation of a fluorescence signal

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun

    2018-03-01

    Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.

  20. Organic solid state optical switches and method for producing organic solid state optical switches

    DOEpatents

    Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.

    1993-01-01

    This invention consists of a light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, and a method for making said compound.

  1. On the Role of the SP1 Domain in HIV-1 Particle Assembly: a Molecular Switch?▿

    PubMed Central

    Datta, Siddhartha A. K.; Temeselew, Lakew G.; Crist, Rachael M.; Soheilian, Ferri; Kamata, Anne; Mirro, Jane; Harvin, Demetria; Nagashima, Kunio; Cachau, Raul E.; Rein, Alan

    2011-01-01

    Expression of a retroviral protein, Gag, in mammalian cells is sufficient for assembly of immature virus-like particles (VLPs). VLP assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We have investigated the role of SP1, a spacer between CA and NC in HIV-1 Gag, in VLP assembly. Mutational analysis showed that even subtle changes in the first 4 residues of SP1 destroy the ability of Gag to assemble correctly, frequently leading to formation of tubes or other misassembled structures rather than proper VLPs. We also studied the conformation of the CA-SP1 junction region in solution, using both molecular dynamics simulations and circular dichroism. Consonant with nuclear magnetic resonance (NMR) studies from other laboratories, we found that SP1 is nearly unstructured in aqueous solution but undergoes a concerted change to an α-helical conformation when the polarity of the environment is reduced by addition of dimethyl sulfoxide (DMSO), trifluoroethanol, or ethanol. Remarkably, such a coil-to-helix transition is also recapitulated in an aqueous medium at high peptide concentrations. The exquisite sensitivity of SP1 to mutational changes and its ability to undergo a concentration-dependent structural transition raise the possibility that SP1 could act as a molecular switch to prime HIV-1 Gag for VLP assembly. We suggest that changes in the local environment of SP1 when Gag oligomerizes on nucleic acid might trigger this switch. PMID:21325421

  2. Direct measurement of photomechanical switching cross-sections of single-molecules on a surface

    NASA Astrophysics Data System (ADS)

    Cho, Jongweon; Comstock, Matthew J.; Levy, Niv; Berbil-Bautista, Luis; Lauterwasser, Frank; Frechet, Jean M. J.; Crommie, Michael F.

    2008-03-01

    The photomechanical switching of photoactive molecules in solution strongly depends on the wavelength of light. This dependence is crucial to reliably control the photomechanical state of target molecules. Recently, reversible photomechanical switching of individual azobenzene molecular derivatives on the Au(111) surface has been reported for one particular wavelength of UV illumination [1]. To further understand this process and its possible applications in future nanotechnologies, we have investigated photomechanical switching rates and saturation behavior for azobenzene molecular derivatives at a surface under optical stimulation at different wavelengths. Using single-molecule-resolved scanning tunneling microscopy, we have determined both the forward and reverse photomechanical molecular switching cross-sections at different wavelengths. In a dramatic departure from solution-based environments, visible light does not efficiently reverse the photoreaction. [1] Matthew J. Comstock, Niv Levy, Armen Kirakosian, Jongweon Cho, Frank Lauterwasser, Jessica H. Harvey, David A. Strubbe, Jean M. J. Fr'echet, Dirk Trauner, Steven G. Louie, and Michael F. Crommie, Phys. Rev. Lett. 99, 038301 (2007)

  3. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange.

    PubMed

    Ren, Yansong; Svensson, Per H; Ramström, Olof

    2018-05-22

    A multiresponsive enamine-based molecular switch is presented, in which forward/backward configurational rotation around the C=C bond could be precisely controlled by the addition of an acid/base or metal ions. Fluorescence turn-on/off effects and large Stokes shifts were observed while regulating the switching process with Cu II . The enamine functionality furthermore enabled double dynamic regimes, in which configurational switching could operate in conjunction with constitutional enamine exchange of the rotor part. This behavior was used to construct a prototypical dynamic covalent switch system through enamine exchange with primary amines. The dynamic exchange process could be readily turned on/off by regulating the switch status with pH. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TA Reflects Molecular Switch in Commitment to Carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Tan, Ruimin; Opresko, Lee K.

    2009-11-01

    We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely non-overlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) andmore » D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired non-tumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1 and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.« less

  5. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf.

    PubMed

    Filchtinski, Daniel; Sharabi, Oz; Rüppel, Alma; Vetter, Ingrid R; Herrmann, Christian; Shifman, Julia M

    2010-06-11

    Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch. Copyright 2010 Elsevier Ltd

  6. Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches

    PubMed Central

    Krobath, Heinrich; Chan, Hue Sun

    2016-01-01

    Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein’s folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+β folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches. PMID:27253392

  7. Hybrid colored noise process with space-dependent switching rates

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Lawley, Sean D.

    2017-07-01

    A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ →0 ) and fast switching limit (ɛ →0 ) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ɛ ,κ →0 with ɛ /κ2 fixed.

  8. An Evolutionary Perspective on Yeast Mating-Type Switching

    PubMed Central

    Hanson, Sara J.; Wolfe, Kenneth H.

    2017-01-01

    Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching? PMID:28476860

  9. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  10. Switching off hydrogen-bond-driven excitation modes in liquid methanol

    DOE PAGES

    Bellissima, Stefano; González, Miguel A.; Bafile, Ubaldo; ...

    2017-08-30

    Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic propertiesmore » of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes.« less

  11. Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction.

    PubMed

    Bi, Hai; Palma, Carlos-Andres; Gong, Yuxiang; Hasch, Peter; Elbing, Mark; Mayor, Marcel; Reichert, Joachim; Barth, Johannes V

    2018-04-11

    Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.

  12. Twinning, Epitaxy and Domain Switching in Ferroelastic Inclusion Compounds

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Mark D.; Peterson, Matthew L.

    2003-01-01

    Our research is in the area of solid-state organic chemistry, which lies at the interface between physical organic chemistry and materials science. We use crystalline solids as models to probe fundamental issues about physical processes, molecular interactions and chemical reactions that are important for fabrication, stabilization and application of technological materials. Much of our most recent work has focused on the phenomena of ferroelastic and ferroelectric domain switching, in which application of an external force or electric field to a crystal causes the molecules inside the crystal to reorient, in tandem, to a new orientational state. To better understand and control the domain switching process, we have designed and synthesized over twenty closely related, ferroelastic organic crystals. Our approach has been to use crystalline inclusion compounds, in which one molecule (the guest) is trapped within the crystalline framework of a second molecule (the host). By keeping the host constant and varying the proportions and kinds of guests, it has been possible to tailor these materials so that domain switching is rapid and reversible (which is desirable for high technology applications). Inclusion compounds therefore serve as powerful systems for understanding the specific molecular mechanisms that control domain switching.

  13. Extant fold-switching proteins are widespread.

    PubMed

    Porter, Lauren L; Looger, Loren L

    2018-06-05

    A central tenet of biology is that globular proteins have a unique 3D structure under physiological conditions. Recent work has challenged this notion by demonstrating that some proteins switch folds, a process that involves remodeling of secondary structure in response to a few mutations (evolved fold switchers) or cellular stimuli (extant fold switchers). To date, extant fold switchers have been viewed as rare byproducts of evolution, but their frequency has been neither quantified nor estimated. By systematically and exhaustively searching the Protein Data Bank (PDB), we found ∼100 extant fold-switching proteins. Furthermore, we gathered multiple lines of evidence suggesting that these proteins are widespread in nature. Based on these lines of evidence, we hypothesized that the frequency of extant fold-switching proteins may be underrepresented by the structures in the PDB. Thus, we sought to identify other putative extant fold switchers with only one solved conformation. To do this, we identified two characteristic features of our ∼100 extant fold-switching proteins, incorrect secondary structure predictions and likely independent folding cooperativity, and searched the PDB for other proteins with similar features. Reassuringly, this method identified dozens of other proteins in the literature with indication of a structural change but only one solved conformation in the PDB. Thus, we used it to estimate that 0.5-4% of PDB proteins switch folds. These results demonstrate that extant fold-switching proteins are likely more common than the PDB reflects, which has implications for cell biology, genomics, and human health. Copyright © 2018 the Author(s). Published by PNAS.

  14. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices.

    PubMed

    Kim, Hannah; Kim, Tae-Kyung; Kim, Ji-Eun; Park, Jin-Young; Lee, Yunjin; Kang, Minkyung; Kim, Kyoung-Shim; Han, Pyung-Lim

    2014-11-07

    that the preferred food choices were switched on when either the mGluR3-AC5 pathway was inactive or the mGluR1 pathway was active, whereas the preferred food-choices were switched off when mGluR1 or its downstream pathway was suppressed. These results identify the AC5 and mGluR system in the dorsal striatum as molecular on/off switches to direct decisions on behavioral preferences for cue-oriented options.

  15. Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas fluorescens

    PubMed Central

    Gallie, Jenna; Libby, Eric; Bertels, Frederic; Remigi, Philippe; Jendresen, Christian B.; Ferguson, Gayle C.; Desprat, Nicolas; Buffing, Marieke F.; Sauer, Uwe; Beaumont, Hubertus J. E.; Martinussen, Jan; Kilstrup, Mogens; Rainey, Paul B.

    2015-01-01

    Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution. PMID:25763575

  16. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1.

    PubMed

    Tang, Yangfeng; Yu, Shangyi; Liu, Yang; Zhang, Jiajun; Han, Lin; Xu, Zhiyun

    2017-09-01

    Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis and aortic dissection. However, the mechanisms of phenotypic modulation are still unclear. MicroRNAs have emerged as important regulators of VSMC function. We recently found that microRNA-124 (miR-124) was downregulated in proliferative vascular diseases that were characterized by a VSMC phenotypic switch. Therefore, we speculated that the aberrant expression of miR-124 might play a critical role in human aortic VSMC phenotypic switch. Using quantitative RT-PCR, we found that miR-124 was dramatically downregulated in the aortic media of clinical specimens of the dissected aorta and correlated with molecular markers of the contractile VSMC phenotype. Overexpression of miR-124 by mimicking transfection significantly attenuated platelet-derived growth factor-BB-induced human aortic VSMC proliferation and phenotypic switch. Furthermore, we identified specificity protein 1 (Sp1) as the downstream target of miR-124. A luciferase reporter assay was used to confirm direct miR-124 targeting of the 3'-untranslated region of the Sp1 gene and repression of Sp1 expression in human aortic VSMCs. Furthermore, constitutively active Sp1 in miR-124-overexpressing VSMCs reversed the antiproliferative effects of miR-124. These results demonstrated a novel mechanism of miR-124 modulation of VSMC phenotypic switch by targeting Sp1 expression. NEW & NOTEWORTHY Previous studies have demonstrated that miR-124 is involved in the proliferation of a variety of cell types. However, miRNAs are expressed in a tissue-specific manner. We first identified miR-124 as a critical regulator in human aortic vascular smooth muscle cell differentiation, proliferation, and phenotype switch by targeting the 3'-untranslated region of specificity protein 1. Copyright © 2017 the American Physiological Society.

  17. Molecular mechanisms of "off-on switch" of activities of human IDH1 by tumor-associated mutation R132H.

    PubMed

    Yang, Bei; Zhong, Chen; Peng, Yingjie; Lai, Zheng; Ding, Jianping

    2010-11-01

    Human cytosolic NADP-IDH (IDH1) has recently been found to be involved in tumorigenesis. Notably, the tumor-derived IDH1 mutations identified so far mainly occur at Arg132, and mutation R132H is the most prevalent one. This mutation impairs the oxidative IDH activity of the enzyme, but renders a new reduction function of converting α-ketoglutarate (αKG) to 2-hydroxyglutarate. Here, we report the structures of the R132H mutant IDH1 with and without isocitrate (ICT) bound. The structural data together with mutagenesis and biochemical data reveal a previously undefined initial ICT-binding state and demonstrate that IDH activity requires a conformational change to a closed pre-transition state. Arg132 plays multiple functional roles in the catalytic reaction; in particular, the R132H mutation hinders the conformational changes from the initial ICT-binding state to the pre-transition state, leading to the impairment of the IDH activity. Our results describe for the first time that there is an intermediate conformation that corresponds to an initial ICT-binding state and that the R132H mutation can trap the enzyme in this conformation, therefore shedding light on the molecular mechanism of the "off switch" of the potentially tumor-suppressive IDH activity. Furthermore, we proved the necessity of Tyr139 for the gained αKG reduction activity and propose that Tyr139 may play a vital role by compensating the increased negative charge on the C2 atom of αKG during the transfer of a hydride anion from NADPH to αKG, which provides new insights into the mechanism of the "on switch" of the hypothetically oncogenic reduction activity of IDH1 by this mutation.

  18. Identifying Cellular and Molecular Mechanisms for Magnetosensation

    PubMed Central

    Clites, Benjamin L.; Pierce, Jonathan T.

    2017-01-01

    Diverse animals ranging from worms and insects to birds and turtles perf orm impressive journeys using the magnetic field of the earth as a cue. Although major cellular and molecular mechanisms for sensing mechanical and chemical cues have been elucidated over the past three decades, the mechanisms that animals use to sense magnetic fields remain largely mysterious. Here we survey progress on the search for magnetosensory neurons and magnetosensitive molecules important for animal behaviors. Emphasis is placed on magnetosensation in insects and birds, as well as on the magnetosensitive neuron pair AFD in the nematode Caenorhabditis elegans. We also review conventional criteria used to define animal magnetoreceptors and suggest how approaches used to identify receptors for other sensory modalities may be adapted for magnetoreceptors. Finally, we discuss prospects for under-utilized and novel approaches to identify the elusive magnetoreceptors in animals. PMID:28772099

  19. Reversible solvatomagnetic switching in a single-ion magnet from an entatic state.

    PubMed

    Vallejo, J; Pardo, E; Viciano-Chumillas, M; Castro, I; Amorós, P; Déniz, M; Ruiz-Pérez, C; Yuste-Vivas, C; Krzystek, J; Julve, M; Lloret, F; Cano, J

    2017-05-01

    A vast impact on molecular nanoscience can be achieved using simple transition metal complexes as dynamic chemical systems to perform specific and selective tasks under the control of an external stimulus that switches "ON" and "OFF" their electronic properties. While the interest in single-ion magnets (SIMs) lies in their potential applications in information storage and quantum computing, the switching of their slow magnetic relaxation associated with host-guest processes is insufficiently explored. Herein, we report a unique example of a mononuclear cobalt(ii) complex in which geometrical constraints are the cause of easy and reversible water coordination and its release. As a result, a reversible and selective colour and SIM behaviour switch occurs between a "slow-relaxing" deep red anhydrous material (compound 1 ) and its "fast-relaxing" orange hydrated form (compound 2 ). The combination of this optical and magnetic switching in this new class of vapochromic and thermochromic SIMs offers fascinating possibilities for designing multifunctional molecular materials.

  20. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis

    PubMed Central

    Yoshida, Soichiro; Tsutsumi, Shinji; Muhlebach, Guillaume; Sourbier, Carole; Lee, Min-Jung; Lee, Sunmin; Vartholomaiou, Evangelia; Tatokoro, Manabu; Beebe, Kristin; Miyajima, Naoto; Mohney, Robert P.; Chen, Yang; Hasumi, Hisashi; Xu, Wanping; Fukushima, Hiroshi; Nakamura, Ken; Koga, Fumitaka; Kihara, Kazunori; Trepel, Jane; Picard, Didier; Neckers, Leonard

    2013-01-01

    TRAP1 (TNF receptor-associated protein), a member of the HSP90 chaperone family, is found predominantly in mitochondria. TRAP1 is broadly considered to be an anticancer molecular target. However, current inhibitors cannot distinguish between HSP90 and TRAP1, making their utility as probes of TRAP1-specific function questionable. Some cancers express less TRAP1 than do their normal tissue counterparts, suggesting that TRAP1 function in mitochondria of normal and transformed cells is more complex than previously appreciated. We have used TRAP1-null cells and transient TRAP1 silencing/overexpression to show that TRAP1 regulates a metabolic switch between oxidative phosphorylation and aerobic glycolysis in immortalized mouse fibroblasts and in human tumor cells. TRAP1-deficiency promotes an increase in mitochondrial respiration and fatty acid oxidation, and in cellular accumulation of tricarboxylic acid cycle intermediates, ATP and reactive oxygen species. At the same time, glucose metabolism is suppressed. TRAP1-deficient cells also display strikingly enhanced invasiveness. TRAP1 interaction with and regulation of mitochondrial c-Src provide a mechanistic basis for these phenotypes. Taken together with the observation that TRAP1 expression is inversely correlated with tumor grade in several cancers, these data suggest that, in some settings, this mitochondrial molecular chaperone may act as a tumor suppressor. PMID:23564345

  1. Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches

    DOEpatents

    Wasielewski, Michael R.; Gaines, George L.; Niemczyk, Mark P.; Johnson, Douglas G.; Gosztola, David J.; O'Neil, Michael P.

    1996-01-01

    A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.

  2. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    PubMed

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  3. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline.

    PubMed

    Ramezani, Mohammad; Mohammad Danesh, Noor; Lavaee, Parirokh; Abnous, Khalil; Mohammad Taghdisi, Seyed

    2015-08-15

    Detection methods of antibiotic residues in blood serum and animal derived foods are of great interest. In this study a colorimetric aptasensor was designed for sensitive, selective and fast detection of tetracycline based on triple-helix molecular switch (THMS) and gold nanoparticles (AuNPs). As a biosensor, THMS shows distinct advantages including high stability, sensitivity and preserving the selectivity and affinity of the original aptamer. In the absence of tetracycline, THMS is stable, leading to the aggregation of AuNPs by salt and an obvious color change from red to blue. In the presence of tetracycline, aptamer binds to its target, signal transduction probe (STP) leaves the THMS and adsorbs on the surface of AuNPs. So the well-dispersed AuNPs remain stable against salt-induced aggregation with a red color. The presented aptasensor showed high selectivity toward tetracyclines with a limit of detection as low as 266 pM for tetracycline. The designed aptasensor was successfully applied to detect tetracycline in serum and milk. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Light-Driven Chiral Molecular Motors for Passive Agile Filters

    DTIC Science & Technology

    2014-05-20

    liquid crystal , we fabricated the self-organized, phototubable 3D photonic superstructure, i.e. photoresponsive monodisperse cholesteric liquid...systems for applications. Here the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were...the bottom-up nanofabrication of intelligent molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media that

  5. Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization

    NASA Astrophysics Data System (ADS)

    Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio

    2012-08-01

    Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.

  6. Interprocessor bus switching system for simultaneous communication in plural bus parallel processing system

    DOEpatents

    Atac, R.; Fischler, M.S.; Husby, D.E.

    1991-01-15

    A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured. 11 figures.

  7. Interprocessor bus switching system for simultaneous communication in plural bus parallel processing system

    DOEpatents

    Atac, Robert; Fischler, Mark S.; Husby, Donald E.

    1991-01-01

    A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured.

  8. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    PubMed

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  9. Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches

    DOEpatents

    Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.

    1996-07-23

    A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound are disclosed. 4 figs.

  10. Acid/Base and H2PO4(-) Controllable High-Contrast Optical Molecular Switches with a Novel BODIPY Functionalized [2]Rotaxane.

    PubMed

    Arumugaperumal, Reguram; Srinivasadesikan, Venkatesan; Ramakrishnam Raju, Mandapati V; Lin, Ming-Chang; Shukla, Tarun; Singh, Ravinder; Lin, Hong-Cheu

    2015-12-09

    A novel multifunctional mechanically interlocked switchable [2]rotaxane R4 containing two molecular stations and rotaxane arms terminated with boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click reaction. The shuttling motion of macrocycle between the dibenzylammonium and triazolium recognition sites and the distance dependent photoinduced electron transfer process of R4 is demonstrated by utilizing external chemical stimuli (acid/base). Interestingly, the reversible self-assembly process of R4 was recognized by the acid-base molecular switch strategy. Notably, two symmetrical triazolium groups acted as molecular stations, H2PO4(-) receptors, and H-bonded donors. Both [2]rotaxane R4 and thread R2 demonstrated excellent optical responses and high selectivity toward H2PO4(-) ion. The specific motion and guest-host interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. The thread R2 also demonstrated to enable the detection of H2PO4(-) in RAW 264.7 cells successfully.

  11. Smooth muscle cell phenotypic switching in stroke.

    PubMed

    Poittevin, Marine; Lozeron, Pierre; Hilal, Rose; Levy, Bernard I; Merkulova-Rainon, Tatiana; Kubis, Nathalie

    2014-06-01

    Disruption of cerebral blood flow after stroke induces cerebral tissue injury through multiple mechanisms that are not yet fully understood. Smooth muscle cells (SMCs) in blood vessel walls play a key role in cerebral blood flow control. Cerebral ischemia triggers these cells to switch to a phenotype that will be either detrimental or beneficial to brain repair. Moreover, SMC can be primarily affected genetically or by toxic metabolic molecules. After stroke, this pathological phenotype has an impact on the incidence, pattern, severity, and outcome of the cerebral ischemic disease. Although little research has been conducted on the pathological role and molecular mechanisms of SMC in cerebrovascular ischemic diseases, some therapeutic targets have already been identified and could be considered for further pharmacological development. We examine these different aspects in this review.

  12. Anion channels: master switches of stress responses.

    PubMed

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination

    PubMed Central

    Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao

    2018-01-01

    Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038

  14. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    PubMed Central

    2012-01-01

    Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA) and a nuclear (histone H3) and mitochondrial (cytochrome oxidase subunit I) protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in which they maintain filter

  15. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    PubMed Central

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  16. Optical switches and switching methods

    DOEpatents

    Doty, Michael

    2008-03-04

    A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.

  17. Switch wear leveling

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  18. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  19. Digital SPC switching technology: Foreign technology assessment

    NASA Astrophysics Data System (ADS)

    Fischman, Kurt; Jorstad, Norman D.

    1990-12-01

    This paper provides a foreign technology assessment of digital switching technology. Leading suppliers of digital switching technology are identified; although the United States holds a large part of the market, major companies in France, Sweden, Japan, the U.K., and Germany are also important. These countries, along with Belgium and Canada, are the most innovative and technically advanced. A listing is provided of transfers of digital switching technology to non-COCOM countries through licensing and joint ventures which reflects the widespread dissemination of this technology. Detailed technical specifications are provided for selected digital switching systems worldwide. The report concludes that considering the degree to which the technology is in place, that control of digital switching technology may not be feasible.

  20. A Dynamic View of Molecular Switch Behavior at Serotonin Receptors: Implications for Functional Selectivity

    PubMed Central

    Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity. PMID:25313636

  1. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    PubMed

    Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity.

  2. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    PubMed

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light

  3. Spark gap switch system with condensable dielectric gas

    DOEpatents

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  4. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  5. Activator Protein-1: redox switch controlling structure and DNA-binding.

    PubMed

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Intermittent metabolic switching, neuroplasticity and brain health

    PubMed Central

    Mattson, Mark P.; Moehl, Keelin; Ghena, Nathaniel; Schmaedick, Maggie; Cheng, Aiwu

    2018-01-01

    During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease. PMID:29321682

  7. A reversible single-molecule switch based on activated antiaromaticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xiaodong; Zang, Yaping; Zhu, Liangliang

    Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope–based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivativemore » that switches to an antiaromatic state with 6-4-6-p electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.« less

  8. A reversible single-molecule switch based on activated antiaromaticity

    DOE PAGES

    Yin, Xiaodong; Zang, Yaping; Zhu, Liangliang; ...

    2017-10-27

    Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope–based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivativemore » that switches to an antiaromatic state with 6-4-6-p electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.« less

  9. Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians

    DTIC Science & Technology

    2004-04-15

    Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians SERDP Project # CP-1251...2004 4. TITLE AND SUBTITLE Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians 5a. CONTRACT... cnidarians ? 9 Indicators of ballast water exchange 9 Materials and Methods 11 Phase I. Specimens 11 DNA

  10. Synthesis, tautomeric stability, spectroscopy and computational study of a potential molecular switch of (Z)-4-(phenylamino)pent-3-en-2-one

    NASA Astrophysics Data System (ADS)

    Fahid, Farzaneh; Kanaani, Ayoub; Pourmousavi, Seied Ali; Ajloo, Davood

    2017-04-01

    The (Z)-4-(phenylamino) pent-3-en-2-one (PAPO) was synthesised applying carbon-based solid acid and described by experimental techniques. Calculated results reveal that its keto-amine form is more stable than its enol-imine form. A relaxed potential energy surface scan has been accomplished based on the optimised geometry of NH tautomeric form to depict the potential energy barrier related to intramolecular proton transfer. The spectroscopic results and theoretical calculations demonstrate that the intramolecular hydrogen bonding strength of PAPO is stronger than that in 4-amino-3-penten-2-one)APO(. In addition, molecular electrostatic potential, total and partial density of stats (TDOS, PDOS) and non-linear optical properties of the compound were studied using same theoretical calculations. Our calculations show that the title molecule has the potential to be used as molecular switch.

  11. Electrospun Nanofibers from a Tricyanofuran-Based Molecular Switch for Colorimetric Recognition of Ammonia Gas.

    PubMed

    Khattab, Tawfik A; Abdelmoez, Sherif; Klapötke, Thomas M

    2016-03-14

    A chromophore based on tricyanofuran (TCF) with a hydrazone (H) recognition moiety was developed. Its molecular-switching performance is reversible and has differential sensitivity towards aqueous ammonia at comparable concentrations. Nanofibers were fabricated from the TCF-H chromophore by electrospinning. The film fabricated from these nanofibers functions as a solid-state optical chemosensor for probing ammonia vapor. Recognition of ammonia vapor occurs by proton transfer from the hydrazone fragment of the chromophore to the ammonia nitrogen atom and is facilitated by the strongly electron withdrawing TCF fragment. The TCF-H chromophore was added to a solution of poly(acrylic acid), which was electrospun to obtain a nanofibrous sensor device. The morphology of the nanofibrous sensor was determined by SEM, which showed that nanofibers with a diameter range of 200-450 nm formed a nonwoven mat. The resultant nanofibrous sensor showed very good sensitivity in ammonia-vapor detection. Furthermore, very good reversibility and short response time were also observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast packet switch architectures for broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.

    1990-01-01

    Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.

  13. Cyclin-dependent kinase 4 signaling acts as a molecular switch between syngenic differentiation and neural transdifferentiation in human mesenchymal stem cells

    PubMed Central

    Lee, Janet; Baek, Jeong-Hwa; Choi, Kyu-Sil; Kim, Hyun-Soo; Park, Hye-Young; Ha, Geun-Hyoung; Park, Ho; Lee, Kyo-Won; Lee, Chang Geun; Yang, Dong-Yun; Moon, Hyo Eun; Paek, Sun Ha; Lee, Chang-Woo

    2013-01-01

    Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs. PMID:23324348

  14. Evidence for rare capsular switching in Streptococcus agalactiae.

    PubMed

    Martins, Elisabete Raquel; Melo-Cristino, José; Ramirez, Mário

    2010-03-01

    The polysaccharide capsule is a major antigenic factor in Streptococcus agalactiae (Lancefield group B streptococcus [GBS]). Previous observations suggest that exchange of capsular loci is likely to occur rather frequently in GBS, even though GBS is not known to be naturally transformable. We sought to identify and characterize putative capsular switching events, by means of a combination of phenotypic and genotypic methods, including pulsed-field gel electrophoretic profiling, multilocus sequence typing, and surface protein and pilus gene profiling. We show that capsular switching by horizontal gene transfer is not as frequent as previously suggested. Serotyping errors may be the main reason behind the overestimation of capsule switching, since phenotypic techniques are prone to errors of interpretation. The identified putative capsular transformants involved the acquisition of the entire capsular locus and were not restricted to the serotype-specific central genes, the previously suggested main mechanism underlying capsular switching. Our data, while questioning the frequency of capsular switching, provide clear evidence for in vivo capsular transformation in S. agalactiae, which may be of critical importance in planning future vaccination strategies against this pathogen.

  15. Evidence for Rare Capsular Switching in Streptococcus agalactiae▿

    PubMed Central

    Martins, Elisabete Raquel; Melo-Cristino, José; Ramirez, Mário

    2010-01-01

    The polysaccharide capsule is a major antigenic factor in Streptococcus agalactiae (Lancefield group B streptococcus [GBS]). Previous observations suggest that exchange of capsular loci is likely to occur rather frequently in GBS, even though GBS is not known to be naturally transformable. We sought to identify and characterize putative capsular switching events, by means of a combination of phenotypic and genotypic methods, including pulsed-field gel electrophoretic profiling, multilocus sequence typing, and surface protein and pilus gene profiling. We show that capsular switching by horizontal gene transfer is not as frequent as previously suggested. Serotyping errors may be the main reason behind the overestimation of capsule switching, since phenotypic techniques are prone to errors of interpretation. The identified putative capsular transformants involved the acquisition of the entire capsular locus and were not restricted to the serotype-specific central genes, the previously suggested main mechanism underlying capsular switching. Our data, while questioning the frequency of capsular switching, provide clear evidence for in vivo capsular transformation in S. agalactiae, which may be of critical importance in planning future vaccination strategies against this pathogen. PMID:20023016

  16. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.

    PubMed

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude; Newton, Yulia; Shih, Juliann; Robertson, A Gordon; Hinoue, Toshinori; Hoadley, Katherine A; Gibb, Ewan A; Roszik, Jason; Covington, Kyle R; Wu, Chia-Chin; Shinbrot, Eve; Stransky, Nicolas; Hegde, Apurva; Yang, Ju Dong; Reznik, Ed; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Ojesina, Akinyemi I; Hess, Julian M; Auman, J Todd; Rhie, Suhn K; Bowlby, Reanne; Borad, Mitesh J; Zhu, Andrew X; Stuart, Josh M; Sander, Chris; Akbani, Rehan; Cherniack, Andrew D; Deshpande, Vikram; Mounajjed, Taofic; Foo, Wai Chin; Torbenson, Michael S; Kleiner, David E; Laird, Peter W; Wheeler, David A; McRee, Autumn J; Bathe, Oliver F; Andersen, Jesper B; Bardeesy, Nabeel; Roberts, Lewis R; Kwong, Lawrence N

    2017-03-14

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Metal-centred azaphosphatriptycene gear with a photo- and thermally driven mechanical switching function based on coordination isomerism.

    PubMed

    Ube, Hitoshi; Yasuda, Yoshihiro; Sato, Hiroyasu; Shionoya, Mitsuhiko

    2017-02-08

    Metal ions can serve as a centre of molecular motions due to their coordination geometry, reversible bonding nature and external stimuli responsiveness. Such essential features of metal ions have been utilized for metal-mediated molecular machines with the ability to motion switch via metallation/demetallation or coordination number variation at the metal centre; however, motion switching based on the change in coordination geometry remain largely unexplored. Herein, we report a Pt II -centred molecular gear that demonstrates control of rotor engagement and disengagement based on photo- and thermally driven cis-trans isomerization at the Pt II centre. This molecular rotary motion transmitter has been constructed from two coordinating azaphosphatriptycene rotators and one Pt II ion as a stator. Isomerization between an engaged cis-form and a disengaged trans-form is reversibly driven by ultraviolet irradiation and heating. Such a photo- and thermally triggered motional interconversion between engaged/disengaged states on a metal ion would provide a selector switch for more complex interlocking systems.

  18. Solid-state switch increases switching speed

    NASA Technical Reports Server (NTRS)

    Mcgowan, G. F.

    1966-01-01

    Solid state switch for commutating capacitors in an RC commutated network increases switching speed and extends the filtering or commutating frequency spectrum well into the kilocycle region. The switch is equivalent to the standard double- pole double-throw /DPDT/ relay and is driven from digital micrologic circuits.

  19. Intraoperative Molecular Imaging of Lung Adenocarcinoma Can Identify Residual Tumor Cells at the Surgical Margins

    PubMed Central

    Keating, Jane J.; Okusanya, Olugbenga T.; De Jesus, Elizabeth; Judy, Ryan; Jiang, Jack; Deshpande, Charuhas; Nie, Shuming; Low, Philip; Singhal, Sunil

    2017-01-01

    Purpose During lung surgery, identification of surgical margins is challenging. We hypothesized that molecular imaging with a fluorescent probe to pulmonary adenocarcinomas could enhance residual tumor during resection. Procedures Mice with flank tumors received a contrast agent targeting folate receptor alpha. Optimal dose and time of injection was established. Margin detection was compared using traditional methods versus molecular imaging. A pilot study was then performed in 3 humans with lung adenocarcinoma. Results The peak tumor-to background ratio (TBR) of murine tumors was 3.9. Fluorescence peaked at 2 hours and was not improved beyond 0.1 mg/kg. Traditional inspection identified 30% of mice with positive margins. Molecular imaging identified an additional 50% of residual tumor deposits (P<0.05). The fluorescent probe visually enhanced all human tumors with a mean TBR of 3.5. Conclusions Molecular imaging is an important adjunct to traditional inspection to identify surgical margins after tumor resection. PMID:26228697

  20. Evaluating the impact of a switch to nilotinib on imatinib-related chronic low-grade adverse events in patients with CML-CP: the ENRICH study

    PubMed Central

    Cortes, Jorge E.; Lipton, Jeffrey H.; Miller, Carole B.; Busque, Lambert; Akard, Luke P.; Pinilla-Ibarz, Javier; Keir, Christopher; Warsi, Ghulam; Lin, Felice P.; Mauro, Michael J.

    2016-01-01

    Background Many patients with chronic myeloid leukemia in chronic phase (CML-CP) experience chronic treatment-related adverse events (AEs) on imatinib therapy. These AEs can impair quality of life (QOL) and lead to reduced treatment adherence, which is associated with poor clinical outcomes. Patients and Methods In the phase 2 Exploring Nilotinib to Reduce Imatinib Related Chronic Adverse Events (ENRICH) study (N = 52), the impact of switching patients with imatinib-related chronic low-grade nonhematologic AEs from imatinib to nilotinib was evaluated. Results Three months after switching to nilotinib, 84.6% of patients had overall improvement in imatinib-related AEs (primary endpoint). Of 210 imatinib-related AEs identified at baseline, 62.9% resolved within 3 months of switching to nilotinib. Among evaluable patients, most had improvements in overall QOL after switching to nilotinib. At screening, 65.4% of evaluable patients had a major molecular response (MMR; BCR-ABL1 ≤ 0.1% on the International Scale). After switching to nilotinib, the rate of MMR was 76.1% at 3 months and 87.8% at 12 months. Treatment-emergent AEs reported on nilotinib were typically grade 1/2; however, some patients developed more serious AEs, and 8 patients discontinued nilotinib due to new or worsening AEs. Conclusions Overall, results from ENRICH demonstrated that switching to nilotinib can mitigate imatinib-related chronic low-grade nonhematologic AEs in patients with CML-CP in conjunction with acceptable safety and achievement of molecular responses. This trial was registered at www.clinicaltrials.gov as NCT00980018. PMID:26993758

  1. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

    PubMed Central

    2012-01-01

    Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2

  2. Adaptive Fuzzy Control Design for Stochastic Nonlinear Switched Systems With Arbitrary Switchings and Unmodeled Dynamics.

    PubMed

    Li, Yongming; Sui, Shuai; Tong, Shaocheng

    2017-02-01

    This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.

  3. Designing pH induced fold switch in proteins

    NASA Astrophysics Data System (ADS)

    Baruah, Anupaul; Biswas, Parbati

    2015-05-01

    This work investigates the computational design of a pH induced protein fold switch based on a self-consistent mean-field approach by identifying the ensemble averaged characteristics of sequences that encode a fold switch. The primary challenge to balance the alternative sets of interactions present in both target structures is overcome by simultaneously optimizing two foldability criteria corresponding to two target structures. The change in pH is modeled by altering the residual charge on the amino acids. The energy landscape of the fold switch protein is found to be double funneled. The fold switch sequences stabilize the interactions of the sites with similar relative surface accessibility in both target structures. Fold switch sequences have low sequence complexity and hence lower sequence entropy. The pH induced fold switch is mediated by attractive electrostatic interactions rather than hydrophobic-hydrophobic contacts. This study may provide valuable insights to the design of fold switch proteins.

  4. A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors

    NASA Astrophysics Data System (ADS)

    Ortega, Davi R.; Yang, Chen; Ames, Peter; Baudry, Jerome; Parkinson, John S.; Zhulin, Igor B.

    2013-12-01

    Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signalling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signalling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396‧ pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well.

  5. Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations.

    PubMed

    Ramírez-Aportela, Erney; López-Blanco, José Ramón; Andreu, José Manuel; Chacón, Pablo

    2014-11-04

    Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orientation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open and closed interfaces between monomers. We identify a coordinated Mg(2+) ion as the key structural element in closing the nucleotide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which involves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermonomer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ monomers.

  6. Coactivation of cognitive control networks during task switching.

    PubMed

    Yin, Shouhang; Deák, Gedeon; Chen, Antao

    2018-01-01

    The ability to flexibly switch between tasks is considered an important component of cognitive control that involves frontal and parietal cortical areas. The present study was designed to characterize network dynamics across multiple brain regions during task switching. Functional magnetic resonance images (fMRI) were captured during a standard rule-switching task to identify switching-related brain regions. Multiregional psychophysiological interaction (PPI) analysis was used to examine effective connectivity between these regions. During switching trials, behavioral performance declined and activation of a generic cognitive control network increased. Concurrently, task-related connectivity increased within and between cingulo-opercular and fronto-parietal cognitive control networks. Notably, the left inferior frontal junction (IFJ) was most consistently coactivated with the 2 cognitive control networks. Furthermore, switching-dependent effective connectivity was negatively correlated with behavioral switch costs. The strength of effective connectivity between left IFJ and other regions in the networks predicted individual differences in switch costs. Task switching was supported by coactivated connections within cognitive control networks, with left IFJ potentially acting as a key hub between the fronto-parietal and cingulo-opercular networks. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Two-magnon bound state causes ultrafast thermally induced magnetisation switching

    PubMed Central

    Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.

    2013-01-01

    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110

  8. Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex.

    PubMed

    Mumma, Matthew A; Soulliere, Colleen E; Mahoney, Shane P; Waits, Lisette P

    2014-01-01

    Predator species identification is an important step in understanding predator-prey interactions, but predator identifications using kill site observations are often unreliable. We used molecular tools to analyse predator saliva, scat and hair from caribou calf kills in Newfoundland, Canada to identify the predator species, individual and sex. We sampled DNA from 32 carcasses using cotton swabs to collect predator saliva. We used fragment length analysis and sequencing of mitochondrial DNA to distinguish between coyote, black bear, Canada lynx and red fox and used nuclear DNA microsatellite analysis to identify individuals. We compared predator species detected using molecular tools to those assigned via field observations at each kill. We identified a predator species at 94% of carcasses using molecular methods, while observational methods assigned a predator species to 62.5% of kills. Molecular methods attributed 66.7% of kills to coyote and 33.3% to black bear, while observations assigned 40%, 45%, 10% and 5% to coyote, bear, lynx and fox, respectively. Individual identification was successful at 70% of kills where a predator species was identified. Only one individual was identified at each kill, but some individuals were found at multiple kills. Predator sex was predominantly male. We demonstrate the first large-scale evaluation of predator species, individual and sex identification using molecular techniques to extract DNA from swabs of wild prey carcasses. Our results indicate that kill site swabs (i) can be highly successful in identifying the predator species and individual responsible; and (ii) serve to inform and complement traditional methods. © 2013 John Wiley & Sons Ltd.

  9. Comparing hair-morphology and molecular methods to identify fecal samples from Neotropical felids

    PubMed Central

    Alberts, Carlos C.; Saranholi, Bruno H.; Frei, Fernando; Galetti, Pedro M.

    2017-01-01

    To avoid certain problems encountered with more-traditional and invasive methods in behavioral-ecology studies of mammalian predators, such as felids, molecular approaches have been employed to identify feces found in the field. However, this method requires a complete molecular biology laboratory, and usually also requires very fresh fecal samples to avoid DNA degradation. Both conditions are normally absent in the field. To address these difficulties, identification based on morphological characters (length, color, banding, scales and medullar patterns) of hairs found in feces could be employed as an alternative. In this study we constructed a morphological identification key for guard hairs of eight Neotropical felids (jaguar, oncilla, Geoffroy’s cat, margay, ocelot, Pampas cat, puma and jaguarundi) and compared its efficiency to that of a molecular identification method, using the ATP6 region as a marker. For this molecular approach, we simulated some field conditions by postponing sample-conservation procedures. A blind test of the identification key obtained a nearly 70% overall success rate, which we considered equivalent to or better than the results of some molecular methods (probably due to DNA degradation) found in other studies. The jaguar, puma and jaguarundi could be unequivocally discriminated from any other Neotropical felid. On a scale ranging from inadequate to excellent, the key proved poor only for the margay, with only 30% of its hairs successfully identified using this key; and have intermediate success rates for the remaining species, the oncilla, Geoffroy’s cat, ocelot and Pampas cat, were intermediate. Complementary information about the known distributions of felid populations may be necessary to substantially improve the results obtained with the key. Our own molecular results were even better, since all blind-tested samples were correctly identified. Part of these identifications were made from samples kept in suboptimal conditions

  10. Temporal switching jitter in photoconductive switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.

    This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

  11. Characterising switching behaviour in perceptual multi-stability.

    PubMed

    Denham, Susan; Bendixen, Alexandra; Mill, Robert; Tóth, Dénes; Wennekers, Thomas; Coath, Martin; Bőhm, Tamás; Szalardy, Orsolya; Winkler, István

    2012-09-15

    When people experience an unchanging sensory input for a long period of time, their perception tends to switch stochastically and unavoidably between alternative interpretations of the sensation; a phenomenon known as perceptual bi-stability or multi-stability. The huge variability in the experimental data obtained in such paradigms makes it difficult to distinguish typical patterns of behaviour, or to identify differences between switching patterns. Here we propose a new approach to characterising switching behaviour based upon the extraction of transition matrices from the data, which provide a compact representation that is well-understood mathematically. On the basis of this representation we can characterise patterns of perceptual switching, visualise and simulate typical switching patterns, and calculate the likelihood of observing a particular switching pattern. The proposed method can support comparisons between different observers, experimental conditions and even experiments. We demonstrate the insights offered by this approach using examples from our experiments investigating multi-stability in auditory streaming. However, the methodology is generic and thus widely applicable in studies of multi-stability in any domain. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Hydrochromic molecular switches for water-jet rewritable paper

    NASA Astrophysics Data System (ADS)

    Sheng, Lan; Li, Minjie; Zhu, Shaoyin; Li, Hao; Xi, Guan; Li, Yong-Gang; Wang, Yi; Li, Quanshun; Liang, Shaojun; Zhong, Ke; Zhang, Sean Xiao-An

    2014-01-01

    The days of rewritable paper are coming, printers of the future will use water-jet paper. Although several kinds of rewritable paper have been reported, practical usage of them is rare. Herein, a new rewritable paper for ink-free printing is proposed and demonstrated successfully by using water as the sole trigger to switch hydrochromic dyes on solid media. Water-jet prints with various colours are achieved with a commercial desktop printer based on these hydrochromic rewritable papers. The prints can be erased and rewritten dozens of times with no significant loss in colour quality. This rewritable paper is promising in that it can serve an eco-friendly information display to meet the increasing global needs for environmental protection.

  13. Hydrochromic molecular switches for water-jet rewritable paper.

    PubMed

    Sheng, Lan; Li, Minjie; Zhu, Shaoyin; Li, Hao; Xi, Guan; Li, Yong-Gang; Wang, Yi; Li, Quanshun; Liang, Shaojun; Zhong, Ke; Zhang, Sean Xiao-An

    2014-01-01

    The days of rewritable paper are coming, printers of the future will use water-jet paper. Although several kinds of rewritable paper have been reported, practical usage of them is rare. Herein, a new rewritable paper for ink-free printing is proposed and demonstrated successfully by using water as the sole trigger to switch hydrochromic dyes on solid media. Water-jet prints with various colours are achieved with a commercial desktop printer based on these hydrochromic rewritable papers. The prints can be erased and rewritten dozens of times with no significant loss in colour quality. This rewritable paper is promising in that it can serve an eco-friendly information display to meet the increasing global needs for environmental protection.

  14. A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis.

    PubMed

    Becuwe, Michel; Vieira, Neide; Lara, David; Gomes-Rezende, Jéssica; Soares-Cunha, Carina; Casal, Margarida; Haguenauer-Tsapis, Rosine; Vincent, Olivier; Paiva, Sandra; Léon, Sébastien

    2012-01-23

    Endocytosis regulates the plasma membrane protein landscape in response to environmental cues. In yeast, the endocytosis of transporters depends on their ubiquitylation by the Nedd4-like ubiquitin ligase Rsp5, but how extracellular signals trigger this ubiquitylation is unknown. Various carbon source transporters are known to be ubiquitylated and endocytosed when glucose-starved cells are exposed to glucose. We show that this required the conserved arrestin-related protein Rod1/Art4, which was activated in response to glucose addition. Indeed, Rod1 was a direct target of the glucose signaling pathway composed of the AMPK homologue Snf1 and the PP1 phosphatase Glc7/Reg1. Glucose promoted Rod1 dephosphorylation and its subsequent release from a phospho-dependent interaction with 14-3-3 proteins. Consequently, this allowed Rod1 ubiquitylation by Rsp5, which was a prerequisite for transporter endocytosis. This paper therefore demonstrates that the arrestin-related protein Rod1 relays glucose signaling to transporter endocytosis and provides the first molecular insights into the nutrient-induced activation of an arrestin-related protein through a switch in post-translational modifications.

  15. New mode switching algorithm for the JPL 70-meter antenna servo controller

    NASA Technical Reports Server (NTRS)

    Nickerson, J. A.

    1988-01-01

    The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.

  16. Generic and therapeutic statin switches and disruptions in therapy.

    PubMed

    Chapman, Richard H; Benner, Joshua S; Girase, Prafulla; Benigno, Michael; Axelsen, Kirsten; Liu, Larry Z; Nichol, Michael B

    2009-05-01

    The study objective was to compare dose-equivalence, adherence and subsequent switch rates among patients recently switched from a branded to generic version of the same statin (generic substitution, GS) vs. those switched from branded statin to generic version of a different statin (therapeutic substitution, TS). In a retrospective cohort analysis among adult enrollees in over 90 US health plans, the authors identified adult patients who switched from a branded to generic statin from July-December 2006 (simvastatin became generic in June 2006). Patients were classified by type of statin switch: GS (e.g., branded simvastatin --> generic simvastatin), and TS (e.g., branded atorvastatin --> generic simvastatin). Demographic and clinical data were collected from claims before switch through 6 months follow-up. Separate outcomes of interest included proportion of patients that switched to a less potent daily dose, that switched back to previous branded statin after switch, and that were at least 80% adherent during the 6 months after initial switch. Significant predictors of each clinical outcome were identified using multivariable logistic regression models, adjusting for differences between groups in covariates and potential confounders. The 6-month TS (n = 3807) and GS (n = 40,165) groups were generally similar demographically. Compared to GS, TS patients were significantly more likely to be switched to a less potent dose (26.2% vs. 0.5%, adjusted odds ratio [AOR] in patients with high-potency index medication = 83.4, p < 0.0001); 33% less likely to be adherent in the 6 months after switch (67.7% vs. 75.9%, AOR in patients with no switch in first 6 months follow-up = 0.67, p < 0.0001); and four times more likely to switch back to previous branded statin (11.3% vs. 2.9%, AOR = 4.1, p < 0.0001). This study did not account for co-payment changes, lipid measurements, or changes in pill burden. While this study did not have data on why patients had TS (e.g., for cost or

  17. Study of optoelectronic switch for satellite-switched time-division multiple access

    NASA Technical Reports Server (NTRS)

    Su, Shing-Fong; Jou, Liz; Lenart, Joe

    1987-01-01

    The use of optoelectronic switching for satellite switched time division multiple access will improve the isolation and reduce the crosstalk of an IF switch matrix. The results are presented of a study on optoelectronic switching. Tasks include literature search, system requirements study, candidate switching architecture analysis, and switch model optimization. The results show that the power divided and crossbar switching architectures are good candidates for an IF switch matrix.

  18. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hand-operated switches, including crossover switches. 218.103 Section 218.103 Transportation Other Regulations Relating to Transportation (Continued... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...

  19. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hand-operated switches, including crossover switches. 218.103 Section 218.103 Transportation Other Regulations Relating to Transportation (Continued... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...

  20. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hand-operated switches, including crossover switches. 218.103 Section 218.103 Transportation Other Regulations Relating to Transportation (Continued... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...

  1. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hand-operated switches, including crossover switches. 218.103 Section 218.103 Transportation Other Regulations Relating to Transportation (Continued... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...

  2. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hand-operated switches, including crossover switches. 218.103 Section 218.103 Transportation Other Regulations Relating to Transportation (Continued... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...

  3. Silane and Germane Molecular Electronics.

    PubMed

    Su, Timothy A; Li, Haixing; Klausen, Rebekka S; Kim, Nathaniel T; Neupane, Madhav; Leighton, James L; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2017-04-18

    -induced breakdown properties of individual Si-Si, Ge-Ge, Si-O, Si-C, and C-C bonds. Building from these studies, we have prepared a system that has two different, alternative conductance pathways. In this wire, we can intentionally break a labile, strained silicon-silicon bond and thereby shunt the current through the secondary conduction pathway. This type of in situ bond-rupture provides a new tool to study single molecule reactions that are induced by electric fields. Moreover, these studies provide guidance for designing dielectric materials as well as molecular devices that require stability under high voltage bias. The fundamental studies on the structure/function relationships of the molecular wires have guided the design of new functional systems based on the Si- and Ge-based wires. For example, we exploited the principle of strain-induced Lewis acidity from reaction chemistry to design a single molecule switch that can be controllably switched between two conductive states by varying the distance between the tip and substrate electrodes. We found that the strain intrinsic to the disilaacenaphthene scaffold also creates two state conductance switching. Finally, we demonstrate the first example of a stereoelectronic conductance switch, and we demonstrate that the switching relies crucially on the electronic delocalization in Si-Si and Ge-Ge wire backbones. These studies illustrate the untapped potential in using Si- and Ge-based wires to design and control charge transport at the nanoscale and to allow quantum mechanics to be used as a tool to design ultraminiaturized switches.

  4. Optically-switched submillimeter-wave oscillator and radiator having a switch-to-switch propagation delay

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G. (Inventor); Maserjian, Joseph (Inventor)

    1995-01-01

    A submillimeter wave-generating integrated circuit includes an array of N photoconductive switches biased across a common voltage source and an optical path difference from a common optical pulse of repetition rate f sub 0 providing a different optical delay to each of the switches. In one embodiment, each incoming pulse is applied to successive ones of the N switches with successive delays. The N switches are spaced apart with a suitable switch-to-switch spacing so as to generate at the output load or antenna radiation of a submillimeter wave frequency f on the order of N f sub 0. Preferably, the optical pulse has a repetition rate of at least 10 GHz and N is of the order of 100, so that the circuit generates radiation of frequency of the order of or greater than 1 Terahertz.

  5. Photochromic molecules as building blocks for molecular electronics.

    PubMed

    Peter, Belser

    2010-01-01

    Energy and electron transfer processes can be easily induced by a photonic excitation of a donor metal complex ([Ru(bpy)3]2), which is connected via a wire-type molecular fragment to an acceptor metal complex ([Os(bpy)3]2+). The rate constant for the transfer process can be determined by emission measurements of the two connected metal complexes. The system can be modified by incorporation of a switching unit or an interrupter into the wire, influencing the transfer process. Such a molecular device corresponds to an interrupter, mimic the same function applied in molecular electronics. We have used organic switches, which show photochromic properties. By irradiation with light of different wavelengths, the switch changes its functionality by a photochemical reaction from an OFF- to an ON-state and vice versa. The ON- respectively OFF-state is manifested by a color change but also in different conductivity properties for energy and electron transfer processes. Therefore, the mentioned molecular device can work as a simple interrupter, controlling the rate of the transfer processes.

  6. Usage of DNA Fingerprinting Technology for Quality Control in Molecular Lab Bench Work.

    PubMed

    McIntosh, Linda Y; Lal, Janella E; Qin, Dahui

    2018-01-01

    One of the major quality assurance (QA) goals in many molecular laboratories is to avoid sample pipetting errors on the lab bench; especially when pipetting into multiwell plates. A pipetting error can cause a switch in patient samples, which can lead to recording the wrong results for the patient samples involved. Such pipetting errors are difficult to identify when it happens in lab bench work. DNA fingerprinting is a powerful tool in determining sample identities. Our laboratory has explored the usage of this technology in our QA process and successfully established that DNA fingerprinting can be used to monitor possible sample switch in gene rearrangement lab bench work. We use florescent light to quench the florescence in the gene rearrangement polymerase chain reaction products. After that, DNA fingerprinting technology is used to identify the sample DNA in the gene rearrangement polymerase chain reaction plate. The result is compared with the corresponding patient's blood sample DNA to determine whether there is a sample switch during the lab bench work.

  7. Switching control of an R/C hovercraft: stabilization and smooth switching.

    PubMed

    Tanaka, K; Iwasaki, M; Wang, H O

    2001-01-01

    This paper presents stable switching control of an radio-controlled (R/C) hovercraft that is a nonholonomic (nonlinear) system. To exactly represent its nonlinear dynamics, more importantly, to maintain controllability of the system, we newly propose a switching fuzzy model that has locally Takagi-Sugeno (T-S) fuzzy models and switches them according to states, external variables, and/or time. A switching fuzzy controller is constructed by mirroring the rule structure of the switching fuzzy model of an R/C hovercraft. We derive linear matrix inequality (LMI) conditions for ensuring the stability of the closed-loop system consisting of a switching fuzzy model and controller. Furthermore, to guarantee smooth switching of control input at switching boundaries, we also derive a smooth switching condition represented in terms of LMIs. A stable switching fuzzy controller satisfying the smooth switching condition is designed by simultaneously solving both of the LMIs. The simulation and experimental results for the trajectory control of an R/C hovercraft show the validity of the switching fuzzy model and controller design, particularly, the smooth switching condition.

  8. Preparation, Characterization and Application of Optical Switch Probes.

    PubMed

    Petchprayoon, Chutima; Marriott, Gerard

    2010-08-01

    Optical switches represent a new class of molecular probe with applications in high contrast imaging and optical manipulation of protein interactions. Small molecule, organic optical switches based on nitrospirobenzopyran (NitroBIPS) and their reactive derivatives and conjugates undergo efficient, rapid and reversible, orthogonal optically-driven transitions between a colorless spiro (SP) state and a colored merocyanine (MC) state. The excited MC-state also emits fluorescence, which serves as readout of the state of the switch. Defined optical perturbations of SP and MC generate a defined waveform of MC-fluorescence that can be isolated against unmodulated background signals by using a digital optical lock-in detection approach or to control specific dipolar interactions on proteins. The protocols describe general procedures for the synthesis and spectroscopic characterization of NitroBIPS and specifically labeled conjugates along with methods for the manipulation of dipolar interactions on proteins and imaging of the MC-state of NitroBIPS within living cells.

  9. Low temperature grown GaNAsSb: A promising material for photoconductive switch application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, K. H.; Yoon, S. F.; Wicaksono, S.

    2013-09-09

    We report a photoconductive switch using low temperature grown GaNAsSb as the active material. The GaNAsSb layer was grown at 200 °C by molecular beam epitaxy in conjunction with a radio frequency plasma-assisted nitrogen source and a valved antimony cracker source. The low temperature growth of the GaNAsSb layer increased the dark resistivity of the switch and shortened the carrier lifetime. The switch exhibited a dark resistivity of 10{sup 7} Ω cm, a photo-absorption of up to 2.1 μm, and a carrier lifetime of ∼1.3 ps. These results strongly support the suitability of low temperature grown GaNAsSb in the photoconductivemore » switch application.« less

  10. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  11. The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch.

    PubMed

    Mauney, Christopher H; Rogers, LeAnn C; Harris, Reuben S; Daniel, Larry W; Devarie-Baez, Nelmi O; Wu, Hanzhi; Furdui, Cristina M; Poole, Leslie B; Perrino, Fred W; Hollis, Thomas

    2017-12-01

    Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.

  12. Genomic analyses identify molecular subtypes of pancreatic cancer.

    PubMed

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-03

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  13. Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Li, Xiaoguang; Zheng, Xiao; Yang, Jinlong

    2017-10-01

    The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH3, and O2. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.

  14. Molecular flip–flops formed by overlapping Fis sites

    PubMed Central

    Hengen, Paul N.; Lyakhov, Ilya G.; Stewart, Lisa E.; Schneider, Thomas D.

    2003-01-01

    The DNA-binding protein Fis frequently uses pairs of sites 7 or 11 base pairs (bp) apart. Two overlapping Fis sites separated by 11 bp are found in the Escherichia coli origin of chromosomal replication. Only one of these sites is bound by Fis at a time, so the structure is a molecular flip–flop that could direct alternative firing of replication complexes in opposite directions. Alternatively, the flip–flop could represent part of an on–off switch for replication. Because they can be used to create precise switched states, molecular flip–flops could be used as the basis of a novel molecular computer. PMID:14602927

  15. Molecular flip-flops formed by overlapping Fis sites.

    PubMed

    Hengen, Paul N; Lyakhov, Ilya G; Stewart, Lisa E; Schneider, Thomas D

    2003-11-15

    The DNA-binding protein Fis frequently uses pairs of sites 7 or 11 base pairs (bp) apart. Two overlapping Fis sites separated by 11 bp are found in the Escherichia coli origin of chromosomal replication. Only one of these sites is bound by Fis at a time, so the structure is a molecular flip-flop that could direct alternative firing of replication complexes in opposite directions. Alternatively, the flip-flop could represent part of an on-off switch for replication. Because they can be used to create precise switched states, molecular flip-flops could be used as the basis of a novel molecular computer.

  16. High Speed Switching in Magnetic Recording Media.

    NASA Astrophysics Data System (ADS)

    He, Lin

    The magnetization switching behavior of magnetic particulate and metal evaporated thin film recording tapes in the nanosecond regime is studied. The purpose is to characterize the switching behavior of the magnetization in current recording media and determine whether the recording media will be a limiting factor in future high performance recording systems. In this work, a pulse test system with field pulse width tau<=ss than 1 nanosecond was created for measuring switching behavior. Two ways were used to characterize the switching behavior of the media. The first is a traditional way in which the switching behavior is determined by a switching coefficient S_{rm w}. The second is more useful and convenient. The switching behavior is described in terms of the increase in remanent coercivity H_{rm CR}(tau) as the field pulse width tau decreases. For high magnetic viscosity materials, the experimental results are in good agreement with the thermally assisted switching model proposed by Sharrock if the attempt frequency f _0 = 10^9 Hz and the exponent n = 0.5. For low magnetic viscosity materials, the results are in reasonable agreement with the Landau-Lifshitz-Gilbert -damping-limited switching model but only if values of the damping constant alpha ~ 1 are assumed, in conflict with the reported values extracted from ferromagnetic resonance measurements. The fundamental relationship between the two models through the fluctuation-dissipation theorem is emphasized and the need for a comprehensive model identified. The results have significant implications for future media where thermal effects will become increasingly important.

  17. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex.

    PubMed

    Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C; Fischer, Alain; Durandy, Anne

    2015-04-01

    Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex

    PubMed Central

    Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M.; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C.; Fischer, Alain; Durandy, Anne

    2015-01-01

    Background Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. Objective This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Methods Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. Results We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. Conclusion INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. PMID:25312759

  19. Exciter switch

    NASA Technical Reports Server (NTRS)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  20. Interallelic class switch recombination contributes significantly to class switching in mouse B cells.

    PubMed

    Reynaud, Stéphane; Delpy, Laurent; Fleury, Laurence; Dougier, Hei-Lanne; Sirac, Christophe; Cogné, Michel

    2005-05-15

    Except for the expression of IgM and IgD, DNA recombination is constantly needed for the expression of other Ig classes and subclasses. The predominant path of class switch recombination (CSR) is intrachromosomal, and the looping-out and deletion model has been abundantly documented. However, switch regions also occasionally constitute convenient substrates for interchromosomal recombination, since it is noticeably the case in a number of chromosomal translocations causing oncogene deregulation in the course of lymphoma and myeloma. Although asymmetric accessibility of Ig alleles should theoretically limit its occurrence, interallelic CSR was shown to occur at low levels during IgA switching in rabbit, where the definition of allotypes within both V and C regions helped identify interchromosomally derived Ig. Thus, we wished to evaluate precisely interallelic CSR frequency in mouse B cells, by using a system in which only one allele (of b allotype) could express a functional VDJ region, whereas only interallelic CSR could restore expression of an excluded (a allotype) allele. In our study, we show that interchromosomal recombination of V(H) and Cgamma or Calpha occurs in vivo in B cells at a frequency that makes a significant contribution to physiological class switching: trans-association of V(H) and C(H) genes accounted for 7% of all alpha mRNA, and this frequency was about twice higher for the gamma3 transcripts, despite the much shorter distance between the J(H) region and the Cgamma3 gene, thus confirming that this phenomenon corresponded to site-specific switching and not to random recombination between long homologous loci.

  1. Molecular mechanism of R-bicalutamide switching from androgen receptor antagonist to agonist induced by amino acid mutations using molecular dynamics simulations and free energy calculation

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Han, Rui; Li, Jiazhong; Liu, Huanxiang; Zheng, Lifang

    2016-12-01

    R-bicalutamide, a first generation antiandrogen, was used to treat prostate cancer for decades. Although it is very effective at the beginning, resistance appears after 2-3 years of treatment. Mutation of androgen receptor (AR) is considered a main reason for drug resistance. It is reported that AR W741C, W741L, W741C_T877A, T877A, F876L, F876L_T877A and L701H mutations can convert R-bicalutamide from AR antagonist to agonist, but the switching mechanisms are not clear. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were performed to analyze the interaction mechanisms between R-bicalutamide and wild type/mutant ARs. The results indicate that helix H12, which lies on the top of AR LBD like a cover, plays a vital role in R-bicalutamide binding. When interacting with AR, the B-ring of R-bicalutamide pushes H12 aside, distorting the coactivator binding site (AF2) resulting in the inactivation of transcription. Several residue mutations appear to enlarge the distance between the B-ring of R-bicalutamide and H12, reducing steric clash, which is conducive to a closed H12 conformation, leading to the formation of the coactivator binding site AF2 and increased transcription. Hydrogen bond and per-residue free energy decomposition analyses are also investigated to explore the interacting mechanisms, and M895 is found to be a key residue in the antagonist mechanism. The obtained molecular mechanisms will aid rational screening and design of novel AR antagonists, even to mutant AR.

  2. Molecular mechanism of R-bicalutamide switching from androgen receptor antagonist to agonist induced by amino acid mutations using molecular dynamics simulations and free energy calculation.

    PubMed

    Liu, Hongli; Han, Rui; Li, Jiazhong; Liu, Huanxiang; Zheng, Lifang

    2016-12-01

    R-bicalutamide, a first generation antiandrogen, was used to treat prostate cancer for decades. Although it is very effective at the beginning, resistance appears after 2-3 years of treatment. Mutation of androgen receptor (AR) is considered a main reason for drug resistance. It is reported that AR W741C, W741L, W741C_T877A, T877A, F876L, F876L_T877A and L701H mutations can convert R-bicalutamide from AR antagonist to agonist, but the switching mechanisms are not clear. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were performed to analyze the interaction mechanisms between R-bicalutamide and wild type/mutant ARs. The results indicate that helix H12, which lies on the top of AR LBD like a cover, plays a vital role in R-bicalutamide binding. When interacting with AR, the B-ring of R-bicalutamide pushes H12 aside, distorting the coactivator binding site (AF2) resulting in the inactivation of transcription. Several residue mutations appear to enlarge the distance between the B-ring of R-bicalutamide and H12, reducing steric clash, which is conducive to a closed H12 conformation, leading to the formation of the coactivator binding site AF2 and increased transcription. Hydrogen bond and per-residue free energy decomposition analyses are also investigated to explore the interacting mechanisms, and M895 is found to be a key residue in the antagonist mechanism. The obtained molecular mechanisms will aid rational screening and design of novel AR antagonists, even to mutant AR.

  3. Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.

    PubMed

    Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing

    2016-08-01

    In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.

  4. A Switch Is Not a Switch: Syntactically-Driven Bilingual Language Control

    ERIC Educational Resources Information Center

    Gollan, Tamar H.; Goldrick, Matthew

    2018-01-01

    The current study investigated the possibility that language switches could be relatively automatically triggered by context. "Single-word switches," in which bilinguals switched languages on a single word in midsentence and then immediately switched back, were contrasted with more complete "whole-language switches," in which…

  5. Switching Phenomena in a System with No Switches

    NASA Astrophysics Data System (ADS)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  6. Single-molecule designs for electric switches and rectifiers.

    PubMed

    Kornilovitch, Pavel; Bratkovsky, Alexander; Williams, Stanley

    2003-12-01

    A design for molecular rectifiers is proposed. Current rectification is based on the spatial asymmetry of a molecule and requires only one resonant conducting molecular orbital. Rectification is caused by asymmetric coupling of the orbital to the electrodes, which results in asymmetric movement of the two Fermi levels with respect to the orbital under external bias. Results from numerical studies of the family of suggested molecular rectifiers, HS-(CH(2))(n)-C(6)H(4)(CH(2))(m)SH, are presented. Current rectification ratios in excess of 100 are achievable for n = 2 and m > 6. A class of bistable stator-rotor molecules is proposed. The stationary part connects the two electrodes and facilitates electron transport between them. The rotary part, which has a large dipole moment, is attached to an atom of the stator via a single sigma bond. Electrostatic bonds formed between the oxygen atom of the rotor and hydrogen atoms of the stator make the symmetric orientation of the dipole unstable. The rotor has two potential minima with equal energy for rotation about the sigma bond. The dipole can be flipped between the two states by an external electric field. Both rotor-orientation states have asymmetric current-voltage characteristics that are the reverse of each other, so they are distinguishable electrically. Theoretical results on conformation, energy barriers, retention times, switching voltages, and current-voltage characteristics are presented for a particular stator-rotor molecule. Such molecules could be the base for single-molecule switches, reversible diodes, and other molecular electronic devices.

  7. Molecular computational elements encode large populations of small objects

    NASA Astrophysics Data System (ADS)

    Prasanna de Silva, A.; James, Mark R.; McKinney, Bernadine O. F.; Pears, David A.; Weir, Sheenagh M.

    2006-10-01

    Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1nm) and large `on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100μm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a `wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.

  8. Molecular computational elements encode large populations of small objects.

    PubMed

    de Silva, A Prasanna; James, Mark R; McKinney, Bernadine O F; Pears, David A; Weir, Sheenagh M

    2006-10-01

    Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1 nm) and large 'on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 microm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a 'wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.

  9. A two-step strategy to visually identify molecularly imprinted polymers for tagged proteins.

    PubMed

    Brandis, Alexander; Partouche, Eran; Yechezkel, Tamar; Salitra, Yoseph; Shkoulev, Vladimir; Scherz, Avigdor; Grynszpan, Flavio

    2017-08-01

    A practical and relatively simple method to identify molecularly imprinted polymers capable of binding proteins via the molecular tagging (epitope-like) approach has been developed. In our two-step method, we first challenge a previously obtained anti-tag molecularly imprinted polymer with a small molecule including the said tag of choice (a biotin derivative as shown here or other) connected to a linker bound to a second biotin moiety. An avidin molecule partially decorated with fluorescent labels is then allowed to bind the available biotin derivative associated with the polymer matrix. At the end of this simple process, and after washing off all the low-affinity binding molecules from the polymer matrix, only suitable molecularly imprinted polymers binding avidin through its previously acquired small molecule tag (or epitope-like probe, in a general case) will remain fluorescent. For confirmation, we tested the selective performance of the anti-biotin molecularly imprinted polymer binding it to biotinylated alkaline phosphatase. Residual chemical activity of the enzyme on the molecularly imprinted polymer solid support was observed. In all cases, the corresponding nonimprinted polymer controls were inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  11. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  12. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  13. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  14. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  15. Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers.

    PubMed

    Pace, Giuseppina; Ferri, Violetta; Grave, Christian; Elbing, Mark; von Hänisch, Carsten; Zharnikov, Michael; Mayor, Marcel; Rampi, Maria Anita; Samorì, Paolo

    2007-06-12

    Photochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule. Interestingly, the switching of entire molecular 2D crystalline domains is observed, which is ruled by the interactions between nearest neighbors. This observation of azobenzene-based systems displaying collective switching might be of interest for applications in high-density data storage.

  16. Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers

    PubMed Central

    Pace, Giuseppina; Ferri, Violetta; Grave, Christian; Elbing, Mark; von Hänisch, Carsten; Zharnikov, Michael; Mayor, Marcel; Rampi, Maria Anita; Samorì, Paolo

    2007-01-01

    Photochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule. Interestingly, the switching of entire molecular 2D crystalline domains is observed, which is ruled by the interactions between nearest neighbors. This observation of azobenzene-based systems displaying collective switching might be of interest for applications in high-density data storage. PMID:17535889

  17. Spin state switching in iron coordination compounds

    PubMed Central

    Gaspar, Ana B; Garcia, Yann

    2013-01-01

    Summary The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property. PMID:23504535

  18. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    PubMed

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  19. Molecular transistors based on BDT-type molecular bridges.

    PubMed

    Wheeler, W D; Dahnovsky, Yu

    2008-10-21

    In this work we study the effect of electron correlations in molecular transistors with molecular bridges based on 1,4-benzene-dithiol (BDT) and 2-nitro-1,4-benzene-dithiol (nitro-BDT) by using ab initio electron propagator calculations. We find that there is no gate field effect for the BDT based transistor in accordance with the experimental data. After verifying the computational method on the BDT molecule, we consider a transistor with a nitro-BDT molecular bridge. From the electron propagator calculations, we predict strong negative differential resistance at small positive and negative values of source-drain voltages. The explanation of the peak and the minimum in the current is given in terms of the molecular orbital picture and switch-on (-off) properties due to the voltage dependencies of the Dyson poles (ionization potentials). When the current is off, the electronic states on both electrodes are populated resulting in the vanishing tunneling probability due to the Pauli principle. Besides the minimum and the maximum in the I-V characteristics, we find a strong gate field effect in the conductance where the peak at V(sd) = 0.15 eV and E(g) = 4x10(-3) a.u. switches to the minimum at E(g) = -4x10(-3) a.u. A similar behavior is discovered at the negative V(sd). Such a feature can be used for fast current modulation by changing the polarity of a gate field.

  20. Identifying the binding mode of a molecular scaffold

    NASA Astrophysics Data System (ADS)

    Chema, Doron; Eren, Doron; Yayon, Avner; Goldblum, Amiram; Zaliani, Andrea

    2004-01-01

    We describe a method for docking of a scaffold-based series and present its advantages over docking of individual ligands, for determining the binding mode of a molecular scaffold in a binding site. The method has been applied to eight different scaffolds of protein kinase inhibitors (PKI). A single analog of each of these eight scaffolds was previously crystallized with different protein kinases. We have used FlexX to dock a set of molecules that share the same scaffold, rather than docking a single molecule. The main mode of binding is determined by the mode of binding of the largest cluster among the docked molecules that share a scaffold. Clustering is based on our `nearest single neighbor' method [J. Chem. Inf. Comput. Sci., 43 (2003) 208-217]. Additional criteria are applied in those cases in which more than one significant binding mode is found. Using the proposed method, most of the crystallographic binding modes of these scaffolds were reconstructed. Alternative modes, that have not been detected yet by experiments, could also be identified. The method was applied to predict the binding mode of an additional molecular scaffold that was not yet reported and the predicted binding mode has been found to be very similar to experimental results for a closely related scaffold. We suggest that this approach be used as a virtual screening tool for scaffold-based design processes.

  1. Temperature control of molecular circuit switch responsible for virulent phenotype expression in uropathogenic Escherichia coli

    NASA Astrophysics Data System (ADS)

    Samoilov, Michael

    2010-03-01

    The behavior and fate of biological organisms are to a large extent dictated by their environment, which can be often viewed as a collection of features and constraints governed by physics laws. Since biological systems comprise networks of molecular interactions, one such key physical property is temperature, whose variations directly affect the rates of biochemical reactions involved. For instance, temperature is known to control many gene regulatory circuits responsible for pathogenicity in bacteria. One such example is type 1 fimbriae (T1F) -- the foremost virulence factor in uropathogenic E. coli (UPEC), which accounts for 80-90% of all community-acquired urinary tract infections (UTIs). The expression of T1F is randomly `phase variable', i.e. individual cells switch between virulent/fimbriate and avirulent/afimbriate phenotypes, with rates regulated by temperature. Our computational investigation of this process, which is based on FimB/FimE recombinase-mediated inversion of fimS DNA element, offers new insights into its discrete-stochastic kinetics. In particular, it elucidates the logic of T1F control optimization to the host temperature and contributes further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.

  2. Analytically derived switching functions for exact H2+ eigenstates

    NASA Astrophysics Data System (ADS)

    Thorson, W. R.; Kimura, M.; Choi, J. H.; Knudson, S. K.

    1981-10-01

    Electron translation factors (ETF's) appropriate for slow atomic collisions may be constructed using switching functions. In this paper we derive a set of switching functions for the H2+ system by an analytical "two-center decomposition" of the exact molecular eigenstates. These switching functions are closely approximated by the simple form f=bη, where η is the "angle variable" of prolate spheroidal coordinates. For given united atom angular momentum quantum numbers (l,m), the characteristic parameter blm depends only on the quantity c2=-ɛR22, where ɛ is the electronic binding energy and R the internuclear distance in a.u. The resulting parameters are in excellent agreement with those found in our earlier work by a heuristic "optimization" scheme based on a study of coupling matrix-element behavior for a number of H2+ states. An approximate extension to asymmetric cases (HeH2+) has also been made. Nonadiabatic couplings based on these switching functions have been used in recent close-coupling calculations for H+-H(1s) collisions and He2+-H(1s) collisions at energies 1.0-20 keV.

  3. An engineered allosteric switch in leucine-zipper oligomerization.

    PubMed

    Gonzalez, L; Plecs, J J; Alber, T

    1996-06-01

    Controversy remains about the role of core side-chain packing in specifying protein structure. To investigate the influence of core packing on the oligomeric structure of a coiled coil, we engineered a GCN4 leucine zipper mutant that switches from two to three strands upon binding the hydrophobic ligands cyclohexane and benzene. In solution these ligands increased the apparent thermal stability and the oligomerization order of the mutant leucine zipper. The crystal structure of the peptide-benzene complex shows a single benzene molecule bound at the engineered site in the core of the trimer. These results indicate that coiled coils are well-suited to function as molecular switches and emphasize that core packing is an important determinant of oligomerization specificity.

  4. Modular protein switches derived from antibody mimetic proteins.

    PubMed

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    DOE PAGES

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; ...

    2015-01-14

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-lossmore » spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.« less

  6. Multistage switching hardware and software implementations for student experiment purpose

    NASA Astrophysics Data System (ADS)

    Sani, A.; Suherman

    2018-02-01

    Current communication and internet networks are underpinned by the switching technologies that interconnect one network to the others. Students’ understanding on networks rely on how they conver the theories. However, understanding theories without touching the reality may exert spots in the overall knowledge. This paper reports the progress of the multistage switching design and implementation for student laboratory activities. The hardware and software designs are based on three stages clos switching architecture with modular 2x2 switches, controlled by an arduino microcontroller. The designed modules can also be extended for batcher and bayan switch, and working on circuit and packet switching systems. The circuit analysis and simulation show that the blocking probability for each switch combinations can be obtained by generating random or patterned traffics. The mathematic model and simulation analysis shows 16.4% blocking probability differences as the traffic generation is uniform. The circuits design components and interfacing solution have been identified to allow next step implementation.

  7. Switch-backs associated with generic drugs approved using product-specific determinations of therapeutic equivalence.

    PubMed

    Gagne, Joshua J; Polinski, Jennifer M; Jiang, Wenlei; Dutcher, Sarah K; Xie, Jing; Lii, Joyce; Fulchino, Lisa A; Kesselheim, Aaron S

    2016-08-01

    US Food and Drug Administration approval for generic drugs relies on demonstrating pharmaceutical equivalence and bioequivalence; however, some drug products have unique attributes that necessitate product-specific approval pathways. We evaluated rates of patients' switching back to brand-name versions from generic versions of four drugs approved via such approaches. We used data from Optum LifeSciences Research Database to identify patients using a brand-name version of a study drug (acarbose tablets, salmon calcitonin nasal spray, enoxaparin sodium injection, and venlafaxine extended release tablets) or a control drug. We followed patients to identify switching to generic versions and then followed those who switched to identify whether they switched back to brand-name versions. We calculated switch and switch-back rates and used Kaplan-Meier and log-rank tests to compare rates between study and control drugs. Our cohort included 201 959 eligible patients. Brand-to-generic switch rates ranged from 66 to 106 switches per 100 person-years for study drugs and 80 to 110 for control drugs. Rates of switch-back to brand-name versions ranged from 5 to 37 among study drugs and 3 to 53 among control drugs. Switch-back rates were higher for venlafaxine vs. sertraline (p < 0.01) and calcitonin vs. alendronate (p = 0.01). Switch-back rates were lower for venlafaxine vs. paroxetine (p < 0.01) and acarbose vs. nateglinide (p < 0.01). Rates were similar for acarbose vs. glimepiride (p = 0.97) and for enoxaparin vs. fondiparinux (p = 0.11). As compared to control drugs, patients were not more likely to systematically switch back from generic to brand-name versions of the four study drugs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Shuttlecock-Shaped Molecular Rectifier: Asymmetric Electron Transport Coupled with Controlled Molecular Motion.

    PubMed

    Ryu, Taekhee; Lansac, Yves; Jang, Yun Hee

    2017-07-12

    A fullerene derivative with five hydroxyphenyl groups attached around a pentagon, (4-HOC 6 H 4 ) 5 HC 60 (1), has shown an asymmetric current-voltage (I-V) curve in a conducting atomic force microscopy experiment on gold. Such molecular rectification has been ascribed to the asymmetric distribution of frontier molecular orbitals over its shuttlecock-shaped structure. Our nonequilibrium Green's function (NEGF) calculations based on density functional theory (DFT) indeed exhibit an asymmetric I-V curve for 1 standing up between two Au(111) electrodes, but the resulting rectification ratio (RR ∼ 3) is insufficient to explain the wide range of RR observed in experiments performed under a high bias voltage. Therefore, we formulate a hypothesis that high RR (>10) may come from molecular orientation switching induced by a strong electric field applied between two electrodes. Indeed, molecular dynamics simulations of a self-assembled monolayer of 1 on Au(111) show that the orientation of 1 can be switched between standing-up and lying-on-the-side configurations in a manner to align its molecular dipole moment with the direction of the applied electric field. The DFT-NEGF calculations taking into account such field-induced reorientation between up and side configurations indeed yield RR of ∼13, which agrees well with the experimental value obtained under a high bias voltage.

  9. Stochastic switching in biology: from genotype to phenotype

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.

    2017-03-01

    There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1-1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reactions. One of the major consequences of molecular noise is the occurrence of stochastic biological switching at both the genotypic and phenotypic levels. For example, individual gene regulatory networks can switch between graded and binary responses, exhibit translational/transcriptional bursting, and support metastability (noise-induced switching between states that are stable in the deterministic limit). If random switching persists at the phenotypic level then this can confer certain advantages to cell populations growing in a changing environment, as exemplified by bacterial persistence in response to antibiotics. Gene expression at the single-cell level can also be regulated by changes in cell density at the population level, a process known as quorum sensing. In contrast to noise-driven phenotypic switching, the switching mechanism in quorum sensing is stimulus-driven and thus noise tends to have a detrimental effect. A common approach to modeling stochastic gene expression is to assume a large but finite system and to approximate the discrete processes by continuous processes using a system-size expansion. However, there is a growing need to have some familiarity with the theory of stochastic processes that goes beyond the standard topics of chemical master equations, the system-size expansion, Langevin equations and the Fokker-Planck equation. Examples include stochastic hybrid systems (piecewise deterministic Markov processes), large deviations and the Wentzel-Kramers-Brillouin (WKB) method, adiabatic reductions, and queuing/renewal theory. The major aim of this

  10. Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch

    NASA Astrophysics Data System (ADS)

    Kaldewey, Timo; Kuhlmann, Andreas V.; Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.; Warburton, Richard J.

    2018-02-01

    The diffraction limit prevents a conventional optical microscope from imaging at the nanoscale. However, nanoscale imaging of molecules is possible by exploiting an intensity-dependent molecular switch1-3. This switch is translated into a microscopy scheme, stimulated emission depletion microscopy4-7. Variants on this scheme exist3,8-13, yet all exploit an incoherent response to the lasers. We present a scheme that relies on a coherent response to a laser. Quantum control of a two-level system proceeds via rapid adiabatic passage, an ideal molecular switch. We implement this scheme on an ensemble of quantum dots. Each quantum dot results in a bright spot in the image with extent down to 30 nm (λ/31). There is no significant loss of intensity with respect to confocal microscopy, resulting in a factor of 10 improvement in emitter position determination. The experiments establish rapid adiabatic passage as a versatile tool in the super-resolution toolbox.

  11. Optimal control of switching time in switched stochastic systems with multi-switching times and different costs

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian

    2017-08-01

    In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.

  12. High hopes: can molecular electronics realise its potential?

    PubMed

    Coskun, Ali; Spruell, Jason M; Barin, Gokhan; Dichtel, William R; Flood, Amar H; Botros, Youssry Y; Stoddart, J Fraser

    2012-07-21

    Manipulating and controlling the self-organisation of small collections of molecules, as an alternative to investigating individual molecules, has motivated researchers bent on processing and storing information in molecular electronic devices (MEDs). Although numerous ingenious examples of single-molecule devices have provided fundamental insights into their molecular electronic properties, MEDs incorporating hundreds to thousands of molecules trapped between wires in two-dimensional arrays within crossbar architectures offer a glimmer of hope for molecular memory applications. In this critical review, we focus attention on the collective behaviour of switchable mechanically interlocked molecules (MIMs)--specifically, bistable rotaxanes and catenanes--which exhibit reset lifetimes between their ON and OFF states ranging from seconds in solution to hours in crossbar devices. When these switchable MIMs are introduced into high viscosity polymer matrices, or self-assembled as monolayers onto metal surfaces, both in the form of nanoparticles and flat electrodes, or organised as tightly packed islands of hundreds and thousands of molecules sandwiched between two electrodes, the thermodynamics which characterise their switching remain approximately constant while the kinetics associated with their reset follow an intuitively predictable trend--that is, fast when they are free in solution and sluggish when they are constrained within closely packed monolayers. The importance of seamless interactions and constant feedback between the makers, the measurers and the modellers in establishing the structure-property relationships in these integrated functioning systems cannot be stressed enough as rationalising the many different factors that impact device performance becomes more and more demanding. The choice of electrodes, as well as the self-organised superstructures of the monolayers of switchable MIMs employed in the molecular switch tunnel junctions (MSTJs) associated

  13. Study of solar array switching power management technology for space power system

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.

  14. Transient-Switch-Signal Suppressor

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  15. The formation of the light-sensing compartment of cone photoreceptors coincides with a transcriptional switch

    PubMed Central

    Daum, Janine M; Keles, Özkan; Holwerda, Sjoerd JB; Kohler, Hubertus; Rijli, Filippo M

    2017-01-01

    High-resolution daylight vision is mediated by cone photoreceptors. The molecular program responsible for the formation of their light sensor, the outer segment, is not well understood. We correlated daily changes in ultrastructure and gene expression in postmitotic mouse cones, between birth and eye opening, using serial block-face electron microscopy (EM) and RNA sequencing. Outer segments appeared rapidly at postnatal day six and their appearance coincided with a switch in gene expression. The switch affected over 14% of all expressed genes. Genes that switched off were rich in transcription factors and neurogenic genes. Those that switched on contained genes relevant for cone function. Chromatin rearrangements in enhancer regions occurred before the switch was completed, but not after. We provide a resource comprised of correlated EM, RNAseq, and ATACseq data, showing that the growth of a key compartment of a postmitotic cell involves an extensive switch in gene expression and chromatin accessibility. PMID:29106373

  16. Fast switching of bistable magnetic nanowires through collective spin reversal

    NASA Astrophysics Data System (ADS)

    Vindigni, Alessandro; Rettori, Angelo; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta; Novak, Miguel A.

    2005-08-01

    The use of magnetic nanowires as memory units is made possible by the exponential divergence of the characteristic time for magnetization reversal at low temperature, but the slow relaxation makes the manipulation of the frozen magnetic states difficult. We suggest that finite-size segments can show a fast switching if collective reversal of the spins is taken into account. This mechanism gives rise at low temperatures to a scaling law for the dynamic susceptibility that has been experimentally observed for the dilute molecular chain Co(hfac)2NitPhOMe. These results suggest a possible way of engineering nanowires for fast switching of the magnetization.

  17. Switchable molecular magnets

    PubMed Central

    SATO, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438

  18. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers.

    PubMed

    Egorov, Evgeny S; Merzlyak, Ekaterina M; Shelenkov, Andrew A; Britanova, Olga V; Sharonov, George V; Staroverov, Dmitriy B; Bolotin, Dmitriy A; Davydov, Alexey N; Barsova, Ekaterina; Lebedev, Yuriy B; Shugay, Mikhail; Chudakov, Dmitriy M

    2015-06-15

    Emerging high-throughput sequencing methods for the analyses of complex structure of TCR and BCR repertoires give a powerful impulse to adaptive immunity studies. However, there are still essential technical obstacles for performing a truly quantitative analysis. Specifically, it remains challenging to obtain comprehensive information on the clonal composition of small lymphocyte populations, such as Ag-specific, functional, or tissue-resident cell subsets isolated by sorting, microdissection, or fine needle aspirates. In this study, we report a robust approach based on unique molecular identifiers that allows profiling Ag receptors for several hundred to thousand lymphocytes while preserving qualitative and quantitative information on clonal composition of the sample. We also describe several general features regarding the data analysis with unique molecular identifiers that are critical for accurate counting of starting molecules in high-throughput sequencing applications. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. A Study of Electrocyclic Reactions in a Molecular Junction: Mechanistic and Energetic Requirements for Switching in the Coulomb Blockade Regime.

    PubMed

    Olsen, Stine T; Brøndsted Nielsen, Mogens; Hansen, Thorsten; Ratner, Mark A; Mikkelsen, Kurt V

    2017-06-20

    Molecular photoswitches incorporated in molecular junctions yield the possibility of light-controlled switching of conductance due to the electronic difference of the photoisomers. Another isomerization mechanism, dark photoswitching, promoted by a voltage stimulus rather than by light, can be operative in the Coulomb blockade regime for a specific charge state of the molecule. Here we elucidate theoretically the mechanistic and thermodynamic restrictions for this dark photoswitching for donor-acceptor substituted 4n and 4n+2 π-electron open-chain oligoenes (1,3-butadiene and 1,3,5-hexatriene) by considering the molecular energies and orbitals of the molecules placed in a junction. For an electrocyclic ring closure reaction to occur for these compounds, we put forward two requirements: a) the closed stereoisomer (cis or trans form) must be of lower energy than the open form, and b) the reaction pathway must be in accordance to the orbital symmetry rules expressed by the Woodward-Hoffmann rules (when the electrodes do not significantly alter the molecular orbital appearances). We find these two requirements to be valid for the dianion of (1E,3Z,5E)-hexa-1,3,5-triene-1,6-diamine, and the Coulomb blockade diamonds were therefore modeled for this compound to elucidate how a dark photoswitching event would manifest itself in the stability plot. From this modeling of conductance as a function of gate and bias potentials, we predict a collapse in Coulomb diamond size, that is, a decrease in the height of the island of zero conductance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silicon-Germanium Fast Packet Switch Developed for Communications Satellites

    NASA Technical Reports Server (NTRS)

    Quintana, Jorge A.

    1999-01-01

    Emerging multimedia applications and future satellite systems will require high-speed switching networks to accommodate high data-rate traffic among thousands of potential users. This will require advanced switching devices to enable communication between satellites. The NASA Lewis Research Center has been working closely with industry to develop a state-of-the-art fast packet switch (FPS) to fulfill this requirement. Recently, the Satellite Industry Task Force identified the need for high-capacity onboard processing switching components as one of the "grand challenges" for the satellite industry in the 21st century. In response to this challenge, future generations of onboard processing satellites will require low power and low mass components to enable transmission of services in the 100 gigabit (1011 bits) per second (Gbps) range.

  1. Study of solar array switching power management technology for space power system

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts were identified that could safisfy the mission requirements. These switching concepts were compared with a conventional buck regulator system on the basis of cost, weight and volume, reliability, efficiency and thermal control. For the missions reviewed, solar array switching provided significant advantages in all areas of comparison.

  2. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch

    PubMed Central

    Lohse, Matthew B.; Ene, Iuliana V.; Craik, Veronica B.; Hernday, Aaron D.; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J.; Johnson, Alexander D.

    2016-01-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named “white” and “opaque,” each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white–opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white–opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white–opaque switching to cellular physiology. PMID:27280690

  3. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch.

    PubMed

    Lohse, Matthew B; Ene, Iuliana V; Craik, Veronica B; Hernday, Aaron D; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J; Johnson, Alexander D

    2016-08-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology. Copyright © 2016 by the Genetics Society of America.

  4. Digital switched hydraulics

    NASA Astrophysics Data System (ADS)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  5. Enhancement of resistive switching properties in Al2O3 bilayer-based atomic switches: multilevel resistive switching.

    PubMed

    Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun

    2018-06-08

    Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (10 5 ) with better endurance (∼2000 cycles) and longer data retention (10 4 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.

  6. Enhancement of resistive switching properties in Al2O3 bilayer-based atomic switches: multilevel resistive switching

    NASA Astrophysics Data System (ADS)

    Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun

    2018-06-01

    Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (105) with better endurance (∼2000 cycles) and longer data retention (104 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.

  7. Finite Ground Coplanar Waveguide Shunt MEMS Switches for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.

    2000-01-01

    Switches with low insertion loss and high isolation are required for switched line phase shifters and the transmit/receive switch at the front end of communication systems. A Finite Ground Coplanar (FGC) waveguide capacitive, shunt MEMS switch has been implemented on high resistivity Si. The switch has demonstrated an insertion loss of less than 0.3 dB and a return loss greater than 15 dB from 10 to 20, GHz. The switch design, fabrication, and characteristics are presented.

  8. Predictors of switch from depression to mania in bipolar disorder.

    PubMed

    Niitsu, Tomihisa; Fabbri, Chiara; Serretti, Alessandro

    2015-01-01

    Manic switch is a relevant issue when treating bipolar depression. Some risk factors have been suggested, but unequivocal findings are lacking. We therefore investigated predictors of switch from depression to mania in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) sample. Manic switch was defined as a depressive episode followed by a (hypo)manic or mixed episode within the following 12 weeks. We assessed possible predictors of switch using generalized linear mixed models (GLMM). 8403 episodes without switch and 512 episodes with switch (1720 subjects) were included in the analysis. Several baseline variables were associated with a higher risk of switch. They were younger age, previous history of: rapid cycling, severe manic symptoms, suicide attempts, amphetamine use and some pharmacological and psychotherapeutic treatments. During the current depressive episode, the identified risk factors were: any possible mood elevation, multiple mania-associated symptoms with at least moderate severity, and comorbid panic attacks. In conclusion, our study suggests that both characteristics of the disease history and clinical features of the current depressive episode may be risk factors for manic switch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Healthcare Costs Associated with Switching from Brand to Generic Levothyroxine

    PubMed Central

    Katz, Michael; Scherger, Joseph; Conard, Scott; Montejano, Leslie; Chang, Stella

    2010-01-01

    Background Controversy exists over the true therapeutic equivalence of branded and generic levothyroxine—the drug of choice for treating hypothyroidism—so professional societies recommend against switching between different formulations of the drug and suggest that patients who do switch be monitored. Payers typically encourage switching to generic drugs because of lower drug acquisition costs. Objective To evaluate the impact of switching levothyroxine formulations on actual healthcare costs. Methods Patients with hypothyroidism and at least 6 months of branded levothyroxine therapy were identified from a large healthcare claims database. Patients who subsequently switched to another levothyroxine formulation and could be followed for 6 months postswitch were matched to demographically similar patients who were continuous users of branded levothyroxine. Pre- and postswitch healthcare costs for each group were compared. Results The savings in prescription drug costs after switching from branded to generic levothyroxine are offset by increases in costs for other healthcare services, such that switching is actually associated with an increase, not a decrease, in total healthcare costs. Conclusion In the absence of cost-savings, there is no clear rationale for switching patients from brand to generic levothyroxine. PMID:25126314

  10. New target for inhibition of bacterial RNA polymerase: 'switch region'.

    PubMed

    Srivastava, Aashish; Talaue, Meliza; Liu, Shuang; Degen, David; Ebright, Richard Y; Sineva, Elena; Chakraborty, Anirban; Druzhinin, Sergey Y; Chatterjee, Sujoy; Mukhopadhyay, Jayanta; Ebright, Yon W; Zozula, Alex; Shen, Juan; Sengupta, Sonali; Niedfeldt, Rui Rong; Xin, Cai; Kaneko, Takushi; Irschik, Herbert; Jansen, Rolf; Donadio, Stefano; Connell, Nancy; Ebright, Richard H

    2011-10-01

    A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule

  12. Air-bridge and Vertical CNT Switches for High Performance Switching Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Wong, Eric W.; Epp, Larry; Bronikowski, Michael J.; Hunt, BBrian D.

    2006-01-01

    Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT.Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb base electrode, where contact to the CNTs is made using evaporated Au/Ti. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied between the CNT and the Nb-base electrode. The CNT air-bridge switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 - 300 nm wide, approximately 1 micrometer deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw switch architecture.

  13. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids.

    PubMed

    Smalyukh, Ivan I; Lansac, Yves; Clark, Noel A; Trivedi, Rahul P

    2010-02-01

    Control of structures in soft materials with long-range order forms the basis for applications such as displays, liquid-crystal biosensors, tunable lenses, distributed feedback lasers, muscle-like actuators and beam-steering devices. Bistable, tristable and multistable switching of well-defined structures of molecular alignment is of special interest for all of these applications. Here we describe the facile optical creation and multistable switching of localized configurations in the molecular orientation field of a chiral nematic anisotropic fluid. These localized chiro-elastic particle-like excitations--dubbed 'triple-twist torons'--are generated by vortex laser beams and embed the localized three-dimensional (3D) twist into a uniform background. Confocal polarizing microscopy and computer simulations reveal their equilibrium internal structures, manifesting both skyrmion-like and Hopf fibration features. Robust generation of torons at predetermined locations combined with both optical and electrical reversible switching can lead to new ways of multistable structuring of complex photonic architectures in soft materials.

  14. Biomolecule nanoparticle-induced nanocomposites with resistive switching nonvolatile memory properties

    NASA Astrophysics Data System (ADS)

    Ko, Yongmin; Ryu, Sook Won; Cho, Jinhan

    2016-04-01

    Resistive switching behavior-based memory devices are considered promising candidates for next-generation data storage because of their simple structure configuration, low power consumption, and rapid operating speed. Here, the resistive switching nonvolatile memory properties of Fe2O3 nanocomposite (NC) films prepared from the thermal calcination of layer-by-layer (LbL) assembled ferritin multilayers were successfully investigated. For this study, negatively charged ferritin nanoparticles were alternately deposited onto the Pt-coated Si substrate with positively charged poly(allylamine hydrochloride) (PAH) by solution-based electrostatic LbL assembly, and the formed multilayers were thermally calcinated to obtain a homogeneous transition metal oxide NC film through the elimination of organic components, including the protein shell of ferritin. The formed memory device exhibits a stable ON/OFF current ratio of approximately 103, with nanosecond switching times under an applied external bias. In addition, these reversible switching properties were kept stable during the repeated cycling tests of above 200 cycles and a test period of approximately 105 s under atmosphere. These solution-based approaches can provide a basis for large-area inorganic nanoparticle-based electric devices through the design of bio-nanomaterials at the molecular level.

  15. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria

    PubMed Central

    Srinivasan, Sujatha; Munch, Matthew M.; Sizova, Maria V.; Fiedler, Tina L.; Kohler, Christina M.; Hoffman, Noah G.; Liu, Congzhou; Agnew, Kathy J.; Marrazzo, Jeanne M.; Epstein, Slava S.; Fredricks, David N.

    2016-01-01

    Background. Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Methods. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. Results. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. Conclusions. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously “uncultivated” bacteria are amenable to conventional cultivation. PMID:27449870

  16. Physical chemistry: Molecular motion watched

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley; Collet, Eric

    2013-04-01

    A laser pulse can switch certain crystals from an insulating phase to a highly conducting phase. The ultrafast molecular motions that drive the transition have been directly observed using electron diffraction. See Letter p.343

  17. Activator Protein-1: redox switch controlling structure and DNA-binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-pointmore » redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.« less

  18. Alarm toe switch

    DOEpatents

    Ganyard, Floyd P.

    1982-01-01

    An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.

  19. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  20. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization

    PubMed Central

    Dedecker, Peter

    2017-01-01

    Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties. PMID:28930199

  1. Switching antipsychotic medications.

    PubMed

    Weiden, P J; Aquila, R; Dalheim, L; Standard, J M

    1997-01-01

    Compared with conventional antipsychotics, the so-called "atypical" antipsychotics promise improved side effect profiles and better control of the symptoms of schizophrenia. Therefore, most patients currently taking conventional antipsychotics could potentially benefit from a switch to an atypical antipsychotic. Often, the key issue in deciding whether to switch is the presence of countervailing factors that mitigate against the change. This paper discusses the indications and contraindications for switching antipsychotics, plus issues that require consideration before a switch is made. Also, the advantages and disadvantages of various switching techniques are discussed, with a particular focus on the newer antipsychotic olanzapine.

  2. An acoustic switch.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2014-01-01

    The benefits derived from the development of acoustic transistors which act as switches or amplifiers have been reported in the literature. Here we propose a model of acoustic switch. We theoretically demonstrate that the device works: the input signal is totally restored at the output when the switch is on whereas the output signal nulls when the switch is off. The switch, on or off, depends on a secondary acoustic field capable to manipulate the main acoustic field. The model relies on the attenuation effect of many oscillating bubbles on the main travelling wave in the liquid, as well as on the capacity of the secondary acoustic wave to move the bubbles. This model evidences the concept of acoustic switch (transistor) with 100% efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.

    PubMed

    Vigil, Dominico; Lin, Jung-Hsin; Sotriffer, Christoph A; Pennypacker, Juniper K; McCammon, J Andrew; Taylor, Susan S

    2006-01-01

    Cyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C-subunit are also unknown. Here we report molecular-dynamics simulations and mutational studies of the RIalpha R-subunit that identify the C-helix as a highly dynamic switch which relays cAMP binding to the helical C-subunit binding regions. Furthermore, we identify an important salt bridge which links cAMP binding directly to the C-helix that is necessary for normal activation. Additional mutations show that a hydrophobic "hinge" region is not as critical for the cross-talk in PKA as it is in the homologous EPAC protein, illustrating how cAMP can control diverse functions using the evolutionarily conserved cAMP-binding domains.

  4. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    PubMed

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Identifying Novel Molecular Structures for Advanced Melanoma by Ligand-Based Virtual Screening

    PubMed Central

    Wang, Zhao; Lu, Yan; Seibel, William; Miller, Duane D.; Li, Wei

    2009-01-01

    We recently discovered a new class of thiazole analogs that are highly potent against melanoma cells. To expand the structure-activity relationship study and to explore potential new molecular scaffolds, we performed extensive ligand-based virtual screening against a compound library containing 342,910 small molecules. Two different approaches of virtual screening were carried out using the structure of our lead molecule: 1) connectivity-based search using Scitegic Pipeline Pilot from Accelerys and 2) molecular shape similarity search using Schrodinger software. Using a testing compound library, both approaches can rank similar compounds very high and rank dissimilar compounds very low, thus validating our screening methods. Structures identified from these searches were analyzed, and selected compounds were tested in vitro to assess their activity against melanoma cancer cell lines. Several molecules showed good anticancer activity. While none of the identified compounds showed better activity than our lead compound, they provided important insight into structural modifications for our lead compound and also provided novel platforms on which we can optimize new classes of anticancer compounds. One of the newly synthesized analogs based on this virtual screening has improved potency and selectivity against melanoma. PMID:19445498

  6. Controlled clockwise and anticlockwise rotational switching of a molecular motor.

    PubMed

    Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W

    2013-01-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

  7. Coaxial Switch

    DTIC Science & Technology

    2014-04-23

    0005] RF coaxial switches are typically used in environments that are prone to mechanical shocks and vibrations . For example, in military...withstand mechanical shocks and vibrations and to maintain an RF connection throughout a shock or a vibration event. Attorney Docket No. 102139...3 of 16 [0006] It has been found that shocks and vibrations on prior art rotary-type coaxial switches may cause the shaft in the coaxial switch

  8. Using Metaphors to Explain Molecular Testing to Cancer Patients.

    PubMed

    Pinheiro, Ana P M; Pocock, Rachel H; Dixon, Margie D; Shaib, Walid L; Ramalingam, Suresh S; Pentz, Rebecca D

    2017-04-01

    Molecular testing to identify targetable molecular alterations is routine practice for several types of cancer. Explaining the underlying molecular concepts can be difficult, and metaphors historically have been used in medicine to provide a common language between physicians and patients. Although previous studies have highlighted the use and effectiveness of metaphors to help explain germline genetic concepts to the general public, this study is the first to describe the use of metaphors to explain molecular testing to cancer patients in the clinical setting. Oncologist-patient conversations about molecular testing were recorded, transcribed verbatim, and coded. If a metaphor was used, patients were asked to explain it and assess its helpfulness. Sixty-six patients participated. Nine oncologists used metaphors to describe molecular testing; 25 of 66 (38%) participants heard a metaphor, 13 of 25 (52%) were questioned, 11 of 13 (85%) demonstrated understanding and reported the metaphor as being useful. Seventeen metaphors (bus driver, boss, switch, battery, circuit, broken light switch, gas pedal, key turning off an engine, key opening a lock, food for growth, satellite and antenna, interstate, alternate circuit, traffic jam, blueprint, room names, Florida citrus) were used to explain eight molecular testing terms (driver mutations, targeted therapy, hormones, receptors, resistance, exon specificity, genes, and cancer signatures). Because metaphors have proven to be a useful communication tool in other settings, these 17 metaphors may be useful for oncologists to adapt to their own setting to explain molecular testing terms. The Oncologist 2017;22:445-449 Implications for Practice: This article provides a snapshot of 17 metaphors that proved useful in describing 8 complicated molecular testing terms at 3 sites. As complex tumor sequencing becomes standard of care in clinics and widely used in clinical research, the use of metaphors may prove a useful communication

  9. A molecular switch sensor for detection of PRSS1 genotype based on site-specific DNA cleavage of restriction endonuclease.

    PubMed

    Liu, Qicai; Gao, Feng; Weng, Shaohuang; Peng, Huaping; Lin, Liqing; Zhao, Chengfei; Lin, Xinhua

    2015-01-01

    PRSS1 mutations or polymorphism in the peripheral blood of patients can be used as susceptible molecular markers to pancreatic cancer. A sensor for selective electrochemical detection of PRSS1 genotypes was developed based on site-specific DNA cleavage of restriction endonuclease EcoRI. A mercapto-modified hairpin probe was immobilized on a gold electrode. The probe's neck can be cleaved by EcoRI in the absence of rs10273639 C/C of PRSS1 genotype, but it cannot be cleaved in the presence of T/T. The difference in quantity of electric charge was monitored by biosensors before and after enzymatic cleavage. Electrochemical signals are generated by differential pulse voltammetry interrogation of methylene blue (MB) that quantitatively binds to surface-confined hairpin probe via electrostatic interactions. The results suggested this method had a good specificity in distinguishing PRSS1 genotypes. There was a good linear relationship between the charge and the logarithmic function of PRSS1 rs10273639 T/T type DNA concentration (current=120.6303+8.8512log C, R=0.9942). The detection limit was estimated at 0.5 fM. The molecular switch sensor has several advantages, and it is possible to qualitatively, quantitatively, and noninvasively detect PRSS1 genotypes in the blood of patients with pancreatic cancer. © 2015 by the Association of Clinical Scientists, Inc.

  10. Mix and Switch Effects in Bilingual Language Processing

    ERIC Educational Resources Information Center

    Koeth, Joel T.

    2012-01-01

    This study utilized a novel task design in an effort to identify the source of the second language processing advantage commonly reported in mixed language conditions, investigate switch cost asymmetry in non-balanced bilinguals, and identify task-related variables that potentially contribute to inconsistent results across studies with similar…

  11. Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions.

    PubMed

    Li, Tao; Jevric, Martyn; Hauptmann, Jonas R; Hviid, Rune; Wei, Zhongming; Wang, Rui; Reeler, Nini E A; Thyrhaug, Erling; Petersen, Søren; Meyer, Jakob A S; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Qiu, Xiaohui; Hu, Wenping; Liu, Yunqi; Solomon, Gemma C; Kjaergaard, Henrik G; Bjørnholm, Thomas; Nielsen, Mogens Brøndsted; Laursen, Bo W; Nørgaard, Kasper

    2013-08-14

    A new type of solid-state molecular junction is introduced, which employs reduced graphene oxide as a transparent top contact that permits a self-assembled molecular monolayer to be photoswitched in situ, while simultaneously enabling charge-transport measurements across the molecules. The electrical switching behavior of a less-studied molecular switch, dihydroazulene/vinylheptafulvene, is described, which is used as a test case. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of different substitution position on the switching behavior in single-molecule device with carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Jingjuan; Han, Xiaoxiao; Yuan, Peipei; Bian, Baoan; Wang, Yixiang

    2018-01-01

    We investigate the electronic transport properties of dihydroazulene (DHA) and vinylheptafulvene (VHF) molecule sandwiched between two carbon nanotubes using density functional theory and non-equilibrium Green's function. The device displays significantly switching behavior between DHA and VHF isomerizations. It is found the different substitution position of F in the molecule influences the switching ratio of device, which is analyzed by transmission spectra and molecular projected self-consistent Hamiltonian. The observed negative differential resistance effect is explained by transmission spectra and transmission eigenstates of transmission peak in the bias window. The observed reverse of current in VHF form in which two H atoms on the right side of the benzene ring of the molecule are replaced by F is explained by transmission spectra and molecule-electrode coupling with the varied bias. The results suggest that the reasonable substitution position of molecule may improve the switching ratio, displaying a potential application in future molecular circuit.

  13. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria.

    PubMed

    Srinivasan, Sujatha; Munch, Matthew M; Sizova, Maria V; Fiedler, Tina L; Kohler, Christina M; Hoffman, Noah G; Liu, Congzhou; Agnew, Kathy J; Marrazzo, Jeanne M; Epstein, Slava S; Fredricks, David N

    2016-08-15

    Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously "uncultivated" bacteria are amenable to conventional cultivation. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  14. Miniature intermittent contact switch

    NASA Technical Reports Server (NTRS)

    Sword, A.

    1972-01-01

    Design of electric switch for providing intermittent contact is presented. Switch consists of flexible conductor surrounding, but separated from, fixed conductor. Flexing of outside conductor to contact fixed conductor completes circuit. Advantage is small size of switch compared to standard switches.

  15. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  16. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  17. Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches

    DOEpatents

    Cooper, James A.

    1986-01-01

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  18. Identifying molecular drivers of gastric cancer through next-generation sequencing.

    PubMed

    Liang, Han; Kim, Yon Hui

    2013-11-01

    Gastric cancer is the second most common cause of cancer-related death in the world, representing a major global health issue. The high mortality rate is largely due to the lack of effective medical treatment for advanced stages of this disease. Recently next-generation sequencing (NGS) technology has become a revolutionary tool for cancer research, and several NGS studies in gastric cancer have been published. Here we review the insights gained from these studies regarding how use NGS to elucidate the molecular basis of gastric cancer and identify potential therapeutic targets. We also discuss the challenges and future directions of such efforts. Published by Elsevier Ireland Ltd.

  19. Effective switching frequency multiplier inverter

    DOEpatents

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  20. Stochastic models for regulatory networks of the genetic toggle switch.

    PubMed

    Tian, Tianhai; Burrage, Kevin

    2006-05-30

    Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

  1. Stochastic models for regulatory networks of the genetic toggle switch

    PubMed Central

    Tian, Tianhai; Burrage, Kevin

    2006-01-01

    Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks. PMID:16714385

  2. Voltage‐Controlled Switching of Strong Light–Matter Interactions using Liquid Crystals

    PubMed Central

    Hertzog, Manuel; Rudquist, Per; Hutchison, James A.; George, Jino; Ebbesen, Thomas W.

    2017-01-01

    Abstract We experimentally demonstrate a fine control over the coupling strength of vibrational light–matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C−Nstr vibration on the liquid crystal molecule is coupled to a cavity mode, and FT‐IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. PMID:29155469

  3. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  4. Bulked segregant analysis identifies molecular markers linked to Melampsora medusae resistance in Populus deltoides

    Treesearch

    G. M. Tabor; Thomas L. Kubisiak; N. B. Klopfenstein; R. B. Hall; Henry S. McNabb

    2000-01-01

    In the north central United States, leaf rust caused by Melampsora medusae is a major disease problem on Populus deltoides. In this study we identified molecular markers linked to a M. medusae resistance locus (Lrd1) that was segregating 1:1 within an intraspecific P. deltoides...

  5. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  6. The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior.

    PubMed

    Yang, Seungwon; Kim, Hyun-Man

    2012-04-01

    The proliferation of anchorage-dependent cells of mesenchymal origin requires the attachment of the cells to substrates. Thus, cells that are poorly attached to substrates exhibit retarded cell cycle progression or apoptotic death. A major disadvantage of most polymers used in tissue engineering is their hydrophobicity; hydrophobic surfaces do not allow cells to attach firmly and, therefore, do not allow normal proliferation rates. In this study, we investigated the molecular mechanism underlying the reduced proliferation rate of cells that are poorly attached to substrates. There was an inverse relationship between the activity of the small GTPase RhoA (RhoA) and the cell proliferation rate. RhoA activity correlated inversely with the strength of cell adhesion to the substrates. The high RhoA activity in the cells poorly attached to substrates caused an increase in the activity of Rho-associated kinase (ROCK), a well-known effector of RhoA that upregulated the activity of phosphatase and tensin homolog (PTEN). The resulting activated PTEN downregulated Akt activity, which is essential for cell proliferation. Thus, the cells that were poorly attached to substrates showed low levels of cell proliferation because the RhoA-ROCK-PTEN pathway was hyperactive. In addition, RhoA activity seemed to be related to focal adhesion kinase (FAK) activity. Weak FAK activity in these poorly attached cells failed to downregulate the high RhoA activity that restrained cell proliferation. Interestingly, reducing the expression of any component of the RhoA-ROCK-PTEN pathway rescued the proliferation rate without physico-chemical surface modifications. Based on these results, we suggest that the RhoA-ROCK-PTEN pathway acts as a molecular switch to control cell proliferation and determine anchorage dependence. In cells that are poorly attached to substrates, its inhibition is sufficient to restore cell proliferation without the need for physico-chemical modification of the material

  7. Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching.

    PubMed

    Harrison, Rane A; Lu, Jia; Carrasco, Martin; Hunter, John; Manandhar, Anuj; Gondi, Sudershan; Westover, Kenneth D; Engen, John R

    2016-11-20

    Structural dynamics of Ras proteins contributes to their activity in signal transduction cascades. Directly targeting Ras proteins with small molecules may rely on the movement of a conserved structural motif, switch II. To understand Ras signaling and advance Ras-targeting strategies, experimental methods to measure Ras dynamics are required. Here, we demonstrate the utility of hydrogen-deuterium exchange (HDX) mass spectrometry (MS) to measure Ras dynamics by studying representatives from two branches of the Ras superfamily, Ras and Rho. A comparison of differential deuterium exchange between active (GMPPNP-bound) and inactive (GDP-bound) proteins revealed differences between the families, with the most notable differences occurring in the phosphate-binding loop and switch II. The P-loop exchange signature correlated with switch II dynamics observed in molecular dynamics simulations focused on measuring main-chain movement. HDX provides a means of evaluating Ras protein dynamics, which may be useful for understanding the mechanisms of Ras signaling, including activated signaling of pathologic mutants, and for targeting strategies that rely on protein dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tunable molecular plasmons in polycyclic aromatic hydrocarbons.

    PubMed

    Manjavacas, Alejandro; Marchesin, Federico; Thongrattanasiri, Sukosin; Koval, Peter; Nordlander, Peter; Sánchez-Portal, Daniel; García de Abajo, F Javier

    2013-04-23

    We show that chemically synthesized polycyclic aromatic hydrocarbons (PAHs) exhibit molecular plasmon resonances that are remarkably sensitive to the net charge state of the molecule and the atomic structure of the edges. These molecules can be regarded as nanometer-sized forms of graphene, from which they inherit their high electrical tunability. Specifically, the addition or removal of a single electron switches on/off these molecular plasmons. Our first-principles time-dependent density-functional theory (TDDFT) calculations are in good agreement with a simpler tight-binding approach that can be easily extended to much larger systems. These fundamental insights enable the development of novel plasmonic devices based upon chemically available molecules, which, unlike colloidal or lithographic nanostructures, are free from structural imperfections. We further show a strong interaction between plasmons in neighboring molecules, quantified in significant energy shifts and field enhancement, and enabling molecular-based plasmonic designs. Our findings suggest new paradigms for electro-optical modulation and switching, single-electron detection, and sensing using individual molecules.

  9. Diplexer switch

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.; Parker, T. W.

    1977-01-01

    Switch achieves high isolation and continuous input/output matching by using resonant coupling structure of diplexer. Additionally, dc bias network used to control switch is decoupled from RF input and output lines. Voltage transients in external circuits are thus minimized.

  10. Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: a concept for ultrafast optical molecular switch creation (ultrafast reversible photoreaction of rhodopsin).

    PubMed

    Smitienko, Olga; Nadtochenko, Victor; Feldman, Tatiana; Balatskaya, Maria; Shelaev, Ivan; Gostev, Fedor; Sarkisov, Oleg; Ostrovsky, Mikhail

    2014-11-11

    Ultrafast reverse photoreaction of visual pigment rhodopsin in the femtosecond time range at room temperature is demonstrated. Femtosecond two-pump probe experiments with a time resolution of 25 fs have been performed. The first рump pulse at 500 nm initiated cis-trans photoisomerization of rhodopsin chromophore, 11-cis retinal, which resulted in the formation of the primary ground-state photoproduct within a mere 200 fs. The second pump pulse at 620 nm with a varying delay of 200 to 3750 fs relative to the first рump pulse, initiated the reverse phototransition of the primary photoproduct to rhodopsin. The results of this photoconversion have been observed on the differential spectra obtained after the action of two pump pulses at a time delay of 100 ps. It was found that optical density decreased at 560 nm in the spectral region of bathorhodopsin absorption and increased at 480 nm, where rhodopsin absorbs. Rhodopsin photoswitching efficiency shows oscillations as a function of the time delay between two рump pulses. The quantum yield of reverse photoreaction initiated by the second pump pulse falls within the range 15%±1%. The molecular mechanism of the ultrafast reversible photoreaction of visual pigment rhodopsin may be used as a concept for the development of an ultrafast optical molecular switch.

  11. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases.

    PubMed

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH(2) of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5zgspot(-1). For sample volume of 0.40mulspot(-1), corresponding concentration was 6.2x10(-18)gml(-1)), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was +/-5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule switch

  12. H∞ control for switched fuzzy systems via dynamic output feedback: Hybrid and switched approaches

    NASA Astrophysics Data System (ADS)

    Xiang, Weiming; Xiao, Jian; Iqbal, Muhammad Naveed

    2013-06-01

    Fuzzy T-S model has been proven to be a practical and effective way to deal with the analysis and synthesis problems for complex nonlinear systems. As for switched nonlinear system, describing its subsystems as fuzzy T-S models, namely switched fuzzy system, naturally is an alternative method to conventional control approaches. In this paper, the H∞ control problem for a class of switched fuzzy systems is addressed. Hybrid and switched design approaches are proposed with different availability of switching signal information at switching instant. The hybrid control strategy includes two parts: fuzzy controllers for subsystems and state updating controller at switching instant, and the switched control strategy contains the controllers for subsystems. It is demonstrated that the conservativeness is reduced by introducing the state updating behavior but its cost is an online prediction of switching signal. Numerical examples are given to illustrate the effectiveness of proposed approaches and compare the conservativeness of two approaches.

  13. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  14. Ikaros controls isotype selection during immunoglobulin class switch recombination.

    PubMed

    Sellars, MacLean; Reina-San-Martin, Bernardo; Kastner, Philippe; Chan, Susan

    2009-05-11

    Class switch recombination (CSR) allows the humoral immune response to exploit different effector pathways through specific secondary antibody isotypes. However, the molecular mechanisms and factors that control immunoglobulin (Ig) isotype choice for CSR are unclear. We report that deficiency for the Ikaros transcription factor results in increased and ectopic CSR to IgG(2b) and IgG(2a), and reduced CSR to all other isotypes, regardless of stimulation. Ikaros suppresses active chromatin marks, transcription, and activation-induced cytidine deaminase (AID) accessibility at the gamma2b and gamma2a genes to inhibit class switching to these isotypes. Further, Ikaros directly regulates isotype gene transcription as it directly binds the Igh 3' enhancer and interacts with isotype gene promoters. Finally, Ikaros-mediated repression of gamma2b and gamma2a transcription promotes switching to other isotype genes by allowing them to compete for AID-mediated recombination at the single-cell level. Thus, our results reveal transcriptional competition between constant region genes in individual cells to be a critical and general mechanism for isotype specification during CSR. We show that Ikaros is a master regulator of this competition.

  15. Thermal Control Using Liquid-Metal Bridge Switches

    NASA Technical Reports Server (NTRS)

    Hirsa, Amir H.; Olles, Joseph; Tilger, Christopher

    2013-01-01

    A short term effort (3-months) was undertaken to demonstrate the feasibility of a novel method to locally control the heat transfer rate and demonstrate the potential to achieve a turndown ratio of approximately 10:1. The technology had to be demonstrated to be at a TRL of 2-3, with a plan to advance it to a TRL 5-6. Here, we show that the concept recently developed in our laboratory, namely the pinned-contact, double droplet switch made by overfilling a hole drilled in a suitable substrate can be implemented with a low-melting temperature metal. When toggled near a second substrate, a liquid bridge can be reversibly connected or disconnected, on demand. We have shown experimentally that liquid-metal bridge switches can be made from gallium with a suitable choice of substrate materials, activation strategies, and control techniques. Individual as well as arrays of gallium bridge switches were shown to be feasible and can be robustly controlled. The very short response time of the bridge connection and disconnection (on the order of 1 millisecond) provides for utility in a wide range of applications. The liquid bridge switches may be controlled actively or passively. We have shown through computations and analysis that liquid bridge switches provide locally large turndown ratios (on the order of 103:1), so a relatively sparse packing of them would be needed to obtain the desired turndown ratio of 10:1. For the laboratory demonstrations, pressure activation was utilized. Simple designs for a passive control strategy are presented which are highly attractive for several reasons, including i) large turndown ratio, ii) no solid-moving parts, and iii) stable operation. Finally, we note that passive systems do not require any electronics for their control. This along with the relatively small molecular weight of candidate materials for the system, makes for a robust design outside of Earth?s magnetic field, where spacecraft are subject to significant radiation bombardment.

  16. Task Uncertainty Can Account for Mixing and Switch Costs in Task-Switching

    PubMed Central

    Rennie, Jaime L.

    2015-01-01

    Cognitive control is required in situations that involve uncertainty or change, such as when resolving conflict, selecting responses and switching tasks. Recently, it has been suggested that cognitive control can be conceptualised as a mechanism which prioritises goal-relevant information to deal with uncertainty. This hypothesis has been supported using a paradigm that requires conflict resolution. In this study, we examine whether cognitive control during task switching is also consistent with this notion. We used information theory to quantify the level of uncertainty in different trial types during a cued task-switching paradigm. We test the hypothesis that differences in uncertainty between task repeat and task switch trials can account for typical behavioural effects in task-switching. Increasing uncertainty was associated with less efficient performance (i.e., slower and less accurate), particularly on switch trials and trials that afford little opportunity for advance preparation. Interestingly, both mixing and switch costs were associated with a common episodic control process. These results support the notion that cognitive control may be conceptualised as an information processor that serves to resolve uncertainty in the environment. PMID:26107646

  17. Investigating a method for reducing residual switch costs in cued task switching.

    PubMed

    Schneider, Darryl W

    2016-07-01

    Residual switch costs in cued task switching are performance decrements that occur despite a long cue-target interval (CTI) to prepare for a task switch. Verbruggen, Liefooghe, Vandierendonck, and Demanet (Journal of Experimental Psychology: Learning, Memory, and Cognition, 33; 342-356, 2007) showed that briefly presenting the cue during the CTI and leaving it absent after target onset yielded smaller residual switch costs than those obtained when the cue was available for the full CTI and remained present after target onset. The potential effects of cue availability during the CTI (full or partial) and cue status after target onset (present or absent) on residual switch costs were investigated in the present study. In Experiments 1 and 2, cue status was manipulated while holding cue availability constant. In Experiments 3 and 4, cue status and cue availability were manipulated factorially. Residual switch costs were obtained, but they were not modulated consistently by cue status or cue availability across experiments. In Experiment 5, a direct replication of one of Verbruggen and colleagues' experiments yielded divergent results. Implications for understanding task switching are discussed.

  18. Adaptive synchronized switch damping on an inductor: a self-tuning switching law

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher R.; Kauffman, Jeffrey L.

    2017-03-01

    Synchronized switch damping (SSD) techniques exploit low-power switching between passive circuits connected to piezoelectric material to reduce structural vibration. In the classical implementation of SSD, the piezoelectric material remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt circuit at every displacement extremum. Recent research indicates that this switch timing is only optimal for excitation exactly at resonance and points to more general optimal switch criteria based on the phase of the displacement and the system parameters. This work proposes a self-tuning approach that implements the more general optimal switch timing for synchronized switch damping on an inductor (SSDI) without needing any knowledge of the system parameters. The law involves a gradient-based search optimization that is robust to noise and uncertainties in the system. Testing of a physical implementation confirms this law successfully adapts to the frequency and parameters of the system. Overall, the adaptive SSDI controller provides better off-resonance steady-state vibration reduction than classical SSDI while matching performance at resonance.

  19. Controllability of multi-agent systems with periodically switching topologies and switching leaders

    NASA Astrophysics Data System (ADS)

    Tian, Lingling; Zhao, Bin; Wang, Long

    2018-05-01

    This paper considers controllability of multi-agent systems with periodically switching topologies and switching leaders. The concept of m-periodic controllability is proposed, and a criterion for m-periodic controllability is established. The effect of the duration of subsystems on controllability is analysed by utilising a property of analytic functions. In addition, the influence of switching periods on controllability is investigated, and an algorithm is proposed to search for the fewest periods to ensure controllability. A necessary condition for m-periodic controllability is obtained from the perspective of eigenvectors of the subsystems' Laplacian matrices. For a system with switching leaders, it is proved that switching-leader controllability is equivalent to multiple-leader controllability. Furthermore, both the switching order and the tenure of agents being leaders have no effect on the controllability. Some examples are provided to illustrate the theoretical results.

  20. Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration

    PubMed Central

    Karunarathne, W. K. Ajith; Giri, Lopamudra; Patel, Anilkumar K.; Venkatesh, Kareenhalli V.; Gautam, N.

    2013-01-01

    There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein–coupled receptor network control of other cell behaviors. PMID:23569254

  1. Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration.

    PubMed

    Karunarathne, W K Ajith; Giri, Lopamudra; Patel, Anilkumar K; Venkatesh, Kareenhalli V; Gautam, N

    2013-04-23

    There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein-coupled receptor network control of other cell behaviors.

  2. The Transcriptional Complex Between the BCL2 i-Motif and hnRNP LL Is a Molecular Switch for Control of Gene Expression That Can Be Modulated by Small Molecules

    PubMed Central

    2015-01-01

    In a companion paper (DOI: 10.021/ja410934b) we demonstrate that the C-rich strand of the cis-regulatory element in the BCL2 promoter element is highly dynamic in nature and can form either an i-motif or a flexible hairpin. Under physiological conditions these two secondary DNA structures are found in an equilibrium mixture, which can be shifted by the addition of small molecules that trap out either the i-motif (IMC-48) or the flexible hairpin (IMC-76). In cellular experiments we demonstrate that the addition of these molecules has opposite effects on BCL2 gene expression and furthermore that these effects are antagonistic. In this contribution we have identified a transcriptional factor that recognizes and binds to the BCL2 i-motif to activate transcription. The molecular basis for the recognition of the i-motif by hnRNP LL is determined, and we demonstrate that the protein unfolds the i-motif structure to form a stable single-stranded complex. In subsequent experiments we show that IMC-48 and IMC-76 have opposite, antagonistic effects on the formation of the hnRNP LL–i-motif complex as well as on the transcription factor occupancy at the BCL2 promoter. For the first time we propose that the i-motif acts as a molecular switch that controls gene expression and that small molecules that target the dynamic equilibrium of the i-motif and the flexible hairpin can differentially modulate gene expression. PMID:24559432

  3. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    PubMed Central

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  4. Evaluation of Two Statistical Methods Provides Insights into the Complex Patterns of Alternative Polyadenylation Site Switching

    PubMed Central

    Li, Jie; Li, Rui; You, Leiming; Xu, Anlong; Fu, Yonggui; Huang, Shengfeng

    2015-01-01

    Switching between different alternative polyadenylation (APA) sites plays an important role in the fine tuning of gene expression. New technologies for the execution of 3’-end enriched RNA-seq allow genome-wide detection of the genes that exhibit significant APA site switching between different samples. Here, we show that the independence test gives better results than the linear trend test in detecting APA site-switching events. Further examination suggests that the discrepancy between these two statistical methods arises from complex APA site-switching events that cannot be represented by a simple change of average 3’-UTR length. In theory, the linear trend test is only effective in detecting these simple changes. We classify the switching events into four switching patterns: two simple patterns (3’-UTR shortening and lengthening) and two complex patterns. By comparing the results of the two statistical methods, we show that complex patterns account for 1/4 of all observed switching events that happen between normal and cancerous human breast cell lines. Because simple and complex switching patterns may convey different biological meanings, they merit separate study. We therefore propose to combine both the independence test and the linear trend test in practice. First, the independence test should be used to detect APA site switching; second, the linear trend test should be invoked to identify simple switching events; and third, those complex switching events that pass independence testing but fail linear trend testing can be identified. PMID:25875641

  5. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  6. Investigating the mechanism(s) underlying switching between states in bipolar disorder

    PubMed Central

    Young, Jared W.; Dulcis, Davide

    2015-01-01

    Bipolar Disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the ‘holy grail’ of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching. PMID:25814263

  7. Asymmetrical Switch Costs in Children

    ERIC Educational Resources Information Center

    Ellefson, Michelle R.; Shapiron, Laura R.; Chater, Nick

    2006-01-01

    Switching between tasks produces decreases in performance as compared to repeating the same task. Asymmetrical switch costs occur when switching between two tasks of unequal difficulty. This asymmetry occurs because the cost is greater when switching to the less difficult task than when switching to the more difficult task. Various theories about…

  8. Switch-connected HyperX network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane,more » other of the N ports are connected to at least one of the global switches.« less

  9. SwiSpot: modeling riboswitches by spotting out switching sequences.

    PubMed

    Barsacchi, Marco; Novoa, Eva Maria; Kellis, Manolis; Bechini, Alessio

    2016-11-01

    Riboswitches are cis-regulatory elements in mRNA, mostly found in Bacteria, which exhibit two main secondary structure conformations. Although one of them prevents the gene from being expressed, the other conformation allows its expression, and this switching process is typically driven by the presence of a specific ligand. Although there are a handful of known riboswitches, our knowledge in this field has been greatly limited due to our inability to identify their alternate structures from their sequences. Indeed, current methods are not able to predict the presence of the two functionally distinct conformations just from the knowledge of the plain RNA nucleotide sequence. Whether this would be possible, for which cases, and what prediction accuracy can be achieved, are currently open questions. Here we show that the two alternate secondary structures of riboswitches can be accurately predicted once the 'switching sequence' of the riboswitch has been properly identified. The proposed SwiSpot approach is capable of identifying the switching sequence inside a putative, complete riboswitch sequence, on the basis of pairing behaviors, which are evaluated on proper sets of configurations. Moreover, it is able to model the switching behavior of riboswitches whose generated ensemble covers both alternate configurations. Beyond structural predictions, the approach can also be paired to homology-based riboswitch searches. SwiSpot software, along with the reference dataset files, is available at: http://www.iet.unipi.it/a.bechini/swispot/Supplementary information: Supplementary data are available at Bioinformatics online. a.bechini@ing.unipi.it. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Membrane Switches Check Seal Pressure

    NASA Technical Reports Server (NTRS)

    Hodgetts, P. J.; Stuckenberg, F. H.; Morrissey, E. T.

    1984-01-01

    Array of flexible membrane switches used to indicate closure of seal. Switch membrane responds to pressure exerted by rigid surface on compliant sealing medium and provides switch contacts monitored electronically. Membrane switches connected in series and placed under seal. When all switches are closed lamp or LED lights up, indicating requisite seal pressure has been realized at all switch positions. Principle used to ensure integrity of seals on refrigerator and oven doors, weatherstripping, hatches, spacecraft, airplanes, and submarines.

  11. Molecular quantum cellular automata cell design trade-offs: latching vs. power dissipation.

    PubMed

    Rahimi, Ehsan; Reimers, Jeffrey R

    2018-06-20

    The use of molecules to enact quantum cellular automata (QCA) cells has been proposed as a new way for performing electronic logic operations at sub-nm dimensions. A key question that arises concerns whether chemical or physical processes are to be exploited. The use of chemical reactions allows the state of a switch element to be latched in molecular form, making the output of a cell independent of its inputs, but costs energy to do the reaction. Alternatively, if purely electronic polarization is manipulated then no internal latching occurs, but no power is dissipated provided the fields from the inputs change slowly compared to the molecular response times. How these scenarios pan out is discussed by considering calculated properties of the 1,4-diallylbutane cation, a species often used as a paradigm for molecular electronic switching. Utilized are results from different calculation approaches that depict the ion either as a charge-localized mixed-valence compound functioning as a bistable switch, or else as an extremely polarizable molecule with a delocalized electronic structure. Practical schemes for using molecular cells in QCA and other devices emerge.

  12. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  13. Task-set switching under cue-based versus memory-based switching conditions in younger and older adults.

    PubMed

    Kray, Jutta

    2006-08-11

    Adult age differences in task switching and advance preparation were examined by comparing cue-based and memory-based switching conditions. Task switching was assessed by determining two types of costs that occur at the general (mixing costs) and specific (switching costs) level of switching. Advance preparation was investigated by varying the time interval until the next task (short, middle, very long). Results indicated that the implementation of task sets was different for cue-based switching with random task sequences and memory-based switching with predictable task sequences. Switching costs were strongly reduced under cue-based switching conditions, indicating that task-set cues facilitate the retrieval of the next task. Age differences were found for mixing costs and for switching costs only under cue-based conditions in which older adults showed smaller switching costs than younger adults. It is suggested that older adults adopt a less extreme bias between two tasks than younger adults in situations associated with uncertainty. For cue-based switching with random task sequences, older adults are less engaged in a complete reconfiguration of task sets because of the probability of a further task change. Furthermore, the reduction of switching costs was more pronounced for cue- than memory-based switching for short preparation intervals, whereas the reduction of switch costs was more pronounced for memory- than cue-based switching for longer preparation intervals at least for older adults. Together these findings suggest that the implementation of task sets is functionally different for the two types of task-switching conditions.

  14. Germinal center hypoxia potentiates immunoglobulin class switch recombination

    PubMed Central

    Abbott, Robert K.; Thayer, Molly; Labuda, Jasmine; Silva, Murillo; Philbrook, Phaethon; Cain, Derek W.; Kojima, Hidefumi; Hatfield, Stephen; Sethumadhavan, Shalini; Ohta, Akio; Reinherz, Ellis L.; Kelsoe, Garnett; Sitkovsky, Michail

    2016-01-01

    Germinal centers (GCs) are anatomic sites where B cells undergo secondary diversification to produce high affinity, class switched antibodies. We hypothesized that proliferating B cells in GCs create a hypoxic microenvironment that governs their further differentiation. Using molecular markers, we found GCs to be predominantly hypoxic. Compared to normoxia (21% O2), hypoxic culture conditions (1% O2) in vitro accelerated class switching and plasma cell formation and enhanced expression of GL-7 on B and CD4+ T cells. Reversal of GC hypoxia in vivo by breathing 60% O2 during immunization resulted in reduced frequencies of GC B cells, T follicular helper (TFH) cells and plasmacytes, as well as lower expression of ICOS on TFH. Importantly, this reversal of GC hypoxia decreased antigen-specific serum IgG1 and reduced the frequency of IgG1+ B cells within the antigen specific GC. Taken together, these observations reveal a critical role for hypoxia in GC B cell differentiation. PMID:27798169

  15. Current-induced switching of magnetic molecules on topological insulator surfaces

    NASA Astrophysics Data System (ADS)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  16. Main electrical switch banks, plant switch house, looking to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main electrical switch banks, plant switch house, looking to the North - Bureau of Mines Metallurgical Research Laboratory, Original Building, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV

  17. Easily-wired toggle switch

    NASA Technical Reports Server (NTRS)

    Dean, W. T.; Stringer, E. J.

    1979-01-01

    Crimp-type connectors reduce assembly and disassembly time. With design, no switch preparation is necessary and socket contracts are crimped to wires inserted in module attached to back of toggle switch engaging pins inside module to make electrical connections. Wires are easily removed with standard detachment tool. Design can accommodate wires of any gage and as many terminals can be placed on switch as wire gage and switch dimensions will allow.

  18. Heat Switches for ADRs

    NASA Technical Reports Server (NTRS)

    DiPirro, M. J.; Shirron, P. J.

    2014-01-01

    Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

  19. 35. END VIEW, INTERIOR, SHOWING SWITCHING LEVERS, BERK SWITCH TOWER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. END VIEW, INTERIOR, SHOWING SWITCHING LEVERS, BERK SWITCH TOWER, SOUTH NORWALK - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  20. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage

    PubMed Central

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl

    2016-01-01

    Abstract Molecular solar‐thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193–260 g mol−1) norbornadiene–quadricyclane systems. The molecules feature cyano acceptor and ethynyl‐substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo‐thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396–629 kJ kg−1). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  1. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    NASA Astrophysics Data System (ADS)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  2. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.

    PubMed

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-12

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  3. Thermionic gas switch

    DOEpatents

    Hatch, G.L.; Brummond, W.A.; Barrus, D.M.

    1984-04-05

    The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.

  4. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  5. High-power microstrip switch

    NASA Technical Reports Server (NTRS)

    Choi, S. D.

    1974-01-01

    Switch, which uses only two p-i-n diodes on microstrip substrate, has been developed for application in spacecraft radio systems. Switch features improved power drain, weight, volume, magnetic cleanliness, and reliability, over currently-used circulator and electromechanical switches.

  6. 36. INTERIOR VIEW, BERK SWITCH TOWER, SOUTH NORWALK, SHOWING SWITCHING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. INTERIOR VIEW, BERK SWITCH TOWER, SOUTH NORWALK, SHOWING SWITCHING LEVERS FROM OPERATOR'S POSITION - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  7. Common and Distinct Neural Mechanisms of Attentional Switching and Response Conflict

    PubMed Central

    Kim, Chobok; Johnson, Nathan F.; Gold, Brian T.

    2012-01-01

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. PMID:22750124

  8. Spatial nonuniformity in resistive-switching memory effects of NiO.

    PubMed

    Oka, Keisuke; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Kawai, Tomoji; Kim, Jin-Soo; Park, Bae Ho

    2011-08-17

    Electrically driven resistance change phenomenon in metal/NiO/metal junctions, so-called resistive switching (RS), is a candidate for next-generation universal nonvolatile memories. However, the knowledge as to RS mechanisms is unfortunately far from comprehensive, especially the spatial switching location, which is crucial information to design reliable devices. In this communication, we demonstrate the identification of the spatial switching location of bipolar RS by introducing asymmetrically passivated planar NiO nanowire junctions. We have successfully identified that the bipolar RS in NiO occurs near the cathode rather than the anode. This trend can be interpreted in terms of an electrochemical redox model based on ion migration and p-type conduction.

  9. An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor.

    PubMed

    Urizar, Eneko; Claeysen, Sylvie; Deupí, Xavier; Govaerts, Cedric; Costagliola, Sabine; Vassart, Gilbert; Pardo, Leonardo

    2005-04-29

    We aimed at understanding molecular events involved in the activation of a member of the G protein-coupled receptor family, the thyrotropin receptor. We have focused on the transmembrane region and in particular on a network of polar interactions between highly conserved residues. Using molecular dynamics simulations and site-directed mutagenesis techniques we have identified residue Asn-7.49, of the NPxxY motif of TM 7, as a molecular switch in the mechanism of thyrotropin receptor (TSHr) activation. Asn-7.49 appears to adopt two different conformations in the inactive and active states. These two states are characterized by specific interactions between this Asn and polar residues in the transmembrane domain. The inactive gauche+ conformation is maintained by interactions with residues Thr-6.43 and Asp-6.44. Mutation of these residues into Ala increases the constitutive activity of the receptor by factors of approximately 14 and approximately 10 relative to wild type TSHr, respectively. Upon receptor activation Asn-7.49 adopts the trans conformation to interact with Asp-2.50 and a putatively charged residue that remains to be identified. In addition, the conserved Leu-2.46 of the (N/S)LxxxD motif also plays a significant role in restraining the receptor in the inactive state because the L2.46A mutation increases constitutive activity by a factor of approximately 13 relative to wild type TSHr. As residues Leu-2.46, Asp-2.50, and Asn-7.49 are strongly conserved, this molecular mechanism of TSHr activation can be extended to other members of the rhodopsin-like family of G protein-coupled receptors.

  10. Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching.

    PubMed

    Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E

    2017-01-01

    This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 41. INTERIOR VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. INTERIOR VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH LEVER ASSEMBLAGE AND DISPLAY BOARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  12. 43. OBLIQUE VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. OBLIQUE VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH LEVER ASSEMBLAGE AND DISPLAY BOARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  13. TREATMENT SWITCHING: STATISTICAL AND DECISION-MAKING CHALLENGES AND APPROACHES.

    PubMed

    Latimer, Nicholas R; Henshall, Chris; Siebert, Uwe; Bell, Helen

    2016-01-01

    Treatment switching refers to the situation in a randomized controlled trial where patients switch from their randomly assigned treatment onto an alternative. Often, switching is from the control group onto the experimental treatment. In this instance, a standard intention-to-treat analysis does not identify the true comparative effectiveness of the treatments under investigation. We aim to describe statistical methods for adjusting for treatment switching in a comprehensible way for nonstatisticians, and to summarize views on these methods expressed by stakeholders at the 2014 Adelaide International Workshop on Treatment Switching in Clinical Trials. We describe three statistical methods used to adjust for treatment switching: marginal structural models, two-stage adjustment, and rank preserving structural failure time models. We draw upon discussion heard at the Adelaide International Workshop to explore the views of stakeholders on the acceptability of these methods. Stakeholders noted that adjustment methods are based on assumptions, the validity of which may often be questionable. There was disagreement on the acceptability of adjustment methods, but consensus that when these are used, they should be justified rigorously. The utility of adjustment methods depends upon the decision being made and the processes used by the decision-maker. Treatment switching makes estimating the true comparative effect of a new treatment challenging. However, many decision-makers have reservations with adjustment methods. These, and how they affect the utility of adjustment methods, require further exploration. Further technical work is required to develop adjustment methods to meet real world needs, to enhance their acceptability to decision-makers.

  14. Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching

    NASA Astrophysics Data System (ADS)

    Xiong, Yuting; Jiang, Ge; Li, Minmin; Qing, Guangyan; Li, Xiuling; Liang, Xinmiao; Sun, Taolei

    2017-01-01

    Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material’s macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials.

  15. Low-Crosstalk Composite Optical Crosspoint Switches

    NASA Technical Reports Server (NTRS)

    Pan, Jing-Jong; Liang, Frank

    1993-01-01

    Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.

  16. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation

    PubMed Central

    Nishikawa, Keizo; Nakashima, Tomoki; Takeda, Shu; Isogai, Masashi; Hamada, Michito; Kimura, Ayako; Kodama, Tatsuhiko; Yamaguchi, Akira; Owen, Michael J.; Takahashi, Satoru; Takayanagi, Hiroshi

    2010-01-01

    Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf–/– mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf+/– mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases. PMID:20877012

  17. Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch.

    PubMed

    Tanizawa, Ken; Suzuki, Keijiro; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2016-04-04

    We demonstrate the compact polarization diversity based on the bidirectional full-port use of a path-independent-insertion-loss (PILOSS) optical switch. A polarization-diversity 4 × 4 strictly non-blocking optical switch is developed using a single thermooptic PILOSS Si-wire switch and fiber-based polarization beam splitters (PBSs) and combiners (PBCs). We measure characteristics of the switch and confirm that the proposed configuration demonstrates the performance in the insertion loss, polarization-dependent loss (PDL), and differential group delay (DGD) comparable with that of a conventional polarization-diversity 4 × 4 PILOSS switch using double switch elements. On the other hand, higher crosstalk is observed. The crosstalk increase is associated with the backward crosstalk at a waveguide intersection based on a directional coupler. The effect of the backward crosstalk on the total crosstalk is estimated, and future prospects are discussed.

  18. Illuminated push-button switch

    NASA Technical Reports Server (NTRS)

    Iwagiri, T.

    1983-01-01

    An illuminated push-button switch is described. It is characterized by the fact that is consists of a switch group, an operator button opening and closing the switch group, and a light-emitting element which illuminates the face of the operator button.

  19. Improved Electro-Optical Switches

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N.; Cooper, Ronald F.

    1994-01-01

    Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.

  20. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    NASA Technical Reports Server (NTRS)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  1. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  2. Non-latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A non-latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes a permanent magnet and an electromagnet. The respective sections are arranged in separate locations or cavities in the assembly. The switch has a "normal" position and is selectively switched by an overriding electromagnetic assembly. The switch returns to the "normal" position when the overriding electromagnetic assembly is inactive.

  3. A Josephson Junction based SPDT switch

    NASA Astrophysics Data System (ADS)

    Zhang, Helin; Earnest, Nathan; Lu, Yao; Ma, Ruichao; Chakram, Srivatsan; Schuster, David

    RF microwave switches are useful tools in cryogenic experiments, allowing for multiple experiments to be connected to a single cryogenic measurement chain. However, these switches dissipate a substantial amount of heat, preventing fast switching. Josephson junction (JJ) are a promising avenue for realizing millikelvin microwave switching. We present a JJ based single-pole-double throw (SPDT) switch that has fast switching time, no heat dissipation, large on/off contrast, and works over a wide bandwidth. The switch can be used for real-time switching between experiments, routing single photons, or even generating entanglement. We will describe the design of the switch and present experimental characterization of its performance.

  4. Molecular demultiplexer as a terminator automaton.

    PubMed

    Turan, Ilke S; Gunaydin, Gurcan; Ayan, Seylan; Akkaya, Engin U

    2018-02-23

    Molecular logic gates are expected to play an important role on the way to information processing therapeutic agents, especially considering the wide variety of physical and chemical responses that they can elicit in response to the inputs applied. Here, we show that a 1:2 demultiplexer based on a Zn 2+ -terpyridine-Bodipy conjugate with a quenched fluorescent emission, is efficient in photosensitized singlet oxygen generation as inferred from trap compound experiments and cell culture data. However, once the singlet oxygen generated by photosensitization triggers apoptotic response, the Zn 2+ complex then interacts with the exposed phosphatidylserine lipids in the external leaflet of the membrane bilayer, autonomously switching off singlet oxygen generation, and simultaneously switching on a bright emission response. This is the confirmatory signal of the cancer cell death by the action of molecular automaton and the confinement of unintended damage by excessive singlet oxygen production.

  5. Multiple beam antenna/switch system study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In the study of the Multiple Beam Antenna/Switch for the space to ground link (SGL) uplink and downlink services, several issues related to system engineering, antenna, transmit/receive, and switch systems were addressed and the results are provided. Bandwidth allocation at Ku band is inadequate to serve the data rate requirements for the forward and return services. Rain and depolarization effects at EHF, especially at Ka band, pose a significant threat to the link availabilities at heavy rain areas. Hardware induced effects such as the nonlinear characteristics of the power amplifier may necessitate the use of linearizers and limiters. It is also important to identify the components that are susceptible to the space radiation effects and shield or redesign them with rad-hard technologies for meeting the requirements of the space environment.

  6. Auditory Multi-Stability: Idiosyncratic Perceptual Switching Patterns, Executive Functions and Personality Traits

    PubMed Central

    Farkas, Dávid; Denham, Susan L.; Bendixen, Alexandra; Tóth, Dénes; Kondo, Hirohito M.; Winkler, István

    2016-01-01

    Multi-stability refers to the phenomenon of perception stochastically switching between possible interpretations of an unchanging stimulus. Despite considerable variability, individuals show stable idiosyncratic patterns of switching between alternative perceptions in the auditory streaming paradigm. We explored correlates of the individual switching patterns with executive functions, personality traits, and creativity. The main dimensions on which individual switching patterns differed from each other were identified using multidimensional scaling. Individuals with high scores on the dimension explaining the largest portion of the inter-individual variance switched more often between the alternative perceptions than those with low scores. They also perceived the most unusual interpretation more often, and experienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resiliency personality trait, which reflects a tendency for adaptive flexibility and experience seeking, was significantly positively related to this dimension. Taking these results together we suggest that this dimension may reflect the individual’s tendency for exploring the auditory environment. Executive functions were significantly related to some of the variables describing global properties of the switching patterns, such as the average number of switches. Thus individual patterns of perceptual switching in the auditory streaming paradigm are related to some personality traits and executive functions. PMID:27135945

  7. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  8. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  9. Molecular Testing of 163 Patients with Morquio A (Mucopolysaccharidosis IVA) Identifies 39 Novel GALNS Mutations

    PubMed Central

    Morrone, A; Tylee, K.L.; Al-Sayed, M; Brusius-Facchin, A.C.; Caciotti, A.; Church, H.J.; Coll, M.J.; Davidson, K.; Fietz, M.J.; Gort, L.; Hegde, M.; Kubaski, F.; Lacerda, L.; Laranjeira, F.; Leistner-Segal, S.; Mooney, S.; Pajares, S.; Pollard, L.; Riberio, I.; Wang, R.Y.; Miller, N.

    2014-01-01

    Morquio A (Mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by partial or total deficiency of the enzyme galactosamine-6-sulfate sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate sulfatase) encoded by the GALNS gene. Patients who inherit two mutated GALNS gene alleles produce protein with decreased ability to degrade the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate, thereby causing GAG accumulation within lysosomes and consequently pleiotropic disease. GALNS mutations occur throughout the gene and many mutations are identified only in single patients or families, causing difficulties both in mutation detection and interpretation. In this study, molecular analysis of 163 patients with Morquio A identified 99 unique mutations in the GALNS gene believed to negatively impact GALNS protein function, of which 39 are previously unpublished, together with 26 single-nucleotide polymorphisms. Recommendations for the molecular testing of patients, clear reporting of sequence findings, and interpretation of sequencing data are provided. PMID:24726177

  10. Molecular optoelectronics: the interaction of molecular conduction junctions with light.

    PubMed

    Galperin, Michael; Nitzan, Abraham

    2012-07-14

    The interaction of light with molecular conduction junctions is attracting growing interest as a challenging experimental and theoretical problem on one hand, and because of its potential application as a characterization and control tool on the other. It stands at the interface between two important fields, molecular electronics and molecular plasmonics and has attracted attention as a challenging scientific problem with potentially important technological consequences. Here we review the present state of the art of this field, focusing on several key phenomena and applications: using light as a switching device, using light to control junction transport in the adiabatic and non-adiabatic regimes, light generation in biased junctions and Raman scattering from such systems. This field has seen remarkable progress in the past decade, and the growing availability of scanning tip configurations that can combine optical and electrical probes suggests that further progress towards the goal of realizing molecular optoelectronics on the nanoscale is imminent.

  11. Optical switch based on thermocapillarity

    NASA Astrophysics Data System (ADS)

    Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa

    2001-11-01

    Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.

  12. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  13. Analysis of an optically controlled photonic switch.

    PubMed

    Attard, A E

    1999-05-20

    The principle that the coupling of light between two fiber waveguides can be controlled by the resonant interference of a third waveguide has been developed [Attard, Appl. Opt. 37, 2296-2302 (1998)]. Here significant details concerning the operation of a photonic switch are obtained, and a more complete analysis is presented. Multiple-resonant conditions are identified for slab and fiber control waveguides at large indices of refraction. Thus a selection of materials with an appropriate refractive index and a Kerr coefficient is rendered more easily. Furthermore it is shown that the light used to control the index of refraction in the control waveguide does not enter the output of the photonic switch but remains confined to the control waveguide, for either a slab or a multimode fiber control waveguide. Spatial fluctuations of the control light beam in the control waveguide do not affect the operation of the photonic switch. Tolerances have been determined for the spacing between the control waveguide and the photonic coupler and also for the index of refraction of the control waveguide.

  14. Apollo Ring Optical Switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestas, J.H.

    1987-03-01

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  15. High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons

    PubMed Central

    van Dongen, Marijn N.; Hoebeek, Freek E.; Koekkoek, S. K. E.; De Zeeuw, Chris I.; Serdijn, Wouter A.

    2015-01-01

    This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100 kHz) duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation. These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency. PMID:25798105

  16. Common and distinct neural mechanisms of attentional switching and response conflict.

    PubMed

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Electronic logic for enhanced switch reliability

    DOEpatents

    Cooper, J.A.

    1984-01-20

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and fail-safe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  18. Widening consumer access to medicines: a comparison of prescription to non-prescription medicine switch in Australia and New Zealand.

    PubMed

    Gauld, Natalie J; Kelly, Fiona S; Emmerton, Lynne M; Buetow, Stephen A

    2015-01-01

    Despite similarities in health systems and Trans-Tasman Harmonization of medicines scheduling, New Zealand is more active than Australia in 'switching' (reclassifying) medicines from prescription to non-prescription. To identify and compare enablers and barriers to switch in New Zealand and Australia. We conducted and analyzed 27 in-depth personal interviews with key participants in NZ and Australia and international participants previously located in Australia, and analyzed records of meetings considering switches (2000-2013). Analysis of both sets of data entailed a heuristic qualitative approach that embraced the lead researcher's knowledge and experience. The key themes identified were conservatism and political influences in Australia, and an open attitude, proactivity and flexibility in NZ. Pharmacist-only medicine schedules and individuals holding a progressive attitude were proposed to facilitate switch in both countries. A pharmacy retail group drove many switches in NZ ('third-party switch'), unlike Australia. Barriers to switch in both countries included small market sizes, funding of prescription medicines and cost of doctor visits, and lack of market exclusivity. In Australia, advertising limitations for pharmacist-only medicines reportedly discouraged industry from submitting switch applications. Perceptions of pharmacy performance could help or hinder switches. Committee and regulator openness to switch, and confidence in pharmacy appear to influence consumer access to medicines. The pharmacist-only medicine schedule in Australasia and the rise of third-party switch and flexibility in switch in NZ could be considered elsewhere to enable switch.

  19. Polyphosphatase PPN1 of Saccharomyces cerevisiae: Switching of Exopolyphosphatase and Endopolyphosphatase Activities

    PubMed Central

    Andreeva, Nadezhda; Trilisenko, Ludmila; Eldarov, Mikhail; Kulakovskaya, Tatiana

    2015-01-01

    The polyphosphatase PPN1 of Saccharomyces cerevisiae shows an exopolyphosphatase activity splitting phosphate from chain end and an endopolyphosphatase activity fragmenting high molecular inorganic polyphosphates into shorter polymers. We revealed the compounds switching these activities of PPN1. Phosphate release and fragmentation of high molecular polyphosphate prevailed in the presence of Co2+ and Mg2+, respectively. Phosphate release and polyphosphate chain shortening in the presence of Co2+ were inhibited by ADP but not affected by ATP and argininе. The polyphosphate chain shortening in the presence of Mg2+ was activated by ADP and arginine but inhibited by ATP. PMID:25742176

  20. Construction of large scale switch matrix by interconnecting integrated optical switch chips with EDFAs

    NASA Astrophysics Data System (ADS)

    Liao, Mingle; Wu, Baojian; Hou, Jianhong; Qiu, Kun

    2018-03-01

    Large scale optical switches are essential components in optical communication network. We aim to build up a large scale optical switch matrix by the interconnection of silicon-based optical switch chips using 3-stage CLOS structure, where EDFAs are needed to compensate for the insertion loss of the chips. The optical signal-to-noise ratio (OSNR) performance of the resulting large scale optical switch matrix is investigated for TE-mode light and the experimental results are in agreement with the theoretical analysis. We build up a 64 ×64 switch matrix by use of 16 ×16 optical switch chips and the OSNR and receiver sensibility can respectively be improved by 0.6 dB and 0.2 dB by optimizing the gain configuration of the EDFAs.

  1. The switching behaviors induced by torsion angle in a diblock co-oligomer molecule with tailoring graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Aiyun; Xia, Caijuan; Zhang, Boqun; Wang, Jun; Su, Yaoheng; Tu, Zheyan

    2018-02-01

    By applying first-principles method based on density functional theory combined with nonequilibrium Green’s function, we investigate the effect of torsion angle on the electronic transport properties in dipyrimidinyl-diphenyl co-oligomer molecular device with tailoring graphene nanoribbon electrodes. The results show that the torsion angle plays an important role on the electronic transport properties of the molecular device. When the torsion angle rotates from 0∘ to 90∘, the molecular devices exhibit very different current-voltage characteristics which can realize the on and off states of the molecular switch.

  2. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach

    PubMed Central

    Scott, Milcah C.; Sarver, Aaron L.; Gavin, Katherine J.; Thayanithy, Venugopal; Getzy, David M.; Newman, Robert A.; Cutter, Gary R.; Lindblad-Toh, Kerstin; Kisseberth, William C.; Hunter, Lawrence E.; Subramanian, Subbaya; Breen, Matthew; Modiano, Jaime F.

    2011-01-01

    The heterogeneous and chaotic nature of osteosarcoma has confounded accurate molecular classification, prognosis, and prediction for this tumor. The occurrence of spontaneous osteosarcoma is largely confined to humans and dogs. While the clinical features are remarkably similar in both species, the organization of dogs into defined breeds provides a more homogeneous genetic background that may increase the likelihood to uncover molecular subtypes for this complex disease. We thus hypothesized that molecular profiles derived from canine osteosarcoma would aid in molecular subclassification of this disease when applied to humans. To test the hypothesis, we performed genome wide gene expression profiling in a cohort of dogs with osteosarcoma, primarily from high-risk breeds. To further reduce inter-sample heterogeneity, we assessed tumor-intrinsic properties through use of an extensive panel of osteosarcoma-derived cell lines. We observed strong differential gene expression that segregated samples into two groups with differential survival probabilities. Groupings were characterized by the inversely correlated expression of genes associated with G2/M transition and DNA damage checkpoint and microenvironment-interaction categories. This signature was preserved in data from whole tumor samples of three independent dog osteosarcoma cohorts, with stratification into the two expected groups. Significantly, this restricted signature partially overlapped a previously defined, predictive signature for soft tissue sarcomas, and it unmasked orthologous molecular subtypes and their corresponding natural histories in five independent data sets from human patients with osteosarcoma. Our results indicate that the narrower genetic diversity of dogs can be utilized to group complex human osteosarcoma into biologically and clinically relevant molecular subtypes. This in turn may enhance prognosis and prediction, and identify relevant therapeutic targets. PMID:21621658

  3. Using Genetic Buffering Relationships Identified in Fission Yeast to Elucidate the Molecular Pathology of Tuberous Sclerosis

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0169 TITLE: Using Genetic Buffering Relationships Identified in Fission Yeast to Elucidate the Molecular Pathology of...DATES COVERED 1 July 2014 - 30 June 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using Genetic Buffering Relationships Identified in Fission Yeast ...SUPPLEMENTARY NOTES 14. ABSTRACT Using the genetically tractable fission yeast as a model, we sought to exploit recent advances in gene interaction

  4. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  5. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    PubMed Central

    Xiao, Xueliang; Hu, Jinlian

    2016-01-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823

  6. Switching Phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  7. A Model for the Epigenetic Switch Linking Inflammation to Cell Transformation: Deterministic and Stochastic Approaches

    PubMed Central

    Gérard, Claude; Gonze, Didier; Lemaigre, Frédéric; Novák, Béla

    2014-01-01

    Recently, a molecular pathway linking inflammation to cell transformation has been discovered. This molecular pathway rests on a positive inflammatory feedback loop between NF-κB, Lin28, Let-7 microRNA and IL6, which leads to an epigenetic switch allowing cell transformation. A transient activation of an inflammatory signal, mediated by the oncoprotein Src, activates NF-κB, which elicits the expression of Lin28. Lin28 decreases the expression of Let-7 microRNA, which results in higher level of IL6 than achieved directly by NF-κB. In turn, IL6 can promote NF-κB activation. Finally, IL6 also elicits the synthesis of STAT3, which is a crucial activator for cell transformation. Here, we propose a computational model to account for the dynamical behavior of this positive inflammatory feedback loop. By means of a deterministic model, we show that an irreversible bistable switch between a transformed and a non-transformed state of the cell is at the core of the dynamical behavior of the positive feedback loop linking inflammation to cell transformation. The model indicates that inhibitors (tumor suppressors) or activators (oncogenes) of this positive feedback loop regulate the occurrence of the epigenetic switch by modulating the threshold of inflammatory signal (Src) needed to promote cell transformation. Both stochastic simulations and deterministic simulations of a heterogeneous cell population suggest that random fluctuations (due to molecular noise or cell-to-cell variability) are able to trigger cell transformation. Moreover, the model predicts that oncogenes/tumor suppressors respectively decrease/increase the robustness of the non-transformed state of the cell towards random fluctuations. Finally, the model accounts for the potential effect of competing endogenous RNAs, ceRNAs, on the dynamics of the epigenetic switch. Depending on their microRNA targets, the model predicts that ceRNAs could act as oncogenes or tumor suppressors by regulating the occurrence of

  8. Working memory costs of task switching.

    PubMed

    Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, André; Camos, Valérie

    2008-05-01

    Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks with strictly controlled time parameters. A series of 4 experiments demonstrate that recall performance decreased as a function of the number of task switches and that the concurrent load of item maintenance had no influence on task switching. These results indicate that task switching induces a cost on working memory functioning. Implications for theories of task switching, working memory, and resource sharing are addressed.

  9. Using molecular tools to identify the geographical origin of a case of human brucellosis.

    PubMed

    Muchowski, J K; Koylass, M S; Dainty, A C; Stack, J A; Perrett, L; Whatmore, A M; Perrier, C; Chircop, S; Demicoli, N; Gatt, A B; Caruana, P A; Gopaul, K K

    2015-10-01

    Although Malta is historically linked with the zoonosis brucellosis, there had not been a case of the disease in either the human or livestock population for several years. However, in July 2013 a case of human brucellosis was identified on the island. To determine whether this recent case originated in Malta, four isolates from this case were subjected to molecular analysis. Molecular profiles generated using multilocus sequence analysis and multilocus variable number tandem repeat for the recent human case isolates and 11 Brucella melitensis strains of known Maltese origin were compared with others held on in-house and global databases. While the 11 isolates of Maltese origin formed a distinct cluster, the recent human isolation was not associated with these strains but instead clustered with isolates originating from the Horn of Africa. These data was congruent with epidemiological trace-back showed that the individual had travelled to Malta from Eritrea. This work highlights the potential of using molecular typing data to aid in epidemiological trace-back of Brucella isolations and assist in monitoring of the effectiveness of brucellosis control schemes.

  10. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    PubMed

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  11. Investigating the relationship between media multitasking and processes involved in task-switching.

    PubMed

    Alzahabi, Reem; Becker, Mark W; Hambrick, David Z

    2017-11-01

    Although multitasking with media has increased dramatically in recent years (Rideout, Foehr, & Roberts, 2010), the association between media multitasking and cognitive performance is poorly understood. In addition, the literature on the relationship between media multitasking and task-switching, one measure of cognitive control, has produced mixed results (Alzahabi & Becker, 2013; Minear et al., 2013; Ophir, Nass, & Wagner, 2009). Here we use an individual differences approach to investigate the relationship between media multitasking and task-switching performance by first examining the structure of task-switching and identifying the latent factors that contribute to switch costs. Participants performed a series of 3 different task-switching paradigms, each designed to isolate the effects of a specific putative mechanism (e.g., advanced preparation) related to task-switching performance, as well as a series of surveys to measure media multitasking and intelligence. The results suggest that task-switching performance is related to 2 somewhat independent factors, namely an advanced preparation factor and passive decay factor. In addition, multitasking with media was related to a faster ability to prepare for tasks, resulting in faster task-switching performance without a cost to accuracy. Media multitasking and intelligence were both unrelated to passive decay factors. These findings are consistent with a 2-component model of task-switching (Sohn & Anderson, 2001), as well as an automatic/executive framework of cognitive control (Schneider & Shiffrin, 1977). (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Optical switching using IP protocol

    NASA Astrophysics Data System (ADS)

    Utreras, Andres J.; Gusqui, Luis; Reyes, Andres; Mena, Ricardo I.; Licenko, Gennady L.; Amirgaliyev, Yedilkhan; Komada, Paweł; Luganskaya, Saule; Kashaganova, Gulzhan

    2017-08-01

    To understand and evaluate the Optical Layer, and how it will affect the IP protocols over WDM (Switching), the present analyse is proposed. Optical communications have attractive proprieties, but also have some disadvantages, so the challenge is to combine the best of both branches. In this paper, general concepts for different options of switching are reviewed as: optical burst switching (OBS) and automatically switching optical network (ASON). Specific details such as their architectures are also discussed. In addition, the relevant characteristics of each variation for switching are reviewed.

  13. Complementary resistive switching in BaTiO3/NiO bilayer with opposite switching polarities

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Wei, Xianhua; Lei, Yao; Yuan, Xincai; Zeng, Huizhong

    2016-12-01

    Resistive switching behaviors have been investigated in the Au/BaTiO3/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO3 thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I-V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO3 and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  14. Hybrid switch for resonant power converters

    DOEpatents

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  15. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  17. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  18. Characteristics of Single-Event Upsets in a Fabric Switch (ADS151)

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; Carts, Martin A.; McMorrow, Dale; Kim, Hak; Marshall, Paul W.; LaBel, Kenneth A.

    2003-01-01

    Abstract-Two types of single event effects - bit errors and single event functional interrupts - were observed during heavy-ion testing of the AD8151 crosspoint switch. Bit errors occurred in bursts with the average number of bits in a burst being dependent on both the ion LET and on the data rate. A pulsed laser was used to identify the locations on the chip where the bit errors and single event functional interrupts occurred. Bit errors originated in the switches, drivers, and output buffers. Single event functional interrupts occurred when the laser was focused on the second rank latch containing the data specifying the state of each switch in the 33x17 matrix.

  19. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: quantitative analysis via automated model abstraction.

    PubMed

    Kuwahara, Hiroyuki; Myers, Chris J; Samoilov, Michael S

    2010-03-26

    Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element-the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down

  20. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    PubMed

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pax2 regulates a fadd-dependent molecular switch that drives tissue fusion during eye development.

    PubMed

    Viringipurampeer, Ishaq A; Ferreira, Todd; DeMaria, Shannon; Yoon, Jookyung J; Shan, Xianghong; Moosajee, Mariya; Gregory-Evans, Kevin; Ngai, John; Gregory-Evans, Cheryl Y

    2012-05-15

    Tissue fusion is an essential morphogenetic mechanism in development, playing a fundamental role in developing neural tube, palate and the optic fissure. Disruption of genes associated with the tissue fusion can lead to congenital malformations, such as spina bifida, cleft lip/palate and ocular coloboma. For instance, the Pax2 transcription factor is required for optic fissure closure, although the mechanism of Pax2 action leading to tissue fusion remains elusive. This lack of information defining how transcription factors drive tissue morphogenesis at the cellular level is hampering new treatments options. Through loss- and gain-of-function analysis, we now establish that pax2 in combination with vax2 directly regulate the fas-associated death domain (fadd) gene. In the presence of fadd, cell proliferation is restricted in the developing eye through a caspase-dependent pathway. However, the loss of fadd results in a proliferation defect and concomitant activation of the necroptosis pathway through RIP1/RIP3 activity, leading to an abnormal open fissure. Inhibition of RIP1 with the small molecule drug necrostatin-1 rescues the pax2 eye fusion defect, thereby overcoming the underlying genetic defect. Thus, fadd has an essential physiological function in protecting the developing optic fissure neuroepithelium from RIP3-dependent necroptosis. This study demonstrates the molecular hierarchies that regulate a cellular switch between proliferation and the apoptotic and necroptotic cell death pathways, which in combination drive tissue morphogenesis. Furthermore, our data suggest that future therapeutic strategies may be based on small molecule drugs that can bypass the gene defects causing common congenital tissue fusion defects.

  2. Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs.

    PubMed

    Nashiro, Kaoru; Qin, Shuo; O'Connell, Margaret A; Basak, Chandramallika

    2018-05-15

    It is well documented that older adults recruit additional brain regions compared to those recruited by younger adults while performing a wide variety of cognitive tasks. However, it is unclear how such age-related over-recruitment interacts with different types of cognitive control, and whether this over-recruitment is compensatory. To test this, we used a multitasking paradigm, which allowed us to examine age-related over-activation associated with three types of cognitive costs (i.e., global switch, local switch, compatibility-switch costs). We found age-related impairments in global switch cost (GSC), evidenced by slower response times for maintaining and coordinating two tasks vs. performing only one task. However, no age-related declines were observed in either local switch cost (LSC), a cognitive cost associated with switching between the two tasks while maintaining two task loads, or compatibility-switch cost (CSC), a cognitive cost associated with incompatible vs. compatible stimulus-response mappings across the two tasks. The fMRI analyses allowed for identification of distinct cognitive cost-sensitive brain regions associated with GSC and LSC. In fronto-parietal GSC and LSC regions, older adults' increased activations were associated with poorer performance (greater costs), whereas a reverse relationship was observed in younger adults. Older adults also recruited additional fronto-parietal brain regions outside the cognitive cost-sensitive areas, which was associated with poorer performance or no behavioral benefits. Our results suggest that older adults exhibit a combination of inefficient activation within cognitive cost-sensitive regions, specifically the GSC and LSC regions, and non-compensatory over-recruitment in age-sensitive regions. Age-related declines in global switching, compared to local switching, was observed earlier in old age at both neural and behavioral levels. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Tutorial: Integrated-photonic switching structures

    NASA Astrophysics Data System (ADS)

    Soref, Richard

    2018-02-01

    Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.

  4. CMOS analog switches for adaptive filters

    NASA Technical Reports Server (NTRS)

    Dixon, C. E.

    1980-01-01

    Adaptive active low-pass filters incorporate CMOS (Complimentary Metal-Oxide Semiconductor) analog switches (such as 4066 switch) that reduce variation in switch resistance when filter is switched to any selected transfer function.

  5. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  6. In vivo particle polymorphism results from deletion of a N-terminal peptide molecular switch in brome mosaic virus capsid protein

    PubMed Central

    Calhoun, Shauni L; Speir, Jeffrey A; Rao, A.L.N.

    2009-01-01

    The interaction between brome mosaic virus (BMV) coat protein (CP) and viral RNA is a carefully orchestrated process resulting in the formation of homogeneous population of infectious virions with T=3 symmetry. Expression in vivo of either wild type or mutant BMV CP through homologous replication never results in the assembly of aberrant particles. In this study, we report that deletion of amino acid residues 41–47 from the N-proximal region of BMV CP resulted in the assembly of polymorphic virions in vivo. Purified virions from symptomatic leaves remain non-infectious and Northern blot analysis of virion RNA displayed packaging defects. Biochemical of variant CP by circular dichroism and MALDI-TOF, respectively, revealed that the engineered deletion affected the protein structure and capsid dynamics. Most significantly, CP subunits dissociated from polymorphic virions are incompetent for in vitro reassembly. Based on these observations, we propose a chaperon mediated mechanism for the assembly of variant CP in vivo and also hypothesize that 41KAIKAIA47 N-proximal peptide functions as a molecular switch in regulating T= 3 virion symmetry. PMID:17449079

  7. Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth.

    PubMed

    Connor, Erin E; Baldwin, Ransom L; Li, Cong-jun; Li, Robert W; Chung, Hoyoung

    2013-03-01

    During weaning, epithelial cell function in the rumen transitions in response to conversion from a pre-ruminant to a true ruminant environment to ensure efficient nutrient absorption and metabolism. To identify gene networks affected by weaning in bovine rumen, Holstein bull calves were fed commercial milk replacer only (MRO) until 42 days of age, then were provided diets of either milk + orchardgrass hay (MH) or milk + grain-based calf starter (MG). Rumen epithelial RNA was extracted from calves sacrificed at four time points: day 14 (n = 3) and day 42 (n = 3) of age while fed the MRO diet and day 56 (n = 3/diet) and day 70 (n = 3/diet) while fed the MH and MG diets for transcript profiling by microarray hybridization. Five two-group comparisons were made using Permutation Analysis of Differential Expression® to identify differentially expressed genes over time and developmental stage between days 14 and 42 within the MRO diet, between day 42 on the MRO diet and day 56 on the MG or MH diets, and between the MG and MH diets at days 56 and 70. Ingenuity Pathway Analysis (IPA) of differentially expressed genes during weaning indicated the top 5 gene networks involving molecules participating in lipid metabolism, cell morphology and death, cellular growth and proliferation, molecular transport, and the cell cycle. Putative genes functioning in the establishment of the rumen microbial population and associated rumen epithelial inflammation during weaning were identified. Activation of transcription factor PPAR-α was identified by IPA software as an important regulator of molecular changes in rumen epithelium that function in papillary development and fatty acid oxidation during the transition from pre-rumination to rumination. Thus, molecular markers of rumen development and gene networks regulating differentiation and growth of rumen epithelium were identified for selecting targets and methods for improving and assessing rumen development and

  8. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    PubMed

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  9. Potential Clinical and Economic Impact of Switching Branded Medications to Generics.

    PubMed

    Straka, Robert J; Keohane, Denis J; Liu, Larry Z

    2017-05-01

    Switching branded to generic medications has become a common cost-containment measure. Although this is an important objective for health care systems worldwide, the impact of this practice on patient outcomes needs to be carefully considered. We reviewed the literature summarizing the potential clinical and economic consequences of switching from branded to generic medications on patient outcomes. A literature search of peer-reviewed articles published 2003-2013 using key words of "generic switching" or "substitution" was conducted using PubMed, OvidSP, and ScienceDirect. Of 30 articles identified and reviewed, most were related to the diseases of the central nervous system, especially epilepsy. Based on our review, potential impacts of switching fell into 3 broad categories: patient attitudes and adherence, clinical and safety outcomes, and cost and resource utilization. Although in many cases generics may represent an appropriate alternative to branded products, this may not always be the case. Specifically, several studies suggested that switching may negatively impact medication adherence, whereas other studies found that generic switching was associated with poorer clinical outcomes and more adverse events. In some instances, switching accomplished cost savings but did so at increased total cost of care because of increased physician visits or hospitalizations. Although in many cases generics may represent an appropriate alternative, mandatory generic switching may lead to unintended consequences, especially in certain therapeutic areas. Although further study is warranted, based on our review, it may be medically justifiable for physicians and patients to retain the right to request the branded product in certain cases.

  10. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    PubMed

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  11. K-Band Latching Switches

    NASA Technical Reports Server (NTRS)

    Piotrowski, W. S.; Raue, J. E.

    1984-01-01

    Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.

  12. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  13. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  14. Discourse Matrix in Filipino-English Code-Switching: Students' Attitudes and Feelings

    ERIC Educational Resources Information Center

    dela Rosa, Rona

    2016-01-01

    Undeniably, one language may be considered more valuable than other languages. Hence, most bilingual communities suffer from language imbalances. The present study attempts to identify the factors of code-switching during classroom presentations. Its functions were identified through analysing conversational contexts in which it occurs. Through…

  15. Optically Driven Q-Switches For Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1994-01-01

    Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.

  16. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Ensemble control of Kondo screening in molecular adsorbates

    DOE PAGES

    Maughan, Bret; Zahl, Percy; Sutter, Peter; ...

    2017-04-06

    Switching the magnetic properties of organic semiconductors on a metal surface has thus far largely been limited to molecule-by-molecule tip-induced transformations in scanned probe experiments. Here we demonstrate with molecular resolution that collective control of activated Kondo screening can be achieved in thin-films of the organic semiconductor titanyl phthalocyanine on Cu(110) to obtain tunable concentrations of Kondo impurities. Using low-temperature scanning tunneling microscopy and spectroscopy, we show that a thermally activated molecular distortion dramatically shifts surface–molecule coupling and enables ensemble-level control of Kondo screening in the interfacial spin system. This is accompanied by the formation of a temperature-dependent Abrikosov–Suhl–Kondo resonancemore » in the local density of states of the activated molecules. This enables coverage-dependent control over activation to the Kondo screening state. Finally, our study thus advances the versatility of molecular switching for Kondo physics and opens new avenues for scalable bottom-up tailoring of the electronic structure and magnetic texture of organic semiconductor interfaces at the nanoscale.« less

  18. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  19. Sleep State Switching

    PubMed Central

    Saper, Clifford B.; Fuller, Patrick M.; Pedersen, Nigel P.; Lu, Jun; Scammell, Thomas E.

    2010-01-01

    We take for granted the ability to fall asleep or to snap out of sleep into wakefulness, but these changes in behavioral state require specific switching mechanisms in the brain that allow well-defined state transitions. In this review, we examine the basic circuitry underlying the regulation of sleep and wakefulness, and discuss a theoretical framework wherein the interactions between reciprocal neuronal circuits enable relatively rapid and complete state transitions. We also review how homeostatic, circadian, and allostatic drives help regulate sleep state switching, and discuss how breakdown of the switching mechanism may contribute to sleep disorders such as narcolepsy. PMID:21172606

  20. Chimeric switch receptor: switching for improved adoptive T-cell therapy against cancers.

    PubMed

    Tay, Johan Ck; Zha, Shijun; Wang, Shu

    2017-12-01

    Adoptive T-lymphocyte transfer-based immunotherapy for cancers has seen huge leaps with both CARs and engineered TCRs. Despite this, issues relating to safety and efficacy persist. To address this, chimeric switch receptors have been created to reverse the outcomes of their original signaling pathways in order to confer immune cells with the ability to overcome the immunosuppressive tumor microenvironment and to allow them to have greater in vivo persistence. Activating switch receptors exploit the inhibitory molecules expressed by cancer cells to further stimulate the tumor antigen-specific T lymphocytes. On the other hand, inhibitory switch receptors inhibit the effects of tumor-reactive T lymphocytes on unintended targets. This paper reviews the switch receptors reported thus far, and lists out potential improvements and future works.

  1. Electro-optic Q-switch

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)

    2006-01-01

    An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.

  2. Integrated Molecular Profiling of Human Gastric Cancer Identifies DDR2 as a Potential Regulator of Peritoneal Dissemination.

    PubMed

    Kurashige, Junji; Hasegawa, Takanori; Niida, Atsushi; Sugimachi, Keishi; Deng, Niantao; Mima, Kosuke; Uchi, Ryutaro; Sawada, Genta; Takahashi, Yusuke; Eguchi, Hidetoshi; Inomata, Masashi; Kitano, Seigo; Fukagawa, Takeo; Sasako, Mitsuru; Sasaki, Hiroki; Sasaki, Shin; Mori, Masaki; Yanagihara, Kazuyoshi; Baba, Hideo; Miyano, Satoru; Tan, Patrick; Mimori, Koshi

    2016-03-03

    Peritoneal dissemination is the most frequent, incurable metastasis occurring in patients with advanced gastric cancer (GC). However, molecular mechanisms driving peritoneal dissemination still remain poorly understood. Here, we aimed to provide novel insights into the molecular mechanisms that drive the peritoneal dissemination of GC. We performed combined expression analysis with in vivo-selected metastatic cell lines and samples from 200 GC patients to identify driver genes of peritoneal dissemination. The driver-gene functions associated with GC dissemination were examined using a mouse xenograft model. We identified a peritoneal dissemination-associated expression signature, whose profile correlated with those of genes related to development, focal adhesion, and the extracellular matrix. Among the genes comprising the expression signature, we identified that discoidin-domain receptor 2 (DDR2) as a potential regulator of peritoneal dissemination. The DDR2 was upregulated by the loss of DNA methylation and that DDR2 knockdown reduced peritoneal metastasis in a xenograft model. Dasatinib, an inhibitor of the DDR2 signaling pathway, effectively suppressed peritoneal dissemination. DDR2 was identified as a driver gene for GC dissemination from the combined expression signature and can potentially serve as a novel therapeutic target for inhibiting GC peritoneal dissemination.

  3. Synaptic proteomics as a means to identify the molecular basis of mental illness: Are we getting there?

    PubMed

    Reig-Viader, Rita; Sindreu, Carlos; Bayés, Àlex

    2018-06-08

    Synapses are centrally involved in many brain disorders, particularly in psychiatric and neurodevelopmental ones. However, our current understanding of the proteomic alterations affecting synaptic performance in the majority of mental illnesses is limited. As a result, novel pharmacotherapies with improved neurological efficacy have been scarce over the past decades. The main goal of synaptic proteomics in the context of mental illnesses is to identify dysregulated molecular mechanisms underlying these conditions. Here we reviewed and performed a meta-analysis of previous neuroproteomic research to identify proteins that may be consistently dysregulated in one or several mental disorders. Notably, we found very few proteins reproducibly altered among independent experiments for any given condition or between conditions, indicating that we are still far from identifying key pathophysiological mechanisms of mental illness. We suggest that future research in the field will require higher levels of standardization and larger-scale experiments to address the challenge posed by biological and methodological variability. We strongly believe that more resources should be placed in this field as the need to identify the molecular roots of mental illnesses is highly pressing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Neural networks supporting switching, hypothesis testing, and rule application

    PubMed Central

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.

    2015-01-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest

  5. Neural networks supporting switching, hypothesis testing, and rule application.

    PubMed

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A

    2015-10-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest

  6. Two intermediate states of the conformational switch in dual specificity phosphatase 13a.

    PubMed

    Wei, Chun Hwa; Min, Hee Gyeong; Kim, Myeongbin; Kim, Gwan Hee; Chun, Ha-Jung; Ryu, Seong Eon

    2018-02-01

    Dual specificity phosphatases (DUSPs) include MAP kinase phosphatases and atypical dual specificity phosphatases and mediate cell growth and differentiation, brain function, and immune responses. They serve as targets for drug development against cancers, diabetes and depression. Several DUSPs have non-canonical conformation of the central β-sheet and active site loops, suggesting that they may have conformational switch that is related to the regulation of enzyme activity. Here, we determined the crystal structure of DUSP13a, and identified two different structures that represent intermediates of the postulated conformational switch. Amino acid sequence of DUSP13a is not significantly homologous to DUSPs with conformational switch, indicating that the conformational switch is not sequence-dependent, but rather determined by ligand interaction. The sequence-independency suggests that other DUSPs with canonical conformation may have the conformational switch during specific cellular regulation. The conformational switch leads to significant changes in the protein surface, including a hydrophobic surface and pockets, which can be exploited for development of allosteric modulators of drug target DUSPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Power-Switching Circuit

    NASA Technical Reports Server (NTRS)

    Praver, Gerald A.; Theisinger, Peter C.; Genofsky, John

    1987-01-01

    Functions of circuit breakers, meters, and switches combined. Circuit that includes power field-effect transistors (PFET's) provides on/off switching, soft starting, current monitoring, current tripping, and protection against overcurrent for 30-Vdc power supply at normal load currents up to 2 A. Has no moving parts.

  8. Gain and Efficiency of a Superconducting Microwave Compressor with a Switching Cavity in an Interference Switch

    NASA Astrophysics Data System (ADS)

    Artemenko, S. N.; Samoylenko, G. M.

    2016-11-01

    We study the processes of radiation output from a microwave storage cavity through a superconducting interference switch, which is based on a H-junction with a superconducting switching cavity connected to the side branch of the junction for various ways of controlling the parameters of the switching cavity. It is shown that efficient control over radiation output in such a switch can be achieved by varying the resonance frequency or Q-factor of the switching cavity, as well as by varying these parameters simultaneously. It is found that in the case of controlling the resonance frequency of the switching cavity, there exists an optimal interval of the frequency variation, within which the total efficiency and extraction efficiency are maximum. When the Q-factor of the switching cavity changes, the dependence of the total efficiency and extraction efficiency on the Q-factor has the monotonic character. The mixed regime of radiation output control is also studied. The envelopes of the output compressor pulses are plotted on the basis of recurrent relationships between the amplitudes of the waves in the system for three regimes of switch operation. It is shown that pulses with an almost rectangular shape of the envelope can be formed in the regime of controlling the switching cavity by varying the Q-factor. An example of possible realization of the switching cavity is considered.

  9. Designing field-controllable graphene-dot-graphene single molecule switches: A quantum-theoretical proof-of-concept under realistic operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejov, Ljupčo, E-mail: ljupcop@pmf.ukim.mk; Petreska, Irina; Kocarev, Ljupčo

    2015-12-28

    A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a “quantum dot”), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditionsmore » (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1–014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1–245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green’s function formalism, as well as by analysis of frontier molecular orbitals’ behavior.« less

  10. Hydrogen bonding as the origin of the switching behavior in dithiolated phenylene-vinylene oligomers

    NASA Astrophysics Data System (ADS)

    Obodo, J. T.; Gkionis, K.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2013-08-01

    We investigate theoretically the switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes using self-interaction corrected density-functional theory combined with the nonequilibrium Green's-function method for quantum transport. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond and reduces by about one order of magnitude the transmission coefficient at the Fermi level, and thus the linear response conductance. Furthermore, protonation downshifts in energy the position of the highest occupied molecular orbital, so that the current of the protonated species is lower than that of the unprotonated one along the entire bias range investigated, from -1.5 to 1.5 V. A second protonation at the opposite thiol group has only minor effects and no further drastic reduction in transmission takes place. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation.

  11. Discrete-time switching periodic adaptive control for time-varying parameters with unknown periodicity

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Huang, Deqing; Yang, Wanqiu

    2018-06-01

    In this paper, we address the problem of unknown periodicity for a class of discrete-time nonlinear parametric systems without assuming any growth conditions on the nonlinearities. The unknown periodicity hides in the parametric uncertainties, which is difficult to estimate with existing techniques. By incorporating a logic-based switching mechanism, we identify the period and bound of unknown parameter simultaneously. Lyapunov-based analysis is given to demonstrate that a finite number of switchings can guarantee the asymptotic tracking for the nonlinear parametric systems. The simulation result also shows the efficacy of the proposed switching periodic adaptive control approach.

  12. Operation of a homeostatic sleep switch.

    PubMed

    Pimentel, Diogo; Donlea, Jeffrey M; Talbot, Clifford B; Song, Seoho M; Thurston, Alexander J F; Miesenböck, Gero

    2016-08-18

    Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the

  13. [An analysis of code-switching phenomenon in bimodal bilinguals (Libras and Portuguese).

    PubMed

    de Sousa, Aline Nunes; de Quadros, Ronice Müller

    2012-01-01

    An interesting linguistic phenomenon that happens in the interaction among bilingual people is code-switching. In this paper, we are investigating code-switching among oral Brazilian Portuguese and Brazilian Sign Language - Libras, in a same enunciative chain, with the goal of identifying and analyzing the use of code-switching in the speech of a child and an adult (both hearing from deaf parents), interacting in an intermodal bilingual context, with deaf and hearing interlocutors. Code-switching in languages, in this case, occurs when a person stops to speak in Portuguese and he/she alternates to sign. This present research is a starting study, with qualitative analysis of data. Our corpus is composed of nine sections of interactions in Libras and oral Portuguese, recorded in video, part of the Bimodal Bilingual Development Project from UFSC. The data shows that adult and child's characteristics of code-switching seem to have similarities and differences. The adult seems to switch more worried about the course of the interaction. On the other hand, the child did not seem to use code-switching for specific pragmatic reasons. In regard to the switching extension, it is noted that both the child and the adult used more than one word sentences. The role of the interlocutors seems to be decisive in the interactions investigated here - especially for the adult, since the child is still acquiring awareness about the role of the interlocutor in an interaction.

  14. Submicrosecond Power-Switching Test Circuit

    NASA Technical Reports Server (NTRS)

    Folk, Eric N.

    2006-01-01

    A circuit that changes an electrical load in a switching time shorter than 0.3 microsecond has been devised. This circuit can be used in testing the regulation characteristics of power-supply circuits . especially switching power-converter circuits that are supposed to be able to provide acceptably high degrees of regulation in response to rapid load transients. The combination of this power-switching circuit and a known passive constant load could be an attractive alternative to a typical commercially available load-bank circuit that can be made to operate in nominal constant-voltage, constant-current, and constant-resistance modes. The switching provided by a typical commercial load-bank circuit in the constant-resistance mode is not fast enough for testing of regulation in response to load transients. Moreover, some test engineers do not trust the test results obtained when using commercial load-bank circuits because the dynamic responses of those circuits are, variously, partly unknown and/or excessively complex. In contrast, the combination of this circuit and a passive constant load offers both rapid switching and known (or at least better known) load dynamics. The power-switching circuit (see figure) includes a signal-input section, a wide-hysteresis Schmitt trigger that prevents false triggering in the event of switch-contact bounce, a dual-bipolar-transistor power stage that drives the gate of a metal oxide semiconductor field-effect transistor (MOSFET), and the MOSFET, which is the output device that performs the switching of the load. The MOSFET in the specific version of the circuit shown in the figure is rated to stand off a potential of 100 V in the "off" state and to pass a current of 20 A in the "on" state. The switching time of this circuit (the characteristic time of rise or fall of the potential at the drain of the MOSFET) is .300 ns. The circuit can accept any of three control inputs . which one depending on the test that one seeks to perform: a

  15. 49 CFR 236.382 - Switch obstruction test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch obstruction test. 236.382 Section 236.382... and Tests § 236.382 Switch obstruction test. Switch obstruction test of lock rod of each power-operated switch and lock rod of each hand-operated switch equipped with switch-and-lock-movement shall be...

  16. 49 CFR 236.382 - Switch obstruction test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switch obstruction test. 236.382 Section 236.382... and Tests § 236.382 Switch obstruction test. Switch obstruction test of lock rod of each power-operated switch and lock rod of each hand-operated switch equipped with switch-and-lock-movement shall be...

  17. 49 CFR 236.382 - Switch obstruction test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switch obstruction test. 236.382 Section 236.382... and Tests § 236.382 Switch obstruction test. Switch obstruction test of lock rod of each power-operated switch and lock rod of each hand-operated switch equipped with switch-and-lock-movement shall be...

  18. 49 CFR 236.382 - Switch obstruction test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Switch obstruction test. 236.382 Section 236.382... and Tests § 236.382 Switch obstruction test. Switch obstruction test of lock rod of each power-operated switch and lock rod of each hand-operated switch equipped with switch-and-lock-movement shall be...

  19. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...

  20. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...

  1. 49 CFR 236.382 - Switch obstruction test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Switch obstruction test. 236.382 Section 236.382... and Tests § 236.382 Switch obstruction test. Switch obstruction test of lock rod of each power-operated switch and lock rod of each hand-operated switch equipped with switch-and-lock-movement shall be...

  2. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...

  3. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...

  4. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...

  5. The influence of cue-task association and location on switch cost and alternating-switch cost.

    PubMed

    Arbuthnott, Katherine D; Woodward, Todd S

    2002-03-01

    Task-switching performance is strongly influenced by whether the imperative stimulus uniquely specifies which task to perform: Switch cost is substantial with bivalent stimuli but is greatly reduced with univalent stimuli, suggesting that available contextual information influences processing in task-switching situations. The present study examined whether task-relevant information provided by task cues influences the magnitude of switch cost in a parallel manner. Cues presented 500 ms prior to a trivalent stimulus indicated which of three tasks to perform. These cues either had a preexisting association with the to-be-performed task (verbal cues), or a recently learned association with the task (spatial and shape cues). The results paralleled the effects of stimulus bivalence: substantial switch cost with recently learned cue-task associations and greatly reduced switch cost with preexisting cue-task associations. This suggests that both stimulus-based and cue-based information can activate the relevant task set, possibly providing external support to endogenous control processes. Alternating-switch cost, a greater cost for switching back to a recently abandoned task, was also observed with both preexisting and recently learned cue-task associations, but only when all tasks were presented in a consistent spatial location. When spatial location was used to cue the to-be-performed tasks, no alternating-switch cost was observed, suggesting that different processes may be involved when tasks are uniquely located in space. Specification of the nature of these processes may prove to be complex, as post-hoc inspection of the data suggested that for the spatial cue condition, the alternating-switch cost may oscillate between cost and benefit, depending on the relevant task.

  6. Valley switch in a graphene superlattice due to pseudo-Andreev reflection

    NASA Astrophysics Data System (ADS)

    Beenakker, C. W. J.; Gnezdilov, N. V.; Dresselhaus, E.; Ostroukh, V. P.; Herasymenko, Y.; Adagideli, I.; Tworzydło, J.

    2018-06-01

    Dirac electrons in graphene have a valley degree of freedom that is being explored as a carrier of information. In that context of "valleytronics" one seeks to coherently manipulate the valley index. Here, we show that reflection from a superlattice potential can provide a valley switch: Electrons approaching a pristine-graphene-superlattice-graphene interface near normal incidence are reflected in the opposite valley. We identify the topological origin of this valley switch, by mapping the problem onto that of Andreev reflection from a topological superconductor, with the electron-hole degree of freedom playing the role of the valley index. The valley switch is ideal at a symmetry point of the superlattice potential, but remains close to 100% in a broad parameter range.

  7. Switch-peptides: design and characterization of controllable super-amyloid-forming host-guest peptides as tools for identifying anti-amyloid agents.

    PubMed

    Camus, Marie-Stéphanie; Dos Santos, Sonia; Chandravarkar, Arunan; Mandal, Bhubaneswar; Schmid, Adrian W; Tuchscherer, Gabriele; Mutter, Manfred; Lashuel, Hilal A

    2008-09-01

    Several amyloid-forming proteins are characterized by the presence of hydrophobic and highly amyloidogenic core sequences that play critical roles in the initiation and progression of amyloid fibril formation. Therefore targeting these sequences represents a viable strategy for identifying candidate molecules that could interfere with amyloid formation and toxicity of the parent proteins. However, the highly amyloidogenic and insoluble nature of these sequences has hampered efforts to develop high-throughput fibrillization assays. Here we describe the design and characterization of host-guest switch peptides that can be used for in vitro mechanistic and screening studies that are aimed at discovering aggregation inhibitors that target highly amyloidogenic sequences. These model systems are based on a host-guest system where the amyloidogenic sequence (guest peptide) is flanked by two beta-sheet-promoting (Leu-Ser)(n) oligomers as host sequences. Two host-guest peptides were prepared by using the hydrophobic core of Abeta comprising residues 14-24 (HQKLVFFAEDV) as the guest peptide with switch elements inserted within (peptide 1) or at the N and C termini of the guest peptide (peptide 2). Both model peptides can be triggered to undergo rapid self-assembly and amyloid formation in a highly controllable manner and their fibrillization kinetics is tuneable by manipulating solution conditions (for example, peptide concentration and pH). The fibrillization of both peptides reproduces many features of the full-length Abeta peptides and can be inhibited by known inhibitors of Abeta fibril formation. Our results suggest that this approach can be extended to other amyloid proteins and should facilitate the discovery of small-molecule aggregation inhibitors and the development of more efficacious anti-amyloid agents to treat and/or reverse the pathogenesis of neurodegenerative and systemic amyloid diseases.

  8. Intelligent single switch wheelchair navigation.

    PubMed

    Ka, Hyun W; Simpson, Richard; Chung, Younghyun

    2012-11-01

    We have developed an intelligent single switch scanning interface and wheelchair navigation assistance system, called intelligent single switch wheelchair navigation (ISSWN), to improve driving safety, comfort and efficiency for individuals who rely on single switch scanning as a control method. ISSWN combines a standard powered wheelchair with a laser rangefinder, a single switch scanning interface and a computer. It provides the user with context sensitive and task specific scanning options that reduce driving effort based on an interpretation of sensor data together with user input. Trials performed by 9 able-bodied participants showed that the system significantly improved driving safety and efficiency in a navigation task by significantly reducing the number of switch presses to 43.5% of traditional single switch wheelchair navigation (p < 0.001). All participants made a significant improvement (39.1%; p < 0.001) in completion time after only two trials.

  9. Sleep state switching.

    PubMed

    Saper, Clifford B; Fuller, Patrick M; Pedersen, Nigel P; Lu, Jun; Scammell, Thomas E

    2010-12-22

    We take for granted the ability to fall asleep or to snap out of sleep into wakefulness, but these changes in behavioral state require specific switching mechanisms in the brain that allow well-defined state transitions. In this review, we examine the basic circuitry underlying the regulation of sleep and wakefulness and discuss a theoretical framework wherein the interactions between reciprocal neuronal circuits enable relatively rapid and complete state transitions. We also review how homeostatic, circadian, and allostatic drives help regulate sleep state switching and discuss how breakdown of the switching mechanism may contribute to sleep disorders such as narcolepsy. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Photoconductive switch package

    DOEpatents

    Ca[rasp, George J

    2013-10-22

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  11. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  12. Discrete-time systems with random switches: From systems stability to networks synchronization.

    PubMed

    Guo, Yao; Lin, Wei; Ho, Daniel W C

    2016-03-01

    In this article, we develop some approaches, which enable us to more accurately and analytically identify the essential patterns that guarantee the almost sure stability of discrete-time systems with random switches. We allow for the case that the elements in the switching connection matrix even obey some unbounded and continuous-valued distributions. In addition to the almost sure stability, we further investigate the almost sure synchronization in complex dynamical networks consisting of randomly connected nodes. Numerical examples illustrate that a chaotic dynamics in the synchronization manifold is preserved when statistical parameters enter some almost sure synchronization region established by the developed approach. Moreover, some delicate configurations are considered on probability space for ensuring synchronization in networks whose nodes are described by nonlinear maps. Both theoretical and numerical results on synchronization are presented by setting only a few random connections in each switch duration. More interestingly, we analytically find it possible to achieve almost sure synchronization in the randomly switching complex networks even with very large population sizes, which cannot be easily realized in non-switching but deterministically connected networks.

  13. Reflective HTS switch

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1994-01-01

    A HTS switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time.

  14. Proposal of optical mode switch

    NASA Astrophysics Data System (ADS)

    Takakura, Ryuta; Jizodo, Makoto; Fujino, Asuka; Tanaka, Tatsushi; Hamamoto, Kiichi

    2014-08-01

    Here, we propose a novel optical mode switch, which is a new concept of the optical switch. It can overcome the matrix size limitation issue, which has been a general issue for the waveguide optical space switch, because of its simple fiber coupling configuration. In addition, it contributes to the lossless mux/demux function such as wavelength multiplexing with powerless mode conversion unlike wavelength conversion. In this paper, we propose the principle of the optical mode switch. The simulation results showed less than -30 dB mode crosstalk, with less than only 0.1 dB excess loss for a two-mode optical switch. Moreover, the scalable configuration up to four modes is also proposed in this paper.

  15. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  16. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  17. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  18. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  19. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  20. Assessing the potential of surface-immobilized molecular logic machines for integration with solid state technology.

    PubMed

    Dunn, Katherine E; Trefzer, Martin A; Johnson, Steven; Tyrrell, Andy M

    2016-08-01

    Molecular computation with DNA has great potential for low power, highly parallel information processing in a biological or biochemical context. However, significant challenges remain for the field of DNA computation. New technology is needed to allow multiplexed label-free readout and to enable regulation of molecular state without addition of new DNA strands. These capabilities could be provided by hybrid bioelectronic systems in which biomolecular computing is integrated with conventional electronics through immobilization of DNA machines on the surface of electronic circuitry. Here we present a quantitative experimental analysis of a surface-immobilized OR gate made from DNA and driven by strand displacement. The purpose of our work is to examine the performance of a simple representative surface-immobilized DNA logic machine, to provide valuable information for future work on hybrid bioelectronic systems involving DNA devices. We used a quartz crystal microbalance to examine a DNA monolayer containing approximately 5×10(11)gatescm(-2), with an inter-gate separation of approximately 14nm, and we found that the ensemble of gates took approximately 6min to switch. The gates could be switched repeatedly, but the switching efficiency was significantly degraded on the second and subsequent cycles when the binding site for the input was near to the surface. Otherwise, the switching efficiency could be 80% or better, and the power dissipated by the ensemble of gates during switching was approximately 0.1nWcm(-2), which is orders of magnitude less than the power dissipated during switching of an equivalent array of transistors. We propose an architecture for hybrid DNA-electronic systems in which information can be stored and processed, either in series or in parallel, by a combination of molecular machines and conventional electronics. In this architecture, information can flow freely and in both directions between the solution-phase and the underlying electronics

  1. Organic Materials For Optical Switching

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1993-01-01

    Equations predict properties of candidate materials. Report presents results of theoretical study of nonlinear optical properties of organic materials. Such materials used in optical switching devices for computers and telecommunications, replacing electronic switches. Optical switching potentially offers extremely high information throughout in compact hardware.

  2. Effect of CpG dinucleotides within IgH switch region repeats on immunoglobulin class switch recombination.

    PubMed

    Zhang, Zheng Z; Hsieh, Chih-Lin; Okitsu, Cindy Yen; Han, Li; Yu, Kefei; Lieber, Michael R

    2015-08-01

    Immunoglobulin (Ig) heavy chains undergo class switch recombination (CSR) to change the heavy chain isotype from IgM to IgG, A or E. The switch regions are several kilobases long, repetitive, and G-rich on the nontemplate strand. They are also relatively depleted of CpG (also called CG) sites for unknown reasons. Here we use synthetic switch regions at the IgH switch alpha (Sα) locus to test the effect of CpG sites and to try to understand why the IgH switch sequences evolved to be relatively depleted of CpG. We find that even just two CpG sites within an 80 bp synthetic switch repeat iterated 15 times (total switch region length of 1200 bp containing 30 CpG sites) are sufficient to dramatically reduce both Ig CSR and transcription through the switch region from the upstream Iα sterile transcript promoter, which is the promoter that directs transcripts through the Sα region. De novo DNA methylation occurs at the four CpG sites in and around the Iα promoter when each 80 bp Iα switch repeat contains the two CpG sites. Thus, a relatively low density of CpG sites within the switch repeats can induce upstream CpG methylation at the IgH alpha locus, and cause a substantial decrease in transcription from the sterile transcript promoter. This effect is likely the reason that switch regions evolved to contain very few CpG sites. We discuss these findings as they relate to DNA methylation and to Ig CSR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Alarm toe switch. [Patent application

    DOEpatents

    Ganyard, F.P.

    1980-11-18

    An alarm toe switch inserted within a shoe for energizing an alarm circuit in a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch.

  4. Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies

    PubMed Central

    Saum, Stephan H; Müller, Volker

    2008-01-01

    The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a glutamine synthetase) as well as the glutamine synthetase activity were identified as chloride dependent steps. Halobacillus halophilus switches its osmolyte strategy and produces proline as the main compatible solute at high salinities. Furthermore, Halobacillus halophilus also shifts its osmolyte strategy at the transition from the exponential to the stationary phase where proline is exchanged by ectoine. Glutamate was found as a “second messenger” essential for proline production. This observation leads to a new model of sensing salinity by sensing the physico-chemical properties of different anions. PMID:18442383

  5. A Comparison of High-Voltage Switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, K.W.; Scott, G.L.

    1999-02-01

    This report summarizes our work on high-voltage switches during the past few years. With joint funding from the Department of Energy (DOE) and the Department of Defense (DOD), we tested a wide variety of switches to a common standard. This approach permitted meaningful comparisons between disparate switches. Most switches were purchased from commercial sources, though some were experimental devices. For the purposes of this report, we divided the switches into three generic types (gas, vacuum, and semiconductor) and selected data that best illustrates important strengths and weaknesses of each switch type. Test techniques that indicate the state of health ofmore » the switches are emphasized. For example, a good indicator of residual gas in a vacuum switch is the systematic variation of the switching delay in response to changes in temperature and/or operating conditions. We believe that the presentation of this kind of information will help engineers to select and to test switches for their particular applications. Our work was limited to switches capable of driving slappers. Also known as exploding-foil initiators, slappers are detonators that initiate a secondary explosive by direct impact with a small piece of matter moving at the detonation velocity (several thousands of meters per second). A slapper is desirable for enhanced safety (no primary explosive), but it also places extra demands on the capacitor-discharge circuit to deliver a fast-rising current pulse (greater than 10 A/ns) of several thousand amperes. The required energy is substantially less than one joule; but this energy is delivered in less than one microsecond, taking the peak power into the megawatt regime. In our study, the switches operated in the 1 kV to 3 kV range and were physically small, roughly 1 cm{sup 3} or less. Although a fuze functions only once in actual use, multiple-shot capability is important for production testing and for research work. For this reason, we restricted this

  6. Cost-effective method of manufacturing a 3D MEMS optical switch

    NASA Astrophysics Data System (ADS)

    Carr, Emily; Zhang, Ping; Keebaugh, Doug; Chau, Kelvin

    2009-02-01

    growth of data and video transport networks. All-optical switching eliminates the need for optical-electrical conversion offering the ability to switch optical signals transparently: independent of data rates, formats and wavelength. It also provides network operators much needed automation capabilities to create, monitor and protect optical light paths. To further accelerate the market penetration, it is necessary to identify a path to reduce the manufacturing cost significantly as well as enhance the overall system performance, uniformity and reliability. Currently, most MEMS optical switches are assembled through die level flip-chip bonding with either epoxies or solder bumps. This is due to the alignment accuracy requirements of the switch assembly, defect matching of individual die, and cost of the individual components. In this paper, a wafer level assembly approach is reported based on silicon fusion bonding which aims to reduce the packaging time, defect count and cost through volume production. This approach is successfully demonstrated by the integration of two 6-inch wafers: a mirror array wafer and a "snap-guard" wafer, which provides a mechanical structure on top of the micromirror to prevent electrostatic snap-down. The direct silicon-to-silicon bond eliminates the CTEmismatch and stress issues caused by non-silicon bonding agents. Results from a completed integrated switch assembly will be presented, which demonstrates the reliability and uniformity of some key parameters of this MEMS optical switch.

  7. A suite of molecular markers for identifying species, detecting introgression and describing population structure in spadefoot toads (Spea spp.).

    PubMed

    Pfennig, Karin S; Allenby, Ashley; Martin, Ryan A; Monroy, Anaïs; Jones, Corbin D

    2012-09-01

    Two congeneric species of spadefoot toad, Spea multiplicata and Spea bombifrons, have been the focus of hybridization studies since the 1970s. Because complex hybrids are not readily distinguished phenotypically, genetic markers are needed to identify introgressed individuals. We therefore developed a set of molecular markers (amplified fragment length polymorphism, polymerase chain reaction-restriction fragment length polymorphism and single nucleotide polymorphism) for identifying pure-species, F1 hybrids and more complex introgressed types. To do so, we tested a series of markers across both species and known hybrids using populations in both allopatry and sympatry. We retained those markers that differentiated the two pure-species and also consistently identified known species hybrids. These markers are well suited for identifying hybrids between these species. Moreover, those markers that show variation within each species can be used in conjunction with existing molecular markers in studies of population structure and gene flow. © 2012 Blackwell Publishing Ltd.

  8. Switching in Feedforward Control of Grip Force During Tool-Mediated Interaction With Elastic Force Fields

    PubMed Central

    White, Olivier; Karniel, Amir; Papaxanthis, Charalambos; Barbiero, Marie; Nisky, Ilana

    2018-01-01

    Switched systems are common in artificial control systems. Here, we suggest that the brain adopts a switched feedforward control of grip forces during manipulation of objects. We measured how participants modulated grip force when interacting with soft and rigid virtual objects when stiffness varied continuously between trials. We identified a sudden phase transition between two forms of feedforward control that differed in the timing of the synchronization between the anticipated load force and the applied grip force. The switch occurred several trials after a threshold stiffness level in the range 100–200 N/m. These results suggest that in the control of grip force, the brain acts as a switching control system. This opens new research questions as to the nature of the discrete state variables that drive the switching. PMID:29930504

  9. Switch Costs Occur at Lemma Stage When Bilinguals Name Digits: Evidence from Language-Switching and Event-Related Potentials.

    PubMed

    Chang, Song; Xie, Jiushu; Li, Li; Wang, Ruiming; Liu, Ming

    2016-01-01

    Switch costs are generally found in language switching tasks. However, the locus where switch costs occur during bilingual language production remains unclear. Several studies that used a cued language-switching paradigm have attempted to investigate this question in bilingual language production, but researchers have not reached a consensus. Moreover, we are interested in where switch costs occur when language selection occurs after lemma activation. Previous studies have not investigated this question because most previous studies presented language cues before or along with the stimuli. Therefore, we used a modified cued language-switching paradigm with a combined event-related potentials (ERPs) technique to explore the locus of switch costs during bilingual language production. The cue and stimulus were separated and presented in two different presentation sequences in which Indonesian-Chinese bilingual speakers were instructed to name digits in their L1 or L2 according to the color of the cue. The ERPs related to the cue and stimulus for two presentation sequences were measured. In the stimulus-cue sequence, the analysis that was time-locked to cues revealed a reversed switch cost as early as 220 ms after the cue onset; furthermore, a switch cost was shown in L1 with a late stage post-cue onset. The results suggested that when language selection occurred after lemma activation, the switch costs mainly occurred at the lemma selection stage. In the cue-stimulus sequence, the analysis that was time-locked to cues did not reveal significant main effects of switching, whereas the analysis that was time-locked to digits yielded a switch cost, again indicating that switch costs mainly occurred at the lemma selection stage rather than at the language task schema competition stage. Overall, our results indicated that when bilinguals spoke digits aloud in the language switching task, switch costs mainly occurred at the lemma selection stage.

  10. Switching benefits and costs in the Irish health insurance market: an analysis of consumer surveys.

    PubMed

    Keegan, Conor; Teljeur, Conor; Turner, Brian; Thomas, Steve

    2018-05-10

    Relatively little analysis has taken place internationally on the consumer-reported benefits and costs to switching insurer in multi-payer health insurance markets. Ideally, consumers should be willing to switch out of consideration for price and quality and switching should be able to take place without incurring significant switching costs. Costs to switching come in many forms and understanding the nature of these costs is necessary if policy interventions to improve market competition are to be successful. This study utilises data from consumer surveys of the Irish health insurance market collected between 2009 and 2013 (N [Formula: see text] 1703) to examine consumer-reported benefits and costs to switching insurer. Probit regression models are specified to examine the relationship between consumer characteristics and reported switching costs, and switching behaviour, respectively. Overall evidence suggests that switchers in the Irish market mainly did so out of consideration for price. Transaction cost was the most common switching cost identified, reported by just under 1 in 7 non-switchers. Psychological switching costs may also be impacting behaviour. Moreover, high-risk individuals were more likely to experience switching costs and this was reflected in actual switching behaviour. A recent information campaign launched by the market regulator may prove beneficial in reducing perceived transaction costs in the market, however, a more focused campaign aimed at high-risk consumers may be necessary to reduce inequalities. Policy-makers should also consider the impact insurer behaviour may have on decision-making.

  11. Widening Consumer Access to Medicines: A Comparison of Prescription to Non-Prescription Medicine Switch in Australia and New Zealand

    PubMed Central

    Gauld, Natalie J.; Kelly, Fiona S.; Emmerton, Lynne M.; Buetow, Stephen A.

    2015-01-01

    Background Despite similarities in health systems and Trans-Tasman Harmonization of medicines scheduling, New Zealand is more active than Australia in ‘switching’ (reclassifying) medicines from prescription to non-prescription. Objectives To identify and compare enablers and barriers to switch in New Zealand and Australia. Methods We conducted and analyzed 27 in-depth personal interviews with key participants in NZ and Australia and international participants previously located in Australia, and analyzed records of meetings considering switches (2000–2013). Analysis of both sets of data entailed a heuristic qualitative approach that embraced the lead researcher’s knowledge and experience. Results The key themes identified were conservatism and political influences in Australia, and an open attitude, proactivity and flexibility in NZ. Pharmacist-only medicine schedules and individuals holding a progressive attitude were proposed to facilitate switch in both countries. A pharmacy retail group drove many switches in NZ (‘third-party switch’), unlike Australia. Barriers to switch in both countries included small market sizes, funding of prescription medicines and cost of doctor visits, and lack of market exclusivity. In Australia, advertising limitations for pharmacist-only medicines reportedly discouraged industry from submitting switch applications. Perceptions of pharmacy performance could help or hinder switches. Conclusion Committee and regulator openness to switch, and confidence in pharmacy appear to influence consumer access to medicines. The pharmacist-only medicine schedule in Australasia and the rise of third-party switch and flexibility in switch in NZ could be considered elsewhere to enable switch. PMID:25785589

  12. Heat Switches Providing Low-Activation Power and Quick-Switching Time for Use in Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Kimball, Mark O.; Shirron, Peter J.

    2011-01-01

    An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here.

  13. Interconnecting network for switching data packets and method for switching data packets

    DOEpatents

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  14. Magnetic switching in granular FePt layers promoted by near-field laser enhancement

    DOE PAGES

    Granitzka, Patrick W.; Jal, Emmanuelle; Le Guyader, Loic; ...

    2017-03-08

    Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order ofmore » magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. Furthermore, the fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.« less

  15. Switching and Rectification in Carbon-Nanotube Junctions

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  16. High pressure flow-rate switch

    NASA Technical Reports Server (NTRS)

    Gale, G. P.

    1970-01-01

    Flow-rate switch adjusts easily over a wide switching range and operates uniformly over many cycles. It adapts easily to control of various fluids and has the possibility of introducing multi-point switching. Novel design features include the tapered spool, balanced porting, capillary-bypass lubrication, and capillary-restriction damping.

  17. Molecular and nanoscale materials and devices in electronics.

    PubMed

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  18. Switched-capacitor isolated LED driver

    DOEpatents

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  19. Working Memory Costs of Task Switching

    ERIC Educational Resources Information Center

    Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, Andre; Camos, Valerie

    2008-01-01

    Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks…

  20. Burnout sensitivity of power MOSFETs operating in a switching converter

    NASA Astrophysics Data System (ADS)

    Tastet, P.; Garnier, J.; Constans, H.; Tizon, A. H.

    1994-06-01

    Heavy ion tests of a switching converter using power MOSFETs have allowed us to identify the main parameters which affect the burnout sensitivity of these components. The differences between static and dynamic conditions are clarified in this paper.

  1. A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid.

    PubMed

    Wang, Jing; Wang, Haoyuan; Yang, Le; Lv, Liping; Zhang, Zhe; Ren, Bin; Dong, Lichun; Li, Ning

    2018-04-01

    In this paper, a novel riboregulator Switch System of Gene Expression including an OFF-TO-ON switch and an ON-TO-OFF switch was designed to regulate the expression state of target genes between "ON" and "OFF" by switching the identifiability of ribosome recognition site (RBS) based on the thermodynamic stability of different RNA-RNA hybridizations between RBS and small noncoding RNAs. The proposed riboregulator switch system was employed for the fermentative production of succinic acid using an engineered strain of E. coli JW1021, during which the expression of mgtC gene was controlled at "ON" state and that of pepc and ecaA genes were controlled at the "OFF" state in the lag phase and switched to the "OFF" and "ON" state once the strain enters the logarithmic phase. The results showed that using the strain of JW1021, the yield and productivity of succinic acid can reach 0.91 g g -1 and 3.25 g L -1  h -1 , respectively, much higher than those using the strains without harboring the riboregulator switch system.

  2. Photoconductive switch package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, George J.

    2015-10-27

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the centralmore » portion to actuate the switch.« less

  3. Potential Clinical and Economic Impact of Switching Branded Medications to Generics

    PubMed Central

    Straka, Robert J.; Keohane, Denis J.; Liu, Larry Z.

    2017-01-01

    Switching branded to generic medications has become a common cost-containment measure. Although this is an important objective for health care systems worldwide, the impact of this practice on patient outcomes needs to be carefully considered. We reviewed the literature summarizing the potential clinical and economic consequences of switching from branded to generic medications on patient outcomes. A literature search of peer-reviewed articles published 2003–2013 using key words of “generic switching” or “substitution” was conducted using PubMed, OvidSP, and ScienceDirect. Of 30 articles identified and reviewed, most were related to the diseases of the central nervous system, especially epilepsy. Based on our review, potential impacts of switching fell into 3 broad categories: patient attitudes and adherence, clinical and safety outcomes, and cost and resource utilization. Although in many cases generics may represent an appropriate alternative to branded products, this may not always be the case. Specifically, several studies suggested that switching may negatively impact medication adherence, whereas other studies found that generic switching was associated with poorer clinical outcomes and more adverse events. In some instances, switching accomplished cost savings but did so at increased total cost of care because of increased physician visits or hospitalizations. Although in many cases generics may represent an appropriate alternative, mandatory generic switching may lead to unintended consequences, especially in certain therapeutic areas. Although further study is warranted, based on our review, it may be medically justifiable for physicians and patients to retain the right to request the branded product in certain cases. PMID:26099048

  4. Reflective HTS switch

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.

    1994-09-27

    A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.

  5. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  6. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  7. Crystal structure of an HIV assembly and maturation switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Jonathan M.; Zadrozny, Kaneil K.; Chrustowicz, Jakub

    Virus assembly and maturation proceed through the programmed operation of molecular switches, which trigger both local and global structural rearrangements to produce infectious particles. HIV-1 contains an assembly and maturation switch that spans the C-terminal domain (CTD) of the capsid (CA) region and the first spacer peptide (SP1) of the precursor structural protein, Gag. The crystal structure of the CTD-SP1 Gag fragment is a goblet-shaped hexamer in which the cup comprises the CTD and an ensuing type II β-turn, and the stem comprises a 6-helix bundle. The β-turn is critical for immature virus assembly and the 6-helix bundle regulates proteolysismore » during maturation. This bipartite character explains why the SP1 spacer is a critical element of HIV-1 Gag but is not a universal property of retroviruses. Our results also indicate that HIV-1 maturation inhibitors suppress unfolding of the CA-SP1 junction and thereby delay access of the viral protease to its substrate.« less

  8. Inside-out Ca2+ signalling prompted by STIM1 conformational switch

    NASA Astrophysics Data System (ADS)

    Ma, Guolin; Wei, Ming; He, Lian; Liu, Chongxu; Wu, Bo; Zhang, Shenyuan L.; Jing, Ji; Liang, Xiaowen; Senes, Alessandro; Tan, Peng; Li, Siwei; Sun, Aomin; Bi, Yunchen; Zhong, Ling; Si, Hongjiang; Shen, Yuequan; Li, Minyong; Lee, Mi-Sun; Zhou, Weibin; Wang, Junfeng; Wang, Youjun; Zhou, Yubin

    2015-07-01

    Store-operated Ca2+ entry mediated by STIM1 and ORAI1 constitutes one of the major Ca2+ entry routes in mammalian cells. The molecular choreography of STIM1-ORAI1 coupling is initiated by endoplasmic reticulum (ER) Ca2+ store depletion with subsequent oligomerization of the STIM1 ER-luminal domain, followed by its redistribution towards the plasma membrane to gate ORAI1 channels. The mechanistic underpinnings of this inside-out Ca2+ signalling were largely undefined. By taking advantage of a unique gain-of-function mutation within the STIM1 transmembrane domain (STIM1-TM), here we show that local rearrangement, rather than alteration in the oligomeric state of STIM1-TM, prompts conformational changes in the cytosolic juxtamembrane coiled-coil region. Importantly, we further identify critical residues within the cytoplasmic domain of STIM1 (STIM1-CT) that entail autoinhibition. On the basis of these findings, we propose a model in which STIM1-TM reorganization switches STIM1-CT into an extended conformation, thereby projecting the ORAI-activating domain to gate ORAI1 channels.

  9. Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator.

    PubMed

    Cao, Yi; Li, Hongbin

    2008-08-01

    Elastomeric proteins are molecular springs that confer excellent mechanical properties to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs or shock absorbers. Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.

  10. Parasitic resistive switching uncovered from complementary resistive switching in single active-layer oxide memory device

    NASA Astrophysics Data System (ADS)

    Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai

    2017-12-01

    This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.

  11. Characteristics of switching plasma in an inverse-pinch switch

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Choi, Sang H.; Venable, Demetrius D.; Han, Kwang S.; Nam, Sang H.

    1993-01-01

    Characteristics of the plasma that switches on tens of giga volt-ampere in an inverse-pinch plasma switch (INPIStron) have been made. Through optical and spectroscopic diagnostics of the current carrying plasma, the current density, the motion of current paths, dominant ionic species have been determined in order to access their effects on circuit parameters and material erosion. Also the optimum operational condition of the plasma-puff triggering method required for azimuthally uniform conduction in the INPIStron has been determined.

  12. 14 CFR 27.1367 - Switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Switches. 27.1367 Section 27.1367... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1367 Switches. Each switch must be— (a) Able to carry its rated current; (b) Accessible to the crew; and (c) Labeled as to...

  13. 14 CFR 27.1367 - Switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Switches. 27.1367 Section 27.1367... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1367 Switches. Each switch must be— (a) Able to carry its rated current; (b) Accessible to the crew; and (c) Labeled as to...

  14. 49 CFR 213.135 - Switches.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switches. 213.135 Section 213.135 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.135 Switches. (a) Each stock rail must be securely seated in switch plates, but care shall be used to avoid canting the rail by overtightening the rail...

  15. 14 CFR 27.1367 - Switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Switches. 27.1367 Section 27.1367... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1367 Switches. Each switch must be— (a) Able to carry its rated current; (b) Accessible to the crew; and (c) Labeled as to...

  16. 49 CFR 213.135 - Switches.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Switches. 213.135 Section 213.135 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.135 Switches. (a) Each stock rail must be securely seated in switch plates, but care shall be used to avoid canting the rail by overtightening the rail...

  17. 49 CFR 213.135 - Switches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switches. 213.135 Section 213.135 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.135 Switches. (a) Each stock rail must be securely seated in switch plates, but care shall be used to avoid canting the rail by overtightening the rail...

  18. 14 CFR 27.1367 - Switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Switches. 27.1367 Section 27.1367... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1367 Switches. Each switch must be— (a) Able to carry its rated current; (b) Accessible to the crew; and (c) Labeled as to...

  19. 14 CFR 27.1367 - Switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Switches. 27.1367 Section 27.1367... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1367 Switches. Each switch must be— (a) Able to carry its rated current; (b) Accessible to the crew; and (c) Labeled as to...

  20. Information Switching Processor (ISP) contention analysis and control

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas

    1995-01-01

    In designing a satellite system with on-board processing, the selection of a switching architecture is often critical. The on-board switching function can be implemented by circuit switching or packet switching. Destination-directed packet switching has several attractive features, such as self-routing without on-board switch reconfiguration, no switch control memory requirement, efficient bandwidth utilization for packet switched traffic, and accommodation of circuit switched traffic. Destination-directed packet switching, however, has two potential concerns: (1) contention and (2) congestion. And this report specifically deals with the first problem. It includes a description and analysis of various self-routing switch structures, the nature of contention problems, and contention and resolution techniques.

  1. Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups.

    PubMed

    Bosse, Tjalling; Nout, Remi A; McAlpine, Jessica N; McConechy, Melissa K; Britton, Heidi; Hussein, Yaser R; Gonzalez, Carlene; Ganesan, Raji; Steele, Jane C; Harrison, Beth T; Oliva, Esther; Vidal, August; Matias-Guiu, Xavier; Abu-Rustum, Nadeem R; Levine, Douglas A; Gilks, C Blake; Soslow, Robert A

    2018-05-01

    mixture of molecular subtypes of endometrial carcinoma, rather than a homogeneous group. The addition of molecular markers identifies prognostic subgroups, with potential therapeutic implications.

  2. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  3. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.

    PubMed

    Bruetzel, Linda K; Walker, Philipp U; Gerling, Thomas; Dietz, Hendrik; Lipfert, Jan

    2018-04-11

    Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl 2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.

  4. 49 CFR 229.87 - Hand-operated switches.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hand-operated switches. 229.87 Section 229.87....87 Hand-operated switches. All hand-operated switches carrying currents with a potential of more than... outside of the cover. Means shall be provided to show whether the switches are open or closed. Switches...

  5. 49 CFR 229.87 - Hand-operated switches.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hand-operated switches. 229.87 Section 229.87....87 Hand-operated switches. All hand-operated switches carrying currents with a potential of more than... outside of the cover. Means shall be provided to show whether the switches are open or closed. Switches...

  6. 49 CFR 229.87 - Hand-operated switches.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hand-operated switches. 229.87 Section 229.87....87 Hand-operated switches. All hand-operated switches carrying currents with a potential of more than... outside of the cover. Means shall be provided to show whether the switches are open or closed. Switches...

  7. 49 CFR 229.87 - Hand-operated switches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hand-operated switches. 229.87 Section 229.87....87 Hand-operated switches. All hand-operated switches carrying currents with a potential of more than... outside of the cover. Means shall be provided to show whether the switches are open or closed. Switches...

  8. Switching dynamics of TaOx-based threshold switching devices

    NASA Astrophysics Data System (ADS)

    Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek

    2018-03-01

    Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.

  9. Effect of switching unfractionated heparin to low-molecular-weight heparin on serum potassium in hemodialysis patients.

    PubMed

    Ezzatzadegan Jahromi, Shahrokh; Mahmoodi, Mohammad Saleh; Behroozi, Fatemeh; Roozbeh, Jamshid; Emamghoreishi, Fatemeh

    2014-11-01

    Unfractionated (UF) heparin is the most common anticoagulant used during hemodialysis. Failure of the kidneys to excrete potassium as well as heparin-induced reduction of aldosterone synthesis put hemodialysis patients at risk of hyperkalemia. It has not yet been clearly known whether hyperkalemia is also induced by low-molecular-weight (LMW) heparins. This study aimed to evaluate the effect of switching UF heparin to LMW heparin enoxaparin, as an anticoagulant during hemodialysis, on serum potassium level in patients on hemodialysis. In two hemodialysis units, 58 patients were randomly assigned into two groups, to receive two different anticoagulation protocols for 3 weeks; one group continued to receive their routine dose of UF heparin, 5000 units, and the other received enoxaparin, 0.5 mg/kg, at the beginning of each hemodialysis session. While there was no significant difference between baseline blood measurements of the two groups in terms of kidney function tests and electrolytes, following 3 weeks of the study, the mean serum potassium level decreased from 4.9 ± 0.8 mEq/L to 4.5 ± 0.5 mEq/L in the LMW heparin group (P = .001); however, there was no change in the mean serum potassium level in those who continued to receive their usual dose of UF heparin. In a subgroup analysis, diabetic patients in the enoxaparin group did not experience significant reduction in serum potassium levels. Our study revealed the role of LMW heparins as a potential alternative to UF heparins in the hemodialysis patients with hyperkalemia.

  10. Heat-transfer thermal switch

    NASA Technical Reports Server (NTRS)

    Friedell, M. V.; Anderson, A. J.

    1974-01-01

    Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

  11. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  12. Uniting Gradual and Abrupt set Processes in Resistive Switching Oxides

    NASA Astrophysics Data System (ADS)

    Fleck, Karsten; La Torre, Camilla; Aslam, Nabeel; Hoffmann-Eifert, Susanne; Böttger, Ulrich; Menzel, Stephan

    2016-12-01

    Identifying limiting factors is crucial for a better understanding of the dynamics of the resistive switching phenomenon in transition-metal oxides. This improved understanding is important for the design of fast-switching, energy-efficient, and long-term stable redox-based resistive random-access memory devices. Therefore, this work presents a detailed study of the set kinetics of valence change resistive switches on a time scale from 10 ns to 104 s , taking Pt /SrTiO3/TiN nanocrossbars as a model material. The analysis of the transient currents reveals that the switching process can be subdivided into a linear-degradation process that is followed by a thermal runaway. The comparison with a dynamical electrothermal model of the memory cell allows the deduction of the physical origin of the degradation. The origin is an electric-field-induced increase of the oxygen-vacancy concentration near the Schottky barrier of the Pt /SrTiO3 interface that is accompanied by a steadily rising local temperature due to Joule heating. The positive feedback of the temperature increase on the oxygen-vacancy mobility, and thereby on the conductivity of the filament, leads to a self-acceleration of the set process.

  13. MEMS switches having non-metallic crossbeams

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximillian C (Inventor)

    2009-01-01

    A RF MEMS switch comprising a crossbeam of SiC, supported by at least one leg above a substrate and above a plurality of transmission lines forming a CPW. Bias is provided by at least one layer of metal disposed on a top surface of the SiC crossbeam, such as a layer of chromium followed by a layer of gold, and extending beyond the switch to a biasing pad on the substrate. The switch utilizes stress and conductivity-controlled non-metallic thin cantilevers or bridges, thereby improving the RF characteristics and operational reliability of the switch. The switch can be fabricated with conventional silicon integrated circuit (IC) processing techniques. The design of the switch is very versatile and can be implemented in many transmission line mediums.

  14. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs.

    PubMed

    Hong, Sungki; Freeberg, Mallory A; Han, Ting; Kamath, Avani; Yao, Yao; Fukuda, Tomoko; Suzuki, Tsukasa; Kim, John K; Inoki, Ken

    2017-06-26

    The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5'TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5'TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5' and 3'UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5'UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3'UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis.

  15. SWITCH user's manual

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The planning program, SWITCH, and its surrounding changed-goal-replanning program, Runaround, are described. The evolution of SWITCH and Runaround from an earlier planner, DEVISER, is recounted. SWITCH's plan representation, and its process of building a plan by backward chaining with strict chronological backtracking, are described. A guide for writing knowledge base files is provided, as are narrative guides for installing the program, running it, and interacting with it while it is running. Some utility functions are documented. For the sake of completeness, a narrative guide to the experimental discrepancy-replanning feature is provided. Appendices contain knowledge base files for a blocksworld domain, and a DRIBBLE file illustrating the output from, and user interaction with, the program in that domain.

  16. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors

    PubMed Central

    Schütte, Moritz; Risch, Thomas; Abdavi-Azar, Nilofar; Boehnke, Karsten; Schumacher, Dirk; Keil, Marlen; Yildiriman, Reha; Jandrasits, Christine; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Worth, Catherine L.; Schweiger, Caroline; Liebs, Sandra; Lange, Martin; Warnatz, Hans- Jörg; Butcher, Lee M.; Barrett, James E.; Sultan, Marc; Wierling, Christoph; Golob-Schwarzl, Nicole; Lax, Sigurd; Uranitsch, Stefan; Becker, Michael; Welte, Yvonne; Regan, Joseph Lewis; Silvestrov, Maxine; Kehler, Inge; Fusi, Alberto; Kessler, Thomas; Herwig, Ralf; Landegren, Ulf; Wienke, Dirk; Nilsson, Mats; Velasco, Juan A.; Garin-Chesa, Pilar; Reinhard, Christoph; Beck, Stephan; Schäfer, Reinhold; Regenbrecht, Christian R. A.; Henderson, David; Lange, Bodo; Haybaeck, Johannes; Keilholz, Ulrich; Hoffmann, Jens; Lehrach, Hans; Yaspo, Marie-Laure

    2017-01-01

    Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I–IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab. PMID:28186126

  17. High-Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs.

    PubMed

    Aßhoff, Sarah J; Lancia, Federico; Iamsaard, Supitchaya; Matt, Benjamin; Kudernac, Tibor; Fletcher, Stephen P; Katsonis, Nathalie

    2017-03-13

    Motion in plants often relies on dynamic helical systems as seen in coiling tendrils, spasmoneme springs, and the opening of chiral seedpods. Developing nanotechnology that would allow molecular-level phenomena to drive such movements in artificial systems remains a scientific challenge. Herein, we describe a soft device that uses nanoscale information to mimic seedpod opening. The system exploits a fundamental mechanism of stimuli-responsive deformation in plants, namely that inflexible elements with specific orientations are integrated into a stimuli-responsive matrix. The device is operated by isomerization of a light-responsive molecular switch that drives the twisting of strips of liquid-crystal elastomers. The strips twist in opposite directions and work against each other until the pod pops open from stress. This mechanism allows the photoisomerization of molecular switches to stimulate rapid shape changes at the macroscale and thus to maximize actuation power. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Chromatic interocular-switch rivalry.

    PubMed

    Christiansen, Jens H; D'Antona, Anthony D; Shevell, Steven K

    2017-05-01

    Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses.

  19. Chromatic interocular-switch rivalry

    PubMed Central

    Christiansen, Jens H.; D'Antona, Anthony D.; Shevell, Steven K.

    2017-01-01

    Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses. PMID:28510624

  20. First principles investigation of the unipolar resistive switching mechanism in an interfacial phase change memory based on a GeTe/Sb2Te3 superlattice

    NASA Astrophysics Data System (ADS)

    Shirakawa, Hiroki; Araidai, Masaaki; Shiraishi, Kenji

    2018-04-01

    The interfacial phase change memory (iPCM) based on a GeTe/Sb2Te3 superlattice is one of the candidates for future storage class memories. However, the atomic structures of the high and low resistance states (HRS/LRS) remain unclear and the resistive switching mechanism is still under debate. Clarifying the switching mechanism is essential for developing further high-reliability and low-power-consumption iPCM. We propose, on the basis of the results of first-principles molecular dynamics simulations, a mechanism for resistive switching, and describe the atomic structures of the high and low resistance states of iPCM for unipolar switching. Our simulations indicated that switching from HRS to LRS occurs with Joule heating only, while that from LRS to HRS occurs with both hole injection and Joule heating.